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Preface

This book contains papers presented at the 31st European Symposium of Computer Aided
Process Engineering (ESCAPE-31), held in Istanbul, Turkey, from June 6-9, 2021. The
ECSAPE series started in 1992 at Elsinore, Denmark, on a strong foundation of 23 events of
the European Federation of Chemical Engineers (EFCE) Working Party on Computer Aided
Process Engineering (CAPE). The most recent symposia were organised in Eindhoven, The
Netherlands 2019 (ESCAPE-29), and Milano, Italy 2020 (ESCAPE-30).

The ESCAPE series serves as a forum to bring together scientists, researchers, managers,
engineers, and students from academia and industry, who are interested in CAPE and Process
Systems Engineering (PSE). The scientific aim of the symposium is to present and review the
latest developments in CAPE and/or PSE. This research area bridges fundamental chemical
and biological sciences with various aspects of process and product engineering. The
objective of ESCAPE-31 is to promote the use of a systems approach, highlighting the
traditional CAPE-PSE topics as well as the emerging CAPE-PSE topics of current interest and
future significance.

The main focus for ESCAPE-31 is on the methodical approaches in process systems
engineering with emphasis on circular engineering economy, and sustainable product and/or
process development. The papers at ESCAPE-31 are arranged in terms of the following
themes: Process-product synthesis, design and integration; Methods, models and
computational tools for PSE; Process control and operations; CAPE/PSE in energy/water/food
nexus and sustainability; Process operations and supply chains; PSE in biological systems and
processes; Education in CAPE/PSE & knowledge transfer.

A total of 320 contributed 6-pages papers are included in this book. All the papers have been
reviewed and we thank the members of the international scientific committee for their
evaluations, comments and recommendations. It was a very difficult task since we started
with more than 452 submitted abstracts. The selection process involved review of abstracts,
review of manuscripts and final selection of the revised manuscript.

We hope that this book will serve as a valuable reference document to the scientific and
industrial community and that it will contribute to the progress in computer aided process and
product engineering.

Metin Turkay 9 March 2021
Rafiqul Gani
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Hizmete Özel / Confidential 

Explanatory and Predictive Analysis of Naphtha 
Splitter Products 
Ahmet Can Serfidan,a,b Metin Türkay,b  
aTUPRAS, Address, Petrol Cd. No:25 D:No:25, Turkey 
bKoc University, Rumelifeneri, Sarıyer Rumeli Feneri Yolu  
 
Abstract 
 
Refinery operations are always prone to optimization, and due to the increasingly adverse 
effects of COVID-19 on energy sectors, its importance increased significantly. This work 
aims to predict the naphtha column KPI parameters with high accuracy so that operators 
make corrective actions efficiently. Although linear regression provides acceptable 
results for prediction, this is not the case for top and bottom product C7 and C6 prediction 
in the central Naphtha Splitter column. First, we did gather all the available data to 
overcome this problem, which can affect the top and bottom products. Including upstream 
units that feed the column. Instead of one common technique (linear regression), we used 
five additional machine learning methods: Adaboost, support vectors, kNN, random 
forest, XGboosting. Since there are many measurements, however, very few samples 
need to reduce dimensions before modeling. We used BorutaSharp to select the essential 
features. We also use classification machine learning methods to categorize bottom 
products since there is no need to predict the value instead of whether the value is higher 
or lower than a constant. Overall, we achieved 30% higher accuracy than the traditional 
ways for the top product, and we reached to predict C6 content in the bottom with higher 
accuracy than 80%. Xgboost provides the best regression model, and stochastic gradient 
boosting yields the best classification model. After our implementation, the energy 
consumption is decreased significantly, and 100k$/month is saved since we can monitor 
top and bottom products simultaneously. 
 
Keywords: naphtha splitter column, quality estimator, soft sensor. 
 
1. Introduction 
 
In the era of COVID-19, some of the most negatively affected sectors are petrochemical, 
refining, energy, etc., due to the most significant demand destruction events the world has 
seen. The refining companies experienced a sharp drop in margins and experienced 
substantial financial losses. This time optimization, whether it is minimizing the product 
giveaway, maximizing the energy utilities, becomes the most critical topic. 
Naphtha Splitter (NS) columns are used to separate light naphtha from heavy naphtha. 
The naphtha splitter column's key performance indicator is the qualities of the bottom and 
top products. Namely, the top product is light naphtha, and its quality indicator is 
hydrocarbon content, which is measured by ASTM D5134 method. This method provides 
with C1%, C2%, C3%, C4%, C5%, C6%, C7%, C7+%, where, for example, C4% means 
percent of C4 hydrocarbons, mainly 1,3-butadiene, 2-methlypropene, butanes and 
butanes. The most important measure is the C7% content in the top product since beyond 
a threshold value of C7%, profit decreases drastically. The bottom product is heavy 
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naphtha, and it's quality indicator again hydrocarbon content. The most important quality 
parameter is the C6% content since a higher C6 fraction will strongly affect the 
downstream of the naphtha splitter column (catalytic cracking units), resulting in benzene 
more than regulation limits. The process operators control the unit by monitoring C6 and 
C7 compositions in the bottom and top products. However, the samples are only taken 
twice a week, so an operator's general tendency is to keep the column condition the same 
as before. And this yields to stay in the over-safe zone for the unit. In other words, the 
product gives away. This work aims to predict the KPI parameters with high accuracy to 
make corrective actions efficiently.  
 
2. Methodology 
 
Optimization of NS depends on the refinery configuration and operating characteristics 
of refineries. Despite the differences, the main aim is to find the best conditions to 
minimize product losses. There are many obstacles in optimizing primary NS columns. 
One of them is the uncertainty in-feed content. They generally have a very complex feed 
network. Some of the feed flows are usually unknown since the flow meter is placed 
before the pipeline junction. For example, the bottom product of the debutanizer in the 
hydrocracker unit can go either LSRN tank or unifier feed (cannot feed them 
simultaneously). Although feed flow rate is known, there is no direct data that indicates 
which unit is feed by that flow. 
Also, there is no measurement for the tank, and the main NS operation cannot know which 
type of feed they are operating until they see the effect (temperature, liquid level changes, 
etc.) 
Other than feed conditions, there are disturbances to columns like weather conditions. For 
example, in the summer, the operation conditions have to change to keep the pressure 
stable. Based on the disturbances above, even if there is no other change in the main NS 
column, its product quality will change significantly. You will see the last two years' C7 
and C6 results of the main NS column below. 
 

 
Figure 1 Bottom C6 Content 

 
Figure 2 Top C7 Content 
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Here are our aims: (i)There is a hard process limit on C6, 1. As long as C6 content does 
not exceed this limit, there is no problem. Otherwise, the subsequent unit will have a 
benzene problem. This will yield to the environmental problem, which is unacceptable. 
(ii)There is no limit on C7. However, since it is impure to the isomerization reactor,  the 
aim is to send it low as much as possible. Otherwise, the temperature needed to 
compensate for the impurity will increase, yielding enormous economic loss. As seen in 
the above graph, operations are carried out such that C7 content is 2.0 on average. As we 
decrease the C6 at the bottom, we will increase the C7 on top and vice versa. Since the 
acceptable limit is 1 for C6, the optimum condition for main NS: (i) Lower the energy 
given the column as long as C6 does not exceed the threshold, (ii) Keep C7 minimum as 
much as possible. Currently, there is no inferential for C6, and C7 inferential mean 
absolute error is around 1.5 
Since there is no way to exceed the C6 limit, they try to give more energy columns more 
than necessary. As you see, there is almost no exceeding limit but also many zeros. This 
is mainly because they want to stay in a safe zone as much as they can. 
In this project, I aim to predict C6 and C7 with great accuracy so that the main NS column 
will be operated optimally. And as previously discussed, it is needed to infer the tank's 
content. However, this requires the following preparations: (i) LSRN T95 inferential of 
each unit sent to the tank or main NS column (ii) Heuristic solution for which units sent 
their LSRN to the tank. 
Five different units can feed the main NS column. Each has different operating conditions, 
different lsrn specifications, and different constraints. But all of them are binary 
distillation columns. To infer LSRN, I took those as possible candidates: input flow rates, 
input temperature, all column temperatures, all column pressures, tray temperature 
controller, steam feed flows, reflux flow rates, bottom flow rate, distillate flow rate. Also, 
I generated these features: reflux overfeed, temperature differences between bottom and 
top of the columns, distillate over the bottom. We were able to get 200-400 rows of data 
for each unit. 
I used BarutoSharp to select the most important features. It is a wrapper feature selection 
method that uses both the Boruta feature selection algorithm with Shapley values. It 
successfully reduces the column number from 30 to 5-10[1] 
After that, I used linear regression to predict LSRN T95. However, I want to keep 
minimum columns while minimizing the mean. Here is the algorithm for selecting the 
best features to minimize error with the minimum number of features. 
 
 

 
Figure 3 The algorithm for feed content prediction 

 
The missing or misleading measurements are no surprise in refineries. In this optimization 
study, I have to also deal with this problem. Data by itself does not indicate whether the 
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flow is sent to the tank or some other unit. Here is the more detailed version of the feed 
network and all possible injections: 
 
 

 
Figure 4 Feed Network 

 
The heuristic optimization to find which feed goes to which unit is: 
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Where F's flows and X's are binary variables indicating whether the flow is present or 
not. 
After finding heuristic values for those unknowns and this data preparation process, we 
finally have the most important parameters that can affect top C7 content and bottom C6 
content. Namely, the feed content and column operations. There might be other factors 
that can affect the target, like weather conditions. However, those disturbances will also 
change the column measurements. Thereby, even if we do not involve outlet temperature 
directly, we will know its change by one of the temperature/pressure measurements in the 
top part of the column. 
To predict C7 and C6 content, I follow a very similar approach to the above methodology. 
But this time, in addition to linear regression [2], I make use of other powerful machine 
learning algorithms, specifically: Random Forest [3], AdaBoost, XGBBoost [4], KNN, 
SVR[5]. Again, BorutaSharp is used to select the most important features, and then for 
each algorithm, I give all the important elements to the machine learning algorithm. 
Finally, this time, instead of trying all possible combinations of features, I tried different 
range of hyperparameters. 
For the bottom content prediction, we followed a different approach. The main aim is not 
to exceed the process high limit. Since we will decrease the energy input to column 
bottom product quality impurity will get higher. We keep lowering the reboiler feed until 
we are close to the limit. So, instead of a regression problem, this becomes a classification 
one. To predict whether it is higher than the limit or lower, we used the following 
algorithms: Logistic Regression, kNN, Random Forest, SVM. 
 
3. Results and Discussion 
 
All of the algorithms are applied using python programming language between 2018 
and 2020 of data gathered and implemented by our algorithms. The number of rows 
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varied from unit to unit since lab measurement frequency can change. However, we 
approximately processed 300-400 rows of data for each unit. We start with 40-50 
features, but of course, we had to decrease features to around ten due to a low number 
of samples by using the BorutaSharp algorithm.  
As discussed above, feed content prediction plays a huge role in predicting C7 and C6 
content. Here are the results of feed content predictions for each unit: 

Table 1 Feed Content Prediction Performance 
Unit MAE 

CDU1 2.7676 
CDU2 6.4958 

CDU3 1.9088 
 

MQD 0.9802 
HCU 1.125 

 
As discussed above, we used BorutaSharp to select the most important features. We used 
this technique in all inferential, namely C7 or C6, and feed content prediction. 
BorutaSharp yield the following result for C7 prediction: 

 
Figure 5 BorutaSharp Results 

 
The most important feature is selected as the column top temperature controller. This is 
expected since the top, which controls the bottom content.  As seen from the above figure, 
"SarjIndex," which represents crude content, is an important feature. After preparing the 
data, and feature selection process, we use five different machine learning algorithms to 
predict C7. Here are the results: 
 

Table 2 C7 Prediction Performance 
Model RMSE MAE 
Xgboost 1.090443 0.916482 
Linear Regression 1.057803 0.878728 

KNN 1.05741 0.858755 

SVR  1.084933 0.906482 

Random Forest 1.064464 0.878151 
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As shown from the above table, all modeling algorithms yield almost the same result. 
However, explaining and updating Linear Regression is more accessible than the others 
in refinery conditions. Since lab results are taken daily, we can update the bias term if 
there is a significant process change. 
And for the C6 prediction: 

Table 3 C6 Classification Performance 
Model Accuracy  
LogisticRegression 0.67 

KNN 0.75 

RF 0.78 

SVM  0.80 
 
4. Conclusions 
 
Optimization in refinery has become one of the most important topics, and its importance 
is rapidly increasing due to the adverse effect of COVID-19 on the energy sector. We 
achieved this work to optimize column conditions by predicting the top and bottom 
product qualities with machine learning techniques. The winner algorithm in our case is 
Xgboost. And for C6 classification, it is SVM. Predicting the top and bottom content 
simultaneously gave us the leverage of optimizing the column operation without 
exceeding the process limits. In the previous case, since the column operations are at the 
safe-zone limits, we achieved 100k$/month by lowering the energy cost. 
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Abstract 
Mexico is a country with a wide agricultural production, which implies a high production 
of lignocellulosic residues. Those residues are potential raw materials to produce biofuels 
as bioethanol and biobutanol, similarly, such residues can be used to produce high value 
added bioproducts, as furfural, levulinic acid, among others. The use of biomass to 
produce only biofuels is not economically feasible; therefore, the use of a fraction of 
biomass to obtain bioproducts with high-added value may enhance the economy in the 
biofuels industry. To ensure obtaining as much profit as possible, a proper supply chain 
must be determined. Nevertheless, when considering biomass utilisation, the use of water 
must be taken into account, since these processes involve a large amount of that resource. 
Moreover, the availability of water is uncertain, thus this issue must be included in the 
decision-making process for such supply chain. For this reason, in this work a 
mathematical model representing the supply chain of the production of 
biofuels/bioproducts is proposed, considering economic and water footprint aspects. The 
model is relaxed to a MILP equivalent and solved using the software GAMS, aiming to 
the maximization of the profit and minimizing the water footprint, while satisfying as 
much as possible of the gasoline demand in the country. The water impact is measured 
through the ratio between the amount of water required by the process and the amount of 
water available at the plant location. Pareto-optimal solutions were obtained using the ε-
constraint method. According to the results obtained, the maximum profit is 572,360.7 
thousand dollars per year, with a water footprint of 0.584. For that case, there are two 
plants: Guanajuato and Queretaro; which produce levulinic acid and bioethanol. On the 
other hand, the minimum for water footprint is 0.021. For this case, a single facility is 
located in Veracruz, where levulinic acid and bioethanol are produced. 

Keywords: optimization, water footprint, supply chain, biofuels. 
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1. Introduction 
The use of fossil fuels as energy source has had an enormous cost for humanity and the 
environment, from air and water pollution to global warming. That is a reason to resort 
to the concept of biofuels, which are obtained from renewable biomass (Dermibas, 2017) 
and are expected to show lower greenhouse gas emissions than fossil fuels. In Mexico, 
there is a high potential for the production of biofuels, mainly from residues of corn, sugar 
cane, sorghum, wheat and barley. More than 50% of the waste is used for soil protection, 
27% is fed to livestock and 20% is burned (Damián-Huato et al., 2013). Therefore, there 
is a major interest in evaluating the energy potential of waste that has low food quality, 
which is mostly burned in the field. Examples of biofuels are bioethanol, which can be 
mixed up to 10% by volume with gasoline (Costagliola et al., 2016), and biobutanol, 
which can be used in blends of up to 16% by volume (Zhang et al., 2016). Industrial 
biofuel production is not economically competitive. Therefore, in addition to the 
production of biofuels, the generation of high value-added products is necessary to 
improve the economic potential of the biomass-based industry. Among the many potential 
high value-added products, levulinic acid can be mentioned, which is a great platform for 
a variety of products such as levulinate esters, etcetera (Pileidis and Titirici, 2016). 
Another product with high added value is furfural, which is a platform for other products 
of industrial importance, such as furfuryl alcohol, tetrahydrofuran, etcetera 
(Bhogeswararao and Srinivas, 2015). Among the different biofuels and bioproducts that 
can be obtained from lignocellulose biomass, a given combination of products should 
have the highest profitability, using the greatest amount of residues possible and 
satisfying part or all of the demand. Similarly, it is important to note that the production 
of biofuels requires a large amount of water, while the country has problems with water 
supply (Godinez Madrigal et al., 2018). Within the supply chains analyzed in the country, 
none of them includes the water aspect or high value-added products as potential 
derivatives from biomass (Rendon-Sagardi et al., 2014; Santibañez-Aguilar et al., 2014). 
Similarly, in the case of the work presented by Espinoza-Vázquez et al. (2020), only the 
profit was considered as objective function, leaving out a very important aspect in the 
biorefinery industry such as water. For this reason, this work proposes the optimization 
of the supply chain for the production of biofuels and high value-added products from 
lignocellulosic material, taking into account the economic and water-use aspects. 
 

2. Case Study 
The case study in this work is similar to the one presented in the previous report by 
Espinoza-Vázquez et al. (2020). The availability of agricultural residues in Mexico is 
determined for four main crops: corn, sorghum, wheat and barley. Data for the 
distribution of such crops in all the country, and their contribution to the production of 
lignocellulosic residues, has been collected from the Service of Agrifood and Fisheries 
Information (SIAP, 2020). These raw materials are proposed to be used for the production 
of bioethanol and/or biobutanol, as biofuel alternatives, and levulinic acid and furfural as 
high-value added products. For the potential location of the facilities, the states with the 
highest industrial infrastructure have been selected. Finally, the production of each 
potential product is constrained by its national demand.  
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3. Mathematical Model 
This model is based on the use of four raw materials (i) from the 32 states in Mexico (j). 
Raw materials from any state are transported to one of the five states with the highest 
industrial infrastructure (k), where the facilities will be located. On each facility, four 
products (m) can be obtained: bioethanol, biobutanol, levulinic acid and furfural. Finally, 
the products can be distributed to ten markets (n), selected among the 32 states because 
they are the locations with higher demand for gasoline. The mathematical model used in 
this work is as follows: the total demand of a product m in the market n, TD(m,n), in mass 
units, is given by:  𝑇𝐷(𝑚, 𝑛) = 𝑃𝐷(𝑚, 𝑛) ∙ 𝜌(𝑚), ∀𝑚, 𝑛                                                                            (1) 
 
Where PD(m,n) is the volumetric demand of the product m in the market n, and ρ(m) is 
the density of the product m. The mass production of each product m in the k installation 
for each n market, FP(m,k,n), should not be greater than the total demand for that product 
in that market: ∑ 𝐹𝑃(𝑚, 𝑘, 𝑛) ≤ 𝑇𝐷(𝑚, 𝑛), ∀𝑚, 𝑛                                                                                (2) 
 
The amount of raw material i obtained from the source j that enters the biorefinery k to 
produce m, RMAF(i,j,k,m), cannot be greater than the availability of raw material i in the 
state j, RMA(i,j). This is represented as follows: ∑ ∑ 𝑅𝑀𝐴𝐹(𝑖, 𝑗, 𝑘, 𝑚) ≤ 𝑅𝑀𝐴(𝑖, 𝑗), ∀𝑖, 𝑗                                                                    (3) 
 
The cost of transporting the biomass i from the source j to the plant k, TSP(i,j,k), is 
represented as: 𝑇𝑆𝑃(𝑖, 𝑗, 𝑘) = ∑ 𝑅𝑀𝐴𝐹(𝑖, 𝑗, 𝑘, 𝑚) ∙ 𝐷 (𝑖, 𝑗, 𝑘) ∙ 𝑇𝐶𝑆𝐵, ∀𝑖, 𝑗, 𝑘                                    (4) 
 
TCSB is the cost of transporting lignocellulosic biomass, while D1(i,j,k) is the distance of 
biomass i from state j to biorefinery k. In this work, TCSB is taken as 0.00508 
kUSD/km·kt, according to the data reported for the transport of solid biomass (OAS, 
1999). The cost of transporting the product m from the installation to the market n, 
CTP(m,k,n), is given by: 𝐶𝑇𝑃(𝑚, 𝑘, 𝑛) = 𝐹𝑃(𝑚, 𝑘, 𝑛) ∙ 𝐷 (𝑘, 𝑛) ∙ 𝑇𝐶𝐿𝑃, ∀𝑚, 𝑘, 𝑛                                              (5) 
 
where D2(k,n) is the distance from the facility k to the market n, and TCLP is the transport 
cost of the liquid product. In this work, TCLP is taken as 0.00671 kUSD/km·kt, according 
to the data reported for the transportation of liquid products (OAS, 1999). A logical 
variable Y(k) is assigned to each facility; if the variable Y(k) is true, then the biorefinery 
must be built at location k. Similarly, a logical variable S(m,k) is assigned to each product, 
indicating if it is produced or not. The disjunction is represented as follows: 
 

⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝑌(𝑘)𝑇𝐶𝑃(𝑘) = ∑ ∑ 𝐹𝑃(𝑚, 𝑘, 𝑛) ∙ 𝐶𝑃(𝑚)𝑛𝑚𝑇𝐶𝑅𝑀(𝑘) = ∑ ∑ 𝐹𝑃(𝑚,𝑘,𝑛)𝑌𝑙𝑑(𝑖,𝑚) ∙ 𝑅𝑀𝑈𝐶(𝑖)𝑛𝑚𝑇𝐶𝐿(𝑘) = ∑ ∑ 𝐹𝑃(𝑚,𝑘,𝑛)𝜌(𝑚) ∙ 𝐿𝑆(𝑚, 𝑘) ∙ 𝐿𝐶𝑛𝑚𝑆(𝑚, 𝑘)∑ 𝐹𝑃(𝑚, 𝑘, 𝑛) = 𝐴𝑛 ∨ ¬𝑆(𝑚, 𝑘)∑ 𝐹𝑃(𝑚, 𝑘, 𝑛) = 0𝑛 ⎦⎥⎥

⎥⎥⎥
⎥⎤ ∨ ¬𝑌(𝑘)𝑇𝐶𝑃(𝑘) = 0𝑇𝐶𝑅𝑀(𝑘) = 0𝑇𝐶𝐿(𝑘) = 0 , ∀𝑘                                 (6) 

 
Where: 
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𝐴 = 𝑅𝑀𝐴𝐹(𝑖, 𝑗, 𝑘, 𝑚) ∙ 𝑌𝑙𝑑(𝑖, 𝑚)                                                                                   (7) 
 

TCP(k) is the total production cost of the biorefinery k, CP(m) is the unit production cost 
for the product m, TCRM(k) is the cost due to the raw material entering the facility k, 
Yld(i,m) is the product yield $m$ obtained from the raw material i, RMUC(i) is the unit 
cost of raw material i, TCL(k) is the cost of land acquisition for installation k, LS(m,k) is 
the required land area per liter of product, LC is the cost of land per square meter. In this 
work, RMUC(i) has been taken as 87.5 kUSD/kt, which is an estimated selling price for 
agricultural residues for animal feed (Mercado Libre, 2020). LC is taken as 0.4048 
kUSD/m2 while LS(m,k) is defined as 0.66 m2/L. The values of LC and LS(m,k) are 
estimated from the production cost, surface and land reported for the “Francisco I. 
Madero”  refinery, located in Ciudad Madero, Tamaulipas, Mexico (El Informador, 
2019). The multi-objective optimization problem is represented as: 𝐹𝑂𝐵𝐽 = min (−𝐺𝑁, 𝐴𝐻)                                                                                                (8) 
 
Where the profit GN, is given by:  𝐺𝑁 = ∑ ∑ ∑ 𝐹𝑃(𝑚, 𝑘, 𝑛) ∙ 𝑆𝑃(𝑚) − ∑ 𝑇𝐶𝑅𝑀(𝑘) − ∑ 𝑇𝐶𝑃(𝑘) − ∑ 𝑇𝐶𝐿(𝑘) −∑ ∑ ∑ 𝑇𝑆𝑃(𝑖, 𝑗, 𝑘) − ∑ ∑ ∑ 𝐶𝑇𝑃(𝑚, 𝑘, 𝑛)                                                            (9) 
 
where SP(m) is the selling price of the product m. While the water footprint AH is given 
by: 𝐴𝐻 = ∑ ∑ 𝐹𝑃(𝑚,𝑘,𝑛)∙𝐴𝑊(𝑚)𝑊𝐴𝑃(𝑘)𝑘𝑚                                                                                             (10) 
 
Where WAP(k) is the amount of water available for industrial processes at the facility k 
(Comisión Nacional del Agua, 2018). This value was obtained from the amount of water 
destined for industrial use in each state. On the other hand, the parameter AW(m) is the 
amount of water required to process the product m. The minimal production of bioethanol 
is fixed as 10%, forced to be satisfied. The disjunctions represented by equation 6 are 
relaxed using the Big-M approach (TresPalacios and Grossmann, 2015) and the model 
was coded in the GAMS software. The resulting MILP problem consists of 887 equalities 
and 456 inequalities. The model has been optimized with the solver BARON, in a HP 
computer with a Inter Core i5-8300H CPU, 12.00 GB of RAM. 
 

4. Results 
 

Table 1. Limits of objective functions. 
 

Objective Profit Water Footprint 
Max GN 572,360.7 0.58 
Min AH 0 0.02 

 
The two previously established objectives were taken into account, generating the Pareto 
fronts for their analysis, forcing the code to satisfy 10% of the bioethanol demand. As a 
first step, the limits of the objective functions were established through their individual 
solution, as shown in the Table 1. Subsequently, the ε-constraint method is used, 
generating the Pareto front with about 50 points with the Hammersley technique for a 
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complete visualization of the data (Fu and Diwekar, 2004). It is important to mention that 
each point of the Pareto front-end involved 2 minutes of computing time, for a total of 
100 minutes for the entire Pareto front. 

Analyzing the results shown in 
the Figure 1, it is observed that 
minimizing the water footprint 
completely comes at the expense 
of a drop in supply chain 
profitability. While increasing 
the profit in very small fractions, 
it leads to an increase in the water 
footprint. Therefore, it is 
observed that the objective 
functions are competing, since 
the benefit of an objective 
function, compromises the other. 
It is important to mention, that 
the minimum water footprint is 
not shown, because the 
corresponding profit is 0, since 
only bioethanol is produced, 
and the other of the graph tend 
to be lost due to the scale used. On the other hand, it can be seen that after the water 
footprint reaches a value of 0.15, the slope on the Pareto curve decreases, reducing the 
growing rate of the profit as the water footprint increases. Thus, a higher profit of the 
supply chain could be achieved if there were no restrictions on the use of water. It can be 
observed that the profitability tends to stabilize between 5.71·105 and 5.73·105, satisfying 
the required percentage of bioethanol demand and producing levulinic acid, without 
considerably increasing the water footprint. In terms of the supply chain, having the 
maximum profit, it is suggested the existence of a plant in Guanajuato, which produces 
bioethanol and levulinic acid, as well as a second facility located in Queretaro to produce 
levulinic acid. These plants fully satisfy the demand for the high value-added product and 
the 10% bioethanol restriction. This amount of bioethanol is only distributed to the same 
state where the plants are located, that is, Guanajuato and Queretaro. Finally, a greater 
quantity of corn waste from Aguascalientes and Jalisco is used, due to its high availability 
and proximity to the plants. On the other hand, the middle point, which satisfies both 
aspects, raises the existence of the four facilities, except Baja California. All four facilities 
produce bioethanol, while only Coahuila, Guanajuato and Veracruz produce levulinic 
acid, satisfying all the demand for the acid. As there are more plants, the amount of water 
available has lower impact, since as the production is distributed, it is not used in an 
excessive quantity. Similarly, there is a more specific distribution to the markets, for 
example, bioethanol produced by Coahuila goes to Nuevo Leon, while the product from 
Veracruz is sent the market in Puebla, and so on. This is due to the proximity of the plants 
to the market. In terms of the use of raw material, corn is still the most used waste, in this 
case obtained from Coahuila, Durango and Jalisco, distributed to the closest facilities. 

5. Conclusions 
A mathematical model has been developed to determine the optimal supply chain in terms 
of profit and water footprint for the use of lignocellulosic biomass to potentially obtain a 

Figure 1. Pareto front: Profit Vs. Water Footprint. 
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variety of renewable products in Mexico. This study concludes that solutions can be found 
that satisfy the economic and environmental aspect, producing bioethanol and levulinic 
acid from agricultural residues. Moreover, the facilities are located on states where the 
production of these biofuels and high value-added products do not have a negative impact 
on water use. This analysis gives us the opportunity to include more objectives within the 
supply chains, such as environmental and social aspects, all with the purpose of having a 
sustainable proposal in every aspect. 
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Abstract 
Mass and heat integration are important to achieving economically and environmentally 
sustainable processes through increased efficiency. Typically, heat and mass exchange 
networks are solved separately using process integration techniques such as pinch 
technology or formulating nonconvex mixed-integer nonlinear programming (MINLP) 
problems, which are challenging to solve. To simplify the MINLP, shortcut models are 
employed, which can result in under/overestimation of the real network, leading to 
suboptimal or infeasible designs. We introduce a new optimisation algorithm for 
combined heat and mass exchanger network synthesis (CHAMENS), including detailed 
design models. The method uses shortcut models in an MINLP to find network topology, 
followed by a nonlinear programming (NLP) suboptimisation. The NLP allows non-
isothermal and non-isocompositional mixing, uses detailed unit models of packed 
columns based on orthogonal collocation on finite elements (OCFE), and detailed shell 
and tube heat exchanger designs. We incorporate a differential-algebraic equation (DAE) 
based shell and tube heat exchanger design model via surrogates in a trust region filter 
(TRF) framework, guaranteeing optimal solutions for the detailed exchanger models are 
found by the surrogate models. We demonstrate the proposed approach on a case study, 
showcasing its performance and the need to incorporate detailed unit models in topology 
optimisation to find practical optimal designs. 
 
Keywords: heat exchanger networks, mass exchanger networks, optimisation, mixed-
integer nonlinear programming, process integration. 

1. Introduction 
Mass and heat integration increase process efficiency by reducing external heating and 
cooling utilities and mass separating agents (MSAs), thus maximising heat and mass 
recovery within the process. To solve the problem using mathematical programming 
techniques, mass exchanger networks (MENs) and heat exchanger networks (HENs) are 
commonly formulated as separate MINLPs using superstructure-based approaches such 
as the stage-wise superstructure (SWS) for HENs proposed by Yee and Grossmann 
(1990), or the approach of El-Halwagi and Manousiouthakis (1990a) for MENs. These 
require nonconvex MINLP formulations, which are difficult to solve, and therefore unit 
representations are simplified, with heat exchanger area and mass exchanger height used 
as sizing parameters and heat and mass transfer coefficients fixed. Despite abundant 
literature on solving these problems separately, mass and heat transfer coefficients are 
related to temperatures and velocities and therefore there is a need to integrate these 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50003-6



 

problems in combined heat and mass exchanger networks (CHAMENs). This is 
especially important in gas-liquid absorption, where there are benefits in operating 
absorption at low temperature and MSA regeneration at higher temperatures. 

Srinivas and El-Halwagi (1994) formulated CHAMENS problems for the first time, using 
a two-step procedure, where an MINLP is first used to obtain the MEN with lowest MSA 
costs, followed by a HEN synthesis step. Liu et al. (2015) also solved the two networks 
separately using the SWS MINLP formulation to solve for network topologies before 
formulating an NLP to combine the models and optimise interactions between them. 
Recently, Kim et al. (2020) developed combined model for solving large MINLPs with 
MENs, HENs, and a newly developed regeneration exchanger network (REN), which 
incorporates different regeneration options. All these approaches, however, only use 
simplified representations for the unit operations and design models. 

In MENS, without accounting for detailed aspects of the unit designs, the simplified 
formulations may result in sub-optimal or practically infeasible network designs with 
flooding, low mass transfer coefficients or strange column features, such as implausible 
L/D ratios. Isafiade and Short (2016) incorporated additional details of packed column 
unit design into the MINLP, such as column diameter, mass transfer coefficients, 
velocities, and noticed vastly different designs; however, the MINLP was difficult to 
converge due to the increased nonconvexity of the formulation. Short et al. (2018) 
developed detailed packed column models based on discretisation of the differential 
equations by OCFE to formulate a DAE model that can be solved via NLP. These models 
solve reliably, allowing for consideration of optimal diameters, heights, packing size, etc, 
while considering practical aspects such as column flooding. The authors then 
incorporated these into the MEN SWS model via a two-step optimisation algorithm, 
based on the work of Short et al. (2016), by using correction factors to ensure convergence 
of the MINLP shortcut models to the solutions of the detailed designs. 

Recently, Kazi et al. (2020a) developed a shell and tube heat exchanger design 
optimisation model that uses efficient enumeration to determine discrete decisions on 
baffles, number of shells, tube passes, fluid allocation, etc., followed by a detailed DAE 
model. The model solves quickly and makes fewer assumptions than those based on the 
log mean temperature difference (LMTD). These models were incorporated into HENS, 
allowing for designs to incorporate detailed exchangers, including pressure drops, 
multiple shells, etc. (Kazi et al., 2020b). More recently, Kazi et al. (2020c) developed a 
novel algorithm for including these models into HENS as surrogates via a TRF algorithm 
from Yoshio and Biegler (2020).  

In this work, we propose a two-stage approach where, in the first stage, an MINLP 
superstructure-based optimisation is used with simplified, shortcut unit models to find 
topologies for the CHAMEN. Next, an NLP is formulated with detailed optimisation unit 
models for the packed bed absorption columns, based on OCFE (Short et al., 2018). These 
models are directly incorporated in the NLP. Detailed shell-and-tube heat exchanger 
design models, from Kazi et al. (2020a), are incorporated into the flowsheet via a TRF 
algorithm. The algorithm allows for optimisation of a detailed flowsheet with first-
principles models, and with superstructure decisions decided via a simultaneous 
optimisation procedure. The method does not increase the complexity of traditional 
MINLP process integration models, while providing a method of incorporating detailed 
unit designs. The algorithm and its application to CHAMENs demonstrates the power of 
the approach, highlighting the need for detailed unit models in superstructure-based 
process synthesis, and proposes a potential framework for future process synthesis. 

14 S.R. Kazi et al.



Synthesis of Combined Heat and Mass Exchange Networks Via a Trust-Region  
Filter Optimisation Algorithm Including Detailed Unit Designs 

2. Modelling framework 
2.1. Topology optimisation 
We present a modelling framework for CHAMENS that begins with solving the MEN, 
HEN, and REN separately as MINLPs to obtain initialisations for the full problem. Note 
that these formulations are very similar to common SWS approaches mentioned earlier, 
with a REN model following similar formulation to Kim et al. (2021). Following this, the 
problems are integrated through linking variables, with temperatures and flowrates of 
MSAs, in order to solve the combined problem as a large MINLP. These models assume 
constant heat and mass transfer coefficients, isothermal and isocompositional mixing, and 
use shortcut formulations to represent units. The shortcut heat exchanger models use areas 
as costing variables for the heat exchangers, ignoring the number of shells and pressure 
drops associated with them. Similarly, for the packed bed mass exchangers, only height 
is considered as a capital costing variable, with diameters and their effects on potential 
flooding, capital cost and mass transfer coefficients, considered constant. By doing this, 
we can maintain the model formulation as mostly convex and reduce complexity for the 
large MINLP formulation, which is challenging to solve. Parameters, along with the 
assumptions above, are selected to ensure that the MINLP problem underestimates the 
objective function, thus ensuring that this can act as a lower bound to the overall 
minimisation problem. If a global solution is found to the MINLP problem, this is a 
rigorous lower bound. However, in practice this cannot be guaranteed due to the size and 
non-convexity of the formulation. 
2.2. Detailed network optimisation 
The topology obtained from the shortcut model MINLP is used to construct an NLP, 
consisting of 3 linked submodels, solved simultaneously, for the REN, MEN, and HEN. 
The MEN and REN are formulated using the NLP optimisation model proposed by Short 
et al. (2018), where each selected mass exchanger is solved as a DAE model of a packed 
column using OCFE. This formulation allows simultaneous optimisation of the column 
diameters, heights, and packing sizes, using Onda’s correlation for mass transfer 
coefficients. In Short et al. (2018), the mass balances over each column were fixed to that 
of the solution from the MINLP, however in our formulation, we allow for inlet and outlet 
concentrations of lean and rich streams to be optimised, along with column designs, 
providing the NLP with significant freedom. Furthermore, the model allows for non-
isocompositional mixing of split streams and temperature-dependent mass transfer 
coefficients, linked via the Henry’s Law coefficient. The MEN and REN submodels are 
connected via the variable flowrates for the MSAs that are regenerated.  

The HEN NLP consists of the energy balance equations from the MINLP, with fixed 
topology via the binary variables and non-isothermal mixing. Shell and tube heat 
exchanger design variables that affect the overall objective function, such as number of 
shells, pressure drops, and areas, are included in the model via reduced order models 
(ROMs). These ROMs are updated at each iteration of the TRF algorithm to ensure that 
they are accurate within a small trust region around the previous solution, obtained from 
the running the detailed discretised DAE model of Kazi et al. (2020a). This strategy 
allows us to ensure that the solutions for the ROMs are the same as those of the rigorous 
models obtained from the DAE model, while also guaranteeing that we are at a stationary 
point for both. For more details on the TRF strategy, see the work of Yoshio and Biegler 
(2020). The NLP is solved at each iteration of the TRF, including all NLP subproblems, 
with the HEN NLP linked to the MEN and REN NLPs via temperatures and flowrates of 
the lean streams in the MEN, which are also the flowrates of the rich streams in the REN. 
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2.3. Integer-cut algorithm and implementation 
Once the NLP TRF algorithm terminates, the solution includes optimal flowrates of 
utilities and detailed designs of individual units. These designs include optimal pressure 
drops, tube and shell passes, areas, fluid allocation and tube lengths for the shell and tube 
heat exchangers, and the optimal packing size, column heights, diameters, velocities, and 
stream splits for the packed columns in the MEN and REN. Additionally, the optimal 
temperatures for mass exchange are obtained. This solution acts as an upper bound to the 
overall algorithm. Integer cuts can then be generated to exclude the previously obtained 
topology from future iterations of the MINLP, allowing other topologies to be evaluated. 
Once the lower bound exceeds the upper bound, the algorithm terminates, with the upper 
bound solution as optimal. A graphic depiction of the algorithm is shown in Figure 1. The 
full strategy is implemented in Python, using Pyomo (Hart et al., 2017), with NLP 
problems being solved with IPOPT 3.13.3 (Waechter and Biegler, 2006) and MINLP 
problems solved using BARON (Tawarmalani and Sahinidis, 2005). Note that due to the 
size and nonconvexity of the MINLP, on certain iterations it may be necessary to relax 
tolerances in BARON to find feasible topologies for subsequent iterations. 
 

 
Figure 1: Overall solution algorithm 

3. Case Study 
We formulate an H2S removal process, where coke-oven gas (COG) is sweetened. The 
problem has two rich streams, COG (R1) and tail-gas from a Claus unit (R2), both rich in 
H2S, potentially absorbed by three lean streams: aqueous ammonia (L1), a process MSA, 
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and external MSAs (L2) 15 wt% methyl diethanolamine (MDEA), and (L3) chilled 
methanol regenerated via low pressure or medium pressure steam. For brevity, detailed 
problem data and model formulations are omitted, with results shown to demonstrate the 
algorithm. We use stream parameters from Kim et al. (2020), with flowrates multiplied 
by 10 and model formulations from aforementioned studies. For the purposes of this 
example we consider the temperature of L2 and flowrates of L2 and L3 as linking 
variables. The optimal design is shown in Figure 2. The MINLP consists of 460 
constraints, 455 continuous variables and 64 discrete variables (TAC: $26,209,870), and 
the NLP model consists of 11,199 constraints and 11,095 continuous variables (TAC: 
$26,634,598). The full algorithm solves in 5 CPU min, with most computational effort 
spent in the TRF algorithm. Interestingly, the result finds that L2 and low-pressure steam 
are not needed in the optimal network. There are significant discrepancies in the area of 
the heat exchanger and column designs between the NLP and MINLP solution, showing 
the need for detailed designs. Interesting solution characteristics include that packed 
column designs are constrained by flooding, with velocities and packing sizes to ensure 
that each column is operating at maximum velocity to ensure high mass transfer without 
flooding. This generally results in smaller columns than the MINLP shortcut models, as 
diameters are available for optimisation. Interestingly, the NLP also redistributes mass 
load between the first 2 exchangers on R1 in a different way to the MINLP, using a far 
larger first column on R1, possibly due to the addition of mixing constraints in the NLP. 
This results in a slight decrease (0.02 kg/s) in methanol use and subsequent reduced costs. 
 

 
Figure 2: Optimal network identified for the Case Study 

The shell and tube heat exchanger design requires many shells and high pressure drop 
and thus the NLP optimisation attempts to reduce the area of this exchanger, particularly 
since a fixed cost is introduced for numbers of shells and pressure drop is included in the 
objective function. The shortcut model in the MINLP underestimates the impact of this 
exchanger on the overall network costs without these considerations. On the second 
iteration of the algorithm, after the integer cut, only utilities and no process-process heat 
exchangers are selected and the new TAC is significantly worse due to high cooling costs. 

4. Conclusions 
We develop a new algorithm for solving CHAMENS that is the first to include detailed 
unit models as part of the optimisation formulation. The algorithm uses an MINLP model 
formulation with shortcut models to represent units to solve the large, nonconvex 
combinatorial problem first with parameters chosen to ensure an underestimation of the 
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objective function. This solution serves as the topology for the subsequent algorithmic 
steps. With topology fixed, an NLP model is then formulated. The NLP includes detailed 
mass exchanger designs, non-isothermal/non-isocompositional mixing constraints, and 
the mass and energy balances. Shell and tube heat exchangers are incorporated via 
surrogate models, generated from a detailed heat exchanger design algorithm, within a 
TRF optimisation algorithm, which guarantees that optimal solutions for the detailed 
exchanger models are found by the surrogate models. We demonstrate the technique on 
a case study involving the removal of H2S from gaseous waste streams and find 
interesting designs that are different from those obtained using MINLPs alone. We 
present detailed heat exchanger designs and packed column designs, solving the large 
NLP quickly to show that the approach can be easily extended. Future work will focus on 
developing detailed regeneration models and including different column types that are 
common in MENs, in addition to a planned release of the code as an open-source heat 
and mass integration package. The flexible approach may also be modified to multi-
component and reactive MENs in future work. 
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Abstract 
Refrigerants are chemical compounds with specific thermodynamic properties that affect 
the performance of refrigeration processes. Consequently, the properties of refrigerants 
play a key role in the design and/or selection of refrigerants, as well as in the improvement 
of refrigeration systems with respect to their operational efficiencies as well as 
environmental impacts. In this paper, a version of the computer-aided molecular design 
technique, especially adjusted for application to refrigeration selection and/or design and 
verification is presented. The novel features of this technique are especially developed 
property models suitable for the small molecules that are commonly employed as 
refrigerants, a database of generated small molecules and a suite of computational tools 
that are needed at various steps of refrigerant design and verification.  Based on the new 
property models, databases, and process models, methods for refrigerant design (single 
molecules or mixtures), selection and verification have been developed. Application 
examples highlighting the importance of the new methods and tools are also presented.  
Keywords: CAMD, Computer-aided refrigerant design, Mixture design, Refrigerant.  

1. Introduction 
Refrigeration systems are an essential process in industry and home applications as they 
perform cooling or maintain room temperature at a desired value. A cycle of refrigeration 
consists of heat exchange, compression and expansion with a refrigerant flowing through 
the units within the cycle. The refrigerants are chemical compounds having 
thermodynamic properties that are especially suited for a refrigeration cycle operation. 
They are usually small molecules having lower normal boiling points (usually less than 
273 K). However, other properties related to safety (such as flammability or auto-ignition 
temperature) and environmental impact (such as ozone depletion or global warming) also 
effect their selection. Also, a set of process related properties (such as phase equilibrium 
properties, phase enthalpies and heats of vaporization) effect the operational performance 
(such as the Coefficient of Performance, COP). Therefore, properties of a refrigerant need 
to be considered not only for its selection and/or design, but also related to environmental-
health-safety (EHS) issues as well as process performance related issues. Consequently, 
these problems have attracted much attention as they are ideally suited for application of 
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the computer aided molecular design (CAMD) technique (Churi and Achenie, 1996; 
Sahinidis et al., 2003; Gani et al 2017; to name a few). However, after an examination of 
measured data (see section 2.1) of small molecules typically used as refrigerants, the 
group contribution (GC) methods (for example, Marrero and Gani, 2001) that have been 
employed in CAMD techniques for refrigerant design and/or selection, have been found 
to be of questionable accuracy for some of the important design related properties (see 
section 3.1). Even though these GC methods give acceptable predictions for larger 
molecules such as solvents, their prediction errors for smaller molecules have been found 
to be too large for reliable design of refrigerant systems. For a more reliable design of 
refrigerant systems, a new set of more accurate property models, together with 
appropriate databases integrated with the CAMD technique is necessary. 
This paper presents an especially developed database of small molecules that can be 
considered as a refrigerant together with their collected data. Using the available 
measured data, new GC models are developed for three of the important properties normal 
boiling point (Tb), critical temperature (Tc) and critical pressure (Pc) that define the phase 
behavior and related refrigerant functions. Using these GC models as a basis, the 
applicability of other process related property models (such as equations of state) is also 
verified. As the models for EHS properties are already based on small molecules, only 
their prediction accuracies are checked. Using the new set of property models and the 
associated data, methods for selection and/or design of refrigerants are adopted. The 
CAMD technique used in this paper is of the “generate and test” type, where, candidates 
are selected (or designed) and then tested for process performance through appropriate 
process models (for refrigeration cycle simulation). To aid in the generate and test steps, 
computational tools for calculating thermodynamic diagrams for refrigerants and 
sensitivity analysis are also employed (not shown in this paper).   
Results related to property model prediction accuracy, refrigerant substitution as an 
example of refrigeration design, and various aspects of the refrigeration cycle operation 
are highlighted in this paper. More details of the databases, the developed property 
models, the process models, the refrigeration selection method and a special software tool 
can be found as an extended version of this paper in Kuprasertwong et al., (2021).  

2. Methods and tools for refrigerant selection and design 
2.1. Database and property models 
Databases of compounds that may be suitable as refrigerants have been created with 
Database-1 (pure component properties), Database-2 (Vapor-Liquid Equilibrium data) 
and Database-3 (Binary Azeotropic data). In Database-1, the collected pure component 
properties are divided into 3 main sections, which are Basic Properties (such as Molecular 
Formula, Normal boiling point, Critical properties, etc.), Chemical Properties (GWP, 
ODP, LD50, etc.), Temperature Dependent Properties (density, specific heat, heat of 
vaporization, etc.). A total of 60-different types of properties have been collected in terms 
of measured and estimated data. There are a total of 1766 compounds out of which 306 
are known refrigerants listed in ASHRAE (Wilson at el., 2013), NIST (NIST, 2018). The 
compounds are classified into different types: (hydrocarbons - paraffins, -olefins, -
alkynes, -cyclohexyl, -side-chains; chlorinated; fluorinated; non-condensable gases; etc.).  
New GC models has been developed using measured data for Tb, Tc and Pc considering 
compounds with 1-7 carbon atoms.  Using a new set of functional groups (considering 
the C-atom and its bonds with other atoms) and including an atom contribution term. The 
new GC model expression is similar to the MG-method (Marrero & Gani, 2001): 

f x = ∑ NiCii + ∑ MjDjj + ∑ OkEkk  (1) 
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Where f(x) is a function of the property x to be predicted. Ci is the contribution of the 
atoms of type-i that occurs Ni times in a compound. Dj is the bond-contribution of the 
atom j that occurs Mj times and Ek is the contribution of the second and third order groups 
of type-k that occurs Ok times in a compound.  
Measured data for 1016 small molecules having 1-7 Carbon atoms are used for regression 
of the model parameters for Tb, Tc, and Pc. Since there are more measured data for Tb than 
Tc or Pc, a correlation is also developed to predict Tc from measured Tb values. The 
molecular structures of each compound are represented in terms of atoms, bonds and 
functional groups; the contributions Ci, Dj and Ek are regressed through measured data. 
Table 1 gives partial model correlation results for C1-C4 compounds. For reliable 
refrigerant design, prediction errors should be less than 5%, but less than 1% is preferred.  

Table 1: The distribution of percentage of errors for C1-C4 of estimated normal boiling 
point temperatures compared with measured data from regression of parameters. 

Carbon 
Number 

Percentage of compounds having Highest 
%Error 

Number of 
Compounds <1% error <5% error <10% error 

C1 85.0 100.0 100.0 1.4 20 
C2 44.2 87.5 100.0 8.0 104 
C3 30.3 90.3 98.7 11.1 238 
C4 40.3 90.8 100.0 8.4 119 

Total C1-C4 36.0 89.8 99.3 11.1 481 
Total C1-C7 40.4 91.8 99.3 13.9 1016 

According to the results given in Table 1, the Tb of each compound are calculated with 
the regressed parameters and compared with measured data. 85% of C1 compounds have 
less than 1 % error (relative), while the largest percentage errors for C1, C2, C3 and C4 
atoms are 1.4%, 8.0%, 11.1 % and 8.4%, respectively. The model performance for Tc 
(correlated as a function of Tb) and Pc (GC model) are shown in Figure 1 in terms of plots 
of estimated property values versus measured property values together with R2 statistics, 
which shows very good model accuracy.  

Figure 1: Plots of experimental versus estimated values for Tc (left) and Pc (right) 

VLE data have been found for 214 compounds, while, binary azeotropes have been found 
for 258 compounds. The VLE phase equilibrium are predicted with cubic equations of 
state and with the PC-SAFT equation of state. The temperature and/or pressure dependent 
properties are calculated with in-house correlations, and/or equations of state.  
2.2. Method for refrigerant selection and design 
The selection method paradigm is as follows: define target properties and/or functions; 
find candidates that match the targets; verify selected candidates through simulation of 
process performance. The target properties for a refrigerant to be selected and/or designed 
are divided into two sets: Set-1 consists of Tb, Tc and Pc (these properties influence the 
phase equilibrium of the pure compound and/or mixture); Set-2 consists properties such 
as heat of vaporization, specific heat, density, GWP, ODP, etc. (these properties influence 
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the performance, sizing etc. of the process). In the selection method employed, Set-1 
properties are matched as close as possible for the single refrigerant and exactly matched 
for mixed refrigerants. Set-2 properties are given in terms of upper and/or lower bounds 
and the candidate properties must be within the bounds. The operating conditions of a 
refrigeration process need to be consistent with the properties of a refrigerant and these 
are checked through the following consistency rules: Tb of the refrigerant must be lower 
than the room temperature (Troom); the maximum condenser temperature must be less than 
0.9 of refrigerant Tc.  Feasible candidates found through database search or CAMD are 
evaluated through refrigerant process simulation in terms of their performance.  
Refrigerant selection - Pure molecules: It is unlikely that all target properties can be 
exactly matched through the properties of a single molecule. Therefore, in this case, upper 
and/or lower bounds for the target properties are given to find compounds that have 
properties within the bounds. Built-in search options in the database help to identify the 
candidates. Note that a database of small molecules (real and generated) has been created 
apriori and so new refrigerant molecules are not designed but retrieved from the database.  
Refrigerant selection – mixtures: Unlike the single refrigerant molecule, mixtures can be 
tailored to exactly match the target values from 1 to 3 properties belonging to Set-1, while 
the rest of the properties (Set-2) are matched within the specified bounds. For example, 
as given in Table 2, the binary mixture composition is adjusted to match exactly the target 
TbT; ternary mixture compositions are adjusted to match exactly TbT and one of TcT or 
PcT; quaternary mixture, compositions are adjusted to match TbT, TcT and PcT. Note that 
successful mixture design requires that at least one compound has a value lower than the 
target and one compound has a value higher than the target. The use of linear mixing rules 
for Tc and Pc is justified as these are also used by the cubic equations of state through 
which the phase equilibria are calculated. Tb is a result of the phase equilibrium at a 
specified pressure and thus fixes the operating condition. The value of Tb from the ideal 
mixing rule is used as an estimate of the operating temperature. The exact values from 
the phase equilibrium calculations are used later to adjust the operating temperature.  

Table 2: Target properties versus compositions for refrigerant mixture design 
Binary mixture Ternary mixture Quaternary mixture 

Tb  = x1Tb1 + (1-x )Tb2 (2) Tb  = x1Tb1 + x2Tb2 + (1-x -x )Tb3 (3) 
Tc  = x1Tc1 + x2Tc2 + (1-x -x )Tc3  (4) 
Or 
Pc  = x1Pc1 + x2Pc2 + (1-x -x )Pc3   (5) 

Match TbT, TcT and PcT 
by adjusting x1, x2 and x3 

2.3. Method for refrigeration cycle simulation 
Refrigerators are cyclic devices where heat transfers take place from a low-temperature 
region to a high-temperature region and vice versa. The operations for one refrigeration 
cycle are shown in Figure 2 and a corresponding process model has been developed.  

 

The evaporator duty, compressor work, and 
condenser duty, are calculated at specified 
conditions of operation (defined by temperature 
and pressure) by using the following equations. 
Evaporator duty:   Qevp= mf(h1- h4) (6) 

Compressor Work:Wcmp= mf(h2- h1) (7) 
Condenser Duty:    Qcnd= mf(h3- h2) (8) 
The performances of different refrigeration 
processes are compared in terms of COP:  
              COP =

Qevp

Wcmp
= mf(h1-h4)

mf(h2-h1)
  (9) Figure 2: One cycle refrigeration process 
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Note: In Eqs. 6-9, Qevp is evaporator duty, Wcmp is isenthalpic work consumed by compressor, Qcnd is 
condenser duty, mf is refrigerant mass flow rate, and hj is specific enthalpy at point j.   

3. Application Examples 
3.1. Consistency of data, models and CAMD solutions 
To highlight the need for more accurate property models together with a need to use 
measured data for target properties in refrigerant selection, examples of reported feasible 
candidate molecules are given in Table 2 together with the target they are supposed to 
match as well as measured (if available) and estimated values. Only a small selection of 
compounds is being highlighted here (a comprehensive list can be obtained from the 
corresponding author). If single molecular replacements are being sought, deviations of 
more than 10 K from the target value may result in infeasible refrigeration cycle 
operation. However, if mixtures are being sought, then the target temperature can be 
matched exactly but the mixture compositions would not be consistent.  

Table 3: Consistency check of measured-estimated property values versus target values 
Compound 

(chemical formula) 
Measured Tb (K) Estimated Tb (K) with reported 

model1 
Target value (K) 

C2H6 184 GC-method not applicable 232-242 
FNO 200 390 232-242 
CHClO  329 242 
C3H6O  316 242 
C2H3FO 293 298 225 
C3H4 238 260 232-242 

1: Several GC-models available to the authors and including Marerro and Gani (2001) 

3.2 Replacement and evaluation of R-134a 
Table 4 lists selected alternative refrigerants for R-134a in terms of single, binary and 
ternary mixtures. The computed COP (not optimized) for the alternatives are compared 
with R-134a. The computations are done with the ProREFD software (Udomwong et al., 
2021), where the developed property models, databases, refrigerant design and 
refrigeration process simulation models have been implemented.  
3.3 Replacement of R-12 
Another case study (Sahinidis et al., 2003) considered the replacement of R-12. A search 
of the database available in ProREFD (Udomwong et al., 2021) with respect to measured 
Tb to within 10 K of the reference gave the candidates listed in Table 5. In this problem, 
only compounds with at least one Carbon-atom have been considered. For each 
alternative, the corresponding refrigeration process has also been simulated to compute 
the COP at the conditions given in Sahinidis et al., (2003).  
Table 4: Example of alternatives for R-134a refrigerant 

Component (%wt) 
Properties Refrigeration process simulation results 

Tb (K) Tc (K) Pc 
(bar) 

Qevp 
(kJ/h) 

Wcmp 
(kJ/h) 

Qcnd 
(kJ/h) COP 

R-134a (Reference) 246.60 374.30 40.64 22,205 6,228 -28,434 3.57 
Alternative of single refrigerant 
R-E170  248.35 400.10 53.70 52,624 13,695 -66,320 3.84 
R-40  249.15 416.25 66.80 54,989 13,668 -68,657 4.02 
Alternative of binary refrigerant 
R-12/40 (43.9/56.1) 246.60 402.49 55.57 38,710 9,911 -48,622 3.91 
R-1216/E170 (36.5/63.5) 246.60 388.40 44.70 36,722 9,552 -46,275 3.84 
R-1113/40 (67.1/32.9) 246.60 391.35 49.17 30,776 7,953 -38,730 3.87 
Alternative of ternary refrigerant 
R-32/125/124 (7.1/32.2/60.7) 246.60 374.30 37.73 19,528 5,919 -25,448 3.30 
R-32/125/124 (20.8/17.3/61.9) 246.60 376.63 40.64 23,050 6,473 -29,523 3.56 
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Table 5: Example of alternatives for R-12 refrigerant 

Component  
Properties Calculation Result 

Tb (K) Tc (K) Pc 
(bar) 

Qevp 
(kJ/h) 

Wcmp 
(kJ/h) 

Qcnd 
(kJ/h) COP 

R-12 (reference) 243.35 384.95 41.25 11,193 7,999 -19,193 1.40 
Alternative of single refrigerant 
R-717  239.72 405.65 112.80 182,237 87,459 -269,696 2.08 
Cyclopropane  240.35 397.91 54.94 43,058 21,512 -64,571 2.00 
R-40  249.15 416.25 66.80 46,109 22,038 -68,148 2.09 

4. Conclusions 
Refrigerant design and/or selection together with refrigeration process performance can 
be performed reliably and efficiently through the CAMD technique. However, the 
property models typically used for molecules that are larger than the small refrigerant 
molecules have been found to give unacceptable prediction errors. Therefore, a new class 
of GC models suitable for refrigerant molecules have been developed and validated with 
measured data. Another issue is the size of the database. The number of small molecules 
that maybe suitable for application as refrigerant and for which measured target property 
values are available, is not very high. This means that the number of candidates within 
certain ranges of temperature, for example, lower than 250 K, is not very high. To 
overcome this problem, CAMD has been used to generate compounds with 1-6 Carbon 
atoms, resulting in around 3000 additional molecules that have been found but their 
properties have not yet been measured. Also, structures for another 8000 molecules have 
been generated that do not currently exist. Truly innovative and novel refrigerants most 
likely will come from this list. However, novel refrigerant mixtures satisfying target 
properties that a single molecule cannot satisfy may also result in novel refrigerants. 
Much work, however, is needed to predict and validate the newly generated molecules. It 
should be noted that the scope and significance of methods like CAMD depends on the 
application range of the property models. Inclusion of data analytics and machine learning 
based modelling are also likely to help advance the current state of the art.   
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Abstract 
The conventional application of a pulp and paper mill, in which black liquor is typically 
concentrated and burnt, is compared with the upgrading gasification route for methanol 
(MeOH) and dimethyl ether (DME) co-production. This comparison is made in terms of 
exergy efficiency and environmental impact indicators, under different utilities supply 
scenarios. The combined energy integration and exergy analysis is used to identify the 
potential improvements related to the decarbonization and mitigation of the process 
irreversibility. The exergy efficiencies of the conventional scenario and the integrated 
plants average 40% and 45%, respectively, while the overall emission balances vary from 
1.97 to -0.07 tCO2/tPulp, respectively. These results reinforce the relevance of the electricity 
import from the Brazilian mix for pushing upwards the share of renewable energy 
resources in the production of traditionally fossil-based chemicals and fuels, which could 
be an important decision variable in favor to the exploration of forest-based integrated 
biorefineries. 
 
Keywords: Black liquor, Kraft process, Gasification, Methanol, Dimethyl ether. 

1. Introduction 
The pulp and paper sector is classified as an energy intensive activity, accounting for 
about 5.6% of the total energy consumed by the industrial sector (IEA, 2017). It is also 
responsible for about 2% of the total yearly CO2 emission of the industrial sectors 
worldwide (Leeson et al., 2017). The black liquor (BL) is a byproduct of the kraft pulping 
process, which contains more than half of the exergy content in the total woody biomass 
fed to the digester. The pressurized entrained-flow, high temperature black liquor 
gasification (PEHT-BLG) technology has been envisaged as a promising process to 
improve the energy performance in the pulp industry. The syngas produced from the 
gasification process of BL can be used either to generate electricity or produce chemicals 
and biofuels, expanding the products portfolio and matching the modern biorefinery 
concept. In this work, the conventional scenario of the black liquor use (i.e. concentration 
and combustion) is compared with the black liquor upgrading gasification process for 
methanol (MeOH) and dimethyl ether (DME) production, which are extensively studied 
as potential low carbon fuels (Fernández-Dacosta et al., 2019). The exergy destruction 
and the cumulative CO2 emissions were considered as criteria for assessing the 
sustainability of the energy conversion systems involved. 
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2. Methods 
2.1. Process modeling 
An alternative approach to the conventional black liquor evaporation unit is adopted, 
namely, a mechanical vapor recompression (MVR) system. The gasification is modeled 
as a pressurized entrained-flow, high temperature black liquor gasification (PEHT-BLG). 
The produced syngas is used to produce either methanol or dimethyl ether (Figure 1). A 
detailed description of the kraft pulp mill, MVR and PEHT-BLG, and the syngas 
treatment and purification processes, as well as the data of the ultimate and proximate 
composition (mass basis) for BL and other industrial substances of interest, used to 
calculate the specific chemical exergy and lower heating value thereof, have been 
presented in (Domingos et al., 2021).  
The methanol synthesis process is modeled using the LHHW (Langmuir-Hinshelwood 
Hougen-Watson) kinetic model developed by (Graaf et al., 1988). Before entering the 
methanol synthesis loop, the purified syngas is compressed to 90 bar. In the loop, the 
syngas is firstly heated up in a feed-effluent heat-exchanger (FEHE) by the reactor outlet 
stream. Then, the syngas is fed to a tubular plug-flow reactor (PFR) operated isothermally 
at 90 bar and 210°C. The reactor outlet comprises a gaseous mixture containing methanol, 
water and unconverted reactants (COx and hydrogen). This mixture is cooled and flashed 
twice, first to 30°C and 45 bar, and then to 30°C and 3.5 bar, in order to separate the 
condensable products and the non-condensable reactants (Kiss et al., 2016). The 
condensed stream continues to a distillation column operating at atmospheric pressure, 
where methanol with purity over 99% wt. is produced. The non-condensable stream is 
partially purged to avoid the built up of inerts, and the other part is recycled back to the 
methanol synthesis loop. 
The DME synthesis occurs via the indirect route, i.e. via methanol dehydration over an 
acid zeolite catalyst. The purified syngas initially passes through the same processes 
described previously for methanol synthesis. Syngas is firstly compressed up to 90 bar 
and converted to methanol. Then, it continues to the DME synthesis loop, wherein an 
adiabatic DME reactor is used. The kinetic is given by (Bandiera and Naccache, 1991). 
The outlet stream of the reactor is a mixture of water, DME and methanol, which is fed 
to a first distillation column (DC), which removes DME as the distillate with purity over 
98.5% wt. The bottoms stream is a mixture of water and methanol that is subsequently 
fed to a second DC. The methanol that exits the second column as the distillate is recycled 
back to the reactor, while the water exits from the bottom. 

Figure 1. Integrated model used for assessing the production of methanol or dimethyl 
ether from black liquor upgrading gasification process.  
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The thermodynamic properties of the flows, the mass, energy and exergy balances of each 
process unit are evaluated using Aspen Plus® v8.8 software and the Peng-Robinson 
equation of state with Boston-Mathias modifications. 
2.2. Exergy analysis indicators 
Three conceptual processes are evaluated, namely (i) the standalone kraft pulp mill, based 
on the conventional recovery boiler, and two configurations proposed, based on the 
integration of black liquor gasification process for either methanol or dimethyl ether 
production. In turn, the two integrated chemical plants may consume either electricity 
from the grid (mixed mode) or only biomass as fuel import (autonomous mode). 
In order to compare those configurations, two performance indicators are proposed. The 
rational exergy efficiency and the relative exergy efficiency. The former considers that 
the sum of the exergy of the two chemical products (MeOH or DME, and cellulose) and 
by-products (CO2, purge gas, power) corresponds to the useful output of the chemical 
plant; the later compares the minimum theoretical work required to bring about only the 
two main chemical products of the integrated chemical plants to the overall exergy 
consumption in the actual production processes. The physical and chemical exergies, as 
well as the efficiencies are assessed using Excel add-ins embedded in Aspen Plus®. 
2.3. CO2 emissions 
Two CO2 emissions balances were performed: the overall CO2 emissions and the net one. 
The overall CO2 balance considers overall CO2 emitted (either fossil or biogenic) minus 
CO2 captured by the gas purification unit, whereas the net value subtracts the amount of 
CO2 embodied by the crops, assumed as circular emissions. The indirect fossil CO2 
emitted considers the indirect emissions due to the upstream supply chains of electricity 
(62.09 gCO2/kWh), wood (0.0043 gCO2/kJWood) and oil (0.0029 gCO2/kJOil) (Flórez-Orrego 
et al., 2015) The biogenic emissions comprise the emissions related to the combustion of 
woody components (bark and chips), based on the carbon content of the biomass. 
2.4. Optimization framework and problem definition 
Inasmuch as electricity can be imported from the grid, a trade-off is expected between 
additional fuel consumption for in-plant cogeneration and the extent of grid electricity 
purchase. This circumstance requires a complete redesign of the energy integration 
approach between the chemical units and the utility systems, so that the power and steam 
requirements remain satisfied. 
The determination of the minimum energy requirements (MER) and the solution of the 
energy integration problem is handled by the OSMOSE Lua platform, developed by the 
IPESE group at EPFL, in Switzerland (Yoo et al., 2015). This framework allows to 
determine the most suitable utility systems and their operating conditions that lead to the 
lowest resources consumption and optimal operating cost (Maréchal and Kalitventzeff, 
1998). The computational framework manages the data transfer with ASPEN Plus® 
software and builds the mixed integer linear programming (MILP) problem that 
minimizes the operating cost of the chemical plant. The utility units are modeled via 
equation-oriented subroutines written in Lua programming language. To this end, the 
additional equations required for the mass and energy balances of those units rely on the 
concept of layer (water, natural gas, biomass, syngas, methanol, dimethyl ether, power, 
carbon dioxide, heat, etc.). Finally, representative market cost for the wood (0.013 
euro/kWh), chips (0.016 euro/kWh), oil (0.018 euro/kWh) and electricity (0.06 
euro/kWh) consumed, as well as the selling prices of pulp (0.144 euro/kWh), methanol 
(0.065 euro/kWh), dimethyl ether (0.07015 euro/kWh), and CO2 (0.0084 euro/kg) 
produced are taken from literature. 
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3. Results and Discussion 
The overall exergy consumption in the conventional case achieves 42.20 GJ/tPulp, whereas 
for the integrated processes this value has an increment of over 14% for the mixed mode 
setups and of 38% for the autonomous mode configurations (Figure 2), respectively. This 
increase is explained by a larger amount of biomass and electricity required to drive the 
compressors and other ancillary equipment of the integrated chemicals production plants. 
The opportunity for importing ‘greener’ Brazilian electricity (i.e. in mixed mode designs) 
leads to a strikingly lower overall exergy consumption for MeOH and DME production 
compared to the autonomous cases.  
The exergy efficiencies of the conventional and integrated cases for MeOH and DME, 
average 40%, 45% and 45%, respectively (Table 1). Thus, the integrated cases presented 
higher exergy efficiency in comparison to the conventional case. These results are 
strongly in agreement with those reported by Van Rens et al. (2011), who performed an 
exergetic analysis for production of MeOH and DME using wood as feedstock for 
gasification. 
The mixed modes present the highest values of exergy efficiency (approx. 49.3% for 
MeOH and 48.6% for DME), whereas the autonomous cases averages 41.2% for MeOH 
and 40.9% DME (Table 1). This fact reinforces the idea that the electricity import, 
whether available, may help reducing the irreversibility in the manufacturing of 
bioproducts. All in all, there exists a large underexploited biomass potential that may 
contribute to develop new business opportunities from fuels to chemicals production. 
Moreover, despite the fact that an intensive industrial utilization of the Brazilian 
electricity mix may bringing some challenges to generation companies and other 
economic sectors, the advantages of the electricity import in the integrated biorefineries 
has been demonstrated in light of the reduction of the overall process irreversibilities. 
The Extended Exergy Consumption, shown in Table 1, takes into account the exergy 
efficiency of the upstream feedstock supply chains, which ends up impairing the 
performance of the extended pulp and bioproducts manufacturing processes. Actually, in 
the case of the integrated chemical plants, when an extended control volume is observed, 
there is a significant increase in the exergy consumption (13.7-17.0%) compared to the 
exergy input to the control volume of the sole chemical plant. Although these results may 
not be immediately interesting for pulp and bioproducts manufacturers when evaluating 
the performance of the chemical plant itself, those features are certainly useful to public 
policies and decision-makers in environmental and benchmarking frameworks, as they 
permit a holistic comparison of the impact of the bioproducts sector with other industrial 
sectors based on other supply chains. 

 
Figure 2. Plantwide and extended exergy consumption for the conventional and the 
integrated chemical plants (pulp and bioproducts co-production). 
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Comparative assessment of black liquor upgraded gasification in integrated  
kraft pulp, methanol and dimethyl ether production plants 

Table 1. Exergy destruction and efficiencies for the three studied scenarios. 
 Conventional mill Integrated chemical plants 

Chemical plant  Only pulp Pulp + Methanol Pulp + Dimethyl ether 

Operation mode BL combustion Mixed2 Auto3 Mixed Auto 

Rational exergy efficiency (%) 42.5 55.0 45.1 54.0 44.7 
Extended rational exergy 
efficiency (%)1 36.7 45.7 38.9 45.0 38.6 

Relative exergy efficiency (%) 42.3 52.8 43.3 52.0 43.0 
Extended relative exergy 
efficiency (%)1 36.5 43.9 37.4 43.3 37.1 

Exergy destruction (GJ/tPulp) 24.3 21.5 32.0 22.2 32.3 
Extended exergy destruction 
(GJ/tPulp)1 30.9 31.2 41.2 31.9 41.6 

1.Overall exergy consumption increases if the cumulative efficiency of the electricity generation 
(55.68%), as well as of the oil (95.20%) and biomass (86.13%) supply chains are considered 
(Flórez-Orrego et al., 2015); 2. Mixed mode implies partial import of electricity to make up the 
overall power consumption in the integrated chemical plants; 3. In auto mode, in-plant cogeneration 
of the overall power and heat required relies only on the biomass fuel input and the steam network. 
Figure 3 presents the overall and detailed CO2 emission balance. The overall emission 
balances achieve 1.97 tCO2/tPulp in the conventional mill; -0.07 tCO2/tPulp in the combined 
pulp and MeOH plant, and -0.02 tCO2/tPulp in the pulp and DME plant. The negative values 
indicate a net positive impact towards the depletion of the CO2 present in the atmosphere. 
As a result, the indirect emissions from the biomass utilization are not only offset by the 
captured biogenic emissions, but also the import of ‘greener’ Brazilian electricity leads 
to a mitigation of CO2 emissions.  

 
Figure 3. Overall and detailed (biogenic and fossil, directly and indirectly emitted, and 
avoided) CO2 emissions for the conventional mill and the integrated kraft pulp and 
bioproducts manufacturing plants. 

Table 2 evidences that all the integrated pulp and bioproduct production processes (mixed 
and autonomous) have higher operating revenues (increment between 12-15%), due to 
the complementary value-added CO2 and bioproduct, not produced in the conventional 
kraft pulp process. These revenues, however, can be directly influenced by market prices 
fluctuations. 
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Table 2. Operating incomes, cost and revenues for the three studied scenarios. 
 Conventional mill Integrated chemical plants 

Chemical plant  Only pulp Pulp + Methanol Pulp + Dimethyl ether 

Operation mode BL combustion Mixed Auto Mixed Auto 

Operating Incomes (euro/ tPulp)  714.61 854.12 854.12 863.07 863.07 

Operating Costs (euro/tPulp)  -153.49 -218.72 -224.89 -219.69 -225.62 

Operating Revenues (euro/tPulp)1 561.12 635.40 629.24 643.37 637.45 
1Operating revenues calculated as the difference between the gross operating incomes minus the 
operating cost. 

4. Conclusions 
The combined energy integration and exergy analyses performed allowed spotlighting the 
best alternatives of utility systems that ensure a competitive performance, while 
maximizing the recovery of the available waste heat exergy. As a result, the exergy 
efficiencies of the conventional and integrated cases average 40% and 45%, respectively, 
whereas the overall emission balance varies from 1.97 to -0.07 tCO2/tPulp, respectively. 
These negative values point towards the environmental benefits brought about by the 
production of chemicals through the use of alternative energy sources, such as biomass 
and electricity, in integrated chemical plants. Other environmental impacts should be also 
investigated. 
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Abstract 
Plastic pollution is an ongoing problem in the U.S. This work focuses on the sustainable 
process design and synthesis of waste high-density polyethylene (HDPE) recycling 
systems to mitigate plastic pollution. A superstructure that can be implemented to 
manufacture various chemical products is proposed. We formulate the following 
superstructure optimization problem as a multi-objective mixed-integer nonlinear 
fractional programming (MINFP) problem, which is efficiently solved by a tailored 
global optimization algorithm that integrates parametric algorithm and branch-and-refine 
algorithm. Results reveal the economic profitability via displaying unit NPVs of optimal 
solutions ($107.2 to $151.3 per ton HDPE treated), while the unit GHG emissions of the 
good-choice optimal design are 0.44 ton CO2-eq/ton HDPE treated. 
 
Keywords: waste HDPE, superstructure optimization, global optimization algorithm 

1. Introduction 
Plastic pollution is still an ongoing problem around the U.S. Over the country, 76% of 
waste plastics, which is mainly generated by the households, go to landfill, while only 
8% of the plastics are effectively recycled (EPA, 2019). Landfilled plastics damage the 
bio-system via being decomposed into toxic chemicals or through watering into 
microplastics that can be accumulated in the eco-system (Heward, 2018). In this regard, 
closed-loop and open-loop recycling processes are implemented into recycling these 
waste plastics (Williamsa and Williamsb, 1997). The closed-loop process can 
manufacture recovered plastics with high capital cost, while the open-loop process can be 
implemented into producing various useful chemicals rather than original plastics, which 
improves the economic viability and environmental sustainability for processing waste 
plastics (Fivga and Dimitriou, 2018). Although various researchers have paid their main 
attention to improving the economic and environmental performances for processing 
waste HDPE by using the open-loop recycling process, the issue of the sustainable design 
and synthesis of HDPE recycling process systems is still a knowledge gap.  

In this work, we address this knowledge gap by introducing the sustainable design and 
synthesis approach to determine optimal economic and environmental performances 
(Gong et al. 2015). We develop by far the first superstructure that aims to convert waste 
HDPE into various chemicals, namely monomers, aromatic mixtures, and fuels, so that 
plastic pollution can be effectively alleviated. The following superstructure optimization 
problem is then formulated by the life cycle optimization approach to optimize the unit 
NPV and unit life cycle environmental impacts simultaneously. Life cycle assessment 
(LCA) and techno-economic analysis (TEA) are performed to provide environmental and 
economic parameters, respectively, and thus the superstructure optimization problem can 
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be formulated as a multi-objective mixed-integer fractional programming (MINFP) 
problem. To tackle the computational challenge caused by the combinatorial nature and 
the pseudo-convexity shown in fractional objective functions, we apply a tailored global 
optimization algorithm that integrates the inexact parametric algorithm with the branch-
and-refine algorithm. The proposed framework is implemented to design an HDPE 
recycling processing system that can treat 295,000 ton HDPE/year in maximum in the 
U.S., corresponding to the estimated annual landfill amount of waste HDPE in New York 
State (EPA, 2019). 

2. Superstructure Description of Waste HDPE Recycling 
In this work, we develop by far the first superstructure of waste HDPE recycling process 
systems. As shown in Figure 1, the superstructure includes 1,728 processing pathways 
and nine sections. The corresponding flowsheet accounts for various unit processes and 
technologies, which are corresponding to the technology options shown in Figure 1. Only 
one technology or unit process can be selected for each processing pathway. 

Figure 1. Overview of the proposed superstructure of Waste HDPE Recycling. 

The whole superstructure starts with the HDPE preprocessing section, where the 
transported waste HDPE is shredded and transported to the HDPE pyrolysis section. The 
HDPE particles are thermally cracked into various hydrocarbon chemicals in a fluidized 
bed pyrolizer (Hernández et al., 2007), where the nitrogen gas is an inert fluidized gas 
and circulated in the HDPE pyrolysis section. The streams with gaseous products are 
separated, cooled, and split into light and heavy components. In the light hydrocarbon 
separation section, all the technology options are considered for producing ethylene, 
propane, and propylene from the light hydrocarbon stream. The heavy streams from the 
light hydrocarbon separation and HDPE pyrolysis sections are mixed and fed into the 
heavy chemical component separation section, where three technologies configurations, 
namely second C4 separation, third C4 separation, and C4 and C5 co-separation, are 
considered (Yang and You, 2017). The mixture of heavy streams is split into n-butane, i-
butane, butene mixture, and C5 mixture, which are important components in organic 
solvent and naphtha (Buekens and Froment, 1968). 
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The stream with heavy liquid (>C6) from the heavy chemical component separation 
section is sent to the aromatic extraction section to produce aromatic mixtures that are 
vital to produce benzene and toluene (He and You, 2014). Notably, sulfolane is selected 
as a solvent due to its wide usage in the typical UOP extraction process (Mayers, 2004), 
while the TEG is chosen because of its high selectivity to aromatics and miscibility in 
water (Wang et al., 1998). The raffinate from this section is directly fed into the heavy 
component hydrotreating section to be hydrogenated or hydrocracked. The raffinate is 
converted into gasoline, diesel, and wax (>C16 components), while the hydrocracking 
section produces fuel gas, gasoline, and diesel. The fuel gas stream is sent to the inner 
heat and electricity generation section to produce electricity and heat.  

To produce hydrogen for the hydrogenating or hydrocracking process, we consider three 
technology options in the hydrogenation section, namely photocatalysis, electrolysis, and 
steam-methane reforming are considered. In the steam-methane reforming section, the 
methane stream from the light component separation section is mixed with steam and 
converted into hydrogen, with carbon dioxide, carbon monoxide, and unconverted 
methane as byproducts, which are sent to the onsite combustion section. In the onsite 
combustion section, all overhead gas flows are mixed and ignited in the furnace to 
exchange heat in selected technologies options and evaporate the precooled water into 
steam, which can push the steam-turbine to do the work and thus be converted into 
electricity in a turbine generator. The flue gas from the onsite combustion section is sent 
to the CO2 separation section to split and liquefy the CO2 for storage.   

3. LCA and TEA Methodology 
3.1. LCA Methodology 

Figure 2. System boundary of a cradle-to-gate LCA for waste HDPE recycling process systems. 

The LCA methodology is used for systematically quantifying the environmental impacts 
so that the environmental parameters can be provided to the corresponding superstructure 
optimization problem. The goal of this LCA is to quantify the life cycle environmental 
impacts from waste HDPE recycling process systems. Five life cycle stages, namely 
collecting, separating, and transporting HDPE, offsite production of electricity and 
utilities, waste HDPE processing, production and transportation of natural gas, and 
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wastewater treatment, are confined by the system boundary from cradle-to-gate, as shown 
in Figure 2. We choose the functional unit as one ton of waste HDPE processed within 
the waste HDPE processing system. We compile the detailed life cycle inventories (LCIs) 
of such five pre-defined life cycle stages based on their mass and energy balances, of 
which data are extracted from high-fidelity Aspen-Plus-based process simulations and the 
Ecoinvent V3.6 database. Notably, we extract the chemical composition of pyrolysis 
products from the experimental data of pyrolyzing waste HDPE. The global warming 
potential (GWP100) can be implemented into evaluating the greenhouse impacts over the 
course of 100 years relative to that of CO2 (Hartmann et al., 2013). The GHG emissions 
of each life cycle stage are quantified and inputted as environmental parameters to the 
superstructure optimization problem. The environmental results are shown in the Pareto-
optimal curve and GHG emissions breakdowns (Guillén-Gosálbez et al., 2019). 
3.2. TEA Methodology 
We consider the capital expenditure (CAPEX) and operating expenditure (OPEX) to 
provide the economic parameters to the superstructure optimization problem. The direct, 
indirect, and working capitals of all equipment units, as well as the land cost are accounted 
for calculating the CAPEX, while the OPEX includes the transportation, feedstock, 
utility, operations and maintenance (O&M) costs, as well as the property tax and 
insurance (PT&I), sales expense, and income tax. Notably, the net present value (NPV) 
is calculated via subtracting the CAPEX from the summation of annualized cash flow in 
each operating year. 

4. Model Formulation 

max    economic
NPVOBJ

HDPE yr



 

min    
 GWPEECST EEH EEE EEW EED EEN

GWP
HDPE

    
      

s.t.         Mass balance constraints  
              Energy balance constraints  
              Environmental impacts assessment constraints  
              Techno-economic evaluation constraints  
              Superstructure network configuration constraints 
 
The superstructure optimization problem is formulated as a multi-objective model that 
aims to maximize unit NPV (OBJeconomic) and minimize life cycle GHG emissions (GWP) 
(Thomassen et al., 2019). Notably, the model is a nonconvex MINFP problem. We 
introduce nonlinear terms in power functions to calculate capital costs, which are 
formulated as separable concave terms in the fractional objective functions. The 
combinatorial nature, pseudo-convexity, and separable concave terms in fractional 
objectives provide computational challenges for general-purpose global optimizers. Thus, 
a tailored global optimization algorithm that integrates inexact parametric algorithm 
(Zhong et al., 2014) with the branch-and-refine algorithm (You and Grossmann, 2011) is 
applied to tackle this computational challenge. 

5. Results and Discussion 
5.1. Results of the Superstructure Optimization 
As shown in Figure 3, the maximum NPV is $151.38/ton HDPE treated (corresponding 
NPV: $3.4 billion) at point C, which improves by about 25% compared to that from 
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relevant literature. This improvement is contributed by the versatility of manufacturing 
multiple products from waste HDPE, heat integration, and the on-site production of high-
temperature energy and electricity to reduce the cost of purchasing electricity and natural 
gas. However, the unit GHG emissions of solution A is 0.4 ton CO2-eq/ton HDPE treated, 
which is 57% compared to that of point C. Comparatively, the good-choice solution B 
reveals minimum unit life cycle GHG emissions (0.44 ton CO2-eq/ton HDPE treated), 
which are just 10% higher than that at point A, and a pronounced economic performance 
(unit NPV: $142.9/ton HDPE treated, corresponding NPV: $3.2 billion). The 
corresponding optimal HDPE recycling process selects MEA absorption as the CO2 
separation process so that more than 85% of GHGs can be removed from the flue gas, 
which greatly decreases the direct emissions compared to the most economically 
competitive design of solution C. 
 

 
Figure 3. Pareto-optimal curve reveals the trade-offs between the unit NPV and unit life cycle 
GHG emissions. 

5.2. Computational Performance 
The superstructure optimization problem includes 104 integer variables, 63,906 
continuous variables, and 67,743 constraints. A tailored global optimization algorithm is 
used for effectively solving this nonconvex problem. We perform the computational 
experiment on DELL OPTIPLEX 7040 desktop with Intel(R) Core (TM) i7-6700 CPU 
@ 3.40GHz and 32 GB RAM. The mathematical model and corresponding solution 
process are coded in GAMS 24.8.3. For all three cases corresponding to optimal solutions 
A to C, BARON 17.1 fails to find a global optimal solution within 44,000 seconds. 
Moreover, SCIP 3.2 also fails to find a global optimal solution due to the combinatorial 
nature and nonconvexity shown in fractional objective functions. Comparatively, all three 
instances are effectively solved by the tailored global optimization algorithm, which 
tackles the aforementioned computational challenges, within a few CPU seconds. 

6. Conclusion 
In this work, the sustainable design and synthesis of waste HDPE recycling process 
systems were addressed with optimal economic and environmental performances. We 
developed by far the first superstructure to convert waste HDPE into various chemicals. 
A tailored global optimization algorithm was applied for the effective solution of the 
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corresponding superstructure optimization problem. Results showed that the unit NPV of 
the good choice solution was $142.9/ton, while its unit life cycle GHG emissions were 
0.44 ton CO2-eq/ton HDPE treated, which was contributed by the integration of MEA 
absorption. The computational results revealed the advantage of the tailored global 
optimization algorithm over general-purpose global optimizers. 
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Abstract 
The ongoing COVID-19 pandemic increases the consumption of respirators. In this work, 
we propose a novel and effective waste respirator processing system that aims to protect 
public health and mitigate climate change. Respirator sterilization and pre-processing 
technologies are incorporated simultaneously to resist viral infection and facilitate unit 
processes for manufacturing and separating products, so the greenhouse gas (GHG) 
emission can be reduced via carbon reallocation from CO2 to downstream products. 
High-fidelity process simulations are performed to extract detailed life cycle inventories 
used for evaluating environmental performance. Results reveal the economic viability in 
terms of the payback time (seven years) and the internal rate of return (21.5%). The 
proposed waste respirator processing system reduces GHG emissions by 59.08% 
compared to incineration, which reflects the potential of climate change mitigation. 

Keywords: waste respirator processing, COVID-19, process design and integration. 

1. Introduction 
The U.S. has been trapped in the COVID-19 pandemic with no shutdown in sight. During 
the COVID-19 pandemic, people consume massive respirators to stem coronavirus 
infection, which substantially triggers the usage and disposal of respirators across the U.S 
(Bartoszko et al., 2020). Notably, the virus will transmit among the public if massive 
discarded respirators are mismanaged. In this regard, we apply the incineration process 
to treat these waste respirators in typical medical waste disposal sites (Nzediegwu and 
Chang, 2020). However, a large amount of greenhouse gases (GHGs) are emitted when 
incinerating respirators, which give rise to serious climate change (Klemeš et al., 2020). 
Even worse, the mixed-plastic component within discarded respirators can be 
decomposed into toxic chemicals (Bora et al., 2020), which are then digested by organics 
and accumulated in the food-web (Heward, 2018). In these regards, we currently call for 
a novel and effective waste respirator processing system to reduce the risk of viral 
infection and GHG emissions when fighting for the COVID-19 pandemic.  

To fill in this current knowledge gap, we develop and propose a waste respirator 
processing system, which incorporates respirator sterilization and pre-processing 
technology to protect the public health and for manufacturing and separating products, so 
the greenhouse gas (GHG) emission can be reduced via carbon reallocation from CO2 to 
downstream products. We consider seven sections in the processing system, namely 
respirator preprocessing, pyrolysis, light hydrocarbon separation, CO2 separation, 
hydrogenation, hydrogen production, and onsite combustion. A commercially available 
sterilization process, which can shred, sterilize, and dehydrate the waste N95 respirators, 
is included in this system to disinfect respirators and triggers the thermal-cracking process 
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in the pyrolysis section (Nutsch and Spire, 2004) similar to plastics processing (Zhao and 
You, 2021). We apply a detailed life cycle assessment (LCA) approach to systematically 
quantify the GHG emissions from cradle-to-gate so that the potential in mitigating climate 
change can be evaluated. Specifically, high-fidelity process simulations of the waste 
respirator processing system integrated with the data from Ecoinvent V3.6 are used for 
extracting the detailed life cycle inventory. Techno-economic analysis (TEA) is also 
conducted to evaluate the economic viability by calculating the capital and operating 
expenses. We demonstrate the economic feasibility of establishing respirator processing 
systems and their potential for climate change mitigation through evaluating a proposed 
respirator processing system, which aims to treat 582 million waste N95 respirators that 
are corresponding to the HHS’s recommended annual production amount in eight 
northeastern states in the U.S. (NY Times, 2020), namely New York, New Jersey, 
Pennsylvania, Massachusetts, New Hampshire, Vermont, Rhode Island, and Connecticut.   

2. Process Description for the Waste Respirator Processing System 

 

Figure 1. Process flowsheet of the proposed waste respirator processing system. 
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A Novel Process Design for Waste Respirator Processing 

In this work, we develop and propose a novel and effective waste respirator processing 
system. As shown in Figure 1, the processing system integrates seven sections, namely 
respirator preprocessing, pyrolysis, light hydrocarbon separation, CO2 separation, 
hydrogenation, hydrogen production, and onsite combustion. Detailed description of the 
whole processing system is shown as follows. 

The whole process starts with the respirator preprocessing section, where the transported 
waste respirator can be shredded, sterilized, and dehydrated by steam (147.7℃, 44.61 
bar) simultaneously. Notably, this section can effectively deactivate the coronavirus 
under the sterilization condition (95–120℃) (Nutsch and Spire, 2004). With the usage of 
nitrogen gas as the inert fluidized gas, the disinfected respirator particles are then 
thermally cracked into various inorganic and hydrocarbon chemicals in a fluidized bed 
pyrolizer. The nitrogen gas is split by a pressure-swing adsorption (PSA) unit and 
circulated in this section. The volatile stream is then split into streams with light and 
heavy components in a flash tank, while the stream with char is sent to the onsite 
combustion section to generate high-temperature heating energy. In the light hydrocarbon 
separation section, the stream with light components is split into methane, ethane, 
ethylene, and propylene products. Notably, the methane stream is directly sent to 
hydrogen production or onsite combustion sections (Yang et al., 2018), while the stream 
with ethylene is fed into the CO2 separation section to separate CO2 from ethylene 
products. In the C4 and C5 Separator (He et al., 2015), the overhead liquid with C4 
components is sent to the hydrogenation section to produce butane product, while the 
raffinate is fed into a gasoline mixer or used for producing hydrogen (Gong et al., 2017). 

Specifically, we apply NiMo catalyst (Swanson et al., 2010) in the hydrogenator to 
convert C4 components into butane in the hydrogenation section. To satisfy the usage of 
hydrogen in this section, a hydrogen production section is implemented within the waste 
respirator processing system. Notably, the partial raffinate stream from the hydrogenation 
section is mixed with steam and produces lighter components in the pre-reformer to 
trigger the steam-methane reforming reaction in the downstream reformer. In the 
reformer, the steam is mixed with streams of methane and CO from the light hydrocarbon 
separation section and the mixture is converted into hydrogen following the kinetic of 
steam-methane reforming reaction (He et al., 2016). The hydrogen stream is separated 
from the PSA unit and sent to the hydrogenation section, while the steam is regenerated 
via pressurizing and heating the mixture of the makeup water stream and pre-cooled water 
stream from the flash tank. The remaining gaseous stream from the flash tank is mixed 
with oxygen, char, and gaseous chemical components, such as methane, and sent to the 
combustor to be ignited under 1000℃. The high-temperature heating energy is released 
from the combustor, while the solid stream (mainly Al2O3) is sold. 

3. LCA and TEA Methodology 
3.1. LCA Methodology 
In this work, we apply the LCA methodology to systematically evaluate the potential of 
climate change mitigation via quantifying the GHG emissions from the waste respirator 
processing system, so the goal of this LCA is defined. Five life cycle stages, namely waste 
respirator transportation, waste respirator processing, offsite heating utilities production, 
offsite electricity production, and offsite production for inlet material, are confined by the 
system boundary from cradle-to-gate, as shown in Figure 2. We choose the functional 
unit as one thousand respirators treated within the waste HDPE processing system.  
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We compile the detailed life cycle inventories (LCIs) based on the mass and energy 
balances throughout these five life-cycle stages, of which data are extracted with the help 
of combining high-fidelity Aspen-Plus-based process simulations and Ecoinvent V3.6 
Database. In the process simulation, we assume the chemical composition of pyrolysis 
products as the weighted average of chemical composition for pyrolyzing each single 
plastic compound (Westerhout et al., 1998). 

We apply the global warming potential over the course of 100 years (GWP100) to quantify 
the greenhouse impacts relative to that of CO2 and thus evaluate the potential of climate 
change mitigation. Specifically, the GWP100 of methane is 28 due to the same greenhouse 
impacts of emitting 1 kg of methane and those of 28 kg CO2 over the course of 100 years 
(Hartmann et al., 2003). The GHG emissions of each life cycle stage are quantified in this 
work and the results are shown as GHG emissions breakdowns.   

 
Figure 2. System boundary of a cradle-to-gate LCA for the waste respirator processing system. 

3.2. TEA Methodology 
We consider the capital expenditure (CAPEX) and operating expenditure (OPEX) to 
evaluate the economic viability of establishing the respirator processing system in terms 
of the net present value (NPV), payback year, and internal rate of return (IRR). CAPEX 
includes the direct capital, indirect capital, working capital of all equipment units, and the 
land cost used for setting up the processing system (Gong and You, 2018). OPEX includes 
the cost of transporting waste respirators, feedstock cost, utility cost, cost of operations 
and maintenance (O&M), property tax and insurance (PT&I), general expense, and 
income tax. The linear depreciation method is adopted to calculate the depreciation cost. 
Notably, the net present value (NPV) is calculated via subtracting the CAPEX from the 
summation of annualized cash flow in each operating year. The direct capital costs are 
extracted from Aspen-Plus Capital Cost Estimator. 

4. Results and Discussion 
4.1. TEA Results of the Waste Respirator Processing System 
We present the breakdowns of CAPEX and OPEX of establishing the waste respirator 
processing system (near Citiwaste Medical Waste Disposal) in Figure 3. Notably, the total 
capital investment ($16.31 million) is the major contributor to the total expenses, which 
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is further broken down into four categories, namely the total installation cost, total indirect 
capital, land cost, and working capital. The income tax is another major contributor 
($14.14 million), so that the high profitability of the waste respirator processing system 
is demonstrated. Specifically, the high indirect capital ($5.82 million) is owing to the high 
costs for the procurement and installation of various equipment units and reactors ($9.71 
million). Owing to various distillation units and the refrigeration cycle to maintain 
cryogenic conditions when separating methane, the installed cost of the light hydrocarbon 
separation section ($3.21 million) mainly contributes to the total installation cost, as 
shown in Figure 3. The installed costs for other sections are also shown in Figure 3. 

The feasibility of establishing the waste respirator processing system can be illustrated in 
terms of the payback time of seven years, and an IRR of 21.5%. This high economic 
performance is mainly contributed by the various products converted from waste 
respirators, as well as the heat integration that minimizes the utility usage. 

 
Figure 3. CAPEX, OPEX, and installed cost breakdowns. 

4.2. LCA Results of the Waste Respirator Processing System 

The direct emissions from the offsite combustion section and indirect emissions share 
56% and 44% of total emissions, respectively. The indirect emissions can be further 
broken down and the major contributor to the indirect emissions is from the offsite 
production for inlet material (56% of indirect emissions). Moreover, GHG emissions 
from the offsite production of steam contribute most emissions (91.11%) among the 
offsite production for inlet materials, which due to the massive usage of steam in the 
sterilization system. Specifically, the unit GHG emissions of the respirator processing 
system is 12.93 kg CO2-eq/thousand respirators, which reduces by 59.08% compared to 
the incineration-based system (31.60 kg CO2-eq per thousand respirators). Hence, it is 
viable to establish a respirator processing system with high economic profitability and the 
potential to mitigate climate change.  

5. Conclusion 
In this work, we developed and proposed a novel and effective waste respirator processing 
system to protect public health and mitigate climate change. The waste respirator 
processing system included seven sections to convert waste respirators into various 
products. TEA results deciphered the economic viability for setting up the waste 
respirator processing system in terms of the payback time of seven years with an IRR of 
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21.5%. LCA results illustrated the potential of climate change mitigation by showing a 
reduction of GHG emissions by 59.08% compared to the incineration-based system. 
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Abstract
Estimation of Distribution Algorithms (EDAs) are interesting evolutionary methods;
they have the characteristic of using an explicit distribution model, instead of mutation
and crossover operators. In particular, Univariate Marginal Distribution Algorithms
(UMDA) are some of the simplest distribution-based methods. In this work UMDA is
used to design and optimize a shell-and-tube heat exchanger. To model the heat
exchanger, Kern method and the Bell-Delaware method are employed. It has been found
that UMDA has an inferior performance when compared with other metaheuristic
algorithms. Nevertheless, other EDAs may lead to better results, which is part of future
research.

Keywords: Heat exchanger, optimization, metaheuristic, estimation of distribution
algorithm, Bell-Delaware.

1. Introduction
Heat exchangers are auxiliary process equipment that are necessary in almost every
industry. Its main purpose is to recover energy from a process stream. Among the
different available heat exchanger technologies, the shell-and-tube heat exchanger
(STHE) is the most commonly used by industry. STHEs have some advantages, such as
standardized design and building procedures, good heat transfer area/equipment volume
ratio, and enough robustness to support high operational temperatures and pressures.
Different methodologies to design STHEs can be found in open literature. Some of the
most widely used are the Kern’s and the Bell-Delaware methods. For both methods,
many different STHEs designs can be calculated to satisfy the same energetic criteria.
Therefore, it is necessary to perform an optimization routine to identify the best possible
design according to an objective function.

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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The optimization of a STHE is not a trivial problem. Both design models contain non-
convex, non-continuous, non-differentiable functions. In addition, they depend on
continuous and discrete design variables. This results in a mixed-integer non-linear
problem, where many local optima could exist. Deterministic procedures have been
used to find optimal designs for this kind of equipment, as done by Yang et al. (2020),
where a disjunctive mathematical model is proposed and considers five different heat
transfer enhancement techniques. Recently, Kazi et al. (2021) developed a discretized
differential algebraic equation model that can be combined with logarithmic mean
temperature difference model to produce optimal STHEs. Other reliable alternative is
the use of evolutionary strategies to obtain optimal designs; such metaheuristic
techniques does not require model adequation. Evolutionary Algorithms (EAs) are a
class of optimization methods inspired in the Darwinian theory of survival of the fittest.
These methods employ operators such as selection, crossover, and mutation. The
different parameters of the operators must be tuned before solving an optimization
problem; this represents an optimization problem in itself. To avoid the tuning
procedure, EDAs were proposed as an alternative by Larrañaga (2002). In EDAs, there
are neither crossover nor mutation operators. Instead, the new population (solutions) are
created from an explicit probability distribution, that is built from a set of selected
individuals of the previous generation. In EDAs, the interrelations of the design
variables are expressed through the joint probability distribution. UMDA is a type of
EDA that uses the simplest model to calculate the joint probability distribution; this
model does not consider the interdependence between variables. It is reported that
UMDA do not has a good performance working with non-linear problems and with
problems with significant dependencies. In this work it is used as a starting point to be
further compared with more complex EDAs that could work better to solve heat transfer
problems.

Some works have used evolutionary strategies to optimize STHEs; for example the
proposal by Ponce et al. (2006) where genetic algorithms (GAs) were used, or the
approach of Xiao et al. (2019) where the simultaneous design of a heat exchanger
network and STHEs are performed using a hybrid genetic algorithm/simulation
annealing method. To the author’s knowledge, distribution-based algorithms have not
been used to optimize STHEs. Thus, in this work a STHE is designed and optimized for
a case study. Kern’s and the Bell-Delaware methods are used to model the heat
exchanger. As an optimization algorithm UMDA is selected, and its performance is
compared with other metaheuristic methods previously used.

2. Shell-and-tube heat exchanger models
The Kern and the Bell-Delaware methods are widely used to design STHEs. Kern’s
method gives good predictions of heat-transfer coefficients for standard designs. The
prediction of the pressure drop is less accurate, because this variable is more affected by
shell-side leakages, and the method does not consider it (Sinnott, 2005). On the other
hand, the Bell-Delaware methodology provides a better prediction of all variables. In
this method, multiple geometrical variables are calculated creating a highly non-linear
search space. Also, five parameters are used to calculate the shell-side heat transfer, ,ℎ

𝑠
according to equation 1.
ℎ

𝑠
= ℎ

𝑖𝑑
𝐽

𝑐
𝐽

𝑙
𝐽

𝑏
𝐽

𝑠
𝐽

𝑟 (1)
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where , is the ideal heat-transfer coefficient. is the correction factor for baffleℎ
𝑖𝑑

𝐽
𝑐

configuration. is the correction factor for baffle leakage. is the correction factor for𝐽
𝑙

𝐽
𝑏

bundle and pass partition bypass streams. is the correction factor for baffle spacing at𝐽
𝑠

inlet and outlet. Finally, is the correction factor for adverse temperature gradient in𝐽
𝑟

laminar flows.
The area of the heat exchanger is calculated for both models with equation 2. is the𝑄
heat transfer rate, is the logarithmic mean temperature difference, is a𝑇

𝐿𝑀𝑇𝐷
 𝐹 

correction factor for , and is the overall heat transfer coefficient computed with𝑇
𝐿𝑀𝑇𝐷

𝑈
equation 3.

𝐴 = 𝑄
𝑈𝐹𝑇

𝐿𝑀𝑇𝐷
(2)

𝑈 = 1

1
ℎ

𝑠
+𝑅

𝑓𝑠
+

𝑑
𝑜
ln𝑙𝑛 

𝑑𝑜
𝑑𝑖( ) 

2𝑘
𝑤

+𝑅
𝑓𝑡

𝑑
𝑜

𝑑
𝑖

+ 1
ℎ

𝑡

𝑑
𝑜

𝑑
𝑖

(3)

Additionally, is the tube-side heat transfer coefficient, is the tube internal diameter,ℎ
𝑡

𝑑
𝑖

is the tube outer diameter, and are the fouling factors for shell and tubes,𝑑
𝑜

𝑅
𝑓𝑠

𝑅
𝑓𝑡

respectively. Kern’s method can be found in Flynn et al. (2019), and the Bell-Delaware
methodology is reported by Shah and Sekulic (2003).

Commonly, the total annual cost (TAC) is used as an optimization criteria, and it
depends on multiple variables and parameters as shown in equation 4 (Smith, 2005).
TAC is calculated with the fixed cost, , and operational cost, , wich are computed𝐶

𝑓
𝐶

𝑜𝑝
with equations 5 and 6, respectively. Also, is the purchase cost of the STHE, ,𝐶

𝑝
𝑓

𝑚
𝑓

𝑝
and are factors to consider the construction material, operating pressure and𝑓

𝑐
operating temperature, respectively.

𝑇𝐴𝐶 =  𝐶
𝑓

𝑟 1+𝑟( )𝑛

1+𝑟( )𝑛−1
+ 𝐶

𝑓 (4)
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1000
(6)

and are the required pumping power ( ) for shell and tube side. , is the cost of𝐸
𝑠

𝐸
𝑡

𝑊 𝐸𝑐
the energy required for pumping. is the number of operational hours per year, is𝐻

𝑟
𝑛

the projected lifetime, and is the interest rate.𝑟

3. Univariate Marginal Distribution Algorithm
UMDA is a population-based evolutionary algorithm for optimization. It belongs to
EDAs, which do not use operators such as mutation nor crossover to diversify the
population and better explore the search space; instead, it uses an explicit model to
estimate the joint probability distribution. The joint probability distribution is factored
as a product of independent univariate marginal distribution, as shown in equation 7. 𝑝
is the joint probability distribution, is the univariate marginal frequency (Larrañaga,𝑝

𝑖
2002).
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𝑝 𝑋( ) =  
𝑖=1

𝑛

∏ 𝑝
𝑖
(𝑥

𝑖
) (7)

The selection of the sampled individuals is a very important part of this algorithm; for
this work truncation is used. UMDA begins with a random population, which is ranked
according to the values obtained from the objective function evaluation. Then, the best
half of the population is used to build the distribution model; the population of the next
generation is obtained from this model.

4. STHE optimization
The case study has been taken from Wildi-Tremblay and Gosselin (2007). It is required
to design a STHE with a flow rate of 18.8 kg/s of cooling water. The inlet temperature is
33 °C and the outlet temperature is 37.2 °C. The hot fluid is naphtha with an inlet
temperature of 114 °C, and 40 °C for the outlet temperature. Water is placed in tube-side
because of its greater fouling resistance. The construction material for tube and shell
side is stainless steel and carbon steel, respectively. Constraints are applied according to
equations 8, 9 and 10, where and are the pressure drop in shell and tube side,∆𝑃

𝑠
∆𝑃

𝑡
respectively. is the fluid velocity in tube-side, is the heat exchanger length, and𝑣

𝑡
𝐿 𝐷

𝑠
is the diameter of the heat exchanger.
∆𝑃

𝑠
,  Δ𝑃

𝑡
≤ 70, 000 𝑃𝑎 (8)

1 𝑚/𝑠 ≤ 𝑣
𝑡 

≤ 3 𝑚/𝑠 (9)
𝐿/𝐷

𝑠
 <  15 (10)

The Bell-Delaware methodology depends on 11 design variables, while Kern’s method
on 7. Table 1 shows the established boundaries for each continuous variable. In Table 2
the allowed values for discrete variables can be found. The possibility of designs with
multiple shells is not considered at this stage of the study.

Table 1. Limits of continuous design variables.
Design variable Lower bound Upper bound
Diameter of shell 𝐷

𝑠 300 mm 1,000 mm
Outer diameter of tube 𝑑

𝑜 15.87 mm 63.5 mm
Baffle spacing at center 𝐿

𝑏𝑐
0.2𝐷

𝑠
0.55 mm

Baffle spacing at the inlet and outlet 𝐿
𝑏𝑜

,  𝐿
𝑏𝑖

𝐿
𝑏𝑐

1.6𝐿
𝑏𝑐

Tube-to-baffle diametrical clearance δ
𝑡𝑏

0.01𝑑
𝑜

0.1𝑑
𝑜

Diametrical clearance of shell-to-baffle δ
𝑠𝑏

0.01𝐷
𝑠

0.1𝐷
𝑠

Outer diameter of tube bundle 𝐷
𝑜𝑡𝑙

0.8
(𝐷

𝑠
− 𝑑

𝑠𝑏
)

0.95
(𝐷

𝑠
− 𝑑

𝑠𝑏
)

Table 2. Allowed values used in discrete design variables.
Design variables Allowed values
Tube pitch 𝑃

𝑡
[1. 25𝑑

𝑜
,  1. 5𝑑

𝑜
]

Tube layout angle 𝑇𝐿 ][30°,  45°,  90°
Baffle cut 𝐵

𝑐
[25%,  30%,  40%,  45%]

Number of tube passes 𝑠 [1,  2,  4]
The equations 11 and 12 show the objective function for each method.

(11)

(12)
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If constraints are not satisfied a penalty is applied to the TAC; the penalized objective
function is shown in equation 13. , , and are the penalty values, and is the𝑟

1
𝑟

2
𝑟

3
𝑟

4
∆𝑃

𝑎
maximum allowed pressure drop (70,000 Pa). To estimate the cost, 5,000 operational
hours were assumed, an interest rate of 5%, a projected lifetime of 20 years, a pump
efficiency equal to 0.85, and an electricity cost of 0.1 USD/kWh (Wildi-Tremblay and
Gosselin, 2007).

(13)

5. Results
Fluid properties were computed at average temperature. For the UMDA, 50 individuals
and 50 iterations were considered. The selection operator uses truncation with 50% of
the total population. 30 experiments were done to obtain basic statistical information as
the average and the standard deviation of the TAC. The required time to conduct one
experiment for the Bell-Delaware and Kern’s method are 3.95 s and 4.01 s, respectively.
When Bell-Delaware methodology is used, the best design has a TAC of 4,093.96
USD/year, the is 156.73 USD/year and the is 3,937.23 USD/year. The TAC of𝐶

𝑜𝑝
𝐶

𝑓
the best design when Kern’s method is used is 3,613.88 USD/year, and are𝐶

𝑜𝑝
𝐶

𝑓
286.46 USD/year and 3,327.41 USD/year, respectively. Table 3 reports the results of
some important variables for both models, and its comparison with the results reported
in a previous work (Lara-Montaño et al., 2020) where particle swarm optimization
(PSO) and grey wolf optimization (GWO) were used. From this comparison it is evident
that for both STHEs models UMDA has a poor performance with respect to other
metaheuristic algorithms. The optimization algorithms used in the referenced work have
a better capability to avoid local optima. This can be inferred from the average TAC
value that is 4,234.35 USD/year for PSO and 4,074.93 USD/year for GWO.

Table 3. Best design found and comparation with other methods (Lara-Montaño et al., 2020).
Parameter 𝐷

𝑠
𝑑

𝑜
𝑁

𝑡 𝐴 𝐿 𝑃
𝑡 𝑇𝐿 𝑠 𝐿

𝑏𝑐

Units mm mm 𝑚2 m mm º mm
Bell-Delaware (this work) 311.83 15.87 149 34.23 4.60 19.83 90 1 79.65
Kern’s method (this work) 300.00 15.87 195 25.76 2.80 18.75 30 1 87.79
Bell-Delaware (PSO) 302.40 15.87 144 32.56 4.56 - - - -
Bell-Delaware (GWO) 302.40 15.87 144 32.56 4.56 - - - -
Kern’s method (PSO) 314.10 15.00 672 25.95 2.55 - - - -
Kern’s method (GWO) 314.80 15.00 672 26.03 2.54 - - - -
Parameter 𝐿

𝑏𝑜
𝐵

𝑐
δ

𝑡𝑏
δ

𝑠𝑏
𝐷

𝑜𝑡𝑙
𝐶

𝑜𝑝
𝐶

𝑓 𝑇𝐴𝐶
Units mm % mm mm mm USD/year USD/year USD/year
Bell-Delaware (this work) 120.65 15 0.18 3.11 289.48 156.73 3,937.23 4,093.96
Kern’s method (this work) - - - - 239.22 286.46 3,327.41 3,613.88
Bell-Delaware (PSO) - - - - - 160.51 3,865.99 3,966.50
Bell-Delaware (GWO) - - - - - 160.51 3,806.01 3,966.53
Kern’s method (PSO) - - - - - 263.34 3,262.45 3,525.80
Kern’s method (GWO) - - - - - 257.76 3,275.97 3,525.73

After 30 experiments, an average TAC of 4,674.12 USD/year and a standard deviation
of 296.68 USD/year is calculated when the Bell-Delaware model is employed with the
UMDA. From these results, it can be inferred that the optimization algorithm has a poor
capability to avoid local optima. The value of the standard deviation is moderate, but the
difference between the best TAC and the average TAC is large. This indicates that in
most of the experiments the algorithm converges in a solution far from the global
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fobj = TAC + r1 𝑚𝑎𝑥[(ΔPs − ΔPa),  0] + r2 𝑚𝑎𝑥[(ΔPt − ΔPa),  0]
+ r3[𝑚𝑎𝑥{(1 − vt)} + 𝑚𝑎𝑥{(3 − vt)},  0]
+ r4  𝑚𝑎𝑥[(L/Ds − 15),  0] 
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optima. Only for one of the experiments the minimum reported value of TAC was
reached. For Kern’s method, the average TAC and standard deviation are 3,701.81
USD/year and 44.72 USD/year, respectively. The performance of the optimization
algorithm is better when Kern’s method is used due its lower non-linearity and the lower
number of design variables implied, compared with the Bell-Delaware method. Figure 1
shows the behavior of the TAC in each iteration for both design methods. It is evident
that for Kern’s method the optimization algorithm converges in less than 10 iterations.
When the Bell-Delaware method is employed the UMDA method rapidly find better
solutions in the first iterations, but after 25 iterations the convergence slows down,
being unable to find the best design in 50 iterations.

Figure 1. Behavior of the TAC for both design
methods

6. Conclusion
This work explores the viability of using EDAs to solve heat transfer problems. From
the results obtained it is clear that UMDA is not a good option to optimize STHEs, due
its poor capacity to work with non-linear models. This optimization method uses a joint
probability that does not take into account dependencies between variables. Better
results could be found if a more complex joint probability were employed. It is clear
that the difference in the complexity of the design methods impacts on the efficiency of
the optimization algorithm. When Kern’s method is used, the average TAC is closer to
the best TAC. This does not occur for the Bell-Delaware method that is more complex
and depends on more design variables. Although the results reported in this work
demonstrate that UMDA is not capable of optimizing STHEs efficiently, other EDAs
could have better performance by using a joint probability distribution that consider
dependencies between variables.
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Abstract 
Microgels are functional polymers with diverse applications synthesized by free radical 
polymerization using an initiator, monomers, and cross-linker as reactants. While 
monomers and cross-linker are incorporated into the microgel during the synthesis, 
initiator is left in the reactor due to its slow decomposition rate. The removal of unreacted 
initiator is a challenging and time-consuming post-synthesis procedure. Therefore, we use 
model-based dynamic optimization to determine synthesis procedures that reduce in the 
final concentration of unreacted initiator. The dynamic optimization requires a 
mechanistic model of the microgel synthesis, that needs to consider the inhibition of 
residual oxygen in the reactor at the beginning of the synthesis. Residual oxygen might 
inhibit the initiation of the synthesis when initiator concentrations are sufficiently low. 
We extend our existing model with the effect of an initial oxygen inhibition. We then use 
dynamic optimization to minimize the initial initiator concentration, while maintaining 
process and quality constraints. The considered product quality constraint is the 
hydrodynamic radius of the microgel, which must not change by more than 5 %. The 
determined synthesis procedure shows a 76 % reduction in the final concentration of 
unreacted initiator in comparison to the reference case, while maintaining the reference 
microgel hydrodynamic radius. The synthesis time, however, is 48 % longer than the 
synthesis time of the reference case. Hence, there is a trade-off between the final initiator 
concentration and the duration of the microgel synthesis demonstrating the value of 
dynamic optimization for the determination of optimal synthesis conditions valuable. 
 
Keywords: microgels, initiator, dynamic optimization, model-based synthesis 

1. Introduction 
Microgel syntheses involve initiator, various monomers, cross-linker and other additives 
like surfactant (Pich and Richtering, 2011). Syntheses are separated in the stages of 
reactant preparation, the polymerization reaction, and purification of the microgel 
products that includes the removal of unreacted reactants in the reactor. Low amounts of 
unreacted monomer and cross-linker are left in the reactor after polymerization, as their 
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conversion is typically high (Jung et al., 2019a). The conversion of the initiator, however, 
is low due to high initial initiator concentrations in the reactor that are commonly used in 
experiments (Wu et al.,1994; Virtanen and Richtering, 2014; ,Ksiazkiewicz et al. 2020). 
The unreacted initiator has to be removed from the reactor after the reaction. The removal 
causes lengthy purification processes. With the perspective of producing microgels on a 
larger industrial scale, the surplus in initiator also causes significant costs for the large 
amounts of initiator used. Hence, it is desirable to determine the minimum amount of 
initiator required for the microgel synthesis. We propose here to use model-based 
dynamic optimization to determine a synthesis procedure that ensures high monomer and 
initiator conversion at the end of the synthesis. To analyze the effects, we define a 
reference experiment, which is a batch microgel syntheses based on 2,2'-Azobis(2-
methylpropionamidine) dihydrochloride (AMPA) as initiator (𝑐 (𝑡 ) = 1.23 mol m ),  
N-vinylcaprolactam (VCL) as monomer (𝑐 (𝑡 ) = 106.1 mol m ),  and N,N’-
Methylenebisacrylamide (BIS) as cross-linker (𝑐 (𝑡 ) = 2.59 mol m ),  at 70 ℃ 
(Janssen et al., 2018). 
 
Models of microgel syntheses have been previously investigated by multiple authors, e.g., 
Hoare and McLean (2006), Hoare and Pelton (2007), Janssen et al. (2018), Jung et al. 
(2019a,b). However, these models do not take the inhibition caused by residual oxygen 
(Bhanu and Kishore, 1991) in the reactor into account, which may become relevant at low 
initial initiator concentrations. The effect of oxygen on radical polymerization reactions 
has been studied in the past. Two theories towards the mechanism behind oxygen 
inhibition have mostly been proposed: (A) oxygen terminates active radicals directly, or 
(B) oxygen polymerizes as co-polymer into the polymer chains and the rates of 
propagation and termination reactions cause the inhibition of the polymerization reaction 
(Schulz and Henrici, 1956; Henrici-Olivé and Olivé, 1957; Mayo, 1958; Garton and 
George, 1973; Bhanu and Kishore, 1991). 
 
For microgels, only few experimental results on the effects of oxygen on the microgel 
synthesis have been reported. The online calorimetric and Raman spectroscopy 
measurements conducted by Janssen et al. (2018) reveal an inhibition phase or induction 
period at the beginning of the synthesis between the addition of the initiator and the onset 
of the polymerization reaction. They postulate that residual oxygen causes the induction 
period at the beginning of the synthesis. For the estimation of model parameters based on 
these measurements, they remove the induction period, as the mechanistic model does 
not include the oxygen inhibition. 
 
Here, we include the oxygen inhibition into our previously published microgel synthesis 
models (Jung et al., 2019a,b). Following, we present the results of a dynamic optimization 
with the aim of obtaining low final concentration of unreacted initiator. 

2. Model of the microgel synthesis including oxygen inhibition 
We extend the previously published reaction kinetics (Jung et al., 2019a) and microgel 
size modeling (Jung et al., 2019b) by the oxygen inhibition. We assume that oxygen 
terminates active radical chains and thereby inhibits the polymerization reaction. The only 
reaction that is added is the termination of active radical chains with oxygen, which 
terminate active polymer chains and make them inactive towards propagation reactions 
 𝑅 + 𝑂 ⎯ 𝑃 , 
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where 𝑘 ,  is the rate constant of the termination reaction with oxygen and 𝑟 ,  is the 
relative rate constant of the termination reaction with oxygen 𝑟 , = , . Hence, we only 

require one kinetic rate constant to be estimated with the assumption that the rate of 
termination with oxygen is independent of the end group of the active radical chain. 
 
For high values of 𝑟 , , an induction period develops at the beginning of the synthesis.  
For values above 𝑟 , = 10  the induction period does not change considerably, as the 
inhibition reaction is then limited by the number of active radical chains available; the 
inhibition period is much faster than the polymerization reactions. For values of 𝑟 ,  
between 1 and 10  the inhibition reaction has approximately the same order of magnitude 
as the polymerization reactions. Hence, both reactions occur simultaneously causing the 
shape of the flow of reaction enthalpy to change. For values below 𝑟 , = 10  no effect 
of the inhibiting oxygen shows in the simulation, the polymerization reactions are faster 
than the inhibition reaction. Hence, we set the value of the inhibition for the following 
simulations that the parameter is equal to 𝑟 , = 10 . 

3. Dynamic optimization  
Our main aim in performing dynamic optimizations is to determine synthesis conditions 
that allow for low final concentration of unreacted initiator at the end of the reaction. 
However, we also investigate the effect of the changes in the synthesis conditions on the 
microgel hydrodynamic radius and the synthesis duration. 
 
The optimization problem to be solved is 
 min, ( ), ( ) 𝑐 (𝑡 )       (2a) s. t. model equations, initial conditions     (2b) 10  mol m ≤ 𝑐 (𝑡 ) ≤ 2 mol m      (2c) 60 ℃ ≤ 𝑇 (𝑡) ≤ 80℃, 𝑡 ∈ Γ      (2d) 98 % ≤ 𝜉 (𝑡 ) ≤ 99 %       (2e) ( ) ,, ≤ 0.05       (2f) 500 s ≤ 𝑡 ≤ 10  s       (2g) 

Equation (2a) is the minimization of the concentration of initiator at the end of the 
synthesis. Equations (2b) are the modeling equations and initial conditions of the state 
variables that are not degrees of freedom to the optimization problem. Equations (2c) – 
(2d) bound the controls (degrees of freedom). The initial initiator concentration 
commonly used in laboratory experiments is on the order of 1 mol m ; hence, we allow 
this order of magnitude and values that are up to five orders of magnitude lower, as we 
expect the initial initiator concentration to decrease to allow for full conversion of the 
initiator. Equations (2e) – (2f) are the constraints to the reactant conversions. The 
conversion of the monomer is set to be between 98 % and 99 % to ensure that a high 
conversion of monomer is achieved. Constraint (2f) forces the hydrodynamic microgel 
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radius to be within a range of \SI{5}{\percent} around the reference value. Constraint 
(2g) ensures that the duration of the synthesis is between 500 s and 10  s. 
 
The dynamic optimization problems are implemented and solved with the open-source 
software DyOS (Caspari et al., 2019). The model is integrated using the solver NIXE with 
absolute and relative tolerances set to 10 . The dynamic optimization problem is solved 
using the solver SNOPT with optimization tolerances set to 10  and feasibility 
tolerances set to 10 . 
 

4. Results and discussion 
To check the validity of the model extension, we compare simulation results with 
experimental data of microgel synthesis at two different temperatures and two different 
initiator concentrations (Janssen et al., 2019). The induction period for experiments run 
at low temperature are considerably longer than induction periods for experiments run at 
higher temperatures. The induction period increases for lower initiator concentrations. 
The agreement between model simulation and experimental data is good; especially the 
transition from the induction period to the polymerization is in good agreement between 
model and data. 
 
We minimize the final initiator concentration; the obtained value is 0.216 mol m . The 
determined initial concentration of initiator is equal to 0.283 mol m , which translates 
to a final conversion of 23.9 %. Hence, the final concentration is higher, and the final 
conversion is lower than the values achieved in the previously presented optimization 
cases. The reason for this is the constraint on the microgel hydrodynamic radius. The 
determined synthesis procedure yields microgels with a hydrodynamic radius that is 
within 5 % of the hydrodynamic radius of the microgel synthesized in the reference case. 
The final obtained radius is at 179 nm, which is just 5 % larger than the microgels 
obtained in the reference case. Hence, to obtain microgels with an hydrodynamic radius 
that is in the same range as in the reference case, The final initiator concentration is 
considerably lower than the reference case. However, the synthesis duration increased 
considerably to 1140 s in comparison to the reference case due to the lower concentration 
of initiator.  
 
Figure 1 presents selected state variables over the synthesis time. The oxygen inhibition 
causes the monomer conversion to increase only after an induction period of 
approximately 550 s. The induction period can also be observed in the simulation of the 
microgel radius, as the microgel radius only starts to increase considerably after the 
induction period has passed. The reactor temperature is kept at the lower bond of 60 ℃ 
until all oxygen has reacted with active radical chains. Then the reactor temperature is 
raised to the upper bond of  80 ℃ for the rest of the synthesis. Comparing these results to 
the reference case, we find that we determined a synthesis procedure that yields microgels 
with the same hydrodynamic radius, while we reduced the concentration of remaining 
initiator at the end of the synthesis from 0.93 mol m  in the reference case to 
0.216 mol m  in the determined optimal synthesis, which corresponds to a 76.8 % 
reduction. The synthesis time, however, increases from 770 s to 1140 s, which 
corresponds to a 48.1 %  increase in comparison to the reference case. We expect, 
however, that the reductions in cost due to the lower amounts of initiator used and the 
expected simplified purification of microgels at the end of the synthesis makes up for the 
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increase in synthesis time in comparison to the reference case.  An additional decrease of 
the synthesis duration may be achievable by reducing the concentration of residual 
oxygen at the beginning of the synthesis. Currently, almost half of the synthesis time is 
used to deplete the residual oxygen in the reactor. An additional optimization showed that 
tightening of the constraints on the hydrodynamic microgel radius causes the initial 
initiator concentration to be higher and the reactor temperature to increase earlier. 
 

 
 
Figure 1: Dynamic optimization results considering oxygen inhibition. (A) Conversion of 
initiator (solid) and monomer (dashed); (B) Oxygen concentration (solid) and initiator 
concentration (dashed) in the reactor; (C) Hydrodynamic microgel radius; (D) Reactor 
temperature. 
 

5. Conclusions 
We propose to use the dynamic optimization for microgel synthesis with the aim of 
achieving a low concentration of unreacted initiator at the end of the reaction. In the 
optimization, we also consider the induction periods at the beginning of the syntheses 
caused by oxygen inhibition. Therefore, we extended the previously presented model of 
the microgel synthesis with reaction kinetics of the oxygen inhibition. We achieved good 
agreement with the induction periods observed in experiments run at different reactor 
temperatures. We minimize the final concentration of initiator in the reactor, while 
constraining the hydrodynamic microgel radius to be within range of the reference 
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synthesis. The result is a synthesis procedure that allows a 76.8 % reduction in the final 
concentration of initiator, while maintaining the microgel size. However, the reaction 
time is increased to 1140 s. 
 
Even though the predictions of the used mechanistic model have been validated in by us 
for various synthesis conditions in other publications, we advise to again validate the 
results of the optimizations presented here. Of special interest in the experimental 
validation is whether the final initiator concentration is in agreement with model 
simulation results and whether the predicted hydrodynamic microgel radius is met. 
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Abstract 
Process intensification (PI) is a major area of interest for downstream processing in 
biorefineries, where dilute aqueous streams must be processed to separate and purify 
valuable components. For example, lactic acid (LA) purification faces these challenges 
as the feed consists of a dilute aqueous mixture of LA and other organic acids as 
impurities. These characteristics result in high energy requirements, large equipment, 
and multiple operations when considering conventional technologies. The combination 
of otherwise individual processing tasks is enabled by exploiting synergies following PI 
principles, which improves energy efficiency and reduces the processing equipment’s 
size. This study presents a new conceptual design of an intensified dual reactive 
dividing wall column (R-DWC), applied to lactic acid purification. This CAPE study is 
the first to investigate the effect of impurities that disrupt the reaction and the 
separation. The approach taken in this study is a mixed methodology based on a 
decomposition approach, shortcut calculations, and rigorous process simulation in 
Aspen Plus. The intensification and the heat integration of this new realistic process led 
to a more eco-efficient operation in terms of material intensity (over 50 % reduction), 
water consumption (35 % reduction) and energy intensity (25 % reduction) compared to 
a 4-column flowsheet that does not account for reactive impurities and additional 
azeotropes. The recovery (>95 %) and purity (88 % w/w LA) targets were successfully 
achieved, and the acid impurity was effectively removed.  

Keywords: process intensification, reactive distillation, process simulation, lactic acid  

1. Introduction 
Process intensification (PI) is a discipline within chemical engineering that addresses 
improvements in functional / phenomena / unit levels, occurring at various stages to 
improve process performance. For example, major enhancements have been shown by 
applying PI technologies to the downstream processing in biorefineries using reactive 
distillation (RD) (Kiss et al., 2016). Further intensification of RD attempts to overcome 
its inherent limitations, such as a restricted range of operating conditions and complex 
scaling-up. To overcome RD’s limitations, exploiting additional driving forces can 
expand its applicability to systems that cannot be handled by RD only (Kiss et al., 
2019). Therefore, the design of further intensified technologies to promote better 
utilization of resources (e.g. energy, water, raw materials) improves the process’ eco-
efficiency and reduces the equipment size, while maintaining the targets of purity and 
recovery, which encourages the investigation of intensified processes (Keil, 2018). 
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The synergy between reaction and separation in RD can be exploited by adding extra 
intensification features. For example, a reactive dividing wall column (R-DWC) reaches 
the second level of intensification by combining two already intensified technologies: 
DWC and RD (Weinfeld et al., 2018). R-DWC offers benefits such as increased energy 
efficiency, reduced number of vessels, handling of multiple outlet streams and feasible 
operation via decentralized control (Egger and Fieg, 2019; Mueller and Kenig, 2007). 
These attributes have been widely studied in academia, and the research outputs suggest 
that R-DWC can improve chemical processing (Kiss et al., 2019).  

This paper develops the conceptual design of a novel dual R-DWC based on a 
decomposition approach, applied to a case study to recover and purify LA from a 
fermentation broth. The dual R-DWC features the esterification of the acids with 
methanol to facilitate the separation of esters, and the hydrolysis to recover the purified 
LA. For this study, a diluted mixture containing water, LA, and succinic acid was used 
to demonstrate the novel configuration in a flowsheet context. The kinetic data for the 
esterification of LA with methanol was taken from the study of Sanz et al. (2004). Also, 
the esterification of succinic acid with methanol and LA oligomerization were 
considered (Asthana et al., 2006). Amberlyst 36 (Tmax = 150 °C) catalyst was selected 
for this study as previous studies indicated that Amberlyst 15 (Tmax = 120 °C) limited 
the operating windows for RD (Su et al., 2013).  

2. Problem statement 
A primary concern of the downstream processing in biorefineries is handling large 
volumes of liquid containing mostly water and the target component. In addition, the 
removal of impurities in low concentrations requires energy-intensive processes 
consisting of various devices, usually of large size (Kiss et al., 2016). From the process 
design point of view, the development of efficient flowsheets has overseen the effects of 
impurities in the process performance, as process simulation research to date has not yet 
considered the effect of reactive impurities in the concentration of LA (Cho et al., 2008; 
Kim et al., 2017; Su et al., 2013). Experimental laboratory and pilot-scale studies have 
proven the simultaneous occurrence of the reactions of the target component and the 
impurities in the purification of organic acids. The evidence from these studies suggests 
that the impurity reaction can affect the heating and cooling needs due to the extra heat 
of reaction, introduce new azeotropes, require makeup of reactants, and promote 
operational issues such as blockage of outlet lines. To address this problem, this CAPE 
study is the first to investigate the effect of reactive impurities that disrupt the reaction 
in a novel dual R-DWC applied to purify bio-produced LA. 

3. Conceptual design approach 
The steps followed for the conceptual design of a novel dual R-DWC is depicted in 
Figure 1, and the procedure consists of a decomposition approach, shortcut models, and 
implementation of rigorous models.  

3.1. Decomposition approach 

A decomposition approach was applied to design an intensified unit that features three 
outlet streams (impurity, product, and excess water / methanol), and two different 
reactions (esterification and hydrolysis). 
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Figure 1: Methodological approach for the conceptual design of a dual R-DWC (OB: outer 
boundary, IN: inner boundary, B/F: bottom to feed ratio, RR: reflux ratio, BR: bottom rate) 

First, the tasks and internal connections were identified: the esterification converts the 
organic acids into esters that are easier to separate, and the hydrolysis of the purified 
methyl lactate allows obtaining LA on specification. The rectifying and stripping 
sections remove excess compounds and reaction products to adjust the final product’s 
composition and drive higher conversion in the reactive sections. For this case study, 
the heaviest cut was removed first, so the indirect sequence led to a side-stripper 
configuration. As the configuration proposed in this work includes two reactions, the 
returning stream’s composition exiting the hydrolysis section depended on the vapor-
liquid equilibrium (VLE) and the reaction rates. This consideration applied to the 
decomposition approach of dual-reactive systems differs from the one used for DWC 
and R-DWC, where only VLE data provides the composition of the returning stream. 

3.2. Shortcut models  

The tasks and interconnection identified were analyzed by defining system boundaries 
around the whole arrangement and grouping tasks to obtain initialization values. The 
grouping allowed evaluating a sub-system that contained one reaction only or a critical 
task that entailed a degree of freedom. For this arrangement, two inner boundaries 
included the esterification and hydrolysis reactions, and the top rectifying section 
contained the liquid split ratio. The mass balance calculations for each boundary 
allowed computing the interconnecting streams’ values and defining operating variables 
such as liquid to feed ratio or reflux ratio to initialize a rigorous simulation.  

3.3. Implementation of rigorous models 

The simulation of the dual R-DWC was implemented in Aspen Plus v8.8 using two 
RadFrac modules in a thermally coupled indirect sequence leading to a partitioned side-
stripper configuration. The values obtained from the shortcut calculations were used to 
set up the RadFrac modules separately. The observation of composition, temperature, 
and generation rate profiles combined with an update of the initial mass balances, 
accelerated a trial-and-error method to determine the initial number of reactive and non-
reactive stages, location of the inlet and side-draw streams and catalyst holdup. Then, 
the interconnecting streams between the two RadFrac modules were implemented after 
updating the flowrates and compositions between iterations until reaching a match. A 
full flowsheet, including a preconcentrator unit and a methanol recovery column, was 
implemented in Aspen Plus, and the results provided key performance indicators. 

59
from fermentation broth



 I. Pazmiño Mayorga et al. 

  

4. Results and discussion 

4.1. Conceptual design of a dual reactive dividing wall column 

A sequential approach was used to implement the rigorous models in Aspen Plus, first 
building the esterification column, then implementing the hydrolysis column, and 
finally integrating the two with a thermally coupled arrangement.  

The esterification column was initialized with the values gathered from the shortcut 
calculations. The base case was defined after varying variables such as the catalyst 
holdup, number of reactive and non-reactive stages, and feed location, so that a robust 
converged simulation accomplishes the performance indicators set for the esterification 
column: 99 % conversion of LA, low LA oligomers production, and near-to-sharp split 
between methyl lactate and dimethyl succinate. 

The hydrolysis column was set up using the feed stream values from the simulated 
esterification column and the shortcut calculations’ operating parameters. The number 
of reactive and non-reactive stages, the location of the inlet and side streams, and 
catalyst holdup were varied by tracking the performance indicators established for the 
hydrolysis section: methyl lactate conversion higher than 80 %, low methyl lactate loss 
in the top and bottom streams and the product specification (88 % w/w LA). 

Figure 2 presents the concentration profiles in the liquid phase and the generation rates 
in the hydrolysis column. Figure 2a shows the initial configuration where the inlet 
stream entered the first top reactive stage. The liquid phase composition indicated that 
the upper rectifying stages were still rich in the reactants: water and methyl lactate. 
Then, by systematically changing the feed stream’s location and observing the methyl 
lactate content in the top and bottom streams, Figure 2b clearly shows how the methyl 
lactate concentration in the liquid phase reduces towards the top and bottom ends. 
Figure 2c shows the generation rate profiles for lactic acid and methyl lactate with two 
different inlet stream locations. The most interesting aspect of this graph is how the feed 
stream’s location can be facilitated by inspecting the column profiles.  
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Figure 2: Liquid composition and component generation profiles in the hydrolysis column           
a) feed on the 1st reactive stage b) feed on the 10th reactive stage c) generation rate profiles  
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Figure 3: Process flowsheet for the pre-concentration and purification of lactic acid 

An iterative procedure to match the vapor stream’s composition exiting the 
esterification column and the returning liquid side stream into the esterification column 
was necessary to couple the two RadFrac modules. To facilitate a good convergence of 
the simulation, we generated the estimates of temperature, flowrate, and composition in 
the RadFrac modules, i.e., values of a previously converged simulation were used as 
starting values for a new run after a significant modification.  

A pre-concentration operation in a flash vessel and a methanol recovery column were 
included to compare the novel configuration’s performance with existing benchmark 
processes, as depicted in the flowsheet of Figure 3.  

4.2. Key performance indicators  

The performance of the flowsheet, including the novel dual R-DWC, was compared 
against two benchmark configurations that consist of a sequence of two reactive and 
two conventional distillation columns, and of one conventional, one reactive and one 
fully thermally coupled column between the hydrolysis and recovery sections (Kim et 
al., 2017; Su et al., 2013). The comparison is not straightforward because of the 
introduction of a more realistic approach by considering the esterification of succinic 
acid (in addition to LA) and the exploitation of additional heat recovery opportunities. 

Table 1 presents the key performance indicators to evaluate the novel configuration’s 
efficiency. Regarding the use of raw materials, considering the esterification of succinic 
acid resulted in an increase of the methanol makeup compared to the benchmark studies. 
However, the observed decrease in the methanol / LA feed molar ratio could be 
attributed to the solid catalyst that withstands higher temperatures, so less methanol is 
required to produce a quenching effect in the reactive section resulting in less methanol 
recirculating in the system. Also, the two benchmark studies introduced an additional 
water stream for the hydrolysis reaction. In contrast, the process developed in this study 
used the water produced in the first reaction by appropriately locating the vapor stream 
exiting the esterification column into the hydrolysis section, which resulted in a 
decrease in water consumption and material intensity. This process also achieved a 
higher LA recovery as milder temperatures in the hydrolysis section reduced 
oligomerization reactions. The direct heat integration in the dual R-DWC and the 
process-to-process heat recovery implemented in this study reduced the energy intensity 
in 25 % and 10 % compared to the benchmark technologies, respectively. 
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Table 1: Key performance indicators of the novel process and two benchmark processes 

Parameter Su et al. (2013) Kim et al. (2017) This work 
Methanol makeup (kmol/h) 0.2 0.2 0.8 
Water flowrate for hydrolysis (kmol/h) 14 14 0 
Methanol/lactic acid feed molar ratio 4 4 3.3 
Lactic acid recovery (%) 91.8 94.2 95.7 
Material intensity (kgwaste/kg LA) 0.178 0.194 0.089 
Water consumption (m3/kg LA) 0.051 0.043 0.033 
Energy intensity (MJ/kg LA) 14.9 12.6 11.2 

5. Conclusions 
This research provided insights for the conceptual design of a dual R-DWC using a 
combination of a decomposition approach, shortcut models, and rigorous simulations. 
The intensified dual R-DWC unit was successfully evaluated in a flowsheet for the pre-
concentration and purification of lactic acid, including a more realistic approach by 
considering side reactions. The most interesting findings of this study were the effective 
removal of the impurity, the elimination of extra water for the hydrolysis reaction, and a 
more eco-efficient performance in terms of material, water and energy use.  
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Abstract 
Energy efficiency studies have an important role in the petroleum industry in terms of 
environmental impacts and cost. In this context, distillation units are important process 
units in the refinery. Osuolale and Zhang (2018) pointed out they cause about 35 % of 
energy consumption. Energy analysis studies are useful in energy efficiency but remain 
incapable in some areas. Besides energy analysis in other words exergy analysis, which 
is related to the second law of thermodynamic, is a very powerful tool for detecting losses. 
In this study, an exergy analysis study was carried out on the vacuum distillation unit 
located in TUPRAS Izmit Refinery. Vacuum distillation unit (VDU) processes heavy 
petroleum products from atmospheric distillation column. Heavy, medium, and light gas 
oil and vacuum residue are the products of VDU.  
Vacuum distillation column was simulated in ASPEN HYSYS V10 in this study by using 
operational data and equipment information for exergy analysis. Energy and exergy 
analysis calculations were completed and case studies were carried out to examine the 
effect of various operational conditions on the exergy efficiency of the column in the 
ASPEN HYSYS. In order to see the effects of different operational conditions such as 
pump-around (PA) flowrate and return temperature for exergy efficiency on online 
platform, data was created by using of Aspen Simulation environment and an exergy 
prediction model was developed with machine learning models in R-Studio. Thus, 
support on exergy efficiency was provided with successful prediction models. 
 
Keywords: exergy analysis, thermodynamics, vacuum distillation unit, modelling, 
machine learning model 

1. Introduction 
Energy efficiency is among the most focused topics in the industry recently. Feyzi and 
Beheshti (2017) stated that distillation columns, which are commonly used in chemical 
industry, are an energy intensive separation units. For instance, the USA alone has about 
40,000 distillation columns, which consume about 6 % of the total US energy and they 
accounts for 40 - 60 % of the total energy use in chemical industry (Osuolale and Zhang, 
2014). Therefore, designing energy efficient distillation systems and determining 
operational parameters that affect energy efficiency are important to minimize the energy 
consumption.  
Rivero (2002) stated some questions such as how and where energy is degraded and how 
to reduce energy consumption need to be answered in order to clarify energy efficiency. 
To overcome this, thermodynamic analysis brings an analytic approach to the topic of 
energy efficiency. The First Law of Thermodynamics (FLT) is known as the law of the 
conservation of energy. This means that energy can be transformed, but it can be neither 
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created nor destroyed. The Second Law of Thermodynamics (SLT) state that the entropy 
of the system increases whenever any energy conversion or transfer occurs within a closed 
system. When comparing these laws, the first law has no knowledge of the 
thermodynamic process, which is related to its inability to completely convert heat to 
mechanical work. At this point, the concept of exergy emerges in relation to SLT and 
entropy (Dincer and Rosen, 2013). 
Many researches focused on exergy analysis of distillation columns. Waheed and Oni 
(2015) improved the energy performance of crude oil distillation unit with using 
simulation of process techniques. As a result of these developments, both the energy and 
exergy efficiency of the column are increased by 4.0 and 1.6 %, respectively. Al-Muslim 
et al. (2003) conducted exergy analysis of single and two-stage crude oil distillation units 
for determining exergy losses and efficiencies. Overall exergy efficiencies of single and 
two-stage distillation units were found 14.0 and 31.5 %, respectively. Tarighaleslami et 
al. (2011) studied an atmospheric distillation unit based on the exergy analysis by 
changing streams and new configurations.  
Simulation of process is an important tool for exergy analysis in terms of process analysis 
and design. The objective of this study is to present exergy analysis of vacuum distillation 
column in both current situation and various situation with changing operational 
conditions. Also, exergy analysis is supported neural network models to enhance model 
accuracy and reliability. 

2. Exergy Analysis  
The exergy of the system is described as the quantity of the ability to do work that is 
composed of mass, heat, work flows transfer to the system at a specified reference 
temperature. Exergy analysis determines the locations of the system’s inefficiencies and 
exergy loss of system is reduced by improvements. Numerous engineers and researches 
prefer exergy analysis on the ground that it is an effective tool for analyzing, designing 
and developing processes and systems (Izyan and Shuhaimi, 2014). 
The total exergy is obtained with the sum of physical and chemical exergy in Eq. (1). The 
physical exergy is related to difference of actual and reference conditions of enthalpy and 
entropy as Eq. (2).   𝐸𝑥 = 𝐸𝑥 + 𝐸𝑥  (1) 𝐸𝑥 = (ℎ − ℎ ) − 𝑇 ∙ (𝑠 − 𝑠 ) (2) 

Where the subscript “0” indicates the ambient conditions that are 25 ℃ and 101.325 kPa. 
Exergy efficiency in Eq. (3) gives information about the measure of approaching the ideal. 𝜓 = ∑ 𝐸𝑥∑ 𝐸𝑥 = 𝐸𝑥𝑒𝑟𝑔𝑦 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝐸𝑥𝑒𝑟𝑔𝑦 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡𝑠  

(3) 

3. Case Study 
3.1. Process Description and Simulation 
The aim of the vacuum distillation column of TUPRAS Izmit Refinery is to separate the 
atmospheric residue by three main streams. These are light vacuum gasoil (LVGO), a 
mixture of medium and heavy vacuum gas oil (MHVGO) and vacuum residue (VR).  
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A summary day that has exact laboratory data is chosen for the simulation. Unit operation 
values of summary day and equipment data sheets were used for performing the 
simulation. Figure 1 shows the computer-aided simulation of vacuum distillation column. 

          
Figure 1: (a) Basic simulation of VDU; (b) Simulation of VDU with Pump-Arounds 

3.2. Computer Aided Exergy Analysis 
Exergy calculations were done via ASPEN HYSYS V10. The spreadsheets were created 
for exergy calculations in connection with the process simulation. In this study, the 
spreadsheets were prepared using the formula in Eq. (2) and exergy, which is directly 
calculated by ASPEN HYSYS. Moreover, the effect of operating parameters on exergy 
efficiency was examined by using “Case Studies” in ASPEN HYSYS. Lower and upper 
process control limit values like those given in Table 2 were entered in this case study to 
see the changing the exergy efficiency. 

4. Machine Learning Model 
Exergy efficiencies can be predicted by using the machine learning models without the 
need for complex exergy analysis calculations. Also, the effect of operating parameters 
on exergy efficiency for vacuum distillation column can be determined by means of these 
predictive models. Firstly, the parameters that affect exergy efficiency were determined 
to predict exergy efficiencies in “Case Study” of ASPEN HYSYS.  Synthetic data was 
produced by using these parameters that input the model. In this study, Bootstrap 
aggregating (Bagging) and Random Forest models were used to predict exergy 
efficiencies in R-Studio. “Ipred” and “randomForest” packages of R-Studio were used to 
develop model for Bagging and Random Forest respectively. The data for both models 
were divided into training data (50 %), testing data (30 %) and unseen validation data (20 
%). The machine learning model for exergy efficiency is of the following form: 𝜑 = ƒ(𝑥 , 𝑥 , 𝑥 )  

Where φ is exergy efficiency, x1, x2, and x3 are model inputs which are furnace exit 
temperature, MVGO PA temperature and HVGO cold PA temperature. 

5. Results and Discussion 
Exergy analysis results of VDU are summarized in Table 1.  Results of Eq. (2) and exergy 
which is directly given by ASPEN was the same. Exergy efficiency was found to be 0.67 
in current situation by the ratio of total output exergy to input exergy by using Eq. (3). 
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Table 1: Inlet and outlet streams exergy of vacuum distillation unit 
 Stream  Mass flow  

rate (kg/s) 
Specific 
exergy (kJ/kg)

Exergy  
rate (kJ/s) 

ΣExergy 
(kJ/s) 

Inlet  
streams 

Column inlet  108.944 356.442 38,832.357 

39,717.814 Import VGO  25.655 34.514 885.456 

Stripping  0.000 1,002.207 0.000 

Outlet 
streams 

Overhead  1.230 -8.903 -10.950 

26,850.608 

LVGO  10.832 23.709 256.821 

MVGO  36.112 126.999 4,586.153 

HVGO  26.397 202.965 5,357.767 

Heavy slop  13.222 263.466 3,483.599 

Vacuum residue  46.806 281.531 13,177.218 

Table 2 shows the effect of operating parameters on exergy change between lower and 
upper bound. The first three parameters that affect the exergy most are shown in Table 2 
are furnace exit temperature, MVGO PA temperature, HVGO cold PA temperature, 
respectively. These parameters were used to model input. Essentially, the change in 
operating PA parameters did not significantly affect the exergy efficiency. Also, Dincer 
and Rosen (2007) have reported that the change of temperature profile, which is 
controlled by the PA did not cause a significant change in exergy efficiency. 
Table 2: The effect of operating parameters on exergy and energy efficiency change 

Operating parameters 
Lower-
upper 
bound 

Exergy 
efficiency 
change 

% Absolute  
exergy 
change 

Energy 
efficiency 
change 

% Absolute  
exergy 
change 

HVGO cold PA flow (t/h) 320-360 0.6555-0.6599 0.671 1.133-1.131 0.177 

HVGO hot PA flow (t/h) 90-115 0.6560-0.6556 0.061 1.133-1.133 0.000 

LVGO hot PA flow (t/h) 6.9-14.9 0.6560-0.6560 0.000 1.133-1.133 0.000 

LVGO PA2 flow (t/h) 110-128 0.6552-0.6567 0.229 1.133-1.132 0.088 

LVGO cold PA flow (t/h) 29.5-65.5 0.6499-0.6576 1.185 1.138-1.131 0.615 

MVGO PA flow (t/h) 348-432 0.6565-0.6536 0.442 1.133-1.134 0.088 

LVGO PA2 temperature (℃) 50-60 0.6570-0.6560 0.152 1.132-1.133 0.088 

MVGO PA temperature (℃) 190-212 0.6431-0.6560 2.006 1.138-1.133 0.439 

HVGO cold PA temperature (℃) 267-277 0.6571-0.6442 1.963 1.132-1.138 0.530 

HVGO hot PA temperature (℃) 280-296 0.6529-0.6560 0.475 1.134-1.133 0.088 

Furnace exit temperature (℃) 395-410 0.6655-0.6290 5.485 1.124-1.157 2.936 

Figures 2 and 3 show the model performances in predicting the exergy efficiency of the 
vacuum distillation unit on the training, testing and unseen validation data. The sample 
numbers at Figures 2 and 3 consist of the case study of three parameters mentioned in the 
fourth section. Due to the temperature increase of the furnace output, which is one of 
these parameters, the exergy of column inlet stream increases depending on the increase 
enthalpy. Thus, the trend of the exergy efficiency in the Figures 2 and 3 decreases while 
the column input exergy increases considering Eq. (3). 
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Figure 2: Actual and Bagging model predicted exergy efficiency for VDU 

 

 

 
Figure 3:  Actual and Random Forest model predicted exergy efficiency for VDU 

The mean squared error of models can be seen in Table 3. The results in Figures 2 and 3 
and Table 3 show that the machine learning models give good prediction performance, 
but the Random Forest model seems to give better results than the Bagging model. These 
models can be used to determine the exergy efficiencies for the most affecting operating 
parameters. 
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Table 3. Mean Squared Error of Models 
 Training Testing Validation 
Bagging model 0.0000126 0.0000132 0.0000080 
Random forest model 0.0000060 0.0000064 0.0000047 

6. Conclusions 
Vacuum distillation column in TUPRAS Izmit Refinery was evaluated for exergy 
analysis by using parameter values under nominal conditions. Thus, an exergy analysis 
was made about the inefficient use of energy at which points of the process. The aim of 
the project is to create a machine learning model to see the effect of operational 
parameters on column exergy efficiency without the need for continuous running ASPEN 
HYSYS. The effect of various operation parameters on exergy efficiency has been 
examined by case studies in the ASPEN HYSYS simulation program. Changing the PA 
operating parameters did not lead to significant changes in exergy efficiencies. It has been 
seen that furnace exit temperature is the most important variables on exergy efficiency. 
In addition, machine learning models for exergy efficiency were improved using the 
process operation parameters which have the most effect on exergy efficiency. The results 
of two models indicated a successful performance on predicting exergy efficiency without 
the need for exergy-intensive calculations. From this study, we conclude that, it is 
necessary to prepare a substructure that requires the online working of ASPEN HYSYS 
continuously in order to ensure improvements through the exergy calculation. Instead of 
this, we obtained a model in R that can run in the online data integration tool, so we take 
the first step to working online platform. The reason why optimization is not considered 
in this study is that it is necessary to do a study for determining the optimum operating 
conditions by trying different values of each parameter, which is important in exergy 
analysis. Exergy analysis for optimization may be the subject of another study. 
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Abstract 
Solvents are widely applied in chemical industries. The use of efficient model-based 
solvent selection techniques is an option worth considering for rapid identification of 
solvents with desired properties. In this paper, a Machine Learning-based Atom 
Contribution (MLAC) method is developed for fast predictions of molecular surface 
charge density profiles (p(σ)) using the three-dimensional atomic descriptors. Integrating 
the developed MLAC method and Computer-Aided Molecular Design (CAMD) 
techniques, an optimization-based MLAC-CAMD framework for solvent design is 
established by formulating and solving a Mixed-Integer Non-Linear Programming 
(MINLP) model, where model complexities are managed with a decomposition-based 
solution strategy. Finally, a case study involving crystallization is presented to highlight 
the effectiveness of the MLAC-CAMD framework. 
 
Keywords: machine learning, computer-aided molecular design, atom contribution, 
surface charge density profiles, decomposition-based algorithm. 

1. Introduction 
The selection of solvents is of importance in the optimization of product yield and purity 
in chemical processes. However, it is practically impossible to perform thousands of time-
consuming and extensive experiments for screening solvent candidates using a trial-and-
error approach. As a result, it is worth employing efficient model-based methods that can 
help to focus the limited experimental resources on a few promising solvent candidates. 
CAMD techniques are efficient model-based methods for solvent design (Zhang et al., 
2016). The success of CAMD depends very much on the reliability of property prediction 
models used, for example, the UNIFAC models. However, a large set of experimental 
data are required for regression of binary interaction parameters the models need, 
hindering thereby wide application of UNIFAC models (e.g., extractive distillation (Chen 
et al., 2005)). 
To overcome the above-mentioned limitation of UNIFAC models, COSMO (COnductor 
like Screening MOdel)-based models are developed as potential alternatives due to their 
powerful ability to predict solvent properties with only a small set of group-independent 
model parameters (Hsieh et al., 2010). However, the computationally costly Density 
Functional Theory (DFT) calculations needed to obtain the molecular p(σ) in the 
COSMO-SAC (Segment Activity Coefficient) model limit their application in CAMD 
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techniques for high-throughput solvent design. Scheffczyk et al., (2017) presented a 
COSMO-CAMD framework, where an optimization-based genetic algorithm LEA3D 
and a hierarchical approach consisting of two accuracy levels of DFT calculations are 
combined to reduce the computational cost of the DFT calculation for novel solvent 
design. Dong et al., (2018) proposed a COSMO-UNIFAC method for fast activity 
coefficient (γ) predictions of organic liquids. Their method takes the advantages of 
COSMO-based models (use of pseudo-experimental data for γ) and UNIFAC models 
(relatively accurate prediction) to bypass the DFT calculations. Mu et al., (2007) 
developed a GC-COSMO method for molecular p(σ) predictions, where the p(σ) values 
are estimated by the addition of group contributions to p(σ) in milliseconds. Although 
their work offers an efficient molecular p(σ) generation for the COSMO-RS (Real 
Solvents) model, one limitation cannot be ignored. It is known that p(σ) is a charge-
dependent molecular property. The simple scheme of group (or descriptor) additivity is 
unable to describe the complex interactions among functional groups, e.g., induction 
effect or conjugation effect, leading to poor prediction results. 
In this paper, an optimization-based MLAC-CAMD framework is established for solvent 
design. In Section 2, the three-dimensional atomic descriptors, weighted Atom-Centered 
Symmetry Functions (wACSFs), are used to develop a MLAC method for fast and 
accurate predictions of molecular p(σ) for the COSMO-SAC model (Hsieh et al., 2010). 
Then, the MLAC method is integrated with the CAMD problem, which is formulated as 
an MINLP model and solved by a decomposition-based solution algorithm. In Section 3, 
the proposed framework is evaluated with a case study involving solvent design for the 
improved crystallization operation. 

2. MLAC-CAMD Framework for Solvent Design 
2.1. The Development of MLAC Method 
A database is created before developing the MLAC method, where 1120 solvents 
containing H, C, N, O elements with Chemical Abstracts Service (CAS) numbers are 
collected from the Virginia Tech database (Mullins et al., 2006), as these elements can be 
found in most of the commonly used organic solvents. The Isomeric SMILES (Simplified 
Molecular-Input Line-Entry System) of the 1120 solvents are then collected from the 
PubChem (https://pubchem.ncbi.nlm.nih.gov/) database using CAS numbers. 
For the development of MLAC method, the SMILES representations of 1120 solvents are 
first converted to stereoscopic representations with cartesian coordinates using the 
OpenBabel tool (O'Boyle et al., 2011). Based on the stereoscopic solvents, the three-
dimensional atomic descriptors, wACSFs (Gastegger et al., 2018), are calculated and 
selected as inputs for the establishment of High-Dimensional Neural Network (HDNN) 
model, which is an essential p(σ) prediction model in the MLAC method. The wACSFs 
represent the local atomic environment of a centered atom i via the functions of radial 
(𝐺 ) and angular (𝐺 ) distributions of the surrounding atoms inside a cut-off sphere. 
More detailed information about the wACSFs can be found in Gastegger et al., (2018). 
As the HDNN model needs atomic p(σ) (patom(σ)) as outputs for model training, the 
patom(σ) of 1120 solvents are prepared with the Gaussian 09W software (Frisch et al., 
2016) and the COSMO-SAC model (Hsieh, et al., 2010). Finally, a database of patom(σ) is 
established, where the number of samples for H, C, N, O atoms is 15535, 9108, 305 and 
1215, respectively. With the obtained input (wACSFs) and output data (patom(σ)), the 
HDNN model is trained, which consists of four separate element-based (H, C, N, O) back 
propagation Artificial Neural Networks (ANNs). A diagrammatic sketch of HDNN model 
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is shown in Figure 1. For each element, atoms are randomly divided into the training, 
validation and test set with the radio 6:1:1. In each ANN model, the optimizer, loss 
function, metrics function and activation function are selected as Adam (Kingma and 
Science, 2014), Mean Squared Error (MSE), coefficient of determination R2 and ReLu 
(Xavier et al., 2011), respectively. The metrics of training sample 𝑅 , validation 
sample 𝑅  and test sample 𝑅  are 0.964, 0.918, 0.907 for H element, 0.975, 0.931, 
0.931 for C element, 0.950, 0.889, 0.865 for N element, 0.935, 0.867, 0.902 for O element. 
All these results satisfy the fitting criterion 0.1 (note that 0.1 

indicates overfitting) (Zhao et al., 2020), indicating that the ANNs for H, C, N, O elements 
are reliable for patom(σ) predictions. 
 

 
Figure 1. A diagrammatic sketch of HDNN model. 

 
2.2. The Evaluation of MLAC Method 
To further verify the feasibility and effectiveness of the HDNN model, the differences of 
predicted p(σ) between the MLAC method and the DFT method (benchmark) are 
evaluated with the criterion R2. The R2 results of the predicted p(σ) for each discrete σ 
interval in the MLAC method are shown in Figure 2. Furthermore, the MLAC method is 
employed to determine p(σ) for the predictions of infinite dilution activity coefficients 𝛾 𝑓 𝑝 𝜎 , 𝑉  based on the COSMO-SAC model, where the molecular cavity 
volume VC is predicted by the Group Contribution (GC) method using the MG group sets 
(Hukkerikar, et al., 2012) with a fitting quality of R2=0.9998. The 𝛾  predictions of the 
MLAC method are compared with those predicted by the DFT calculated p(σ) and VC. 
Sixteen solutes (denoted as “c1~c16”) and 1120 solvents that composed of four H, C, N, 
O elements from the Virginia Tech database (solvents are classified in 13 categories and 
denoted as “s1~s13”) are selected for 𝛾  calculations. The Average Absolute Percent 
Error (AAPE) criterion is used to evaluate the differences of predicted 𝛾  between the 
DFT (benchmark) and MLAC method. Finally, the AAPEs for 16 types of solutes and 13 
types of solvents using the MLAC method are shown in Figure 3. 
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Figure 2. The R2 results of the predicted p(σ) for each discrete σ interval in the MLAC 

method. 
 

  
Figure 3. The heap map of AAPEs among 16 types of solutes and 13 types of solvents 

using the MLAC method. 
 

It is noted that most of the AAPEs in Figure 3 are acceptable with minor prediction errors. 
Also, the overall AAPE for the total number of 17920 data points (1120 solvents × 16 
solutes) is calculated using the MLAC method and the result (AAPE = 6.6%) confirms 
that the developed MLAC method is feasible and sufficiently reliable to provide 
molecular p(σ) (that is, a sum of patom(σ) that are predicted by the HDNN model) to the 
COSMO-SAC model for the predictions of 𝛾 . 
To highlight the computational efficiency of MLAC method, a molecule (SMILES: 
CCOC(C)CC(=O)OCOOC(C)=O) is taken as an example for illustration. The MLAC 
method takes around 0.921 seconds to predict p(σ) with SMILES on a PC laptop (Intel 
Core i5-8250U CPU @ 1.60 GHz), which is more efficient compared with the DFT 
calculation (around 51 minutes on the same laptop). 
2.3. The Integration of MLAC Method and CAMD Technique 
Based on the SMILES-based isomer generation algorithm (Liu et al., 2019) and GC-based 
property package, the ProCAPE tool (https://www.pseforspeed.com/procape-computer-
aided-property-estimation/), the MLAC method is integrated with the CAMD technique 
for solvent design by formulating and solving an MINLP model through a decomposition-
based algorithm (Karunanithi et al., 2005). 
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3. Case Study 
The CAMD problem designing cooling crystallization solvents for Ibuprofen is 
considered. The following functional groups are selected: CH3, CH2, CH, C, OH, CH3CO, 
CH2CO, CHO, CH3COO, CH2COO, HCOO, CH3O, CH2O, CH-O, COOH, COO. The 
lower and upper bonds for structure and property constraints are given in Table 1. The 
objective for this case study is to design a crystallization solvent with the highest potential 
recovery 𝑃𝑅%. More details about the objective function and constraints can be found in 
Karunanithi et al., (2006). 
 

Table 1. List of structure and property constraints, as well as the top designed 
crystallization solvent for the Ibuprofen cooling crystallization process. 

Property Constraint Property Result
Number of groups 2 𝑁 8 Molecule (SMILES) CC(=O)OCC(=O)OCOCOC(C)C 

Number of same groups 𝑁 8 Molecular structure 
 

Number of functional groups 1 𝑁 8 𝑃𝑅%  95.91% (MLAC), 96.04%(DFT) 
Hildebrand solubility 
parameter at 298 K 17 𝛿 19 MPa /  𝛿 MPa /   18.470 

Hydrogen bonding solubility 
parameter 𝛿 8 MPa /  𝛿 MPa /   11.018 

Flash point 𝑇 323 K 𝑇 K   400.172 

Toxicity log 𝐿𝐶 𝐹𝑀3.3 log mol/L  
log 𝐿𝐶 𝐹𝑀 log mol/L   2.939 

Normal melting point 𝑇 270 K 𝑇 K   266.773 
Normal boiling point 𝑇 340 K 𝑇 K   523.919 
Viscosity 𝜇 1 cP 𝜇 cP   0.577 

 
Through using the decomposition-based algorithm, 272 feasible molecular candidates are 
designed at the first step with the constraints of molecular structures and linear properties 
( 𝛿 , 𝛿 , 𝑇 , log 𝐿𝐶 𝐹𝑀 , 𝑇 , 𝑇 , 𝜇 ), which are predicted by the GC methods 
(Hukkerikar, et al., 2012). Then, 6723 SMILES-based isomers are generated using the 
SMILES-based isomer generation algorithm. Afterwards, for the 6723 solvent candidates 
and solute Ibuprofen, 𝑃𝑅% are individually calculated and arranged in descending order 
with the key property γ that is estimated by the integrated MLAC method - COSMO-SAC 
model. Finally, the top designed crystallization solvent is listed in Table 1. Although the 
DFT-based 𝑃𝑅% of the top designed solvent in Table 1 (96.04%) has made a minor 
improvement compared with Karunanithi’s solvent (94.95%), our best designed solvent 
is safer (𝑇 400.172 K) and has lower toxicity measure ( log 𝐿𝐶 𝐹𝑀 2.939 log mol/L )) than Karunanithi’s ( 𝑇 354.290 K  and log 𝐿𝐶 𝐹𝑀 3.040 log mol/L )). Further experimental verifications will be performed in the future to 
confirm the performance of the top designed solvent. 

4. Conclusions 
In this paper, an optimization-based MLAC-CAMD framework is established for solvent 
design, where the MLAC method is developed for fast predictions of p(σ) using wACSFs 
descriptors through a HDNN model. Benefiting from the stereoscopic feature of the 
wACSFs descriptors and the powerful nonlinear fitting ability of the HDNN model, high 
prediction accuracy for p(σ) is achieved with the MLAC method in terms of R2 of p(σ) 
and the overall AAPE of 𝛾 . A case study of designing crystallization solvents is 
performed, identifying a minor PR% improved solvent with the safer and lower toxic 
attributes compared with the previous work, which demonstrates the effectiveness of the 
MLAC-CAMD framework. 
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Abstract 
Chemical products can be classified as single species, mixtures and/or blends, formulated 
and/or functional products and chemicals-based devices. Each product class can be 
represented by a suite of models representing different sub-classes depending on the 
product function and/or application. In this work, a versatile modelling system consisting 
of a collection of ten sub-models (molecular structure, property, process, costing, pricing, 
economic analysis, quality, sustainability, environmental impact, and performance) is 
presented. This modelling system has been incorporated into ProCAPD, which is a 
chemical product design software tool together with an extended database and a library 
of product design templates. Application of ProCAPD with the built-in versatile 
modelling system is highlighted through two cases: crystallization solvent design and 
reaction solvent design. 
 
Keywords: chemical product design, versatile model, ProCAPD, decomposition-based 
algorithm. 

1. Introduction 
Chemical products are widely used in modern society. Chemical product design usually 
has hierarchical and multi-disciplinary features. As pointed out by Ng and Gani (2019), 
chemical products can be classified as single species, mixtures and/or blends, formulated 
and/or functional products and chemicals-based devices. Each product class contains sub-
classes depending on the product function and/or application. One of the difficulties in 
computer-aided chemical product design is that each product class and sub-class are 
defined in terms of different sets of product attributes, which needs multi-discipline 
knowledge for the modeling of the design problems. 
A variety of sub-models have already been used in different problem formulations of 
chemical product design. For example, in solvents for CO2 capture, Pereira et al. (2011) 
have employed complex thermodynamic models for prediction of CO2 solubility. Chai et 
al. (2020) combined COSMO-based solubility predictions in the design of solvents for 
crystallization. Zhang et al. (2018) proposed a multi-objective optimization framework 
for the influence of government policy and consumer preference on product design. Fung 
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et al. (2016) proposed the use of a grand product design model including costing, pricing, 
sustainability, etc., together with the more common product attributes related to properties 
and process. Subsequently, Ng and Gani (2019) identified the technical and non-technical 
issues and/or problems in integrated product and process design, the relationships among 
which are captured in a Grand Product Design Model. Many of these recent developments 
have been included in teaching product and process design to prepare the new generation 
of chemical engineers. However, the specific models presented in their work are mainly 
simplified correlations, and most of the sub-models presented are conceptual equations. 
Therefore, a versatile modeling framework is needed for wider applications of chemical 
product design problems from which the needed sub-models can be retrieved and 
combined easily for a specific chemical product design problem. 
In this paper, a versatile modeling framework suitable for chemical product design has 
been developed and implemented in ProCAPD (Kalakul et al., 2018). In section 2, the 
versatile model is formulated as a collection of ten sub-models. In section 3, the new 
additions to ProCAPD software are presented. In section 4, two cases studies are given 
for highlighting the application of ProCAPD software in chemical product design. 

2. Versatile Modeling Framework 
The framework of the versatile mathematical model is shown in Figure 1. 
 

 
Figure 1. Versatile modelling framework for chemical product design 

 
In Figure 1, molecular structure sub-model mainly represents the constraints related to 
molecular structure feasibility in terms of octet rule (𝜈) (Odele and Macchietto, 1993) and 
the number of groups (𝑛) representing the molecule. Here, 𝑁 is the number of arguments, 𝜃 and 𝑑 represent the supplied model parameters and specified variables, respectively. 
Property sub-model is used to predict the properties (p) of the compounds of the product 
(x). Process sub-model relates the product attributes (s) of each compound of the product 
(x) and process design variables (pd) through the process model equations based on 
conservation of mass and energy. The material properties (p), product structure attributes 
(s) and product use conditions (u) collectively determine the product quality (q), which is 
determined through the product quality sub-model. Pricing sub-model is to determine 
product price (pr) and market share (Y) under the condition of given market model. Market 
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share (Y), in turn, affects the amount of production and the required capital investment 
and operating costs. Cost sub-model related to product manufacturing mainly includes 
the capital cost and production cost used to produce the product. All of the above models 
lead to an economic sub-model, which is used to evaluate the financial performance of 
the product being designed. There are many indicators that can be used for economic 
analysis, such as net present value (NPV), internal rate of return (IRR), and return on 
investment (ROI). For the analysis of the commercial value of products, the 
environmental sub-model needs to be considered in the production process, mainly due 
to the harmful substances generated during the production process. It is necessary to 
consider the recovery and treatment of these substances. So, it is necessary to consider 
the sustainability sub-model. Performance sub-model refers to the performance indicators 
in the product design process. These indicators include product quality (q), economy (e), 
environmental (eu) and sustainability issues (su), which can be formulated as a single or 
multiple objective problem.  
In Figure 1, each sub-model is not only a conceptual single function equation but a more 
detailed set of model equations. The model equations and parameters can be obtained 
through literature, experiment or machine learning. For each sub-model, it can be further 
decomposed according to its type. For example, the property sub-model can be divided 
into primary pure component properties, secondary pure component properties and phase 
equilibrium related properties. In addition, the modelling framework is continuously 
extended through the addition of new models in different categories. Each class of sub-
models has its corresponding interface for data transfer. Also, together with an associated 
database and a model generation sub-system, new models can be created through data 
regression and machine learning based modeling. The developed modelling framework 
has been incorporated into a chemical product design software tool ProCAPD, which 
provides the software new features such as use of machine learning based models and the 
associated problem solution strategy. 

3. Multipurpose Tool for Product design 
The above versatile model is integrated into ProCAPD. The architecture of the ProCAPD 
tool is shown in Figure 2. It includes several other features, such as design templates for 
guiding the user through established workflows for specific product design problems; 
solution approach where different solution strategies can be applied by different 
problems. The aim of ProCAPD is an integrated tools which contain a suite of computer-
aided tools that helps with the problem formulation, database search, properties prediction 
and model development. 
The solution of a chemical product design problem using any model-based system 
requires the retrieval, calculation, use and management of a wide range of models and 
methods, as well as very large amounts of data. For this reason, ProCAPD is integrated 
with different in-house tools that are necessary to provide more efficient and flexible 
options for chemical product design and analysis. 
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Figure 2. ProCAPD architecture for solving different product design problems 

4. Case study 
4.1. Crystallization solvent design 
This case study is taken from Chai et al. (2020). 2-Mercapotobenzothiazole (MBT) is an 
important vulcanization accelerator using in the rubber industry. In the solvent-based 
method, it is important to select a suitable crystallization solvent to ensure the refined 
MBT meets the industry requirements.  
In this case study, CH3, CH2, CH, C, aC-CH3, aCH, aC-Cl, OH, CHCOO groups are 
selected. The lower and upper bonds for structure and property constraints and the optimal 
solvents are shown in Table 1. (A is the designed solvent that need to be kept 
confidential). The decomposition-based strategy (Karunanithi et al., 2005) is employed 
to solve the MINLP model. 
 

Table 1. The lower and upper bonds for structure and property constraints and the 
candidate solvents 

Objective function: Max 𝑃𝑅% = . ( ) (1 − ) × 100% 

Properties Lower bound Upper bound No Name PR% 𝑁  3 8 1 Methyl lactate 97.34 𝑁  - 7 2 
3 

n-Heptanol 
A 

94.61 
93.73 𝑁  1 6 

Mw (g/mol) 80 200 4 5-Methylhexan-1-ol 92.72 𝑇  (K) 173 310 5 2-Heptanol 92.44 𝑇  (K) 373 600 6 n-Hexanol 91.14 𝑇  (K) 273 393 7 2-Methyl-1-pentanol 90.82 𝑆𝑜𝑙𝑝 (MPa / ) 18 21 8 2-Ethyl-1-butanol 90.69 − log(𝐿𝐶 ) (−log(mol/L)) 
 - 4.8 9 3-Methyl-1-pentanol 90.10 

SLE ln 𝑥 − 𝛥𝐻𝑅𝑇 1 − 𝑇𝑇 + ln 𝛾 = 0 -- -- -- 

Note: The process sub-model also includes the COSMO-SAC model equations for activity coefficients (Chen et al., 
2016), which are not listed in the table 
 

78 



A versatile modelling system for integrated chemical product design problems 

From Table 1, the product yields (PR%) of the candidate solvents are increased to above 
90%, which meet the industrial needs. 
4.2. Reaction solvent design 
This case study is taken from Zhang et al. (2020). TMQ is an important antioxidant and 
is widely used in rubber production technology. In order to further improve the quality of 
TMQ products, it is necessary to find a more suitable reaction solvent. 
The groups (building blocks) selected in this case include CH3, CH2, CH, C, CH2=CH, 
CH=CH, CH2=C, CH-C, C=C, CH3CO, CH2CO, CH3COO, CH2COO, CH3O, CH2O, 
aCH, aC, aC-CH3, aC-CH2, aC-CH, CH2(cyc), CH(cyc), C=C(cyc). The lower and upper 
bonds for structure and property constraints and the optimal solvents are shown in Table 
2. 
 

Table 2. The lower and upper bonds for structure and property constraints 
Objective function: maximizing the yield of dimer: 𝑛 = 𝑟 𝑑𝑡  
minimizing the energy consumption: 𝑄 = 𝑓 (∆𝐻 , , 𝑇, 𝑇 , 𝑥 , 𝑅, 𝐹 , 𝜀 ) 

Properties Lower bound Upper bound 𝑁  4 8 𝑁  1 7 𝑇  (K) 298 -- 𝑇  (K) 410 440 
ΔHvap (kJ/mol) 0 50 𝑆𝑜𝑙𝑝 (MPa / ) 16 22 − log(𝐿𝐶 ) (−log(mol/L)) 

 -- 4.0 

LLE:                    𝑥 𝛾 = 𝑥 𝛾     𝑖 ∈ (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺) 
 Reaction model:          𝑟 = 𝑓 (𝑘 , 𝑘 , 𝛾 , 𝑥 ) 𝑖 ∈ (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺) 𝑗 ∈ (1,2,3,4) 

Distillation column model:  𝑄 = 𝑓 (∆𝐻 , , 𝑇, 𝑇 , 𝑥 , 𝑅, 𝐹 , 𝜀 ) 𝑖 ∈ (𝐴, 𝐵, 𝐷, 𝑆𝑜𝑙𝑣𝑒𝑛𝑡) 
Note: The process sub-model also includes the COSMO-SAC model equations for activity coefficients (Chen et al., 
2016), which are not listed in the table 
 
The designed solvents are listed in Table 3. From the results, different objectives lead to 
different solvent ranking. Among these candidate solvents, solvent T has the optimal 
performance in both two objective functions. 
 

Table 3. Optimization results of the solvents for maximizing the yield of dimer and 
minimizing the energy consumption 

No.  Solvent   Increased 
dimer2 (%) 

Water 
content (%) 

Solvent 
recovery (%) 

Increased energy 
consumption2 (kJ) 

1 T1 36.216  0.767  99.980  36392  
2 Ethylbenzene   34.851 0.715 99.994 36615 
3 Isopropyl benzene 33.850 0.683 99.997 40458 
4 1-Methoxyhexane 33.759 13.660 99.988 46945 
5 3-Ethyl-3-penten-2-one 33.612 5.980 99.940 41911 
6 3,4-Dimethylpent-4-en-2-one 33.594  4.674  99.951  39824  
7 4,4-Dimethyl-2-pentanone 33.569  4.333  99.974  39700  
8 3,3-Dimethyl-2-pentanone 33.545  5.639  99.958  40604  
9 4-Methyl-3-Methylidenepentan-2-one 33.296  5.821  99.926  40605 
10 1-Methoxyheptane 28.789  2.223  100.000  40625 

T1 is the solvent that need to be kept confidential 
Superscript 2 indicates the added value compared to the solvent free system 

5. Conclusions 
A versatile modeling framework suitable for chemical product design has been developed 
and implemented in ProCAPD, a chemical product design software tool together with an 
extended database and a library of solution approaches. New features such as machine 
learning based models developed in previous publications, have been highlighted in this 
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paper in terms of their incorporation in the product design problem and the associated 
problem solution strategy. These new features are highlighted by two application 
examples (crystallization solvent design and reaction solvent design). 
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Abstract 
Due to depletion of freshwater resources in arid and semi-arid regions accompanied with 
an increase in water demand, the focus is on improving thermal desalination technologies 
such as multi effect distillation (MED) that are energy intensive. Undoubtedly, this 
technology plays an important role in generating high quantity of freshwater from saline 
water resources. To maintain a sustainable seawater desalination technology, this research 
suggests a new hybrid system of 10 effects of MED and a farm of 100 wind turbines to 
be instilled in Al-Shuaibah Power Plant located 103 km south of Jedda in the Kingdom 
of Saudi Arabia. To carry out this proposal, a generic model for MED developed by the 
same authors and a set of model equations of wind power turbine are embedded in a 
mathematical framework. The developed framework is then used to carry out a simulation 
for a given set of seawater characteristics, and input design parameters at different months 
of the year 2019. The study investigates the average monthly saving of power for the 
proposed hybrid system compared to a single MED system. It is revealed that the wind 
turbines can save around 43% of electrical power of MED system in June 2019 based on 
the mean monthly wind speed. 

Keywords: Seawater desalination; Multi effect distillation; Hybrid system; Wind turbine; 
Energy saving. 

1 Introduction  
Despite the abundance of water around the globe, there is a clear challenge of delivering 
freshwater due to scarcity of freshwater resources accompanied with a rapid growth of 
population. Seawater desalination has confirmed its robustness to provide freshwater 
especially for those countries that have coastal areas with water shortage. However, 
desalination plants and especially thermal one requires a considerable amount of energy 
to produce freshwater from seawater resources. More specifically, multi effect distillation 
(MED) is one of the well-known thermal desalination technologies that has been 
extensively used in the Gulf countries including the United Kingdom of Saudi Arabia. 
The most part of consumed energy in the MED system is to provide the thermal energy 
required to evaporate the brine besides operating the pumps (electrical energy). Due to 
depleting petroleum reserves and the considerable CO2 emissions associated with these 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50014-0



 O.M.A. Al-hotmani et al. 

processes, there has been progressive interest to integrate thermal desalination with a 
renewable source of energy. However, harnessing wind as an alternative source of power 
is reliant on weather and location. Interestingly, the KSA has a consistent wind energy 
resource as confirmed by Salah et al. [1] who stated an average wind speed of 3.5 m/s in 
various areas of the KSA. Thus, it would be possible to exploit wind energy as a reliable 
source of energy to drive the MED desalination system. The design and efficacy of a 
hybrid system of renewable energies and MED has been discussed in the literature. 
Specifically, the familiar use of wind energy of a wind turbine in the seawater desalination 
systems is to employ the mechanical and electrical energies. For instance, Yılmaz and [2] 
presented the hybrid seawater desalination system of MED and flat-plate collector (solar) 
and wind turbine units. They proposed to instil the hybrid system at 18 stations located at 
on-shore regions of Turkey. The research stated the potential of renewable energy of each 
location and identified the required system size of each sub-system. Also, a high-capacity 
wind turbine was integrated to MED system by Khalilzadeh and Nezhad [3] to exploit the 
wasted heat of wind turbine to produce the necessary steam for MED system. The results 
affirmed the merits of the proposed technique which can work adequately without any 
limitations during variable temperatures.       
This study focuses on exploring the feasibility of a proposed hybrid renewable energy 
system of 100 wind turbines (Dencon Tornado type) and 10 effects MED desalination 
system to be installed in the Al-Shuaibah Power Plant, located 103 km south of Jedda in 
the Kingdom of Saudi Arabia. The simulation-based model built in gPROMS software is 
carried out at fixed seawater conditions to investigate the average monthly power saving 
throughout 2019 that can be achieved for the hybrid system.  

2 Hybrid seawater desalination system of wind turbine and MED 
The proposed hybrid system of forward feed MED of 10 effects coupled to thermal vapor 
compression (external steam provider) and a farm of 100 wind turbines is schematically 
presented in Fig. 1. The wind turbine type Dencon Tornado [4] is selected to be linked 
with the MED system. Each effect of MED comprises an evaporator of brine, spray 
nozzle, demister, and feed pre-heater. The characteristics of the associated MED and 
design parameters of wind turbine systems are illustrated in Table 1. The purpose of 
installing the wind turbine as a renewable source of energy is to generate the power 
required to produce fresh water from the MED system. 

 

 
Fig. 1. Hybrid system of MED and wind turbine systems 
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3 Modelling of MED system 
Filippini et al. [5] developed a successful model for the MED-TVC system. Some 
important equations of the model developed are shown in Table 2. The procedure of 
model developed and the associated assumptions for MED+TVC system and its 
validation can be found in more details in Filippini et al. [5]. 

 
Table 1. Characteristics of MED and wind turbine (Dencon Tornado) systems 

Wind turbine system 

Par
ame
ter 

Rated 
power, Pr 

(kW) 

Height 
above 

the 
ground 
level, H 

(m) 

Wind 
turbine 
cut-in 
speed, 
Ucut 
(m/s) 

Wind 
turbine 
rated 

speed, 
Ur (m/s) 

Wind 
turbine 
cut-off 

speed, Uf 
(m/s) 

Shape 
parameter, 

k (m/s) 

Value 200 32 3 12 25 2.5649 
MED system 

Parameter Unit Value 
Number of stages (-) 10 
External steam temperature, flow rate, pressure °C, kg/s, kPa 70, 8, 1300 
Brine temperature, salinity °C, ppm 40, 6000 

 

 

Table 2. Modelling of MED and TVC system (Filippini et al. [5]) 
Description Equation Unit 

Feed flow rate 𝑀𝑓 = 𝑀𝑠 𝜆(𝑇𝑠)𝑄 + 𝑄 kg/s 

Sensible heat in the first effect 𝑄 = 𝑀𝑓 𝑐𝑝(𝑇1, 𝑥1)𝑑𝑇 kJ/s 

Latent heat in the first effect 𝑄 = 𝐷1 𝜆(𝑇𝑣1) kJ/s 
Temperature drop among effects 
(first attempt) 𝛥𝑇 = 𝑇𝑠 − 𝑇𝑏𝑛 °C 

Temperature drop among pre-
heaters (first attempt) 𝛥𝑇 = 𝛥𝑡 °C 

Feed temperature in the first 
effect 𝑡1 = 𝑡𝑛 + (𝑛 − 1)𝛥𝑡 °C 

Temperature of vapor phase 𝑇𝑣 = 𝑇 − 𝐵𝑃𝐸(𝑇, 𝑥) °C 
Flow rate of flashed distillate  𝐷 , = 𝛼𝐵 kg/s 

Fraction of distillate by flashing 𝛼 = 𝑐𝑝(𝑇 , 𝑥 )𝛥𝑇𝜆(𝑇 ) - 

Mean temperature 𝑇 = 𝑇1 + 𝑇𝑏2 °C 

Mean salinity 𝑥 = 𝑥𝑓 + 𝑥𝑏2 Ppm 

Fraction of distillate by 
evaporation 𝛽 = 𝛼[𝑥𝑏(1 − 𝛼) − 𝑥𝑓](𝑥𝑏 − 𝑥𝑓) [1 − 𝛼) ] - 

Flow rate of evaporated distil 𝐷 , = 𝛽𝑀 kg/s 
Total distillate 𝐷 = 𝐷 , + 𝐷 , kg/s 
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Rejected brine flow rate 𝐵 = 𝐵 − 𝐷 kg/s 

Salinity profile in the effects 𝑥 = 𝑥 𝐵𝐵 Ppm 

Heat load in i-th effect 𝑄 = 𝐷 , 𝜆(𝑇 , ) kJ/s 

Description Equation Unit 

Area of i-th effect 
𝑄𝑈 , 𝛥𝑇 , = 𝐴 , m2 

Temperature drop in heat 
exchangers ∆𝑇 , = ∆𝑇 − 𝐵𝑃𝐸 °C 

Area of i-th pre-heater 𝑀𝑓. 𝑐𝑝(𝑡, 𝑥𝑓)𝑑𝑡 = 𝑈 , 𝐴 , ∆𝑡 , m2 

Logarithmic temperature 
difference in pre-heaters 

∆𝑇 , = ∆𝑇𝑙𝑜𝑔 𝑇𝑣 − 𝑡𝑇𝑣 − 𝑡 °C 

Area of the last condenser 𝑄 = 𝑈 𝐴 𝛥𝑇 , m2 

Heat load in the last condenser 𝑄 = 𝐷 𝜆(𝑇𝑣 ) kJ/s 

Logarithmic temperature 
difference in final condenser 

∆𝑇 . = 𝑡𝑛 − 𝑇𝑤𝑙𝑜𝑔 𝑇𝑣 − 𝑇𝑤𝑇𝑣 − 𝑡𝑛 °C 

Temperature correction factor 𝑇𝐶𝐹 = 2𝑒 − 8. 𝑇𝑣 − 0.0006. 𝑇𝑣 + 1.0047 - 

Pressure correction factor 𝑃𝐶𝐹 = 2𝑒 − 7. 𝑇𝑃𝑚 − 0.0009. 𝑃𝑚 + 1.6101 - 

Pressure at vapor temperature 𝑃𝑣 = 𝑃 𝑒 . . 𝑓 Bar 

Pressure at steam temperature 𝑃𝑠 = 𝑃 𝑒 . . 𝑓 Bar 

Compression ratio 𝐶𝑅 = 𝑃𝑣𝑃𝑠 - 

Entrainment ratio  𝑅𝑎 = 0.296 𝑃𝑠 .𝑃𝑒𝑣 . 𝑃𝑚 .𝑃𝑒𝑣 . 𝑃𝐶𝐹𝑇𝐶𝐹 - 

Motive steam flow rate 𝑀𝑚 = 𝑀𝑠 𝑅𝑎1 + 𝑅𝑎 kg/s 

4 Simulation of MED system 
The simulation based the model developed was used to explore the required power to 
generate the fresh water from MED system. The simulation results based on the seawater 
conditions are depicted in Table 3. 

5 Modelling of wind turbine energy 
The generated power 𝑃  (kW) of a single wind turbine can be calculated using the 
correlation of Eltamaly and Al-Shamma'a [6].   

1 - 𝑃 = 0                                        𝑖𝑓 𝑈 ≤ 𝑈  and 𝑈 ≥ 𝑈  

2 - 𝑃 = 𝑃                        𝑖𝑓 𝑈 ≤ 𝑈 ≤ 𝑈         
3 - 𝑃 = 𝑃                                       𝑖𝑓 𝑈 ≤ 𝑈 ≤ 𝑈   
where 𝑃 , is the rated power (kW), 𝑈 the wind speed (m/s), 𝑈  the wind turbine cut-in 
(m/s),  𝑈  the wind turbine cut-off (m/s), 𝑈  the rated wind turbine (m/s) 𝑎𝑛𝑑 𝑘 the rated 
wind and shape parameter (-), respectively.    
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Table 3. Seawater conditions and corresponding power of MED system 

Seawater salinity  ppm 39000 
Seawater temperature  °C 25 
Specific energy consumption kWhr/m3 17.9885 
Productivity kg/s, m3/hr 68.327, 245.977 
Power kW 4424.760 

 

6 Evaluation of wind turbine and MED systems at various wind speeds 

The simulation of the MED system showed the productivity of about 245 m3/hr of fresh 
water for the design operations of the MED system and specified seawater conditions 
(reported in Table 3). This specifically requires generating 4424.760 kW as an average 
required power to produce fresh water from MED system. The variation of average 
monthly wind speed in the studied region (Al-Shuaibah Power Plant, Jedda in the KSA) 
for a period of 12 year of 2019 is shown in Table 4. Table 4 also shows the corresponding 
generated monthly power from a single wind turbine. The results confirmed a low 
generated power using only a single wind turbine system due to low average wind speed 
during the months of 2019 (Table 4). This in turn means the necessity of constructing a 
considerable number of turbines to be integrated with the MED system to generate the 
total required power of the MED system. However, this is not a feasible option due to a 
high capital cost. To solve this problem, this research proposed the deployment of a farm 
of 100 wind turbines to be integrated to the MED. In this respect, Table 4 provides the 
power saving values. Clearly, June of 2019 has the highest percentage of power saving 
of 42.81% compared to November 2019 of 6.67%. Also, it should be noted that the 
calculation of power saving is carried out based on the monthly average wind speed. 
Therefore, it is fair to expect a regular increase of generated power during the days that 
can increase the relevant energy saving. For example, 100 wind turbines and MED attains 
an energy saving of 63.64% at the maximum wind speed for June 2019. It is also fair to 
claim that the use of a larger scale of wind turbine (if it is existed) would reduce the total 
number of required turbines to be integrated to MED-TVC seawater desalination system. 
Due to the fact of variable wind speed at different time scale and the necessity of a 
constant source of energy to drive the desalination plant, this study therefore recommends 
the investigation of the integration of both solar (photovoltaic cells) and wind turbine 
(sources of energy) with the MED desalination system. Moreover, having a battery bank 
to save generated electricity from the wind turbine would be a possible solution during 
times of low power consumption in the plant. In this regard, the integration of solar energy 
to MED desalination plant (located in Aqaba, Jordan) has reduced the total thermal energy 
by 68% [7].     

7 Conclusions  
This paper has presented a proposed integrated system of wind turbine and MED thermal 
desalination plant to be instilled in in Al-Shuaibah Power Plant, Jedda, KSA. The 
simulation of the proposed hybrid system is carried out based on developed model of sub-
systems. The simulation results confirmed the possibility of attaining a maximum 
electrical power saving of 42.81% in June 2019 based on the monthly mean wind speed 
for the proposed hybrid system of 10 effects MED and a farm of 100 wind turbines. The 
lowest energy saving was found to be in November 2019.  
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Table 4. Mean wind speed [8], generated electrical power, and energy saving  

Month Mean wind speed, 
U (m/s) 

Generated power of a single wind 
turbine, Pw (kW) 

Power saving of 100 wind 
turbines% 

January 3.941 5.9582 13.46 

February 4.887 14.676 33.16 

March 4.686 12.576 28.42 

April 4.500 10.755 24.30 

May 3.598 3.492 7.89 

June 5.260 18.944 42.81 

July 4.102 7.238 16.36 

August 4.081 7.067 15.97 
Septembe
r 3.956 6.074 13.72 

October 3.828 5.107 11.54 
Novembe
r 3.516 2.954 6.67 

December 4.535 11.089 25.06 
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Abstract
The aim of this study was to deduce the most effective desalination process by
comparing performance of the water heated with the air heated
Humidification-Dehumidification desalination systems. The process model was
developed by applying conservation of mass and energy across the processes’ major
components and simulated using gPROMS ModelBuilder platform. Simulation results
shows that, the water heated HDH desalination process has higher fresh water
productivity than the air heated process. At the maximum inlet temperature of 60 oC the
water heated and air heated HDH desalination processes have the maximum
productivity of 42 kg/h and 18 kg/h respectively.

Keywords: Humidification, Dehumidification, desalination, solar thermal energy.

1. Introduction
A rapid growth in population, industrialisation and urbanisation is causing shortage of
fresh water in many areas around the globe. On the other hand, sea water or
underground saline water is abundant in most areas that encounter the problem of
fresh-water shortage. As demand for fresh water continually increases, it becomes
necessary to develop cheap desalination technologies which are powered by renewable
energy (Kucera, 2014).

Multistage humidification-dehumidification (HDH) desalination using solar energy is a
viable process for remote and arid areas with severe shortage of fresh water.
Humidification-dehumidification is a thermal desalination cycle that operates by heating
saline water using solar thermal energy, evaporating the heated water using a humidifier
and finally condensing the water vapor to form fresh water in the dehumidifier. The
process is viable because of its’ simplicity, abundance of solar energy and moderate
operating costs compared to conventional desalination processes (Al-Enezi, et al.,
2006).

Various researchers have used simulation models to investigate the key parameters
affecting performance of the humidification-dehumidification desalination process. On
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the one hand, there is a common agreement that high yield of fresh water is favoured by
increasing temperature of streams entering the humidifier. On the other hand, there is
still a debate whether the maximum yield is achieved by heating the water stream
(Huifang, et al., 2014) or by heating the air stream (Mohamed & El-Minshawy, 2011)
before passing into the humidifier. Therefore, the purpose of this study is to use
simulation tools and mathematical models to explore the performance of an emerging
HDH water desalination process. Specifically, these are used to compare performance of
the water heated HDH desalination system with air heated HDH desalination system to
deduce system with the maximum fresh-water productivity.

2. Description of the HDH desalination models
2.1. Water heated HDH desalination cycle

In this cycle, pumped saline water from a storage vessel enters the system at the
dehumidifier. As it passes in the dehumidifier it cools and dehumidifies moist air stream
that comes from the humidifier as shown in Figure 1a. The enthalpy of vaporization for
this condensation process is transferred from the moist air to the saline water to warm
the feed stream. The condensate is collected as fresh water at the bottom. Saline water is
further heated by passing through a solar heater. The hot saline water is sprayed on top
of the humidifier and flows downward while a cool air stream flowing in the opposite
direction is blown at the bottom. The tiny water drop formed by spraying saline water
maximizes the surface area for water-gas contact which improves the evaporation rate.
The humidification process occurs by transfer of heat and mass (vapor) from the hot
saline water stream to the cool air stream.

Figure 1: Schematic representation of the HDH desalination systems (a) Water heated
HDH desalination cycle (b) Air heated HDH desalination cycle
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2.2. Air heated HDH desalination cycle

Air heated HDH desalination cycle can be achieved by shifting the solar heater from
water stream to the air stream as shown in Figure 1b. The flow of water and air through
the humidifier and dehumidifier are exactly the same as described for water heated
cycle, except that the heater is now placed to heat the air stream instead of heating water
stream.

2.3. Modelling and simulation of the humidifier

Figure 1 shows the schematic diagram of water heated and air heated HDH desalination
systems considered for developing the mathematical model in this study. They are
assumed to operate at steady state. An air-water vapor mixture of known humidity ratio
(ω) enters the humidifier through inlet 3 at a known pressure (p) and temperature (T).
As the mixture passes through the humidifier, it comes into contact with a stream of
water. If the entering mixture is not saturated, some of the water would evaporate. The
pressure of the mixture is assumed to remain constant as it passes through the

humidifier. The humidity ratio of the exiting moist air can be obtained by applying
conservation of mass and conservation of energy to the humidifier of the system with an
assumption that the moist air is an ideal gas mixture of dry air and water vapor. At the
exit of the humidifier, air is assumed to be saturated. Moreover, the work, and changes
in kinetic and potential energy are also ignored. The feed water salinity is less than 30
g/kg hence physical properties are similar to those of pure water. The enthalpy of the
incoming saline water is evaluated as that of saturated liquid at the corresponding inlet
temperature. Similarly, the specific enthalpy of the entering water vapor has been
evaluated as that of saturated water vapor at the temperature of the incoming mixture
(Moran, et al., 2011).

Conservation of mass (air and water) at steady state

At steady state an energy rate balance can be reduced to

If enthalpy of water is approximated as h1≈hf(T1), h2≈hf(T2) then equation 2 and 3

can be combined and solved to get:

The dry air enthalpies of equation 4 can be calculated from the specific heat capacity
and temperature of air as follows
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The evaporation rate of the system is given as:

The humidity ratio at the entrance is calculated as

Heater energy balance equation (for both cycles) can be written as:

Table 1: Definition of symbols used for mathematical models

Symbols Subscripts
Cp specific heat capacity (kJ kg-1K-1)
h specific enthalpy (kJ kg-1)

mass flow rate (kg/s)
T temperature (oC)
ω humidity ratio (kgw/kga)

a air
1,2,3,4 inlet and exit points
g,v water vapour
f liquid water

Table 2: Parameters used for model simulation

Parameter
Value

Paramete
r

Value
System a System b System a System b

Cp 1.006 1.006 hg4 2583.2 2583.2
m1 0.28 0.28 T1 50 20
ma 0.15 0.15 T2 45 30
hf,1 209.33 83.96 T3 20 50
hf,2 125.79 125.79 p 1 1
hg3 2538.1 2592.1 pg (T3) 0.023 0.1235

3. Results and Discussion
In this study we used mathematical models to deduce the system with higher
productivity by comparing performance of the water heated HDH desalination system to
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the air heated HDH desalination system. These models were validated by comparing
theoretical results obtained through model simulation with the corresponding
experimental data which were previously reported by (Huifang, et al., 2014).

Figure 2: Comparison of the simulated and measured productivity of the system
corresponding to various inlet temperature of saline water

As the base case, performance of the two HDH desalination systems were compared by
changing the position of heater between the water and air streams. For water heated
system the temperature of saline water and air at the inlet points of the humidifier was
50 oC and 20 oC respectively. For the air heated system the inlet air was heated to 50 oC
while temperature for the inlet water was 20 oC. The flow rates for air and saline water
were fixed at 0.15 kg/s and 0.28 kg/s respectively for both HDH systems. Other input
parameters for both systems are shown in Table 2. The system’s mathematical model
was simulated using gPROMS ModelBuilder platform for the conditions specified for
both of the HDH systems. Simulations results shows that fresh water productivity for
water heated system is 28 kg/h; higher than air heated system which was 15 kg/h
(Figure 3).

The effect of temperature on system’s productivity is shown in Figure 3 for both water
heated system and air heated system. The figure shows a significant increase of the
fresh water productivity (i.e from 21 to 42 kg/h) with increase of the inlet water
temperature for the water heated HDH system. On the other hand, the figure shows that,
an increase of the air inlet temperature does not have significant influence on fresh
water productivity. This difference of response can be attributed to the huge difference
of water and air specific heat capacities which are 4.2 and 1.0 kJkg-1K-1 respectively. For
the case of water heated system, temperature of the air stream rises as the air ascends
the column. Previously, it was demonstrated by Bergman, et al (2011) that, for longer
column the air temperature keeps on rising to approach the inlet water temperature.
Consequently, the highest vapour carrying capacity (humidity ratio) is attained by the
humid air exiting the humidifier. This is different for the air heated system whereby; the
hot air stream is cooled rapidly on ascending the column. Since the heat capacity of
water is 4 times higher than that of air, the water temperature is only slightly affected
thus causing more condensation than evaporation as air approaches to the column’s exit
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(Bergman, et al., 2011 and Sinnot, 2005). For this reason, the longer the column, the
lower humidity ratio for air stream exiting the column.

Figure 3: The effect of temperature on productivity for the water heated system and air
heated system

Therefore, as recommended by (Mistry, et al., 2011) the fresh water productivity for the
water heated HDH system can be maximized by increasing length of the humidifier. For
the air heated system (Sharqawy, et al., 2014) recommended to reduce the length of the
humidifier and/or to increase the air flow rate in order to maximise the productivity.

4. Conclusions
In this study we have developed and simulated the mathematical model of the
Humidification Dehumidification desalination process. The model was used to compare
performance of the water heated with the air heated HDH desalination system.
Simulations results shows that, the water heated system has higher fresh water
productivity than the air heated system. It was also found that the increase of water inlet
temperature for the water heated system is associated with a significant increase of the
fresh water productivity. A varying inlet temperature from 48 oC to 60 oC corresponded
with an increase of productivity from 21 kg/h to 42 kg/h. On the other hand, the increase
of air inlet temperature does not have a significant influence on the fresh water
productivity for the air heated system provided that other parameters of the system are
not varied. For this system, the same temperature variation raised the water productivity
from 15 kg/h to 18 kg/h. Finally, it is recommended to boost the productivity by
increasing length of the humidifier for the water heated HDH system and by reducing
length of the humidifier and/or to increase the air flow rate for the air heated system.
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Abstract 
The Reverse Osmosis (RO) system has confirmed its viability to produce high quality 
water from brackish water sources. However, the increase in water and electricity 
demands and has raised the necessity of a sustainable and integrated water treatment 
systems. Renewable sources of energy can be applied to reduce the environmental 
footprint and satisfy the energy demand. An integrated system of wind energy and large-
scale RO system has been proposed in this paper to generate freshwater from brackish 
water. A generic model of the multistage multi pass RO system of Arab Potash Company 
(APC) was dedicated with a set of algebraic equations for wind turbine operation to form 
an accurate model to compute different performance indicators including total energy 
consumption. The energy analysis was carried out for each individual and the integrated 
systems and estimating the total generated power from the wind turbine for one year 
(July/2019 to July/2020). In this regard, the power for the high-pressure pumps of the RO 
system has been supplied from the grid and the wind energy system. The results show 
that the integrated wind – RO system attain a maximum energy saving during the windy 
months. Overall, the wind turbine system has enhanced the reduction of total required 
power of RO system compared to a grid powered RO system. 

Keywords: Desalination; Brackish water; Reverse Osmosis; Wind turbine; Energy 
saving. 
1 Introduction  

In the last few years, membrane based separation technology has dominated the market, 
and consequently the Reverse Osmosis (RO) membrane technique has been increasingly 
implemented in industrial water treatment plants due to its better performance in terms of 
less energy consumption, higher water recovery, and low operational costs compared to 
thermal desalination processes (Qasim et al., 2019). However, several methods were 
implemented to reduce the energy consumption of RO process including the use of a high 
permeable membrane, energy recovery device, chemical demineralization, optimisation 
techniques, and renewable energy sources (Li, 2011). 
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Owing to the high prices of fossil fuel energy coupled with air pollution and global 
warming, it is necessary to supplement a non-renewable energy (NRE) sources (fossil 
fuel) with a renewable energy (RE) sources such as wind turbines and photovoltaic cells. 
(Nassrullah et al., 2020). Charcosset (2009) demonstrated the viability of wind turbine 
systems as a valuable and sustainable energy resource to be integrated with the RO 
process especially for coastal areas which have a high availability of wind. Wind energy 
offers many environmental benefits compared to conventional energy sources and a 
significant decrease of use of fossil fuels was noticed due to the employment of renewable 
energy systems. Several studies can be found in the literature that have investigated the 
efficiency of wind turbine in a hybrid of wind turbine and RO system. For example, 
Miranda and Infield (2003) tested a 2.2 kW small wind turbine to drive a RO desalination 
unit. A computer model was developed in order to find optimum wind turbine power that 
yields maximum fresh water production rate. The model has been verified and supported 
with experimental data. The results showed that increasing wind speed up to 11 m/s 
resulted in a higher water production rate. Moreover, the results showed that the specific 
energy consumption of RO desalination system decreased sharply as wind speed 
increased up to 6 m/s. Moreover, Forstmeier et al. (2007) studied a wind powered system 
with RO desalination system with an electrical grid connection. The results confirmed the 
feasibility of the hybrid system if some grid connection is available to supply energy at 
low specific energy consumption. 
This study focuses on the development of a hybrid system of wind turbine and multistage 
multi-pass brackish water RO system of the APC located in Jordan. The viability of this 
hybrid system is tested for a selected set of inlet conditions of brackish water. To attain 
this goal, model simulations will be carried out to determine the total energy saving of 
the hybrid system. In this regard, the total number of wind turbines to appropriately 
provide the power of RO system will be studied for each month from July 2019 to July 
2020.  

2 Description of RO desalination plant powered by wind turbine system 
Fig. 1 shows the layout of brackish water RO powered by wind energy system for the 
APC plant (capacity 1200 m3/day). It consists of two passes with permeate and retentate 
reprocessing designs. The 1st pass has two stages of pressure vessels arranged as (4:2). 
The 2nd pass has three stages of pressure vessels arranged as (2:1:1). The permeate of 1st 
pass is fed to the 2nd pass for further processing. The high-concentration stream of the 1st 
pass is sent to drain. However, the low-concentration streams of the 2nd pass are collected 
to constitute the high-quality water (salinity 2 ppm). The high-concentration stream of 
the 2nd pass is reprocessed back to the raw feed water of the 1st pass. Several wind turbines 
are integrated with RO system to supply the required amount of power to drive the pumps 
as shown in Fig. 1. 
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Fig. 1. Layout of brackish water RO plant of APC powered by wind turbine system 

3 Modelling of RO system of APC 

Al-Obaidi et al. (2018) established a steady-state model for a medium-scale brackish 
water RO desalination system of APC. The detailed model was validated against actual 
data collected from the APC and then used to study the plant performance with variable 
operating conditions. The mathematical model parameters and equations of RO system 
of APC are shown in Table 1. Recently, this model was upgraded by including a specific 
sub model to measure the power generated from the wind turbine as depicted in the next 
section.  
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Table 1. Mathematical model of RO system of APC 
Specifications Model equations No

. 
Total water flux (m³/s) 𝑄 =  𝐴 ( ) 𝑁𝐷𝑃 𝐴1 
Water permeability constant at 25 °C 
(m/s atm) 

𝐴 ( ) =  𝐴 ( ) 𝑇𝐶𝐹 𝐹2 

Temperature correction factor of 
permeate  

𝑇𝐶𝐹 =𝑒𝑥𝑝 𝑒𝑥𝑝 0.0343 (𝑇 − 25)       < 25 °𝐶  𝑇𝐶𝐹 =𝑒𝑥𝑝 𝑒𝑥𝑝 0.0307 (𝑇 − 25)       > 25 °𝐶  3 

The driving pressure (atm) 𝑁𝐷𝑃 = 𝑃 − 𝑃 − 𝜋 + 𝜋4 
The feed brine pressure (atm) 𝑃 = 𝑃 − ∆ ,    5 

The pressure drop along the membrane 
element (atm) ∆𝑃 , = 9.8692𝑥10 𝐴∗𝜌 𝑈 𝐿2𝑑 𝑅𝑒6 

The bulk and permeate osmotic 
pressure (atm)  

𝜋 = 0.7994 𝐶  1 + 0.003 (𝑇 − 25)                               𝜋 = 0.7994 𝐶  1 + 0.003 (𝑇 − 25)7 

The bulk salinity (kg/m³) 𝐶 = 𝐶 + 𝐶28 

The solute flux through the membrane 
(kg/m² s) 

𝑄 =  𝐵 ( ) 𝐶 − 𝐶9 

The solute transport parameter at 
operating temperature (m/s) 

𝐵 ( ) =  𝐵 ( ) 𝑇𝐶𝐹10 

The concentration at the membrane 
surface (kg/m³) 𝐶 = 𝐶 + 𝐶 + 𝐶2 − 𝐶 𝑒𝑥𝑝 𝑒𝑥𝑝 𝑄 /𝐴𝑘  11 

Mass transfer coefficient 
(dimensionless) 𝑘 = 0.664 𝑘   𝑅𝑒 .  𝑆𝑐 . .

                         12 

Schmidt number (dimensionless) 𝑆𝑐 =                                                                               13 

Reynolds number (dimensionless) 𝑅𝑒 =                                                                            14 

Total recovery (dimensionless) 𝑅𝑒𝑐 = 𝑄𝑄 = (𝐶 − 𝐶 )( 𝐶 − 𝐶 )15 

Observed rejection (dimensionless) 𝑅𝑒𝑗 = 𝐶 − 𝐶𝐶16 

The water flux (m/s) 𝐽 = 𝐵 ( ) 𝑅𝑒𝑗(1 − 𝑅𝑒𝑗)17 

The average permeate salinity at the 
permeate channel (kg/m³) 𝐶 = 𝐶𝑅𝑒𝑐  1 − (1 − 𝑅𝑒𝑐) ( )18 

The average retentate salinity at the 
permeate channel (kg/m³) 

𝐶 = 𝐶  1 − 𝑅𝑒𝑐19 

The total plant energy consumption 
(kWh/m3) 

𝐸1 = ( )( )∗ ∗ ( )( )∗  +
(  )∗ ∗ (  )( )∗    

20 

4 Modelling of wind turbine system 
The power generated from the wind turbine, measured in kW and based on the value of 
wind speed, can be calculated by the following equations; 𝑃𝑜𝑤𝑒𝑟 (𝑢) = 0 𝑢 ≤ 𝑢 𝑎𝑛𝑑 𝑢 ≥ 𝑢              (21)  𝑃𝑜𝑤𝑒𝑟 (𝑢) = 𝑃 𝑢 − 𝑢𝑢 − 𝑢 𝑢 ≤ 𝑢 ≤ 𝑢                           (22)  𝑃𝑜𝑤𝑒𝑟 (𝑢) = 𝑃 𝑢 ≤ 𝑢 ≤ 𝑢                           (23)  
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Where 𝑃  is the rated wind turbine power (kW), 𝑢 the wind speed (m/s), 𝑢  the wind 
turbine cut-in (m/s),  𝑢   the wind turbine rated (m/s), and  𝑢  the wind turbine cut-off 
speed (m/s). 

5 Evaluation of a hybrid system of RO and wind turbine  
This section focuses on evaluating the feasibility of wind energy system to be integrated 
with the RO desalination system. In this regard, the necessary power to drive the pumps 
that satisfies the production of freshwater at a specified set of feed conditions will be 
outlined. More importantly, this research will determine the precise number of turbines 
required to supply the necessary power of the RO system. The feed characteristics of RO 
plant are 1098.62 ppm, 74 m³/h, 25 °C and 9.22 atm of feed water.  
The simulation-based model developed by Al-Obaidi et al. (2018) based on the selected 
feed conditions showed that the total energy consumption of their RO system was 0.8371 
kWh/m3 for water productivity rate of 48.6 m3/h. Therefore, the power required to operate 
the RO plant is 40.7 kW. Here, the Hummer H25 wind turbine is selected to be integrated 
with the RO system. Table 2 shows the features of wind turbine. 
The speed values for one year (July/2019 to July/2020) of the specified location of RO 
system of APC were evaluated and presented in Table 3 with the associated power 
generated from a single wind turbine. This in turn aids to determine the number of 
turbines needed to run the RO plant of APC. The total numbers of turbines wind are 
determined through numerical simulation technique by using the gPROMS software. 

Table 2. The wind turbine data (Matysik, 2020) 
Type of wind 

turbine 
Rated Power 

(kW) 
𝑢   

(m/s) 
𝑢

(m/s) 
𝑢   

(m/s) K 

Hummer H25 100  2.5  10  20 2.5649 
 

Table 3. Simulation results of RO system powered by wind energy system 
Month Mean wind 

speed (m/s) 
Power generated from a single wind 

turbine (kW) 
Number of wind 

turbines  
July/2019 2.744 0.793 51 

August/2019 3.187 2.541 16 

September/2019 3.125 2.271 17 

October/2019 3.126 2.275 18 

November/2019 3.426 3.657 11 

December/2019 8.822 71.699 1 

January/2020 7.88 52.931 1 

February/2020 6.852 36.097 1 

March/2020 5.61 20.432 2 

April/2020 4.4535 9.988 4 

May/2020 4.197 8.163 5 

June/2020 4.282 8.749 5 

July/2020 3.083 2.093 19 

The simulation results of Table 3 show that the highest number of turbines required to 
power the RO desalination plant of APC is 51 in July /2019 at the lowest wind speed of 
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2.744 m/s. It should be noted that this number of turbines is determined based on the 
power generated from a single wind turbine.  Therefore, it is important to construct a farm 
of 51 wind turbines of to satisfy the requirements of energy. However, only one wind 
turbine is required for the windy winter season. Thus, the excess electrical power of windy 
season can be used to feed the internal grid and provides a sustainable source of energy.       

5 Conclusions 
Nowadays, the use of wind turbine as an alternative source of energy in the RO 
desalination appears as a reasonable and technically mature option towards the reduction 
of the total required power. The feasibility of integrating the wind turbine with the RO 
desalination system of APC has been examined in this study. The study has confirmed 
the viability of this hybrid system as only one wind turbine is sufficient to provide the 
required power of RO desalination system of APC. However, a farm of 51 wind turbines 
is necessary to drive the RO system in low wind speed seasons.   
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Abstract 
In the traditional process design approach, aspects such as safety and reliability are 
typically left for analysis once the design phase is completed. Recently, methods have 
been developed to include inherent safety in the early design stages. This approach allows 
the generation of inherently safer designs as part of the process synthesis task. The design 
of reliable chemical processing plants can be enhanced by adding back-up units to prevent 
shutting down the plant due to failure of units. In this work, we present a multi-objective 
optimization model for the design of chemical process systems accounting for safety, 
reliability, and economics. The model is formulated within a generalized disjunctive 
programming framework, which is then reformulated as a mixed-integer nonlinear 
programming model using the ε-constrained method to generate pareto curves. The model 
includes the selection of standby units to increase the system availability and provides the 
optimal structure of the process flowsheet and operating parameters. The model is applied 
to the design of a distillation system accounting for risks due to explosion, while rating 
the system reliability and the process economics. The results show that the proposed 
optimization model yields design alternatives with optimal trade-offs among safety, 
reliability, and economics. 

 
Keywords: safety assessment, reliability, multi-objective optimization. 

1. Introduction 
In the conventional process design safety assessment is typically left for analysis once the 
design phase is completed. Recently, as part of the process synthesis task, safety has been 
considered with a focus on generating inherently safer designs. For example, Medina-
Herrera et al. (2014) presented an approach for the design of inherently safer distillation 
systems. In that work, quantitative risk assessment (QRA) techniques were used to 
incorporate safety considerations in the design of different distillation schemes. Ortiz-
Espinoza et al. (2017) proposed a multi-objective assessment approach to evaluate 
chemical processes accounting for safety, sustainability, and economics. Within this 
approach, modifications to the processes were considered to increase safety performance 
while evaluating their impact on the remaining objectives. Nemet et al. (2018) presented 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50017-6



 A. P. Ortiz-Espinoza et al. 

a mixed-integer nonlinear programming (MINLP) model for the synthesis of a methanol 
production process considering risk assessment during the synthesis stage. These works 
showed the conflict that generally exists between safety and economics. In this regard, 
Guillen-Cuevas et al. (2018) introduced a metric to reconcile safety and sustainability 
with economic aspects using a weighted return on investment type of metric.   

Another aspect that is important to consider during process design is that of reliability. 
The reliability of a chemical processing plant can be enhanced by adding back-up units 
to prevent shutting down of the plant due to the failure of units. Recent works have 
addressed this topic from different perspectives. For instance, Ye et al. (2018) proposed 
MINLP models to determine the selection of parallel units considering the trade-off 
between availability and cost. Ade et al. (2018) studied the effect of inherent safety 
principles on the reliability of process plants with a focus on risk migration. Moreno-
Sader et al. (2019) proposed an approach to incorporate safety, sustainability, reliability, 
and resilience during conceptual design stages. 

Although safety and reliability of chemical plants are closely related, models that 
explicitly capture the interactions of both aspects in process synthesis and optimization 
have not been formally addressed before. This work presents a multi-objective 
optimization model for the design of chemical processes accounting for safety, reliability, 
and economics. The proposed optimization model includes the selection of parallel 
standby units for critical process stages to increase the system availability, together with 
the computation of frequency and consequences of possible catastrophic events to 
estimate risk levels. The model also considers decisions regarding selecting the structure 
of the process flowsheet and operating parameters.  

The trade-offs among the objectives arise as the selection of more standby units benefits 
the availability of the systems but increases investment costs. Regarding safety, the 
presence of more units may increase the exposure to the risk produced by the additional 
units; on the other hand, increasing availability reduces the risk due to transition states 
such as start-ups and shut-downs. Furthermore, the selection of the flowsheet structure 
and operating parameters is a factor in which risk and economics may be in conflict. 
While extreme operating conditions may favour the economics of the process, operating 
under such conditions increases the consequences of the outcomes of hazardous events. 
The purpose of the proposed multi-objective optimization model is to synthesize process 
alternatives with optimal trade-offs among safety, reliability, and economics.  

2. Problem Statement 
Given a superstructure for a production process/system, a multi-objective modelling 
framework is presented to account for safety, reliability, and economics. The purpose of 
the model is to evaluate design alternatives that minimize risk, maximize availability, and 
minimize cost. For modelling purposes, the process under study is divided into K stages 
(e.g., compression, heating, cooling, etc.) for which design parameters and operating 
conditions are to be determined. Also, for certain critical stages (Kred), the option to install 
standby units is considered. When the process under study considers the selection of 
different flowsheet alternatives, the model can be formulated as a Generalized Disjunctive 
Programming (GDP) model (Grossmann and Trespalacios, 2009) of the form shown in 
Eq. (MO-RAC) involving Boolean variables Yk, 0-1 variables for selecting the units in 
the superstructure, 0-1 variables y for selecting back-up units, and continuous variables 
x, c for the state, design and cost variables of the corresponding flowsheet. 
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Multi-objective optimization for the incorporation of safety and reliability 
considerations in process design  𝑚𝑖𝑛, 𝑅𝑖𝑠𝑘  𝑚𝑎𝑥 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑚𝑖𝑛, 𝐶𝑜𝑠𝑡  

                                     s.t.                     𝑔(𝑥) ≤ 0  𝑌ℎ (𝑥) ≤ 0𝑐 = 𝛼𝑅 = 𝑓 (𝑥)  ˅ ¬𝑌𝐵 𝑥 = 0𝑐 = 0𝑅 = 0 ∀ 𝑘 ∈ 𝐾\𝐾   

⎣⎢⎢
⎢⎡ 𝑌ℎ (𝑥) ≤ 0𝑐 = 𝛼 𝑦𝐴𝑉 = 𝑓 (𝑦)𝑅 = 𝑓 (𝑥, 𝑦)⎦⎥⎥

⎥⎤  ˅ ⎣⎢⎢
⎢⎡ ¬𝑌𝐵 𝑥 = 0𝑐 = 0 𝐴𝑉 = 1𝑅 = 0 ⎦⎥⎥

⎥⎤ ∀ 𝑘 ∈ 𝐾   

𝛺(𝑌) = 𝑇𝑟𝑢𝑒  𝑅𝑖𝑠𝑘 = ∑ 𝑅∈   𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐴 = ∏ 𝐴𝑉∈   𝐶𝑜𝑠𝑡 = ∑ 𝑐∈   𝑥 ∈ 𝑅 , 𝑐 ≥ 0, 𝑌 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} , 𝑦 ∈ {0,1}  

(MO-RAC) 

 
In the next section we present the equations for evaluating the availability AVk and risk 
Rk that pertain to the reliability and safety of the selected flowsheet at each stage k. 

3. Model formulation for reliability and safety 
To increase the reliability of the process, the GDP model considers the installation of a 
number of potential standby units (J) in certain stages (Kred). The evaluation of the 
availability of each stage is computed through the probabilities of each unit to be available 
(p) (Ye et al., 2018). Eq. (1) describes the selection of at least one unit per stage, Eq. (2) 
is a symmetry breaking constraint for stages with identical parallel units (Kide), Eq. (3) 
evaluates the availability of stages with only identical standby units, while the evaluation 
of the availability of stages with nonidentical units (Knon) is shown in Eq. (4). The system 
availability is calculated using Eq. (5). ∑ 𝑦 , ≥ 1,     ∀ 𝑘 ∈ 𝐾   (1) 𝑦 , ≤ 𝑦 ,  ,       ∀ 𝑗 ∈ 𝐽  , ∀ 𝑘 ∈ 𝐾   (2) 𝑃 = 𝑝 ∑ 𝑦 , (1 − 𝑝 ) , ∀ 𝑘 ∈ 𝐾   (3) 𝑃 = 1 − ∏ 1 − 𝑝 , 𝑦 ,∈ , ∀ 𝑘 ∈ 𝐾   (4) 𝐴 = ∏ 𝑃∈   (5) 
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The cost of the system is determined considering installation and repair costs. Eq. (6) and 
(7) represent the cost per stage and the total cost of the system. 𝐶 = ∑ 𝑦 , 𝑐 , + 𝑐 , ,  ∀  𝑘 ∈ 𝐾   (6) 𝐶𝑜𝑠𝑡 = ∑ 𝐶∈   (7) 

 
The safety performance of the processes is evaluated using QRA techniques. Within this 
context, risk is defined as a function of the frequency (freq) and consequences (DR) of a 
hazardous event. Eq. (8) shows the calculation of risk for each unit j in a stage k. The 
frequency element considers the failure frequency for each unit (λ) as well as the 
probability of a certain hazardous event to take place (phaz, pexp) as shown in Eq. (9) and 
(10).  Risk is computed per stage as shown in Eq. (11), and the risk due to transient states 
is calculated in Eq. (12). Finally, Eq. (13) shows how to estimate the total risk in the plant. 𝑅𝑖𝑠𝑘 , = 𝑓𝑟𝑒𝑞 , 𝐷𝑅 , ∀  𝑘 ∈ 𝐾, ∀ 𝑗 ∈ 𝐽   (8) 

𝑓𝑟𝑒𝑞 , = 𝜆 𝑝 𝑝 𝑦 , 1 − 𝑝 , ∀  𝑘 ∈ 𝐾 , ∀𝑗 ∈ 𝐽   (9) 

𝑓𝑟𝑒𝑞 , = 𝜆 , 𝑝 𝑝 𝑦 , ∏ 1 − 𝑝 , 𝑦 , , ∀𝑘 ∈ 𝐾 , ∀𝑗 ∈ 𝐽   (10) 𝑅𝑖𝑠𝑘 = ∑ 𝑅𝑖𝑠𝑘 ,∈ , ∀  𝑘 ∈ 𝐾  (11) 𝑅𝑖𝑠𝑘 = (− 𝑙𝑛 𝐴)𝑝 𝑝 𝐷𝑅   (12) 𝑅𝑖𝑠𝑘 = ∑ 𝑅𝑖𝑠𝑘 + 𝑅𝑖𝑠𝑘∈   (13) 

The estimation of consequences is measured in this work as the damage radius resulting 
from an explosion event (DR). Eq. (14) shows how such a radius depends on the 
hazardous potential of the explosion. This hazardous potential is estimated according to 
energy factors and penalties. For more details on the procedure to estimate the hazardous 
potential the reader is referred to Rathnayaka et al. (2014). 

𝐷𝑅 = 0.9 𝐻𝑎𝑧𝑃𝑜𝑡   (14) 

4. Case study 
To illustrate the application of the proposed multiobjective GDP model (MO-RAC), a 
simplified case study is considered with fixed configuration of a distillation column to 
separate hexane and heptane. Figure 1 shows the distillation scheme, which is based on 
the case proposed in (CCPS, 2000). In this case study, the installation of standby units in 
the condenser and reflux pump stages is considered to increase the system availability. 
The safety assessment considers scenarios of continuous releases of flammable material, 
thus leading to potential explosion incidents. Table 1 shows the parameters used in the 
model for the stages with potential parallel standby units. 
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Figure 1. Distillation scheme 

Table 1. Parameters for the case study 

Availability Failure rate  
(fails/yr) 

 k=1 k=2 k=1 k=2 
j=1 0.94 0.88 0.064 0.127 
j=2 0.94 0.89 0.064 0.116 
j=3 0.94 0.90 0.064 0.105 

 Installation cost  
(k$/yr) 

Repair cost  
(k$/yr) 

 k=1 k=2 k=1 k=2 
j=1 0.65(A)0.6 26.0(flow)0.54 2 3 
j=2 0.65(A)0.6 26.8(flow)0.54 2 4 
j=3 0.65(A)0.6 27.3(flow)0.54 2 5 

 

 
As part of the design the model determines the reflux ratio, the pressure and temperature 
at the condenser, and the number of stages. The evaluation ranges of such variables are: 
2 to 30 for the reflux ratio, 3 to 10 bar for pressure, 100 to 300 °C for temperatures, and 
5 to 25 for number of stages.  

5. Results 
Figure 2 shows the Pareto curve 
for the multi-objective GDP 
optimization problem. Each 
point corresponds to one 
subproblem solved to minimize 
risk subject to a certain upper 
bound of total cost. The 
availability objective is 
implicitly considered in the 
optimization of risk as higher 
availability levels generally lead 
to lower risk levels (see Eq. 
(12)). The estimated availability 
for each point is shown in Figure 
2.  Figure 3 shows details for the 
following solutions: a) 
minimum risk (maximum cost 
and availability), b) maximum risk (minimum cost and availability), c) and d) 
intermediate scenarios. It is observed that the minimum risk solution operates at the 
lowest possible pressure with the installation of every possible standby unit. On the other 
hand, the minimum cost solution operates at the highest operating pressure considered for 
the column, with the installation of just one unit in each stage. The multiobjective GDP 
model was reformulated as an MINLP using the ε-constrained formulation to find the 
Pareto curve. The model was implemented in GAMS and solved using the commercial 
solver BARON requiring a total of 112.7 CPUs. 

Figure 2. Pareto curve of cost vs risk for different levels of 
availability 
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6. Conclusions  
A multi-objective GDP 
optimization model for the 
incorporation of safety and 
reliability in the design of 
chemical processes has 
been presented. The model 
considers the selection of 
standby units to increase the 
system availability and 
design decisions that 
impact safety performance. 
The application to the 
design of a binary 
distillation system showed 
how designs are obtained 
with optimal trade-offs 
among safety, reliability, 
and economics. Future 
work will report the 
application of the proposed 
model in the synthesis of a 
methanol process. 
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Abstract 
Plant availability and operating uncertainties have been critical considerations for the 
design and operation of chemical processes as they directly impact service level and 
economic performance. This paper proposes a two-stage stochastic Generalized 
Disjunctive Programming (GDP) model with reliability constraints to deal with both the 
exogenous and endogenous uncertainties in process synthesis, where the reliability model 
is incorporated into the flowsheet superstructure optimization. The proposed stochastic 
programming model anticipates the market uncertainties through scenarios for selecting 
the optimal flowsheet topology, equipment sizes and operating conditions, while 
considering the impact of potential parallel units for improving plant availability. An 
improved logic-based outer-approximation algorithm is applied to solve the resulting 
large-scale GDP model, which effectively avoids numerical difficulties with zero flows 
and provides high quality design solutions. The applicability of the proposed modeling 
framework and the efficiency of solution strategy is illustrated with an industrial methanol 
synthesis process.  

Keywords: reliability-based superstructure optimization, stochastic programming, 
endogenous and exogenous uncertainties, logic-based outer approximation algorithm 

1. Introduction 
Process synthesis is the assembly and interconnection of units into a process network, 
involving different physical and chemical phenomena to transform raw material and 
energy inputs into desired products with the goal of optimizing a given objective function 
(Chen and Grossmann, 2017). Generalized Disjunctive Programming (GDP) is a 
modeling framework to explicitly represent the relationship between algebraic 
descriptions and the logical structure of a design problem. It is therefore well-suited to 
problems involving selection among discrete process alternatives with nonlinear process 
models (Grossmann and Trespalacios, 2013). Synthesis of process flowsheets are 
subjected to uncertainties, which directly impact its service level and economic 
performance. There are two types of uncertainties in process synthesis: exogenous, where 
the true parameter values are revealed independently of decisions, and endogenous, where 
the parameter realizations are influenced by the decisions taken (Apap and Grossmann, 
2016). Exogenous uncertainties correspond typically to market uncertainties, such as 
product demands, product prices and utility prices. For endogenous uncertainties, 
decisions can influence the parameter realizations by causing alteration of the probability 
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distribution, or affecting the time at which we observe these realizations. Reliability-
based design optimization (RBDO) captures the endogenous uncertainties from 
equipment failures, where the selection of redundant equipment, maintenance policy and 
storage sizing affect the plant availability by altering the probability distributions (Ye et 
al., 2018). In previous work Straub et al.  (1990) and Thomaidis et al. (1994) integrated 
flexibility (exogenous uncertainties) and reliability in a uniform framework. However, 
their work only considered a quantitative measure to evaluate the proposed design 
alternatives, and did not consider the selection of standby units in order to improve the 
system availability. The major goal of this paper is to propose a novel model that 
integrates both exogeneous uncertainty through stochastic programming, and endogenous 
uncertainty through RBDO, for the synthesis of process flowsheets, where the reliability 
model is incorporated into the superstructure optimization. Application of the proposed 
model is illustrated with an industrial methanol synthesis process. 

2. General model formulation 
We propose the following two-stage stochastic GDP model with reliability constraints to 
deal with the exogenous and endogenous uncertainties in process synthesis:  

𝑍 = 𝑐 + 𝐴 𝑝 𝑓 𝑥   
s.t.        (1) 𝑔 𝑥 ≤ 0,  ∀𝑠 ∈ 𝑆  𝑌𝑖 ℎ𝑖 𝑦𝑖, 𝑥𝑠 ≤ 0 𝑐𝑖 = 𝑐𝑖𝑓𝑖𝑥 + 𝑐𝑖𝑣𝑎𝑟 × 𝑦𝑖 + 𝑐𝑖𝑟𝑒𝑝𝑎 ∨ ¬𝑌𝑖 𝐵𝑖𝑥𝑠 = 0 𝑐𝑖 = 0 ,   ∀𝑠 ∈ 𝑆,  𝑖 ∈ 𝐼𝑅  𝑌𝑖 ℎ𝑖 𝑦𝑖, 𝑥𝑠 ≤ 0 𝑧𝑖,𝑟+1 ≤ 𝑧𝑖,𝑟 𝑐𝑖 = 𝑐𝑖𝑓𝑖𝑥 + 𝑐𝑖𝑣𝑎𝑟 × 𝑦𝑖 + 𝑐𝑖𝑟𝑒𝑝𝑎 𝑛𝑟

𝑟=1 𝑧𝑖,𝑟 𝐴𝑖
= 𝑝𝑖

𝑛𝑟
𝑟=1 𝑧𝑖,𝑟 1 − 𝑝𝑖 𝑟−1 ∨ ¬𝑌𝑖 𝐵𝑖𝑥𝑠 = 0 𝑐𝑖 = 0 𝐴𝑖 = 1 ,   ∀𝑠 ∈ 𝑆,  𝑖∈ 𝐼𝑖𝑑𝑒𝑛  𝑌𝑖 ℎ𝑖 𝑦𝑖, 𝑥𝑠 ≤ 0 𝑐𝑖 = 𝑛𝑟
𝑟=1 𝑧𝑖,𝑟 𝑐𝑖,𝑟𝑓𝑖𝑥 + 𝑐𝑖,𝑟𝑣𝑎𝑟 × 𝑦𝑖 + 𝑐𝑖,𝑟𝑟𝑒𝑝𝑎  𝐴𝑖 = 1 − 𝑟 1 − 𝑝𝑖,𝑟𝑧𝑖,𝑟  ∨ ¬𝑌𝑖 𝐵𝑖𝑥𝑠 = 0 𝑐𝑖 = 0 𝐴𝑖 = 1 ,   ∀𝑠 ∈ 𝑆,  𝑖 ∈ 𝐼𝑛𝑜𝑛 𝑌 = 𝑇𝑟𝑢𝑒, ∀𝑖 ∉ 𝐼  𝛺 𝑌 = 𝑇𝑟𝑢𝑒 𝐴 = ∈ ∪ 𝐴  𝑦 ∈ 𝑅 ,  𝑐 ≥ 0,  𝑌 ∈ 𝑇𝑟𝑢𝑒,  𝐹𝑎𝑙𝑠𝑒 ,  𝑧 ∈ 0,  1  𝑥 ∈ 𝑅 ,  ∀𝑠 ∈ 𝑆 

In the two-stage stochastic programming model, the first-stage variables consist of three 
types of design variables, the Boolean variables 𝑌  which determine the selection among 
the different process alternatives, the binary variables 𝑧 ,  to represent whether to choose 
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the redundant unit 𝑟 for the certain equipment 𝑖, and the continuous variables 𝑦  related 
to the equipment sizes, such as reactor volume, number of trays in column, and design 
capacity of heat exchanger or compressor. The second-stage decisions 𝑥  are related to 
the operational variables which can be adjusted to different scenarios, such as flowrates, 
temperatures and pressures. The objective function is to minimize the total cost of the 
system, including the capital cost 𝑐  and the expected operational expenditure 𝐴 ∑ 𝑝 𝑓 𝑥 . Generalized Disjunctive Programming is applied to explicitly express 
the logic encapsulated in the superstructure. The reliability model is integrated within 
disjunctions that define the selection of the units, which in turn define the structure of the 
selected flowsheet. Single units are given fixed probabilities of being available, and 
Simple Bayes Rules are used to predict the system availability 𝐴 . If a unit exists, the 
constraints ℎ 𝑦 , 𝑥 ≤ 0 enforce the relevant mass and energy balances, and the 
constraints 𝑐 = 𝑐 + 𝑐 × 𝑦 + 𝑐  calculates the total cost of the unit. Otherwise, 
constraints 𝐵 𝑥 = 0 describe port variable relationships when the unit is absent, and the 
capital cost of the unit is set to 0.The proposed two-stage stochastic programming model 
anticipates the market uncertainties through scenarios for selecting the optimal flowsheet 
topology, equipment sizes and operating conditions, while considering the impact of 
additional redundant units for improving plant reliability. 

3. Solution Method 
In this work, we propose an improved logic-based outer-approximation (LOA) algorithm 
to solve the resulting large-scale GDP model. LOA allows the solution of reduced space 
subproblems, including only constraints in selected disjuncts rather than the full-space 
representation. Therefore, it can effectively avoid numerical difficulties with zero flows 
and provides high quality design solutions. It should be noted that, when we consider the 
reliability, binary variables are introduced to represent the selection of parallel units. Our 
model becomes a hybrid GDP formulation with implicit “nested disjunctions”, which not 
only contain the Boolean variables to select the flowsheet structure, but also includes 
binary variables to select the redundant units for improving reliability. Therefore, when 
considering the choices of the units in the superstructure (Boolean variables) in the master 
problem, the reduced space subproblems in the LOA become MINLP subproblems rather 
than only NLP subproblems. The advanced computational tool GDPopt, provides various 
implementations for solving GDP problems. As an open-source platform, it incorporates 
recent innovations in reformulation strategies and logic-based solution algorithms (Chen 
and Grossmann, 2019). 

 
Figure 1. Improved logic-based outer approximation flow diagram for process synthesis 

considering reliability. 
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4. Industrial Case Study 
In this section an industrial case study which converts syngas to methanol is presented to 
illustrate the application of the model (1). The methanol synthesis process was formulated 
by Türkay and Grossmann (1996) without reliability and uncertainty considerations. This 
includes the discrete decisions between two syngas feeds with different purity and cost, 
single and two-stage compression for both the feed and recycle streams, as well as the 
choice between a higher-conversion, higher-cost reactor and a cheaper variant. Our goal 
is to determine both design- and operational-level decisions in order to minimize the total 
cost of the system with both the exogenous uncertainties and plant availability taken into 
consideration. When considering reliability, parallel units are installed in the critical 
stages. The problem has four explicit disjunctions for the structural choices, involving 
implicit “nested disjunctions” for the selection of redundant units. The superstructure of 
methanol synthesis problem is shown in Figure 2. 

 
Figure 2. Superstructure of methanol synthesis problem. 

The synthesis of the methanol process can be formulated as the two-stage stochastic 
programming problem. In the first stage the topology of network is selected, and in the 
second stage the process operation is selected out according to the realization of uncertain 
parameters. In terms of cost, the first-stage decisions represent the design decisions, 
including the feed selection, reactor selection, single-stage compression or two-stage 
compression selection, redundancy selection and design capacity of each unit, which are 
related to the capital expenditure; the second-stage decisions are the operational decisions, 
involving flowrates, temperature, pressure, and utility requirement that account for the 
operational expenditure. The methanol product demand and the electricity price are 
regarded as exogenous uncertainties. Each of them is modeled with 3 scenarios (low, 
medium, high) with certain discrete probability distribution, based on the historical data 
from the changing markets. Therefore, the two-stage stochastic programming has a total 
of 9 scenarios. Moreover, some critical units are given with fixed failure rates that can be 
regarded as endogenous uncertainties. The failure of any one of these processing stages 
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can result in the failure of the entire system, which will compromise its ability to meet 
customer demands. At each stage three potential back up units are considered. 

5. Solution Results 

 
Table 1. Solution results for different models. 

 
Model # of 

Cons 
# of Cont. 

Vars 
# of Bin. 

Vars 
Strategy  

and Solver 
Solution 
Time (s) 

System  
Availability 

Objective  
Profit 

Deterministic 
Model 474 307 8 

GLOA 
MILP-Gurobi 
NLP-Conopt4 

35.2 0.9318 2009.16 

Stochastic 
Programming 3986 2491 8 

GLOA 
MILP-Gurobi 
NLP-Conopt4 

322.8 0.9318 2156.04 

Integrate 
Reliability 

and 
Uncertainty 

4306 2537 58 

GLOA 
MILP-Gurobi 
NLP-Conopt4 

MINLP-Dicopt 

446.1 0.9646 2174.96 

VSS  ($) 146.88 𝑉𝑆𝑆 (%) 7.31 % 
VSS+VRS ($) 165.80 𝑉𝑆𝑆 + 𝑉𝑅𝑆 (%) 8.25 % 

 

To illustrate the advantages of the proposed modelling method, we compare the solution 
results from three different models, the deterministic model with exogenous uncertainties 
evaluated at their mean values, the stochastic programming model with 9 scenarios to 
account for exogenous uncertainties, and model (1) which integrates reliability and 
uncertainty to handle both exogenous and endogenous uncertainties. The first two models 
are standard GDP models while the last model is a hybrid GDP formulation with the 
introduction of binary variables to indicate the selection of the redundant units. These 
three models are coded in Pyomo. The logic-based outer approximation algorithm is 
applied to solve these three models, where GUROBI is used to solve the MILP master 
problems, CONOPT4 is used to solve the NLP subproblems and DICOPT is used to solve 
the MINLP subproblems when considering reliability. The value of stochastic solution is 
calculated to evaluate the profit that can be expected from implementing the stochastic 
solution instead of simply using the deterministic solution.  

As seen in Table 1 the model that integrates reliability and uncertainty yields the best 
economic performance compared to the cases when either reliability is not considered, or 
when exogenous uncertainties are evaluated with mean values. The system availability is 
increased from 0.9381 to 0.9646 by adding back-up units, while the profit is increased by 
8.25 % with improved operational flexibility and reliability. Figures 3-5 present the 
optimal designs of the corresponding process flowsheets obtained from these three 
models. 
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         Figure 3. Deterministic Model.                                   Figure 4. Stochastic Programming Model. 

 
Figure 5. Integrating Reliability and Uncertainty Model. 

6. Conclusions 

In this paper, we have proposed a two-stage stochastic programming GDP model with 
reliability constraints to deal with both the exogenous and endogenous uncertainties in 
process synthesis. Simultaneous optimization of reliability and uncertainty in process 
design provides potential improvement for the operational flexibility and economic 
performance. An improved Logic-based Outer Approximation (LOA) algorithm was 
applied to the hybrid GDP model with implicit nested disjunctions, obtaining optimal 
solution by avoiding zero-flow singularities. The proposed methodology was illustrated 
with the synthesis of a methanol process to simultaneously optimize the process flowsheet 
and the number of stand-by units by considering exogenous uncertainties in product 
demand and electricity price, and endogenous uncertainties in equipment failures.  It was 
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shown that the proposed design led to simultaneous improvement both in the profit and 
in the system availability. 
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Abstract 
 

Reactor designs with mixed catalysts play an important role to transform a multiple 

reactor system to single-shot reactors. In addition to savings in capital and ease of 

implementation, single-shot reactors are useful to break equilibrium limitations, therefore 

increasing the yield and selectivity of desired product. However, the nonlinear, highly 

exothermic and poorly conditioned nature of mixed-catalyst systems makes it difficult for 

commercial process simulation and optimization tools to optimize these systems. This 

study describes the zone and partial moving finite element approaches and their 

applications to o-xylene oxidation and syngas to olefin (STO) processes. 35% and 5% 

increases are achieved in the product yield for o-xylene oxidation and STO problems, 

respectively. Shown with these two examples, this tool is very promising in process 

intensification for other reactive systems.  

 

Keywords: process intensification, reaction, optimization 

1. Motivation and Background Information 
Lower olefins (C2 – C4) are traditionally produced from cracking of naphtha. However, 

high oil prices and environmental concerns have initiated research to find other 

alternatives for olefin production. The two-stage syngas to olefins process is a well-

studied process, in which the synthesis gas, mixture of hydrogen and carbon monoxide, 

reacts to methanol as the first step. Then, methanol reacts to produce olefins. However, 

this process has equilibrium limitations. On the other hand, olefins can be directly made 

in one-shot reactors by mixing the catalysts from the two-stage process [1]. Single shot 

reactors can break the equilibrium limitations with reduced number of unit operations. 

The mixed catalyst design of a single shot reactor can be found in other graded bed 

problems. The ultimate objective of the study is to optimize the catalyst mixing ratio 

along the reactor, which makes the problem a singular control problem, where control 

variables appear only linearly in differential algebraic equations. In this case, the optimal 

control cannot be derived from the stationary condition of Hamiltonian [2]. Numerical 

optimization methods fail to handle the singular arcs and lead to highly oscillatory 

profiles, especially when a finer mesh is introduced. There have been other methods to 

tackle the ill-conditioned nature of the problem, but these methods mostly need a known 

solution structure and an expression for the singular control profile, which are difficult to 

determine beforehand. Therefore, a partial moving grid method with direct optimization 

approach is selected to solve the singular control problems [3].  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-88506-5.50019-X
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In this manuscript, the detailed STO reaction mechanism and models used for o-xylene 

oxidation and STO problems are defined. Two separate optimization approaches are 

explained and their implementation and results are presented. Conclusions are drawn and 

future work is proposed for modeling and optimization of STO reactors and other mixed-

catalyst reactive systems. 

2. Reactor Modeling 
Two dimensional models provide accurate representations of heat and mass transfer 

phenomena for packed bed reactors. In a reactor with exothermic reactions, it is crucial 

to capture the radial temperature profile accurately. However, two dimensional models 

are computationally costly to solve, especially as optimization problems. Therefore, we 

consider the one dimensional alpha model, which can approximate the temperature 

profiles of a two dimensional model. The two dimensional steady state model of a packed 

bed reactor in pseudo-homogeneous form, for species j and reactions i, is given below: 

 

𝑄 
𝜕𝑐𝑗

𝜕𝑉
=  
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Starting with the governing equations above, the radial concentration differences are 

neglected by assuming the timescale of reactant consumption is much slower than that of 

radial dispersion. On the other hand, the radial temperature profile is non-uniform due to 

constant heat removal through the reactor walls. Therefore, the radial temperature profile 

needs to be approximated.  

 

The total heat release H is introduced as:  

𝐻(𝑐, 𝑉) =  ∑

𝑖

(−∆𝐻𝑖)𝑟𝑖(𝑐, 𝑇) 

and a Taylor series expansion is performed around the heat-averaged temperature,  𝑇 

𝐻(𝑐, 𝑉) =  ∑

𝑖

(−∆𝐻𝑖)𝑟𝑖(𝑐, 𝑇)𝑒𝐴(𝑇−𝑇)+𝐵(𝑇−𝑇)
2

 

where A and B are evaluated at 𝑇 =  𝑇 as: 

𝐴 =  
𝜕 𝑙𝑛 𝑙𝑛 𝐻 

𝜕𝑇
, 𝐵 =  

1
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Hagan et al. [4] show that the heat equation can be simplified to the equation below, 

where α is the dimensionless heat loss parameter.  

∑
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Here, α can be calculated using the implicit equation:  
4𝛼

𝐵𝑖
= 𝐴(𝑇 − 𝑇𝑐) +𝑙𝑛 𝑙𝑛 (1 − 𝛼)  −

𝐵

3𝐴2
(1 − 𝛼)  

The mass balance equations are constructed in terms of change in the molar flow rates 

of components, 𝑓𝑗.  
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3. Optimization Formulation and Solution Strategy 

3.1. Zone Algorithm 

In the zone approach, the differential and algebraic equations (DAEs) are discretized and 

converted to nonlinear equations via orthogonal collocation on finite elements. The 

number of zones along the reactor bed is selected before solving the problem. Each zone 

is equally divided into a fixed number of finite elements and each element has a fixed 

number of collocation points. Three collocation points per finite element are selected for 

every case in this study. The control variable, the catalyst mixing ratio, is constant in each 

zone and only changes from one zone to another. This is consistent with the 

implementation in practice, because mixed catalysts can be deployed in layers within 

tubular reactors. 

 

Although the number of zones is fixed for the problem, the locations of these zones are 

variable. This formulation increases the size and the nonlinearity of the problem but 

provides a quick implementation and an approximate solution to the optimal control 

profile. 

 

3.2. Partial Moving Finite Element Algorithm 

Partial moving grid algorithm is a novel method developed by Chen et al. [3] to find the 

exact solutions to singular optimal control problems. The strength of this method comes 

from a systematic implementation of heuristics and addresses the critical issue of size and 

nonlinearity for singular control problems, while enforcing the variational optimality 

conditions for optimal control. 

Because the solution structure of the control profile is unknown, it is not possible to guess 

the number and location of the singular arcs in the control profile. Therefore, the break 

points for the singular arcs have to be freely determined by the nonlinear solver, IPOPT 

in this case. For that purpose, all the finite elements have to be moving elements, so that 

they can move “freely” along the reactor and capture the break points, and the optimal 

profiles. The number of finite elements must be sufficiently large, so that the profiles do 

not lack accuracy. 

However, a higher number of moving finite elements would lead to a large problem size 

and an increase in the nonlinearity, and more importantly to ill-conditioning in the 

problem, which could easily make the problem unsolvable. Thus, a judicious selection of 

moving elements is crucial, and this is why this algorithm is very effective. 

The partial moving grids (PMG) approach can be summarized in three main stages: 

constructing a fixed grid; calculating the switching function; and inserting moving 

elements and detecting and deleting any spikes in the control profiles. Starting from an 

equally spaced coarse grid and calculating the errors on non-collocation points, fixed 

elements are introduced at points where error constraints are violated, and moving 

elements used to determine optimal breakpoint locations. Along the way, any spikes in 

the control profile are detected and eliminated, in order to ensure that the variational 

optimality conditions are satisfied. 
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4. Results 

4.1. O-xylene Oxidation to Phthalic Anhydride 

The o-xylene oxidation mechanism consists of three reactions. The desired reaction is the 

partial oxidation of o-xylene to phthalic anhydride. Remaining reactions, total oxidation 

of o-xylene and total oxidation of phthalic anhydride, are side reactions. The reactions 

are catalyzed by a vanadium pentoxide catalyst mixed with an inert powder, and the blue 

plots in Figure 1 show the fraction of the active (vanadium pentoxide) catalyst. This 

reaction system is modelled using the alpha model. The objective is to maximize the 

phthalic anhydride production. The problem is solved using the zone approach, for one, 

three, four and six zones. 

 

Figure 1 Control and Temperature Profiles for Alpha Model O-xylene Oxidation Problem with 

Different Number of Zones 

A developing trend can be observed in the control profile as the number of zones 

increases. Higher phthalic anhydride production is achieved with an increasing number 

of catalyst zones. These results are in agreement with those of Nie et al. [5] 

The same problem is then solved using the partial moving grids approach. Unlike the 

zone approach, where the solution depends on the number of zones selected, the partial 

moving grid approach can yield the exact solution to the infinite dimensional singular 

control problem. Compared to the solution graphs from the zone approach, both the 

stepwise control and kinked temperature graphs are smoothed as needed by partial 

moving grids and represent the exact variational solution. The NLPs for both methods 

have up to 15,000 variables and equations. These NLPs are solved for 1 to 6 zones using 

the zone approach and for the exact profiles using partial moving finite elements in under 

30 CPU seconds. 
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Syngas to Olefin 

The syngas to olefins reaction mechanism is a complex kinetic system, particularly when 

catalyzed by mixed catalysts. The olefin production starts with introduction of synthesis 

gas mixture into the reactor and CO and hydrogen react over Zn/Zr catalyst to yield 

methanol. Methanol reacts over SAPO catalyst to olefins. Moreover, as a result of Zn/Zr 

– SAPO catalyst mixture, the olefins can react to paraffins, which is an undesired reaction. 

[6]. The overall kinetic scheme is shown in the figure below. 

The catalyst mixture breaks the equilibrium limitation during the methanol production 

step and enables higher rates, but it also promotes the hydrogenation of olefins, which is 

an irreversible reaction and results in loss of olefins. 

 

 
 

Figure 3 STO Mechanism over Zn/Zr - SAPO Catalyst Mixture 

 

 

Figure 2 Control and Temperature Profiles for Alpha Model O-xylene Oxidation Obtained with 

Partial Moving Grids (PMG) Approach 
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STO optimization problem is solved to maximize the lower olefin (C2 – C4) yield at the 

reactor exit using the zone approach. The decision variables in the optimization 

formulation are inlet temperature, inlet feed ratio and catalyst mixing ratio. The blue plots 

in Figure 4 show the Zn/Zr catalyst fraction. A 5% increase in lower olefins yield is 

achieved switching from one zone to three zones. 

5. Conclusions 
Mixed catalyst problems are singular control problems which are usually ill-conditioned 

and cannot be dealt with commercial optimization tools. Two different optimization 

techniques, the zone approach and the partial moving finite element approach, are applied 

to o-xylene oxidation and STO problems, leading to 35% and 5% increases in the product 

yield in 3 zones for the two problems, respectively. The zone approach is easier to 

implement and its results are more practical to implement in industry. However, the result 

will always be suboptimal, and it is not possible to know how far the solution is from the 

exact solution. On the other hand, it is possible to get the exact solution to the same 

problem with the partial moving grids (PMG) approach, which is a more complex 

algorithm and more difficult to transfer to practice. Thus, applications of the two different 

optimization algorithms to the same problem are necessary for the completeness of the 

study. 

Also, because of the exothermic nature of the STO mechanism, thermal runaways need 

to be considered for a safe operation and reactor design. In addition, part of our future 

work will consider optimization under uncertainty. These extended optimization 

formulations will be implemented to address uncertainties in the reaction parameters and 

catalyst deactivation, using a two-stage multi-scenario approach [7]. The aim would be 

to maximize product yield, while respecting the conversion and selectivity constraints 

and avoiding thermal runaways. 

Figure 4 Control and Temperature Profiles for STO Problem: 1 Zone, 3 Zones and Exact Partial 

Moving Grids (PMG) Solution  
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Abstract 
The objective of gas-lift optimization is to allocate the available compressed gas to each 
well of the platform such that crude oil production is maximized from the group of 
wells. A wrong allocation of gas may lead to the de-optimization of those wells 
resulting in lesser production of fluid. Considering the cost and scarcity of compressed 
gas, allocating them to the group of wells in optimum quantity to enhance oil production 
becomes the job of utmost importance. In this paper, representative field data have been 
used to optimize the production using regression and mathematical linear programming. 
Results produced by this method have been tested at one of the well platforms of the 
Indian offshore oil field with satisfying outcomes. 
 
Keywords: Artificial Lift, Gas Lift, Production Optimization, Regression, Oil and Gas 

1. Introduction 
As a routine practice, mostly one or two wells are put under testing and optimization 
thereafter to get the maximum production. On that very day, lift-gas is adjusted for 
production optimization to those tested wells accordingly. Since the quantity of lift-gas 
is not unlimited (and certainly not cheap) in the field, allocating it to all the individual 
wells for maximum production is even more important. Many thumb rules are being 
used in the field and different models have also been developed by researchers to 
optimize the oil production and lift-gas allocation. Posenato et al. (2012) used a Genetic 
Algorithm for gas lift optimization under lift-gas supply constraint due to limited 
compression facility. Dutta-Roy (1997) used sequential quadratic programming to study 
the gas lift allocation and interaction between wells flowing on a common gas lift 
supply header. Camponogara et al. (2006) used dynamic programming for addressing 
the problem of gas-lift optimization. Epelle et al (2019) optimized Net Present Value 
(NPV) of production system by determining lift gas allocation, well controls and other 
routing constraints, where NPV is combined effective value of revenue generated from 
oil and gas production and cost incurred on application of artificial lifts etc. Supplying 
an inadequate quantity of lift-gas may lead to liquid loading in the production tubing 
causing lesser production; on the other hand, more lift-gas into production tubing will 
not allow the oil to flow at the optimum rate. In this work, a simple methodology has 
been developed to allocate the right amount of lift gas among already tested and 
optimized wells for optimum production from the well platform which house group of 
wells.  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50020-6
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2. Problem Statement 
The lift-gas is being supplied to a particular well platform housing a set of wells from a 
common header/manifold and adjusting this lift gas to one particular well will affect the 
gas injection rate and pressure of other wells due to interaction among them (Dutta-Roy, 
1997). Consequently, production from other wells gets de-optimized from their 
maximum value. Therefore, it becomes a matter of utmost importance to adjust lift-gas 
of all the wells such the maximum production is obtained not just from a few wells but 
from the entire well platform. The objective function problem can be expressed as in 
Eq. (1.0): 

Max 𝑃 = ( 𝑝 )                                                                                                     (1.0) 

Where, n is the set of n-number of wells designated as well-i = {i: i = 1, 2, … n}, need 
gas injection at the rate of qi = {i: i = 1, 2, … n} to produce liquid/oil at the rate of pi = 
{i: i = 1, 2, … n}. 

3. Methodology 
In this methodology, a simple procedure depicted in the flowchart has been followed: 
 

 
Before going further following are the assumptions and declarations in this 
methodology of gas lift optimization: 

In this analysis, only the effect on the production due to the allocation of lift-
gas to individual wells has been considered. 
the liquid produced is mostly oil (almost zero BSW), therefore, the effect of 
water-cut is not considered. 
Backpressure on well-head due to change in pressure in the group/common 
production manifold due to variation in production has been ignored. 
The effect of change in pressure at well-head due to change in lift gas rate and 
pressure has also been ignored. 

3.1. Collect well testing data and understanding well performance curve 
Figure 1 is a schematic diagram of a well testing facility in which total injection gas is 
coming to 6” common manifold from the gas compression facility, wherefrom it is 
distributed among wells. Quantity of produced oil and gas can be tested by diverting a 
particular well to the separator via 6” test header. The flow of oil from the well is a very 
complex mechanism and it depends on multiple factors like reservoir conditions, inflow 

Step-I
•Collect well testing data over last few weeks/months.

Step –II

•Carry out the regression using Excel/MATLAB for curve fitting and obtain
the equation of the part of gas lift well performance curve in the economic
region (discussed later in the paper).

Step-III

•Develop the mathematical model for optimization considering assumptions
and constraints.

•Run the developed model on GAMS or equivalent optimization tool.

Step–IV
•Compare the result produced by this methodology with actual field data.
Apply these results in the field for better results.
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and outflow performance relationships, etc. Mayhill (1974) initially discussed the 
concept of gas lift performance curve (Figure 2), where point D indicates the maximum 
production of the well, and the line DE divides the entire plot into two areas, Area I and 
Area II. 

Figure 1: Well testing facility of well platform 

 
Figure 2: Representative gas lift performance curve 

 
Production of oil is increasing function of gas injection rate till point D and it starts 
decreasing afterward. Upon analysis, it can be observed that near the point of maxima 
gas injection rate increases significantly compared to the minor improvement in oil 
production. Point A to C is marked with a dotted ellipse and is the most economical 
region for production. It can also be observed that in this small region the curve is 
following an almost straight-line pattern (from point A to C). 
3.2. Regression analysis  
When the reservoir depletes and it does not have enough pressure to flow the well on 
self-mode, the role of an artificial lift to flow the fluid of the well to the separator 
becomes pertinent. The gas lift method is the preferred way to flow them at offshore 
installations. Further, the study and analysis of the gas lift performance curve which 
shows the relationship between the oil production rate (pi) and gas lift injection rate (qi) 
help a lot in optimizing the production and in lift-gas allocation. An n-th order 
polynomial has been provided to correlate the relationship between gas lift injection rate 
(qi) and the oil production rate (pi) (Sun-Young Jung et al., 2016): 

p = a0 + a1 qi + a2 qi 2 + ……..+ an qim  =   (𝑎 𝑞 𝑗)                          (2.0) 
where p is the rate of production of oil, q is the gas lift injection rate for i-th well and a0, 
a1, a2, an are coefficients generated by the least-squares method during regression 
analysis. To understand the relationship between oil production rate and gas lift 
injection rate, well testing data have been tried to fit into the polynomial of higher 
orders. Though they offer a better fit to the well test data, better understanding of the 
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function is not developed, neither it is a good predictor. Regression analysis has always 
been suggested to keep the order of polynomial as low as possible. In this study, the 
mathematical model is considered to be of the first order as in Eq. (3.0), around the 
economic region where most of the well testing and optimization data lie. 

pi = a0 + a1 qi                                                                                                     (3.0) 
3.3. Develop the mathematical model for optimization  
For further simplification and calculation of mathematical model, a curve equivalent to 
equation (3.0) is plotted keeping p – Oil Production on x-axis and q – Gas Injection on 
y-axis represented by the equation (4.0):      

qi = mi pi + ci                 (4.0) 

Maximize  𝑃 = ( 𝑝 )                                        (5.0) 

Subject to: ∑ (𝑛𝐼=1 𝑞𝑖) =∑ (𝑛𝑖=1 𝑐𝑖) + ∑ (𝑛𝑖=1 𝑚𝑖) ∗ 𝑝𝑖 ≤ Q                              (5.1) 

                              pi' ≤ pi ≤ pi*                  (5.2) 

                              qi, pi ≥ 0                   (5.3) 

Equation ((5.0) – (5.3)) is proposed mathematical model for optimization, where P is 
total production from the well platform (sum of production from all individual wells), Q 
is the maximum injection gas available for gas lift, qi and pi are quantity of lift-gas and 
production from well i, ci and mi are constants generated from linear regression. pi' is 
the minimum acceptable production considering the short-term optimization case and 
pi* is the maximum production that can be drawn from i-th well in the economic region. 
3.4. Implementation and results 
Testing data [Table 2, Annexure A] from a set of five wells of a well platform is 
considered for optimization under this model. Regression analysis of the data of all the 
wells has been done on MATLAB_R2020a and part of the well performance curve of 
the first order is plotted (part of the curve near economic region/optimum region is 
depicted in Figure 3 for well-1). 
 

 
Figure 3: Part of well performance curve for well-1 

 
As discussed during the development of the mathematical model, an equivalent curve is 
also plotted keeping p – Oil Production on the x-axis and q – Gas Injection on the y-axis 
using linear regression and the new relation between oil production and gas injected 
have been generated for all the wells. Figure 4 shows this relation for well-1. 
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Figure 4: Relation between oil production and gas injection 

 
Finally, the data have been fed to the mathematical model (from Eq. 5.0 to 5.3) and run-
on GAMS 32.1.0 with CPLEX solver. For different values of Q (190,500 – 201,500 
SCMD at the interval of 500 SCMD) on each run, optimal values of variables P are 
generated. Figure 5 shows the relation between ‘optimized production’ vs ‘maximum 
gas consumed’. Equations generated by linear regression give values of qi for all values 
of pi and lift gas thus be allocated judiciously for the optimum production. Set of 
quantity of oil production pi and corresponding allocated gas qi, for maximum value of 
oil produced P and quantity of gas consumed Q at entire well platform is given in Table 
3 [Annexure A]. Compared to the field data where oil production is in the range of 
(1450 – 1651) barrels of oil per day (BOPD) and total injection gas is in the range of 
(188,771 – 233,914) standard cubic meter per day (SCMD), this model gives the 
production in the range of 1780 BOPD upon the consumption of 200,000 SCMD of lift-
gas from that well platform. 

 
Figure 5: Optimized production Vs. Maximum gas consumed 

4. Conclusion 
It is obvious that result of this model is not just showing increase in oil production but 
approximately 30,000 SCMD of compressed gas are saved. This methodology provides 
wellhead engineers/managers relatively simple and quick approach to analyze and work 
on the available production data during field visit. Optimal lift-gas injection rate from 
other oil-fields can be further tested/implemented, on the wells of the field to verify 
actual improvement in oil production. Though results produced by this methodology 
will help oil field operators in day-to-day well optimization, additional constraints like 
impact of well head pressure upon variation in gas injection rates, changes in water cut 
(BSW) on oil production etc. will be considered in future work. 
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Annexure A 
Table 1: Well Testing Parameter

Choke Size 
(X/64" ) 

Gas Inj. Orifice / Line 
Size (mm/") 

Main line 
Pressure (psi) 

Main line 
Temp (℉) 

Main line Gas Inj 
Pr. (psi) 

Separator Pressure 
(psi) 

NIL 26.0233/2 192 180 1041 206 
 

Table 2: Oil Production Vs. Gas Injection Details 
Well No Well-1 Well-2 Well-3 Well-4 Well-5 All Wells 
Testing 
Date 

Gas 
Inj.* 

Oil 
Prod# 

Gas 
Inj. 

Oil 
Prod 

Gas 
Inj. 

Oil 
Prod 

Gas 
Inj. 

Oil 
Prod 

Gas 
Inj. 

Oil 
Prod 

Total 
Inj. Gas 

Total 
Oil 

Sept-20 37277 268 40509 338 52569 260 48247 524 55312 208 233914 1598 

Aug-20 33452 200 31337 356 53434 240 50703 533 53800 221 222726 1550 

July-20 34239 210 31325 371 55703 240 44117 389 49517 240 214901 1450 

June-20 34613 209 24354 406 55134 255 46782 423 53588 240 214471 1533 

May-20 32900 200 21932 394 59199 220 46640 492 50529 251 211200 1557 

Apr-20 37921 245 23628 383 54630 265 45000 400 49935 260 211114 1553 

Mar-20 38577 250 22304 437 41467 270 45071 422 41352 272 188771 1651 

*Unit - standard cubic meter per day (SCMD), # Unit - barrels of oil per day (BOPD) 

 
Table 3: Set of (pi, qi) for given value of Q and total optimum production P 

Well-1 Well-2 Well-3 Well-4 Well-5 Total 
pi (BOPD) 268 437 270 533 272 1780 
qi (SCMD) 38770.78 20247.99 46798.2 49097.11 45149.52 200063.6 

Reference: 
Camponogara, E., & Nakashima, P. H. R. (2006). Solving a gas-lift optimization problem by 

dynamic programming. European Journal of Operational Research, 174(2), 1220–1246. 
Dutta-Roy, K., & Kattapuram, J. (1997). A New Approach to Gas-Lift Allocation Optimization 

SPE Western Regional Meeting. 
Epelle, E & Gerogiorgis, D (2019), 'Mixed-Integer Nonlinear Programming (MINLP) for 

production optimisation of naturally flowing and artificial lift wells with routing constraints', 
Chemical Engineering Research and Design, 152, 134-148.  

Sun-Young Jung & Jong-Se Lim (2016) Optimization of gas lift allocation for improved oil 
production under facilities constraints, Geosystem Engineering, 19:1, 39-47.  

Mayhill, T. D. (1974). Simplified Method for Gas-Lift Well Problem identification and 
Diagnosis. Fall Meeting of the Society of Petroleum Engineers of AIME.doi:10.2118/5151-ms  

Posenato, A., & Rosa, V. R. (2012). A Genetic Algorithm for Gas Lift Optimization With 
Compression Capacity Limitation. SPE Latin America and Caribbean Petroleum Engineering 
Conference. 

Production Operation Volume I (2019). Institute of Oil & Gas Production Technology. Oil and 
Natural Gas Corporation Ltd. Panvel, Navi Mumbai 
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Abstract 
Biomass Gasification is a viable process to convert biomass into valuable energy 
production. In this study, the techno-economic feasibility of a sorption enhanced steam 
gasification of palm oil waste for syngas production is developed using Aspen Plus. The 
sorption enhancement is achieved by utilising CaO as a medium to capture CO2 and 
generate clean syngas. CaO has recently demonstrated the feasibility to capture CO2 at 
reduced capital and operating investment costs compared to conventional capture 
processes. For this purpose, the flowsheet configuration and economic analysis has been 
carried out using Aspen plus. The results of the economic assessment demonstrate a total 
hydrogen production cost approximated at $2.51 per kg for gasification system utilising 
CaO compared to $2.57 for the base case without CO2 capture. Moreover, a sensitivity 
analyses and a multi-objective optimisation has been carried out to maximise the 
hydrogen to carbon monoxide ratio and minimise the CO2 emissions. The results 
demonstrate that by increasing the steam flowrate in the range of 500-2000 kg/h, the 
H2/CO ratio, and the CO2 emissions increase. This is mostly due to the acceleration of 
gasification reactions; mainly the methane reforming and water gas shift reactions. 
Similarly, increasing the CaO flowrates in the range of 500-2000 kg/h results in 
increasing  the H2/CO ratio significantly and reducing the CO2 emissions rapidly. This 
CO2 reduction with the use of CaO is experimentally validated in the literature mainly 
due to the carbonation reaction. Whereas, the variation of gasification temperature 
indicates a decreasing trend in the H2/CO ratio and CO2 emissions with the increase in 
temperature in the range of 600-800 oC. The Pareto curve generated from the multi-
objective optimisation demonstrates an overall increasing trend of CO2 emissions with 
the increase in the H2/CO ratio in the produced syngas. 

Keywords: PKS; Aspen Plus; CO2 Capturing; Techno-economic analysis; CaO 
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1. Introduction 
Biomass is a leading source of alternative energy for fossil fuels as it offers promises 
advantages such as its low carbon footprint due to carbon neutrality (Shahbaz et al., 
2017a), and it can be considered part of a renewable and sustainable supply chain due to 
its abundant availability (Inayat et al., 2020a). The conversion of biomass into energy is 
achieved through biological and thermochemical conversion processes (Zeng et al., 
2016). Thermochemical conversion processes are advantageous over biological processes 
due to the conversion of biomass to all forms of energy, such as gaseous, solid, and liquid 
fuels, in addition to (Shahbaz et al., 2020). Incidentally, gasification is the preferred 
thermochemical conversion process in the production of a gaseous fuels such as H2 and 
syngas (AlNouss et al., 2020a). Many researchers have experimentally investigated 
syngas production from palm oil waste through lab and pilot-scale processing (Chan et 
al., 2019), whilst simulation-based modelling is also useful to inform syngas production 
process (Inayat et al., 2020b). The H2 rich syngas produced from the biomass processing 
depends on many factors such as biomass feed, gasification agent, and most importantly, 
the reduction of CO2 in the product gas (Inayta et al., 2012). In this regard, CaO based 
sources, such as, dolomite and limestone are used for the reduction of CO2 in the 
gasification of palm oil waste through modelling and experimentation (Shahbaz et al., 
2017a).  
Palm oil waste is a major waste available in South East Asia and has been investigated 
for energy production especially through gasification (Shahbaz et al., 2017b), for which 
techno-economic analysis is a very important activity for the commercialisation of any 
technology. A process developed for the steam-gasification of empty fruit bunches (EFB) 
based on kinetic parameters using MATLAB was developed by Inayat et al. (2012), and 
Aspen PLUS was used for equilibrium modelling of palm kernel shell (PKS) (Shahbaz et 
al., 2017a). From the above discussion, there is no study reported for the techno-economic 
analysis of PKS steam gasification using the CaO for CO2 capture. As such, the main aim 
of this study is to perform a techno-economic feasibility study of sorption enhanced steam 
gasification of palm kernel shell using Aspen Process Economic Analyser (APEA) with 
adsorbent regeneration. In addition, the study investigates the impact of process 
parameter and optimises the parameters for low H2/CO ratio to maximize the H2 rich 
syngas production. Sensitivity and, and multi curve optimisation is also developed. 

2. Methodology and Process Description 
For several industrial processes, such as polymers, metals, biofuels, other chemicals, 
modelling and simulation of solid process steps is crucial. Aspen Plus advanced process 
simulation capabilities allow the integrated high-performance simulation of process steps 
for solids and fluids with stable physical properties. In this study, palm kernel shell (PKS) 
undergoes steam gasification process, which is simulated using Aspen Plus software, to 
yield synthesis gas. The process is simulated under the assumptions of steady-state and 
isothermal-operation, atmospheric pressure with no pressure gradient, neglected tar 
formation and char is carbon. The model begins with a decomposition unit operating at 
40 oC and 1 bar to convert the PKS biomass to conventional components; the attributes 
are summarised in Table 1 (Shahbaz et al., 2017a). The decomposition unit is linked with 
a calculator block to calculate the yields of the conventional components as presented by 
(AlNouss et al., 2020b). The converted stream enters the fluidised bed gasification unit, 
modelled as a Gibbs free energy reactor, along with the superheated steam to yield syngas 
at 800 oC and 1 bar as illustrated in Figure 1. The effluent syngas is fed to the fixed bed 
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gasification unit where the CaO is used to capture the generated CO2 and yield a solid 
CaCO3. A solid separator is used to remove ash and the formed CaCO3 and keep the 
syngas that is cooled to further purify it from water. The CaO is then regenerated from 
CaCO3 using a regeneration reactor operating at 900 oC and 1 bar and a purification step 
to remove vent gases from the regenerated CaO. 

Table 1. Proximate and ultimate analysis of Palm kernel shell (Shahbaz et al., 2017a) 
Proximate analysis Ultimate analysis (dry mass wt% basis) 
Moisture (wt%) 9.70 C 48.78 
Dry mass wt% basis   H 5.70 
Volatile matter 80.81 N 1.01 
Fixed carbon 14.25 S 0.21 
Ash content 4.94 O (by difference) 39.36 

 

 
Figure 1. Process flow sheet for the sorption enhanced steam gasification of PKS. 

The simulated model has then been utilised to perform a number of sensitivity cases to 
study the effect of changing steam flowrate, gasification temperature and CaO flowrate 
on the quality of syngas production. Moreover, the optimisation capabilities of Aspen 
Plus software has been utilised to perform singular and multi-objective optimisations to 
maximise the ratio on hydrogen to carbon monoxide and minimise the emissions of CO2 
in the produced syngas. Equations 1 and 2 summarise the formulation of the optimisation 
problem. 

Maximise  ∙  ∙       eq. (1) 

Minimise 𝑥  ∙  𝑆𝑦𝑛𝑔𝑎𝑠      eq. (2) 

Subject to 600℃ ≤ T ≤ 800℃      eq. (3) 500 𝑘𝑔/ℎ ≤ 𝑚 ≤ 2000𝑘𝑔/ℎ    eq. (4) 500 𝑘𝑔/ℎ ≤ 𝑚 ≤ 2000𝑘𝑔/ℎ     eq. (5) 
Where yH2 and yCO are the molar fractions of hydrogen and carbon monoxide, xCO2 is 
the mass fraction of carbon dioxide, respectively, 𝑚 represents the mass flowrate of 
steam/CaO and syngas is the molar flowrate of the produced syngas. The use of CaO has 
also been validated by conducting a techno-economic-environmental evaluation using the 
built-in tools inside Aspen Plus® and utilising the equations presented earlier by                       
(AlNouss et al., (2020c). In the study, the price of purified syngas is taken as $24/km3.  
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3. Results and discussion 
The results of the techno-economic-environmental evaluation based on the use of CaO to 
capture CO2 demonstrates a huge decrease in CO2 emissions compared to the base case 
without CO2 capture as presented in Table 2. However, this decrease is associated with 
slightly higher capital and operating costs. This demonstrates the effectiveness of CaO 
utilisation in offsetting the high CO2 emissions associated with the gasification process 
with only a slight increase in investment. Moreover, the higher hydrogen production in 
the CaO case has projected a lower cost of hydrogen production at $2.51 per kg compared 
to $2.57 for the base case. The process revenue for the case without CaO addition 
demonstrates slightly higher results approximated at $3.772 million compared to $3.769 
for the case with CaO addition. This increase is mainly due to the increase in the CO 
content in the purified syngas. The addition of the regeneration unit has increased the 
capital and operating costs, although it resulted in an additional reduction in the CO2 

emissions, and a reduction in the costs associated with the raw material since CaO is 
regenerated internally. The cost of hydrogen production remained similar to the case of 
CaO utilisation without regeneration despite the slight increase in the total annualised 
cost. 

Table 2: Techno-Economic analysis with and without CaO    

Case with CaO without CaO with CaO 
regeneration 

Total Capital Cost [$]  4,233,300   4,147,700   5,054,360  
Total Operating Cost [$/y]  1,427,190   1,413,370   1,435,570  
Total Raw Materials Cost [$/y]  525,600   350,400   350,400  
Total Utilities Cost [$/y]  143,318   138,912   5,054,360  
Equipment Cost [$]  207,500   159,100   259,900  
Total Installed Cost [$]  1,015,800   952,600   1,330,600  
Total Annualised Cost [$/y]  2,822,126   2,615,527  2,823,916 
Revenue [$/y]  3,769,178   3,772,167   3,769,178  
H2 Production (kg/y) 
(T = 700 oC, Steam = 1500 kg/h, CaO = 100 kg/h) 

 1,123,514   1,019,029  1,123,514 

Cost of H2 Production ($/kg) 2.51 2.57 2.51 
CO2 Emissions (kg CO2 –e/h) 535 1031 509 

  
The results of the different analyses performed on the steam gasification of PKS are 
presented in terms of sensitivity relations, optimum objective functions and techno-
economic comparison. Figure’s 2 and 3 present the relationships between the molar 
compositions of the produced syngas and the changes in CaO flowrate, gasification 
temperature and steam flowrate, respectively. The change in CaO flowrate at constant 
gasification temperature of 700 oC and a constant steam flowrate of 1500 kg/h 
demonstrates an increase in hydrogen composition from 70% to 99% and a decrease in 
CO, CO2 and CH4 compositions from 13%, 17% and 0.27% to 1%, 1% and 0.05%, 
respectively. The decline in CO2 with the addition of CaO is due to the carbonation 
reaction and was also reported by Shahbaz et al. (2017b).  

The increase in gasification temperature at a constant CaO flowrate of 1000 kg/h and 
constant steam flowrate of 1500 kg/h demonstrates an increase in hydrogen and CO 
compositions from 76.3% and 6.5% to 77.8% and 12.3%, respectively, with the decrease 
in CO2 and CH4 compositions from 13.8% and 3.43% to 9.8% and 0.02%, respectively. 
The reason behind these trends is mainly due to the influence of higher temperatures on 
the gasification reactions leading more syngas products, where the reactions of steam-
methane reforming, Boudouard and CO water shift are favoured (Shahbaz et al., 2017b). 
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Moreover, H2 production trend indicates a peak at around 700 oC of temperature.

 
Figure 2. Impact of CaO flowrate and gasification temperature on syngas composition. 

The change in steam flowrate at a constant gasification temperature of 700 oC and a 
constant CaO flowrate of 1000 kg/h demonstrates an increase in H2 and CO2 compositions 
from 70.5% to78.6% and 3% to 13% respectively, with a decrease in CO and CH4 

compositions from 19% to 8% and 7.55% to 0.11%, respectively. These trends indicate 
an enhancement in steam-methane reforming and CO water gas shift reactions with the 
addition of steam, where more H atoms are converted to H2 resulting in less CH4 and 
more C atoms are converted to CO2 resulting in less CO (Inayat et al., 2012).  

 
 
Figure 3. Impact of steam flowrate on syngas composition.  Figure 4. Pareto-front curve 

Furthermore, to analyse the optimal operating parameters that will achieve an increase in 
the production quality and reduction in CO2 emissions, the singular and multi-objective 
optimisations have reported different parameters for steam and CaO flowrates and the 
gasification temperature. For the singular optimisation, the solution of Eq. (1) with the 
constraints in Eq. (3-5) indicates an overall objective function for the H2/CO molar ratio 
approximated at 297 for gasification temperature of 600 oC and 2000 kg/h flowrate for 
steam and CaO, individually. Whereas, the singular optimisation of Eq. (2) with the 
constraints in Eq. (3-5) indicates an overall objective function for the CO2 emissions 
below 0.07 kg CO2-e/h for gasification temperature of 800 oC, the steam flowrate of 500 
kg/h and CaO flowrate of 2000 kg/h. The multi-objective optimisation of both Eq. (1) and 
(2) with the constraints in Eq. (3-5) produces the illustrated Pareto-front curve in Figure 
4. This curve indicates various optimal points for the decision-makers on CO2 emissions 
and H2/CO molar ratio of the steam gasification of PKS given various operating points. 
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4. Conclusions 
The sorption enhanced steam gasification of PKS with the utilization of CaO for CO2 
capturing developed using Aspen PLUS®. The techno-economic analysis performed 
using the tool present in Aspen PLUS®. The cost of H2 production is reduced from 2.57 
to 2.51 $/kg with the use of CaO. In addition, the CO2 emissions were significantly 
decreased from1031 to 535 (kg CO2 –e/h) with the application of CaO. The H2 production 
increase with the increase of gasification temperature, steam, and CaO flow rate. A 
significant reduction of CO2 is observed from 17 to 1 mol% with the increase of CaO flow 
rate from 500-2000 kg/hr, which shows the effectiveness of CaO for CO2 capturing. The 
multi-curve optimisation made and a petro curve was generated for H2/CO molar ratio 
and CO2 emissions of the steam PKS gasification for different process parameters. 
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Abstract 

Hydrogen is an important resource in chemical processes industries. As hydrogen demand in 
the refineries is increasing rapidly, hydrogen management strategies are of great interest to 
the refineries. Hydrogen management trades in with the optimal supply, routing, and flow 
allocation of hydrogen gas also called Hydrogen Allocation Network (HAN) within a 
refinery linking the source station to the demand station. Other than minimizing the fresh 
hydrogen requirement, it is extremely important to reduce the compression work, required in 
any HAN. In the real world, uncertainties in the parameters (e.g. flow, quality, pressure, etc.) 
may arise due to various reasons so that undermine the effectiveness of HAN. In this paper, 
to deal with these uncertainties, an optimization model based on robust linear programming 
formulation is proposed to minimize the compression work and fresh hydrogen as a resource 
within the HAN. The applicability of the robust model helps to optimize HAN with uncertain 
flows and quality for the application of individual sources station and demand station with 
the desired reliability. The resultant formulation preserves the linearity of the mathematical 
model and can control the degree of conservatism for every constraint. The applicability of 
the proposed methodology is demonstrated through an illustrative example. 

Keywords: Hydrogen allocation network, Compression work, Robust Optimization, 
Optimization 

1. Introduction 

Hydrogen, a clean and efficient secondary energy source, is widely used in chemical 
industries to produce clean fuels. Petroleum refineries consist of many processes with 
complex reactions involving hydrogen consumption or production. In a hydrogen network, 
there are several compressor stations for supplying hydrogen producers to consumers. So 
hydrogen management is an important practical aspect of refineries. It aims to achieve the 
optimal hydrogen allocation network (HAN) of hydrogen resources to satisfy the demands of 
refinery processes (Brijandi et al. 2014). Operating variables play an important role in 
designing of HAN, such as the purity and flow rate of input and output for consumers. In the 
real world, uncertainties in the parameters (e.g. flow, quality pressure, etc.) may arise due to 
various reasons so that undermine the effectiveness of HAN (Al-Redhway et al. 2005). 
Therefore, the inlet or outlet variables are determined by any changing variable after 
optimization. Zhang et al. (2014) proposed a graphical method for targeting the minimum 
fresh resource consumption of hydrogen networks by considering the separation performance 
of purifiers. The method optimizes both the purity and the flow rates of feed and products for 
the purifier within a feasible operating range. Lou et al. (2015) introduced a framework to 
optimize the hydrogen network of refineries under uncertainty. This framework considers 
several scenarios representing possible future environments. Lima et al. (2018) proposed a 
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robust optimization model is developed to cope with the oil price and demand uncertainties in 
the tactical management of the downstream oil supply chain. Liu et al (2019) proposed a 
fuzzy optimization model for the design of a multi-component hydrogen network with 
parametric uncertainties is developed. A data-driven adaptive robust optimization approach is 
proposed by Zhao et al. (2019) to deal with the operational optimization problem of industrial 
steam systems under uncertainty. From the above literature review, it is found that 
minimizing the fresh hydrogen and compression work has rarely been studied together with 
the optimization of HAN. In this paper a mathematical formulation for calculating the robust 
target of minimizing the compression work and resource requirement in a HAN. The 
presented model utilizes the concept of robustness developed by Bertsimas and Sim (2004). 
The proposed model enables us to decide the robust targets of fresh hydrogen and 
compression work requirement based on budget parameters and uncertainty levels. The 
proposed model is explained via an illustrative example where the process data is represented 
through uncertain parameters. The solution set provides flexibility to the decision-maker to 
the trade-off between the uncertainty level with compression work or fresh hydrogen 
requirement. 

2. Problem Definition and Mathematical Formulation 
The HAN usually includes several compressor stations for supplying the hydrogen at several 
demand nodes at their required pressure. The problem of optimizing hydrogen allocation with 
uncertainty in any allocation network optimization in a plant can be stated as follows: 

A set of Ns internal sources is available with uncertain flow and quality in a bounded 
interval with a known deviation from its nominal value. 
A set of Nd internal demands to be satisfied are also known such that each demand 
accepts a flow with a quality that is less than a predetermined maximum quality. 
The unutilized flow from the internal sources is sent to an external demand, called 
waste, without any maximum quality or flow limits. 

The objective of this study is to minimize the compression work for supplying the flow and 
also minimize resource requirement in a fixed desired reliability of each demand as well as 
each source. The model comprises of following constraints. 

2.1. Flow Balance Constraints: Let 
ijf  and 

rjf represent the flow from ith source and 
resource to jth demand. The flow balances for compressor station and demand station may be 
addressed as Eq. (1) and Eq. (2): 
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2.2. Quality Constraints: Due to quality constraint at every demand, the hydrogen mass-
load requirement for any internal demand may be mathematically expressed as follows: (Eq. 
3) 
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Where qsi, qfr ,and qdj are the quality of ith source, resource, and jth demand. 
The total fresh hydrogen requirement can be calculated using Eq. (4). 
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2.3 Robust Mathematical Model for HAN 

Adapting the robust formulation proposed by Bertsimas and Sim (2004) for dealing with 
uncertainty. The mathematical model can be modified as follows. 

Flow uncertainty: Let us consider that the flow supply by each internal source is uncertain 
and can vary in the region. To include flow uncertainty Eq. (1) is modified as follows: 
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0,  ff q      (7) 
The parameter Гf  and qf are introduced that controlled the degree of conservatism and budget 

of uncertainty in source flow. 


siF is the deviation magnitude of the flow. 
It may be noted that after the fresh hydrogen requirement has been minimized, the fresh 
hydrogen source and waste flow can be treated as entities of the sources and demands sets 
without any loss of generality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1: Flow chart showing the proposed algorithm 
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With these new modified sets of sources and demands with the inclusion of fresh resource 
and waste flows, the second part of the optimization problem is formulated. The compression 
work (W) required for a stream is governed by the initial (Pin) and final (Pout) states 
(volumetric flow (Fin) and pressure) as well as the process followed for compression. For 
isothermal compression, the work done can be expressed as Eq. (8). 

)ln(
in

out
inin P

PFPW       (8) 

Applying the characteristic of an isothermal process; 
ConstPF        (9) 

The compression work requirement for supplying flows balance fij from various supply 
pressure levels (Pi) pressure level to demand at a pressure (Pj) pressure level (Pj>Pi) may be 
expressed as follows: (Shukla and Chaturvedi 2020) 
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The quantity )( ij    can be defined as the compression energy index. 
It may be noted that supplying flow from a station having a higher pressure than the lower 
demand station pressure does not require any compression work. Further, it may be noted that 
demand pressure includes various pressure drops during flow transfer. Figure 1 shows the 
flow chart of the proposed algorithm. 

3. Illustrative Example:  
Applicability of the proposed methodology is demonstrated through illustrative examples. 
Data for the overall HAN from the work of Bandyopadyay et al. (2014) are given in Table 1. 
The source flow data are modified for illustrative purposes. 
 
Table 1: Source and Demand Data for Illustrative Example 

 
Table 1 represents the source and demand data for the example. From the deterministic 
approach, it is found that the minimum fresh hydrogen requirement and waste production are 
determined to be 58.99 and 9.79 Sm3/s, respectively and the is minimum compression power 
using isothermal process is found to be 1.37 MW. In the proposed example the flow is 
uncertain. In this case, bounded uncertainty of flow availability from the source side is given. 
The availability of flow parameters has ± 20 t/h variability levels for each flow. Here budget 

 Purity 
(%) 

Quality 
(%) 

Flow 
(Sm3/s) 

Pressure 
(kPa) 

S0 (resource) 99 1  11031.6 
S1 91 9 114.7 ± 20 11031.6 
S2 85 15 163.8 ± 20 16168.4 

 Purity Quality 
(%)

Flow 
(Sm3/s)

Pressure 
(kPa) 

D0 (waste)     
D1 92.8 7.2 131.1 10061.4 
D2 87.5 12.5 196.6 15168.4 
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parameter takes a value between [0, 1], its variation with objective value is calculated using 
the proposed methodology. The result is tabulated in Table 2. 
 
Table 2: Solution data of example 
 

f  0.0 0. 0.4 0.6 0.8 1.0 
Fresh Hydrogen(Sm3/s) 58.99 60.70 65.2 73.2 81.2 89.2 
Waste (Sm3/s) 9.79 3.506 0.363 0 0 0 

 
It is found that for the worst case ( f =1) the minimum fresh hydrogen requirement is 89.2 
Sm3/s. In the presented example if it is solved considering all parameters to take their worst 
boundary values i.e. lower bound for flow rates using (Soyester, 1973), the resource 
requirement is calculated to be 89.2 Sm3/s, which increase the resource requirement by 51.21 
% from the deterministic case and with maximum protection against uncertaint.,This value 
can be considered as overestimated if the uncertainties in the parametric coefficients lie in the 
narrower range. Similarly, the unpredictability level in quality of each source can be included 
in the example and check the impact of the budget parameter in the requirement of fresh 
hydrogen. Next, based on the fresh hydrogen requirement and supply to demand compression 
station, the minimum compression work can be calculated using Eq. (10) and tabulated in 
Table 3. 
 
Table 3: Minimum compression work data for an illustrative example 

f  0.0 0.2 0.4 0.6 0.8 1.0 
Fresh Hydrogen(Sm3/s) 58.99 60.70 65.2 73.2 81.2 89.2 
Work (kJ/s) 1.37 1.30 1.31 1.44 1.570 1.71 

 
The trade-off between the compression work and minimum fresh hydrogen (2 a) and 
uncertainty level and optimum value of compression work (2 b) is plotted. 
 

Figure 2: Trade-off between minimum hydrogen and compression work (a), Impact on 
the compression work with variation in the budget parameter of (b) 
 
The proposed methodology provides a feasible solution for a relative magnitude of uncertain 
data in a parameter which assists decision-maker via trade-off between the feasibility 
tolerance and a reliability level. The model is solved using the GAMS/ CPLEX solver on the 
computer (Intel(R) Core(TM) i5 (3 GHz) and 4 GB RAM 
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4. Conclusions 
In the real world for designing any process industry, it is necessary to address different 
parametric uncertainties. In this paper, a methodology is presented to determine the minimum 
compressor work required in a HAN, while satisfying the minimum external hydrogen 
resource requirement including the parametric uncertainties. The proposed methodology is 
based on robust optimization which the capable of adjusting the level of risk (worst case 
scenario) is applied to derive a robust optimal solution for HAN. The main benefit of using 
robust optimization is that it provides the trade-off between uncertainty level and an upper 
probability of constraint violation which helps to choose suitable functional situations for 
decision-makers under uncertain conditions and to do the required planning accordingly and 
protected the process against uncertainties to satisfy demands. In future work, the model 
formulation may be readily expanded to incorporate other constraints such as carbon 
emission, pressure uncertainity along with economical aspects such as the annual electricity 
consumption of compressors and the annual revenue created by fuel gas to make the problem 
close to the real world. 
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Abstract 
Hydrogen can be a potential solution to decarbonise the transportation sector since it has 
a very high energy content. Its separation from water by the process of electrolysis need 
a vast amount of electricity and renewable energy sources like solar PV and wind 
electricity can play a vital role in shifting towards hydrogen economy, if they are utilised 
effectively. Still the problem with the hydrogen economy is the massive investment in its 
large scale transportation and storage infrastructure as it has a low volumetric energy 
density, which creates significant challenges in transporting bulk volumes. One feasible 
and still optimistic approach is to use ammonia as a hydrogen carrier that can be 
transported globally with the existing infrastructure. South Korea is evaluating the 
possibilities of importing green ammonia and using it for hydrogen production to meet 
country hydrogen demands particularly related to transportation sector. This research 
work presents a process design and techno-economic analysis of importing green 
ammonia from Australia and using it for hydrogen production in Korea at the hour of 
need. Processes were simulated by using commercial process simulator Aspen Plus V11. 
The main contributors of the economic assessment are capital and operational 
expenditures of electrolyser and solar photovoltaic power plant. The levelised cost of 
green ammonia is 870 $/ton while that of hydrogen is 8.90 $/kg stating that it is a viable 
option to use imported green ammonia to meet country hydrogen demands. Future 
estimates from multiple studies show that by 2030 further cost declines are possible in 
electrolyser and solar panels capital expenditures resulting the green ammonia cost to 
$350 per ton and making this case more economically viable to meet hydrogen demands.  

 

Keywords: Process design, green ammonia, techno-economic analysis, green hydrogen. 

1. Introduction 
Decarbonisation of world’s industrial processes specifically the energy production is a 
hotspot now a days due to declining fossil fuel resources, increasing oil prices and high 
energy demands. Electricity and heat production are the highest contributor in carbon 
emissions followed by transportation. The need of transportation will be increasing with 
the time and more efforts would be required to decarbonise the transportation sector. 
Clean and green fuel is a dire need of the time in order to minimize the carbon emissions 
related to transportation sector. Hydrogen having the high energy content can be a 
potential solution to this problem since it is available in abundant quantity in the form of 
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water and needs only electricity for production through the process of electrolysis. One 
of the major challenge in implementation of hydrogen economy is its transportation in 
bulk volumes due to its low energy density and massive investments. To address this 
issue, hydrogen carriers like ammonia is under consideration. Ammonia is a well-known 
chemical having large existing infrastructure for transportation. Million tons of ammonia 
is transported every year globally through ships. In ammonia production, hydrogen is 
produced by reforming of natural gas which is the major cause of high carbon emissions. 
If it is produced through water electrolysis by using power from renewable energy 
sources, then decarbonisation of ammonia industry is possible. This carbon free green 
ammonia can be transported globally and can be used in fertiliser sector and hydrogen 
production through its decomposition reaction generally known as cracking.  
Australia is one of the major producer of renewable electricity which is not only cost-
effective but also is being produced on larger scales. The world’s largest renewable 
energy project ‘Asian Renewable Energy Hub (AREH)’ of 26 GW is planned in Pilbara 
region of Western Australia planning to start exporting green ammonia by 2028 according 
to ammonia energy association. According to Sichao Kan (2018), the H2 demand for 
Korea by 2022 is estimated to be at 0.47 million tons, 1.94 million tons in 2030, and 5.26 
million tons in 2040, so soon new H2 supply sources will be required. To address this 
issue, importing Green Ammonia from Australia and using it for H2 production is under 
consideration but detailed and rigorous techno-economic analysis is required for 
government and industry to make a final decision.  
Therefore, in this research work a process design of 300 tons/day green ammonia 
production plant and economic assessment of hydrogen production through thermal 
catalytic cracking of ammonia is studied in detail. Imported ammonia will be transported 
through ships from Australia in refrigerated containers normally 30,000 tons per container 
and will be shifted to H2 re-fuelling stations within Korea as per requirement. Ammonia 
cracking units will be installed beside the re-fuelling station to ensure continuous fuel 
supply and avoiding extra transportation of H2. According to Hydrogen Europe, a normal 
H2 re-fuelling station has H2 production capacity of 300 Nm3/hr and contains storage 
tanks, high pressure compressors, and dispensing units.  

2. Methods 
 

2.1 Description of the green ammonia production plant 
 
The production of green ammonia considered in this work constitutes an air separation 
plant, green hydrogen production plant (electrolysis powered by renewable energy), and 
an ammonia synthesis unit. The ammonia is being produced in Australia, after production 
it will be compressed and stored and then shipped to Busan, South Korea. Production 
capacity of the plant is 746 t/day and total power requirement is about 360 MW as adapted 
from Morgan et al (2017) in which 335 MW (93% of total power requirement) is only for 
electrolysis unit. Imported green ammonia will be cracked in a cracking unit installed 
besides the hydrogen re-fueling station to ensure continuous supply. Aspen plus V11 was 
use for process designing and simulation. The heat generated throughout the process is 
captured by EX to generate steam. This steam is then used to run a steam turbine operating 
at 90% polytrophic efficiency, which in turn, aids in driving the compressors to increase 
overall efficiency of the process. Complete process flow diagram of aspen plus simulation 
is shown in Figure1.  
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 Air Separation Unit (ASU). 
Cryogenic distillation unit was modelled which constitute multi-stage compressor 
having inter-stage cooling, shell and tube heat exchangers, and distillation columns. 
Air is at atmospheric conditions and compressed in C1 to 7 bars followed by cooling 
near to its liquefaction temperature. This cooled air is then introduced into a high-
pressure distillation column of 25 stages and operating at 7 bar. The top and bottom 
products from this column are introduced in low pressure column of 20 stages 
operating at 1.013 bar for further separation of nitrogen. The nitrogen obtained from 
the top at 26.260 MT/hr is 99.999% pure and fed to the ammonia synthesis loop for 
ammonia production. Total power consumption of this unit is 3.24 MW. 

 

 Water Electrolysis. 
After water purification, purified feed water is compressed in a centrifugal pump to 30 
bar and heated in a heat exchanger to 80°C. Alkaline water electrolyser was modelled 
using RStoic reactor from model palette. Reactor outlet stream constitute 66.66% 
hydrogen and 33.33% oxygen, this stream was then introduced in a separator and 
hydrogen purity was set to 99.99% considering the purity from commercial 
electrolyser. Purified hydrogen gas at 5.66 MT/hr. is mixed with nitrogen and then fed 
to ammonia synthesis unit while total power consumption of this section is 335 MW. 
 

 Ammonia Synthesis. 
Nitrogen from air separation and hydrogen from electrolyser is first mixed 
adiabatically M1. This synthesis gas stream is then compressed using multi-stage (five) 
compressor to 150 bar pressure. This high-pressure stream is then heated to the 
required reaction temperature of 450°C. The reaction of ammonia synthesis is 
exothermic, so the heat generated during the reaction is captured by EX to generate 
steam which is used to power the compressors being used in the process. The reactor 
outlet stream is cooled to atmospheric temperature of 25°C and introduced to a flash 
separator Sep1 being operated adiabatically. The separator outlet stream L1 contains 
97% pure ammonia, unreacted gases are recycled back to compressor train C3 and 
subsequently to mixer M2. Final product stream P-NH3 from Sep2 is at -18°C and 2 
bar contains 99.99% pure ammonia. The power requirement for this ammonia 
synthesis unit is about 20 MW.  
 

 Transportation.  
In this project, transportation is considered from Dampier port of Pilbara region in 
Western Australia where the world biggest renewable energy project ‘Asian 

Figure 1: Aspen Plus-Process Flow Diagram (PFD) of Green Ammonia Synthesis 
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Renewable Energy Hub (AREH)’ is planned to Busan port, South Korea. The transport 
distance between the mentioned ports is 3867 nautical miles (7161 kilometre).  

 Cracking Unit. 
According to Hydrogen Europe, a normal hydrogen refuelling station (HRS) are 
operated at 300 Nm3/hr hydrogen flow rate. It is assumed that the imported ammonia 
from Australia is transported to hydrogen refuelling stations in Korea where cracking 
units are installed beside the fuelling station to ensure continuous supply. A process 
flow diagram of the unit is shown in Figure 2 Chung et al (2017) reported the 
performance of the decomposition reaction over Ru-based catalysts (Ru/La(x)-Al2O3 
as more than 95% conversion. Reaction conditions were set at 400°C and 1.013 bar. 
Liquid ammonia pass through a heater to attain the reaction temperature. The outlet 
stream of the reactor was then introduced in pressure swing adsorption column, ultra-
pure H2 gas with 99.999% purity was collected from top while the bottom product was 
99.82% pure N2.  

 

 

2.2 Economic Analysis 
 
 

Lee et al (2019) compared a cracking unit for laboratory scale of 0.9 m3/hr. and for a 
small size refueling station of 30 Nm3/hr. Equipment cost was calculated using chemical 
engineering plant cost index (CEPCI) for 2020 and scaling factors obtained from Remer 
et al 1993 and Lee et al (2020). The capacity of our cracking unit is 300 Nm3/hr. 
Transportation and cost of green ammonia for Australia was obtained from Bruce et al 
(2018) and from green ammonia white paper by Argus media (2020). Details of cost 
calculations is shown in table 1 below. NREL’s correlation as shown in Eq.1 was used 
for the calculation of levelised cost of hydrogen (LCOH) as mentioned by Short et al 
(1995), where TLCC is the total life cycle cost of plant including manufacturing cost, D 
is the discount rate, 𝑁𝑃𝑉  is the net present value of the other products i.e. 
oxygen and nitrogen, 𝑛𝐻   is the amount of hydrogen produced. 
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Figure 2: Aspen Plus-Process flow diagram (PFD) of Ammonia Decomposition 
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Table 1: Economic Assessment for Cracking Unit 

Parameter Value Reference 
Assumptions for the analysis 

Depreciation year 7 - 
Tax rate 30% - 

Internal Rate of Return 4.5% - 
Total Power requirement for green ammonia plant 360 MW Morgan et al (2017) 

Assessment results 
Solar PV Capex 902 $/kwh NREL (2019) 

Green Ammonia Plant Total Cost 1.60 billion $ - 
Green Ammonia Cost (LCOA) 0.87 $/kg - 

Ammonia required for H2 138.5 kg/hr. - 
Power requirement for cracking unit 300 KW - 

Ammonia shipping cost to Busan 0.052 $/kg Valentini (2020) 
Cracking Catalyst cost 0.66 4/kgH2 Lee et al (2019) 

Cracking unit installed  Cost  $1,535,490  Jackson et al (2020) 
Levelized Cost of Hydrogen 8.90 $/kg - 

3. Results and discussion 
 

The LCOH cost of hydrogen production from imported green ammonia resulted as $ 
9.12/kg.  According to Jane et al (2020), the current LCOH of green hydrogen is estimated 
to range between $ 2.50/kg and $10/kg, which validate our results. So, the case of 
importing green ammonia from Australia for hydrogen production in Korea resulted to 
be a viable option. The cost of ammonia production is largely dependent on the cost of 
renewable electricity needed and the cost of electrolyzer. In the coming future, fall in 
electrolyser and renewable electricity prices is expected, so green hydrogen will be 
cheaper than today.  

Table 2: Future estimated cost ($/kg) of ammonia and hydrogen production 
Year 2020 2025 2030 Reference 

Solar PV Capex $/kw 902 733 565 NREL (2019) 
AWE Capex (including stack 

replacement) 1,061 849 707 Ju(2020), Matute et 
al., (2019) 

LCOA 0.87 0.73 0.60 -  
LCOH (after cracking) 8.90 8.30 7.75 -  

 
Considering future cost reductions in capital expenditures of solar pv panels and 
electrolyser, we have done an analysis of future estimated prices of hydrogen production 
through cracking of imported ammonia excluding the expected reduction in electricity 
prices, as shown in table 2. Moreover, multiple research studies are also ongoing for 
increasing the activity and economic viability of catalysts for ammonia cracking. 
According to Argus media and Nayak et al (2020) estimates, by 2030 renewable 
electricity prices will drop to $20-25 per MWh and LCOH of green hydrogen will 
eventually fall to $2.30 to 2.40$ per kg also the price of green ammonia will fall to $ 310-
350 per ton. Considering these future estimates, it will become more viable to import 
green ammonia and use it to fulfil hydrogen demands of the country and to decarbonize 
the ammonia and hydrogen industry. To have a fair comparison with imported case and 
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to reach at a point of some decision, there is also a need to do techno-economic assessment 
of domestic production of green hydrogen in Korea. So, our future work will consist of a 
comparative analysis of this case of importing green ammonia with domestic production 
of green hydrogen in Korea along with Monte-Carlo based sensitivity analysis. 
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Abstract 
To decarbonise the transportation sector, South Korea is looking forward to evaluate 
possible cross-regional hydrogen supply pathways to meet the future hydrogen demand 
and reduce carbon emissions to ‘zero’ under Paris agreement by 2050. The use of 
ammonia as hydrogen carrier to meet hydrogen demands is under consideration and the 
goal of this paper is to evaluate environmental aspects of green hydrogen production from 
green ammonia imported from Australia. In the present work, a cradle to gate life cycle 
assessment of hydrogen production from imported green ammonia imported is carried out 
by using commericial life cycle assessment software Simapro. The scope of life cycle 
assessment includes; green ammonia production in Australia, shipping to South Korea, 
ammonia transportation from port to hydrogen refuelling stations in Korea, and hydrogen 
production through catalytic craking of ammonia. Mass and energy balance data obtained 
from process flow modelling are used as an input for life cycle assessment. In terms of 
energy consumption, hydrogen production through water electrolysis consume more than 
90% of total power while ammonia synthesis only consume 5.5%. The results of life cycle 
assessmnet show that transportation of the green ammonia was the major contributor 
having 95% of total CO2 emissions while hydrogen production through water electrolysis 
was producing about 4.5% of total carbon emissions. This study reveals that considering 
environmental sustainability, using imported green ammonia is not a viable option until 
transportation fuel is replaced with an environmental friendly fuel. However, if marine 
fuel is replaced by a green fuel it can further reduce the transport related emissions turning 
this case into a viable option to meet the hydrogen related demands. 

Keywords: Life Cycle Assessment, Green Ammonia, Green Hydrogen 

1. Introduction 
The alarm of increasing global warming is shifting the world's focus towards clean and 
sustainable energy systems. The increasing concentration of greenhouse gases in the 
atmosphere is mainly due to the extensive burning of fossil fuels for energy generation. 
Energy demand is growing quickly with the rapid urbanization and industrialization of 
the world, and considering environmental sustainability; it is needed to offset the large 
dependency on fossil fuels. Renewable energy sources such as wind and solar are 
available in ample quantity in nature and can be used efficiently as a substitute for fossil 
fuels. Electricity and heat production are the highest contributors to carbon emissions, 
followed by transportation. Decarbonisation of the transportation and industrial sector is 
possible only by using clean and sustainable fuel instead of high carbon-emitting fossil 
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fuel. Hydrogen carrier like ammonia can be a potential candidate to solve the issue of 
infrastructure for the global transportation of hydrogen due to its low volumetric density. 
Ammonia production can be carbon-free if the hydrogen required for ammonia 
production is obtained from renewable energy sources through water electrolysis rather 
than that of the conventional process of steam methane reforming, emitting high carbon 
emissions. Energy hungry countries like Japan and Korea are thinking of importing green 
ammonia from countries like Australia to offset their large dependency on fossil fuels and 
meeting their hydrogen economy roadmaps. The decision to import green ammonia needs 
an intensive analysis on environmental sustainability assessment considering the 
transportation from Australia to Korea. 
Currently, according to Philibert (2017), global ammonia production contributes to 1.3% 
of total carbon dioxide emissions, along with about 420 million tons of CO2 being emitted 
into the atmosphere. Globally, ammonia production relies on fossil fuels both as an energy 
source and feedstock, specifically for hydrogen. The ammonia industry's decarbonisation 
is possible only if the source of energy and hydrogen feedstock is replaced by fossil fuel 
with greener and sustainable sources. Hydrogen production through water electrolysis 
needs electricity, and if this electricity is from renewable energy sources such as wind 
and solar, the produced hydrogen and then ammonia can be termed as green and 
sustainable. Life cycle assessment (LCA) is a well-known methodology to access the 
environmental impacts associated with a product or process at each stage of its life cycle 
like raw materials extraction, product manufacturing, services, and final disposal. The 
assessment of green ammonia production's environmental impacts will give a brief insight 
into the process's sustainability aspects and economic indicators. 
Therefore, this study presents a cradle to gate environmental assessment of hydrogen 
production from imported green ammonia. This assessment's system boundary includes; 
raw materials required for manufacturing the product, infrastructure for green ammonia 
production, including construction and manufacturing of electrolyzer, and transportation 
from Australia to Busan. This work doesn't include the construction of renewable energy 
power plants, compression, and hydrogen storage since it is assumed that the hydrogen 
generation unit is onsite and construction of hydrogen refuelling stations. It is assumed 
that ammonia imported from Australia will be shifted to fuelling stations in Korea as per 
requirement, and cracking units will be installed beside the stations to avoid hydrogen 
transportation and ensure continuous fuel supply. 

2. Methods 
A block flow diagram is shown in Figure 1 for a brief overview of the process. This work 
was done in three stages; process designing and simulation of hydrogen and ammonia 
production processes, life cycle inventory and assessment, and interpretation of results. 
For process design and simulation, Aspen Plus V11 was used, mass and energy balance 
data from process design was used as an input for life cycle assessment. SimaPro 9.1.1.1 
was used for life cycle assessment, and method CML-IA baseline V3.06 was selected for 
evaluation of economic indicators.  
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2.1 Process design and simulation  
Ammonia here is produced by the combination of nitrogen (from air separation unit) 
and hydrogen (water electrolysis) at high temperatures (450°C) and pressure (150bar) 
in the presence of Fe2O3 as catalyst. Aspen plus process flow diagram of green 
ammonia synthesis is shown in Figure 2. Electricity from renewable energy sources is 
used as an input of power source of electrolyzer and production process of ammonia 
of 746 tons/day with 5.66 ton/hr. of hydrogen from electrolyzer and 26.260 ton/hr. 
nitrogen from air separation requires 360 MW in total, according to Morgan et al. 
(2017). Power consumption of each unit is; air separation 3.24 MW, ammonia 
synthesis unit about 20 MW, and water electrolysis about 335 MW. This green 
ammonia will then be shipped to Korea and then transported from port to hydrogen 
refuelling stations as per requirement. It is assumed that cracking units are installed 
beside the fuelling station for onsite production of hydrogen and to avoid hydrogen 
transportation. A process flow diagram of the unit is shown in Figure 3, reaction 
conditions were set at 400°C and 1.013 bar. Liquid ammonia pass through a heater to 
attain the reaction temperature. The outlet stream of the reactor was then introduced in 
pressure swing adsorption column, ultra-pure H2 gas with 99.999% purity was 
collected from top while the bottom product was 99.82% pure N2.  A normal hydrogen 
fuelling station operates at a 300 Nm3/hr hydrogen flow rate. High-pressure 
compressors (750-1000 bar) are used for hydrogen at the fuelling station. However, 
hydrogen compression and storage is not considered in the environmental assessment. 

 

 

 

 

 

Figure 1: Block diagram of the case study 

Figure 2: Process flow diagram of green ammonia synthesis 

Figure 3: Process flow diagram of cracking of green ammonia  
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2.2 Life Cycle Impact Assessment 
Life cycle assessment is a universal and mature tool to assess the environmental impacts 
from manufacturing, packaging, storing, transportation, and final disposal. Life cycle 
inventory is calculated by using mass and energy balance data obtained from process 
design modelled in Aspen Plus V11. The system boundary for this assessment includes; 
raw materials required for manufacturing the product, infrastructure for green ammonia 
production which includes construction and manufacturing of electrolyser, and 
transportation from Australia to Busan. This work doesn’t include construction of 
renewable energy power plants, hydrogen re-fuelling stations, and compression and 
storage of hydrogen since it is assumed that hydrogen generation unit is onsite. Australian 
energy statistics (2020) published by the department of industry, science, energy, and 
resources reported that electricity generation by renewable energy sources (wind, hydro, 
and solar) 21% in 2019 in which wind and solar contributed equally at 6%. Hydrogen 
production from electrolysis needs a huge amount of electricity, about 54.3 kwh per kg 
of hydrogen (Koj et al., 2017). So, it is the major source of carbon emissions in the green 
hydrogen production process. In contrast, the electrolyzer construction has very little 
contribution to the emissions, as shown in Figure 4 below.  

 

The transportation from Australia to Korea emits high CO2 and SOX emission since no 
renewable fuel is used in marine transport now. These results are shown as relative 
contribution, since ammonia is being transported from Australia to Busan having distance 
of 7161 km so it is contributing maximum in the emissions. There is a probability of using 
green ammonia as a marine fuel, and if marine fuel is replaced with green energy, then 
the high emissions related to transport can also be mitigated. The results of environmental 
indicators after LCA of green ammonia production is shown in Figure 5. Following the 
ammonia transportation, hydrogen production presents the second highest emissions 
throughout the process. Hydrogen production through cracking of green ammonia has the 
lowest contribution since very less power, about 300 kwh for hydrogen production of 300 
Nm3/hr. is required for the process. 
 
2.3Interpretation of results 
The results of the complete life cycle assessment of the case study as shown in figure 5, 
reveal that more than 90% of GWP related emissions come from NH3 shipping while  

Figure 4: LCA results of hydrogen production from electrolysis
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hydrogen production by water electrolysis emits about 5% of total emissions. Ammonia 
synthesis unit results into only 0.12% while ammonia cracking process presents almost 
negligible amount of carbon related emissions as compared to other stages of process.  
Selected environmental indicators for life cycle impact assessment are explained below 
in table 1 along with the sources. Anthropogenic CO2 emissions in global warming cause 
climate change, which in turn results in negative effects on human health and ecosystem 
quality. Similarly, other indicators such as the depletion of minerals and fossil fuels that 
come under abiotic depletion are also evaluated. Eutrophication, along with other 
economic indicators, was also evaluated in the analysis. CH4-methane; CFCs-
chlorofluorocarbons; HCFCs-hydro-chlorofluorocarbons; CH3Br-bromomethane; PM10-
particulate matter 10 μm; SO2-sulphur dioxide; NMVOC-non-methane volatile organic 
compound.  

3. Conclusion 
 

Production of ammonia is a very mature process commercially, but source of hydrogen 
production is through steam reforming of natural gas (fossil fuel), which is a major source 
of high carbon emissions. We have compared our green ammonia production process with 
that of conventional ammonia production processes in Figure 6. According to Luke et al. 
(2020), ammonia production contributes to 1.3% of the world's total carbon dioxide 
emissions. Green ammonia production contributes only 4% of carbon dioxide emissions 

Figure 6: Comparison of LCA of ammonia production routes 

Figure 5: LCA results of hydrogen production from imported green ammonia   
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as compared to conventional ammonia production routes and that 4% are due to the raw 
materials required for electricity production. Steam reforming uses natural gas route use 
natural gas and ammonia production as synthetic fuel by Fischer-Tropsch process use 
coal, so it has the highest contributions to the emissions. Results indicate that importing 
green ammonia for meeting hydrogen demands in not environment friendly now due to 
huge amount of emissions related to NH3 shipping, but it can be viable in the coming 
future. If marine transportation is replaced by ammonia as fuel by using fuel cells or 
ammonia fuelled engines (2 stroke engines), which is also under research work (MAN 
2019), then transportation of green ammonia will be more beneficial for the environment.  

Table 1: Economic Indicators, definition, and contribution sources (Chisalita et al. 2020)  
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Impact Category  
(Units per kg emission) Definition Relevant LCI Data 

Abiotic Depletion (ADP) 
(kg Sb eq.) 

Collective quantification of the impact 
caused by extraction of minerals due to 

inputs in the system 

Extraction of mineral 
resources 

Abiotic Depletion (fossil fuels) 
(AFFDP )(MJ) 

Surplus energy (lower heating value) per 
extracted MJ, kg, or m3 fossil fuel, as a 

result of lower quality resources; 
unavailable for use by future generations 

Extraction of fossil 
fuel resources 

Global Warming  (GWP 100a) 
(kg CO2 eq.) 

GWP potential for time horizon 100 years: 
The impact caused by emissions of 

greenhouse gases 

CO2, NO2, CH4, 
CFCS, HCFCS, 

CH3BR 

Ozone Layer Depletion (ODP)  
(kg CFC-11 eq.) 

Thinning of the stratospheric ozone layer 
due to anthropogenic emissions due to 

greenhouse gases 

CFCS, HCFCS, 
CH3BR, Halons 

Human Toxicity (HTP) 
(1,4-dichlorobenzene eq.) 

Potential impacts of toxic substances on 
human health present in the environment 

Human toxic 
substances 

Photochemical oxidation 
(kg C2H4 eq.) 

Formation of reactive chemical compounds 
like ozone, by the action of sunlight on 

emissions of air pollutants 

PM10, NH3, SO2. 
NOX, and NMVOC 

Acidification  
(kg SO2 eq.) 

Formation of acidic compounds as a result 
of the manufacturing process SOX 

Eutrophication  
(kg PO4 eq.) 

Collective quantification of formation of 
phosphorus compounds 

Nitrogen and 
Phosphorus 
compounds 
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Abstract 
Distillation is the most important separation process in the chemical industry despite 
being very energy-intensive, hence any attempt to optimise its design may potentially 
have a significant impact. In this work, a combined optimisation strategy based on 
Genetic Algorithm (GA, stochastic method) and an outer approximation method 
(OAERAP, deterministic method) is proposed and demonstrated to reliably and 
efficiently optimise different distillation processes by achieving significant energy and/or 
capital savings. Three different case studies are presented to compare the combined 
strategy to the stand-alone GA and OAERAP methods. The combined optimisation 
strategy shows excellent results, with the total annualised costs obtained from the 
combined strategy being similar or better than for the stand-alone methods. More 
importantly, the combined strategy requires much shorter CPU time, as well as 
significantly less manual effort, thus greatly increasing the time efficiency when 
compared to the OAERAP method. 
 
Keywords: Optimisation, Genetic Algorithm, Outer-approximation, Distillation 

1. Introduction 
The optimisation of many chemical processing units, including distillation columns, is a 
Mixed Integer Nonlinear Programming (MINLP) problem, as well as a highly non-
convex problem, leading to the existence of potentially multiple local optima (Javaloyes-
Antón et al., 2013). Current optimisation methods used to solve these problems can be 
categorised into deterministic and stochastic methods, where the former requires the 
translation of the problem into a convex model to find the global optimum (Grossmann 
et al., 2005), an approach that can be quite challenging (Bonami et al., 2008). Stochastic 
methods do not require the model to be transformed, but will instead typically require a 
long time to converge. In this work, a combined optimisation strategy is proposed that 
exploits the ability of the stochastic method to easily identify the proximity of the global 
optimum for a non-convex problem, and the quick convergence of the deterministic 
method once close to that optimum. Several case studies will be used to illustrate the 
strategy, including a two column sequence, a dividing wall column (DWC), and a hybrid 
separation process. 

2. Methodology 
The proposed strategy uses a stochastic method in the form of Genetic Algorithm (GA) 
to find an approximate, preliminary, optimal design in the first step. In the second step, 
and based on the preliminary design from the first step, a deterministic method based on 
outer approximation (OAERAP) is used to find the global optimum. For the combined 
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approach, the values returned from the GA algorithm represent a valid solution to the 
model and the outer approximation initialisation is therefore non-problematic. All the 
case studies are performed in a process simulator, gPROMS ProcessBuilder, and the same 
distillation process model is used for all methods. gO:MATLAB is used to exchange data 
with MATLAB within which the external GA optimiser is implemented. 
 
The OAERAP algorithm may easily fail to converge if the optimisation problem is highly 
non-convex and complex. Thus, a setup procedure as shown in Figure 1a is introduced to 
overcome the convergence issue of initialising the OAERAP algorithm. The OAERAP 
used in this work is built-in in gPROMS ProcessBuilder, and the procedure can be found 
in the gPROMS documentation (Process Systems Enterprise, 2020). The optimisation 
convergence is highly dependent on the variable bounds and the initial values provided, 
and the optimisation problem is therefore typically implemented in two stages. First, the 
continuous variables are added one-by-one and the optimisation problem is solved after 
each. Next, the integer/discrete variables are similarly included, and finally the whole 
problem optimised. It should be noted that for certain problems some of the variables may 
be linked, e.g. number of stages and feed locations for DWC, and these variables should 
then be added together. During optimisation, some of the variables may be stuck on 
bounds, which must then be relaxed and the problem re-optimised before adding another 
variable into the problem. To improve the convergence, the search space may 
subsequently be narrowed again before adding another variable. This manual procedure 
is clearly time consuming but unfortunately often necessary. 
 
The procedure of the GA method is shown in the inner box in Figure 1b. In this work, the 
GA method was developed in MATLAB and was validated against several classical 

Figure 1. Flowcharts of (a) deterministic (OAERAP) method, (b) stochastic (GA) method 
and combined strategy. 
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mathematical functions (e.g. Schwefel function and constrained Rosenbrock function) 
and literature (Deep et al., 2009; Deb, 2000) (not shown). Based on this validation, the 
population size in this work is chosen as five times the number of optimisation variables, 
and the GA is stopped when the best fitness value remains constant (within the fitness 
tolerance) for 20 consecutive generations. The discrete crossover is used for all case 
studies (Umbarkar and Sheth, 2015). The top 50 % of the ranked chromosomes are chosen 
to participate in the crossover, and the elitism percentage is chosen as 10 %. To improve 
the performance of the GA, the mutation probability is set as 50 % initially and the value 
is changed to 10 % after a feasible (all constraints are met) design is found. Furthermore, 
the penalty function proposed by Deb (2000) is used to avoid guessing the R value. To 
improve the optimisation convergence, the following approaches were applied:  
1) dynamic bounds were introduced for some variables (for example, the feed location 
should always be lower than the number of stages in a column, thus the upper bound of 
the feed location should be dynamically equal to the number of stages in its chromosome); 
and 2) the model was initialised using a feasible simulation with the number of stages 
close to the lower bound before each simulation. By applying these strategies, the 
percentage of infeasible simulation dropped from 90 % to 10 % in each generation. 
 
The procedure of the combined strategy proposed in this work is shown in the outer box 
in Figure 1b. First, the GA method with a looser tolerance, and thereby a faster 
convergence, is used to locate a preliminary global optimum design. Figure 2 (based on 
a minimisation problem) shows that with a tighter fitness tolerance, the fitness is better 
but more generations are required. By trading off between fitness and generations (CPU 
time), a tolerance of 10−2 is chosen as this value provides good results but needs only half 
the generations compared to a 10−4 tolerance, which is the default value normally used in 
OAERAP and GA. Apart from the change of fitness tolerance, all other GA settings are 
kept the same. Once the preliminary GA design is obtained, this design becomes the initial 
values in the OAERAP problem and the entire optimisation is solved in one step without 
applying the setup procedure for the OAERAP. 

3. Case Studies 
The optimisation strategy is illustrated using three case studies. For each case, several 
optimisations are performed for each optimisation methods with almost identical 
solutions. In the following, the solution with the most common fitness and CPU time 
(referring to the peak in the probability density function) is presented. All simulations 

Figure 2. (a) Probability density function of fitness, and (b) Exponential regression for 
TAC-Generation, at different values of fitness tolerance (Case study 1). 
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Table 1. Case study 1 – Two column direct sequence: Comparison between GA, OAERAP, and the 
combined strategy. 

were performed using a laptop with an Intel® CoreTM i7-9850H CPU with 2.6 GHz and 
16 GB memory. 
3.1. Description 
Case study 1 is the separation of an equi-molar benzene/toluene/o-xylene mixture 
separated in a two-column direct sequence. The feed is a saturated liquid at 0.37 bar with 
flow rate of 500 kmol h−1. The column operates at 0.37 bar with no pressure drop, and is 
modelled in gPROMS ProcessBuilder using “Distillation_column_gML”, which is an 
equilibrium model. For case study 2, the same separation task takes place in a dividing 
wall column (DWC), with all other information remaining the same as for case study 1. 
As there is no library model for a dividing wall column (DWC), a thermodynamically 
equivalent Petlyuk structure is considered instead. Case study 3 is a hybrid distillation-
pervaporation column separating an azeotropic water-ethanol mixture. The feed is an 
equi-molar saturated liquid at 1.1 bar with flow rate of 500 kmol h−1. The column pressure 
is 1.1 bar with no pressure drop. The membrane model is a user-defined model coded in 
gPROMS ProcessBuilder which was validated against the membrane model by Luyben 
(2009). For all case studies, UNIQUAC is the thermodynamic model. 
 
The objective function is to minimise the total annualised cost (TAC), including capital 
and operating costs, with the assumption of 8 years of payback period with an annual 
operating hour of 8400 h y−1, and a membrane lifetime of 2 years. The column sizing 
equations are obtained from Seider et al. (2016) and the cost equations from Sinnott and 
Towler (2020). 
 
3.2. Results and Discussion 
To evaluate the performance of each optimisation method, TAC and CPU time is chosen 
as the main indicators. Tables 1 to 3 show all the optimised variables, TAC, and CPU 
time for each case study. The tables show that the preliminary design obtained from GA 
in the proposed combined strategy has a slightly higher TAC but much lower CPU time 
when compared to the stand-alone GA method. The final optimal designs for the 
combined optimisation strategy (preliminary GA + OAERAP), show better TAC (up to 

Items GA OAERAP Combined Units Prelim. GA Final 
Column 1 
Total stages 29 28 28 30 - 
Feed stage 15 14 13 13 - 
Distillate flowrate 334 335 332 335 kmol h-1 
Reflux ratio 1.42 1.41 1.49 1.38 mol mol-1 
Column 2
Total stages 24 25 30 29 - 
Feed stage 13 14 18 16 - 
Distillate flowrate 332 331 333 331 kmol h-1 
Reflux ratio 1.21 1.21 1.21 1.15 mol mol-1 
Fitness and Time 
TAC 13.5112 13.4429 13.6970 13.2803 M $ y-1 
Single CPU time 767 89 306 57 s 
Total CPU time 767 - 363 s 
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Table 2. Case study 2 – Dividing Wall Column (DWC): Comparison between GA, OAERAP, and 
the combined strategy. 

2% reduction) compared to the stand-alone GA method. Due to the fast convergence 
speed of the single OAERAP optimisation in the second step, the total CPU time of the 
combined strategy can be reduced by 19-53 % depending on the complexity of the system. 
 
In general, the optimal TAC obtained from the combined strategy is close to the TAC 
obtained from the OAERAP method. However, the CPU time of OAERAP within the 
combined strategy (labelled as “Final” in the tables) was greatly reduced (36-76 %) when 
using the preliminary GA design as initial values. It should be noted that the CPU time 
for the standard OAERAP method is misleading as this is only the solution time and 
therefore does not take into account the considerable time required to set up the problem, 
and the trial and error needed to adjust the bounds etc. This time is therefore highly 
dependent on other factors such as the optimisation experience of the user, initial guesses 
for the values, and/or short-cut design method used. In our experience, and especially for 
complex systems, the OAERAP optimisation often fails to converge, gives values stuck 
on bounds, runs “infinitely” (e.g. for DWC more than 30 hours without yielding any 
results) with poor initial values, etc., which lead to a much higher time consumption 
compared with the combined strategy. Most of the optimisation time in the combined 
strategy is used in the preliminary GA which is far more robust and unlikely to fail hence 
not needing constant monitoring. 

4. Conclusion 
A hybrid optimisation strategy combining Genetic Algorithm (stochastic method) and 
OAERAP (deterministic method) is proposed in this paper and illustrated using three 
distillation-based case studies. The case studies show that using only the deterministic 
method may yield an infeasible solution if the bounds of the optimisation variables are 
too wide, and that to narrow these bounds, significant manual trial and error is required. 
In addition, the optimisation variables must typically be added manually and gradually to 
achieve convergence. For the stochastic method, the GA can yield a preliminary optimal  

Items GA OAERAP Combined Units Prelim. GA Final 
Prefractionator 
Total stages 23 25 25 28 - 
Feed stage 12 16 17 17 - 
Main Column 
Total stages 44 46 45 47 - 
Feed stages 9/33 8/34 9/35 6/35 -
Liq. sidedraw stages 18/9 19/8 18/9 18/6 - 
Vap. sidedraw stage 33 34 35 35 - 
Liq. side flowrates 332/166 328/178 332/185 330/161 kmol h-1 
Vap. side flowrate 601 640 643 598 kmol h-1 
Distillate flowrate 333 336 332 335 kmol h-1 
Reflux ratio 2.26 2.19 2.27 2.19 mol mol-1 
Fitness and Time 
TAC 9.5699 9.4990 9.6110 9.4931 M $ y-1 
Single CPU time 13586 608 7100 319 s
Total CPU time 13586 - 7419 s 
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Table 3. Case study 3 – Hybrid process: Comparison between GA, OAERAP, and the combined 
strategy. 

design in a moderate amount of time, however, significantly more time is needed to 
converge to the actual optimum. For all the case studies, the proposed combined strategy 
shows a greatly reduced overall optimisation time. Although the combined strategy 
requires more computational effort compared to the stand-alone GA and OAERAP, the 
significant saving in time and manual effort, especially for complex systems, overwhelms 
the limitation of the combined strategy. To conclude, the proposed combined strategy 
makes optimisation easier, requiring less manual effort, and can yield a better global 
optimum in a shorter time. The combined strategy can also be used for other types of 
optimisation problems, e.g. based on a superstructure. 

References 
P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi, 

F. Margot, N. Sawaya, A. Wächter, 2008. An Algorithmic Framework for Convex Mixed 
Integer Nonlinear Programs. Discrete Optimization 5 (2), 186–204. 

K. Deb, 6 2000. An Efficient Constraint Handling Method for Genetic Algorithms. Computer 
Methods in Applied Mechanics and Engineering 186 (2-4), 311–338.  

K. Deep, K. P. Singh, M. L. Kansal, C. Mohan, 2009. A Real Coded Genetic Algorithm for Solving 
Integer and Mixed Integer Optimization Problems. Applied Mathematics and Computation 212 
(2), 505–518. 

I. E. Grossmann, P. A. Aguirre, M. Barttfeld, 5 2005. Optimal Synthesis of Complex Distillation 
ColumnsUsing Rigorous Models. Computers & Chemical Engineering 29 (6), 1203–1215. 

J. Javaloyes-Antón, R. Ruiz-Femenia, J. A. Caballero, 2013. Rigorous Design of Complex 
Distillation ColumnsUsing Process Simulators and The Particle Swarm Optimization 
Algorithm. Industrial and Engineering Chemistry Research 52 (44), 15621–15634. 

W. L. Luyben, 2009. Control of A Column/Pervaporation Process for Separating The 
Ethanol/Water Azeotrope. Industrial and Engineering Chemistry Research 48 (7), 3484–3495. 

Process Systems Enterprise, 2020. gPROMS ProcessBuilder version 1.4.        
URL https://www.psenterprise.com/products/gproms/processbuilder 

W. D. Seider, D. R. Lewin, J. D. Seader, S. Widagdo, R. Gani, K. M. Ng, 2016. Product and Process 
Design Principles: Synthesis, Analysis and Evaluation, 4th Edition. Wiley. 

R. Sinnott, G. Towler, 2020. Chemical Engineering Design, 6th Edition. Elsevier. 
A. Umbarkar, P. Sheth, 10 2015. Crossover Operators in Genetic Algorithms: A Review. ICTACT 

Journal on Soft Computing 6 (1), 1083–1092.  

Items GA OAERAP Combined Units Prelim. GA Final 
Column 
Total stages 35 38 35 37 -
Feed stages 34/31 37/34 34/32 36/33 - 
Distillate flowrate 305 304 303 304 kmol h-1 
Reflux ratio 1.26 1.24 1.33 1.25 mol mol-1 
Membrane (Single Module) 
Mem. temp. 388 390 389 390 K 
Area 406 357 363 357 m2

Fitness and Time 
TAC 9.0639 8.8507 9.0468 8.8561 M $ y-1 
Single CPU time 4291 17 3486 4 s 
Total CPU time 4291 - 3490 s 
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Abstract 
This work deals with the design of integrated facilities for the simultaneous production 
of xylitol and sorbitol from lignocellulosic biomass. A superstructure of alternatives is 
formulated. Different pretreatments, such as dilute acid or AFEX for the fractionation of 
the biomass are considered. Next, after hydrolysis, the C5 and C6 sugars are processed 
separately, for which either a catalytic or a fermentation stage are evaluated. Finally, the 
purification of any of the products is carried by crystallization in a multi-state evaporator 
system. Surrogate models based on experimental data for the different stages of the 
process including the pre-treatment and the synthesis and first principles models for 
crystallization are developed to formulate the superstructure MINLP optimization model. 
The optimal results suggest the use of dilute acid and the catalytic system, and a system 
of three crystallizers is selected. This optimal flowsheet is also used to evaluate the 
performance of different raw materials into the product portfolio as a function of the 
biomass composition as well as the design of the optimal biomass. 
 
Keywords: Integrated processes, Biomass, added valued products, Optimization. 

1. Introduction 
The chemical industry is undergoing a transformation towards a more sustainable future 
starting from the use of renewable instead of fossil resources, which constitutes the 7th 
principle of green chemistry (Erythropel et al., 2018). Biomass has emerged as a rich raw 
material towards the production of energy and chemicals (Keshwani and Chen 2009). The 
diversification of the use of biomass results in the need to use it for products beyond fuels 
and energy. In particular xylitol and sorbitol are considered in the production of dietetic 
foods as well as in pharmaceutical applications (mainly as a carrier), cosmetics industry 
(as an emulsion stabilizer), moisturizer, texturizer and softener having being listed on the 
top 12 high value-added building block intermediate chemicals that can be produced from 
renewable biomass resources (Werpy et al., 2004). Xylitol can be obtained from xylose 
via fermentation or catalytic hydrogenation (Rafiqul and Sakinah, 2013). Sorbitol is 
obtained from glucose via catalytic hydrogenation or from fructose via fermentation (van 
Gorp et al., 1999; Chun and Rogers, 1988). Fructose can be obtained from glucose via 
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isomerization (Illanes et al., 1992). In spite of previous efforts in the design of production 
processes, no attempt has been made on the design of an integrated process for the 
simultaneous production of both from lignocellulosic biomass. 

2. Process description 
Biomass starts with a size reduction step before pretreatment. There are many alternative 
pretreatments (Sung and Cheng, 2002). However, among them the ones that have reached 
commercial exploitation are (1) dilute acid (H2SO4) pretreatment, and (2) ammonia fibre 
explosion (AFEX). Once the physical structure of the switchgrass is broken, we separate 
cellulose from hemicelluloses sugars. Cellulose is hydrolyzed at 45-50ºC for 3 days to 
obtain glucose (Piccolo and Bezzo, 2009). Glucose can be isomerised into fructose for its 
fermentation into sorbitol or catalytically hydrogenated. Next, the sorbitol is recovered 
by crystallization in a three-effect evaporator. Xylose follows a similar path into xylitol. 
It can be either fermented or catalytically hydrogenated into it. The superstructure of 
alternatives is presented in Figure 1. 

 
Figure 1.-Superstructure for the production of xilytol and sorbitol 

3. Modelling approach 
Surrogate models based on detailed simulations and/or experimental data are developed 
for particular units such as the pretreatments, the ammonia recovery column, and the 
crystallizers.  The model for the superstructure is expressed in terms of total mass flows, 
component mass flows, component mass fractions, and temperatures of the streams in the 
network. 
Pretreatment: Both pretreatments, AFEX and dilute acid, are modelled using response 
surface models developed experimental data from the literature to estimate the yield and 
process simulators for the recovery of ammonia. For the acid pre-treatment the yield is a 
function of the operating temperature, T, the acid concentration, %, the enzyme added, 
Enz, and the residence time (Shi et al., 2011). 

( ,%, , )
( ,%, , )

cellu

Hemi

Y f T Enz t
Y f T Enz t



        (1) 
In the case of the AFEX, the yield to sugars depends on the water and ammonia added 
per kg of biomass, NH3,added or Waadded, the residence time and the operating temperature, 
T (Garlock et al., 2012). 

3,( , , , )cellu added addedY f T NH Wa t       (2) 
A surrogate model is developed to evaluate the effect of the feed composition on the 
operating conditions of the column that recovers ammonia. 
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Xylitol production: 
Via fermentation the reaction consumes ammonia and hydrogen as follows, operating at 
30ºC and 1 bar with a conversion of 92% (Mountraki et al., 2017). 

5 10 5 2 3 2 1.8 0.5 0.2 2 5 12 5100 8.75 7 37 35 35 86C H O O NH H CH O N CO C H O       (3) 
The catalytic synthesis reaction takes place at 100-120 ºC and 40-60 bar for 3-4 h. A 
model to estimate the conversion is developed from the kinetics results in the literature 
(Ngoc Pham et al., 2016). 

1
5 10 5 2 5 12 5             H= -64.1  kJ·molC H O H C H O              (4) 

Sorbitol production: 
Via fermentation an additional step is required to isomerise the glucose into fructose 

1
6 12 6 6 12 6(glucose) (fructose)            H= 9196  kJ·molC H O C H O     (5) 

That is next fermented into sorbitol as follows: 

6 12 6 2 3 2 1.8 0.5 0.2 2 6 14 6100 15.75 7 40 35 49 86C H O O NH H CH O N CO C H O       (6) 
Based on experimental data, the conversion of the fructose into sorbitol can be predicted 
by the following correlations 

6 1 2 4 1
(fructose) 1.40·10 (concentration(g·L ))  8.700000·10 (concentration(g·L ))  0.819X        (7) 

The catalytic hydrogenation of glucose is carried out at 100-140 ºC, 40-60 bar 
1

6 12 6 2 6 14 6             H= -82.7  kJ·molC H O H C H O              (8) 
Crystallization: Each crystallizer is modelled using mass and energy balances. Note that 
the pressure at the evaporation chamber will depend on the steam generated in the 
previous one and the composition of the mixture to concentrate. The solubility as a 
function of the temperature has been correlated from the literature data (Zambé et al, 
2001) as well as the ebulloscopic effects. S represents steam, s condensed stream, F feed, 
E, evaporated water, L liquid product and C crystals. 

   , , , , ,·                    effects ,i X,Sj j f i j i j j l iF x C L x j      
H HS F s E L CH H H H           (9) 

,· ( , )
ref

T

i i i f p
i T

H f h F c X T dT   
 

4. Optimization procedure 
The superstructure is decomposed into four flowsheet alternatives: one per pretreatment 
and one for each of the synthetic routes, either fermentation or catalysis. An NLP problem 
is solved for each one where the objective function consists of a simplified production 
costs given by eq. (10) 

2

i
Xylitol Xylitol Sorbitol Sorbitol Steam H

i

QZ P m P m P P


   
  (10) 

Subject to the models described in section 3. Each NLP consists of around 2700 eqs and 
3800 variables and it was solved with GAMS requiring 12.5 s of CPU-time. After the 
optimization, a heat exchanger network is designed to reduce energy consumption. 
Finally, a detailed economic evaluation of the alternatives is performed to compute the 
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production and investment costs of the facility using the cost correlations in Martín and 
Grossmann, (2011) and the procedure described in that work. 

5. Results 
In this section the major operating results as well as the economics of the different 
alternatives are presented. In addition, a subsection commenting on biomass design has 
also been included. 
5.1. Process analysis 

The superstructure of alternatives has been decomposed to evaluate the performance of 
each of the alternative processes including two pre-treatments and two synthetic lines. 
Table 1 shows the major results of each of the optimized paths.  

Table 1.- Major yields of the alternative production paths 

 
Two main results can be highlighted. Dilute acid pretreatment and catalytic 
hydrogenation show the largest yield to products. In general, fermentation requires more 
energy than catalytic synthesis due to the diluted products and operating conditions, while 
dilute acid pretreatment consumes also more steam than AFEX, since it operates at milder 
temperature. Note that the isomerisation of the glucose is endothermic, increasing the 
need for utilities. The best objective function corresponds to the use of dilute acid 
pretreatment followed by catalytic hydrogenation. Even though further results of the four 
paths will be presented, the focus of the analysis will be that this best process. But for the 
case of the fermentation-based processes, three effect evaporation systems are used 
operating under vacuum. 

5.2. Process economics 

Table 2 shows the investment and production cost of the four alternatives. The 
fermentation-based processes require additional investment due to the need for 
isomerisation of the glucose and the high residence times in both the isomerisation and 
the fermentation itself, that doubles the one when catalytic hydrogenation is considered. 
In addition, the larger consumption of steam in the case of fermentation also increases the 
production costs which double the ones using catalytic synthesis. Figure 2 shows the 
detail of the breakdown for the production costs, Figure 2a, and investment costs, Figure 
2b. With regards to production costs, 70% of them correspond to the raw material so that 
the more efficient process in using it will yield better economics. That is the reason for 
the catalytic hydrogenation to be the best synthetic path and the dilute acid the selected 
pretreatment. The best process reports an investment cost of 121 M € and a production 
cost of 18.74 M€/yr. In terms of investment, biomass pretreatment towards sugar 
production represents over 50% of the investment cost. That is the reason for biomass-

162



Process and product design for the simultaneous synthesis of xylitol  
and sorbitol from biomass 

based processes to show a barrier to enter the market versus the more established use of 
fossil alternatives. The second major contribution corresponds to the heat exchanger 
network responsible for reducing steam use at the cost of the investment required in the 
network. 
 
5.3. Biomass design 

The inverse problem is solved here. Instead of using a fixed biomass composition, 
belonging to a lignocellulosic species such as switchgrass, the optimal flowsheet is used 
to determine the best composition within the typical ranges of hemicelluloses, cellulose 
and lignin for the simultaneous production. The resulting biomass composition 
corresponds to 15% water, 20% cellulose, 40% hemicellulose, 15% lignin and 5% ash. 
The higher cost of the xylitol results in a biomass with larger fraction of hemicelluloses. 
The cellulose represents a secondary role due to lower market price of the sorbitol and 
higher amount of steam used respect to xylitol production. 

 
Table 2.- Summary of economic analysis 

 

 
Figure 2.- Breakdown of a) production costs b) investment cost. 

Among typical biomasses such as wheat straw, corn stover, switchgrass, hybrid poplar, 
forest residues from pine, birch, spruce  and sugarcane bagasse the one that fits the best 
is sargassum algae (sargassaceae) with a composition of 20.48% cellulose and 43.19% 
hemicellulose and similar lignin content as the optimization results (Rabemanolontsoa 
and Saka, 2013). Further sensitivity analysis on the effect of the product prices is to be 
carried out. Working with the optimal biomass the production cost and investment 
decrease almost 0.5 M€ each one but there is a reduction in the production cost of xylitol 
almost two times, from 0.59 €/kg to 0.37 €/kg. (Table 3) 
  

Table 3.- Economic parameters comparison 
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6. Conclusions 
The best alternative obtained to produce xylitol and sorbitol from biomass is the catalytic 
synthesis process with a dilute acid pretreatment due to a highest kg xylitol/kg biomass and  
kg sorbitol/kg biomass and low use of steam, reaching the lowest production and investment 
cost. Following this optimization, the biomass design was made to determinate the better 
biomass composition, reaching a key percent of 40% hemicellulose and 20% cellulose, 
finding this composition in the sargassum algae (sargassaceae), highly available in 
almost of the world. 
The use of the best biomass would yield a saving of around 0.5 M€ in the production and 
investment costs, and reduction of xylitol production cost from 0.59 €/kg to 0.37 €/kg. 
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Abstract
In the field of Computer-Aided Molecular and Process Design (CAMPD), a variety of so-
lution methods have been developed to handle the complexities associated with the non-
convexity and non-linearity of molecular structure-property and process models. However,
most algorithms are prone to failing to generate feasible solutions when the integrated solvent-
process model renders a significant portion of the search space infeasible. In this work, we
propose a solution approach for the integrated design of an optimal chemical absorption pro-
cess in which tailored feasibility tests are incorporated into a process optimisation problem.
The solution approach allows the exploration of a design space without unnecessary difficul-
ties by recognising infeasibilities. The effectiveness of the approach is demonstrated on an
aqueous amine solvent-based CO2 capture process.

Keywords: CAMPD, carbon dioxide capture, amine-based solvent, MINLP

1. Introduction

Amine-based chemical absorption processes are regarded as some of the most effective and
mature technologies for post-combustion carbon dioxide (CO2) removal from large point
sources (Rochelle, 2009). The conventional solvents used for this chemical absorption are
monoethanolamine (MEA) and methyldiethanolamine (MDEA). However, the use of such
solvents requires high energy consumption for solvent regeneration, consequently introduc-
ing significant economic penalties that are a concern in many contexts such as flue gas clean-
ing in power plants (Lee et al., 2013). In order to overcome this adverse effect, substantial
research efforts have been directed towards the development of novel solvents.

A promising research direction to accelerate the identification of new solvents is the devel-
opment of Computer-Aided Molecular and Process Design (CAMPD) techniques. CAMPD
offers a systematic methodology to explore a very large molecular domain in which the over-
all performance of a process is evaluated by capturing mutual interaction between molecular
properties and process performance (Adjiman et al., 2014). While a variety of strategies for
the solution of CAMPD have been developed, many algorithms resort to decomposition to
overcome numerical challenges. These arise mainly because the integrated solvent-process
model exhibits a number of infeasible regions, thereby making it challenging to generate a
feasible solution with some solvent structures. This strategy may however result in conver-
gence to a suboptimal solution. Thus, the development of robust algorithms that make it
possible to avoid infeasibilities during the exploration of a large search space is an important
enabling step for CAMPD.

In this work, a robust optimisation framework for the integrated design of an optimal aqueous
solvent and the associated CO2 chemical absorption process is presented. The focus is on
enabling the solution of such problems when a large set of potential molecules is entailed.
New feasibility tests are introduced as an extension of the approach proposed by (Gopinath
et al., 2016) for physical absorption, to ensure applicability to the more complex setting
of chemisorption. The design of the tailored feasibility tests is focused on the screening of
infeasible solvent candidates and the identification of feasible ranges of process conditions by
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investigating: 1) physicochemical properties of the solvent mixture; 2) environmental impact
arising from solvent loss; and 3) thermodynamic feasibility of satisfying separation targets.
The efficiency of the proposed algorithm is demonstrated on a case study.

2. Problem Formulation

2.1. Process and cost model

The integrated design of an aqueous solvent and a CO2 chemical absorption process is con-
sidered to determine an optimal solvent structure and process conditions. This CAMPD
problem is often posed as Mixed-Integer Nonlinear Programming (MINLP) problem. The
generic mathematical formulation of the design problem can be defined by:

min
x,n

f(x, n),

s.t. g(x, n) ≤ 0
h(x, n) = 0
Cn ≤ d

x ∈ Rn, n ∈N ⊂ Zq

(1)

Figure 1: Schematic of the CO2 chemisorption
process

where x is a n-dimensional vector of contin-
uous process variables, n is a q-dimensional
vector of integer variables that define the
molecular design space, g(x, n) is a vector
of inequality constraints that represent design
and feasibility constraints, h(x, n) is a vector
of equality constraints that include structure-
property models and process models and a
set of linear equations Cn ≤ d represents
molecular feasibility constraints and bounds
on vector n.

A schematic of the process configuration con-
sidered is shown in Figure 1. The process and cost estimation models are based on Alhajaj
et al. (2016), who adopted an equilibrium-stage model combined with a lumped hydrody-
namic model for process optimisation. Total annualised cost (TAC) is selected as an objec-
tive function to measure the overall economic performance for given molecules. We consider
three key process design variables: the temperature of the solvent entering the absorber (T0),
the lean solvent loading (θ0) and the desorber pressure (PNd

). For a detailed description of
the modelling strategy and assumptions used, the reader is referred to Alhajaj et al. (2016).

2.2. Molecular design space

The molecular design space is constructed by selecting groups present in typical CO2 cap-
ture solvents and taking into account the availability of group contribution values. It is
generated from the following 13 functional groups: NH2CH2, NH2CH, NH2C, NHCH3,
NHCH2, NHCH, NCH3, NCH2, CH3, CH2, CH, C, OH. The property prediction methods of
Hukkerikar et al. (2012) are used for the normal melting temperature (Tmp), the auto-ignition
temperature (TAIT), the flash point (Tfp), and the LC50 toxicity (LC50,mgL). The method
of Hsu et al. (2002) is used to predict surface tension (σ) and viscosity (µ). The SAFT-γ
Mie group contribution equation of state (Papaioannou et al., 2014; Perdomo et al., 2020) is
used to predict the fluid-phase behaviour of water, solvent and CO2 mixtures. To make use
of this thermodynamic model, the original functional groups are translated into the following
SAFT-γ Mie groups: NH2, NH, N, CH2, CH, C, CH2OH. The total number of functional
groups in the molecule is limited by bounds [nLt , n

U
t ] = [3, 12]. The total number of groups

with amine and hydroxyl functionality are constrained by [nLa , n
U
a ] = [1, 2] and nUOH = 3,

respectively. Because the two sets of functional groups are not exactly equivalent, the set of
potential molecule is defined by the intersection of the two sets. This means for instance,
that OH can only appear in the designed solvent when connected to CH2. An additional
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constraint, nCH2 ≥ nOH, is imposed to enforce this.

3. Feasibility Tests

In this section, we describe four feasibility tests that are applicable to CAMPD for chemical
absorption, as described in section 2.

3.1. Test 1: Solvent property feasibility

Test 1 is employed to evaluate whether the properties of the pure candidate solvent or those of
the aqueous solution are within suitable ranges. Test 1 is formulated with explicit constraints
on eight essential properties that are independent of the optimal process conditions. These
include Tbp, LC50,mgL, TAIT, Tfp, Tmp, µ at lowest possible solvent handling temperature
and bubble point (Tbb) at atmospheric pressure. The resulting formulation is as follows:

TUsh − Tbp(P = 1atm,n) ≤ 0 Tmp(P = 1atm, z(n))− TLsh ≤ 0

LC50,mgL(n)− LCU50,mgL ≤ 0 µ(TLsh, P = 1atm, z(n))− µU ≤ 0

TUsh − Tfp(P = 1atm,n) ≤ 0 Tbb(P = 1atm, z(n))− TUs ≤ 0

TUop − TAIT(P = 1atm,n) ≤ 0

(2)

where z(n) is a composition of aqueous solvent mixture, TLsh and TUsh are lower and upper
bounds on solvent handling temperature, and TUop is an upper bound on the process operating
temperature to avoid potential risks of solvent degradation in the reboiler.

3.2. Test 2: Solvent phase stability

Biphasic solvents are receiving increasing attention as alternatives to conventional solvents.
They undergo liquid-liquid separation upon heating or CO2, and only the CO2-rich phase is
sent to the desorber for regeneration, thereby reducing energy requirements and equipment
costs (Papadopoulos et al., 2020). However, it is necessary for the aqueous solvent to form a
homogeneous liquid phase for the successful operation of the absorber. Test 2 is designed to
examine whether the absorber can operate outside the liquid-liquid region across its operating
temperature range with the selected solvent. This is done by identifying the highest solvent
concentration (W ∗solvent) at which only one liquid phase can form, at conditions correspond-
ing to the absorber pressure (PNa

) and the maximum temperature of the solvent leaving the
absorber (TUNa

). If the highest solvent concentration obtained is less than the upper bound on
solvent concentration, i.e. W ∗solvent < WU

solvent, the molecule is discarded from the search
space. Here, the upper bound on the solvent concentration is set to 0.4 kg/kg to prevent
corrosion and foaming.

3.3. Test 3: Absorption capacity feasibility

Test 3 is introduced to eliminate operating conditions or solvents that cannot achieve the
required absorption capacity. Test 3 is used to determine an upper bound on the lean solvent
loading (θU0 ) based on thermodynamic feasibility on the bottom stage (Na). A constraint
proposed by Gopinath et al. (2016) is also included in the problem to guide the solution in
the desired direction of separation:

θU0 = max
TNa ,z

θ0

s.t. [yNa
xNa α β]T = flext (z, TNa , PNa ,n)

α ≥ εph, β ≥ εph
xNa,CO2

− yNa+1,CO2
− (yNa+1,CO2−x0,CO2)

(yNa+1,N2−x0,N2)
(xNa,N2

− yNa+1,N2
) > 0

xNa,N2
< yNa+1,N2

, x0,CO2
≤ xNa,CO2

WNa,solvent ≤W0,solvent + εs
0 < zi < 1 ∀i ∈ NC,

∑
i∈NC zi = 1

max
(
Tmp (n) + 10, TL0

)
≤ TNa

≤ TUop

(3)
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where the subscript a denotes the absorber, the set NC = { H2O, solvent,CO2,N2 } and
yNa , xNa are the compositions of the vapour and liquid phases at equilibrium, WNa,solvent

is liquid phase solvent concentration in weight fraction at the bottom stage of the absorber,
W0,solvent is solvent concentration at the absorber inlet, α and β are the vapour and liquid
phase fractions, flext an isobaric-isothermal flash calculation, εph is a positive value to ensure
the coexistence of vapour and liquid phases at stage Na and εs is a positive value to avoid the
excessive loss of water in aqueous solvents. In this study, εph is set to 10−3 and εs is set to
10−1 respectively.

Equivalently, a lower bound on the lean loading (θL0 ) is obtained by investigating the min-
imum achievable loading on the bottom stage (Nd) of the desorber with respect to global
composition z and desorber operating temperature (TNd

).

θL0 = min
θ0,TNd,d,z

θ0

s.t. [yNd
xNd

α β]T = f lext (z, TNd
, PNd

,n)
α ≥ εph, β ≥ εph
WNd,solvent ≥W0,solvent − εs
0 < zi < 1 ∀i ∈ NC∑
i∈NC zi = 1

max
(
Tmp (n) + 10, TLNd

)
≤ TNd

≤ TUop
PLNd
≤ TNd

≤ min
(
Pb (n) , PUNd

)
(4)

where subscript d denotes the desorber and WNd,solvent is liquid phase solvent concentration
in weight fraction at the bottom stage (Nd) of the desorber.

If the bounds on lean loading violate the condition θL0 ≤ θU0 , the candidate solvent is dis-
carded from the molecular design space.

3.4. Test 4: Operating pressure

Given the lean loading range [θL0 , θ
U
0 ] generated from Test 3, Test 4 is designed to provide

tighter pressure bounds on the desorber, PUNd
. This is done by finding the highest pressure at

which: 1) a vapour-liquid phase split occurs in the bottom stage of the desorber; and 2) there
exists a lean solvent composition that satisfies the target lean loading. An additional con-
straint on the solvent concentration is imposed in order to prevent the optimisation algorithm
from converging to a trivial solution. The resulting formulation is as follows:

PUNd
= max

PNd
,TNd

,z
PNd

s.t. [yNd
xNd

α β]T = f lext (z, TNd
, PNd

,n)
α ≥ εph, β ≥ εph
0 < zi < 1 ∀i ∈ NC∑
i∈NC zi = 1

PLNd
≤ PNd

≤ PUNd

max
(
Tmp (n) + 10, TLNd

)
≤ TNd

≤ TUop
WNd,solvent ≥W0,solvent

θL0 ≤ θ0 ≤ θU0

(5)

Table 1: Key input parameters and specification of the CO2 capture case study

Parameter Symbol Value Parameter Symbol Value
Gas flow rate Nm3/s mf 5,000 Degree of CO2 captured, % - 85
Gas temperature, K Tf 323 Condenser temperature, K TLNd

333
Gas pressure, MPa PNa

0.1 Min. temperature approach, K ∆Tmin 20
Gas molar composition of H2O yNa+1,H2O 0.12 Bounds on desorber pressure, MPa

[
PLNd

, PUNd

]
[0.1, 5]

Gas molar composition of CO2 yNa+1,CO2
0.05 Bounds on handling temperature, K

[
TLsh, T

U
sh

]
[303, 333]

Gas molar composition of N2 yNa+1,N2
0.73 Bounds on lean solvent temperature, K

[
TL0 , T

U
0

]
[313, 353]

Max. operating temperature, K TUop 413 Bounds on lean loading, mol/mol
[
θL0 , θ

U
0

]
[0, 2]
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4. Case Study and Results

CO2 capture from an exhaust gas from a 400 MW CCGT power plant (Alhajaj et al., 2016) is
considered as a case study to assess the performance of the proposed feasibility tests. The key
input parameters and the pre-specified bounds on the design variables are provided in Table
1. An automated implementation of the sequence of tests and solution of the primal problem
(process optimisation with fixed solvent structure) is developed in C++. Individual tests
and the primal problem are implemented in gPROMS ModelBuilder 6.0.2 with the gSAFT
Foreign Object interface for the SAFT-γ-Mie calculations.

A set of 4,179 solvent candidates is generated in accordance with the molecular feasibility
constraints described in section 2.2, and the investigation of the effectiveness of the feasibility
tests is carried out over this entire molecular design space. The overall results of applying the
feasibility tests to these alkanolamines and alkylamines are summarised in Table 2. Within
the 4,179 candidate molecules, only 910 amine-based solvents pass all feasibility tests. As
can be seen in Table 2, the majority of the alkylamines are found to be infeasible in Tests
1 and 2, mainly due to their low water miscibility as well as low safety and environmental
performance. For example, the maximum solvent concentration (W ∗solvent) of trimethylamine
(TMA) that can ensure a homogeneous liquid phase at absorber operating conditions is identi-
fied as 2×10−2 kg/kg. It indicates that the constraint WU

solvent ≤W ∗solvent is violated and TMA
should be eliminated from the design space. The performance of Tests 3 and 4 is examined
for the solvents that pass Tests 1 and 2. Tests 3 and 4 lead to the tighter bounds on the lean
loading and desorber pressure and their average values are presented in the Table 2. For the
case of MDEA, the minimum requirement on lean solvent purity, θL0 = 0.25, is calculated
as a result of Test 3. This implies that if the initial guess on the lean loading were set to be
greater than 0.25, the initialisation step of the process model would lead to numerical failure,
making it impossible to evaluate the performance of this solvent. Instead, the initial point can
be chosen to be below 0.25 and the primal problem can be solved successfully.

To exemplify the solution of primal problems, the impact of the feasibility tests and updated
bounds are investigated for MEA and 2-amino-2-methyl-1,3-propanediol (AMPD) and the
results are summarised in Table 3 and Figure 2. The results are generated based on five runs
using different initial guesses for each solvents. They highlight that the process optimisa-
tion problems converge successfully and the computational cost is reduced by 12.6% and
72.2% for MEA and AMPD, respectively, with the introduction of feasibility tests. Fewer
search steps are taken during the course of the optimisation, mainly as a consequence of the
reduction in the ranges of the design variables achieved in Tests 3 and 4. This robustness
and efficiency are likely to be critically important in molecular and process design problems
where many candidate solvents are infeasible or where the evaluation of the primal problems
is computationally expensive.

5. Conclusions

In this paper, we have proposed a robust optimisation approach for the design of an optimal
aqueous solvent and CO2 chemical absorption processes. New feasibility tests have been
combined with the primal problem to provide a reliable way to converge to an optimal so-

Table 2: Overall results of feasibility tests over the complete list of candidate molecules

Single Amine Diamine
Alkanolamine Alkylamine Alkanolamine Akylamine

Number of molecules tested 765 416 1918 1080
Number of molecules screened by Test 1 194 198 463 262
Number of molecules screened by Test 2 0 218 559 313
Number of molecules screened by Test 3 432 - 165 485
Number of molecules screened by Test 4 0 - 0 0
Feasible molecules 139 0 731 20
Average value of updated bound on θU0 0.4036 - 0.9031 0.9446
Average value of updated bound on θL0 0.0038 - 0.0038 2.10×10−6

Average value of updated bound on PUNd
1.1279 - 0.9519 0.9332
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Table 3: Outcome of the solution of the tests and the
primal problems for MEA and AMPD for five runs.
Only the smallest objective function is presented as an
optimal solution

Unit MEA AMPD
Min. lean loading, θU0 mol/mol 0.4052 0.4102
Max. lean loading, θL0 mol/mol 10−6 10−6

Max. desorber pressure PUNd
MPa 0.3782 0.4

TAC $M/year 29.22 23.39
Total energy consumption GJ/tonCO2 9.73 7.03
Lean loading mol/mol 0.310 0.259
Lean solvent temperature K 313 345
Desorber pressure MPa 0.21 0.22
Solvent circulation rate mol/hr 14.25 17.67
Avg. CPU time with tests s 551 696
Avg. CPU time without tests s 631 2509

Figure 2: CO2 partial pressure (PCO2 ) ver-
sus solvent loading (mol CO2/mol solvent) for
AMPD (- - -) and MEA (—) at the optimal pro-
cess conditions

lution by removing infeasible process conditions and molecular structures from the search
space. This has also led to a reduction in the computational cost by enabling the ranges of
the operating conditions to be reduced automatically. The efficiency of the proposed algo-
rithm has been highlighted through a case study on the design of solvents for CO2 chemical
absorption processes. Future work involves the full integration of the approach within a
mixed-integer nonlinear optimisation algorithm in order to identify the best performing sol-
vent and it could be directed at testing the performance of the feasibility tests on more case
studies to access general conclusions of their performance on the design of optimal solvents
and CO2 chemical absorption processes.
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Abstract 
Distillation is the most widely applied separation technique in the chemical process 
industry. Due to its high energy consumption and low thermal efficiency, researchers 
have investigated several approaches to reduce utility requirements, such as hybrid 
separation and using intensified equipment. In most prior examples, hybrid separations 
have been studied to separate azeotropes and/or close boiling mixtures. In this work, two 
hybrid separation design strategies to replace any distillation separation task are 
developed. These strategies are shown to improve thermal efficiency and thus save energy 
in the range of 10-20%. Additionally, by implementing hybrid separation schemes, the 
throughput of the distillation process can be increased. In this paper, two solution 
strategies have been developed based on simulation-based derivative-free optimization 
(DFO) algorithms and rigorous mathematical optimization. Both methods are applied to 
a case study of methanol/water separation, and the results show that the proposed hybrid 
separation processes yield at least 20% energy reduction and 20% capacity improvement. 

Keywords: Distillation, Hybrid Separation, Optimization. 

1. Introduction 
With the chemical process industry continuing to move in a more efficient and sustainable 
direction, researchers have investigated several approaches to reduce energy 
consumption, improve thermal efficiency and sustainability, including new methods for 
process synthesis, hybrid separation, and design of intensified equipment. Tula et al. 
(2017) pointed out that after applying hybrid distillation-membrane techniques, 15-20% 
energy reduction of the retrofitted process can be achieved without significant additional 
capital investment. In their approach, distillation was used to purify the distillate until a 
certain composition (switching composition) and then sent to a membrane system to reach 
the purification target. O’Connell et al. (2019) further evaluated the influence of the 
switching composition in hybrid distillation-membrane separations through case studies 
involving the separation of C6 isomers and ethylbenzene/styrene. Through these studies, 
O’Connell et al. (2019) established the strong causal relationship between switching 
composition and the economic feasibility of retrofitted processes. Figure 1 shows the 
relationship between normalized separation driving force as a function of feed 
concentration. The driving force is defined as the concentration difference between the 
two phases, thus representing the ease of separation. As the distillation/membrane 
maximum driving forces are located at different positions in the diagram/composition 
space, the separation can ideally be divided into two regions where Region I is more 
efficient for distillation, and Region II is more efficient for membrane separation. 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Therefore, determining the location of these two regions and the corresponding 
operating/design parameters is an important problem to be solved. One feasible solution 
method is sensitivity analysis, which analyses the impact of different variables and then 
chooses the best combination. A more rigorous approach is to formulate an optimization 
problem and solve it mathematically. Caballero et al. (2009) presented an algorithm based 
on a shortcut/rigorous distillation model to identify the optimum hybrid separation 
configuration. In our work, a mathematical optimization model and a simulation-based 
derivative (DFO) free optimization model are developed to determine the hybrid 
distillation design/operating parameters. 

 
Figure 1. Driving force for n-hexane/2,2-dimethylbutane (distillation and membrane separation). 

2. Solution Strategies 
2.1. Simulation-based Optimization 
The simulation-based optimization approach uses DFO algorithms to select 
operating/design variables. This approach incorporates the inner process simulation 
results with an outer DFO algorithm. In the inner-loop, process simulations are 
performed, and the results are used to calculate the objective function corresponding to 
the design decisions. The results from the inner-loop (operating/sizing variables) are sent 
to the outer-loop, where a suitable solver based on a gradient-free optimization algorithm 
is employed to obtain new/improved values of the decision variables/design parameters. 
This iterative calculation continues until the maximum number of iterations is reached or 
the optimal solution is found. Simulation-based optimization takes advantage of the 
process simulator, which represents implicit equations, making the problem relatively 
easy to solve. In this study, three open-source DFO algorithms (RBFOpt, GPyOpt, 
ZOOpt) are applied to all the case studies. The algorithms are applied to find the optimum 
design and operating variables for methanol/water separation process using distillation-
membrane and distillation-adsorption approaches. A generalized form of the optimization 
problem solved by the DFO algorithms is given in Equations (1)-(7). 𝑚𝑖𝑛: 𝑇𝐴𝐶 = 𝑖(𝑖 1)(𝑖 1) 1 𝐼𝐶 𝐴𝑈𝐶 (1) 𝑠𝑡. 𝐼𝐶 =  𝐶𝑜𝑠𝑡 (𝑞 , ) (2) 

𝐴𝑈𝐶 = 24 300 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑞 , ) (3) 𝑞 = Θ(x, 𝑧, 𝑝(x)) (4) 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 ≤ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦  (5) 
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𝑥 ≥ 𝑝𝑢𝑟𝑖𝑡𝑦 (6) x ∈ 𝑋,     𝑧 ∈ 𝑍 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (7) 

In the model, 𝑇𝐴𝐶 is the total annualized cost, 𝐼𝐶 is the investment cost, 𝐴𝑈𝐶 is the 
annualized utility cost, i is interest, n is plant life, 𝐶𝑜𝑠𝑡j is the investment cost of 
equipment j (Turton et al., (2008)). 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗 is the utility cost of equipment j (Kalakul et 
al., (2014)). 𝑈𝑡𝑖𝑙𝑖𝑡𝑦0 is the utility cost of the initial single distillation column, qs,j is the 
sizing variable for equipment j, qo,j is the operating variable for equipment j, 𝑝(𝑥) is the 
membrane estimation model (Sommer and Melin, (2005)). Θ(x, z, p(x)) is the process 
simulation model, 𝑥 is the switching composition, and z is the number of 
membrane/adsorption stages. 
2.2. Mathematical Optimization 
For mathematical optimization, the distillation-membrane separation problem is 
considered with only one membrane system following the distillation separation. Since 
the final purification is achieved by the membrane, the original distillation column will 
underperform at the new conditions. The objective is to validate if column capacity can 
be increased while maintaining operation at feasible normal conditions. The retrofitting 
distillation model and hydraulic analysis (Gadalla et al. (2003)) are included in the 
optimization. To investigate the relationship between capacity improvement and energy 
cost reduction, a generalized bi-objective nonlinear programming problem (NLP) is 
formulated, which is shown in Equations (8)-(13). min, 𝐹 = 𝑓 (𝑥, 𝑦, 𝑞) (8) max, 𝐹 = 𝑓 (𝑥, 𝑦, 𝑞) (9) 𝑠𝑡. ℎ(𝑥, 𝑦, 𝑞) = 0 (10) 𝑔(𝑥, 𝑦, 𝑞) ≤ 0 (11) 𝑞 = 𝑞(𝑥, 𝑦) (12) 𝑥, 𝑦 ∈ 𝑅  (13) 

Here, 𝑓1 is the total annualized cost, 𝑓2 is the profit, h(𝑥, 𝑦, 𝑞) is a simple regressed 
thermodynamic model and retrofitting distillation model, g(𝑥, 𝑦, 𝑞) is the hydraulic and 
purity constraints, q(𝑥, y) is the dependent variable, which is determined by three decision 
variables 𝑥 (switching composition of the distillate and bottom) and 𝑦 (feed flowrate). 

3. Case Study 
Both solution strategies are applied to a case study of methanol/water separation. The 
base case methanol/water distillation column has 32 stages with stage efficiency of 60%, 
and is fed to stage 12. The inlet conditions are: 2.5 atm, 107°C, 1342 kmol/h, 76.5 mol% 
water, 23.5 mol% methanol. The base case distillation column's reboiler duty is 36.9 GJ/h, 
and the product requires 99.9 mol% purity of both water and methanol. 
3.1. Distillation-membrane (DFO) 
Okamoto et al. (2001) proposed a Zeolite NaA vapor permeation membrane for 
methanol/water separation, which shows high selectivity for water permeation. Sommer 
and Melin (2005) developed a model to estimate the membrane permeability at different 
operating conditions. In our work, the hybrid distillation-membrane is considered, and 
the process scheme is shown in Figure 2. The binary mixture of water and methanol is 
first fed into a distillation column (B1) for separation (Region I). Then, the distillate 
stream passes through a membrane system (B4 and B7) for further purification (Region 
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II). To maintain the same outlet conditions of the products as the original distillation 
column, the permeate and retentate streams are heated/compressed. The top product is 
methanol, and the bottom is water. Membrane selectivity and permeability depend on the 
inlet stream conditions, thus the number of membrane stages should be determined. Here, 
the maximum number of membrane stages is two because of the high selectivity. In this 
problem, three decision variables: distillation top/bottom composition (switching 
composition) and the number of membrane stages, need to be determined. Note that the 
driving force of the membrane separation is the vapor pressure difference of the permeate 
compound between the permeate and feed side. In this membrane system, either a vacuum 
pump or sweeping gas is required to enhance the permeation. In our case, we specify the 
total pressure at the permeate side as near vacuum (2 kPa). 

 
Figure 2. Process scheme of the distillation-membrane separation process. 

All algorithms yield similar results (Table 1). The optimal top switching composition is 
88 mol% of methanol, and the system requires one membrane stage after the distillation 
separation, resulting in 36.8% in energy savings and a payback time of three years. 
Table 1. DFO results for distillation-membrane separation. 

 RBFOpt GPyOpt ZOOpt 
Top switching (methanol), mol% 88.4% 88.8% 88.3% 
Bottom switching (water), mol% 99.90% 99.91% 99.94% 

Stages 1 1 1 
Annualized cost ($) 1,950,848 1,952,675 1,952,774 

Table 2. DFO results for distillation-adsorption separation at different selectivities. 

 S = 1,000 S = 500 
RBFOpt GPyOpt ZOOpt RBFOpt GPyOpt ZOOpt 

Top switching 
(methanol), mol% 96.68% 98.16% 98.22% 97.58% 97.78% 98.20% 

Bottom switching 
(water), mol% 99.95% 99.94% 99.94% 99.91% 99.92% 99.90% 

Stages 1 2 
Annualized cost ($) 1,488,569 1,492,973 1,494,281 1,542,266 1,539,384 1,535,048 

Energy savings 33% 31.5% 
Payback time (year) 0.3 0.4 

3.2. Distillation-adsorption (DFO) 
In this case, the process scheme and DFO model are similar to the distillation-membrane 
system. The adsorption of water is a widely used technology, and Gabruś et al. (2015) 
proposed a Langmuir-Freundlich model for adsorption capacity estimation. In the process 
model, the membrane is replaced with an adsorption system that is integrated with 
distillation. An analogous set of three decision variables, as described above, are 
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identified for the distillation-adsorption process. Due to the lack of specific selectivity 
data for the adsorbent system, two different selectivities, 500 and 1,000, are used for 
optimization. The results are shown in Table 2. All three algorithms give similar results, 
with over 30% in energy savings. For the lower selectivity, two adsorption stages are 
required, compared to only one at the higher selectivity. To estimate the energy cost of 
the adsorption/desorption system, a constant desorption energy 45.95 kJ/mol is used in 
the calculations (Gabruś et al., 2015). 
3.3. Mathematical Optimization 
A schematic depiction of the distillation-membrane process is shown in Figure 3. The 
binary mixture is first fed into an existing distillation column for separation. Then, a 
membrane system is used to purify the distillate. In the process, a compressor is used to 
keep the product at the same conditions as the original distillation column. 

 
Figure 3. Distillation-membrane process scheme for mathematical optimization.  

The ε-Constraint method developed by Deb (2001) is used to solve the bi-objective 
problem. The resulting Pareto front is shown in Figure 4. The annualized cost and profit 
are varied along with switching composition and column capacity. The optimization 
results indicate that the objective function is very sensitive to column capacity only when 
the annualized cost is lower than $3.2 million/year. However, when the annualized cost 
is higher than $3.2 million/year, both switching composition and column capacity 
influence the objective function. The profit increases faster when the annualized cost is 
lower than $3.2 million/year. That is because this region has higher energy efficiency, 
resulting in lower product cost, i.e. in this region, it is easier to improve the profit by 
varying the column capacity. A switching composition of 92.4 mol% is suggested for this 
hybrid operation, which can achieve 20% capacity improvement and energy savings. 

 
Figure 4. Pareto front of the bi-objective optimization results. 
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4. Conclusions 
Distillation is an efficient separation technique until a certain top product purity; however, 
the separation task becomes thermally inefficient when moving beyond this point. 
Replacing the less favorable region of distillation with a different separation technique 
can yield significant energy savings. In this work, two different optimization strategies 
(DFO and mathematical NLP model) are developed to design hybrid distillation schemes 
involving adsorption and membranes. The DFO strategy utilizes process simulation tools, 
which are readily available. Although the DFO algorithm cannot guarantee the global 
optimum, increasing the number of iterations can generate results that are close to the 
global optimum. So, the DFO strategy is very efficient for preliminary design. The second 
strategy uses a more rigorous model, and this strategy can be used for obtaining the final 
design parameters as it can guarantee the global optimum. 

Using the simulation-based DFO strategy, the best switching composition for vapor 
permeation is around 88 mol% methanol, while for adsorption, the optimal switching 
composition is around 96-98 mol% methanol. It is also concluded that for the adsorption 
selectivities evaluated, the hybrid distillation adsorption is more economical than the 
hybrid distillation membrane process. It has also been shown that the retrofitted hybrid 
columns can be used to increase the distillation processing capacity. The distillation 
column can achieve a maximum of 20% energy savings and 20% capacity improvement. 
Future work will focus on comparing the sustainability, safety, and controllability 
between the distillation and hybrid processes. 
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Abstract 
A framework is proposed to systematically identify promising solid-gas reaction 
candidates for thermochemical energy storage (TCES) in concentrating solar plants 
(CSP). It involves four steps: (i) generation of a list of reaction candidates, (ii) screening 
reactions based on thermodynamic criteria, (iii) solution of a process synthesis model to 
compute levelized cost of electricity (LCOE) and thermal energy storage (TES) costs, and 
(iv) selection of candidate reactions. The analyses identify ten reactions that can be 
economically and energetically superior to the state-of-the-art two-tank molten salt 
storage system. 

Keywords: solar energy, process synthesis and optimization, reaction screening.  

1. Introduction 
Thermal energy storage is a promising way to manage intermittency of solar energy in 
concentrated solar power (CSP) plants. Commercially, CSP plants are typically integrated 
with a two-tank molten-salt sensible heat storage unit. There are two major drawbacks of 
this system. First, heat is delivered to the power cycle at low temperature (565 oC), 
resulting in low solar-to-electricity efficiency. Second, due to low energy density of 
molten-salt, large quantity of material is needed, which can become too costly for large-
scale systems. TCES systems, on the other hand, are a more promising alternative because 
of their high energy density and ability to deliver heat at high temperature.  

TCES is based on a reversible reaction, wherein heat is required for the forward reaction 
and thus, the reaction enthalpy is stored in the products. Today, TCES is at an early stage 
of development. Fluid-phase and solid-gas reactions are the two classes of TCES systems 
that have been studied. Recent analyses of fluid-phase reactions show that they suffer 
from low energy efficiency and high cost due to the need to store reacting gases (Peng et 
al., 2017). However, solid-gas reactions are more promising because they require less gas 
storage and the products can be easily separated (expressed as: A (s) + 𝛥𝐻  ↔ 𝜈 B (s) + 𝜈 C (g), where 𝛥𝐻  is reaction enthalpy).  

Figure 1 shows a CSP plant consisting of four components: collector, receiver, TCES 
system and power cycle. During the day, the collector focuses sunlight onto a receiver, 
where photons are absorbed and converted into heat. The flow of heat transfer fluid (HTF) 
is split such that a part of it flows through the reactor (R1) to provide heat to an 
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endothermic reaction resulting in the decomposition of A and the remaining flows 
through the power block to provide heat to the working fluid (WF). The products of the 
endothermic reaction (B and C) are stored and transferred to R2 during the night, where 
exothermic reaction occurs and provides heat to WF. 

 
Figure 1. Schematic diagram of a CSP plant with solid-gas TCES system.  

Previously, most of the studies had focused on improving the performance of a handful 
of reaction systems and investigating their applicability. However, given the diversity of 
reactions applicable for TCES, there is a need for a systematic screening approach to find 
novel reaction candidates. While some work has been done in reaction screening (André 
et al., 2016; Pardo et al., 2014) based on equilibrium temperature and energy density, it 
still remains unclear which reactions are competitive in  terms of LCOE and TES costs. 
To this end, we develop a framework to identify reactions based on energetic and 
economic performance. 

2. Screening Methodology 
In this section, the screening framework to identify promising TCES systems is outlined. 
The framework involves generating reaction candidates, eliminating reactions based on 
thermodynamic criteria, computing LCOE and TES costs for the remaining reactions and 
selecting the top performing reaction candidates.  

2.1. Generating reaction candidates 

The following four classes of reactions are considered: (i) oxide/oxide (A=MaOc, 
B=MbOd), (ii) oxide/metal (A=MaOc, B=M), (iii) hydroxide/oxide (A=Ma(OH)c, 
B=MbOd), and (iv) carbonate/oxide (A=Ma(CO3)c, B= MbOd). Reaction candidates are 
created such that both A and B are inorganic materials. Additionally, only one gaseous 
component is allowed to avoid the need for gas separation. Aspen Plus is used to identify 
applicable materials, and their properties including density, melting point, specific heat 
capacity, enthalpy, and Gibbs energy (G) are stored.  

An algorithm is designed to automatically identify all possible reactions for the collected 
materials. A total of 364 reactions comprising of 166 oxide/oxide, 162 oxide/metal, 19 
hydroxide/oxide, and 17 carbonate/oxide, are identified.    

2.2. Eliminating reactions based on thermodynamic criteria  

For each of the reactions, equilibrium temperature (𝑇 ) is estimated: 𝑇 − 𝛥𝐺𝑅 𝑙𝑛 𝑙𝑛 𝑝   
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where 𝛥𝐺 , 𝑅 and 𝑝  are the Gibbs energy of reaction, universal gas constant, and partial 
pressure of gas C, respectively. The value of 𝑝  is taken to be 0.21 bar for oxide/oxide 
and oxide/metal reactions, and it is fixed to 1 bar for hydroxide/oxide and carbonate/oxide 
reactions. For a reaction to be considered suitable for TCES system, its 𝑇  needs to meet 
two criteria: (i) it should lie within the range 25-2000 oC and (ii) it should be lower than 
the melting points of A and B so that no phase change occurs. Based on this criteria, 305 
reactions are eliminated. The chosen reactions include 34 oxide/oxide, 6 oxide/metal, 7 
hydroxide/oxide, and 12 carbonate/oxide. Key properties of the selected reactions are 
shown in Figure 2. The material prices are taken from the United States Geological 
Survey mineral commodities database. 𝑇  impacts the overall plant efficiency and 𝛥𝐻  
affects the storage costs and efficiency. For high efficiency, 𝑇  needs to be in the range 
500-1200 oC and 𝛥𝐻  needs to be high. It can be observed that there are several reactions 
with appealing properties, however, it is not clear how these properties impact the 
energetic and economic performance of the integrated plant. To this end, we developed a 
process model for an integrated CSP-TCES plant, which is outlined in the next section.  

 
Figure 2. Key properties of reactions obtained after satisfying thermodynamic criteria. Each 
bubble represents a candidate reaction and its size represents reaction enthalpy.  

2.3. Stochastic programming-based process synthesis model  

An optimization model is developed (shown in Figure 3) for the design of CSP plants 
with solid-gas TCES systems (Peng et al., 2020, 2019). The inputs required for the model 
include material properties (e.g., material price, density, specific heat capacity), reaction 
characteristics (e.g., reaction enthalpy, equilibrium temperature), plant specifications 
(e.g., plant location and nameplate capacity), weather data and cost data. In this study, we 
consider a 100 MW CSP plant with power tower configuration located in Daggett, 
California (34.87°N, 116.78°W) and its weather data is obtained from the National Solar 
Radiation Data Base. The assumptions for economic analysis are given in Peng et al. 
(Peng et al., 2020). 

The optimization model considers seasonal and daily variability. We use scenarios to 
represent seasonal variability and modes to represent daily variability. The 
optimization model is formulated as a two-stage stochastic programming (SP) model 
with multiple modes embedded within each scenario. The first stage variables are 
design variables that include solar field area, receiver area, and TCES equipment sizes. 
The second stage are operational variables for each scenario and mode including 
storage hours, flow rates, and operating temperatures. To consider the seasonal 
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variability in solar irradiance in our analyses, we generate six representative scenarios 
(i.e., days) from the annual data using centroid clustering algorithm and approximate 
daily solar irradiance using two modes. While it is possible to consider a more accurate 
dynamic model with finer temporal granularity, this approach would be unnecessary 
and infeasible, from a computational standpoint because we aim to screen hundreds of 
reactions. Furthermore, it was demonstrated in Peng et al. (Peng et al., 2019) that the 
multimode SP approach is computationally efficient and provides reasonably accurate 
solutions.  

The objective of the model is to minimize the overall LCOE, which is defined as the sum 
of annualized costs of collector, receiver, thermal storage, and power block divided by 
the annual electricity generated. The constraints arise from the physical model of plant 
components, unit mass and energy balances, equipment sizing, and cost calculations. The 
collector efficiency is fixed to 0.6. The receiver efficiency is a function of temperature 
such that increasing temperature results in lower efficiency due to radiation and 
convection losses. Both the reactors are modeled as fluidized bed reactors. We assume 
that the conversion is 100%, no side products are formed, and the conversion rates and 
yields remain the same with cycles. For oxide/oxide and oxide/metal reactions, air is used 
as the source of O2 and therefore, no gas storage vessels are required. Storage tanks for 
storing CO2 and H2O are required for carbonate/oxide and hydroxide/oxide reactions, 
respectively. Furthermore, a compressor is also needed for carbonate/oxide reactions 
because of low boiling point of CO2. Supercritical CO2 Brayton cycle is used for power 
generation and a model is developed to evaluate its performance at different turbine inlet 
temperatures (Peng et al., 2020). The optimization model is a nonlinear programming 
model, formulated in GAMS, and solved using a novel solution technique (Section 2.4).   

 
Figure 3: Overview of optimization-based CSP-TCES process model.  

2.4. Solution method  
The method is based on three ideas. First, tight lower and upper bounds of the first-stage 
and second-stage variables are computed through constraint propagation based on the 
initial bounds on a set of key variables including the temperature of R1 (𝑇 ), R2 (𝑇 ), 
and HTF (𝑇 ). Second, the space of these variables is divided into small subregions and 
the model is solved in each of the regions to global optimality using ANTIGONE 
(Misener and Floudas, 2014). Third, to accelerate the convergence, we use two strategies. 
First, when solving the model in a new subregion, we add a cut based on the best objective 
function value obtained in the explored subregions so far, thereby enabling pruning of 
nonpromising subregions. Second, if any of the decision variables lie at the bounds of the 
current subregion, the subregion that shares the decision variable is selected as the next 
region to be explored, leading to the identification of good solutions quickly. 
Computational comparisons with other methods suggest that our solution method finds 
the global minimum faster for several problem instances.      
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3. Results 
The solar-to-electricity efficiency (𝜂 ), which depends on the efficiencies of the four 
plant components, is used as the primary energetic metric. Receiver efficiency decreases 
with increase in receiver temperature (𝑇 ) and power cycle efficiency increases with 
increasing turbine inlet temperature (𝑇 ). Due to heat transfer limitations, the following 
relationship holds between the operating temperatures:  𝑇 𝑇 𝑇 𝑇 𝑇  𝑇  lies between 𝑇  and 𝑇 , and moves closer to 𝑇  as the fraction of sensible energy 
storage decreases. Since 𝑇  is always higher than 𝑇 , it is impossible to have low 𝑇  and 
high 𝑇 . For high 𝜂 , 𝑇  should be in the range of 500-1200 oC and the difference 
between 𝑇  and 𝑇  (𝑇 − 𝑇 ) should be small to reduce exergy losses. However, if 𝑇 − 𝑇  
is small, less sensible heat is stored, which leads to high storage costs. The optimization 
algorithm balances these trade-offs such that design and operational decisions are 
obtained resulting in minimum LCOE.  

The top ten reactions identified based on LCOE and TES costs are shown in Figure 4. 
LCOE for the selected reactions range from 11.2-12.9 ₵/kWh and TES costs range from 
8.2-23.1 $/kWhth. Importantly, all the selected reactions have the potential to lead to lower 
LCOE and TES costs than the two-tank molten salt storage system. Note that seven of the 
ten promising reactions in terms of LCOE belong to oxide/oxide class, whereas two 
belong to hydroxide/oxide class, and one belongs to carbonate/oxide class. In terms of 
TES cost, seven reactions belong to oxide/oxide class, two belong to hydroxide/oxide 
class, and one belongs to oxide/metal class. Only two reactions are found to be promising 
in terms of both LCOE and TES costs, which implies that low TES costs do not imply 
low LCOE and underscores the importance of simultaneously considering all the 
components of a CSP plant.  

 
Figure 4. Top ten reactions selected based on (a) LCOE and (b) TES costs.  

4. Conclusions 
We developed a framework to systematically screen reactions for thermochemical energy 
storage. First, we identify a total of 374 reactions belonging to oxide/oxide, oxide/metal, 
hydroxide/oxide, and carbonate/oxide classes. Two thermodynamic criteria are then 
applied to eliminate 305 reactions. A stochastic programming-based optimization model 
is solved using a novel solution strategy for the remaining reactions to compute LCOE 
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and TES costs. Our analyses identify ten reactions that can be energetically and 
economically superior to the two-tank molten salt storage system.  

 
Table 1. Key reaction properties and the overall efficiency 
for the selected reactions. 
Reactions 𝑇  (oC) Material 

price ($/ton) 
𝛥𝐻𝑅 
(kJ/kg) 

𝜂
Ca(OH)2/CaO 521.0 150.0 1341.9 0.19 
CaCO3/CaO 895.9 100 1664.9 0.22 
SrCO3/SrO 1159.0 954.4 1349.3 0.21 
Mn2O3/Mn3O 901.0 2535.2 203.6 0.21 
MnO2/Mn3O4 536.3 2535.2 646.2 0.20 
BaO2/BaO 742.2 1738.8 475.5 0.22 
CuO/Cu2O 1031.8 5650.0 816.4 0.21 
MnO2/MnO 905.6 2535.2 1509.5 0.22 
Na2O2/Na2O 868.1 157.0 1117.2 0.22 
KO2/K2O2 885.7 776.0 314.3 0.21 

Key properties and 𝜂  of the top reactions selected based on LCOE are shown in Table 1. As 
expected, for a reaction system to be competitive, 𝜂  needs to be high. For the selected reactions, 𝜂  range from 0.19-0.22 and the corresponding 𝑇  range    from 521-1159 oC. Mn2O3/ Mn3O4 
and MnO2/MnO reac- tion systems have similar 𝑇 , but the latter has higher reaction enthalpy, 
which leads to low 𝑇 − 𝑇 , resulting in higher effi- ciency. Higher reaction ent- halpy of 
MnO2/MnO system compared to Mn2O3/Mn3O4 lea- ds to lower storage costs for MnO2/MnO 
system. The mater- ial price of CuO/Cu2O is 37 times more than Ca(OH)2/CaO, but LCOE is lower 
for the former due to its marginal higher 𝜂 . This illustrates how small improvements in 
efficiency can impact the process economics. 
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Abstract 
Failure in appropriately managing complex municipal solid waste systems in general and 
waste plastics in particular negatively affects public health and environment. 

A decision-making tool incorporating concepts of logistics and supply chain, 
considering different types of waste was developed. A multi-objective, multi-period 
mixed-integer linear programming (MILP) formulation, focusing on the plastic recycling 
network, incorporating features of multimodal transportation was implemented. The 
model aims at minimizing net present cost (NPC) and environmental impacts, illustrated 
by a case study of a Swiss waste treatment cluster. A reference situation was used for 
benchmarking and 7 new scenarios considered - corresponding to different plastics 
collection configurations. 

From the solutions space, designs arise that lead to a 2-fold decrease of NPC at 
the expense of increasing by 20 % current emissions, as well as solutions that provide 
small net gains in environmental aspects - close to 3 %, albeit a 4-fold increase in NPC 
due to large investments in recycling facilities and increased transportation costs. 

This work sheds light on the impact of supply chain and logistics aspects on the 
separate collection and treatment of waste plastics, in the context of a real municipal waste 
treatment policy, where a thermodynamic model to deal with the conversion processes is 
integrated into the general supply chain decision. As a result, important insights to guide 
decision-makers were obtained. 
 
Keywords: Waste plastics, MSW, Recycling, Thermovalorization, Supply chain 

1. Introduction 
As reported in (Bhada-Tata et al., 2018) due to rapid urbanization and population growth, 
an increase in per capita generation of waste - and plastic waste in particular - is foreseen. 
If not properly managed, waste might have a significant impact on population health, 
environment, and economy. Designing an integrated waste management system is a 
strategic Supply Chain (SC) problem as it refers to long-term decisions on a combination 
of functional elements in the waste chain, from generation, storage, collection, separation 
and transportation to treatment, distribution, and disposal. 

Management of plastic waste presents additional challenges, such as low 
transport efficiencies (due to low material density), as well as frequent contamination 
with other types of plastics as described in (Bing et al., 2013). Moreover, plastics have a 
high energy content - valuable from a thermovalorization point of view: if segregated, 
municipal solid waste (MSW) loses an important share of its energetic content. Thus, 
recycling and energy recovery present themselves as competitors for treating this 
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particular kind of waste contrasting, according to (Groot et al., 2014), with the general 
belief of routing waste plastic for recycling facilities whenever possible. 

This work is a necessary step to a generalized superstructure of plastic waste 
treatment and conversion routes. Logistics and supply chain considerations are core 
concepts that have proved to be relevant from an economic perspective, as recently 
confirmed by (Colvero et al., 2020), and might condition tactical, operational and 
investment decisions. Furthermore, heat integration between units explores synergies and 
trade-offs between recycling and thermovalorization of different waste fractions. 

2. Problem statement and mathematical formulation 
The problem is generically formulated as a multi-echelon, multi-period, multi-commodity 
and multi-stakeholders. The goal is to determine the set of optimal configurations along 
the Pareto front and characterize each solution by the cost and associated emissions; each 
solution yields the optimal allocation of waste flows, the number of products and by-
products, and the transport structure used. System boundaries include waste collection, 
transportation, and processing of the different waste flows, with respective costs and 
emissions associated. Unlike many similar studies, it was considered that the introduction 
of a separate collection of plastics affects not only quantities but also composition and 
heating value of the combustible waste. 

The model is divided into two phases: parameter estimation and mathematical 
optimization. As it is often not possible to get specific collection costs by municipalities, 
a model based on the work of (Groot et al., 2014) was used for the first task. The 
optimization problem was formulated using mixed-integer linear programming. 

The economical objective - Net present cost (NPC) - is given by the sum of 
operating and investment costs (Eq. 1). Binary variables (Ψ ,  and Ψ ) account for the 
existence or not of a given unit (waste conversion units, sorting centres and recycling 
facilities, as well as transport units), while continuous variables (𝑓 ,  and 𝑓 ) account for 
the size of each unit. 𝑡 represents the operating time of each time step 𝑡 ∈ 𝑇. 

Transport and supply chain nodes are represented by units 𝑖 belonging to the set 𝐿, containing sub-sets 𝐿𝑢 and 𝐿𝑠, for which investment is required and waste is sourced, 
respectively. Units have a fixed (𝑐 ) and variable (𝑐 ) investment, fixed (𝑐 , ) and 
variable (𝑐 , ) operating costs as well as fixed (𝑐 , ) and variable (𝑐 , ) environmental 
impacts. Each unit contains relevant information to define mass and energy requirements. 
Investment costs were annualised using an interest rate (𝑎𝑟) and project lifetime (𝑛), while 
operating costs were discounted with a monthly interest rate (𝑚𝑟). 

𝑚𝑖𝑛 𝑁𝑃𝐶 =  ∑ (𝑐 ,  . 𝛹 , + 𝑐 , . 𝑓 , )∈ (1 − 𝑚𝑟)∈ . 𝑡 + 𝑖(1 + 𝑎𝑟)(1 + 𝑎𝑟) − 1 . (𝑐 . 𝛹 + 𝑐 . 𝑓 )∈  Eq. 1 

Multi-objective optimization was used to address conflicting objectives, 
particularly the trade-off between costs and emissions. Environmental impact - Eq. 2 - was 
used for (𝜀-constraints) formulation, using the GWP 100a method, corresponding to the 
IPCC 2013 global warming potential impact method, as well as the ecological scarcity 
method (ESM). The widespread use of the former and the tailor-made criteria for 
Switzerland of the latter motivated the choice. Values were retrieved from Ecoinvent 
database v.3.6. 𝐸𝑁𝑉 =  𝑐 , . 𝛹 , + 𝑐 , . 𝑓 , . 𝑡 ≤ 𝜀∈∈  Eq. 2 
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Constraints were added to ensure full waste collection (Eq. 3), with 𝑀 , , ,  the mass of 
waste 𝑤 ∈ 𝑊, received in each SC node and 𝑔𝑒𝑛 , ,  the waste type generated per origin.   
Minimum (𝑓 ) and maximum (𝑓 ) facilities capacities (Eq. 4), as well as resource 
consumption (Eq. 5, Eq. 6), with  𝑚 , ,   the reference quantity of resource ∀𝑟 ∈ 𝑅 needed in 
each SC node were also considered. Mass balances are closed (Eq. 7), for each SC node. 
Heat cascade formulation (Eq. 8, Eq. 9) was added, following the formulation developed 
by (Maréchal and Kalitventzeff, 1998), in which residual heat (𝑅 , ) is transferred 
according to the 2nd law of thermodynamics, from higher (𝑘 + 1) to lower temperature 
levels (𝑘). 𝑀 , , , = 𝑔𝑒𝑛 , , , ∀𝑤 ∈ 𝑊, ∀𝑖 ∈ 𝐿 , ∀𝑡 ∈ 𝑇∈ ∖  Eq. 3 

𝑓 . 𝛹 ,  ≤  𝑓 , ≤ 𝑓 . 𝛹 , , ∀ 𝑖 ∈ 𝐿, ∀ 𝑡 ∈ 𝑇 Eq. 4 

𝑀 , ,  = 𝑓 , . 𝑚 , , , ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐿, ∀𝑡 ∈ 𝑇 Eq. 5 

𝑀 , ,  = 𝑓 , . 𝑚 , , , ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐿, ∀𝑡 ∈ 𝑇 Eq. 6 

𝑀 , ,  ∈ = 𝑀 , ,  ∈ , ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 Eq. 7 

𝑄 , ,  .  𝑓 , +  𝑅 , − 𝑅 , = 0, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, 𝑤𝑖𝑡ℎ 𝑇 ≥ 𝑇 ,∈  Eq. 8 

𝑅 ,  ≥ 0, 𝑅 , = 𝑅 , = 0 , ∀𝑡 ∈ 𝑇 Eq. 9 

The MILP problem is written in AMPL and solved by CPLEX (v12.7.0.0). 
Every experiment was run on a Microsoft Windows v10.0.18363 machine equipped with 
a 2.4 GHz Intel(R) Xeon (R) 8 core processor with 16GB of RAM. 

3. Case Study 
3.1. Structure 
A waste management system in western Switzerland was used as case-study and 
comprises: (i) Waste Source Nodes - Municipalities, Waste Dumping Centers and 
Industries, with the source of waste assumed to be the centre of each municipality; (ii) 
Recycling Chain - Plastic waste from municipalities can be routed to different sorting 
centres, where they are separated and washed from contaminants. Plastics are then routed 
to a recycling centre; recycled polymers are absorbed by the market while by-products 
are routed to thermovalorization units; (iii) Thermovalorization Centers - Waste from 
municipalities, industries and separation centres (contaminants and by-products) go to 
thermovalorization units for heat and electricity recovery or cement plants to be used as 
fuel; (iv) Transhipment Centers - Only train stations are considered based on their 
ability for handling intermodal transport; (v) Markets - Recycled polymers, heat and 
electricity are absorbed by market units, mimicking real demand. 

The waste streams considered are MSW (comprises domestic and industrial 
from municipalities), Polyethylene Terephthalate (PET) bottles, Polyethylene (PE) 
bottles (high and low density), and mixed plastics (MP) - which comprises other types of 
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plastics and small fractions of PE and PET. A tax on waste bags (0.058 $/L) was 
considered as well as its variation due to separate collection of plastics. 
3.2. Collection scenarios 
Scenario analysis was used to study distinct collection policies. The optimization 
algorithm is then free to select the set of best paths for each type of waste at hand, with 
respect to compatibility constraints. 

 
Figure 1 – Plastic collection scenarios - white bags refer to current implemented taxed bags and 

include MSW for all scenarios; yellow bags refer to taxed plastic bags.  

Selected scenarios, defined in collaboration with the industrial partners (Figure 
1), comprise the current state (Ref) used for benchmarking - on which PET and small 
fractions of PE are separately collected and recycled, with the remaining MSW routed for 
thermovalorization - as well as different configurations for plastics collection. Scenarios 
4 to 7, on which a plastic taxed bag (0.035 $/L) was considered, were also investigated. 
An extreme scenario (8) without any sorting was also studied. 

4. Results and Discussion 
For comparison, results were normalized by the amount of waste. illustrates the solution 
generation and dispersion for both environmental impacts assessed. Negative values 
indicate profitable systems and net environmental benefits. 

 

 
Figure 2 - Pareto points; circles refer to ESM and squares to the GWP 100a method; numbers next 
to symbols represent different collection scenarios (Figure 1) and letters indicate different 
configurations within each scenario; Ref identifies the reference collection scenario. 
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Regardless of the impact method, several system configurations achieve better 
economic and environmental metrics than the reference situation. For GWP, several 
configurations for collection strategy 3 (3a to 3d), in which PET and PE are collected 
together, can achieve moderately better (up to 25 %) economic performance compared 
with the reference system, though degrading environmental performance (up to 13 %). 
Solution for scenario 8, on which all wastes are collected in one undifferentiated bag, 
shows the lowest cost of all configurations due to reduced logistics costs - achieving a 
reduction of 100 % (equivalent to duplicate profit). However, environmental impact is 
degraded by 20 %. On the opposite spectrum of the plot, solution 2a and 3e perform 
slightly (up to 3 %) better environmentally but to the cost of considerable investment on 
new recycling units, which were chosen to address the increased collection of PE - 
converting thus the system to a non-profitable one - for the time horizon considered.  

 
Figure 3 - Environmental impact (a) and NPC (b) partition by activity 

ESM shows the benefit of using a more comprehensive indicator. Contrarily to 
GWP, the reference scenario does not belong to the Pareto curve, which implies that more 
interesting solutions are sure to be found. Similarly to GWP, solutions in which waste is 
collected all together (scenario 8) yield more profitable configurations to the price of 
degrading environmental indicators (8a and 8b); however, if natural gas co-burn is 
allowed, better environmental indicators are achievable (8c, 8d and 8e) associated with 
the off-set of heat and electricity. Solutions on the end spectrum (5a, 2a and 6b) perform 
better (up to 25 %) environmentally to the expense of heavy investment.  

Cost and environmental partition by type of activity were studied in more detail 
for Pareto solutions using GWP indicator - Figure 3. Logistics have a considerable 
economic impact - close to 40 %, contrasting with very reduced (ca. 2 %) environmental 
impacts. Conversely, thermovalorization emissions account for the largest share of 
environmental impact albeit at a reduced cost. However, those emissions are compensated 
by the off-set of heat and electricity production for market demand. Recycling shows an 
environmental off-set larger than the associated emissions, although costs do not follow 
the same pattern - the recycling process can be more expensive than the production of the 
corresponding plastics. Besides, for solutions 2a and 3e, investment in new recycling 
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facilities surpasses the operational expenditures with thermovalorization and are 
comparable with the logistics annual costs; furthermore, the environmental benefit it 
brings comes at an expense of 18 and 28 $/kgCO2-eq, respectively. 

The allocation of flows for each of the Pareto configurations shows that the total 
segregation of plastics (scenarios 4,5,6,7) is not part of the optimal set of solutions for the 
current set of waste flows and market prices. It seems reasonable to assume that the plastic 
content currently collected with the MSW taxed bag brings added value to the system and 
does not create a substantial environmental burden. 

5. Conclusions 
A superstructure-based approach comprising thermovalorization and recycling units 
embedded on a SC network was developed to study the collection and management of 
plastic waste. Cost and environmental indicators show that better economic performance 
is linked with scenarios with no plastic segregation, keeping the energetic potential of 
plastic within the thermovalorization perimeter and reducing logistics costs; however, it 
comes with higher environmental burdens. Reduction (3 % on average) of emissions is 
possible, for configurations that promote a separate collection of plastic waste and invest 
in new recycling facilities. Nevertheless, the cost associated is substantial. 

Given the current set of assumptions, plastic waste currently collected with 
MSW taxed bag brings added value to the system, as a consequence of efficient energy 
recovery in thermovalorization units, not posing a major environmental threat. Solutions 
are heavily dependent on the nominal waste flows as well as environmental and economic 
assumptions. An extensive uncertainty analysis to first identify hotspots on the input 
parameters is desirable, followed by uncertainty propagation. On the technology side, if 
carbon capture, usage and storage (CCUS) technologies are added, different flow 
allocations might be expected, due to increasing environmental performance of 
thermovalorization units. 
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Abstract 
The selection of phase change material (PCM) is essential for the development of efficient 
thermal energy storage (TES) processes. Due to their benign properties, ionic liquids (ILs) 
have been demonstrated to be a new type of promising PCM. Unfortunately, there is a 
lack of systematic study on the optimal selection or molecular design of IL-PCMs for 
TES. In this work, a computer-aided molecular design (CAMD) method is proposed to 
systematically design IL-PCMs for a practical TES process. The influences of different 
IL properties, such as latent heat, heat capacity, and thermal conductivity, are 
simultaneously captured with a detailed TES process model. Optimal ILs holding a best 
compromise of all the properties are identified by solving an optimization-based CAMD 
problem where the TES performance of the process is maximized. It is found that our 
optimally designed IL-PCMs show much higher TES performance than the industrial 
state-of-the-art PCMs. 

Keywords: phase change material, heat storage, ionic liquid, computer-aided molecular 
design 

1. Introduction 
Thermal energy is widely available and easy to access, which can be stored in the form 
of latent heat, sensible heat, or both. Generally, latent heat storage is more attractive than 
sensible heat storage because of its high energy density (Abhat 1983). Among all the 
latent heat storage approaches, the solid-liquid phase transition is most attractive for 
large-scale use due to its small volume change. In such a system, a phase change material 
(PCM) absorbs heat from a high-temperature heat transfer fluid (HTF) and melts whereas 
it releases heat to the cold HTF when it solidifies (Mehling and Cabeza, 2008). 
PCM selection is essential for developing highly efficient TES systems. Organic PCMs 
usually have low thermal conductivity and they are normally volatile and flammable; 
inorganic salts suffer a lot from corrosion and supercooling (Kenisarin and Mahkamov, 
2007). These drawbacks promote the development of new high-performing TES 
materials. Organic salts, which are also known as ionic liquids (ILs), consist of an organic 
cation and an organic or inorganic anion. This new type of chemicals is thermally stable, 
nonflammable and nonvolatile (Zhang et al., 2006). Moreover, the wide range of melting 
temperature spanning from negative up to 100 °C (Plechkova and Seddon, 2008) and the 
ability to tailor the properties (Zhou et al., 2012) by changing the cation, anion, and/or 
the substituents make ILs very promising PCMs. Despite that, except a few scattered 
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experimental studies (Terasawa et al., 2010; Vijayraghavan et al., 2013), there is a lack 
of systematic work on the optimal selection or molecular design of ILs for TES. 
So far, most of the previous work is focused on the heat of fusion when selecting PCMs. 
However, one should note that in reality, rarely are these materials being used only during 
the phase change period. In fact, the latent heat storage is always combined with sensible 
heat storage. In this context, in addition to melting point and latent heat, heat capacity is 
also essential for selecting PCMs. Moreover, thermal conductivity needs to be considered 
as well because it can greatly affect the heat transfer rate. The impact of all the different 
properties can be captured only when a real TES process is studied and modelled. 
In this work, a computer-aided molecular design (CAMD) based method (Austin et al., 
2016; Song et al., 2018; Zhou et al., 2019; Zhou et al., 2021) is proposed to systematically 
design IL-PCMs for a practical TES process. Different group contribution-based models 
are employed to predict the key properties of ILs that affect the TES process performance. 
Combining these property models with a detailed TES process model, an optimization-
based CAMD problem is finally formulated and solved to identify the best IL-PCM 
possessing a maximal TES performance. 

2. Modeling 
The TES device is depicted in Figure 1. As shown, the spherical PCM capsules with a 
diameter of 0.04 m are packed in a cylindrical TES tank (D = 1.0 m and l = 1.52 m) where 
the high-temperature HTF water at 343.15 K flows through the tank with a mass flow rate 𝑚 = 0.0796 kg/s. Initially, all the PCM spheres have a temperature of 323.15 K and the 
space between PCM capsules in the tank is already filled with water at the same 
temperature. When the thermal charging process is started, hot water flows in from the 
top of the tank and meanwhile the solid PCMs start to absorb heat. The PCM starts to 
melt when the temperature reaches its melting point and the TES process is completely 
finished when all the PCMs reach 343.15 K. However, this process can be terminated 
earlier because the thermal charging rate decreases over time. 

 
Figure 1. Layout and details of the thermal storage tank 
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In order to evaluate the TES performance of an IL-PCM for the thermal storage process 
illustrated in Figure 1, two types of models are generally required. They are IL property 
models that link IL structures to their physical properties and process models that predict 
the TES performance based on the IL properties. 

2.1. Process Modeling 
It is assumed that the HTF water has a one-dimensional axial flow and temperature 
distribution. Only heat convection is considered in this flow direction. For the PCM 
spheres, one-dimensional radial heat conduction is considered. The density, thermal 
conductivity, and heat capacity of the PCM are assumed constant during the whole TES 
process. Moreover, the heat conduction between different PCM spheres are neglected and 
the ambient heat losses and radiation heat transfer are also neglected. As indicated in 
Figure 1, the cylindrical tank is discretized into 38 equal sections (Nz = 38) in the fluid 
flow direction. The height of each section equals 0.04 m, making one tank section 
containing exactly a single layer of PCM capsules. The entire PCM capsule is discretized 
into 13 control volumes (Nr = 14) along the radial direction and the discretization index 
of Nr represents the position where water locates. Such a TES system is governed by a set 
of heat balances in the form of partial differential equations, which are discretized and 
solved as algebraic equations using the explicit finite difference method (Shi et al., 2021). 

2.2. Property Modeling 
As indicated by the process model, five thermo-physical properties of PCM, i.e., melting 
point 𝑇 , latent heat L, density ρ, thermal conductivity λ, and heat capacity Cp, are 
required to quantify the TES performance of a PCM. Group contribution (GC) methods 
(Zhou et al., 2018; Song et al., 2020) are widely used in CAMD to predict physical 
properties of compounds (Austin et al., 2016), due to their easy incorporation within 
mathematical optimizations and high qualitatively correct estimations. Different GC 
models are employed to predict the five properties of ILs. They have been elaborated in 
Shi et al. (2021). 

2.3. TES Performance Evaluation 
The thermal storage power of the system represents the TES performance of an IL-PCM. 
However, one should note that the thermal storage power is not a constant during the 
charging process. In the beginning, heat transfer is fast because the temperature gradient 
between PCM and water is high. However, the thermal storage power decreases gradually 
as the PCM temperature gets closer to the water temperature. Therefore, an average TES 
power, defined as the total stored heat over the thermal charging time, is used to represent 
the overall TES performance of the material. 

3. Results and Discussion 
3.1. Effect of IL Properties on the TES Power 
As evidenced by the process models, five IL properties including the melting point 𝑇 , 
latent heat L, density ρ, thermal conductivity λ, and heat capacity Cp are required to 
quantify the TES power of the IL-PCM. When the Tm of the IL is low, the temperature 
gradient on the solid-liquid interface (i.e., between the outer-layer melted PCM and the 
inner-layer melting PCM) is large, which makes the latent heat absorption faster and 
consequently leads to a higher TES power. Except Tm, all the other properties show 
positive effects on the TES performance of the material and the reason can be easily 
understood from the physical knowledge about the TES system. Additionally, the 
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significance of the property effect can be quantified by a parameter sensitivity study with 
the process models. 

3.2. Computer-Aided IL Design 
The CAMD method is used to design the optimal IL-PCM in this work. In total, 59 IL 
building groups including 54 cation-anion-pair groups and 5 substituent groups are 
considered for IL design. In CAMD, a molecule is represented by a vector of group 
numbers. Typically, several equality and inequality constraints on the number of groups 
must be considered in the CAMD program to ensure that the generated ILs are structurally 
reasonable. For the complete list of the 59 IL groups and all the necessary structural 
constraints, one could refer to Shi et al. (2021) where the solution strategy of the CAMD 
problem is also elaborated. 
In order to determine the average thermal storage power of an IL-PCM in the TES system 
(see Figure 1), a total thermal charging time needs to be pre-specified. In this work, we 
assume that the hot water at 70 °C is generated by solar heat and thus the thermal charging 
time depends on the total sunshine duration. Figure 2 shows the average monthly sunshine 
hours in Germany from June 2019 to May 2020 (Statista website). As indicated, the 
annually average sunshine time is about 5.5 hours/day. Thus, 5.5 hours is set as our 
thermal charging time for the IL-PCM design. 

 
Figure 2: Average sunshine time in Germany from June 2019 to May 2020 

3.3. Design Results 
The group combinations and molecular structures of top nine ILs are listed in Table 1 and 
plotted in Figure 3, respectively. The five key physical properties and corresponding 
average TES power (Pow) of the PCMs are also summarized in Table 1. In order to 
demonstrate the advantage of model-based PCM design, the TES performance of the 
designed IL-PCMs is compared with that of an industrial benchmark PCM paraffin wax 
# 60. As indicated, all of the top nine ILs show a substantially higher TES power than the 
wax. When comparing them, it is found that the influence or contribution of the heat 
capacity and thermal conductivity, indicated by the product of the property difference and 
its corresponding sensitivity value, on the thermal storage power is very small. Even 
though the wax has a higher latent heat that can increase its thermal storage power, wax’s 
higher melting point (note Tm has a large negative effect) and the much lower density 
make this material worse than the designed ILs. 
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Table 1. Top 9 IL-PCMs identified from CAMD for 5.5-hour thermal charging time  
(Pow in W, Tm in K, Cp in J/(kg∙K), ρ in kg/m3, L in kJ/kg, λ in W/(m∙K)) 

Rank Group combinations Pow Tm Cp ρ L λ 

1 2 CH2, 1 OH, 1 [MPy][TfO] 5277 323.8 2171 1426 134.3 0.158 
2 2 CH2, 1 OCH3, 1 [MPy][TfO] 5225 324.0 1758 1333 151.6 0.152 

3 1 CH2, 1 OCH2, 1 CH3,  
1 [MPy][TfO] 4995 324.0 1758 1333 115.8 0.152 

4 1 CH2, 1 OCH3, 1 [MIm][TfO] 4958 323.2 1644 1387 94.60 0.160 
5 1 CH2, 1 OH, 1 [MPy][TfO] 4760 327.6 2166 1474 137.3 0.162 

6 1 CH2, 1 OCH2, 1 OCH3,  
1 [MIm][I] 4719 323.4 1812 1450 71.70 0.159 

7 1 CH2, 1 OCH3, 1 [MIm][NO3] 4684 325.7 1538 1221 129.7 0.196 
8 2 OCH3, 1 [Im13][BF4] 4648 325.3 1661 1314 100.7 0.183 
9 1 CH2, 1 OCH3, 1 [MPy][TfO] 4644 327.7 1793 1374 155.3 0.156 

BM Paraffin Wax # 60 3403 333.1 2150 850 190.0 0.230 

[MPy][TfO] is found to be the most favorable IL group, and OH and OCH3 are the 
preferred functional groups for maximizing the TES power of the ILs. It is also found that 
two CH2 groups are most beneficial for the ILs [MPy(CH2)nOH][TfO] and 
[MPy(CH2)nOCH3][TfO]. Increasing the alkyl-chain length results in a lower melting 
point, leading to a higher TES power due to the large negative effect of Tm. However, 
when the number of CH2 group is larger than 2, the melting point becomes lower than 
323.15 K, which results in a significantly lower TES power due to the absence of latent 
heat storage contribution (note that the initial temperature of the PCM is 323.15 K). 
Moreover, when comparing the first with the second ILs and comparing the fifth with the 
ninth ILs, it is found that OH is slightly better than OCH3 when [MPy][TfO] is selected 
as the main group. The reason is that even though OCH3 contributes more to the latent 
heat, the OH group has a larger contribution to both the heat capacity and density, which 
determines its superiority over OCH3 for increasing the TES power of the IL-PCM. 

 
Figure 3: Molecular structures of the top 9 ILs identified from CAMD 
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4. Conclusions 
The CAMD method is employed to design ILs as PCMs for a practical TES process. The 
influence of different IL properties on the TES performance is simultaneously captured 
with a detailed TES process model. The optimal IL structure that possesses a best 
compromise of all the properties is identified by solving an optimization-based CAMD 
problem where the average TES power of the IL-based thermal storage system is 
maximized. It is found that our designed ILs perform better than the conventional PCM 
in terms of the average TES power. 
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Abstract 
Solvents are key to many chemical processes. To find optimal combinations of solvents 
and processes, solvent and process design have to be integrated. In this work, we present 
a method for the integrated thermo-economic design of separation processes and solvents 
that achieves a high level of the desired integration. The method is based on our 1-stage 
Continuous-Molecular Targeting-Computer-aided Molecular Design method. The PC-
SAFT equation of state is used as thermodynamic model to calculate both equilibrium 
and transport properties. Computer-aided molecular design allows designing the solvent 
as a degree of freedom of the process optimization. To allow for ease of use, we imple-
mented the method in the process flowsheeting software gPROMS ProcessBuilder, ena-
bling the convenient definition of the flowsheet. We present the method for the integrated 
design of a physical absorption process to separate CO2 from power plant flue gases. 

Keywords: CAMPD, PC-SAFT, CO2 absorption, carbon capture. 

1. Introduction 
Identifying optimal solvents for separations is an essential task in the chemical industry. 
Economically efficient separations require an optimal combination of process and sol-
vent. For this purpose, solvent design must be integrated into process design 
(Papadopoulos et al., 2018). However, the integration of solvent design adds many dis-
crete degrees of freedom to the process optimization leading to mixed-integer nonlinear 
programs (MINLP) (Gani, 2004). To solve the resulting MINLP problems, systematic 
solution approaches have been developed in recent years (Papadopoulos et al., 2018). 
Many solution methods employ equilibrium thermodynamic models. In this case, process 
performance can be assessed by a thermodynamic objective function, as, e.g., demon-
strated for the design of CO2 absorption processes by some of the authors  (Lampe et al., 
2015; Stavrou et al., 2014). However, thermodynamically optimal solvents can still be 
undesirable in terms of economics since investment costs are neglected. 
To quantify investment cost, equipment design needs to be integrated into the process and 
molecular design. Equipment sizing additionally requires the transport properties of the 
designed molecule. In pioneering work, Pereira et al. (2011) directly integrated a CAMD 
formulation into process design for physical CO2 absorption. Here, transport properties 
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and equipment sizing were based on empirical correlations. While limited to the design 
of n-alkanes, the work demonstrates the advantages of the integrated thermo-economic 
design. The group extended their work, e.g., by domain reduction (Gopinath et al., 2016) 
to remove infeasible process and molecular design regions. However, the lack of con-
sistent models for transport properties with strong predictive power has enforced equip-
ment sizing based on heuristics, which may not accurately capture trade-offs between 
processes, equipment, and molecule. Furthermore, the application of such design methods 
is usually challenging and limited to expert software, limiting their wider adoption. 
In this work, we present the integrated thermo-economic design of solvents and separa-
tion processes based on the 1-stage Continuous-Molecular Targeting-Computer-Aided 
Molecular Design (1-stage CoMT-CAMD) method (Schilling et al., 2017a; Schilling et 
al., 2017b). In 1-stage CoMT-CAMD, a consistent thermodynamic model for equilibrium 
and transport properties is used, the PC-SAFT equation of state. The integration into the 
process flowsheeting software gPROMS ProcessBuilder enables a straightforward appli-
cation of the integrated design. So far, 1-stage CoMT-CAMD has only been applied for 
Organic Rankine Cycles. Here, we extend the method for the integrated thermo-economic 
design of solvents and separation processes. For this purpose, diffusion coefficients and 
mass transfer need to be predicted. We demonstrate the method for a physical CO2 ab-
sorption process. 

2. The framework of 1-stage CoMT-CAMD 
1-stage CoMT-CAMD aims at maximizing the economic benefits offered in the molecu-
lar design space (Schilling et al., 2017b). The resulting problem is formulated as MINLP, 
Problem (1), based on the generic formulation introduced by (Gani, 2004): min,   𝑓(𝑥, 𝛩, 𝜅) 

s.t. 𝑔 (𝑥, 𝛩, 𝜅) = 0  𝑔 (𝑥, 𝛩, 𝜅) ≤ 0 equipment model 

 𝜅 = 𝑘(𝑥, 𝛩, 𝑦 ) PC-SAFT (transport) 
 𝑝 (𝑥, 𝛩) = 0 𝑝 (𝑥, 𝛩) ≤ 0 process model (1) 

 𝛩 = 𝑡(𝑥, 𝑦 ) PC-SAFT (equilibrium) 
 𝐹 ∙ 𝑦 = 𝑑  𝐹 ∙ 𝑦 ≤ 𝑑  CAMD 

 𝑥 ≤  𝑥 ≤ 𝑥   𝜖  ℝ   𝑦 ≤ 𝑦 ≤ 𝑦   𝜖  ℤ  
process degrees of freedom 
molecular structure 

In Problem (1), a thermo-economic objective function 𝑓 is optimized (e.g., the net present 
value), depending on process and equipment variables 𝑥 (e.g., pressure levels), equilib-
rium properties 𝜃 (e.g., enthalpies), and transport properties 𝜅 (e.g., viscosities). The pro-
cess and equipment models encompass equality constraints 𝑔 , 𝑝  (e.g., energy balances 
or mass transfer correlations) and inequality constraints 𝑔 , 𝑝  (e.g., limitations of pres-
sure levels or flooding conditions), respectively. The equilibrium properties 𝜃 and 
transport properties 𝜅 of the molecules are calculated using the PC-SAFT equation of 
state (Gross and Sadowski, 2001) (for details, see Section 3). A CAMD formulation is 
used to integrate the molecular design into the process design. Here, the designed mole-
cule is represented by the integer vector 𝑦 , which contains the number of a particular 
group of the molecular structure. The structural feasibility of the molecular structure is 
ensured by equality and inequality CAMD constraints (𝐹 , 𝐹 ) (Struebing, 2011). 
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The resulting degrees of freedom of the full MINLP problem are the process and equip-
ment variables 𝑥 and the molecular structure of the molecule 𝑦 . To allow for an easy and 
fast application of the method, we have integrated the 1-stage CoMT-CAMD method into 
the commercial process modeling software gPROMS ProcessBuilder (Process Systems 
Enterprise, 1997-2021) in the work of Schilling et al. (2020). Thereby, the process flow-
sheet can be quickly developed and adapted using the equipment model libraries of Pro-
cessBuilder. The CAMD model and equipment sizing models are directly integrated as 
libraries into ProcessBuilder. Thus, the overall integrated design problem can be set up 
based on drag-and-drop flowsheeting. The MINLP can be directly defined and solved in 
gPROMS ProcessBuilder, allowing for an integrated design with one user-friendly tool. 
The MINLP is solved by the standard local MINLP solver OAERAP (Outer Approxima-
tion/Equality Relaxation/Augmented Penalty) of gPROMS ProcessBuilder. OAERAP 
combines an outer-approximation formulation with a relaxation strategy. Initially, the in-
teger variables are relaxed to identify a hypothetical, optimal molecule, the target. Sub-
sequently, an outer-approximation formulation identifies the optimal real molecule jointly 
with the corresponding optimal process settings and equipment sizes. Integer-cuts are 
used to obtain a ranking of optimal molecules. Here, the MINLP is solved repeatedly and 
previous solutions are excluded from the design space using integer-cut constraints. 

3. Equilibrium and transport properties based on PC-SAFT 
The key to the proposed method is the detailed molecular picture underlying the modern 
thermodynamic model used to calculate the equilibrium and transport properties of the 
designed molecules: the perturbed-chain statistical associating fluid theory (PC-SAFT) 
(Gross and Sadowski, 2001). In PC-SAFT, each molecule is described by a set of typi-
cally 3 to 7 pure component parameters. The physical background of these parameters 
makes the overall model based on PC-SAFT particularly suited for relaxation strategies 
in optimization algorithms. PC-SAFT is linked to the CAMD formulation by the ho-
mosegmented group-contribution (GC) approach of PC-SAFT (Sauer et al., 2014), which 
calculates the pure component parameters from the molecular structure 𝑦 . 
PC-SAFT is used to calculate both equilibrium and transport properties in every state of 
the process. The model is based on the residual Helmholtz energy. To obtain absolute 
equilibrium properties, we calculate the heat capacity of the ideal gas as reference prop-
erty from the molecular structure using a GC approach (Joback and Reid, 1987). The 
transport properties 𝜅 are calculated from PC-SAFT based on Rosenfeld's entropy-scal-
ing. Therein, the transport properties were found to depend on the residual entropy uni-
variately. Using the dependency, GC approaches have been developed by some of the 
authors for viscosities 𝜂 (Lötgering-Lin et al., 2018), thermal conductivities 𝜆 (Hopp and 
Gross, 2019), and self-diffusion coefficients 𝐷  (Hopp et al., 2018) based on entropy-
scaling and PC-SAFT. From the self-diffusion coefficient 𝐷  of component 𝑘, we calcu-
late the diffusion coefficient 𝐷  in infinite dilution of component 𝑖 in component 𝑘 using 
the empirical correlation: 𝐷 = 𝐷 𝑚 . 𝜎0.5(𝑚 . 𝜎 + 𝑚 . 𝜎 ) . , (2) 

where the segment number 𝑚 and diameter 𝜎 are pure component parameters of PC-
SAFT. The diffusion coefficients in infinite dilution are transformed into Maxwell-Stefan 
diffusion coefficients using the predictive Darken equation (Liu et al., 2011). From the 
Maxwell-Stefan diffusion coefficients, we calculate the required Fick diffusion coeffi-
cients using the thermodynamic factor (Taylor and Krishna, 1993) from PC-SAFT. 
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In this work, we consider functional groups of branched alkanes, cyclic alkanes, and aro-
matics. We constrain the molecular design space of the cyclic molecules to single ring 
structures. Further functional groups can be easily considered as soon as the group con-
tributions are fitted to measurement data or the polar contribution of PC-SAFT is inte-
grated into gPROMS ProcessBuilder.  

4. Case study: Design of a carbon capture system with physical absorption 
We exemplify 1-stage CoMT-CAMD for the integrated design of the solvent and process 
of a carbon capture system with physical absorption. We investigate precombustion car-
bon dioxide capture from the syngas stream of a coal-fired integrated gasification com-
bined cycle power plant. The syngas feed contains hydrogen, carbon dioxide, and water. 
We notably account for water in the system due to its significant impact on the phase 
equilibria. The process topology includes the primary unit operations absorption, desorp-
tion, and carbon dioxide compression (Figure 1). Following Stavrou et al. (2014), the 
absorber has a fixed number of 7 equilibrium stages with a constant CO2 capture rate of 
90%. The desorption proceeds in two stages: a first flash stage, which feeds a hydrogen-
rich gas back to the absorber, followed by a desorption flash. The process parameters are 
taken from Stavrou et al. (2014). The heat exchangers are modeled as shell-and-tube heat 
exchangers in counter-flow, assuming single-phase forced convection (Gnielinski, 1975). 

 
Figure 1: Flowsheet for CO2 capture by physical absorption. The CAMD model and the sizing 
models of the equipment are directly linked to the process flowsheet. The flowsheet is created using 
gPROMS ProcessBuilder 1.2. 

The absorption column is sized based on the height and number of transfer units using 
the so-called HTU-NTU method (Sinnott, 2005). The height of a transfer unit is sized 
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using the mass transfer correlation of Onda et al. (1968) depending on the mixture's vis-
cosity and diffusion coefficients. We consider binary diffusion coefficients of hydro-
gen/carbon dioxide (gas phase) and solvent/carbon dioxide (liquid phase). The column 
diameter is obtained from the flooding conditions (Sinnott, 2005). 
The resulting MINLP optimization problem consists of 5 continuous process degrees of 
freedom (e.g., mass flow rates or pressure levels) and 33 binaries representing the molec-
ular structure of the solvent. The objective function 𝑓  is defined as the annual costs per 
mass of captured CO2 calculated from investment cost and operational cost for electricity, 
cooling, solvent loss, and hydrogen loss. We assume a depreciation period of 𝑛 = 5 a and 
an interest rate of 𝑖 = 0.08. Initially, the relaxation problem is solved, leading to a hypo-
thetical, optimal solvent, the target, with a target value of 15.99 € t⁄ . A ranking of the 
top 5 solvents is calculated using 1-stage CoMT-CAMD, identifying branched C10-C12 
alkanes as the best solvents (Table 1). The optimal identified solvent is n-undecane, with 
costs of 16.0 € t⁄ , which is very close to the target, indicating no further room for 
improvement in the considered molecular space. In practice, alkanes are not used for 
physical CO2 absorption. Thus, while the results demonstrate the advantages of an inte-
grated design, future work should integrate further promising functional groups for CO2 
absorption, e.g., ethers. The identified solvents show an optimal trade-off between oper-
ational and investment costs. Solvents with longer chains reduce the operational cost 𝑓  
but lead to higher investment costs 𝑓  due to higher viscosities. If only the operational 
cost 𝑓  without investment cost 𝑓  is considered as the objective function, branched 
C12-C13 alkanes, and thus solvents with longer chains are identified. The trade-off be-
tween economics, process, and molecule is captured within our integrated design frame-
work leading to overall optimal solutions. Identifying a ranking of the top 5 solvents re-
quires ca. 22 h using an Intel-Xeon CPU with 3.0 GHz and 64 GB RAM. 

Table 1: Target and top 5 identified solvents minimizing the total annual cost per mass of captured 
CO2  𝑓 , and the annual operational (𝑓 ) and investment (𝑓 ) costs per mass of captured CO2. 

Rank Name 𝑓  in € t⁄  𝑓  in € t⁄  𝑓  in € t⁄  
- target 15.99 12.70 3.29 
1 n-undecane 16.00 12.71 3.29 
2 n-dodecane 16.08 12.67 3.41 
3 methyldecane 16.13 12.78 3.35 
4 dimethylnonane 16.32 12.88 3.44 
5 n-decane 16.47 13.29 3.18 

5. Conclusion 
In this work, we present a method for the integrated thermo-economic design of solvents 
and separation processes in chemical engineering. For this purpose, modern physically-
based thermodynamic models based on PC-SAFT were linked to a CAMD formulation 
and rigorous models of the separation processes. Our 1-stage CoMT-CAMD method en-
ables the solvent design based on thermo-economic objectives using detailed models to 
size the equipment. We implemented the method into the commercial process modeling 
software gPROMS ProcessBuilder to allow for a straightforward definition of the inte-
grated design problem. For a physical absorption process to separate CO2 from power 
plant flue gases, our method systematically identifies the thermo-economically optimal 
solvent and the corresponding optimal process. The integrated design of solvents and sep-
aration processes allows reducing the cost for CO2 capture. 
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Abstract 
The associated natural gas produced on crude oil offshore platforms is often flared. The 
potential of two small-scale Gas-to-Liquids processes to monetise this gas whilst reducing 
carbon dioxide emissions is investigated in this work. Compact NETmix microreactors 
are considered for the reactor stages, and the process energy expenditure is reduced 
through heat integration of endothermic reforming stages, where syngas (a mixture of 
hydrogen and carbon monoxide) is produced, with exothermic Fischer-Tropsch stages, 
which convert syngas into liquid fuels. The base concept of the two Gas-to-Liquids 
processes considered differs mainly on the reforming stage: Steam Methane Reforming 
or Dry Methane Reforming. The two Gas-to-Liquids routes proposed are compared in 
terms of capital expenditure, operational expenditure and their emissions reduction 
potential compared to flaring. 
 
Keywords: Gas-to-Liquids, Steam Methane Reforming, Dry Methane Reforming, Heat 
Integration, Aspen 

1. Introduction 
According to the World Bank's Global Gas Flaring Reduction Partnership (GGFR), gas 
flaring releases about 400 million tons of CO2 equivalent emissions each year (GGFR, 
2020). Remote offshore crude oil platforms and floating vessels are amongst the main 
contributors to these emissions. Given their limited access to a gas market, when 
associated gas cannot be reinjected to increase oil production, or used onsite, it ends up 
being flared or vented to the atmosphere (IEA, 2020). Flaring reduction initiatives, like 
Zero Routine Flaring by 2030 from the World Bank, and tighter environmental 
regulations are driving a growth in the Gas-to-Liquids (GTL) market.   
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Gas-to-Liquids processes comprise two main steps: 1) conversion of gas, such as natural 
gas (NG) into a mixture of carbon monoxide (CO) and hydrogen (H2), called synthesis 
gas or syngas, followed by 2) conversion of this syngas into a mixture of long liquid 
hydrocarbon (HC) chains by Fischer-Tropsch (FT) reactions.  The most common 
industrial method for syngas production is Steam Methane Reforming (SMR). However, 
given the potential to re-use part of the carbon dioxide present in some reserves, Dry 
Methane Reforming (DMR) is also receiving increased attention (Wang et al., 2018). 

In this work, the potential of both routes to monetise NG flared at a crude oil production 
facility is assessed. For GTL processes to present an attractive alternative for 
monetisation of associated gas and remote/stranded natural gas reserves, where 
conventional means of transportation are not practical or economical, it is essential to 
develop technologies for small scales (100-1000 bpd) with a fraction of the capital costs 
of conventional large-scale plants (Chen and Grossman, 2019). The study considers 
small-scale facilities, with 500 bpd production scale, and performs process simulation 
calculations, heat integration and economic estimations using AspenTech software 
packages. To reduce the installation size and improve the energy efficiency of the process, 
compact microreactors based on the NETmix technology are assumed for all reaction 
steps. These reactors are characterized by very high heat transfer coefficients (Costa et 
al., 2017), which together with heat integration of the processes mitigate the two major 
challenges associated with small-scale GTL. 

2. Methodology and Process Description 
The processes were simulated in Aspen Plus® using the Peng-Robinson property model, 
recommended when hydrocarbons and light gases are present, and the ENRTL-RK model 
for process sections containing electrolytes. The process flowsheets from Figure 1 
comprise a heat exchanger network, capable of integrating process heat and minimizing 
energy consumption, which was developed in Aspen Energy Analyzer™ through Pinch 
analysis. Equipment costs were estimated with Aspen Process Economic Analyzer™, 
with the exception of the reactor costs, whose costs were obtained from the NET4CO2 
Collaboratory Laboratory, the entity with expertise in building these type of reactors 
(Lopes et al., 2008). Capital expenditure (CAPEX), operational expenditure (OPEX) and 
carbon footprint were assessed for both processes. 

Figure 1a shows the Aspen flowsheet of the GTL process via SMR. It includes four major 
steps: NG steam reforming, CO2 capture with amine scrubbing, FT reaction and FT 
syncrude purification. A mixture of natural gas and steam is pre-heated and fed to the 
SMR NETmix reformer R-01, at 860 °C and 20 bar with kinetic expressions based on the 
work of Tonkovich et al. (2007), and with a steam-to-carbon molar ratio of 2.3. This gives 
a global hydrocarbon conversion of 79 % and a final H2/CO ratio of 4. The CO2-rich 
syngas is pressurised to 33 bar (to minimise stage requirements, absorbent flow rate and 
overall equipment size) and is scrubbed with a 40 wt. % Methyldiethanolamine (MDEA) 
solution. 89 % of CO2 is removed from the syngas with a 98 wt. % purity. 

The CO2-lean syngas is sent to the Pressure Swing Adsorption (PSA) system T-03 with 
80 % molar H2 recovery. A fraction of the H2 produced is fed back to the process to 
correct the H2/CO molar ratio to 2. Although it is not depicted in Figure 1a, the remaining 
portion of H2, with 99.5 wt. % purity, is diluted with other streams containing light gases 
from the purification stage (streams 53 and 59) and it is fed to the furnace for energy 
recovery purposes. The Fischer-Tropsch reaction occurs in R-02, the NETmix FT reactor, 
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operating at 250 °C and 30 bar, with kinetic model obtained from Almeida et al. (2013), 
leading to a CO conversion of 88 %. Finally, the FT syncrude produced is separated from 
lighter hydrocarbons in flash vessels V-02 and V-04 and from water in decanter V-03. 

The GTL via DMR differs mainly in the feedstocks, processing steps (NG dry reforming 
and Water-Gas Shift instead of steam reforming) and heat integration network. In Figure 
1b, a natural gas stream containing 70 % (v:v) CO2 is pre-heated before entering the 
NETmix dry reforming reactor R-01, with kinetic expressions based on the work of 
Richardson and Paripatyadar (1990), operating at 900 °C and 4 bar, and with 98 % 
conversion. The resulting syngas with a H2/CO ratio of 0.6 is sent to the Water-Gas Shift 
(WGS) reactor R-02, operating at 180°C and 3 bar and simulated with kinetic expressions 
from Amadeo and Laborde (1995). R-02 is responsible for raising the H2/CO ratio from 
0.59 to 2. After WGS, the processing steps are the same of GTL via SMR: syngas is 
scrubbed with the same solution of MDEA, giving a 96 % recovery and 98 wt. % purity; 
FT reactor R-03 is simulated at the same operating conditions with 87 % CO conversion; 
and the final purification step is also performed with two flash vessels and one decanter.  

The heat integration of the GTL via SMR process resulted in a network of 11 heat 
exchangers, while the GTL via DMR has a network of 13 heat exchangers (these values 
do not include reboiler and condenser from the stripper). Note that to achieve the same 
production of 500 bpd, DMR uses less NG. This reduction of NG per barrel of product is 
larger than the increase in the heat of reaction for the DMR case, relative to the SMR. 
This contributes to significantly less heat to be integrated for the DMR case in comparison 
to the SMR, 18 MW against 30 MW. In addition, DMR is a more heat-efficient process, 
integrating 39 % of available process heat, compared to 32 % via SMR. Both processes 
have a similar energy conversion efficiency of around 65 %. 

3. Results & Discussion 
Table 1 compares the CAPEX and OPEX associated with both SMR and DMR routes. It 
is possible to conclude that SMR has the highest capital investment, being the 
compressors, the 4 packed towers of the PSA system and the heat exchanger network the 
most expensive equipment. Regarding OPEX, cooling water costs have the highest 
impact for SMR, while electricity is the main expense for DMR (mainly for C-01 
compressor, which departs from 3 bar instead of 20 bar as in SMR). Nevertheless, the 
CAPEX + OPEX cost estimated for FT syncrude, for both routes, is lower than the 
average Brent crude oil price in 2019, $64.36/bbl (MWV, 2020) and is about 1/5 of target 
cost for synthetic e-fuels (Bosch, 2020). 

GTL via SMR leads to a 28 % reduction of carbon emissions when compared to the 
flaring of the same natural gas, while GTL via DMR increases emissions by 10 %. SMR 
takes advantage of H2 combustion in the furnace, avoiding the need of burning extra 
natural gas to meet heating needs. Both proposed GTL plants are within the limits of 1700 
m2 topside area and 3130 Mtonne weight estimated for an offshore 5000 bpd modular 
GTL concept (Kwon et al., 2015). For a 500 bpd capacity, the estimated topside area and 
weight are one and more than one order of magnitude below the limits, respectively. 

A sensitivity analysis on the impact of interest rate, operational lifetime and NG cost on 
the CAPEX and OPEX for DMR case is presented in Figure 2a-c. The lowest CAPEX is 
achieved for around 20 years of operation. A 10 % raise on the interest rate increases  
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 (a) (b)  

Figure 1. Aspen Plus® flowsheets: (a) GTL via SMR, (b) GTL via DMR. 
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CAPEX in 550 %, demonstrating the importance of the interest rate on the economically 
feasibility of a GTL project. 

Table 1. Estimated capital and operating costs for small-scale GTL via SMR and DMR, 
for 20 years operation lifetime, 4.5 % interest rate, and $0.01/kg of NG. 

Reforming SMR DMR  Reforming SMR DMR 

Capital (106 $) (106 $)  Operation ($/bbl) ($/bbl) 
Compressors 5.4 3.1  Natural gas 4.4 7.7 
Pumps 0.65 0.35  Water 0.062 0.031 
Drums 0.51 0.49  Cooling water 8.74 7.9 
PSA towers 4.0 -  Electricity 5.54 14 
Absorber 0.47 0.45  OPEX 19 30 
Stripper 0.97 0.86  Carbon footprint  820 1450 
SMR reactor 1.5 -  (kgCO2e/bbl)   
DMR reactor - 1.0     
WGS reactor - 2.5  Total area* (m2) 178 113 

FT reactor 1.1 0.87  Weight* 
(Mtonne) 2.6 0.9 

Catalysts 0.053 0.050  *preliminary estimates without detailed 
Furnace 2.5 1.7  equipment design or plant layout.  
Heat exchanger 
network 3.2 2.5  Pumps, compressors, boilers, furnaces  

Cooling tower 0.65 0.65  and piping were not considered. 
Total capital 27 19   
CAPEX ($/bbl) 20 14   

 
Figure 2. Impact of (a) interest rate on CAPEX, (b) operation lifetime on CAPEX, 
assuming an interest rate of 4.5 %, and (c) NG cost on OPEX for DMR. 

4. Conclusions 
Comparing the two small-scale GTL routes, the SMR is the most economically 
favourable, with $20/bbl of CAPEX and $19/bbl of OPEX and enables a 28 % reduction 
on carbon emissions when compared to flaring, which is advantageous particularly in a 
scenario of rising CO2 emission taxes. Nevertheless, the choice between SMR and DMR 
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must be made carefully, since the decision on the route to follow is highly dependent on 
NG field size, composition, CO2 availability, taxes, oil markets, among other factors. 
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Abstract 
A novel method for automated flowsheet synthesis based on reinforcement learning (RL) 
is presented. Using the interaction with a process simulator as the learning environment, 
an agent is trained to solve the task of synthesizing process flowsheets without any 
heuristics or prior knowledge. The developed RL method models the task as a competitive 
two-player game that the agent plays against itself during training. The concept is proven 
to work along an example with a quaternary mixture that is processed using a reactor or 
distillation units.  

Keywords: process synthesis, machine learning, reinforcement learning, automated 
method. 

1. Introduction 
Automated process synthesis is a central research field of process systems engineering. It 
can be grouped into three categories (Siirola, 1996): superstructure optimization, 
evolutionary modification, and systematic generation. In the latter one, a flowsheet is 
created sequentially by adding more and more process units from a predefined set. The 
decision process is usually done with heuristics that are based on prior knowledge. 
Prominent examples are the well-known expert systems. In the present work, a novel 
machine-learning (ML)-based method in the category systematic generation is 
introduced. As ML and artificial intelligence (AI) are rapidly expanding fields, a lot of 
research focuses on applying these kind of techniques in computer-aided process 
engineering. In the area of process synthesis, ML is for example applied to create 
surrogate models for reducing computational cost in simulation (Eason and Cremaschi, 
2014). AI offers however more potential (Dimiduk et al., 2018), including recognizing 
system structures and components and making recommendations for the final design. The 
type of ML techniques, that could address these kind of problems, seems to be 
reinforcement learning (RL). The objective of RL is to teach an agent, which could be for 
example a neural net, to master a given task through repeated interactions with its 
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environment. This concept is already applied in process engineering, however almost 
exclusively in process control. Among rare exceptions are Zhou et al. (2017), who 
employed RL to set experimental conditions for the optimization of chemical reactions. 
Khan and Lapkin (2020) demonstrated that it is possible to identify promising processing 
routes in hydrogen production by using a RL approach. Given one of the open streams in 
the process, the agent was trained to choose a process unit, which is then connected to 
this stream.  

The present work shows a RL based method, which provides the whole flowsheet as input 
for the agent. The decision is hierarchical: at first, the agent chooses one of the open 
streams to work with and afterwards a suitable process unit. This approach is an extension 
of the work of Göttl et al. (2021), in which the agent chooses an open stream and the 
corresponding process unit at once from a flat, non-hierarchical action space. The agent 
is trained without the usage of prior knowledge or heuristics. Through repeated process 
simulation during the training phase of RL, the agent develops artificial process 
engineering intuition. After briefly explaining the methodology, an example proves the 
concept to work. 

2. Methodology 
Framework. The present work is an extension of the method of Göttl et al. (2021), where 
we refer to for a description of the details. The framework for RL is depicted in Figure 1. 
The environment is a steady-state process simulator that contains all physical knowledge, 
i.e. models of thermodynamic properties and a given set of standard process units. The 
agent does not have any prior knowledge and learns only through interaction with the 
environment. The agent takes actions on the environment by sequentially adding process 
units to a flowsheet. The agent observes the stream table that is obtained as result of the 
process simulation performed in the environment. After the agent decides that the 
flowsheet synthesis is complete, it obtains a reward from the environment, e.g. some 
monetary cost function of the process simulation results like the net present value. 

 
Figure 1: Framework for formulating flowsheet synthesis as reinforcement learning 
problem. 
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The presented framework is quite general and is further specialized to yield a proof of 
concept. A major assumption/limitation in the present work is that the agent takes only 
concrete actions, e.g. choose an open stream and afterwards place a process unit. The 
agent does not specify any continuous operation parameters of the apparatus. The reason 
for this limitation is two-fold: on the one hand, a robust simulation environment can be 
employed (cf. below). On the other hand, the used RL methods are native in discrete 
decision spaces and would require computationally expensive extensions for continuous 
parameters. Despite the limitation to discrete decisions, interesting design problems can 
be considered as the most important decisions in conceptual design are discrete. 

Process Example. As example process in the environment, we chose a chemical model 
system that is zeotropic and consists of four compounds A (low-boiler), B, C and D (high-
boiler). In a reactor with heterogeneous catalyst, the following, kinetically controlled 
reaction A + B → C + D happens. The following process unit are available to the agent: 

● Place a distillation column with one of the following sharp split: D1 (A - BCD), 
D2 (AB - CD), D3 (ABC - D). 

● Place a reactor (denoted R) with a fixed residence time. The kinetic is of first 

order in A and B: 
in out out out
A A A B5 kmol/hn n x x     

● Place a mixer (denoted M) to combine two streams. 

D1, D2, D3 and R are applied to any single open stream, whereas M requires two open 
streams as input. The net present value is used to evaluate the obtained processes in the 
case studies. Since the complexity of its calculation is not relevant for the presented 
methodology and the process models are rather simple, a rather simple scheme is used: 
the output streams of the process yield a positive value when they are pure C or D. If an 
output stream consists of a mixture, it is assigned a negative value depending on its 
composition (the components A and B have a lower value than C and D). Costs for 
process units are assumed flat and annualized over 10 years. Energy costs are neglected. 

SynGameZero method of reinforcement learning. Numerous off-the-shelf RL 
methods could be tried out on the problem shown in Figure 1. We have identified two 
major challenges: a) It is not trivial to reward the agent after every action immediately. 
For example, think of a multi-step separation sequence that only works successfully after 
a recycle has been closed. After placing the first process unit of the sequence, a 
constructive reward is hard to determine. b) For the same reasons, the problem is prone 
to local optima. Powerful exploration schemes are thus indispensable. 

In the present work, both challenges are tackled simultaneously using a novel method 
called SynGameZero - Flowsheet Synthesis in a Game Environment with Zero 
Knowledge (Göttl et al. 2021).  The task of creating a profitable flowsheet is modelled as 
a two-player game. Two competing players create a flowsheet for the same task. The 
game is turn-based and at each turn, a player can add a process unit in its own flowsheet 
or terminate the flowsheet synthesis. Both players are able to see their own and the 
opponents flowsheet. The game ends, when both players have completed their flowsheets. 
The game winner is the player who yielded a higher net present value. If the net present 
value is tied, the player who completed the flowsheet first wins the game. The winner 
obtains the reward r = 1, the loser r = -1. The agent is trained by playing many games 
against itself to win the game. Such a game-like setup allows us to use a modified version 
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of the efficient techniques proposed by Silver et al. (2017) that have been successfully 
used to master the board game of Go.  

Agent setup. A state of the environment consists of the present flowsheet structure and 
the stream table (from simulation). This information is stored together in a flowsheet 
matrix. The input for the agent consists of two of those matrices – one for the flowsheet 
of the player whose turn it is, one for the flowsheet if its opponent. The agent consists of 
an artificial neural net (ANN) and a tree search. As mentioned before, the agent first 
chooses an open stream in the flowsheet to work with and afterwards a process unit, which 
is placed at the chosen stream. Therefore the ANN is also divided into two (connected) 
parts, the first one being responsible for choosing a stream, the second one being 
responsible for choosing a process unit. The first part of the ANN takes the flowsheet 
matrices as input and outputs a vector p1 and a scalar v1. The vector p1 represents a 
probability distribution (its entries are in the range [0; 1] and sum up to 1) and has one 
entry for every stream in the flowsheet and an additional entry for an action called T, 
which terminates the flowsheet synthesis. The vector suggests, which open stream should 
be taken (for adding a process unit). The scalar v1 is an estimate of the reward (range [-1; 
1]) at the end of the game for the current player. The second part of the ANN is connected 
to the last hidden layer of the first part and takes as additional input a vector, which 
indicates which stream was chosen. This part of the ANN outputs a vector p2 and a scalar 
v2. The vector p2 has one entry for every available process unit and similarly as p1 it 
represents a probability distribution. v2 is another estimate of the reward. To improve its 
performance, the agent does not directly select the actions with the highest probabilities 
in pi. Instead, all outputs of the ANN are used to guide a tree search to plan several actions 
in advance. To avoid extensive computations, the tree search is adaptive in depth and does 
not use a full enumeration of all actions. Only promising actions are explored, where pi 
and vi quantify the word promising. The action taken by the agent is ultimately decided 
based on the statistics of the tree search (basically it is counted how often each possible 
action was taken during the tree search). The ANN is trained with these statistics to give 
better suggestions for actions and estimates of the reward in the future. The tree search is 
described in detail in Göttl et al. (2021). 

3. Example case study and results 
To prove the concept to work, the same flowsheet problems as approached by Göttl et al. 
(2021) are considered. At the beginning of each game during training, one of the 
following feed situations is chosen randomly: in situation 1 two feed streams of the types 
[𝑛 ; 𝑛 ; 0; 0] and [0; 0; 𝑛 ; 𝑛 ] are considered. In situation 2 two feed streams of the 
types [𝑛 ; 0; 𝑛 ; 0] and [0; 𝑛 ; 0; 𝑛 ] are considered. In situation 3 one feed stream of 
the type [𝑛 ; 0; 𝑛 ; 𝑛 ] is considered. In situation 4 one feed stream of the type [0; 𝑛 ; 𝑛 ; 𝑛 ] is considered. The non-zero entries are sampled randomly out of the interval [0.2; 
1.2] kmol/hr before each game. Both players obtain the same flowsheet problem (identical 
feed streams) and try to create a process, which yields a higher net present value than the 
process of the opponent. As explained before, the cost function yields the largest net 
present value for flowsheets, where C and D leave the process with a high amount and as 
pure streams.  

Figure 2 shows four stages of the agent’s development over the progress of the training 
process specified by the amount of completed training steps. Panel a) in Figure 2 shows 
an example for a winning flowsheet at the start of the training process. The agent chose 
to terminate the flowsheet synthesis right at the beginning of the game. This is not 
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surprising, as the ANN is initialized with random weights and therefore its suggestions 
do not provide useful solutions to the given problems. After 2000 training steps in panel 
b), placing a distillation column to separate C and D is the first priority of the agent. This 
is a useful action since pure C and pure D have a high value. Additionally, the agent 
already has learnt that placing a reactor at the upper stream is useful, but it is not able to 
separate C as a pure product yet. Later in panel c) the agent favors to mix the streams first 
to have a common downstream sequence to save apparatus cost. After 20,000 steps in 
panel d), the agent has learnt that it is constructive to mix in the CD stream only after the 
reactor. To do so, it has to prioritize a reactor at the AB stream as first action. Overall, the 
agent achieved similar results for all of the four feed situations as the agent proposed by 
Göttl et al. (2021) by employing the described hierarchical action structure.  

 

 
Figure 2: Evolution of the agent over the progress of the training. The shown flowsheets 
are examples for the winning flowsheet, created by the agent, at different stages during 
training for situation 1. 

4. Conclusions 
This contribution gives a further proof-of-concept that reinforcement learning (RL) can 
be used to train an agent without any prior knowledge to synthesize useful flowsheets for 
chemical processes in sequential manner. The problem of producing a profitable 
flowsheet is reformulated into a competitive two-player game that is played by the agent 
during training. This reformulation improves the efficiency of the training significantly, 
because it motivates exploration of alternatives. An agent that combines an adjustable 
artificial neural network (ANN) with an adaptive tree search for forward planning proved 
efficient and successful. The obtained results in a rather simple process example are 
promising. The introduction of a hierarchical structure of the actions provides an 
interesting approach to consider more sophisticated problems in the future (e.g. non-ideal 
chemical systems, more complex process units). Compared to a flat action space it allows 
integration of a larger number of process units without the problem of an exploding 
number of possible actions. Also, additional hierarchy levels could be included, for 
example to specify continuous parameters (on a discretized range) in the apparatus 
models. 
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Abstract 
Methane and methanol as synthetic fuels can be produced from synthesis gas or syngas. 
A proton-conducting solid oxide electrolysis cell (H-SOEC) becomes a promising 
technology that can produce syngas from the co-electrolysis of steam and CO2. In this 
work, the synthetic fuel production from syngas produced by a H-SOEC was modelled 
and simulated through Aspen Plus simulation software. The composition of syngas and 
synthetic fuel were calculated by using the minimization of Gibbs free energy. Firstly, 
the steam to CO2 (S/C) molar ratio in feed was determined to satisty the suitable 
stoichiometric number of each fuel. Further, the H-SOEC operating temperature was 
optimized. The simulation showed that at operation of H-SOEC as 650 °C and 1 atm, the 
optimal S/C molar ratio for methane and methanol productions is 4.69 and 3.52, 
respectively. Then, the effect of operation in fuel production was examined. The results 
indicated that methane flowrate of 0.2 kmol/h can be provided when reactor operates at 
250 °C and 3 atm. For methanol production, 0.13 kmol/h of methanol can be generated 
at reactor operation as 250 °C and 80 atm. In addition, it was found that the methane 
production does not release CO and CO2 to nature. Therefore, it can be concluded that 
the integrated system of H-SOEC and methane production is more attractive feature. 
 
Keywords: Solid oxide electrolysis cell, Co-electrolysis, Proton-conducting, Synthetic 
fuel, Synthesis gas. 

1. Introduction 
A solid oxide electrolysis cell (SOEC) is a reverse mode of solid oxide fuel cell that can 
produce H2 from separation of steam through electricity. In case of a proton-conducting 
SOEC (H-SOEC), it can produce more purifier H2 than the conventional SOEC since no 
dilution of steam in the product stream (Lei et al., 2020), as seen in Figure 1a. The co-
electrolysis of steam and CO2 through a H-SOEC (Figure 1b) can provide the gas mixture 
consisting primarily of H2 and CO which is referred to synthesis gas or syngas. Compared 
with the conventional method of syngas production (e.g. steam reforming and 
gasification), the co-electrolysis of H-SOEC is more attractive feature. If the power used 
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is generated from renewable resource, the syngas production through H-SOEC becomes 
clean technology. This method not only eliminates the consumption of fossil fuels which 
have price crisis but also can reduce the CO2 emission due to the recycling or reusing CO2 
during production.  

Although syngas is perceived as energy carriers that tend to replace the fossil fuels in the 
future, the energy storage in form of other chemicals or fuels is great interest due to ease 
of use and handling (Léonard et al., 2016). In this work, the productions of methane and 
methanol have been focused since both fuels are the most promising fuel and feedstock 
that can be further used in many applications (Bernardi et al., 2019). Interestingly, if this 
production uses the syngas produced from H-SOEC as an environmentally friendly 
method, it may be claimed that the obtained synthetic fuels are clean. Moreover, it can 
call this operation as Power-to-Chemical. 

Since, the production of each synthetic fuel requires different stoichiometric number, the 
operations of H-SOEC to provide syngas for each synthetic fuel may be different. 
Motivated by this, this works aims to identify the favourable operating conditions of H-
SOEC that satisfying each synthetic fuel. This work is performed through the simulation 
by using Aspen Plus simulator. Furthermore, the influence of reactor operation for 
synthetic fuel production is studied.  

2. Modelling of Synthetic Fuel Production 
In this work, the model of the synthetic fuel production from syngas produced by a H-
SOEC is developed and designed through Aspen Plus simulation software, as shown in 
Figure 2. The equation of state as IDEAL is used in the simulation. The simulation of 
syngas production is firstly performed to identify the appropriate H-SOEC operation for 
each fuel. Next, the obtained syngas is treated before sending to the reactor for methane 
or methanol production. For syngas production, steam (STEAM stream) and carbon 
dioxide (CO2 stream) is fed to the anode (ANODE) and the cathode (CATHODE), 
respectively. The anode is represented by RStoic reactor model where the electrochemical 
reaction of steam is carried out. Therefore, the steam utilization or steam conversion (X), 
as expressed in Eq. (1), should be specified to determine the current density (i) used for 
syngas production. 

  
Figure 1 Schematic of H-SOEC for (a) hydrogen production and (b) syngas production. 
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Figure 2 Flowsheet of synthetic fuel production from syngas produced by H-SOEC. 
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where A is cell area (m2), Ncell is cell number and 
2H O,inn  is inlet steam flowrate (kmol/h). 

Before the gas product from the cathode is used to produce synthetic fuel, the gas mixture 
is cooled down in the cooler (COOLER) and sent to the flash drum (FLASH) to remove 
water. Then, the dry syngas (SYNGAS stream) is fed into the reactor (REACTOR) to 
generate the desired synthetic fuel (FUEL stream). The chemical reaction that can be 
occurred in the reactor depends on type of synthetic fuel. For the methane production, 
Sabatier and methanation reactions can be carried out in the reactor (Stempien et al, 2015). 
In case of methanol, the reactions occurred in the reactor may be hydrogenation of CO 
and CO2 (Kiss et al., 2016). Since the possible chemical reactions are based on 
equilibrium, RGibbs reactor model is used to calculate the fuel composition. 

3. Model Validation 
To ensure that the electrochemical reactions can be accurately predicted the performance 
of H-SOEC, the comparison between the simulation results and experimental data 
extracted from the literature is performed and the results are summarized in Table 1. The 
experiment of Ruiz-Trejo and Irvine (2012) used platinum electrodes and BCZYZ 
electrolyte that have the thickness as 100 and 200 , respectively. 500 cells of H-SOEC 
is fabricated with specific area of 0.04 m2. The anode side is fed with 95% steam and 5% 
hydrogen. As seen in Table 1, the deviation of results obtained from simulation and 
experiment is about 10% which is acceptable. 

Table 1 The comparison of cell potential obtained from simulation and experimental data 
(Ruiz-Trejo and Irvine, 2012) at current density of 400 A/m2 

H-SOEC 
temperature (oC) 

Cell potential (V) Deviation 
(%) Experiment This simulation 

550 1.58 1.39 9.9585 
600 1.42 1.30 8.1945 
650 1.31 1.22 6.4210 
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4. Results and Discussion 
4.1. H-SOEC operation 

In this part, the operation of H-SOEC is determined to provide syngas that is suitable for 
synthetic fuel production. Firstly, the effect of steam to CO2 (S/C) molar ratio in feed 
stream on stoichiometric number (S) as expressed in Eq. (2) is studied.  

2 2

2

H CO

CO CO

n n
S

n n





 
 

        (2) 

where in  is the molar flow rate of species i (kmol/h). 

For the investigation on the effect of S/C molar ratio, there are two methods performed: 
(1) steam molar flow rate is increased while CO2 molar flow rate is constant and (2) CO2 
molar flow rate is decreased with a constant value of steam flow rate. Therefore, the effect 
of these variations on cell potential is considered as shown in Figure 3a. When the H-
SOEC is operated at 650 oC and 1 atm with different S/C molar ratio (0.5, 1, 2, 3, 4 and 
5), it can be seen that the variation of steam flow rate has more impact than that of CO2 
flow rate. Since increasing steam flow rate leads to an increase in current density, 
according to Eq. (1), and this causes significant increases in all voltage losses that include 
activation, ohmic and concentration losses and thus, the cell potential used for syngas 
production is higher. Conversely, the variation of CO2 flow rate does not affect to cell 
potential. Therefore, to avoid the variation of cell potential or keep current density as 
constant during the study on the effect of S/C molar ratio, the reduction of CO2 flow rate 
is considered. 

Figure 3b presents the stoichiometric number as a function of S/C molar ratio. The 
simulation results indicate that increasing S/C molar ratio or decreasing CO2 molar flow 
rate can increase stoichiometric number. However, it can be observed that the 
stoichiometric number becomes a negative value when S/C molar ratio is below 1. This 
indicates that the amount of steam fed into H-SOEC is not enough to generate H2 for 
reacting with CO2. From the simulation results, when the suitable stoichiometric number 
for methane and methanol production as 3 and 2 are specified, the optimal S/C molar ratio 
can be provided as 4.69 and 3.52 respectively. As expected, since the suitable 
stoichiometric number of methane production is more than and thus, the required S/C 
molar ratio is also higher. 

 
Figure 3 The effect of S/C molar ratio on (a) cell potential and (b) stoichiometric number. 
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Next, the influence of H-SOEC temperature on stoichiometric number and CO production 
is investigated, as shown in Figure 4. In this study, the H-SOEC temperature is varied as 
550, 600 and 650 K while H-SOEC pressure and S/C molar ratio are constant value as 1 
atm and 4.62, respectively. Figure 4a shows that the increment of H-SOEC temperature 
can reduce the cell potential used for syngas production. This is because higher 
temperature operation leads to decreases in reversible cell potential, activation loss and 
ohmic loss. In addition, it is found that increasing H-SOEC temperature can shift the 
reverse water gas-shift reaction toward and thus, more CO can be produced as seen in 
Figure 4b. As a result, H-SOEC should be operated at high temperature to provide higher 
CO while the power consumption is lower.  

Under the operation of H-SOEC at 650 oC and 1 atm, for methane production that the S/C 
molar ratio of 4.69 is specified, it can provide the gas product consisting of 58.3% H2, 
9.2% CO, 7.5% CO2 and 25% H2O. For methanol production that setting the S/C molar 
ratio as 3.52, the product stream is composed of 52.8% H2, 11% CO, 10.2% CO2 and 26% 
H2O.      

4.2. Reactor operation for methane and methanol production 

In this part, the operating condition of each reactor on each fuel production is considered 
to achieve the highest amount of required synthetic fuel. Considering reactor temperature 
for both fuel productions, it is found that increasing operating temperature cause a 
reduction of fuel production. This is because the reactions occurred in both reactors are 
exothermic reaction in which is favourable to low temperature. Therefore, higher 
temperature operation becomes a negative effect on product composition. The simulation 
results indicate that the reactor for methane production should be operated at 250 °C and 
3 atm in which the methane molar flow rate of 0.2 kmol/h can be produced. While, the 
operation at 250 °C and 80 atm is suitable for methanol production. Under these operating 
condition, the methanol of 0.13 kmol/h can be generated. Besides the operation condition 
of reactor, the effluent of each reactor is considered. The results reveal that the methane 
production does not release CO and CO2 to nature. Unlike methane production, there are 
some amount of CO and CO2 release during methanol production. Then, comparison 
between methane and methanol production is considered. It is found that although higher 
S/C molar ratio is required for methane production, lower operating condition of reactor 
and no carbon emission are main reasons to make this process is more attractive. 

     
Figure 4 The effect of H-SOEC temperature on (a) cell potential and (b) CO flow rate. 
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5. Conclusions 
This work focused on the methane and methanol production from syngas derived from 
H-SOEC. The simulation through Aspen Plus simulator was performed to determine the 
optimal operating condition of H-SOEC and each reactor. Since the methane and 
methanol production requires different stoichiometric number, the operation of H-SOEC 
to provide syngas for each fuel is different. One of factors affected to stoichiometric 
number is S/C molar ratio in feed. The simulation results showed that increasing S/C 
molar ratio can increase stoichiometric number. For methane production, stoichiometric 
number of 3 is required which is coresponded to S/C molar ratio of 4.69. In case of 
methanol production, the H-SOEC must be operated with the S/C molar ratio of 3.52 to 
satisfy stoichiometric number as 2. Further, the impact of H-SOEC operating temperature 
on cell potential and gas product is determined. The simulation result revealed that the 
cell potential used for syngas production is lower when the H-SOEC temperature is 
higher. In addition, increasing operating temperature leads to an increase in CO amount 
in gas product. Finally, the operating temperature of reactor used to produce synthetic 
fuel was examined. For the methane production, the reactor that Sabatier and methanation 
reactions carried out should be operated at 250 °C and 3 atm. While, the reactor for 
methanol production must be operated at 250 °C and 80 atm to achive the highest amount 
of methanol. Under the operation of each reactor, it was found that the production of 
methane (0.2 kmol/h) is higher than that of methanol (0.13 kmol/h). Interestingly, it was 
found that there are no CO and CO2 emission to environment while some amount of CO 
and CO2 can be found in methanol production. Therefore, it can be concluded that the 
integrated system of H-SOEC and methane production is more attractive feature in terms 
of production rate and carbon emission.  
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Abstract 
Refinery operations are always sensitive to optimization, and due to the increasingly 
adverse effects of COVID-19 on energy sectors, its importance had increased 
significantly. This thesis aims to analyze the reactor temperature that yields a higher RON 
(octane measurement) value in isomerate product using all available information in the 
isomerate production network. The main explanatory variables that can affect the RON 
value can be divided into three categories: feed impurities, isomerization reactor 
operations, deizohexanizer column operations. Isomerate feed network is quite complex 
and fed by different crude distillation units and cracker units.  Various reactions occur in 
the isomerization reactors, and depending on the feed content, the reaction mechanism 
changes. This thesis applies machine learning algorithms to build a model that can capture 
the relationship between RON and reactor temperature with the other explanatory 
variables.  

We implemented a number of machine learning algorithms to assess their performance 
on the problem, specifically Linear Regression, Decision Tree, Random Forest, XGBoost, 
Support Vector Regression, and KNN. Comparing with the linear regression, we achieved 
0.82 decreases in the mean absolute error. The mean absolute error of the XGBoost model 
is 0.08 RON. We find a temperature value with the selected model that yields a higher 
RON number by trying different temperature values while keeping the same values for 
the other variables. If we used the suggested temperature by our model, we predict that 
we could obtain a 0.2 RON increase in the validation zone resulting in an annual profit 
increase of 528 000 USD Dollar. 

 
Keywords: isomerization unit, octane optimization. 

1. Introduction 
 
A refinery produces a wide variety of products. Some of them are high-value light 
products such as gasoline, jet fuel, and diesel, and others like residual oil can be 
considered by-products. Gasoline is one of the most common transportation fuels for cars 
and trucks. The essential quality specification of gasoline is the octane number. It is a 
measure of the knock resistance and defines gasoline's behavior in the engine during 
combustion. Refineries adjust the units' operation so that octane in the gasoline meets the 
specifications. The most common type of octane rating worldwide is Research Octane 
Number (RON). 
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One of the most significant contributors to the gasoline pool is the isomerization unit. 
Isomerization is the principal reaction that takes place in isomerization reactors. It is 
converting normal paraffin to iso-paraffins to increase the octane number of light straight 
naphtha (feed). The reaction occurs in a hydrogen atmosphere, over a fixed bed of 
catalyst, and at operating conditions that promote isomerization and minimize side 
reactions such as hydrocracking. 
In this work, our objective is to find the operating conditions that maximize the octane 
number in the isomerization unit in Tupras. The primary operating process variable is the 
reactor inlet temperatures. An upper limit exists for the number of iso-paraffins in the 
reactor product at any given outlet temperature (equilibrium imposed by 
thermodynamics). As reactor temperature is raised to increase isomerization, the 
equilibrium composition will be approached more closely. At very high temperatures, the 
concentration of iso-paraffins in the product will decrease because of the downward shift 
in the equilibrium curve, even though high temperatures give a higher reaction rate. 
Therefore, this work's central question is, "what the reactor inlet temperature should be?" 
However, of course, the outlet reactor temperature is not the only factor affecting the 
octane number. There are many other factors such as reactor pressure, deisohexanizer's 
column operations, undesirable hydrocarbons in the feed inlet, weather conditions, and 
many more. It is possible to measure some of these variables, such as pressure, 
continuously. Nevertheless, online analyzers are needed to measure others like feed 
content. However, online analyzers that measure feed components are absent in many 
refineries due to high initial and maintenance costs. 
This work will select all isomerate product network as our system boundary. Moreover, 
we will use the most powerful and successful machine learning algorithms to capture 
linear and nonlinear relationships. For this purpose, we will use Random Forest, Extreme 
Gradient Boosting, k- Nearest Neighbors, Support Vector Regression, and of course, 
Linear Regression for the baseline. 

2. Method 
 
To maximize the octane number in the isomerization unit, we first have to study which 
variables affect this number. The most important variable is reactor temperatures. In the 
normal operation of Isomerization Unit, having once set the pressure, feed rate, and 
hydrogen flows, the main operating variable is reactor inlet temperatures. There is an 
upper limit for the amount of iso-paraffins in the reactor product at any given outlet 
temperature. This is the equilibrium imposed by thermodynamics, and it can be reached 
only after infinite time. As reactor temperature is raised to increase isomerization, the 
equilibrium composition will be reached that point faster. However, at excessively high 
temperatures, the concentration of iso-paraffins in the product will actually decrease 
because of the downward shift in the equilibrium curve. So, the use of temperatures higher 
than necessary to reach equilibrium yields nothing other than to increase the amount of 
hydrocracking. Therefore, the relationship between the temperature and octane number 
is not linear. As we increase the temperature, considering the other variables fixed, the 
octane number will rise first, and then it will be decreased. In the modeling part, we take 
the minus square of temperature to represent this relationship. 
Another variable is liquid hourly space velocity (LHSV). It is defined as the volumetric 
hourly flow of the reactor charge divided by the catalyst volume in the reactors. Increasing 
LHSV might lead to lower product isomer ratios (low octane number) 
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The third variable we study is pressure. Higher pressure yields to increase the rate of 
isomerization reactions. 
The fourth variable we pick for this model is C7+ Hydrocarbons. C7 paraffins hydrocrack 
to C3 and C4, low in octane number. And those which do not hydrocrack will be 
isomerized to a mixture, again, a lower octane number. Therefore, we do not want a high 
C7+ content in the isomerization reactors. Unfortunately, unlike the other variables, we 
cannot measure the C7+ content in the feed, so we have to inferential for this situation.  
All of the above variables are related to the reactor or reactor feed. However, there is also 
Deisohexanizer (DIH) column operation, which can greatly affect the octane number. 
This column aims to recover product isohexane and pentanes from the stabilized reactor 
products. The basic aim is to remove all pentanes and 2-2 DMB overhead while 
minimizing the overhead 3-methylpentane content. Unlike C7+ content in the reactor 
feed, we have analyzers in here.  
Heat input, reflux rate, pressure, all of the column temperatures are good candidates for 
the inputs for octane prediction. 
 
Two variables set the octane of the main DIH top: 
 

1. The pentane composition of the overhead. The total amount of pentane in this 
stream is set by the feedstock composition. Namely, the iso-pentane content is 
set by the C5 isomerization in the reactors. The higher the concentration of 
pentanes in the feedstock, the lower the product octane. 

2. The amount of 2-methylpentane and 3-methylpentane in the overhead. The 
higher their concentration in the overhead product, the lower the octane. 

 
Especially for the second item, let's imagine that we eliminate all of the methylpentanes. 
However, this will require more reflux and more recycling to the reactor system. Namely, 
it is costly. There is an optimization between the product octane vs. utility consumption. 
 
Our target variable is octane number, and it is measured in two different approaches: 

(i) We have an analyzer, and it can sample the data and provide the result roughly 
in one hour. We have six-year data, which approximately 17500 data (the 
analyzer's uptime is not 100%). However, generally, the analyzer cannot provide 
the real result's ground truth.  

(ii) We also have samples taken from the lab, which are approximately around 500 
data. It is very low compared to the analyzer, but the reliability is higher than the 
analyzer. 

But before the octane number, the other target variable is feed content in the reactor. In 
reality, it is quite hard to predict the octane number without predicting the feed content. 
We do not have any analyzer; however, we know which units directly send to reactor 
feed, and we know their operating conditions.  
Four separate units can feed the isomerization reactors, each with different operating 
conditions, specifications, and constraints. But all of these four units generate light 
straight-run naphtha. To infer the feed content, we consider them as possible candidates 
of those upstream units in the column operations: input flow rates, input temperature, all 
column temperatures, all column pressures, tray temperature controller, steam feed flows, 
reflux flow rates, bottom flow rate, distillate flow rate. Also, we generated these features: 
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reflux overfeed, temperature differences between bottom and top of the columns, 
distillate over bottom.  
I used BarutoSharp to select the most important features. It is a wrapper feature selection 
method that uses both the Boruta feature selection algorithm with Shapley values [1]. It 
successfully reduces the column number from 30 to 5-10.  
After that, I use other powerful machine learning algorithms, specifically Random Forest, 
AdaBoost, XGBBoost, KNN, SVR, and Linear Regression, to predict the feed content 
reactor [2]. 
After obtaining the feed content, I follow a very similar approach to predict the octane 
number in the isomerate product. The only difference is that since I have not many 
columns, we do not need to reduce the number of columns, so we skipped the BorutaSharp 
part.Predicting the octane number is not enough to optimize it. We have to shift the 
process to optimum conditions. For this aim, the main process variable we need to 
determine is reactor temperature. Based on the other process variables conditions, we 
predict the octane number and predict again under the following scenarios: (i) We 
increased all reactor by  land kept all the other variables simultaneously. (ii)We increased 
all reactor temperatures by  l/2 and kept all the other variables at the same level. (iii)We 
decreased all reactor temperatures by  land kept all the other variables at the same level. 
(iv)We decreased all reactor temperatures by  l/2 and kept all the other variables at the 
same level, where l is the max absolute deviation  

3. Results and Discussion 
After constructing isomerate product data, we implemented the most powerful machine 
learning algorithms to predict RON. In the following table, we can see the result of each 
prediction. We used train data MAE and test data MAE as the evaluate algorithm. Next, 
we showed the Actual vs. Predicted values only for the test data. Finally, we randomly 
select validation data to see how that algorithm could predict RON throughout a week. 

Table 1. Model Results 
 

  
 
Based on the results, almost all algorithms performed well. The only complex algorithm 
is linear regression. It has considerable high training and testing MAE. Furthermore, 
when we check validation data, it has a massive variance in prediction. Other than that, 
all of the algorithms can be applied in real-life plants. Support Vector Regression provides 
the minimum error, so let us take a closer look at it.  
First, I changed the validation data to a different week, and it looks like it did a great job 
following the trend again. 
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Figure 1: XGBoost RON Model, Validation Data. 

 
Now, let us remember our problem definition. We aim to find the reactor temperature at 
given conditions to maximize the RON value. So we prepared data composed of the main 
factors that can affect the RON: the feed conditions, reactor conditions, DIH conditions. 
To answer our question, we need to keep other conditions (DIH and feed) stable and find 
the reactor's optimum temperature profile. If the selected algorithm was linear regression, 
this was a trivial job. By substituting each variable's current values, we could find the 
optimal temperature except the reactor temperatures. However, we cannot back-calculate 
the exact temperature value using algorithms like SVR. So, we follow a heuristic 
approach. Again, we keep the other than reactor conditions simultaneously, but we 
introduced four different datasets derived from the original (the real one). Before that, we 
defined the maximum allowable temperature change with a single set change. For 
example, if the temperature set is 160, we defined the minimum and maximum deviation 
from 160 to prevent the catalyst from deactivation. Let us call this max absolute deviation 
l. We substitute the values into the algorithm for each dataset and predict the RON. 
Furthermore, for some fixed intervals, or if the RON value is decreasing continuously, 
we can re-iterate the procedure. This procedure is also suitable for refinery operating 
conditions since we cannot change the temperatures frequently, and we cannot change it 
more than the maximum allowable limit.  
However, when we implement this on SVR and KNN, we see no change from using these 
datasets. The main reasons for this situation; for SVR, there are no reactor temperature 
data in support vectors. So no matter what temperature we choose, we will observe the 
same RON value. This situation is observed for the KNN algorithm too. One explanation 
for this situation is that there are explanatory variables with correlation and more critical 
than that between inputs. For example, there will be more C6+ in the DIH column when 
there is a low temperature. Thereby, the bottom flow rate and bottom temperature of the 
DIH column will be increased. The bottom flow rate and bottom temperature support 
vectors, but the reactor temperature are not. One may suggest removing DIH operation 
variables. However, in that case, we observe a significant decrease in accuracy, as we will 
see in the later section. 
Besides KNN and SVR reactor temperature insensitivity, all tree algorithms significantly 
respond to reactor temperature change. Since the Xgboost algorithm leads to minimum 
test MAE, we selected Xgboost as the best algorithm for our work. 
For the same validation dataset, when we implement our heuristic approach, we can find 
the temperature value, which will give a higher value of RON content. 
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Figure 2: Temperature Sensivity of the Model. 

The blue line is the predicted RON, and the red line is the actual RON value. If we 
changed the temperature by l amount, we could see a significant increase during some 
intervals. On average, we could increase the octane content by around 0.2 just by 
changing the reactor temperature. However, increasing temperature incur some cost too. 
So when there is no significant octane change by increasing or decreasing reactor temp, 
it would be best to minimize the energy loss that is given to the reactor. 

4. Conclusions 
This study aims to find the reactor temperature that yields a higher RON value in 
isomerate product. For this purpose, we used all information in the isomerate product 
network to extract information that can affect RON value. Namely, we prepared data 
related to the impurities in the feed content, reactor operations, and DIH operations. Then 
we back-calculated a better temperature value for any give condition by keeping other 
variables the same and changing only the reactor temperature. After calculating the X-
factor, we also gathered data related to the DIH and reactor operations. We employed 
Linear Regression, Decision Tree, Random Forest, XGBoost, Support Vector Regression, 
and KNN to predict RON and make a robust model. Although the SVR yielded the least 
mean absolute error, since it was not sensitive to temperature change, we select the 
second-best model, XGboost, to model between explanatory variables and the output. The 
model provided with the 0.08 mean absolute error in the test data, and the model can 
follow the trend quite well. By feature importance, we see that the most impactful features 
are created by domain knowledge, and without them, the algorithm performs poor results. 
With the model obtained, we find a temperature value that yields a higher RON number 
by substituting different temperature values while keeping the same values for the other 
values. With such change, we could obtain a 0.2 RON increase in the validation zone. If 
we expand it to it all year, the overall profit is 528 000 USD Dollar.   

5. References 
[1] Kursa, Miron B., and Witold R. Rudnicki. “Feature selection with the Boruta 
package.” J Stat Softw 36.11 (2010): 1-13. 
[2] Fortuna, Luigi, Salvatore Graziani, and Maria Gabriella Xibilia. “Comparison of 
soft-sensor design methods for industrial plants using small data sets.” IEEE 
Transactions on Instrumentation and Measurement 58.8 (2009): 2444-2451. 

226 A. Serfidan and M. Turkay



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey

A Platform of Machine Learning-Based
Next-Generation Property Estimation Methods for
CAMD
Abdulelah S. Alshehri a,b, Anjan K.Tula c, Lei Zhang d, Rafiqul Gani e, Fengqi
You a

aRobert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell
University, Ithaca, NY 14853, United States
bDepartment of Chemical Engineering, College of Engineering, King Saud University,
P.O. Box 800, Riyadh 11421, Saudi Arabia
cCollege of Control Science and Engineering, Zhejiang University, Hangzhou-310027,
China
dInstitute of Chemical Process Systems Engineering, School of Chemical Engineering,
Dalian University of Technology, 116024 Dalian, China
ePSE for SPEED, Skyttemosen 6, Allerod, DK-3450, Denmark
Corresponding authors: F. You: fengqi.you@cornell.edu; R. Gani: rgani2018@gmail.com

Abstract
Physicochemical property estimation methods serve as the basis for the design of
molecules that enhance the functionality and efficiency of products and processes. The
need to provide reliable pure component properties through quantum chemistry
computations and/or experimental measurements is a major bottleneck to the goal of
faster and cheaper to market the desired products. Hence, the development of
approximate but qualitatively accurate models is vital to progress in the field of
Computer-Aided Molecular Design (CAMD), among others. With group contribution
(GC) as a dominant molecular representation, semi-empirical methods have been the
most popular class in generating approximate property models for CAMD owing to
their low computational cost and direct incorporation into optimization models. Recent
advances in machine learning have stimulated widespread interest and progress towards
closing the gap between semi-empirical and quantum chemistry methods. Herein, we
use machine learning and data analysis methods to address the shortcomings of the
current GC-based models by synthesizing the next-generation property estimation
models and tools for the fast and accurate estimation of 20 physicochemical properties
central to CAMD.

Keywords: CAMD, Group-contribution, Machine-learning, Property prediction models.

1. Introduction
In engineering research efforts aiming to improve the functionality and performance of
products and processes, the accurate estimation of pure component properties is of
paramount importance (Marrero & Gani, 2001). The primary strategy for obtaining
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values of these properties and forming theories on their dependency on the structure is
experimental observations, involving time-consuming experiments to create a
knowledge-based model describing the underlying phenomena. Yet, it rapidly becomes
prohibitive to acquire experimental values in literature when searching for ideal sets of
properties because of the combinatorial explosion issue of the various potential
configurations of atoms (Gani, 2004). Computational techniques, such as Density
Functional Theory, have been applied to guide experimental efforts, but, given the high
computation time that grows nonlinearly and sharply with molecular size, such methods
still form a major bottleneck (Heinen et al., 2020). Consequently, more accurate models
connecting molecular representations to properties are needed to build on the
approximate underlying functions that describe the needed chemical properties.
Machine learning has recently emerged to play a transformative role in several fields by
uncovering complex interactions in high-dimensional domains and systematically
searching for a suitable function in the hypothetical space (Jordan & Mitchell, 2015). In
the domain of molecular systems, machine learning has been considered for: pure
component properties prediction (Yalamanchi et al., 2019), the generation of lead
molecules while efficiently exploring the chemical space (Jin et al., 2018), and the
creation of competitive novel quantitative structure-property relationship methods (Goh
et al., 2017). In the domain of molecular design, the notable method is the GC family of
methods (Marrero & Gani, 2001) that have been widely used in CAMD due to their
invertibility, easy incorporation within mathematical models, and highly accurate
estimates at an affordable computational cost (Alshehri et al., 2020). Properties of
chemical structures are described in this class of approaches as functions of the number
of molecular fragment occurrences called functional groups (Gani, 2019).
This paper combines the most recent previous works (Hukkerikar et al., 2012) on GC
based property estimation approaches with the next-generation property models using
machine learning and data analytics techniques for applications in CAMD. Such
methods are intended to resolve the shortcomings of current GC models and reduce the
accuracy gap between experimentation and estimates. Several models are devised for
the following 20 pure component properties given in order of dataset size: octanol-water
partition coefficient (logP), normal melting point (Tm), normal boiling point (Tb), oral rat
toxicity (LD50), aqueous solubility (logWs), acid dissociation constant (pKa), standard
enthalpy of formation (Hf), Hildebrandt Solubility Parameter (HSolp), liquid molar
volume (Lmv), critical temperature (Tc), critical pressure (Pc), critical volume (Vc),
standard Gibbs energy of formation (Gf), normal enthalpy of fusion (Hfus), fathead
minnow 96-h LC50 (LC50(FM)), photochemical oxidation potential (PCO),
bioconcentration factor (BCF), Auto Ignition Temperature (AiT), enthalpy of
vaporization at 298K (Hv), and permissible exposure limit (OSHA-TWA). The criteria
for inclusion of a candidate property for modelling is a minimum of 400 data-points.
The dataset has more than 22,000 molecules, but the size of the experimental values of
properties ranges from 12,193 to 422 data points for LogP and OSHA-TWA,
respectively. In the following section, a brief description of the methods involved in
synthesizing the GC-simple and GC-ML models and tools is provided. The use of the
new models in CAMD is highlighted through two case studies involving crystallization
solvent design and surfactant design in the third section, followed by conclusions in the
final section.
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2. Methods
2.1. Group-Contribution Methods: GC-Simple
The MG (Marrero & Gani, 2001) property prediction model for pure components has
the form in Eq. (1) for the vector of the number of occurrences for each group n and the
vector of the regressed group contributions, c.

The regression method applied is similar to previous works (Hukkerikar et al., 2012),
where the regressed group contributions of different orders are optimized sequentially
or simultaneously. These model parameters (ie., regressed group contributions) of the
model are obtained at the optimum value of the squared error function with a tuneable
parameter wk Eq. (2), reducing the difference between the true and predicted property
values.

2.2. Group Contribution Methods: GC-ML
For a vector n of group counts and vector y of property values for vector m data-points
(molecules), Machine Learning methods seek to learn distributions over possible
functions that fit the given data best according to a specified objective function. The
ML-model has the form, given by Eq. (3).

f(y) = f1(cML, n, θ) (3)

where, cML is a matrix of regressed parameters of size (NK. NP) with NP being the total
number of parameters and NK being the size or order of the learning function; n is the
vector of group counts and θ is a set of additional parameters introduced for the ML
model. In principle, Eq. (2) or a probability function is minimized through a regression
method. For the uncertainty estimate, the covariance function as well as the Jacobian
matrix are needed (section 2.3 for more details).
2.3. Regression of the model parameters
GC-simple models have been obtained by fitting the models defined by Eq. (1) and
minimizing the function defined by Eq. (2) using the Support Vector Regression (SVR),
method, while, the machine learning-based models have been obtained using the GP
regression method, minimizing a probability function. The data-set for each property is
divided into 20 parts with 19 of them used for the learning (regression) step and the
remaining set used for test (validation) step. The uncertainty estimate of a predicted
property value is calculated from the covariance functions and the measured data of the
molecules used in the regression step, as in Eq. (4).

Uncertaintyestimate = ± [diag J(P*) COV (P*) f(P)]1/2 .t(ν, (αt/2)) (4)

Where the Jacobian Matrix J(P*) represents the local sensitivity, of the property model f
to variations of the regressed parameter values (P* = cML); COV (P*) is the covariance
matrix of the regressed parameters; is the degrees of freedom (total number of
parameters minus the number of not regressed parameters); t(ν, (αt/2)) is the
t-distribution corresponding to ν and (αt/2) percentile. The additional parameters from
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the regression step for the GC-ML-model are ℓ , the length scale parameter; and σ the
signal variance that regulate the horizontal and vertical variances of the covariance
function.

3. Results and Discussion
3.1. Performance analysis of the developed property models
The performances of the regressed models are evaluated using the fraction of
experimental data points of properties that lie within 1%, 5%, and 10% of absolute
relative error. Under the GC-ML models, the average of the model performance for
predicting property values within 1% relative error is boosted to 85% across all
properties as visualized in Fig. 1, compared to 32% under simultaneous regression and
GC-simple models (not shown in Fig. 1). More details results, including the regressed
parameters can be found in Alshehri et al., (2021).

Figure 1: The training and testing performances for the developed property models for
molecules predicted under the 1% relative error threshold.
3.2. Data Analysis
The generation of synthetic data can be broadly categorized into two approaches,
process-driven and data-driven (Goncalves et al., 2020). In data-driven approaches,
generative models based on probability distribution and function approximation
methods are used to generate synthetic data. The primary task of generated datasets is to
aid in the model development process by complementing the experimental data in
tuning the model parameters. Table 1 gives the number of generated data points for each
of the properties in the available measured datasets. For these results, the properties
having less than 1000 experimental data are selected. The property datasets with the
new data points are used to test the developed GC-simple and GC-ML models with
acceptable model performance.

Table 1: New datasets generated using data analysis techniques
Chemical property Hfus [kJ/mol] Pc [bar] Tc [K] Vc [cc/mol] Vc [cc/mol] Gf [kJ/mol]
Experimental Data 749 774 776 773 425 756

Generated Data 62 100 135 104 55 60

3.3. Application of developed models in hybrid CAMD
Crystallization solvent case study: This case study is taken from (Chai et al., 2020) and
the hybrid CAMD method (Liu et al., 2019) has been used, which is a
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decomposition-based method to solve mixed-integer nonlinear programming models.
Here, in the inner-loop a CAMD problem is solved with the GC-simple models and in
the outer-loop the GC-ML models are used to check additional properties. Also, only
the uses of pure component property models are highlighted here.
2-Mercapotobenzothiazole (MBT) is an important vulcanization accelerator used in the
rubber industry. However, its purification through a solvent-based method replacing the
usual acid-base method needs to be investigated. First, a set of building blocks are
selected for the inner-loop: CH3, CH2, CH, C, OH, CHCOO, aC-CH3, aCH, aC-Cl. The
molecular structure and property constraints used in the inner-loop are given in Table 2.
The candidate solvents and their properties from the inner-loop of CAMD are listed in
Table 3. For the set of feasible compounds, in the outer-loop additional properties not
included in the inner-loop are checked with the GC-ML models and their values are
listed in Table 4.

Table 2: List of molecular structure and property constraints.
Name Lo

wer
Up
per

Total Group Number 3 8
Repeat Group Number 0 7

Functional Group Number 1 6
Molecular Weight Mw [g/mol] 80 200
Normal Melting Point Tm [K] 173 310
Normal Boiling Point Tb [K] 373 600

Flash Point Fp [K] 273 393
Hildebrand Solubility Parameter

at 298 K [MPa1/2]δ 18 21

Fathead Minnow 96-hr LC50 FM
[mol/L] 0 4.8

Table 3: List of feasible solvent candidates for crude MBT crystallization. The values in
parentheses are measured experimental values.

Feasible
Molecule

Mw
[g/
mol

]

Tm
[K]

Tb
[K]

F
p
[
K
]

HSol
P

[MP
a1/2]

LC50(FM)
[mol/L]

1 116.
20

231
(239)

451
(449)

3
4
0

21.1
0 3.41(3.51)

2 181.
45

290
(290)

486
(486)

3
7
9

20.3
1 4.63(4.80)

3 147.
00

255
(256)

449
(453)

3
4
1

20.3
0 4.22(3.41)

4 116.
20

244
(243)

437
(432)

3
3
4

20.4
2 3.23

5 88.1
5

206
(194)

406
(411)

3
1
7

21.4
1 2.83(2.21)

6 102.
17

221
(228)

429
(430)

3
2
8

21.2
6 3.12(2.94)
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7 102.
17

220
(170)

400
(394)

3
0
9

19.4
7 2.13

8 102.
17

236
(223)

414
(409)

3
2
3

20.5
7 2.94

Table 4: List of predicted properties with GC-ML models of the candidate solvents for
crude MBT crystallization.

Feasible
Molecule SMILES Lo

gP
LD50

[mol/kg]
p

Ka

B
C
F

1 OCCCCCC
C

2.6
2 2.01 9.1

1
2.
23

2 Clc1ccc(Cl)
c(Cl)c1

4.0
2 2.00 3.1

5
3.
05

3 Clc1ccccc1
Cl

3.4
3 1.97 3.6

5
2.
50

4 CCCCCC(
O)C

2.2
6 2.11 10.

27
1.
49

5 OCCCCC 1.5
1 1.97 13.

43
1.
30

6 OCCCCCC 2.0
3 2.03 10.

35
1.
78

7 CCCC(O)(
C)C

1.2
1 2.23 10.

39
0.
49

8 CCCCC(O)
C

1.7
0 2.11 12.

00
0.
94

Surfactant design: The surfactant design problem (Liu et al., 2019) has also been solved
with the new property models (see Table 5). In this problem, Tm, Tb, and LC50(FM) are
used in the inner-loop and LogP and OSHA-TWA are used in the outer-loop.

Table 5: List of inner- and outer-loop properties for a candidate surfactant.

SMILES

LC50

(FM)
[mol
/L]

T
m
[
K
]

T
b
[
K
]

Lo
gP

OSHA-
TWA

OCCOCCOCCOC(CCCCCCC)
OCCOCCOCCO 3.16

3
4
9

7
2
3

2.7
5 7.99

The details of the best candidate molecule are given in Table 5 together with the inner
and outer-loop properties. More details on this problem can be obtained from the
corresponding author.

4. Conclusions
In this work, we introduced the next-generation pure component property models and
data analytics tools for the estimation of pure component properties to improve the
performance and the application range of CAMD problems. Primarily, the Gaussian
Process method is adopted for building nonlinear property models that handle complex
molecular structure-property relationships while quantifying uncertainties in the
predicted values. Compared to currently-used methods, the new generation of methods
yields significantly improved performance. The uses of the simple GC-models and
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ML-based models have been highlighted for previously solved CAMD problems in a
hybrid scheme. More work is needed to find the optimal computational framework for
accommodating a set of models with different complexities and data from different
sources in a more practical solution route to CAMD problems with likely applications in
drug and other complex molecular design problems. Note that although the uses of the
pure property models have been highlighted in the CAMD problems, a lot of other
properties (functional and mixture properties) are also needed for their complete
solution.
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Abstract 
Reverse osmosis (RO) membranes play a key role in wastewater treatment units as they 
are used to remove salts and other pollutants effectively. RO membrane performance is 
affected by many different factors such as feed characteristics and operational parameters 
during operation. The aim of this study is to analyse the influence of feed characteristics 
of municipal wastewater (conductivity, oxidation reduction potential (ORP), total 
suspended solids (TSS), turbidity and chemical oxygen demand (COD)) and operational 
parameters (feed pressure, flow rate and temperature) on RO membrane performance in 
a municipal wastewater recovery plant using machine learning (ML) techniques. 
XGBoost, random forest, artificial neural networks (ANNs) and multiple linear regression 
(MLR) were employed to predict three RO membrane performance indicators (pressure 
difference across membranes, salt passage and permeate flow rate). The methods that can 
predict salt passage, permeate flow rate and pressure difference among membranes with 
the highest accuracy were found as ANNs, random forest and MLR, respectively. 
Considering the developed models, temperature was found to be the variable affecting all 
three RO performance parameters. Salt passage was found to be highly affected by feed 
water conductivity and feed flow rate was determined to be the most influential parameter 
for the permeate flow rate and pressure difference. 
 
Keywords: machine learning, artificial neural networks, random forest, wastewater 
treatment, reverse osmosis membranes. 

1. Introduction 
In wastewater treatment plants, monitoring RO membrane performance is very important. 
Besides, the factors influencing RO membrane performance are worth investigation to 
understand the process dynamics for effective operation. Data-driven models are 
becoming increasingly popular as they can model complex process dynamics without the 
need for physical models (Del Rio-Chanona et al., 2019). Machine learning techniques 
are used to develop models which can learn from data. ANNs are common machine 
learning algorithms used for prediction (Odabaşi et al., 2014; Robert, 2003). They have 
been employed successfully in various studies  in the field of membrane performance 
(Cabrera et al., 2017; Farahbakhsh et al., 2019; Jawad et al., 2020; Roehl et al., 2018). 
Random forest and eXtreme Gradient Boosting (XGBoost) methods are other most 
common tree-based ensemble machine learning algorithms used for supervised machine 
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learning problems. The random forest method is a popular algorithm because it can handle 
outliers and noise effectively (Larose, 2005). The XGBoost method (Chen and Guestrin, 
2016) is a relatively new algorithm that introduce regularization parameters to prevent 
overfitting and it was developed for increasing the performance and speed. 

In this work, the influence of the feed characteristics of municipal wastewater and 
operational parameters on RO membrane performance were studied using different 
machine learning methods (random forest, XGBoost, ANNs and MLR) in a municipal 
wastewater recovery plant. The best performed models were employed to determine the 
influence of the input parameters on RO membrane performance indicators (salt passage, 
pressure difference and permeate flow rate). In this study, we aimed to extract knowledge 
from a large-scale treatment system and compare the performances of different ML 
models on different performance indicators. We believe that investigating the influence 
of the input parameters for RO membrane operation should be given more attention to 
understand the system dynamics better.    

2. Methodology 
The two years of historical data of one RO train from the municipal wastewater recovery 
plant of TUPRAS Izmit Refinery was used. Both operational and laboratory data were 
used and the data was collected on a daily basis. The database was divided into two 
sections as training data and test data. Model building, parameter optimisation and 
validation of the models were performed using training data whereas the accuracy of the 
model was tested on test data which was not included in model building process. Most 
widely used ML models such as XGBoost, random forest, ANNs and MLR were used to 
build models and predict three RO membrane performance indicators (pressure difference 
between feed and retentate, salt passage and permeate flow rate). The performances of 
different models were compared using root mean square error (RMSE) as a performance 
metric. 10 fold cross validation (cv) method, which is the most commonly used validation 
method, was employed for parameter optimisation of the models. Then, the models which 
resulted minimum RMSE on test data prediction were determined as best performed 
models for predicting RO membrane performance indicators. The influence of input the 
variables were investigated using the best performed models and the details of the input 
significance analyses are explained in the Results section. 

RStudio 1.2.133526 was used for computational analyses. xgboost (Chen et al., 2020), 
randomForest (Liaw and Wiener, 2002) and neuralnet (Fritsch et al., 2019) packages of 
RStudio were employed for XGBoost, random forest and ANN methods, respectively. 
For XGBoost model, the maximum number of rounds (trees to build) was optimised. 
Learning rate, maximum depth of the trees and early stopping rounds were fixed to 0.3, 
6 and 10, respectively. For the random forest model, the number of trees to grow was 
optimised. For ANN analysis, Z-score normalization was performed before building the 
model. Then, number of hidden layers and neurons were optimised. Logistic activation 
function was selected as an activation function and threshold for the partial derivatives of 
the error function as stopping criteria was set to 0.1. 

3. Results  
In order to predict RO membrane performance indicators (salt passage, permeate flow 
rate and pressure difference), different ML methods were implemented and compared. 
The best performed models that resulted in minimum RMSE on test data prediction are 
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used to detect the most influential parameters on three RO membrane performance 
indicators. Feed pressure, flow rate, conductivity, TSS, ORP, COD, turbidity and 
temperature were used as input parameters. The RMSE values of different models for 
each RO membrane performance indicator were presented in Table 1. 

 

Table 1. RMSE values of validation and test data prediction using different methods 

Methods 
Salt passage Permeate flow rate ΔP 

10-fold-cv 
RMSE 

Test 
RMSE 

10-fold-cv 
RMSE 

Test 
RMSE 

10-fold-cv 
RMSE 

Test 
RMSE 

XGBoost 0.91 0.77 3.90 6.64 0.33 0.64 
Random forest 0.71 0.65 7.32 10.51 0.35 0.63 
ANNs 0.76 0.91 4.36 5.12 0.34 0.58 
MLR 0.76 0.85 3.77 4.35 0.39 0.66 

 

For salt passage prediction, a random forest model performed superior to other methods 
(Table 1). The RMSE of test data prediction was found to be 0.65. The actual and 
predicted salt passage values of test data are presented in Figure 1a. In random forest 
method, mean decrease in Gini (IncNode Purity) is used as a measure to analyse the 
variable importance (Kuhn et al., 2008). This measure represents the performance of each 
split considering the input parameters using Gini index. If the value of mean decrease in 
Gini of an input variable is high, this variable has a higher variable importance. Hence, 
considering the random forest model, it was found that the feed conductivity and 
temperature had more effect on salt passage than other parameters (Figure 1b).   
 

 
 
Figure 1. Analysis of salt passage a) actual versus predicted values of test data (number 
of trees = 100), b) variable importance analysis 
 
Bartels et al. also showed that when the feed water salinity increases, salt passage also 
increases (Bartels et al., 2005). Hence, the conductivity of the feed water has a significant 
effect on salt passage and ion removal efficiency. Secondly, a change in the feed water 
temperature of RO membrane trains causes the RO membrane pore diameters to change. 
If the feed water temperature increases, pore diameters expand and more ions can pass 
through the RO membranes. Hence, salt passage increases (Al-Bastaki and Al-Qahtani, 
1994; Jin et al., 2009).  
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For the permeate flow rate prediction, the accuracy of the MLR model was found to be 
the highest and the RMSE value of test data prediction was found to be 4.35. The actual 
and predicted permeate flow rate values are shown in Figure 2a. In order to determine the 
relative importance of the input variables according to MLR model, the significant input 
variables of which p-values were found to be smaller than 0.05, were considered. In 
Figure 2b, the absolute values of the coefficients of significant input variables are given. 
Feed flow rate was found to be the major factor affecting permeate flow rate. Considering 
the strong linear correlation between feed and permeate flow rate (0.96), the success of 
the MLR model and the importance of the feed flow rate were expected. Temperature 
appeared to be the second influential factor for permeate flow rate. Regarding the 
expansion of the RO membrane pore diameters due to high temperature operation, the 
feed flow can pass through the pores more easily and the permeate flow rate increase.  
(Boulahfa et al., 2019).  

 
Figure 2. Analysis of permeate flow rate, a) actual versus predicted values of test data, b) 
variable importance analysis 

Lastly, ANN model performed better than other methods for predicting the pressure 
difference across RO membranes with a minimum RMSE of 0.58 on test data prediction 
(Table 1). The actual and predicted pressure difference values are given in Figure 3a. In 
order to determine the variable importance according to ANN model, Olden’s method 
(Olden et al., 2004) was employed. Olden’s method is based on connection weight 
approach that uses raw input-hidden and hidden-output connection weights in the neural 
network. According to the Olden’s method, feed flow rate was found to affect the pressure 
difference significantly and this situation is expected considering the system hydraulics. 
Secondly, temperature was found to affect pressure difference. An increase in 
temperature causes a pore expansion of the RO membranes, hence, the pressure difference 
between the stages of the train is expected to be lower.  

 

238



Machine Learning Analysis of the Feed Water Parameters Affecting Reverse  
Osmosis Membrane Operation   

 

 

 
Figure 3. Analysis of pressure difference a) actual versus predicted values of test data 
(neural network with two hidden layer (2-12 neurons)), b) variable importance analysis. 

4. Conclusions 
In this study, the factors affecting RO membrane performance were investigated using 
different ML tools (random forest, XGBoost, ANNs and MLR). Salt passage, permeate 
flow rate and pressure difference were used as RO membrane performance monitoring 
indicators whereas the feed characteristics of municipal wastewater (such as conductivity, 
ORP, TSS, turbidity and COD) and RO membrane feed operational parameters (such as 
feed pressure, flow rate and temperature) were considered as input parameters. Among 
four different methods, ANNs and random forest methods performed better for predicting 
the pressure difference and salt passage, respectively. For permeate flow rate prediction, 
the MLR method was found to be more successful than other methods due to strong linear 
correlation between feed and permeate flow rate. According to the variable importance 
analyses considering the best performed models, temperature was found to be significant 
for all RO membrane performance indicators whereas conductivity and feed flow rate 
were found to be major factors affecting salt passage and permeate flow rate, respectively.  
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Abstract 
Novel low-temperature technologies have been recently studied for CO2 removal from 
low-quality natural gas or biogas. The aim of this work is to compare the performances 
of a low-temperature distillation process with those of other two processes, respectively 
based on physical absorption and a combination of both, depending on the CO2 content 
varied between 10 and 70 mol%. Each process has been simulated, with attention to 
energy-saving issues, using Aspen HYSYS® V9.0 and Aspen Plus® V9.0. This study 
points out that novel technologies based on low-temperature distillation are the best 
option for CO2 separation from low-quality natural gas or biogas and that, by combining 
a bulk CO2 removal by low-temperature distillation with a finishing step by physical 
absorption, it is possible to reduce the energy consumptions of the separation achieved 
by physical absorption only. These outcomes suggest the importance of further 
investigating novel low-temperature and hybrid CO2 removal technologies. 
 
Keywords: natural gas purification, physical solvents, low-temperature distillation, 
hybrid technologies 

1. Introduction 
The challenge operators in the gas industry have to face in some countries is the 
economically viable separation of CO2 from fields where its content is even higher than 
70 mol% (Pellegrini et al., 2019). It is well known that, when the acid gases make up an 
appreciable fraction of the total gas stream, the cost of removing them by heat 
regenerable solvents may be out of proportion to the value of the treated gas. To 
overcome this, physical solvents can be used, which are regenerated by pressure 
reduction. It has been also proved (Langé et al., 2015) that conventional CO2 separation 
methods based on chemical absorption are not energetically convenient respect to novel 
low-temperature (low-T) technologies when the CO2 content in the feed gas exceeds    
8-9 mol%. The recent interest in this type of processes is proved by the intense research 
on measurement and calculation of CO2 frost points in natural gas and other mixtures 
(Pellegrini et al., 2020). To our knowledge, no comparison can be found in the literature 
between low-T and physical absorption technologies. To fill this gap, this work 
compares the performances of a process based on low-T distillation and one based on 
physical absorption using Dimethyl Ether of Polyethylene Glycol (DEPG) for CO2 
removal from natural gas/biogas. In addition to that, a hybrid configuration, consisting 
of low-T distillation for a bulk CO2 removal and physical absorption as a finishing step, 
has been considered taking into account the recent interest in hybrid technologies 
(mainly for pre-/post-combustion CO2 capture) due to their lower energy consumption. 
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2. Methods 
The three process schemes taken into account in this work have been simulated with 
Aspen HYSYS® V9.0 (AspenTech, 2016a) and Aspen Plus® V9.0 (AspenTech, 2016b). 
These simulators are powerful aids in the design of processes, provided that the correct 
property package is selected, as specified in the following, depending on the specific 
system under investigation. They also offer the possibility of automatically specifying a 
desired value for some flowsheet variables using tools properly available for this 
purpose (e.g., the Design-Spec tool in Aspen Plus®). In all the simulations, the 
following specifications for the feed and product streams have been considered. 
i) Natural gas (NG) feed stream: it has been assumed as a binary CH4-CO2 mixture 
(CO2 molar fraction in the range 10-70 mol%), available at 35 °C and 50 bar with a total 
molar flowrate of 5000 kmol/h. 
ii) Treated NG stream: its temperature and pressure have been set, respectively, at 25 °C 
and 50 bar and a CO2 content of 2 mol% has been specified to produce a             
pipeline-quality NG. 
iii) CO2 product stream: it has been subject to further treatment, when needed, to bring 
it to its bubble point at 50 bar. This pressure value is suitable for its use for Enhanced 
Oil Recovery (EOR) purposes. For the process schemes involving the use of a solvent, 
the composition of the CO2 product recovered from the solvent regeneration unit has 
been checked to ensure it meets the limit contents acceptable for injection into a 
depleted oil well and, in particular, that the CH4 content is below 2 mol%. 
The three different CO2 removal technologies have been compared on the basis of their 
energy consumptions evaluated by means of the “Net Equivalent Methane” (NEM) 
method, considering that the following energy requirements are involved: i) heating 
above ambient temperature, ii) cooling below ambient temperature, iii) gas compression 
and liquid pumping. The calculation procedure and the parameters needed to convert 
them into the equivalent amount of methane can be found in the literature (De Guido et 
al., 2018). In addition to that, also the equivalent CO2 emissions (Pellegrini et al., 2015) 
have been determined for each process scheme. 

3. Process schemes 
3.1. Low-temperature distillation 
The process, which performs CO2 removal by means of extractive distillation (Holmes 
and Ryan, 1982), has been simulated in Aspen HYSYS® V9.0 (AspenTech, 2016a) 
using the Soave-Redlich-Kwong (SRK) Equation of State. The reader can refer to a 
previous work (Pellegrini et al., 2018) for the process flowsheet to which some changes 
have been made in this work since the treated gas is a pipeline-quality gas rather than 
LNG. The entrainer, i.e. n-butane (nC4), enters the extractive distillation column on the 
third tray from the top to avoid its entrainment. Its flow rate has been set at 10 
moles/100 moles of feed and its temperature has been adjusted in each simulation to 
create the minimum discontinuity in column profiles. The feed gas has been subject to 
cooling and expansion prior entering the tower (25 theoretical trays) to reach its dew 
point at the operating pressure of 40 bar. The top product stream is, then, compressed to 
50 bar and used for feed gas pre-cooling. The bottom product stream, which contains 
CO2 and the entrainer, is expanded to 30 bar to remain under the nC4 critical pressure, 
and it is fed on the 31st stage (from the top) of the regenerative distillation unit (40 
theoretical trays), where CO2 is separated from nC4. CO2 is recovered from the top and 
is, then, pumped and heated up to reach the final desired conditions. The bottom stream 
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from this column contains nC4 (99.99 mol% purity), which is recycled to the extractive 
distillation tower, after mixing with an appropriate make-up stream, being pumped to  
40 bar and cooled down to the desired temperature. This process belongs to the class of              
low-temperature CO2 separation processes because of the temperature (-85.3 °C) 
reached at the top of the extractive distillation column. 
3.2. Physical absorption using DEPG 
The physical absorption process using DEPG has been simulated in Aspen Plus® V9.0 
(AspenTech, 2016b), selecting the “Acid gas: physical solvents” property package, 
which uses the PC-SAFT Equation of State. The process comprises an absorption 
section and a solvent regeneration section (Figure 1). 
In the absorber, operated at 50 bar and consisting of 10 theoretical trays, the feed gas is 
contacted counter-currently with the lean solvent that is fed at the top at 20 °C. The 
treated gas obtained at the top of the absorber is heated up to 25 °C, when needed. The 
rich-solvent withdrawn at the bottom is sent to the regeneration section, which is 
performed in three flash drums, with the first two ones operated adiabatically and the 
last one operated non-adiabatically at atmospheric pressure. This requires some heat to 
be supplied to reach a final purity for the regenerated solvent set equal to 98.5 mol%. 
For inlet CO2 contents up to 20 mol%, the first flash drum has been operated at 18 bar, 
whereas the pressure of the second one has been adjusted to avoid exceeding a 2 mol% 
content of CH4 in the CO2 product stream. This adjustment has turned out to be no more 
required at higher inlet CO2 contents, for which the two flash drums have been operated 
at 27.6 and 13.8 bar, respectively (Kohl and Nielsen, 1997). The CO2 stream separated 
in the regeneration section is compressed and cooled down to reach the final desired 
conditions. The lean solvent is recycled to the absorber after mixing with a make-up 
stream, pumping to 50 bar and cooling to 20 °C. 
Since the heat required for solvent regeneration in the last flash drum is significant (it 
accounts for 56-76 % of the overall energy consumption in terms of NEM) as the CO2 
content in the inlet gas decreases from 70 to 10 mol%, heat recovery has been 
considered for energy-saving purposes. Indeed, the required heat can be provided by the 
liquid product from the third flash drum, which has to be cooled down before entering 
the absorber, and by the CO2 product stream, which is available at temperatures above 
500 °C after compression. However, when the CO2 content in the feed stream is            
≤ 20 mol% additional heating is required, which is supplied by the hot compressed 
vapours from the intermediate flash drum (not shown in Figure 1). 
3.3. Hybrid process: low-temperature distillation and physical absorption using DEPG 
The hybrid process (Figure 2) is based on the Dual Refrigerant CO2 Fractionation + 
Selexol flow scheme (Ross and Cuellar, 2010) and consists of a bulk removal step that 
reduces the CO2 content down to 20 mol% by low-T distillation, and a finishing step 
performed by physical absorption into DEPG. 
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Figure 1. Flowsheet of the physical absorption process using DEPG. 
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Figure 2. Flowsheet of the hybrid (low-temperature distillation + physical absorption) process. 

Simulations for it have been carried out in Aspen Plus® V9.0 (AspenTech, 2016b), 
dividing the flowsheet into two sections, in which the SRK Equation of State and the 
PC-SAFT Equation of State have been used, respectively. The feed gas is first expanded 
to 40 bar, the operating pressure of the distillation column, chosen to maintain a certain 
margin to the critical point, avoiding higher traffic in the column. After expansion, it is 
cooled down (at least partially) to its dew point using the partially treated NG vapour 
stream exiting the top of the distillation column, which is available at about -54 °C. 
From the bottom of this column, pure CO2 (99.99 mol%) is obtained, which is pumped 
and heated up to reach the final desired conditions. The top product of the distillation 
column is compressed to 50 bar and fed to the absorber, after mixing with the recycled 
streams from the first two flash drums in which the rich-solvent is regenerated. Prior 
entering the absorber, it is cooled down, assuming cooling water is used as cooling 
medium. The treated NG is obtained from the top of the absorber close to ambient 
temperature and it is heated up, when needed, to 25 °C. The rich-solvent is regenerated 
in three flash drums as in the process based on physical absorption only. The lean 
solvent is pumped to 50 bar and cooled down to 20 °C before being fed at the top of the 
absorber. The same energy recoveries as in the physical absorption process described 
above have been considered in the finishing step for improving the process energy 
consumptions to avoid supplying heat to the last flash by an external utility. 

4. Results and discussion 
Figure 3a shows the results of the energy analysis for the three process schemes 
described above. For CO2 contents in the feed gas < 60 mol% the process scheme with 
the lowest energy requirements results to be the one based on low-T distillation. Energy 
requirements for the physical absorption process are slightly higher up to 25 mol% CO2, 
but the difference increases significantly at higher CO2 molar fractions. Above 60 mol% 
CO2 in the feed gas, the hybrid process where the finishing step is accomplished by 
means of physical absorption into DEPG becomes more convenient. The same 
observations can be made when considering the equivalent CO2 emissions, shown in 
Figure 3b. In Figure 3a, the results for another hybrid process investigated in a previous 
work (De Guido and Pellegrini, 2019) are also shown. In that case, the finishing step 
was carried out by chemical absorption into a 40 wt% MethylDiEthanolAmine aqueous 
solution. This hybrid process turns out to be more convenient than the physical 
absorption process at CO2 inlet contents > 50 mol%, but it is more energy-demanding of 
the other two process configurations in the whole investigated range for CO2 molar 
fractions. 
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a) b) 

Figure 3. a) NEM consumption [kg/s], and b) equivalent CO2 emissions [kg/s] for the three 
process schemes investigated in this work. 

It is also important to point out that in the low-T distillation process CH4 losses with 
respect to the amount of CH4 fed to the process (Figure 4a) are practically negligible 
thanks to the fact that a specification on the CO2 product purity can be directly imposed. 
It is also interesting to compare the different processes focusing the attention on the CO2 
product. Figure 4b shows the composition of this stream for the different investigated 
processes when the CO2 content in the feed gas is 50 mol%. The bar related to the 
hybrid configuration refers to the composition of the CO2 product obtained by mixing 
the stream withdrawn from the bottom of the distillation column and the stream 
recovered from the third flash in the finishing step. It is possible to state that the low-T 
distillation process is the only one that allows getting an almost pure CO2 product 
(99.99 mol% purity). When CO2 removal is performed by physical absorption or the 
hybrid configuration, the CO2 product is contaminated with some methane, due to its 
co-absorption into the solvent, but not with DEPG thanks to its very low volatility. 
The results presented in this work can be also interpreted in terms of operating costs. As 
for investment costs, some preliminary observations can be made. Considering, for 
example, the number of pieces of equipment, it is possible to observe it is the lowest in 
the process based on low-T distillation. On the contrary, the hybrid one involves the 
highest number of pieces of equipment, though they are of lower size with respect to 
those involved in each standalone CO2 removal technology the hybrid process 
combines. A detailed economic analysis is required for a correct assessment of the 
capital expenses of the process configurations compared in this work. 

a) b) 
Figure 4. a) Methane losses [%] for the three process schemes investigated in this work;                 
b) composition (molar fractions) of the CO2-rich product obtained from the three considered 
process schemes when the CO2 content in the feed gas is 50 mol%. 
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5. Conclusions 
This work contributes to the current research on novel technologies for CO2 removal 
from low-quality natural gas/biogas, which allow overcoming the high energy 
requirements of conventional technologies. For this purpose, three process schemes 
respectively based on low-T distillation, physical absorption into DEPG and a 
combination of the two (hybrid process) have been simulated in Aspen HYSYS® and 
Aspen Plus®. 
The results of the energy analysis suggest that: 
i) low-temperature distillation involves lower energy consumptions and equivalent CO2 
emissions for CO2 separation from low-quality natural gas or biogas; 
ii) the combination of low-temperature distillation for a bulk removal and physical 
absorption for a finishing step allows reducing the energy consumption of the process 
based on physical absorption only; 
iii) if methane losses and the purity of the CO2 product stream are taken into account, 
low-temperature distillation has to be preferred to the other CO2 separation processes. 
Future studies will extend the comparison to other physical solvents and hybrid 
configurations. The latter ones are interesting options for reducing process energy 
consumptions, but require further research to design competitive processes taking into 
account factors like the properties of the feed gas and the desired purity of the products. 
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Abstract 
In this study, polydispersed spherical particulate systems are examined using the 
Eulerian-Eulerian (EE) and Lagrangian-Eulerian (LE) modelling approaches in the 
context of wellbore cleaning operations in the drilling industry. The particle sizes 
considered here are between 0.5 mm and 1mm, whereas a Power Law rheological model 
is used for the fluid phase description. The EE approach implemented herein applies the 
Kinetic Theory of Granular Flow (KTGF) in ANSYS Fluent® and accounts for the particle 
size differences by representing them as different phases within the flow domain. In 
addition, the LE approach (employing the Dense Discrete Phase Model – DDPM) 
represents this difference with the aid of a size distribution model (the Rosin Rammler 
model). The findings of our computational experiments show that neglecting the size 
disparity may lead to severe under/overestimation of key variables such as the pressure 
drop, and particle deposition tendencies; thus, leading to decreased model performance. 

Keywords: Polydispersity, cuttings transport, Discrete Phase Model, Rosin-Rammler 

1. Introduction 
Excessive drillpipe torque, slow drilling rates, and stuck drillpipe are some of the 
operational challenges faced by drilling engineers during wellbore cleaning (Epelle and 
Gerogiorgis, 2018a; Zhu et al., 2019). These problems culminate to significantly 
increased capital and operating expenditure over the drilling and production time 
horizons. Thus, numerical tools and recent advances in computing developed by the 
process systems engineering community have been readily applied to understand cuttings 
transport phenomena with complex non-Newtonian fluids under unfavourable downhole 
conditions. Particularly, numerous studies that apply Computational Fluid Dynamics 
(CFD) for the description of annular multiphase (fluid-solid) transport of dense and dilute 
particulate mixtures have emerged over the past decade (Yilmaz, 2012; Hajipour, 2020; 
Tang et al., 2020). However, a prevalent assumption in these studies is the existence of a 
monodispersed system of particles (both in terms of size and shape), which is never the 
case in real field operations. CFD studies accounting for polydispersed cuttings 
distribution are scarce, thus motivating the present study. We address this limitation here 
by applying the Kinetic Theory of Granular Flow (KTGF) and the Dense Discrete Phase 
Model (DDPM). A comparative assessment of these modelling methods is also presented.  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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2. Methodology 
This study implements the EE model as the first case study for the multiphase flow 
description in the annulus (Fig. 1a). This model considers the particles of different 
diameters (Table 1) as continuous separate phases that interact with the non-Newtonian 
fluid phase via the interphase momentum exchange coefficient. This continuum 
assumption of the solid phase implies the kinematic and discrete nature of the solid phase 
are not explicitly accounted for; however, the application of KTGF enables the estimation 
of the kinematic properties via closure models. Thus, for each particulate phase, we 
hereby implement closure models for the granular viscosity, granular bulk viscosity, solid 
pressure, radial distribution and elastic modulus, respectively, using ANSYS Fluent®.  

 
Figure 1: Implemented methodology for the EE and LE model. 

Conversely, the LE model which utilises statistically computed particle trajectories 
coupled with an Eulerian description of the fluid phase is employed. Specifically, the 
DDPM is applied, given its ability to handle high particle concentrations in the annulus 
compared to the DPM model, which is limited to dilute particulate suspensions (<12%). 
For the particulate phase description, the Rosin-Rammler size distribution model is 
implemented (parameters shown in Table 1). The stepwise procedure for the 
implementation of this model is shown in Fig. 1b. Although more computationally 
demanding, this approach better describes the particulate phase motion via the integration 
of the force balance on the particles in the Lagrangian reference frame. Epelle and 
Gerogiorgis (2018b) discusses further contrasting differences between these approaches. 
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A preliminary assessment of the turbulent models in ANSYS Fluent, showed better 
stability of the Realisable k-ε model for the EE simulations and Standard k-ω for the LE 
simulations, respectively. The computational domain was constructed to model wellbore 
trajectories obtainable in deviated drilling operations, consisting of horizontal, inclined 
and vertical sections. Discretising the domain with hexahedral elements resulted in a 
robust mesh with 665,600 elements, and optimal orthogonality, aspect ratio and skewness 
factors; this yielded grid-independent results. The Quadratic Upstream Interpolation for 
Convective Kinematics scheme (QUICK) was applied for the discretisation, whereas 
pressure-velocity coupling was performed using the Semi-Implicit Method for Pressure 
Linked Equations (SIMPLE algorithm). Supercomputing resources with 16 processing 
cores (2.4 GHz Intel®-Xenon® CPU) and 32GB of RAM (University of Edinburgh) have 
been employed to solve the models to full convergence (time step = 0.0005; tolerance 
factor = 0.001). Table 1 provides further details on the boundary conditions of this study. 

Table 1: Simulation input parameters. 

 EE model LE model 
Computational geometry   
Casing diameter, dc (m) 0.113 0.113 
Drillpipe diameter, ddp (m) 0.180 0.180 
Total length, L (m) 2.340 2.340 
Fluid properties 

Composition 0.5% CMC 
solution 0.5% CMC solution 

Fluid density, ρl (kg.m-3) 1,000 1,000 
Yield stress, τ0 (Pa) 0 0 
Consistency index, K (Pa.sn) 0.5239 0.5239 
Flow behaviour index, n 0.60 0.60 
Particle properties   
Cuttings density, ρp (kg.m-3) 2,800 2,800 
Sphericity, ψ 1.00 1.00 

Cuttings diameter, dp (mm) & 
Rosin-Rammler parameters for the 
LE model 

0.50 (dp1), 0.75 
(dp2), 1 (dp3) 

Min. dp = 0.5; max. dp = 1; 
mean dp = 0.75; spread 
parameter = 3.368; number of 
diameters = 3 

Drilling variables   
Cuttings inlet velocity, vp (m.s–1) 0.25 0.25 

Cuttings inlet volume fraction (-) 0.15 (dp1), 0.2 
(dp2), 0.15(dp3) 0.5 

Drill mud (fluid) circulation 
velocity, vl (m.s–1) 1.5 1.5 

Wellbore eccentricity, e 0.6 0.6 
Drillpipe rotation (rpm) 100 100 

 

Particles of perfect sphericity (ψ =1) are utilised in this study; however, a rather complex 
but more realistic flow scenario is one in which both size and sphericity distribution 
models are applied (this is beyond the scope of this study). Computations involving this 
added complexity will benefit from the availability of experimental data describing such 
conditions; nonetheless, these are very scarce. The herein described modelling procedure, 
has been experimentally validated (for monodispersed cuttings) as reported in Epelle and 
Gerogiorgis (2018a). We present the findings from this study in the subsequent section. 
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3. Results and Discussion 
The cuttings volume fractions for the respective particulate phases of the EE model and 
the LE model are shown in Fig. 1. Generally, the 0.75 mm particles occupy a significant 
portion of the annulus, with higher averaged volume fractions observed. This is 
attributable to its relatively higher inlet volume fraction compared to the other particle 
sizes (Table 1). However, it can also be observed that the concentration of the smallest 
particles (0.5 mm) at the annular base is highest, although with significantly unoccupied 
regions in the upper/wider annular section. Contrary to the observation in a 
monodispersed scenario (in which smaller particles are more readily transported by the 
fluid (as shown in Epelle and Gerogiorgis, 2018a), a polydispersed scenario reveals that 
smaller particles can cause some transport difficulties. It is worth highlighting that the 
maximum concentration (denoted as the dark red region) has a value of 0.25, and does 
not reflect a packed bed (volume fraction > 0.63 in ANSYS Fluent®). The LE model on 
the other hand shows a rather unified bulk movement of the particles (although with some 
faint red regions). This observation can be attributed to the implementation of size 
distribution model in the flow domain, in contrast to the alternative EE scenario in which 
the particulate phases are recognised as separate although interacting (Pang et al., 2018). 
  

 
Figure 2: Particle volume fractions as calculated using the EE vs. the LE model. 

 

On analysing the velocity contour plots for the different particle sizes of the EE model, 
no significant differences in the velocity magnitude were observed; thus, a single particle 
velocity plot of the EE model is compared with the LE model, as shown in Fig. 3. 
However, both plots similarly portray the wider annular sections as the regions of high 
velocity; this observation is attributable to the eccentricity of the domain. Furthermore, 
the velocities in the horizontal-to-inclined region of the annulus of the EE model shows 
significantly higher values compared to the LE model. The inherent treatment of the solid 
phase as a continuous phase and the consequent overestimation of the solid phase velocity 
is the likely reason for this observation, compared to the LE method, in which the discrete 
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behaviour of the particles is preserved. It is also worth mentioning that the EE model 
showed significantly better numerical stability with the specified rotary boundary 
condition at the drillpipe walls compared to the LE model. Hence, the rotational effect 
was only gradually applied (and repeatedly increased) to the LE model to ensure stability. 
This difference in the addition of this extra velocity component (via rotation) has also 
quite plausibly resulted in the higher velocities which are observed in EE model results. 

 
Figure 3: Mean particle velocity contours as calculated using the EE vs. the LE model. 

 

Fig. 4a presents a summary of the volume-averaged properties (over the entire 
computational domain) for the EE and LE model, respectively. For reasons previously 
explained, a 27% overestimation of the velocity by the EE model (taking the LE model 
as the true value) is observed. The radial velocity components for both models are similar; 
thus indicating that the axial and tangential velocities are the main contributors to the 
difference observed in the velocity magnitude. Conversely, the EE model under-predicts 
the volume fraction by 25% as observed in Fig. 4a. This presented volume-averaged value 
for the EE model was also averaged over the 3 particle diameters. The observed 
dissimilarity in volume fraction may be associated with the difference in the particle 
handling methods of both models (separate particulate phases vs. size distribution model).  
 

 
Figure 4: Comparison of velocity components (similar) and pressure drop (considerably 
different) for EE vs. LE models. (Nomenclature for velocities - VM: velocity magnitude; 
RV: radial velocity; AV: axial velocity; VF: volume fraction; TV: tangential velocity). 
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Fig. 4b highlights a clear difference in the calculated pressure drop across the entire 
computation length for the EE and LE models. A discrepancy of up to 1300 Pa is observed 
between models. Despite the higher travel velocities observed with the EE model, the 
pressure drop is lower. Given the more accurate representation of the particle-particle 
interaction by the LE model (via individually computed particle trajectories), the resulting 
pressure drop from such momentum exchange is likely to be greater than that for a 
scenario in which constitutive (closure) relations are used, as is the case for the EE model.   

4. Conclusions 
This study has evaluated the influence of particle polydispersity on the cuttings transport 
efficiency in a deviated annulus and comparatively analysed the differences between the 
EE model (via KTGF) and the LE model (via DDPM). Presented velocity and particle 
concentration profiles indicate that flow complexity will further increase due to multiple 
momentum transfer mechanisms (particle-fluid and particle-particle interactions) 
resulting from polydispersity. The findings of our computational experiments show that 
neglecting the size disparity in the system may lead to an overestimation of the 
depositional tendencies of the particles; thus, leading to inaccurate predictions. Thus, 
incorporating particle polydispersity is a necessary step towards improving the predictive 
performance of CFD models in wellbore cleaning operations. From a computational cost 
perspective, the LE model required roughly 2 times the time and effort needed for the EE 
model. The numerical stability of the LE model proved sensitive to the rotational effect 
of the drillpipe. Further work may consider the effect of polydispersity in both the particle 
size and sphericity; such endeavours will certainly require experimental measurements 
for model validation purposes. Nevertheless, we must note that the CFD approach we 
have developed and present is based on quantitatively and qualitatively validated sub-
models (under monodispersed conditions) that have achieved grid-independent solutions: 
no significant difference in accuracy is expected for polydispersed transport conditions. 
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Abstract 
Organic synthesis is a critical step in producing any Active Pharmaceutical Ingredient 
(API): it encompasses a series of organic (mostly catalytic) reactions and separations, 
whose purpose is to arrive at a solution of a target molecule, which must then undergo 
crystallisation for purification, followed by secondary (downstream) processing towards 
the final (commercially available) formulation. Consequently, studying and optimising 
industrial-scale API production requires reliable process unit (especially reactors and 
separators) and system descriptions, to track key chemical (esp. impurity) concentrations. 
The present paper describes a Digital Twin (DT) which is currently under development 
for a particular API target: its goal is to evaluate multicomponent adsorption of Volatile 
Organic Compound (VOC) emissions from licensed salbutamol synthesis, via industrial 
FTIR data for mixtures of dichloromethane, chloroform, toluene, methanol and ethanol. 
A combination of first-principles (e.g. PDE-based adsorption) and data-driven (e.g. PCA) 
methodologies is essential in order to ensure techno-economically optimal performance. 

Keywords: Digital Twin (DT), Hybrid Modelling, Pharmaceutical Manufacturing. 

1. Introduction 
Pharmaceutical manufacturing plants consist of a wide range of complex unit operations, 
from upstream processing aimed at synthesis of Active Pharmaceutical Ingredients (APIs) 
to intermediate purifications and downstream processing for final product formulation. 
For high plant performance at minimal total cost and solvent waste under licensed design, 
operators continuously assess key units, frequently with only input-output data available. 
First-principles modelling is desirable, yet parameterisation is often arduous and elusive, 
especially in case of inherently dynamic operation under sensor accessibility constraints.  
 

Since API production processes are complex (Nagy et al., 2020), with several organic 
feeds, key intermediates and solvents, many specific interactions are not well understood. 
Relying on first-principles models (FPM) with hundreds of Partial (PDE) or Ordinary 
Differential (ODE) and/or Algebraic Equations (AE) is impractical, since such equation 
systems are costly to formulate and cumbersome to parameterise under time pressure. 
Statistical (e.g. Latent Variable) methods such as Principal Component Analysis (PCA) 
are widely used to explore industrial data (if abundant) and discover causality patterns. 
Employing data-driven models (DDM) to bridge the model fidelity gaps is imperative, 
especially with industrial production Big Data routinely stored. Operational challenges 
may however impede DDM use without a FPM basis, especially for licensed processes. 
For example, an existing (legacy) DDM approach may credibly capture API plant yield 
and key output quality attributes, but also miss secondary performance characteristics 
(e.g. VOC emissions) entirely, just because it was neither meant nor built to address them. 
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Numerous recent publications present elaborate process model implementations aimed at 
plantwide pharmaceutical process design: frequently high fidelity has been ensured by 
employing detailed kinetic (e.g. Arrhenius), thermodynamic (e.g. UNIFAC, PC-SAFT) 
and/or material property submodels based or developed via previously published data. 
Techno-economic optimisation studies based on such high-fidelity submodels credibly 
pinpoint process improvements and quantify savings vs. current API production protocols 
(Jolliffe & Gerogiorgis, 2016; Diab & Gerogiorgis, 2019), but in all cases require access 
to (and abundance of) public-domain datasets, invariably unavailable for new ventures.  
 
Hybrid process modelling has emerged as an industrially promising alternative which 
receives ever-increasing literature attention (Oliveira, 2004; von Stosch et al., 2014; 
Glassey & von Stosch, 2018, Yang et al., 2020); a recent comprehensive review (Chen et 
al., 2020) and some implementations, mostly in secondary (downstream) pharmaceutical 
processing (Ismail et al., 2019; Bascone et al., 2020) have showcased its definite potential.  
Nevertheless, exploring and securing the validity domain of hybrid modelling approaches 
is not trivial, especially regarding feasibility (Kahrs & Marquardt, 2007; Bae et al., 2020). 
The latter study distinguishes two types and three broad categories of hybrid models: in 
the first (serial) type and category, the black (DDM) only informs the white (FPM) box. 
In the second (embedded) type, the two are either separate (but fully interacting) entities 
(with the FPM however being the only handling final outputs), or are entirely fused 
without executional distinction, featuring full integration at higher development expense. 
Dynamic optimisation relies on valid domain constraints extracted from the use of DDM. 
 
 

 

 
Figure 1: Hybrid model structures and dynamic optimisation strategy (Bae et al., 2020). 
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2. Salbutamol Manufacturing Process Description  
Salbutamol is a proven bronchodilation medication: reliably expanding lung airways to 
comfort patients with respiratory conditions, it is commonly prescribed against Chronic 
Obstructive Pulmonary Disease (COPD), bronchitis, emphysema and other ailments. 
Manufacturing this API requires 4 feedstock compounds (diacetate, glycyl, benzyl, base), 
all produced in the licensed plant within a salbutamol batch production schedule (Fig. 2). 
Prior to this project, the first two (diacetate and glycyl) subsystems were conclusively 
identified as the two major VOC sources, thus forming the exclusive focus of our study. 
Therein, VOC emissions originate from distillation units needed for solvent separation. 
Mass balance analysis for the majority of VOC emissions has previously indicated that: 
(1) for diacetate production, VOCs come from dichloromethane (DCM) atmospheric and 
vacuum distillation (occurring in vessel 3/V3), and toluene distillation (in vessel 4/V4). 
(2) for glycyl production, VOCs originate from chloroform and toluene distillation (V3).   
 

 
Figure 2: Diacetate (top) and glycyl (bottom) production schedules (grey denotes separation steps).  

Fig. 3 shows the licensed VOC abatement system: all solvent emissions from salbutamol 
production are simultaneously fed to the same treatment (fixed activated carbon bed) unit. 
Technical (VOC abatement efficiency) but also economic (Operating Expenditure/OpEx) 
performance strongly depend on this subsystem, whose operation is not fully quantified. 

 
Figure 3: The VOC abatement system (a star denotes the FTIR sensor sampling point of the stack).  
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3. A Digital Twin (DT) for VOC Capture and its Potential in Pharma 4.0 
A Digital Twin (DT) is a software entity interfaced with hardware, enabling simulations 
to probe how design/control changes affect performance, but also e.g. maintenance needs. 
When interfaced with process (measured) data, DTs can continuously improve and grow 
(e.g. re-parameterisation via DDM and/or AI), thus ensuring sustainable model relevance. 
Advances via DT use emerge rapidly in Pharma 4.0 (Casola et al., 2019; Lopes, 2020; 
Rasheed et al., 2020), at considerably faster pace than other fields (Aversano et al., 2020). 
 

Chemical synthesis of APIs relies on organic solvents (alcohols, ketones, halogenated 
hydrocarbons) for conducting reactions and separations at adequate yield and safety. 
Many VOCs evaporate at temperatures much lower than 100 °C: due to high toxicity and 
catastrophic environmental impact, they must be reliably captured from gas emissions of 
several units: feed patterns, volumes and conditions govern unit performance (Fig. 4), 
Consequently, adsorbent material procurement and/or regeneration costs are a challenge. 
There are two major technical problems with the efficiency of modern VOC capture units: 
- First, the VOC adsorption carbon beds can be quickly and irregularly saturated, due 

to the widely variant gas feed composition. Consequently, the bed (activated carbon) 
material must undergo frequent regeneration, a costly task invariably outsourced. 

- Second, the impure feed stream composition (from the numerous organic synthesis 
miniplants hosted within a single multi-purpose API manufacturing site) always 
varies widely in terms of organic solvents, volumes and loads contained in emissions, 
affecting VOC capture performance, efficiency and above all the total annual cost. 
 

          
Figure 4: Operating principle and internals of a commercial VOC adsorption column (Forbes, UK). 
 

The present paper addresses the analysis (towards optimisation) of multicomponent VOC 
adsorption from pharma emission mixtures on industrial activated carbon beds (Fig. 3-4). 
This project aims to combine first-principles (physics-based) and data-driven process 
modelling, to create and use a Digital Twin (advanced performance evaluation system), 
to understand, interface datastreams and improve the VOC capture unit at an API plant. 
The validated Digital Twin can be used to analyse and predict carbon bed performance 
against feed composition variation, and thus comparatively evaluate improvements (e.g. 
feed gas routing) via techno-economic (cost) optimisation (MILP/MINLP) methods.  
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The key goals of this ongoing project are to: (1) Use formal Data Analytics, i.e. Principal 
Component Analysis (PCA) to extract process features and elucidate key trends; this has 
already born fruit, producing key original results towards DDM of VOC capture (Fig. 5), 
(2) Develop FPM for Multicomponent Adsorption and study various key VOC mixture 
combinations, thereby quantifying the effect of feed variability on bed operation (Fig. 5), 
(3) Build and validate the DT, evaluating its predictive potential vs. VOC bed history,  
(4) Compare DT simulation predictions vs. plant efficiency data for given API batches, 
(5) Perform DT-based dynamic optimisation to reduce Operating Expenditure (OpEx) 
via optimal gas routing and mixing, under API plant throughput and emission constraints. 
 Our DT combines best-in-class components: physics-based (FPM) descriptions rely on 
detailed equation systems capturing macro- (flow) and micro- (adsorption) transport 
phenomena, emission thermodynamics/phase equilibria, and VOC capture vessel design. 
Industrial data on VOC emissions vs. production conditions have been compiled from a 
dedicated gas monitoring station for the salbutamol API plant (Montrose, Scotland, UK), 
with special attention to VOC-critical production stages (namely distillation separations). 
Statistical (DDM) descriptions successfully use Principal Component Analysis (PCA), an 
established methodology we employ to correlate feed compositions (and changes) to bed 
output patterns, since breakthrough times (esp. due to selective adsorption) vary greatly. 
 

 
Figure 5. DT architecture: FPM and DDM frameworks and results towards dynamic optimisation. 
 

A DT attains real economic value when interfaced with process measurements, hence 
datastream procurement from both inlet and outlet points of the VOC capture bed is key. 
The combination and complementarity of FPM and DDM offers unprecedented potential. 
Design (column flow topology) and operational (feed gas stream mixing and/or routing) 
modifications can be tested (and benefits computed) in silico, prior to hopeful adoption.  
Once the VOC capture DT is conclusively validated vs. industrial data, it will be used to:  

- Quantify VOC capture (carbon bed) performance in detail 
- Map VOC capture efficiency vs. feed/condition variations 
- Evaluate and identify superior gas emission handling protocols 
- Perform a comparative techno-economic analysis of all promising modifications 
- Propose respective VOC capture trial runs for the API manufacturing plant. 
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4. Conclusions 
Elaborate plantwide process models describing complex upstream (API) manufacturing 
need accurately capture thermodynamics (phase equilibria), separations and economics 
for many operating scenaria and conditions (pressure, temperature, feeding, mixing), but 
parameterising them is a laborious affair, given the multiphase and multicomponent 
mixtures and the resulting complications ubiquitous in API syntheses (Nagy et al., 2020). 
Licensed pharmaceutical manufacturing inevitably relies on significant solvent volumes 
for many (especially reaction/separation) uses, with environmental repercussion risks. 
The Digital Twin (DT) addressing VOC emissions abatement uses formal Data Analytics, 
has identified causality patterns via industrial production data, and develops predictive 
potential for dynamic cost optimisation of a VOC capture unit (feed patterns, conditions).  
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Abstract
One of the main drawbacks of the so-called two-step approach in Real-time
Optimization (RTO) is the long waits for stationary operation. To overcome this issue, a
hybrid RTO (HRTO) approach has been proposed in the literature in which a dynamic
estimation is carried out, followed by economic optimization. Despite generally
presenting a good performance, the original proposition is highly dependent on the
availability of a dynamic process model, which could hinder or even make the design of
a plant-wide HRTO infeasible. In this work, an HRTO strategy able to perform in the
absence of a rigorous dynamic model is developed. A Hammerstein model structure is
proposed to replace the dynamic model, and three HRTO architectures are introduced.
These architectures are compared to the original HRTO and to a two-step static RTO
without the steady-state detection stage. The approaches with less internal model
variation present better performance over the approaches that are more sensitive to
changes due to the arising of undesirable oscillatory behavior. This issue must be further
investigated and overcome.
Keywords: Real-time Optimization, Parameter Estimation, Kalman Filter, Surrogate
models, Williams-Otto Reactor.

1. Introduction

Real-time optimization (RTO) is a term commonly used in reference to a class of
optimization strategies that uses real-time measurements in an optimization feedback
loop in order to overcome uncertainties and achieve process optimality under a certain
set of constraints (Darby et al., 2011). One of the most accepted classifications of RTO
methods divide them on how the measurement is used to adapt the optimization
problem. In the implicit methods, the adaption is carried out directly on the input
variables such as in Self-Optimizing Control (Skogestad, 2003), Necessary Condition of
Optimality (NCO) tracking (Srinivasan et al., 2003), and Extremum‑Seeking Control
(Morosanov, 1957). Within the class of explicit methods, an additional subdivision
considers whether the adaption is carried out in the process model or in the optimization
problem itself. In the first subclass, it is assumed that the main source of uncertainty is
parametric such as in the two-step approach (Jang et al., 1987), in which a static

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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parameter estimation problem is solved before an economic optimization. In the second
one, it is assumed that the source of uncertainty is due to structural mismatch between
the process model and plant. Hence, modifiers are added to the optimization problem in
order to match the Karush-Kuhn-Tucker (KKT) conditions of the model-based problem
to the real plant problem, such as in ISOPE (Gao and Engell, 2005), Constraint
Adaption (Marchetti et al., 2008) and Modifier Adaption (Chachuat et al., 2008).

The so-called two-step approach is the most widespread RTO method in industry
(Câmara et al., 2016). However, the long waits for steady condition, especially in
frequently disturbed or slow dynamic processes, is one of the main drawbacks of the
strategy (Darby et al., 2011). In this context, two different research groups proposed to
replace the static parameter estimation with a dynamic parameter estimation, such as the
Extended Kalman Filter, giving origin to the Hybrid Real-Time Optimization (HRTO)
approach (Matias and Le Roux, 2018; Krishnamoorthy et al., 2018). Despite generally
presenting satisfactory performance results, the HRTO depends on the availability of a
rigorous dynamic process model, structurally similar to the static process model, which
is costly, time-consuming, and could even make the design of a plant-wide HRTO
infeasible. Herein, the term “rigorous dynamic process model” is used in reference to a
dynamic phenomenological model based on first principles of mass, energy, and
momentum balances. In order to overcome this drawback, in this work, three HRTO
architectures that are able to perform in the absence of a rigorous dynamic model are
developed and compared.

2. Hammerstein model structure

It is assumed that an adequate static model of the plant is available:

0 = 𝐹 𝑥𝑠, 𝑢, θ( ) (1)
𝑦𝑠 = 𝐺 𝑥𝑠, 𝑢, θ( )

in which, are the state variables in stationary state, are the measured𝑥𝑠 ∈ 𝑅
𝑛

𝑥 𝑦𝑠 ∈ 𝑅
𝑛

𝑦

variables in stationary state, are the input variables and are the vector of𝑢∈𝑅
𝑛

𝑢 θ∈𝑅
𝑛

θ

parameters and unmeasured disturbances on which uncertainty occurs. In addition, the

functions and are the static𝐹:  𝑅
𝑛

𝑥 × 𝑅
𝑛

𝑢 × 𝑅
𝑛

θ → 𝑅
𝑛

𝑥 𝐺:  𝑅
𝑛

𝑥 × 𝑅
𝑛

𝑢 × 𝑅
𝑛

θ → 𝑅
𝑛

𝑦

mapping of the states and the outputs related to the inputs and parameters, respectively.
For the sake of simplifying notation, this model will be represented as .𝑦𝑠 = 𝑦𝑠 𝑢, θ( )

A general Hammerstein structure consists of a static mapping of the inputs and
parameters into the output variables and a linear dynamic model to make the transition
from the current state to the mapped steady state. Considering a discrete linear dynamic
model of the type of autoregressive with exogenous input (ARX) to approximate the
plant dynamics, the Hammerstein model is given by:

𝑦
𝑘
ℎ = 𝐴

𝑘
𝑦

𝑘−1
ℎ + 𝐵

𝑘
𝑦

𝑘−1
𝑠 𝑢

𝑘−1
, θ

𝑘−1( ) (2)
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in which, is the vector of output variables provided by the Hammerstein model𝑦
𝑘
ℎ ∈ 𝑅

𝑛
𝑦

at instant . In addition, the squared matrices and gather the dynamic parameters𝑘 𝐴
𝑘

𝐵
𝑘

to be identified from process data during operation, but can also be kept constant. Here,
two models are proposed which exploit this structure, they are:

i. model 1: ;𝐵
𝑘

= 𝐼 − 𝐴
𝑘( )

ii. model 2: and are independent.𝐴
𝑘

𝐵
𝑘

It is noteworthy that model 1 presents the property to match the stationary conditions of
the static model, and it has half of the number of dynamic parameters to be identified
compared to model 2.

3. HRTO architectures

The proposed HRTO architectures based on the Hammerstein model presented in
Section 2 are described below:

● HRTO-HEKF-fixed: the adjustable parameters are estimated by an Extended
Kalman Filter (EKF) layer that considers the Hammerstein model as its
internal dynamic model, named Hammerstein EKF (HEKF), wherein the
dynamic matrices of the model are kept constant. The estimated parameters are
then kept fixed in a subsequent static optimization layer;

● HRTO-HEKF-adaptive: the adjustable parameters and the dynamic matrices
of the Hammerstein model are simultaneously estimated by the HEKF layer;

● HRTO-HEKF-RELS: the adjustable parameters are estimated by the HEKF
layer, but the dynamic matrices of the Hammerstein model are estimated by a
Recursive Extended Least Squares (RELS) estimator with a forgetting factor.

These approaches are compared with the following architectures:

● HRTO-EKF: the original HRTO, in which the true dynamic model of the
process is known and the adjustable parameters are estimated by an EKF layer;

● RTO-LSE: the original two-step RTO, in which the adjustable parameters are
estimated by a nonlinear Least Squares Estimator (LSE) subjected to the static
model. In this approach, no steady-state detection is performed, so the LSE
runs regardless of the dynamic nature of the data.

3.1. Hammerstein EKF algorithm

The algorithm for the parameter estimation in the EKF framework is very well
described in the Appendix of Krishnamoorthy et al. (2018). Using their nomenclature,
the application for Hammerstein models gives the following augmented a priori state
estimation:

𝑦
𝑘|𝑘
ℎ  θ

𝑘|𝑘
 ⎡⎢⎣
⎤⎥⎦ = 𝐴

𝑘
𝑦

𝑘−1
ℎ + 𝐵

𝑘
𝑦

𝑘−1
𝑠 𝑢

𝑘−1
, θ

𝑘−1( ) θ
𝑘|𝑘−1

 ⎡⎢⎣
⎤⎥⎦ + 𝑤

𝑦,𝑘
 𝑤

θ,𝑘
 [ ] (2)

in which, and are artificial zero-mean noise, so that and𝑤
𝑦,𝑘

𝑤
θ,𝑘

𝑤
𝑦,𝑘

~𝑁 0, 𝑄
𝑦( )

. Therefore, the process noise covariance matrix is augmented as𝑤
θ,𝑘

~𝑁 0, 𝑄
θ( )
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. In the HRTO-HEKF-adaptive the elements of the dynamic𝑄
~

= 𝑑𝑖𝑎𝑔 𝑄
𝑦
, 𝑄

θ[ ]( )
matrices are estimated simultaneously to the adjustable parameters, so the columns of
these matrices are stacked up and concatenated with vector .θ

3.2. RELS algorithm

The algorithm of the RELS with forgetting factor is very well presented inα
Rodríguez-Blanco et al. (2017). Using their nomenclature, the application for the
Hammerstein models are , and forϕ

^
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= 𝑦
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model 1 and , and forϕ
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model 2 and the initial covariance matrix of the prediction error is given by .Σ
0

= 𝐼/α

4. Case Study: TheWilliams-Otto Reactor

The Williams-Otto Reactor with three reactions was exploited as a case study. It is a
classical benchmark for real-time optimization studies, where several phenomena can be
observed, such as inverse response and change of the gain sign. Its equations, parameter
values, and notations can be found in Forbes and Marlin (1996).

In this study, we consider as an unmeasured variable, so the set of measured𝑋
𝐶

variables are , the degrees of freedom of the optimizer are𝑦 = 𝑋
𝐴

, 𝑋
𝐵

, 𝑋
𝐸

, 𝑋
𝑃
, 𝑋

𝐺[ ]𝑇

and the set of adjustable parameters were in fact two unmeasured𝑢 = 𝐹
𝐵

, 𝑇
𝑅[ ]𝑇

disturbances . The kinetic parameters were considered fixed and perfectlyθ = 𝐹
𝐴

, 𝑊[ ]𝑇

known. To initialize the Hammerstein models, an offline identification problem was run
around a nominal point, in and in𝑢

𝑛
= 2,  70[ ]𝑇 𝑘𝑔/𝑠,    ◦𝐶[ ] θ

𝑛
= 1. 8275,  2105[ ]𝑇

, distant from the nominal optimum point, in .𝑘𝑔/𝑠,  𝑘𝑔[ ] 𝑢* = 4. 2,  85. 9[ ]𝑇 𝑘𝑔/𝑠,    ◦𝐶[ ]
Finally, a scenario of parameter variation was designed to test the approaches. For the
approach HRTO-HEKF-RELS, two values of the forgetting factor were tested,α 0. 5
and . A sampling time of was considered in a simulation window of0. 99 60𝑠

sampling times in which a decreasing ramp was subjected to the reactor𝑁 =  450
holdup, , and a pulse disturbance was subjected to the feed flow rate of , , as𝑊 𝐴 𝐹

𝐴
shown in Figure 1.
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Figure 1: Performance of the different HRTO architecture over a scenario of parametric
variation: (a) estimation of with HEKF and RELS using model 1; (b) estimation of𝐹

𝐴
with HEKF and RELS using model 2; (c) estimation of with HEKF and RELS𝐹

𝐴
𝑊

using model 1; (d) estimation of with HEKF and RELS using model 2.𝑊

In order to compare all approaches in this scenario, a normalized Mean Squared Error
(nMSE) for each variable is shown in Table 1.

Table 1: nMSE comparison between HRTO architectures
Variables HRTO-EKF RTO-LSE

model 1 model 2
HRTO-HEKF HRTO-HEKF-RELS HRTO-HEKF HRTO-HEKF-RELS

fixed adaptive α = 0. 5 α = 0. 99 fixed adaptive α = 0. 5 α = 0. 99
𝑋

𝐴 4. 6⋅10−6 3. 4⋅10−6 5. 8⋅10−6 8. 4⋅10−5 6. 0⋅10−6 5. 8⋅10−6 5. 9⋅10−6 6. 6⋅10−5 5. 9⋅10−6 5. 9⋅10−6

𝑋
𝐵 3. 8⋅10−6 4. 1⋅10−6 4. 8⋅10−6 3. 2⋅10−5 4. 7⋅10−6 4. 8⋅10−6 4. 7⋅10−6 3. 0⋅10−5 4. 7⋅10−6 4. 7⋅10−6

𝑋
𝐸 2. 4⋅10−6 3.4⋅10−6 3. 2⋅10−6 1. 7⋅10−5 3. 2⋅10−6 3. 2⋅10−6 3. 2⋅10−6 1. 6⋅10−5 3. 2⋅10−6 3. 2⋅10−6

𝑋
𝑃 6. 9⋅10−7 2. 5⋅10−6 8. 5⋅10−7 4. 6⋅10−6 8. 5⋅10−7 8. 5⋅10−7 9. 1⋅10−7 5. 1⋅10−6 9. 1⋅10−7 9. 1⋅10−7

𝑋
𝐺 2. 3⋅10−6 2. 4⋅10−6 3. 3⋅10−6 1. 8⋅10−5 3. 2⋅10−6 3. 2⋅10−6 3. 2⋅10−6 2. 4⋅10−5 3. 2⋅10−6 3. 2⋅10−6

𝐽 4. 1⋅10−2 1. 8⋅10−1 4. 8⋅10−2 2. 8⋅10−1 5. 4⋅10−2 4. 9⋅10−2 5. 5⋅10−2 3. 0⋅10−1 5. 4⋅10−2 5. 4⋅10−2

𝐹
𝐴 1. 7⋅10−4 3. 4⋅10−4 1. 8⋅10−4 6. 0⋅10−4 2. 7⋅10−4 1. 9⋅10−4 2. 1⋅10−4 4. 9⋅10−4 2. 0⋅10−4 2. 0⋅10−4

𝑊 5. 9⋅10−1 7. 0⋅10−1 7. 5⋅10−1 1. 4 8. 5⋅10−1 7. 6⋅10−1 6. 3⋅10−1 9. 8⋅10−1 6. 3⋅10−1 6. 2⋅10−1

The nMSE for each variable , using the true plant value as reference, is given by:𝑖

𝑛𝑀𝑆𝐸
𝑖

=
𝑘=1

𝑁

∑
𝑦
^

𝑖,𝑘
−𝑦

𝑖,𝑘
𝑝

𝑦
𝑖,𝑘
𝑝 (2)

in which, the hat emphasis and the superscript represent the estimated value and·
^( ) ·( )𝑝

the true plant value, respectively.
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It is straightforward from Figure 1 that all approaches were able to estimate the true
value of the parameters after a stabilization period, which confirms the potential of the
Hammerstein approaches to substitute the rigorous dynamic model in the architecture of
the HRTO, opening up a vast range of possibilities of applications. Surprisingly, the
RTO-LSE presented a good performance in parameter estimation during transient
regions, suggesting that HRTO could be applied directly to classic RTO structures, just
by removing the steady-state detection stage and increasing the running frequency of the
optimization loop. However, this approach is the most costly one among the other
structures analyzed, as shown in Table 2, it is almost times more costly than EKF11. 5
and times more costly than the proposed HEKF. This preliminary conclusion about23
the RTO-LSE should be verified by testing with many other case studies.

Table 2: Average time consumption for each stage in loop ( )𝑚𝑠
Stage HRTO-EK

F RTO-LSE
model 1 model 2

HRTO-HEKF HRTO-HEKF-RELS HRTO-HEKF HRTO-HEKF-RELS
fixed adaptive α = 0. 5 α = 0. 99 fixed adaptive α = 0. 5 α = 0. 99

Plant Optimization 2. 04 2. 08 2. 08 2. 08 2. 25 2. 05 2. 07 2. 08 2. 40 2. 15
Estimation 1. 94 22. 94 0. 74 0. 98 0. 95 0. 86 0. 69 1. 03 0. 98 0. 82

Model Optimization 11. 92 12. 81 11. 95 12. 03 12. 95 12. 03 11. 99 12. 09 13. 69 12. 23
Total simulation loop 16. 95 39. 31 15. 89 16. 35 17. 35 16. 07 15. 84 16. 49 18. 35 16. 31

In general, approaches using model 1 presented a greater adaption capability over
approaches using model 2, due to the lesser number of parameters to estimate. However,
this capability does not necessarily reflect better parameter estimation; in fact
approaches using model 2 presented a greater overall accuracy on parameter estimation.
In addition, the approach HRTO-HEKF-RELS with was very similar to theα = 0. 99
HRTO-HEKF-fixed for both models, which is a reflection of the low adaptability
capacity of the RELS strategy with high value of the forgetting factor. For the
approaches HRTO-HEKF-RELS with and HRTO-HEKF-adaptive, the higherα = 0. 5
adaptability capacity was able to reduce the nMSE for the output variables, but
presented a worst parameter estimation accuracy than the HRTO-HEKF-fixed, even
though the models used in this approach were identified far from the operating point and
in a fixed parameter scenario.

It is noteworthy that the approach HRTO-HEKF-adaptive presented an undesirable
oscillatory behavior, which appears due to the arising of oscillatory modes in the
Hammerstein models during operation. This effect should be avoided and further
investigated.

5. Conclusion
In this work, different HRTO architectures were proposed based on the use of a
Hammerstein model structure that combines the available static process model with a
linear ARX identified from past data to provide approximate dynamics. Therefore, the
requirement of availability of a rigorous dynamic process is removed from the original
proposition of the HRTO, enabling it to be used in a large range of applications. The
proposed methodologies showed satisfactory performances in parameter estimation and
adequate computational costs. However, they presented no resources to prevent the
arising of unstable and undesirable oscillatory modes on the Hammerstein model during
the adaptive process, this should be further investigated.
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Abstract 
Methanol is a clean fuel and is considered an important chemical feedstock. It is usually 
produced by catalytic conversion and can be produced from carbon dioxide and thus could 
significantly contribute to the reduction of direct CO2 emissions to the atmosphere. 
Despite a number of technologies have been developed for its synthesis, post-production 
treatment is fundamental for obtaining a high purity methanol stream. Purification is 
generally carried out by distillation, with significant energy consumption. 
The raw product exiting from the methanol production section is mainly composed of 
methanol and water, with traces of other components and is fed to the purification section. 
This section is composed of two separation units. The first unit aims at removing the low 
boiling impurities which exit from the top and the second one, the most energy 
demanding, treats the heavier stabilized methanol-rich stream to increase its 
concentration in methanol for obtaining a product with high purity. 
This work focuses on the optimization of the process, with the study of possible 
modifications for obtaining energy saving and the selection of the best one on the basis 
of a techno-economic analysis. 
Simulations have been carried out by using the commercial software ASPEN Plus®. The 
thermodynamic method based on the Non-Random-Two-Liquid (NRTL) model, suitable 
for this system and for the low pressure conditions, has been employed and a rate-based 
approach has been considered for simulating the columns. 
The alternative configurations favour a reduction of the influence of the methanol 
purification section on the total costs of the production plant. 
 
Keywords: methanol, distillation, energy saving, configurations, economic analysis. 

1. Introduction 
Methanol can be produced from fossil or renewable sources and is employed for energy 
production in the marine, automotive and electricity sectors (Ptasinski et al., 2002), in 
addition to be a fundamental commodity in the chemical industry, used for plastics, paints 
and cosmetics (Methanol Institute, 2020). The chemist George Andrew Olah was a great 
supporter of the “methanol economy” for the capability of this compound to provide an 
efficient mean to store energy and of being used as a convenient fuel as well as a raw 
material for synthetic hydrocarbons and their products, thinking of it as a possible 
substitute to natural oil and gas (Olah, 2004, 2005, 2013; Olah et al., 2018). 
Methanol is mainly produced from syngas or by other routes starting from methane 
(Lange, 1997, 2001). Generally, most of the production comes from natural gas, though 
about 10% originates from distillation of heavy cuts of oil or from coal in locations where 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50043-7



 S. Moioli and L.A. Pellegrini

natural gas is not available or cannot be easily supplied. Its production is usually obtained 
by catalytic conversion also starting from the CO2 removed from other streams, therefore 
it could significantly contribute to the reduction of direct greenhouse gas emissions to the 
atmosphere (Van-Dal and Bouallou, 2013). The methanol price is characterized by 
fluctuations depending on the market conditions and on the market locations, so that 
values ranged from 500 $/ton to 190 $/ton in the last three years (MMSA, 2020). For this 
reason, a low-cost production is fundamental. In particular, post-production treatment is 
needed for obtaining a high purity methanol stream and is generally carried out by 
distillation, with relevant energy consumptions (Zhang et al., 2010). 
In the literature, many works focused on the production path of methanol. Some 
researchers proposed different kinetic models for the synthesis of this substance, 
considering different catalysts, while other authors studied the overall scheme of 
production (Zhang et al., 2016) starting from different raw materials (Rivarolo et al., 
2016), including sugarcane bagasse (Renó et al., 2011), CO2 removed from other 
industrial processes (Abdelaziz et al., 2017; Atsonios et al., 2016; Kourkoumpas et al., 
2016; Pérez-Fortes et al., 2016; Szima and Cormos, 2018) and also renewable hydrogen 
(Galindo Cifre and Badr, 2007) or using different types of energy as the solar one (Kim 
et al., 2011). Only few papers focused on a reduction of the economics of the process 
through the analysis and the comparison of different schemes (Shahandeh et al., 2014; 
Shahandeh et al., 2015). Doulas and Hoadley (Douglas and Hoadley, 2006) performed a 
thermal and economic comparison of schemes with two and three columns, with enhanced 
heat integration. Sun et al. (Sun et al., 2012) considered a 5-column heat integrated 
distillation scheme and compared the obtained savings with the 4-column scheme though 
with a higher capital cost and complexity of operating many distillation columns. Kiss et 
al. (Kiss et al., 2016) proposed the addition of a stripping unit with wet hydrogen to 
remove CO and CO2 from the water-methanol mixture. Many works (Abdelaziz et al., 
2017; Atsonios et al., 2016; Pérez-Fortes et al., 2016; Szima and Cormos, 2018; Van-Dal 
and Bouallou, 2013), then, considered a scheme based on the presence of a flash and a 
distillation column, though without focusing on the optimization of the purification 
section. This type of scheme has been considered in the present work. 
The aim of this paper is the study of different configurations for the section of purification 
of the raw methanol stream in order to determine the one which reduces the investment 
costs and the operating costs, mainly due to the energy consumptions on the basis of a 
techno-economic analysis. 

2. Methodology 
The mixture considered in this paper contains mainly methanol and water (the ratio 
methanol / water is equal to 1.96), with traces of ethanol and other light gases residual 
from the previous steps of reaction. The purification section must produce a methanol-
rich stream of AA grade, according to the International Methanol Producers and 
Consumers Association (IMPCA), for which a minimum weight fraction of methanol in 
the product stream of 0.9985 is required, with a content of water lower than 0.1 % wt. As 
additional specification, in this work a recovery of the methanol entering the purification 
section of at least 90% has been considered. 
The simulations for the design and the evaluation of the performances of the different 
schemes have been carried out in ASPEN Plus®, selecting for the thermodynamic 
description of the system a  method based on the Non-Random Two Liquids (NRTL) 
theory (Renon and Prausnitz, 1968), which has been found accurate for the representation 
of the phase equilibria of the components of the feed stream (Allocca, 2020). The tool 
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Sensitivity provided within the process simulator has been employed for analyzing the 
influence of the main parameters of the column. 
All the obtained results have been used as input for the economic analysis, which includes 
the evaluation of both investment and operating costs, performed on the basis of the 
Preliminary Design Estimate method and the average operating costs reported in Turton 
et al. (Turton et al., 2012) and the optimal configuration has then been identified. 

3. The considered schemes 
In this section the three considered configurations are described. The first one (Scheme 
A), taken as reference, is the simplest one while the other ones, Scheme B and Scheme C, 
are characterized by the addition of a heat exchanger and also of a splitter in order to 
obtain economic advantages. 
Indeed, since the reboiler duty represents the main operating cost of this plant and energy 
management is recognized as a key point in the design of chemical processes (Luyben, 
2020), Scheme B and Scheme C have been analysed and optimized in order to minimize 
both investment costs and operating costs. 
3.1. Scheme A 
One single distillation column cannot perform the separation for obtaining a product 
stream with all the above-mentioned specifications, mainly because of the presence of the 
residual gases from reaction in the feed stream. Therefore, a flash or another distillation 
column are usually employed to remove this incondensable species upstream of the 
column used for the separation of methanol and water. 
The raw methanol stream (stream 1) is fed to the flash unit, where most of the lightest 
components are removed and exit from the top (stream 2). The liquid stream (stream 3), 
rich in methanol and water, is fed to the distillation column, provided with a partial 
condenser and a partial reboiler (Figure 1). 
 

 
Figure 1. Base scheme (Scheme A) for the purification section of the methanol production plant. 

 
The methanol-rich stream (stream 2), with the required specifications, is obtained at the 
top of the column as liquid distillate, while a water-rich stream with a small amount of 
ethanol exits from the bottom of the unit. The vapor distillate is composed of the 
incondensable gases which have not been removed in the previous flash. The pressure of 
the feed, equal to 2 bar, is reduced to 1.25 bar to separate most of the gases from the liquid 
in the flash, before entering the distillation column, operated at atmospheric pressure. 
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The characteristics of the column (height, feed stage, bottom to feed ratio) have been 
optimized with the aim of fulfilling the required specifications while maintaining low 
investment and operating costs. 
3.2. Scheme B 
A common method for energy saving consists in pre-heating the stream fed to the 
distillation column with the bottom product stream exiting the reboiler in a process-
process heat exchanger. The water-rich stream is fed to the hot side of the unit for heat 
transfer, where it is cooled, transferring its heat content to the cold fluid, the liquid exiting 
from the flash unit to be warmed. 
The variation in the feed temperature influences the profiles inside the distillation column, 
so that for the same column height of Scheme A, the optimal bottom to feed ratio and feed 
stage have been determined. 
3.3. Scheme C 
A splitter for dividing the flash liquid product stream before the heat exchanger can be 
added to achieve a reduction in the reboiler duty (Deshmukh et al., 2005) because of the 
higher temperature obtained for the preheated stream. In particular, the liquid exiting from 
the flash (stream 3 in Figure 1) is split into two streams, with the same composition and 
with the flowrate depending on the splitting fraction. One part of the stream is directly 
fed to the distillation column without variations in its temperature, while the other part is 
fed to a process-process heat exchanger similar to the one of Scheme B for pre-heating 
and is then fed to the distillation column at a different height. When the splitting fraction, 
defined as the fraction of stream directly fed to the distillation tower, is equal to 0, the 
process layout of Scheme B applies, with all the stream being pre-heated before being 
separated in the distillation column, while when the splitting fraction is equal to 1 the 
base scheme (Scheme A) is considered, with no pre-heating. 
The splitting fraction and the feed stages of the two streams entering the column have 
been optimized for Scheme C. To determine the values of these variables an iterative 
procedure has been applied, since the result of each one depends on the value of the other 
ones. 

4. Results 
Table 1 reports the results of the economic evaluation of the plant, as for the investment 
costs and for the operating costs. When compared to Scheme A, Scheme C results in the 
largest savings, with an 11.23% reduction in capital costs and a 13.32% reduction in 
operating expenses. 
 
Table 1. % variation in investment and operating costs obtained with Scheme B and with Scheme C 
if compared to Scheme A. 

  % variation in investment costs % variation in operating costs 

Scheme B +1.93% -1.24% 

Scheme C -11.23% -13.32% 

 
For Scheme B, the exchange of heat between the hot stream, available at a pressure 
slightly above the atmospheric one and at about 100°C, and the cold stream at 40°C makes 
the overall stream fed to the column at a temperature higher than the one in Scheme A. 
However, because the flowrate of the water-rich stream exiting the reboiler is much lower 
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than the one of the cold stream, this latter reaches only the temperature of 55°C if a 
Tapproach of 5°C is considered. 

As for Scheme C, the optimal result is for a splitting fraction equal to 0.9, which allows 
for obtaining the lowest reboiler duty. The resulting profile in the process-process heat 
exchanger is reported in Figure 2. Due to the lower flowrate of stream to be heated, the 
temperature increases much more than the one of the hot stream in Scheme B. The hot 
stream enters the column with a vapour fraction of about 20%, reducing the energy 
requirements for the reboiler. 
 

 
Figure 2. Temperature profiles for the hot and cold streams in the process-process heat exchanger 
for Scheme C. 

5. Conclusions 
This work focused on the study of a methanol purification plant, being methanol a 
relevant clean fuel and a chemical feedstock. The analysis of different configurations for 
the section of purification of the raw methanol stream has been carried out in order to 
obtain a methanol product with the specifications required by IMPCA while minimizing 
the costs. Three different schemes have been considered, a base case with a flash unit and 
a distillation column and two more complex cases, characterized by the pre-heating of all 
the stream fed to distillation (Scheme B) or by the splitting of this stream to have only a 
partial pre-heating before entering the column (Scheme C). On the basis of the techno-
economic analysis carried out, Scheme C resulted the most performing one, allowing for 
both a reduction of the energy consumption and of the investment costs. 
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Abstract
Dimethoxymethane (OME1) is a potential blend component for diesel fuel that enables
dramatic reductions in pollutant formation. With current technology, however, the pro-
duction of OME1 from renewable electricity would be less efficient than other power-to-
fuel processes. We therefore present an alternative process based on a different synthesis
route: direct oxidation of methanol. We use deterministic global optimization to maxi-
mize the exergy efficiency of the process. The problem can be solved globally despite the
complexity of the flowsheet and the detailed phase equilibrium and enthalpy models used
for most units. In contrast, only simple models are used for distillation. The effects of
this simplification and that of heat integration are quantified. The optimized process has
a higher exergy efficiency than the benchmark and eliminates all external heat demand.

Keywords: Design, global optimization, power-to-fuel, oxymethylene ether, methylal

1. Introduction

Alternative fuels are urgently needed for reducing the greenhouse gas and pollutant emis-
sions of the transport sector. A promising candidate is dimethoxymethane (OME1), which
can be used as a compression ignition fuel itself with suitable additives or blended in
diesel fuel. In either case, the formation of soot and nitrogen oxides can be drastically
reduced compared to diesel fuel (Omari et al., 2017). OME1 is also an intermediate in
pathways for producing longer-chain oxymethylene ethers (Burger et al., 2010), which
can directly replace diesel fuel with only minor engine modifications.

The current production of OME1 is based on methanol and aqueous formaldehyde so-
lution (Weidert et al., 2017). By combining such an OME1 production process with
formaldehyde production from methanol and methanol production from renewable hy-
drogen (H2) and carbon dioxide (CO2), OME1 can be produced in a power-to-fuel pro-
cess chain, which we call the benchmark process chain in the following. However, this
benchmark process chain for converting H2 and CO2 to OME1 has an exergy efficiency of
only 73 %, in contrast to around 90 % for methane, methanol, or dimethyl ether (Bongartz
et al., 2019). This lower efficiency can be attributed to the accumulation of losses in the
three process steps. Among these, formaldehyde production has the lowest efficiency.

A number of alternative synthesis pathways for OME1 that avoid a separate formaldehyde
production process have been explored (Sun et al., 2019). Among these, the direct oxida-
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tion of methanol to OME1 (Tatibouët, 1997) is promising for short-term implementation
because heterogeneous catalysts with high conversion and selectivity have been devel-
oped. In this direct oxidation, formaldehyde is converted in-situ to OME1 immediately
after its formation over a bifunctional catalyst. Despite the considerable work on catalyst
development, no optimized process has been presented and analyzed yet.

In this contribution, we thus design a power-to-fuel process for producing OME1 from
H2 and CO2 via direct oxidation of methanol. To achieve maximum efficiency, we aim at
leveraging recent developments in global flowsheet optimization using our open-source
optimizer MAiNGO (Bongartz et al., 2018). In the following, we first introduce the pro-
posed process concept. Next, we describe the flowsheet optimization problem and its
solution with MAiNGO. To ensure tractability of the global flowsheet optimization, only
simple models are used for distillation columns, and no heat integration is considered
during optimization. Finally, we quantify the impact of the simple distillation models and
conduct pinch analysis to enable comparison with the benchmark process chain.

2. Process Concept

The proposed process concept consists of two sub-processes: conversion of H2 and CO2
to methanol, and conversion of methanol to OME1 (see Fig. 1). For the first sub-process,
multiple concepts have already been proposed. Herein, we slightly adapt the concept for
methanol production of Van-Dal and Bouallou (2013): We omit the low-pressure flash
drums for separating remaining traces of CO2 from the produced methanol, because we
do not expect CO2 to impact the downstream reaction of methanol to OME1.

In the second sub-process, the main reaction is

3CH3OH+
1
2

O2 −−→ OME1 +2H2O, ∆Rh0 =−229.2kJ/mol. (1)

Reaction (1) occurs in the gas phase in fixed-bed reactors at ambient pressure and mod-
erate temperatures (Sun et al., 2019). For the present analysis, we select the catalyst by
Liu et al. (2008), which enables peak values of >90 % for methanol conversion and se-
lectivity to OME1 at temperatures of 393 K to 423 K. Conversion increases with temper-
ature whereas selectivity decreases. The main side products are methyl formate (MF) and
formaldehyde (FA). Although the experiments were conducted with an O2-N2 mixture
with 17 mol% of O2, we assume that the performance is the same with air as oxidant.

After the reactor, gas-liquid separation is achieved through low-temperature cooling. The
gas stream consists of N2 and unreacted O2. The liquid stream contains water, methanol,
OME1 as well as some MF and FA. Mixtures of water, methanol, OME1, and FA exhibit
several azeotropes (Kuhnert et al., 2006). The addition of MF, in contrast, does not intro-
duce additional azeotropes according to model predictions (Deutz et al., 2018). Since MF
is also the most volatile component, it is withdrawn as top product of column D2. The
remaining mixture is similar to the one in OME1 production from methanol and aque-
ous FA. In that context, Weidert et al. (2017) proposed a pressure-swing distillation to
overcome the methanol-OME1 azeotrope. The first column of their setup has a reactive
section to convert leftover FA to OME1, and a side product draw to remove methanol.
Herein, we remove the side draw and instead obtain a methanol-water mixture as bottom
product of D3 that is recycled to D1, since D1 already separates methanol from water.
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Figure 1: Process flow diagram for the production of OME1 from H2 and CO2 via direct
oxidation of methanol. Figure adopted from Bongartz (2020). Combustion of purge
streams and the MF stream for energy recovery is not shown for simplicity.

3. Flowsheet Optimization

Given the flowsheet in Fig. 1, we aim at maximizing its exergy efficiency, which is a ther-
modynamically consistent measure for the quality of energy conversion processes. Such
flowsheet optimization problems are nonconvex and should thus be solved with global op-
timization methods. However, these are computationally expensive. To ensure tractability,
we use a three-stage procedure: First, we optimize the entire flowsheet globally using sim-
ple models for the most challenging units in the flowsheet, i.e., the distillation columns.
Second, we use the results as initial values to optimize the columns locally using rigorous
models. Third, we conduct pinch-based heat integration for the fixed optimized process.

3.1. Global Optimization with Simple Distillation Models

The global optimization of the flowsheet is described in detail by Bongartz (2020) and
only key points are summarized here. The design variables are shown in circles in Fig. 1.
Their allowable ranges are given in Table 1. The objective is the exergy efficiency

ηex =
ṅOME1 eOME1 +∑k∈Qout ĖQ,k

ṅH2 eH2 + ṅCO2 eCO2 +∑m Ẇm +∑k∈Qin
ĖQ,k

, (2)

with ṅi and ei denoting the molar flow rate and molar exergy of species i, respectively, ĖQ,k
the exergy of heat flow k, and Ẇm the power consumption of compressor m. No internal
heat integration is considered for simplicity. Instead, all heat flows that correspond to
exergy leaving and entering units are assigned to the sets Qout and Qin, respectively.

The process is modeled with species molar flow rates and overall enthalpy flow rates. The
balances are limited to species that occur in appreciable quantities in the corresponding
parts of the flowsheet. Enthalpies are computed with the DIPPR-107 equation for heat
capacity, the DIPPR-106 equation for enthalpy of vaporization, and the AspenPlus cor-
relation for enthalpy of solution of Henry components. For the compressors, we use a
fixed isentropic efficiency and an entropy model also based on the DIPPR-107 equation.
In reactor R1, we enforce equilibrium of methanol formation and reverse water gas shift.
In reactor R2, we correlate the yields of Liu et al. (2008) as a function of temperature
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Table 1: Design variables for flowsheet optimization (adopted from Bongartz (2020)).

Symbol Description Unit Range Solution Point

ṅCO2 CO2 inlet flow rate kmol/s [ 0, 1] 0.251
pR1 Inlet pressure reactor R1 bar [ 60, 70] 70.0
TF1 Temperature flash drum F1 °C [ 30, 110] 100
TR2 Temperature reactor R2 °C [ 120, 140] 124
TF2 Temperature flash drum F2 °C [ -100, 25] -94.6

using second degree polynomials. FA formation is neglected (i.e., counted as unreacted
methanol), which is conservative because FA would be further converted to OME1 in the
reactive section of D1. Phase equilibrium is modeled with the extended Antoine equation
and Henry’s constant correlation and solvent mixing rules from AspenPlus. In the second
sub-process, we additionally use NRTL for the nonideal liquid mixture. For the columns
D1–D4, we use the Underwood shortcut for the minimum reflux ratio. The actual reflux
ratio is chosen 30 % higher for finite column height. The azeotropes at the top of columns
D3 and D4 are introduced as pseudo-components as proposed by Vogelpohl (2002).

The problem is written in a reduced-space formulation (Bongartz and Mitsos, 2017),
which is a hybrid between equation-oriented and sequential-modular formulations: The
optimizer does not see all model variables, but rather only the degrees of freedom and
few variables for decoupling the equation systems, e.g., those in tear streams. The other
variables are computed sequentially from the model equations. Flash calculations are
handled as described by Bongartz and Mitsos (2019). In total, the problem has 58 opti-
mization variables, 53 equalities, and 19 inequalities. An equation-oriented formulation
would have several hundred variables and equalities. The problem is implemented via the
C++ API of MAiNGO v0.2.0.4 (Bongartz et al., 2018)1 and solved to a relative optimality
tolerance of 10−2 on 12 cores of an Intel Platinum 8160 with 2.1 GHz in 12 h of wall clock
time using MPI parallelization. The optimal values of the design variables are given in
Table 1. The exergy efficiency computed via Eq. (2) is 83 %. Local instead of global op-
timization results in anything from the global to substantially suboptimal solutions (e.g.,
11% efficiency) or no feasible points, depending on the initial guess. For details, see
Bongartz (2020). Note that this optimal efficiency cannot be compared to the benchmark
process chain because of the simplified treatment of distillation and heat integration.

3.2. Local Optimization of Distillation Columns with Rigorous Models

To obtain reliable values for the energy demand for distillation, we optimize the columns
locally with equilibrium tray-to-tray models, using the results from the previous sections
as initial points. To achieve reasonable column designs, we minimize the total cost com-
prising heating, cooling, and capital cost estimated with the method of Guthrie (1969).
Minimizing exergy destruction would result in excessively large columns. Design vari-
ables are the reboiler and condenser duties, the number of stages, and the feed stage.
Purity constraints are imposed for OME1 and wastewater (≥99.5 mol%) and the MF sent
to combustion (≥80 mol%). The problems are formulated and solved as described by
Kraemer et al. (2009): The integer variables for the number of trays and the feed tray are

1The model is available in the C++ and text input formats of MAiNGO and in GAMS format under the name
DirectOxidationOME in the GloPSE library at https://git.rwth-aachen.de/avt.svt/public/glopse.
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Table 2: Reboiler duties of the distillation columns per unit of OME1 produced (MJ/kg).

D1 D2 D3 D4

Simple model 5.13 1.75 1.87 6.67
Rigorous model 2.61 1.37 1.04 0.57

Table 3: Utility demands per unit of OME1 after heat integration of the optimized power-
to-OME1 process using rigorous (vs. simple) distillation models.

Energy / MJ/kg Exergy / MJ/kg

Heat at ≥136 °C 0 (1.98) 0 (0.54)
Cooling at −25 °C −1.18 0.24
Cooling at −95 °C −2.05 1.38

Heat at 128 °C −5.47 (−4.90) −1.41 (−1.26)

relaxed, and integrality is enforced through Fischer-Burmeister constraints in a series of
successive nonlinear programs. The problems are solved with SNOPT (Gill et al., 2005)
through GAMS, using external functions for the thermodynamics. The reboiler duties
computed with the rigorous column models differ significantly from those with the sim-
ple models (see Table 2), in particular for D4, which has an azeotrope as top product. The
overall heat demand of the process is 50 % less than predicted with the simple models.
Still, the exergy efficiency according to Eq. (2) only rises to 84 % compared to 83 % with
the simple models, since the exergy of the reboiler duties is small compared to that of the
H2. The rigorous column models are thus not crucial for determining the overall exergy
efficiency. This may however be different for economic or environmental objectives.

3.3. Heat Integration

In the flowsheet optimization, all heat flows were considered directly in Eq. (2). This cor-
responds to utilities with matching temperatures being available for all heat flows, which
is unrealistic. Therefore, we apply the same procedure as for the benchmark process
chain: We conduct pinch analysis for full heat integration and assume a small number
of utilities for the remaining heating and cooling demand. The process needs cryogenic
cooling at −25 °C and −95 °C and no external heating, while it can export some heat at
128 °C (see Table 3). The resulting exergy efficiency of the process is 77 %, which is
significantly lower than the 84 % predicted with the simplified treatment of heat flows.
Nevertheless, the efficiency is higher than that of the benchmark process chain (73 %).
Furthermore, the fact that no heat input is required is a clear advantage over the bench-
mark process chain. If we relied on the simple distillation models, we would erroneously
conclude that the process did have a net heat demand at 136 °C (cf. Table 3).

4. Conclusion

A process for producing OME1 from H2 and CO2 via direct oxidation of methanol was
presented. The exergy efficiency of the process was maximized with the deterministic
global optimization solver MAiNGO using detailed models for most of the flowsheet, but
treating distillation and heat integration in a simplified way. According to an analysis
with rigorous distillation models and a realistic setting for heat integration, the exergy
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efficiency is 77 % as compared to 73 % for the literature benchmark. Still, equivalent
comparison in a simulator as well as cost optimization would be desirable. The results
show that global optimization of relatively complex flowsheets with moderately many
degrees of freedom is possible with MAiNGO. However, more work is needed to allow
for detailed distillation models. The results also underline the importance of realistic
scenarios for heat integration and utilities, which should be considered in the optimization.
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Abstract
Machine Learning allows for the modelling and analysis of complex systems for which
little mechanistic knowledge is available and is therefore envisioned as a powerful tool
for the development of new designs with applications in engineering problems. In this
work, we propose a framework based on dimension reduction, clustering, and self-
organizing maps for the modelling and analysis of devices from materials and operation
data, from which useful information can be drawn to inform future designs and
developments. We demonstrate the applicability of this approach by analysing a
high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). It was found
that out of the 12 input variables studied, temperature, oxygen stoichiometric ratio, and
ionomer binder ion exchange capacity are the most influential for achieving high power
HT-PEMFC. This framework could be extended as new data becomes available about
the different device components.

Keywords: Machine learning, materials science, energy conversion, device design.

1. Introduction
In recent years, there has been an increasing interest in the benefits of Machine
Learning (ML) for materials discovery, i.e. the prediction of materials properties from
molecular or structural information (Ong, 2019). However, the integration of materials
and device level modelling could accelerate the deployment of newly discovered
materials in real-life applications. One such application suitable for this approach is that
of the development of low cost polymer electrolyte membrane fuel cells for automobile
applications. High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs)
pose a promising option for lowering the cost of hydrogen-powered vehicles. These fuel
cells operate in the temperature range of 120 to 250 °C and offer simpler heat and water
management in comparison to the conventional low-temperature fuel cells
(LT-PEMFCs) (Xiao et al., 2005). Because of the high temperature, the cell stack
radiator is minimized and the humidification of the feed gas is no longer needed. This is
particularly important for stacks used in medium and heavy duty vehicles. Additionally,
HT-PEMFCs tolerate CO in the hydrogen fuel stream, which enables the use of cheaper
hydrogen (Venugopalan et al., 2020) . These aspects significantly lower the cost of

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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hydrogen-powered setups for vehicles, which can in turn can lead to a more widespread
adoption of cleaner transportation technologies. Despite its benefits, however, current
designs of HT-PEMFCs show lower power density, high platinum metal loadings, and
limited temperature range and water tolerance (Lee et al., 2019; Quartarone et al.,
2017). Therefore, new developments are needed for HT-PEMFCs to be suitable for
transportation applications. In this work, we implemented an ensemble of machine
learning techniques, integrated with a semi-empirical model to bridge materials and
device level modelling, and to explore the design search space for a high-temperature
polymer electrolyte membrane fuel cell.

2. Related Methods
Figure 1 shows a schematic of the data analysis process employed. We used Uniform
Manifold Approximation and Projection (UMAP) for dimension reduction and
Hierarchical Density Based Spatial Clustering of Applications with Noise (HDBSCAN)
for clustering to classify a variety of design configurations according to their peak
power density as a measure of performance. We then fed the clustered data set into a
self-organizing map (SOM) implementation so that the SOM algorithm would be
induced to find three clusters. After this, component maps were generated to gauge the
influence of each variable over the design performance. The overall result is a tool for
the exploration of a high dimensional design space with the capability to related the
lower dimensional representations to physically meaningful variables. Following is a
brief description of the methods used.

Figure 1. Schematic representation of the proposed framework for the sensitivity analysis.

2.1. Synthetic data
The data for the machine learning-based analysis was obtained from a 0-D polarization
model substantiated using experimental data. A detailed description of the experimental
procedures can be found elsewhere (Venugopalan et al., 2020). The 0-D, semi-empirical
model was based upon existing HT-PEMFC models that are physics-informed with
distributed parameters (Kregar, 2020; Oh et al., 2014; Yin et al., 2020) and features
some semi-empirical expressions (Cheddie, 2007; Scott & Mamlouk, 2009; Sousa et al.,
2010) to describe overpotential losses. This approach was selected because it accurately
predicts data with few adjustable parameters, and it has relevant descriptors that factor
how H3PO4 content in the membrane and CO in the feed gas stream impact HT-PEMFC
polarization. The key assumptions for the model were: continuum level, steady state
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operation, ideal gas behaviour, no gas crossover, no water transport considerations, and
uniform distribution of catalyst and ionomer binder and gas transport properties across
the electrodes and gas diffusion layers. The model uses two Support Vector Regression
(SVR) with a radial basis kernel function (Drucker et al., 1997) to predict materials
conductivity from their composition at a given temperature. In particular, the SVR
implementation proposed by Chang and Lin (Chang & Lin, 2011) was used. The model
serves as a bridge between the materials data and the device performance prediction,
allowing the simulation of new configurations that will be later added to the training
dataset for the ML procedures. To deal with the variability of the polarization model, we
introduced gaussian noise following the expected distribution of this variability. This
noise will later be remove using a denoising capable clustering technique.

The synthetic dataset was obtained using a stochastic generator. To produce different
configurations 12 input variables were allowed to take different values around a base
case in a uniform distribution within a given interval (e.g., ± base value×40%). For
example, a given configuration would include a lower catalyst loading, and higher
temperature and pressure while another configuration would have the same catalyst
loading but with a smaller membrane thickness.

2.2. Dimension reduction and Clustering
A density-based clustering (DBC) approach was adopted. DBC finds clusters of any
shape, as opposed to centroid based clustering which assumes a shape (i.e. a sphere of
equal variance) for the clusters. Also, in DBC, data points in sparse regions are not
required to be assigned to a cluster but rather identified as noise. Additionally,
introducing hierarchical clustering (HC) finds nested relationships amongst data instead
of flat partitions in the data. This characteristic enables a more complex clustering with
higher resolution. In this research we used the implementation proposed by McInnes
and Healy (McInnes & Healy, 2017). Prior to the clustering we used UMAP for
dimension reduction. UMAP is a neighbour graphs-based dimension reduction
technique, meaning that a graph is first build for the high dimensional data and then it is
embedded in a low dimensional space using a force directed layout using cross entropy
to measure the distance between the high dimensional graph and the low dimensional
graph. The resulting low dimensional embedding is denser, providing a better starting
point for HDBSCAN (McInnes & Healy, 2018).

2.3. Self-Organizing Maps
SOMs are a type of artificial neural networks that use competitive and collaborative
learning to generate a low dimensional representation of a dataset based on a measure of
similarity amongst the data. SOMs are based on the notion of vector quantization, in
which the input data is partitioned in number contiguous regions, each one represented
by a model vector (Kohonen, 2013). Every input data is then associated with the model
vector that best matches with it (competitive learning) and then its spatial neighbours
are modified for better matching as well (collaborative learning). The result is a
graphical representation of the high-dimensional dataset in a low-dimensional (typically
two-dimensional) plot in which regions of similar entities are close together and far
apart from dissimilar ones. The contribution of the different features of the data to the
distribution on the map can be traced by examining the model vectors. Here, we
employed the implementation designed by Moosavi et al (Moosavi et al., 2014).

Operation Data
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3. Results and Discussion

Figure 2a and 2b present the SVR models for the prediction of conductivity, , as aκ𝐻
+

function of ion exchange capacity (IEC) and temperature for both the membrane and𝑇
the ionomer binder. Figure 2c shows the accuracy for the prediction of the polarization
data. In general, the three models show a good fit with the experimental, thus providing
a reliable source for synthetic data.

Figure 2. Model prediction against experimental data for (left) SVR for membrane conductivity,
(centre) SVR for ionomer binder conductivity, (right) semi-empirical model for polarization.

Measured data from (Venugopalan et al., 2020).

The implementation of UMAP for dimension reduction and HDBSCAN for clustering
using the generated dataset resulted in 5 clusters. These clusters were further grouped
into 3 and identified as low, medium, and high-performance, according to the peak
power density.

Figure 3 shows a representation of the clusters projected onto the SOM. The training of
the SOM was successful in the sense that it distinctly segregates the three regions of low
(Figure 3a), medium (Figure 3b), and high (Figure 3c) performance (as measured by
peak power density). With this mapping, the component maps can now be obtained to
identify which of the variables under study has more influence on the high-performance
cluster.

Figure 3. UMAP-HDBSCAN clusters projected onto the self-organizing map. The third one from
the left shows the cluster for higher performance as measured by peak power density. Colours

represent model weights difference (blue being small differences and green being large
differences). Dots represent the clusters.

The component maps for the 3 variables that are most influential over the
high-performance cluster are shown in Figure 4. Out of the 12 variables explored,
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oxygen stoichiometric ratio, (Figure 4a); ion exchange capacity of the ionomer𝑆𝑂
2

binder, (Figure 4b); and operating temperature, (Figure 4c); were found to be𝐼𝐸𝐶
𝑖𝑜

𝑇
the most influential over the high-performance cluster. These observations were cross
validated using a Space Greedy Search (SGS) analysis (Figure 5) as described by Zhu et
al. (Zhu et al., 2018). For the SGS analysis the original clusters from the
UMAP-HDBSCAN stage were used. Although the influence of these variables over the
other clusters is not so regular, a clear tendency to be highly relevant for the
high-performance cluster is observed. Therefore, optimized values for , , are𝑇 𝐼𝐸𝐶

𝑖𝑜
𝑆𝑂

2
needed to achieve high performance. Furthermore, the component contributions show
the relative importance of temperature and oxygen availability with respect to the other
operating conditions. On one side, this suggests that mass transfer phenomena such as
oxygen permeability (associated with oxygen availability) plays a major role on the fuel
cell performance. On the other hand, operating temperature could provide a greater
boost in performance than, for example, pressure, which should be considered for new
designs.

Figure 4. Component maps for the 3 most relevant variables to the high-performance cluster:
(left) oxygen stoichiometric ratio, ; (centre) ion exchange capacity of the ionomer binder,𝑆𝑂

2
; and (right) operating temperature, . Colours represent degree of influence (blue being𝐼𝐸𝐶

𝑖𝑜
𝑇

small contributions and green being large contributions). Dots represent the clusters.

Figure 5. Contribution plot from the Space Greedy Search analysis between clusters (a) 5-2, (b)
5-3. Red boxes indicate the highest contributions.

4. Conclusions
Our results show that density-based clustering, combined with neighbor graphs

dimension reduction, and SOM analysis, helps identify physically meaningful patterns
in the operation data. These patterns can in turn be related to the materials properties
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predicted by support vector regression via the semi-empirical model, providing
information for both the design of the materials and the appropriate device conditions
needed for a cost-effective operation. The modular nature of this approach provides an
easy way to incorporate it into the manufacturing process of such materials and devices.
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Abstract
We develop SPICE (Synthesis and Process Intensification of Chemical Enterprises),
which is a software tool for chemical process design and discovery. Primarily based on
the building block representation of various physicochemical phenomena, SPICE offers
a comprehensive set of toolkits to perform (i) benchmarking to determine the theoretical
bounds on process design opportunities and maximum intensification targets, (ii)
conceptual process design, (iii) process synthesis and optimization, (iv) process
simulation and analysis of both intensified and non-intensified unit operations, (v)
identification of intensification hotspots for existing processes and (vi)
property-performance mapping towards elucidating new materials for intensification
purposes. The benefits and the applicability of SPICE as a process design platform are
demonstrated through multiple case studies.

Keywords: Process Synthesis, Intensification, Building Blocks, Software Prototype

1. Introduction

Increased competition, environmental regulation, rise of unconventional feedstocks, and
volatile market conditions have contributed to renewed interest in process design and
intensification methods for the chemical process industry. Several new design and
synthesis platforms/prototypes (e.g., ProCAFD, MIPSYN, Pyosyn, and Synopsis,
among others) have emerged. Computer-aided process intensification is now considered
as an integral part of conceptual design. However, discovering novel processes without
relying on pre-postulated conceptual design alternatives remains a challenge. One can
potentially address this by adopting “bottom-up” representations that use generic but
finite number of design elements encapsulating all the fundamental physicochemical
phenomena and functions that constitute a chemical process. Recently, Hasan and
co-workers (Demirel et al., 2017) proposed such a representation based on design
building blocks that allow us to generate numerous designs of unit operations, process
configurations and flowsheets without explicit consideration or knowledge of all
plausible alternatives beforehand. This departure from unit operations-based
representation to design elements provide a systematic new way for computer-aided
optimal process design and intensification.

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-88506-5.50046-2
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In this work, we describe the development of a design software tool based on the
building
block representation. We call this as SPICE (Synthesis and Process Intensification of
Chemical Enterprises). The overall SPICE framework is depicted in Figure 1. SPICE
offers a comprehensive toolkit with the following functionalities:

(i) fast benchmarking and targeting for determining the theoretical bounds on
process design opportunities and maximum intensification targets,

(ii) conceptual process design,
(iii) process synthesis and optimization,
(iv) simulation, and analysis of intensified and non-intensified unit operations,
(v) identification of intensification hotspots for existing processes, and
(vi) property-performance mapping to elucidate materials for intensification

purposes.

Figure 1: SPICE framework.

For specified/user-selected inputs of feedstocks, product specifications, material
properties, and techno-econo-environmental parameters, SPICE generates a
rank-ordered
list of design configurations with optimal sizing and a comprehensive analysis of
various target metrics. Combining the thermodynamic minimum energy calculation with
the Feinberg Decomposition theory (Feinberg and Ellison, 2001), SPICE can determine
the theoretical attainable limits for any reaction-separation system. Users can further
perform detailed process simulation, sensitivity analysis, and techno-economic analysis
(TEA). Furthermore, SPICE provides options for multiobjective optimization at the
conceptual design stage to automatically generate Pareto solutions considering the
techno-economic and environmental trade-offs. Finally, under the material
property-performance mapping section, users can perform parametric studies to find the
effect of material properties on the process performance in terms of product purity,
quality, conversion, energy, and cost.

2. SPICE Framework
2.1. User Interface
Users specify the feedstock availability and compositions, minimum product purity,
productivity and demands, and the operating ranges for temperatures, pressures and
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flow rates. They can also select the set of potential phenomena to be considered. For a
system involving reactions, the material library provides information to the users on
reaction stoichiometry, equilibrium and kinetics. For separations, users can indicate
their choices for VLE, membranes, solvents and absorbents. Additionally, users can
define new materials with their own data. SPICE also accepts user-defined cost
functions and economic parameters such as scaling factor, plant life, depreciation rate,
annualized factor, utility costs, raw material costs, fixed costs, etc. Finally, users can
select the level of design details (short-cut or rigorous) by selecting the appropriate
models.
SPICE also allows specialized submodules focusing
on specific set of phenomena and intensification
options (Figure 2). For new designs, users can choose
SPICE_GEN. Alternatively, for a known process,
SPICE_RF finds retrofitting hotspots and
SPICE_OPT optimizes the process. Users can also
restrict to only SPICE_HI (heat integration),
SPICE_MARS (membrane-assisted reactive
separation), SPICE_RD (reactive distillation), SPICE_MS (membrane separation),
SPICE_MD (membrane distillation), SPICE_ED (extractive distillation), SPICE_DWC
(dividing wall column), SPICE_MRD (membrane-assisted reactive distillation), and
SPICE_MED (membrane-assisted extractive distillation).
2.2. Building Block-Based Representation
The building block-based superstructure (Demirel et al., 2017; Li et al., 2018; Demirel
et al., 2019) is used to represent the overall design problem, which is formulated as a
single mixed-integer nonlinear program (MINLP). Each block has two design elements,
namely the block interior and the block boundaries. A block interior is characterized by
a temperature, a pressure, a phase, and a composition of chemical species. The
interactions between two adjacent blocks are controlled by a common boundary. A
boundary can be either unrestricted, semi-restricted or completely restricted (Figure 3a).
Streams go through an unrestricted boundary without restrictions. A semi-restricted
boundary indicates that there exists a mass-transfer interceptor which represents
separation phenomena (e.g., membrane, VLE interface). A completely restricted
boundary implies zero-flow across. External feed streams are introduced and products
can be withdrawn from each block. Additionally, jump flows allow interaction between
non-adjacent blocks.
A combination of the block interior and
the boundaries are used to represent
different phenomena (Figure 3b). For
instance, a reactor block interior is filled
with catalyst. Two blocks separated by a
common semi-restricted boundary
represents separation phenomena (phase
contact, permeation, pervaporation, etc.).
When several blocks are arranged in a
two-dimensional grid, we call it a
superstructure (Figure 3c). This
arrangement embeds different equipment
(an example is shown in Figure 3d). By
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arranging many such building blocks in different orders, numerous flowsheets can be
generated and screened.
2.3. Material and Energy Balances
The MINLP model includes fundamental material and energy balance constraints for
each block. For block , where and denote the coordinate of the block in the 2-D𝐵

𝑖,𝑗
𝑖 𝑗

grid, the material balance (Eq. 1) includes species flowrates through each of the four
boundaries. and denote horizontal and vertical flows, respectively;𝐹

𝑖,𝑗,𝑘
𝑅

𝑖,𝑗,𝑘
𝐺

𝑖,𝑗,𝑘
captures the consumption/generation due to chemical reaction, and𝑀
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𝑖,𝑗,𝑘,𝑝
represent feedstock and product flows, respectively; and allows jump flows𝑓 𝑝 𝐽
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from block to block for species . The energy balance (Eq. 2) ensures that the𝐵
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enthalpies and the heat and work exchanges via internal transformation and external
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2.4. Thermodynamic Property Model
Thermodynamic property models are an important and integral part of any process
design and synthesis platform to accurately estimate the properties of each associated
species. However, these models are highly nonlinear, nonconvex and involve large
number of equations, which increase the complexity. To overcome this, SPICE exploits
data-driven surrogate thermodynamic models for several properties like specific
enthalpy, specific heat capacity, density, and saturation pressure. These fitted models
often offer high accuracy (R2 > 0.99) over a specified range while reducing the
computational demand.
2.5. Phenomena Models
Eq. 3 is the phenomena assignment constraint, where, denotes the phenomena set.𝑝ℎ
Here, := for , := for and :=Φ
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}
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for . Based on the value of , the corresponding phenomena model𝑝ℎ∈𝑅𝑎𝑡𝑒 𝑧
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is activated. Basic models𝑓𝑝ℎ(𝑇
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)
representing various chemical phenomena, including reaction and separation, are
included within the framework (Eqs. 4-6). Separation phenomena are classified in two
groups, namely the equilibrium-based phenomena (Eqs. 5a-b) and the rate-based
phenomena (Eq. 6). Here, , , , , and are block interior variables𝑇

𝑖,𝑗
𝑃

𝑖,𝑗
𝑦

𝑖,𝑗,𝑘
𝑉

𝑖,𝑗,𝑝ℎ
𝐷𝐹

𝑖,𝑗,𝑘,𝑝ℎ
representing temperature, pressure, composition, catalyst amount, and driving force
across the boundary, respectively, while and are block boundary variablesλ

𝑘,𝑝ℎ
𝑑

𝑖,𝑗,𝑝ℎ
denoting mass transfer coefficient and mass transfer area, respectively.
Equilibrium-based phenomena includes vapor-liquid, liquid-liquid, and vapor-vapor
phase contact, and are observed in distillation, flash, solvent extraction, absorption
operations. Rate-based phenomena includes gas permeation, liquid permeation and
pervaporation that are

Figure 4: SPICE generated flowsheets (a-b) and multiobjective optimization results (c).

common to membrane-based separation. The assignment of phenomena to the block
interiors and the boundaries is dictated by the binary variable .𝑧

𝑖,𝑗,𝑝ℎ

2.6. Design Objectives
SPICE allows to use several built-in objective functions, such as, maximize {total
annual profit (TAP), return on investment (ROI), yield, and conversion}, or minimize
{total annual cost (TAC), energy, emission, size, and maximum allowable reactor
temperature}, among others. Additionally, users can modify these functions based on
their needs.

3. Case Studies
3.1. Ethylene Glycol Production
Here, we demonstrate the SPICE framework in designing an intensified process for
ethylene glycol (EG) production from ethylene oxide (EO) and water (W) with
minimum TAC while producing 25 kmol/h EG with 99.8 % (mol) purity. As this
process involves reaction and vapor liquid equilibrium separation (distillation), we
select SPICE_RD module. First, a unit operation based process synthesis and
integration is performed, which yields a process with TAC of 12.42 MM$/y. The
resultant flowsheet (Figure 4a) contains an adiabatic reactor and four distillation
columns to achieve the target purity. Additionally, heat integration is considered
between the condenser of the first distillation column and the re-boiler of the second
distillation column. When phenomena-based synthesis approach is considered, a novel
intensified flowsheet (Figure 4b) is obtained with 12.33 MM$/y TAC, utilizing only
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three major equipment (Demirel et al., 2019). We have also considered sustainable
process intensification using multiobjective optimization for EG production considering
both economic and environmental objectives. The resultant pareto solutions from
SPICE_RD for several intensified, partially intensified and non-intensified designs are
shown in Figure 4c (Demirel et al., 2020).
3.2. Shale Gas Conversion to Methanol
Methanol processes are equilibrium-limited and energy intensive, and have lower
methanol yield. We have applied the SPICE framework to search for better process
configurations with maximum TAP. First, we optimize a base-case flowsheet (Ehlinger
et al., 2014) using the SPICE_OPT module. The resultant flowsheet has a TAP of 12.7
MM$/y and a ROI of 22 %. We then switch to SPICE_RF and use the optimized
base-case as a warm-start when searching for flowsheets with higher TAPs. This
generates a new intensified and heat-integrated flowsheet as presented in Figure 5. This
flowsheet has a TAP of 38 MM$/y (200 % improvement) and a ROI of 52 % (136 %
improvement). The improvements are due to several changes. First, it considers only
two reactors and excludes the WGS reactor and the CO2 separator. Second, the reactors
are now replaced by membrane reactors. The membrane reactor for partial oxidation
(POX_MR) separates

Figure 5: Intensified and heat-integrated process flowsheet for methanol synthesis.

the required O2 from air and performs the reaction simultaneously, which reduces the
consumption cost of expensive pure O2 by 33 %. The intensified MeOH_MR, on the
other hand, increases the methanol yield by 17 % through in-situ removal of the
products from the reaction mixtures. Finally, heat integration between the inlet and
outlet of POX_MR reduces the utility cost by 58 %.

4. Conclusions
SPICE is a comprehensive process design software prototype. It is a toolkit with the
capabilities to benchmark, design, synthesize and intensify chemical process systems.
Tests suggest that new processes can be systematically designed with significant
reduction in energy and cost for important design problems. The new pathways may not
always use fully-intensified systems, specially in the presence of multiple conflicting
objectives, which again highlights the need for a comprehensive design package such as
SPICE.
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Abstract 

Carbon Dioxide Integration mainly targets the recovery of CO2 streams, and assesses the 

allocation of those recovered streams into CO2-using sinks, with an overall aim of 

attaining a minimum cost of a CO2 network that could meet a prescribed emission target. 

Meeting emission targets often introduces numerous challenges, especially when energy 

intensive processes are involved. Hence, CO2 Integration aims to identify appropriate CO2 

capture, allocation, and utilization options. There exists numerous processes (or CO2-

using sinks) that convert CO2 streams into value added products, while generating revenue 

in some cases. However, many CO2 sink options may be costly, especially if a high purity 

CO2 stream is required in the process. Thus, the incorporation of treatment units is 

imperative, to separate CO2 gas from the remaining gaseous emission material, which is 

in fact the most expensive design step in CO2 integration systems. This study focuses on 

assessing the effect of varying the temperature of the solvent to be used in the treatment 

stage of CO2 on the overall performance of the entire integration network attained. A 

MINLP formulation has been established based on key design parameters whilst taking 

into consideration important technical performance constraints that effectively describe 

the system to be assessed. A more detailed cost model for the treatment units was 

developed, to establish the effect of varying the emission reduction targets onto the 

overall performance of CO2 integration systems.  

Keywords: Carbon Integration, GHG emissions, Treatment, Carbon dioxide, Cost 

models 

1. Introduction 

Carbon capture utilization and sequestration (CCUS) has emerged as one of the most 

promising solutions to reduce large amounts of CO2 especially as the global community 

adopts climate targets. CCUS involves many steps starting from capture of CO2 from 

emission sources, transportation of CO2 and finally either biological or geological 

sequestration or in utilization in CO2 converting technologies. Each step creates a 

challenge especially due to the large energy requirement. However, the major influence 

on CCUS cost depends on energy intensive CO2 treatment especially when dealing with 

CO2 dilute streams (IPCC, 2005). There has been a plethora of work in the area of carbon 

capture using adsorption, absorption, and membrane processes (Ochedi et al. 2020) each 

varying in efficiency and cost. The most widely applied CO2 separation technology in 

industry and that work well with dilute streams is CO2 adsorption process (Hussin and 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Aroua, 2020). Thus, this work aims to understand the effect of varying temperature and 

pressure in CO2 adsorption units on the cost of overall CCUS network. Many of the cost 

items are lumped into single estimation parameters. This study aims to more accurately 

capture the design of such systems based on a detailed cost model for the absorption-

stripping stage within the network. 

2. Methodology 

To be able to study the various effects of solvent properties within the treatment stage on 

the overall design of CCUS networks, it is imperative to find appropriate models that can 

correlate those effects. In doing so, such models can then be integrated onto the original 

CO2 Integration model (Al-Mohannadi and Linke, 2016, Al-Mohannadi et al., 2015), with 

appropriate adjustments and modifications. In this paper, the primary focus was on the 

following three different solvent properties: density, viscosity, and Henry’s constant. It 

should be noted that all those properties are a function of temperature. Since most 

common solvents that are used in the absorption stage for CO2 removal from flue gas 

effluents are amines, the appropriate correlations that describe amine property behaviour 

as a function of temperature were identified as follows, and have been used in this study:   

The liquid (solvent) density 𝜌𝐿  as a function of temperature can be found using Eq. (1) 

below: 

2

321 TaTaaL ++=               (1) 

Where a1, a2 and a3 are equation parameters obtained from DiGuilio et al. (1992), and T 

is the temperature of the solvent. 

The liquid (solvent) viscosity 𝜇𝐿 as a function of temperature can be found using Eq. (2) 

below: 

3

2
1ln

bT

b
b

−
+=                 (2) 

Where b1, b2 and b3 are equation parameters obtained from DiGuilio et al. (1992). To find 

Henry’s constant, Eq. (3) below can be used from Li (2017) 

2

321ln TcTccH ++=                                   (3)

   

Where  c1, c2 and c3 are equation parameters. Values for those 3 equation parameters are 

based on the correlations provided by H.B. Liu et al. (1999). 

3. Mathematical Formulation 

The mathematical formulation of the main optimization problem for CO2 integration falls 

under the general form of a Non-Linear problem, in which a central objective function 

(f(x)) is subjected to network equality and inequality constraints h(x) and g(x). 

 f(x)min                     (4) 

 a}.,…{1,=Ii0,=(x)h i                                           (5) 
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 b}.,…{1,=Jj0,(x)g j                                           (6) 

Eq. (4) represents the objective function, f(x), which aims is to minimize the overall cost 

of the overall CCUS network in the form of piping, compression, pumping, treatment and 

sink processing. The overall cost covers both capital and operating costs for which the 

network is designed to operate. Cost and revenue calculations were based on the model 

by Al-Mohannadi and Linke, 2016, except for the treatment unit cost, which was 

developed based on solvent property data, and the respective column sizing calculations 

(both diameter and height). Moreover, the material of construction was also included in 

the treatment cost evaluation. Hence, the treatment unit cost in this work is a function of 

the dimensions of the treatment units (diameter and height), which in turn are functions 

of the gas feed flow, gas stream properties the solvent feed flow and the respective solvent 

feed properties (Brunazzi et al 2002). The cost of the system generated by the model is 

determined by summing the operating and annualized capital costs (assuming 20 years 

plant lifetime). The central variable in the optimization problem (x) is the carbon-dioxide 

flowrate (which can either be treated or untreated). Even though temperature can also be 

a decision variable, studying the effect of varying temperature on the system would not 

be possible, since only 1 optimal solution (at the optimal temperature) would be reported. 

Hence, temperature was kept as a parameter, for the purpose of this study.  

This objective function combined to two different sets of constraints: equality constraints 

h(x) (Eq. (5)), and inequality constraints g(x) (Eq. (6)). Equality constraints primarily 

cover the mass and component balances of captured and uncaptured (treated and 

untreated) CO2 flows throughout the CCUS network. Inequality constraints g(x), on the 

other hand, involve production and performance requirements, which involve imposing a 

minimum net CO2 emission requirement onto the overall CCUS network, in addition to 

quality constraint limits on each CO2 within the network to ensure acceptable CO2 quality 

and effective sink performance. The exact mathematical expressions associated with all 

equality and inequality constraints are outlined in Al-Mohannadi and Linke, 2016. In 

order to be able to solve the optimization problem, What’sBest9.0.5.0 LINDO Global 

Solver for Microsoft Excel 2010 (Lindo, 2010), was used to implement the model, on a 

laptop with Intel® Core ™ i7-2620M, 2.7 GHz, 8.00 GB RAM, 64-bit Operating System.  

4. Results and Discussion 

The effect of varying the solvent temperature within the treatment unit was investigated 

in this work for Methyl Diethanolamine, also known as MDEA. This solvent is well-

known for having quite effective CO2 removal efficiencies. A case study that involves 

four different CO2 emission sources (involving an Ammonia plant, a Power-plant, a 

Refinery and a Steel plant) and six different CO2 utilization sinks (involving Enhanced 

Oil Recovery, a Greenhouse option, a Storage option, a Methanol plant, a Urea plant, and 

an Algae space), i.e, 4 source options that could potentially be matched with 6 different 

sinks, to meet a prescried CO2 target. The setup resembles the case that has been 

previously presented by Al-Mohannadi and Linke (2016), apart from the treatment 

handling. A treatment model that enables the assessment of solvent property variations, 

whilst providing sizing calculations for all treatment units has been used. The operating 

lifetime assumed was 20 years. In order to explore the effect of varying the temperature 

on the solvent, and hence onto the overall CCUS network design, six different 

optimization problems have been attempted, where each is assigned a different overall 

net capture target as follows: 5%, 10%, 20%, 25%, 35% and 45%, which are in line with 
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the capture targets reported by Al-Mohannadi and Linke (2016). The temperature could 

vary between 20 and 27 0C for each of the six different cases involving different net 

capture targets. Higher temperature ranges could be investigated in a similar manner, 

subject to data availability. A total of 42 runs have been made, and the results obtained 

are summarized in Figures 1-3. First off, Figure 1 presents the treatment cost variation as 

a function of solvent temperature, for the different net capture targets that have been 

considered.  

 

Figure 1. Treatment cost variation as a function of solvent temperature for different net 

capture targets 

A consistent  increase in the overall treatment cost for all cases was observed, when 

comparing the various capture target cases, due to associated changes in solvent 

properties that require larger treatment units (in terms of diameter and height). 

Nevertheless, it should be noted that the highest treatment cost jump was observed 

between the 10% and 20% capture cases. Moreover, the 5% case was the least sensitive 

to temperature variations since this case involved the least amount of treatment to meet 

the capture target. When the total network cost comes into perspective, the trend observed 

slightly differs since the total network cost involves the costing of other entities that are 

independent of treatment solvent properties. Figure 2 shows the total network cost 

variation as a function of solvent temperature for the different net capture targets. It is 

evident that both the 5% and 10% capture cases become the least sensitive to those 

temperature variations, while the 45% capture case being the most expensive case 

explored. The big cost gap that was observed between the 45% capture case and the rest 

of the cases was attributed to the sink processing costs, which were found to be the least 

in the 45% capture case. Some of the cases have reported a negative total cost for the run, 

indicating a revenue-generating case in which the total cost of the network was less than 

the revenue generated.  
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Figure 2. Total Network cost variation as a function of solvent temperature for different 

net capture targets 

  

 

Figure 3. Relative cost variation of all remaining entities within CCUS network 

(compression, pumping, piping, sink processing) as a function of solvent temperature, for 

different net capture targets 
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Furthermore, the 45% capture case required the most treatment, when compared to the 

rest of the cases. Finally, the relative cost variation of all remaining entities within CCUS 

network (compression, pumping, piping, sink processing), as a function of solvent 

temperature for different net capture targets are illustrated in Figure 3. It is evident that 

when the relative cost of all those entities combined (with respect to the total cost) is 

observed, and a decrease in the overall cost of those entities combined has been observed 

across the temperature range which has been studied. The least sensitive case was the 

45% capture case, as it required the most treatment, to meet the capture target. 

5. Conclusions 

The solvent temperature effect was investigated for different net capture CO2 reduction 

targets. It was observed that the total network cost increases with solvent temperature. It 

was also found that at low CO2 targets, the temperature did not affect the overall cost, 

while the 45% capture case was the most expensive. The increased cost was not solely 

due to the temperature of the solvent but also due to the deployment of non-revenue sinks 

such as geological storage.  
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Abstract 
The extremely high temperatures in the Western Sahara region has to lead to difficulties 
in the supply of water and food. Sabkha-Tah in Morocco is one of the regions in the 
Western Sahara, which possesses conditions that prevent the farming of certain crops. 
Nevertheless, the region has the advantage of being in a zone 60 m below sea level. This 
geographical advantage has the potential to reduce energy consumption in the reverse 
osmosis unit (RO). An energy, water, and food nexus study that takes advantage of the 
region’s geographical characteristics are performed. A multi-generation system that 
produces cooling, power, and freshwater for a greenhouse situated in the Sabkha-Tah is 
proposed and thermodynamically analyzed. The freshwater is supplied through a RO unit 
that uses the hydrostatic pressure of falling water from the Atlantic Ocean. Cooling is 
supplied through an absorption cooling cycle that uses the waste heat of the Rankine cycle 
condenser, while a solar-powered Rankine cycle is used to feed the system with the 
required power. The system uses a parabolic trough collector (PTC), which utilises the 
high solar irradiance in Sabkha-Tah to generate the energy needed by the Rankine cycle. 
The PTC uses Cu/Therminol VP1 nanofluid as the working fluid to enhance the efficiency 
of the system. The study results show a reduction in the RO’s power consumption from 
5.561 to 2.51 kWh/m3 by using an energy recovery turbine (ERT) and the hydrostatic 
pressure of the falling water. The system shows that 46.18 kW of pump work can be saved 
when using the hydrostatic water pressure. The overall energy and exergy efficiencies for 
the multi-generation system are calculated to be 60.81% and 29.76%, respectively, using 
TherminolVP1 in PTC, while the energy efficiency increased by 0.014% using nanofluid 
(Cu/TherminolVP1) with a volume fraction of 0.02. 

Keywords: Reverse osmosis; nanofluids; gravitational energy; nexus; multi-generation. 

1. Introduction 
A multigeneration system that supplies a greenhouse in Sabkha-Tah with cooling and 
freshwater is proposed in the study. Figure 1 shows the diagram for the studied system 
with all subsystems included. The sun supplies the energy used to power the system which 
produces cooling, freshwater, and electricity. The system consists of several subsystems 
such as a greenhouse, RO unit, absorption cooling cycle, PTC, energy storage, water 
storage, and Rankine cycle. The annual values of solar irradiance and temperatures of the 
region were used in this study (Climate, 2019; Solargis, 2019). Sabkha-Tah region has a 
large area of 250 km2 which allows for building a greenhouse with a proposed dimension 
of 20 m by 20 m and is to be used to grow tomatoes. The system is powered by a parabolic 
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trough collector (PTC) that uses Therminol VP1 and Cu/ Therminol VP1 nanofluids as 
the working fluids. The electricity produced by the Rankine cycle is used to meet the 
electrical needs of the greenhouse and also feeds the community. The desalination 
technology used is the reverse osmosis unit as it needs high pressure which can be met 
using the natural advantage of the region. The hydrostatic pressure obtained from the 60 
m column of water between the Atlantic Ocean level and the depleted zone level is used 
along with the energy recovery turbine to reduce the energy required in the RO pump. An 
ammonia-water absorption cooling cycle is used to provide cooling for the greenhouse 
and surrounding buildings. At night-time, the greenhouse will require no cooling as the 
maximum temperature at night in this region is 20 °C. Moreover, an overhead water 
storage unit uses its potential energy to supply water to the greenhouse at night instead of 
the pumps. 

 

Figure 1:Schematic diagram of the proposed system for the depleted zone in Sabkha-Tah, 
Western Sahara, Morocco. 

2.  Methodology/Analysis 
The proposed system is analysed using the first and second laws of thermodynamics, 
properties such as enthalpy, entropy, and specific exergy are determined for each 
component. The mass, energy and exergy balance equations were used to calculate the 
thermodynamics properties for each state point (Sorgulu & Dincer, 2019). The area 
required for one tomato plant and the water consumption per plant is calculated based on 
published studies (Snyder, 1914). The solar collector is modelled based on the 
mathematical approach presented in studies related to parabolic trough collectors (PTC) 
(Okonkwo, Abid, & Ratlamwala, 2019; Okonkwo, Abid, Essien, et al., 2019). 
Cu/TherminolVP1 is the heat transfer fluid used in the PTC and its properties were 
calculated using published studies (Azizi et al., 2015; Bruggeman, 1935). The mass, 
energy, and exergy balance equation for the components of the absorption cooling cycle 
are shown (Molani & Ziapour, 2019). The design specifications of the RO unit used in 
this work are similar to the design presented in (Kianfard et al., 2018) and the RO 
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mathematical model was validated against an actual RO plant that uses spiral wound type 
membrane. The mathematical model used for the current work is based on (Nafey & 
Sharaf, 2010). Finally, the overall energy and exergy efficiencies of the integrated system 
are defined as follows (Sorgulu & Dincer, 2019): 

 

            (1) 

           (2) 

where,  represents the mass flowrates of 
the rejected brine, freshwater, and seawater, respectively, while ,

 and,  are the net power, input solar radiation and cooling from 
absorption cooling cycle, respectively.  represent the exegetic term.  

3. Results and Discussion 
Each state point in the system was thermodynamically analysed. Temperature (T), 
pressure (P), enthalpy (h), entropy (s), and exergy (ex), the concentration of ammonia 
(CAM) and the mass flow rate (m) at each state point are presented in Table 1. The working 
fluid used is different in each cycle. The Cu/Therminol VP1 nanofluid is the working 
fluid used in the analysis of the PTC. Table 1 presents the physical properties at each state 
point. 

Table 1: Thermodynamics proprieties for all state points in case of the nanofluid. 

NO T (K) P 
(kPa) 

h 
(kJ/kg) 

ex 
(kJ/kg.
K)

X 
(g/kg) 

 
(%) 

m 
(kg/s) 

1 298 101.3 98.56 4889 43 - 83.3 
2 298.6 5666 105.8 4904 43 - 83.3 
3 298.6 5099 102.40 4906 61.33 - 58.33 
4 298.6 656.6 98.510 4901 61.33 - 58.33 
5 298.3 101.3 106.10 4898 0.240 - 25 
6 346.2 1167 1609 351.1 - 100 4.35 
7 303.1 1167 341.6 326.8 - 100 4.35 
8 288.2 728.8 341.6 324.2 - 100 4.35 
9 288.2 728.8 1476 280.9 - 100 4.35 
10 303.1 728.8 -103.4 -184.5 - 53.4 36.63 
11 303.2 1167 -102.6 -184 - 53.4 36.63 
12 340.3 1167 112.1 -166.5 - 53.4 36.63 
13 327.5 1167 4.695 -181.3 - 47.12 32.28 
14 273.1 1167 -238.9 -181.5 - 47.12 32.28 
15 273.2 728.8 -238.9 -182.1 - 47.12 32.28 
16 353.2 47.37 334.9 18.18 - - 1.36 
17 353.5 3000 338.7 21.33 - - 1.36 
18 667.1 3000 3217 1163 - - 1.36 
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19 353.2 47.37 2557 358.8 - - 1.36 
20 298.4 101.3 106100 4898 0.240 - 25 
21 300.9 297.3 106500 4891 0.2408 - 12.5 
22 298.4 101.3 106100 4898 0.2408 - 12.5 
23 303.2 101.3 92.47 0 - - 165.4 
24 293.2 101.3 49.03 0.4493 - - 165.4 
25 670.7 141.26 - - - - 7.08 
26 356.5 141.26 - - - - - 

 

Figure 2 shows how the region's depth affects the specific power consumption in the RO 
unit. The RO unit utilized in this study has a recovery ratio of 0.3, and it is integrated with 
an energy recovery turbine (ERT), which achieves lower specific energy consumption 
than the conventional RO unit. The power required for both units decreases as the region's 
depth below sea level increases. A depth of 534 m below sea level is required to generate 
enough pressure for the proposed RO unit to operate with no energy input from the 
pumps. The energy efficiency for the overall system and that of the PTC with varying 
solar irradiance change is presented in Figure 3. A little improvement in the PTC's energy 
efficiency is noticed as the solar irradiance increases. The working fluid's volumetric flow 
rate is optimized at solar radiation of 600 W/m2, beyond this, the energy efficiency is 
constant and begins to drop as radiation gets higher. Using Cu/Thermnoil VP1 nanofluid 
increases the PTC energy efficiency by 0.08% as compared to the base fluid, as can be 
seen in Figure 3. The overall energy efficiency is simply a ratio of the useful output from 
the system to the energy input. The absorption cooling cycle coefficient of performance 
sharply decreases as the solar radiation increases. This increase in solar radiation causes 
the heat available in the Rankine cycle condenser to also increase, all the excess heat is 
consumed in the absorption cycle's condenser. As a result, cooling remains the same and 
finally leads to lower overall energy efficiency. The enhancement in the overall energy 
efficiency was as low as 0.014% because the nanofluid usage can reduce only the input 
power to the PTC circulating pump. The electricity consumption in that pump is deficient 
compared to the overall input power to the system, hence resulting in a small 
enhancement. 

 

Figure 2: Effect of seawater salinity on the RO’s specific power consumption (SPC). 
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Figure 3: overall and PTC energy efficiencies versus solar radiation.  

Table 2 presents the results of some key calculated outputs at an irradiance of 600 W/m2. 
It also shows a comparison between the outputs when using the nanofluid and only the 
base fluid in the PTC. 

Table 2: The main calculated values at solar irradiance of 600 W/m2 

Parameter Therminol VP1 Cu/Therminol VP1 
nanofluid 

Electricity consumption in RO 226 kW 226 kW 
The volume flowrate of freshwater 90 m3/h 90 m3/h 
Absorption cycle cooling output 4936 kW 4936 kW 
Absorption cycle heat input 3042 kW 3044
Heat input to Rankine cycle 3940 kW 3943
Electricity production of the Rankine 
cycle 897.9 kW 898.9 kW 

Area of greenhouse 9389 m2 9389 m2 
Number of tomato plants 25239 plants 25239 plants 
Electricity production of the whole system 636.3 kW 637.5 kW 

 

4. Conclusions 

In this study, a multi-generation system is proposed for use in Sabkha-Tah to produce 
energy, cooling, and freshwater for a tomato greenhouse. The system uses the 
geographical feature of the region, which is situated 60 m below sea level. In the proposed 
system, water from the Atlantic Ocean is pumped into the RO membrane to produce fresh 
water. The electricity and cooling needs are supplied using the absorption cooling cycle 
and Rankine cycle, respectively. The study presents a novel reduction in the power 
consumption of the reverse osmosis unit. The RO system's required power is reduced 
when using an energy recovery turbine and by taking advantage of the region's depleted 
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level, which is 60 m below the sea level. The RO-specific power consumption decreases 
from 3.065 to 2.511 kWh/m3. The system's overall energy and exergy efficiencies are 
calculated to be 60.8% and 29.76%, respectively, when base fluid (TherminolVP1) is 
used in the PTC. However, when using Cu/TherminolVP1 nanofluid in the PTC, the 
overall energy and exergy efficiency is improved by 0.08% and 0.014%, respectively. 
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Abstract 
The structure of a catalytic reactor integrating two reactions is yield-optimized in terms 
of distribution of active sites of two catalysts in a hybrid pellet, using a two-scale (pellet 
and reactor) approach. POD-Galërkin model reduction is adopted to reduce the burden of 
the optimization algorithm. Results show that optimal structuring can have a key role in 
catalyst process intensification, in terms of yield, chosen as the performance indicator and 
thus also as the objective function for the optimization problem. 
 
Keywords: hybrid catalyst pellet, process integration, optimal reactor structuring. 

1. Introduction 
A catalytic fixed-bed reactor integrating two or more reactions poses a problem of 
performance optimization in terms of best selection of its structural parameters. Beyond 
temperature and residence time, the distribution of the catalytic active sites in the solid as 
well as the size of the pellets play a key role. In an earlier work, the yield-optimal 
distribution of catalytic active sites was determined for a single spherical hybrid pellet 
where two consecutive isothermal chemical reactions with one reversible step under 
arbitrary kinetics occur (Bizon and Continillo, 2019). A Proper Orthogonal 
Decomposition (POD) model reduction approach was employed to limit the 
computational effort related to the resolution of the optimization problem. Later on, the 
non-isothermal case of a hybrid pellet was tackled (Bizon and Continillo, 2020), and a 
Discrete Empirical Interpolation Method (DEIM) approach was combined with POD-
Galërkin to best deal with the strong non-linearities due to the presence of the Arrhenius 
terms. In this work, the study is extended to the whole reactor, and the optimal distribution 
of catalytic active sites within a single pellet is determined with reference to the process 
enhancement on the apparatus level. This is a multiscale problem, in that the state 
variables are distributed along the reactor length and within the pellets, thus, to limit the 
computational expenses, the discretized model of the pellet is reduced using POD. 

2. Mathematical model and solution methodology 
Two reversible chemical reactions of the first order in a catalytic fixed-bed reactor made 
of spherical hybrid pellets take place under non-isothermal and steady-state conditions: 
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 (1) 

The mass and energy balance equations for a pellet, written in dimensionless form, are: 

 (2a) 

 (2b) 

 (2c) 

 (2d) 

where βi = Cp,i/Cref denotes reactant concentration within the pellet, θp = Tp/Tref  is the 
temperature of the pellet and ξ = r/Rp is the radial coordinate with Rp being the pellet 
radius. Symbols Φj and δj are, respectively, Thiele modulus and dimensionless enthalpy, 
and f1 and f2 in Eq. (2) are the local volume fractions of the pellet occupied by active sites 
catalysing, respectively the first and the second step of the process described by Eq. (1). 
The boundary conditions associated with the above balances are: 

 (3a) 

 (3b) 

Under the assumptions that the gas, flowing in a plug flow through the catalytic bed, 
obeys the ideal gas law and that the pressure drop can be neglected (this last assumption 
clearly limits the applicability of this particular model to the cases in which the 
assumption is verified to a significant extent), the component mass balances, the 
continuity equation and the energy balance for the gas are: 

 (4a) 

 (4b) 
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with xi being component molar fraction, v = u/uref  – dimensionless interstitial gas velocity 
and ζ = z/Lr – dimensionless reactor length. The conditions at the reactor inlet are: 

 (5) 

More details on the model formulation and definitions of the dimensionless parameters 
are reported in a previous work (Bizon and Continillo, 2021). The optimization problem 
is to find  maximizing the yield of C with respect to A, defined as: 

 subject to  and . (6) 

 
Figure 1. Distribution of f1 and f2 within the pellet for ξcat = 0.7937. 

Considering that the core-shell arrangement of the active sites within bifunctional pellets 
is a promising approach to process integration and intensification (Sánchez-Contador et 
al., 2019; Bizon et al., 2020), the optimization procedure seeks the optimal radius of the 
pellet core ξcat. Functions f1 and f2 are defined by sigmoid functions as: 

 and  (7) 

Figure 1 shows the distribution of f1 and f2 determined according to Eq. (7) with A = 100 
and ξcat = 0.7937, that gives equal pellet volume occupied by each of the two catalysts. 
Considering that the catalyst arrangement with the active sites enhancing the first step of 
the process located in the pellet core proved to overperform the reverse arrangement, only 
the arrangement with catalyst one located in the pellet core and catalyst two in the shell 
is considered in this study. The solution of the optimization problem given by Eq. (6) 
requires the resolution of the two-scale reactor model. The most straightforward approach 
consists in the transformation of the infinite-dimensional problem (Eq. (2)-(5)) into a 
finite-dimensional form using the finite difference method. Given the core-shell nature of 
the pellet, as many as N = 101 discrete nodes are necessary to obtain satisfactory solution 
accuracy for the pellet sub-model. On the other hand, to account for possible hot spots, 
M = 501 discrete nodes along the reactor are needed to discretize the gas phase balance 
equations. Thus, to reduce the computational effort related to resolution of the 
optimization problem, a model-reduction technique is adopted. Following the approach 
described in Reference (Bizon and Continillo, 2021), in this study Proper Orthogonal 
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Decomposition (POD) combined with Galërkin projection (Holmes et al., 1996) is 
employed to reduce the dimensionality of the smaller scale model, i.e. the pellet sub-
model. The POD-Galërkin procedure consists in the orthogonal projection of the full-
order finite-dimensional system onto a low number of POD modes generated from the 
full-order model (FOM) snapshots. Consider the following parameter-dependent system 
of N algebraic equations resulting from the discretization of the boundary value problem 
(Eq. (2)-(3)): 

 (8) 

For the case here considered, the model μ represents the location of pellet within the bed 
and the value of ξcat for which the FOM was resolved. The POD basis, 

, is then determined by solving the eigenvalue problem: 

 (9) 

where Y is the matrix of snapshots obtained from FOM simulation and Ms is the number 
of snapshots used for the determination of the POD basis. Since in this study POD-
Galërkin is used to reduce the pellet model coupled with the gas model, both embedded 
in the optimization algorithm, it is necessary to construct a POD basis that is able to 
approximate accurately the system behavior as it develops with the variation of the 
decision variable. Over the years, different sampling strategies were proposed to construct 
the so-called global POD basis (Kuan et al., 2019), however, until now there is no reliable 
sampling policy. In this study, the procedure based on k-means clustering (Bizon and 
Continillo, 2021) is employed to extract the most informative snapshots from a large 
number of solution profiles within the pellet. Considering that the optimal value of ξcat is 
expected to be close to 0.7937 (radius at which core and shell have equal volume in a 
sphere), the FOM was simulated for three values of ξcat, i.e. 0.75, 0.8, 0.85, 0.9 and 0.95, 
and then the k-means algorithm was run on the ensemble of intrapellet solution profiles 
collected along the reactor for all values of ξcat. For each state variable, a separate POD 
basis was determined using the Ms = 100 most informative snapshots. 

3. Results and discussion 
The values of the main parameters used in the simulations are summarized in Table 1.  
Table 1. Main model parameters used in the numerical simulations. 

Parameter Value Parameter Value 

Deff 10-6 m2·s-1 Rp 2.5·10-3 m 

k1(Tin) = k2(Tin) 2.95 s-1  Tin 400 K 

k-1(Tin) = k-2(Tin) 0.15 s-1 uin 0.7 m·s-1 

Lr 8 m λeff 10-4 kW·m-1·K-1 

Representative centroid of clusters employed to construct the POD basis for the 
concentration of intermediate product B within the pellet are shown in Fig. 2a, whereas 
Fig. 2b. shows the leading POD modes determined for βB. The intrapellet solution profiles 
vary with the location of the pellet in the reactor, due to ongoing chemical process and 
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variation of the composition of the flowing gas, and also with the variation of the catalyst 
arrangement represented by the variable ξcat. As shown in Fig. 2a, the k-means procedure 
permits to select the most informative profiles while skipping those that are practically 
the same, and thus do not contribute, in terms of information content, to the POD basis.   

  
Figure 2. Representative solution profiles of βB(ξ) within the pellet selected using k-means 
clustering (a) and leading POD modes for the concentration of component B (b). 
 

  
Figure 3. Values of the objective function YC,A determined using FOM and ROM (a), and molar 
fractions of the reactants in the gas phase along the reactor determined using ROM for optimal 
value of   (solid lines) and for reference value ξcat = 0.7937 (dashed lines). 

After analysing the convergence of the ROM constructed using different truncation order, 
the value of K = 19, for each intrapellet state variable, was selected to run the optimization 
algorithm. Figure 3a shows the comparison of the objective function determined using 
FOM and ROM, together with the location of the optimum, determined by the MATLAB 
fmincon function with the submerged fsolve function for the resolution of the full- and 
reduced-order reactor model. It can be observed that the ROM approximates very 
accurately both the objective function and the location of the optimum. The optimal value 
of ξcat results to be higher than the one corresponding to the 1:1 volume ratio, 
ξcat = 0.7937, of the pellet occupied by the first and the second type of the catalytic active 
centres. Increasing the value of ξcat from the reference value equal to 0.7937 to optimal 
value, i.e. , permits in fact (Fig. 3b) to enhance the conversion of A near the 
reactor inlet. Values of the optimum location and corresponding values of the objective 
function are in Table 2 together with the computational time expenses. Despite the 
relatively high number of the POD modes used to build the ROM, mainly as a 

*
catx
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consequence of the core-shell structure of the pellet, the ROM still allows considerable 
time saving, both when performing a single simulation and computing the optimization 
of the pellet structure. 

Table 2. Comparison of optimal values and computational time of FOM and ROM (K = 19). 

Model   Single sim. 
time, s 

Optimization 
time, s 

FOM 0.8901 0.9384 88.064 1573 

ROM 0.8846  0.9386 18.904 385 

 

4. Conclusions 
Adopting the optimal structuring found in this study will positively impact the production 
and is foreseen as a practical gain in many processes of industrial interest. Although more 
detailed than most literature models, this approach has still some limitations in that it does 
not address reactor non-idealities: the hybrid plug-flow fixed-bed reactor model is in fact 
adopted, and the pressure drop is assumed to be negligible. The model reduction 
procedure complicates the preparation of the numerical code, but the computational gain 
is expected to be well worth the effort as the dimension of the problem is increased. Even 
in this low dimensional case, POD-Galërkin helps even though, with this particular 
problem, accuracy requires a relatively large number of modes to be included in the ROM. 
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Abstract
Knowledge of appropriate kinetic models for the design of the reactive

distillation column is critical and directly affects the performance parameters. In many
industrially important reactions, a pseudo-homogeneous concentration-based kinetic
model is more suitable for process design. The present work offers a design procedure
of hybrid reactive distillation columns (HRD) to obtain the desired selectivity of
intermediate product in reaction schemes for which a pseudo-homogeneous
concentration-based kinetic model is best suited. This work is in continuation with our
previous work on selectivity engineering with HRD columns [Hasan et al., 2013a, b;
Hasan et al., 2014a, b; Hasan et al., 2015; Singh et al. 2018; Singh et al. 2019] in which
we developed generalized algorithms for the design of HRD columns to obtain the
desired selectivity of intermediate products in different types of multi reaction schemes.
However, all the previous investigations are restricted to mole fraction-based kinetics.
As a result, here, we examined the potential of HRD for pseudo-homogeneous
concentration-based kinetic models and developed an algorithm to obtain HRD column
designs of the desired selectivity.

Keywords: Hybrid Reactive Distillation, Pseudo-homogeneous, Concentration-based
kinetics, Selectivity, Design

1. Introduction
For designing HRD columns or any large reactor, one should know well-determined
kinetics, which includes the effects of all parameters on elementary and side reactions
that can predict the actual mechanism of reactions. Although the kinetics of industrially
relevant reactions having rigorous thermodynamic approach with activity coefficients
are more accurate for the study purpose, however pseudo-homogeneous
concentration-based kinetics equally holds good results and best suited for process
design [Ronnback et al., 1997]. In this work, we developed a conceptual design
algorithm to design HRD columns to obtain desired selectivity for the multi reaction
systems with pseudo-homogeneous concentration-based kinetics. To illustrate the above
point, a model series type reaction scheme has been studied as an example and a
combined graphical-simulation algorithm is developed using the concepts of attainable
region approach.
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2. Design Methodology
It is well known that in a CSTR, the reaction occurs at the outlet conditions. Therefore,
the reaction and mixing vectors are collinear given by material balance [Glasser et al.
(1987)]. In any other CSTR type arbitrary reactor, the reaction will not occur at the
outlet conditions, and hence the collinearity condition is no more valid. The
composition in this arbitrary reactor can be controlled by similarly introducing
separation attributes as in the case of reactive distillation.

Fig. 1. The analogy between Arbitrary reactor (R) and HRD Column

Consider HRD column with only one reactive stage as shown in Fig. 1. The reaction
does not occur at product stream composition (P), which is the end composition found
by substantially mixing the top (distillate), bottom streams. The composition at which
reactions occur in it is governed by separation attributes (vapor to feed ratio, distillate to
feed ratio, number of stages, etc.). Therefore, potential reaction stage compositions that
provide the desired selectivity in composition space can be obtained as discussed in the
next section.

2.1 Locus of Reactive Concentrations (LRCs)

Consider a series reaction scheme (Eq. 1) with kinetic rate constants [k1 k2] = [1 1]. The
reaction occurs in liquid phase only with feed as pure reactant A.

(1)

Fig. 2a. Selected reactive concentration, C* on
locus of reactive concentrations (LRCs).

Fig. 2b. Transformed, X* on locus of reactive
stage compositions (LRSC).
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Assuming constant density and volume system. The bounds in concentration space can
be taken as equivalent to the reactant's initial concentration in case of single reactant
schemes. Based on desired selectivity choose a point, P as shown in Fig. 2a. Now by
taking the component mass balances on arbitrary reactor one can easily write Eqn. (2).
The LHS of this equation is nothing but the slope of line AP. Using Eqn. (2) plot the
locus of reactive concentrations, as shown in Fig. 2a.

(2)

It should be noted here that by choosing the point, P in the concentration space the
conversion and selectivity gets fixed as given by Eqn. (3). For constant density and
volume system (v0=v).

(3)

Now, one can transform the reactive concentrations into reactive mole fractions by
using Eqn. (4) and thereby plot the locus of reactive stage compositions (LRSCs) in the
mole fraction composition space as shown in Fig. 2b.

(4)

In the RD column, if the reaction occurs at a composition belonging to any of the
LRSC, our desired selectivity is ensured.

2.2 Algorithm Steps

The design methodology is based on the fact that if we separate reaction and distillation
features of HRD configuration as shown in Fig. 3a, then the resulting configuration
(Fig. 3b) consist of arbitrary reactor and separator system that gives the performance
same as HRD configuration (Fig. 3a). This will enable us to find the desired operating
parameters required to obtain the design of the desired selectivity.

(a) (b)
Fig. 3. (a) Hybrid (RD) column.  (b) Arbitrary Reactor Separator System (Non-RD).

i. Select any point P (Fig. 2a) in the concentration space according to the
intermediate product's desired selectivity, B.

Effect of Pseudo-Homogeneous Concentration Based Kinetics on Hybrid
Reactive Distillation Columns for Selectivity Engineering
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ii. Join points, A (30, 0) and P (9, 5.25) to find the slope of line AP. Using Eqn.
(2) plot the locus of reactive concentrations (LRCs). One can calculate the
selectivity and conversion using Eqn. (3). For the present example, selectivity
= 0.25 and conversion= 0.70.

iii. Select any C* on the locus of reactive concentrations as shown in Fig. 2a. For
the ongoing example we have selected C* = [CA* CB* CC*] = [12, 9.6, 2.3].
The third concentration is calculated by the summation equation (applicable for
constant density and volume system only).

iv. Specify the volumetric feed flow rate (v0 = 0.5 m3/sec) to the arbitrary reactor
and calculate the volume of reactor, VR using any of the Eqn. (5) or (6).

(5)

(6)

v. Calculate the total number of moles, n using Eqn. (6).
(7)

vi. Transform the selected reactive stage concentration, C* = [CA* CB* CC*] = [12,
9.6, 2.3] into reactive stage mole fraction, X* = [XA* XB* XC*] = [0.4267,
0.32, 0.2533] using Eqn. (4).

vii. Calculate damkohler number, Da by employing the material balance of either
component A or B on arbitrary reactor using Eqn. (8) or (9). Also find the
concentration of component C in the product stream using Eqn. (10).

(8)

(9)

(10)

Where, = volumetric catalyst hold-up &  Damkohker number,

,

viii. Calculate the flow rate of product stream P, of arbitrary reactor from Eqn. (11)
that is sent to non-RD column as shown in Fig. 3b.

(11)

ix. Specify the hypothetical feed to Non-RD column using Eqn. (12).
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(12)

x. Next, define the total number of stages (N=12) and location of feed (Nfl=6).

xi. Find out operating parameters so that the feed stage composition of the
Non-RD column coincides with chosen reactive stage composition, X*. To
achieve this draw family of curves as shown in Fig. 5, for different V:F
(boil-up to feed ratio) and for a range of D:F (Distillate to feed ratio). Adjust
the operating parameters to meet the required condition. After finding suitable
parameters with the help of family of curves, plot Non-RD column profile in
composition profile.

Fig. 5. Family of feed stage compositions at
different values of V:F (range of D:F)

Fig. 6. Identical non-RD and RD column
profiles

xii. Simulate the RD column using the same operating parameters and plot the
column profile of RD column. The close match of column profiles shown in
Fig. 6, indicates feasible design obtained with the help of a simple HRD
column. Table 1 shows the feasible design specifications meeting our
requirements of desired selectivity for the reaction scheme given by Eq. (1).

Table1: Design specifications of hybrid RD Column for reaction scheme having
pseudo-homogeneous concentration-based kinetic model

Column configuration Non-RD Column RD Column
Number of components, NC 3 3
Rate Constant [k1, k2] [1,1] [1,1]
Volatility order [A B C] [B > A > C] [B > A > C]
Reaction Volume - 0.8203
Number of stages, N 12 12
Feed location, Nfl 6th Stage 6th Stage
Feed flow rate, F 15 15
Feed composition, Xf (0.3, 0.1750, 0.5250) (1, 0, 0)
Feed stage composition, X* (0.4267, 0.3200, 0.2533) (0.4267, 0.3200,0.2533)
Number of reactive stages, Nr - 1
Location of Reactive stage, Nrl - 6th Stage
Damkohler Number - 1.6406
Distillate to feed ratio, D:F 0.1377 0.1377
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Vapor to feed ratio, V:F 2.381 2.381
End Compositions after mixing the
the distillate, side draw and bottom
streams

(0.3, 0.1750, 0.5250) (0.3, 0.1750, 0.5250)

3. Conclusions
A conceptual design algorithm of the hybrid RD column is developed to obtain the
desired selectivity design in case of a series reaction scheme with a
pseudo-homogeneous concentration-based kinetic model. Presented methodology
generates multiple feasible designs which is reliant on feed location, number of moles
involved in the reaction, volumetric flow rate, number of stages etc., and can be
accessed in terms of operating and capital cost to determine a good/optimal design for
the given set of design goals. It is applicable to single feed configurations with
reactant(s)/intermediate boiling in residue curve map. The developed method provides
good initialization for rigorous simulation and optimization for industrially relevant
multireaction systems.
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Abstract
This contribution presents an integer-linear model of a post-combustion carbon capture
plant featuring discrete sizing, part load operation and dynamic behavior. In particular,
the model covers a design space from 200 tCO2/h (size of Petra Nova) down to 7.5 tCO2/h,
a part load operation range from 50% to 100%, and a CO2 concentration range from
7.5% to 12%. Starting with detailed, partly rate-based, models in Aspen Plus and
deriving linear performance planes thereof allows to bring process model information
into a linear system modeling domain for a reasonable range of design specifications.
By applying this model to a low-emission energy system design optimization, its
practicability and added value could be demonstrated. The simulations show that
especially for systems with high non-dispatchable energy generation, the information
about the carbon capture plant's dynamic behavior is essential. To fit the scope of this
paper, the mathematical formulation of the model is reported in a condensed manner.
However, all information required to formulate the model is provided.

Keywords: CCS, MILP, energy system design, low emission

1. Introduction
The importance of carbon capture and storage (CCS) for decarbonizing our society is
widely recognized in the scientific community and among policy makers. Although the
topic of CCS experienced extensive research in the last decades, its role in integrated,
low-emission energy systems has started to be addressed only recently. A reason for this
is the high level of complexity of detailed energy system models, which further
increases by applying detailed CCS models. Nevertheless, with the shift of conventional
electricity generators like gas turbines from baseload operation to backup operation for
non-dispatchable renewable energy sources, the ability of integrating CCS into energy
system modeling is crucial. We aim at filling this gap by developing a linear
post-combustion capture model which is compliant with the multi-energy system (MES)
modeling framework developed in earlier works (Gabrielli et al., 2018a, 2018b). The
model is based on simulations of a monoethanolamine (MEA) carbon capture process in
Aspen Plus and features discrete sizing, part load operation and dynamic behavior. To
showcase the model, we apply it to design a low-emission energy system which supplies
the electricity demand of the Dutch province of Zeeland. In a multi-objective
optimization for total system cost and annual CO2 emissions, the trade-offs between
renewable energy technologies (solar and wind energy) and conventional ones (gas
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turbine) with CCS are investigated. Section 2 will describe the model and its
verification, Section 3 shows the results of the model's application to the energy system
design, and Section 4 will conclude this contribution.

2. Modeling
2.1. Process model
The model in Aspen Plus is a complete description of the MEA-based carbon capture
process including absorber, stripper, heat exchangers, pumps, and a compressor for the
lean vapor compression. Note, however, that compression of the CO2 stream for any
downstream activities like storage is not included. A water wash section to recover
liquid from the CO2 product stream was omitted to limit the number recycles. The
equilibrium based process model was refined with a rate-based absorber model
according to Amirkhosrow et al. (2020). To couple the two domains, the Murphree
efficiencies obtained from the standalone rate-based absorber model were applied to the
equilibrium absorber column. To account for the change of the Murphree efficiencies
with changes in operating conditions, the equation reported by Zhang et al. (2016),
describing the effect of flue gas flow rate, CO2 concentration and solvent flow rate, was
used. Since the solvent-to-flue gas ratio is fixed in this work, the original equation was
adapted accordingly. Key constraints of the process are a capture rate of 90% and a CO2
-purity of at least 95%.

2.2. Linear performance planes
The linear model is supposed to describe the electricity and heat demands as a function
of flue gas flow rate and CO2 concentration. The flue gas flow rate is treated as part load
operation for a plant of fixed size. To simplify the model, three discrete sizes are
considered, i.e. design point flue gas flow rates of 15 kg/s, 80 kg/s, and 350 kg/s. For
each of those design sizes, the flue gas flow rate was varied between 50% and 100% of
the design flow rate (part load), and the CO2 concentration was varied between 7.5%
and 12%. Starting with a minimum number of 12 data points, enough simulations were
conducted to achieve an R2 value of 95% for the linear performance plane described as

χ
𝑒
= α

𝑒
· 𝐹

𝑒
+ β

𝑒
· 𝐶𝑂2[ ] + γ

𝑒
(1)

where is the demand of energy carrier , , , and are the fitting parameters, isχ
𝑒

𝑒 α β γ 𝐹
the flue gas flow rate, and is the CO2 concentration. The parameters are shown in[𝐶𝑂2]
Table XY. The performance planes where implemented according to the following
equations
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where is the energy consumed, is the mass of CO2 captured, and is the cost;𝑄 𝑀𝐶𝑂2 𝐶
and are the cost coefficients for investment cost and operation and maintenance𝑘𝑐 𝑘𝑚

costs, respectively; and are booleans for operation and installation, respectively;𝑢 𝑥 𝑖
and indicate the discrete plant size and time instance, respectively. Furthermore, the𝑡
model is subject to the following constraints: non-negativity for all variables; only one
plant size can be installed and operated; upper and lower limit for flue gas flow rate
according to plant size and operation state (flow rate is zero when plant is not
operating); upper and lower limit for flue gas CO2 concentration. The dynamic behavior
is constrained as described in the following section.

Table 1: Overview of fitting parameters for linear performance planes

Design Flue Gas
Flow Rate

Electricity Heat
α β γ α β γ

kg/s kg/s wt-% - kg/s wt-% -
15 0.004 0.05 -155.20 0.60 40.9 -7.07
80 0.004 0.30 -0.05 0.68 239.2 -44.0
350 0.004 1.39 -0.22 0.58 897.8 -150

2.3. Dynamic behavior
The dynamic response to changes in the flue gas flow rate was assessed using literature
values. The dynamics for changes in CO2 concentration were neglected since this value
is not expected to fluctuate significantly. To model dynamic behavior in linear models,
three key parameters are required, namely the time until equilibration, the maximum
rate of change, and the time constant. The latter is obtained by fitting a first-order
dynamic function such that its integral fits the integral of the real dynamic data. For
more details about this approach, the reader is referred to Gabrielli et al. (2018b).

Figure 1: Original response curve and first-order approximation for the reboiler heat duty
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For ramping behavior, the time until equilibration was found to be 3 h and the
maximum rate of change is 20% (Bui et al., 2020; Luyben, 2013). Using the dynamic
data reported in (Luyben, 2013) to derive the time constant showed that over the course
of the re-equilibration process (3 h) the delayed response is compensated by a
subsequent overshoot. This leads to an almost stepwise ramping behavior for the
first-order dynamics. Figure 1 shows this on the example of the reboiler duty, but
similar outcomes were obtained for all data of interest. Hence, the time constant was
neglected and the dynamic behavior described as an instant increase in the response
variable to a change of maximum 20% of flue gas flow rate, followed by 3 hours of
steady-state operation, i.e. no additional change in flue gas flow rate can occur in this
time period.

Figure 2: Comparison of real data from the Petra Nova plant with the model performance.

2.4. Model validation
The model was validated using the publicly available operation data of Petra Nova over
a 72 h time period (Mitsubishi Heavy Industries, 2017). Assuming a constant CO2
concentration, the flue gas flow rate was calculated from the published data on captured
CO2 and capture rate. Figure 2 shows the result of feeding the model with the derived
flue gas data and maximizing the CO2 captured. The dynamic limitation of the model is
clearly visible, and the total CO2 captured in the analyzed 72 h period only deviates 2%
from the real data. A major contributor to this deviation is that the real capture rate is
not exactly at 90% but slightly decreases from 93.6% to 87.6%.

3. Application
3.1. System description
To showcase the model developed in this work, an energy system consisting of
photovoltaic panels, wind turbines, batteries, a single-cycle natural gas turbine, and the
post-combustion capture unit was designed to satisfy the electricity demand of the
Dutch province of Zeeland (3.24 TWh/y). The multi-objective optimization for total
system cost and CO2 emission was carried out based on hourly resolved weather and
demand data from the year 2019. The natural gas price is assumed constant at 30
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EUR/MWh (average 2008-2019) (Statista, 2020) and a CO2 tax of 25 EUR/t, inspired
by current European Emission Allowance prices, was applied.

3.2. Post combustion capture in low emission energy systems
To investigate the effect of carbon capture on the energy system, a set of Pareto-optimal
designs was generated for the same system with and without the option for carbon
capture. The resulting Pareto-fronts can be seen in Figure 3. Due to large uncertainties
in the cost estimates, the findings for cost should be used for comparative rather than
absolute interpretation. Furthermore, the cost of carbon sequestration or utilization is
not included. It can be observed that the addition of PCC to the system improves the
Pareto front. This results from the fact that the gas turbine with PCC replaces most of
the wind turbine and PV installations for a wide range of designs. Only for deep
decarbonization (below 0.1 tCO2/MWh) renewable energy sources are used at significant
extent. This can be explained by the carbon capture rate, which limits the
decarbonization to 90% if all electricity was to be supplied by gas turbines. Hence, the
capacity of installed gas turbines below this emission limit decreases until it reaches
zero for a carbon-free design. Once passing the threshold of 0.1 tCO2/MWh, the
operation mode of the gas turbine switches from baseload to backup for renewables
abruptly. Figure 4 shows the operation of the gas turbine (using CO2 produced as a
proxy) and the PCC units for the design allowing for 100 ktCO2/y, zoomed in on a 72 h
time period. The flexible operation of the gas turbine is obvious. However, less obvious
but more important, the operation is constrained by the dynamics of the PCC unit which
shows in the periods of steady state operation which never violate the 3-hour constraint.
While the dynamics of the gas turbine and the PCC unit are not strictly coupled, the
limit on CO2 emissions does not allow the gas turbine to operate out of sync with the
PCC unit.

Figure 3: Pareto front for the energy system design for the province of Zeeland.
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4. Conclusion
In this contribution, we derived linear performance planes to describe the electricity and
heat demands as (a) a continuous function of flue gas flow rate and CO2 concentration
and (b) a discrete function of size. These performance planes are valid for a parameter
range wide enough to cover most fossil energy conversion technologies found a
practice. Together with the information provided on the dynamic behavior, a complete
MILP can be formulated. The application of the derived model to a simple case study
showed the importance of having such a model available for the design of low-emission
energy systems. In particular, the dynamic behavior was found to play a significant role
for deep decarbonization. The key novelty of this work is the achieved flexibility in the
design of energy systems with CCS. Thus far, CCS has been applied in these kinds of
optimizations in a coupled, non-flexible manner, e.g. a coal-fired power plant with 90%
of its CO2 captured. The model presented herein decouples those units and allows the
optimization algorithm rather than the user/operator to decide whether CCS should be
used at all, to which extent it should be used, and, if properly implemented, with which
technologies it should be combined. Furthermore, the link from system level to process
simulation level has proven significant added value.

Figure 4: Operation of the gas turbine and PCC units for the design allowing for 0.03
tCO2/MWh, zoomed in on a 72-h time period. The dashed-blue line shows the CO2 produced
from the gas turbine and therefore represents the gas turbine operation
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Abstract  
The granulation process using rotary drums technology, is an essential unit operation to 
form good quality granules in many industries such as food processing, pharmaceutical, 
petrochemical and mineral processing. 
The main objective of this work is to study and analyze, by CFD approach, the dynamics 
of solid fertilizer granules and the fluid phase, within an industrial inclined rotary drum 
granulator. Particularly, we studied the impact of the rotational speed, and angle of 
inclination of the equipment on the particles size distribution (PSD) within the solid 
phase. The three-dimensional CFD model that we are adapting is based on an Euler-Euler 
multiphase flow approach coupled with the kinetic theory of granular flow (KTGF), the 
appropriate model and numerical schemes were selected based on previous studies 
(Zheng et al. (2019)). As could be proved by experiments and simulation results, the 
particles size distribution depends on the rotational speed and show regime transition 
along the rotary drum. Our study demonstrates the capability of multiphase CFD model 
to predict the solid and fluid flow behaviors, and analyze the PSD of fertilizer granules 
inside the inclined rotary drum granulator. 

Keywords: Fertilizer, CFD, PSD (Particles Size Distribution), Kinetic Theory of 
Granular Flow (KTGF), rotary drum, granulator 

1. Introduction 
Rotating drums are present in many industrial processes; pharmaceutical, fertilizers, and 
food industries. Their areas of applications include granulation, cooling, coating, milling, 
reactions, drying, and mixing (Zheng et al. (2019)). As a process, it may penalize these 
industries in terms of profitability, quality of finished product and respect of commercial 
and environmental constraints. Indeed, this operation presents a serious challenge for 
manufacturers because its performance depends heavily on the operating parameters and 
the geometrical characteristics (Epelle and Gerogiorgis 2018). 

CFD is used extensively to solve numerous industrial challenges due to the maturity of 
computational methods and advanced computing speeds and its ability to predict the 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50052-8



S. Elmisaoui et al. 

results of real experiments. Different numerical approaches have been proposed to predict 
the transverse and axial particle motion and particles size distribution in rotary equipment. 
Physical models for the particles flow analysis have been developed to relate the flow 
behavior to the key operating parameters as rotational speed, filling level, and inclination 
angle (Santos et al. (2013)). 

2. Mathematical Model development 

Computational Fluid Dynamics (CFD) has proven its effectiveness as a predictive tool 
for complex flows modeling. Regarding multiphase CFD modeling of granular flows in 
rotary drums, both the Eulerian approach and the Lagrangian approach are used. Several 
studies (Arruda et al. (2009); Nascimento et al. (2015)) used Discrete Element Method 
(DEM) as lagrangian simulation approach to study different rotary drum configurations: 
with and without flights. The numerical results agreed well with experimental 
observations, but for all this cases the simulations were done either with a reduced 
dimension of the drum; or the particles diameter with a specific ratio that define the 
number of particles in the axial direction. The mean advantage of DEM simulations is 
their ability to consider the particles shape characteristics and allowing to the track the 
particles through the computational domain. However, it is limited to reduced scale 
equipment due to the computational time. 

Alternatively, the Eulerian-Eulerian (E-E) approach is commonly adopted for CFD 
simulations involving several (N) phases, and these phases are assumed to form 
interpenetrating continua. The dynamic behavior of a multiphase system with air and 
fertilizer granules can be described through Multiphase Navier-Stokes (NS) equations 
composed by continuity and momentum equations to be solved for each phase in the 
Eulerian framework. Also, the E-E approach is less computationally expensive, and is the 
most widely applied approach in the study of hydrodynamics of multiphase flows 
including granular phases. Due to the continuum assumption of the particle phase, the E-
E approach requires additional closure models. The kinetic theory of granular flow 
(KTGF) is a tool developed from the kinetic theory of gases to describe the kinematics of 
a granular media. It is used to describe the particle motion in fluid-solid flows due to the 
inherently random particle movement caused by the fluid mechanics. It (KTGF) proves 
its effectiveness in rotary drum systems hydrodynamic studies, when coupled to NS 
equations in CFD model. 

2.1. Model description 

To model a multiphase flow, it is essential to take into account the conservation laws and 
the interactions between the present phases. In this work, the Eulerian multiphase model 
coupled with a KTGF model is used to model the air and fertilizer granules flow inside 
the inclined rotary drum granulator. The model solves momentum and continuity 
equations for each phase. The continuity equations for gas-solid mass conservation are 
given by the following equations: 
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( ) + 𝛻. ( 𝛼𝑔𝑣𝑔𝜌𝑔) = 0                                                           (1) 

          ( ) + ∇. ( 𝛼 𝑣⃗𝜌 ) = 0                                                          (2)          
      
Where, v⃗ and 𝛼 and 𝜌 are respectively velocity, volume fraction and density of air (gas) 
and fertilizer particles (solid) phases. The air volume 𝑉  is defined by :     𝑉 =  𝛼  𝑑𝑉                                                                       (3)                   

Details on the air and solid momentum, particles phase stress description, collision and 
drag forces, and the particles characteristics from the KTGF are given in Santos et al. 
(2013).  

The conservation of the gas and solid momentum is given by the following equations: 𝛼 𝜌 𝑣𝑔 + ∇. 𝛼 𝜌 𝑣𝑔 𝑣𝑔 =  −𝛼 ∇𝑝 + ∇. 𝜏𝑔 + 𝛼 𝜌 �⃗� + 𝛼 𝜌 �⃗�𝑞,𝑔 + �⃗�𝑙𝑖𝑓𝑡,𝑔 + �⃗�𝑣𝑚,𝑔 ±(𝐾𝑔𝑠  𝑣𝑔 − 𝑣𝑠 ⃗ )                                                                                            (4)  (𝛼 𝜌 𝑣𝑠) + ∇. (𝛼 𝜌 𝑣𝑠 𝑣𝑠) =  −𝛼 ∇𝑝 − ∇𝑝𝑠 + ∇. 𝜏𝑠 + 𝛼 𝜌 �⃗� + 𝛼 𝜌 �⃗�𝑞 + �⃗�𝑙𝑖𝑓𝑡,𝑠 + 𝐹𝑣𝑚,𝑠 +(𝐾𝑔𝑠  𝑣𝑔 − 𝑣𝑠 ⃗ )                                                                                                   (5) 
 �⃗� , �⃗� , �⃗�  are the external body force, lift force and virtual mass force, respectively. 
Only drag and gravity are considered in the present investigation. Details on the air and 
solid momentum exchange coefficient, the particles phase stress description, the collision 
and drag forces, also the particles characteristics integrated by the KTGF are given 
following the model of Santos et al. (2013). 

2.2. Numerical simulation conditions  

The CFD code used for this study is the commercial ANSYS Fluent 2020 R2, and 
calculations have been developed to predict the flow behavior of a multiphase bed 
composed by granules and air within the flow domain defined as a rotating cylinder 
representing the rotary drum granulator. The rotating drum is inclined by 3.57°, and with 
real industrial dimensions as defined in Table 1. At the initial state, the granulator (Gr) 
contains a bed of granules with a height of 1250 mm and air. The granules are supposed 
spherical and the initial volume fraction is set to 0.65 to define the granular bed as a 
portion of the total domain, and the remaining spaces are filled with fluid phase (air).  

The PSD is defined in the solid region by patching two superposed zones, each zone 
contains a granules bed with the unified diameter (Table1). We simulated the system with 
three different rotational speeds: 8 rpm (rotation per minute), 16 rpm and 24 rpm. The 
physical characteristics of the studied system and the simulated phases are presented in 
the following table: The Multiple Reference Frame (MRF) approach was used to define 
the rotational motion of the flow domain. For the boundary conditions at the inlet, a 
constant flow rate is specified and at the outflow of the rotary drum, pressure outlet 
boundary condition is assumed. No velocity slip exists at solid walls and the standard wall 
functions are used for near-wall treatment. A velocity magnitude is set at the inlet and 
zero-gauge pressure is set at the outlet.  
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2.3. Computational domain 

 
Figure 1: Mesh of the computational domain 

One important step in CFD modeling is the mesh construction that represents the 
computational grid. A grid convergence test is done, in which the computational domain 
is discretized using three different grids containing a coarse, medium and fine mesh 
tetrahedral cells. The solid fraction distribution was determined using the different grid 
sizes with 8372, 66 330, and 508 440 mesh elements, representing the coarser, medium 
and refined mesh respectively as showed in Figure 2. Since the difference between 
numerical predictions obtained using the fine and the medium grids is negligible, the 
medium grid (Figure1) was selected to maintain a balance between computation load and 
numerical accuracy. 

 
Figure 2: Cross sections from grid independence test  

3. Results and analysis 
3.1. Flow behavior and regimes transition for air-granules simulation 
 

In order to study and to analyse the different regimes of the granular bed motion with an 
homogeneous particles distribution, the rotational speed of the granulator was varied 
between 8 and 24 rpm. Results in Figure 3 show the transition between the known typical 
transverse bed motions: rolling, cascading, and cataracting (Mellmann (2001)) during 
rotation. When the speed increases the arch of the kidney-shaped bed increases.   
for model validation, CFD results are compared with published experiments and 
simulated data (Santos et al. (2013)). The hydrodynamic of the solid phase presents a 
transition inside the vessel at different levels, depending on the inclination angle degree. 
This shows the im- portance of the rotational speed in optimizing the granulation process. 
Each efficiency in monitoring the granulator key parameters will control the 
hydrodynamic flow that govern the particles size enlargements in the granulation process. 
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Figure 3: Regime transition for different levels of rotational speeds 

3.2. Transverse flow behavior with particles size distribution (PSD) 

The fertilizer granules bed was set by defining two zones with a unified diameter for 
each one. The diameters of particles are respectively: 1.00 10−3 mm, and 1.00 10−2 mm.  

Figure 4 : Initial states of two zones with solid fraction 

When the PSD is considered, the inclination angle effect is clearly distinct as the key 
parameter controlling the regimes transitions within the rotary drum. Figure 5 exposes 
the results for the three simulations with different rotational speeds. At the inlet part the 
dominant regime is the "slipping" one. 
 

 
Figure 5: Particles distribution along the rotary drum (particles with d2) 

By increasing the rotational speed, the transition from the "slipping" to the "rolling 
regime" at the middle of the fluid domain, also the gravitational forces impact more the 
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particles flow behavior due to the slope at that level, and in the zone until the outlet of the 
drum a "crushing regime" characterizes the flow. 
The computational time of the dynamic particles motion also increases exponentially with 
the increase of the approximately in doble times the computational cost exists between 
the less and hight values degree of rotational speeds.  

4. Conclusion 

Solid–gas two phase particle dynamics in a rotary drum granulator was modeled and 
simulated using the Eulerian Granular Multiphase Model using the Euler–Euler approach 
along with the Kinetic theory of granular flow. Regimes transitions is studied within the 
flow behavior in an industrial-size granulator and have been investigated using a three- 
dimensional CFD model. The simulation results for an inclination angle of 3.57 degree 
and rotational speed between 8 and 24 rpm, allow a prediction of the multiphase flow 
behavior with identification of the inclination angle and rotational speed as key 
parameters that control the mixing and the size enlargement of particles. The simulation 
results were compared to experimental studies already done using glass bills (Rong et al. 
(2020)). The numerical results agreed well with experiment studies measurements.  

 

References 
E. Arruda, F. Lobato, A. Assis, M. Barrozo, 2009. Modeling of fertilizer drying in roto-aerated and 

conventional rotary dryers. Drying Technology 27 (11), 1192–1198. 
EPELLE, Emmanuel I. et GEROGIORGIS, Dimitrios I, 2018.  A CFD investigation of the effect 

of particle sphericity on wellbore cleaning efficiency during oil and gas drilling. In : Computer 
Aided Chemical Engineering. Elsevier, p. 127-132. 

J. Mellmann, 2001. The transverse motion of solids in rotating cylinders—forms of motion and 
transition behavior. Powder technology 118 (3), 251–270. 

S. Nascimento, D. Santos, M. Barrozo, C. Duarte, 2015. Solids holdup in flighted rotating drums: 
An experimental and simulation study. Powder Technology 280, 18–25. 

W. Rong, Y. Feng, P. Schwarz, P. Witt, B. Li, T. Song, J. Zhou, 2020. Numerical study of the solid 
flow behavior in a rotating drum based on a multiphase cfd model accounting for solid frictional 
viscosity and wall friction. Powder Technology 361, 87–98. 

D. Santos, I. Petri, C. Duarte, M. Barrozo, 2013. Experimental and cfd study of the hydrodynamic 
behavior in a rotating drum. Powder technology 250, 52–62. 

X. Zheng, B. Jin, Y. Zhang, Y. Zhang, C. Zhou, 2019. Numerical simulation of flow characteristics 
in an inclining rotating kiln with continuous feeding. International Journal of Chemical Reactor 
Engineering 17 (10). 
 

 
 
 
 

332 S. Elmisaoui et al.



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

 

Application of PharmaPy in the digital design of 
the manufacturing process of an active 
pharmaceutical ingredient  
 
Daniel Casas-Orozcoa, Daniel Lakya, Vivian Wangb, Mesfin Abdib, Xin Fengb, 

Erin Woodb, Gintaras V. Reklaitisa, Carl Lairda,c, Zoltan K. Nagya,* 

a. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 USA. 

b. Food and Drug Administration, Silver Spring, MD 20993 USA 

c. Sandia National Laboratories, Albuquerque, NM 87123 USA 

* Corresponding author: zknagy@purdue.edu 

Abstract 
Flowsheet design and optimization constitute one of the key challenges in the chemical 
engineering and process optimization communities. Software tools for digital design and 
flowsheet simulation are readily available for traditional chemical processing problems 
such as distillation and hydrocarbon processing, however tools for pharmaceutical 
manufacturing are much less widely developed. This paper introduces, PharmaPy, a 
Python-based modelling platform for pharmaceutical facility design and optimization. 
The versatility of the platform is demonstrated in simulating continuous, batch, and 
hybrid process flowsheets. 

1. Introduction 
Pharmaceutical products have been traditionally manufactured in batch facilities, 
permitting the flexible use and operation of equipment for the production of a variety of 
low volume – high value products. However, the transition to continuous operation is 
desirable given the advantages with regard to controllability, safety, consistency of 
product quality, reduced manual labor, and reduced equipment sizes, often leading to 
significant decreases in capital and operating expenditures.  

Although end-to-end continuous operation is a desirable goal, the physics and chemistry 
of the phenomena involved can prevent the processing tasks required by the process from 
being operated in a truly continuous mode, making the best operating mode a combination 
of batch/continuous/semibatch processing steps. This hybrid operation poses challenges 
for process modeling and design as a consequence of the dynamic and often discontinuous 
nature of the resulting flowsheet model. Moreover, the combinatorics of the potentially 
large number of possible flowsheet configurations resulting from the possible choices of 
unit operation types and operating modes can present significant computational challenges. 

To address these challenges, it is desirable to develop a tool that allows simulation of a 
representative set of dynamic drug substance (DS) and/or drug product (DP) unit 
operations and that offers a consistent framework for material/energy interchange 
between these operations. Such a modeling tool would enable rigorous comparison 
between unique flowsheet configurations in terms of technical viability and economic 
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performance, and would allow process design to be aligned with the Quality-by-Design 
and Quality-by-Control paradigms (Food and Drug Administration (FDA) 2004). 
Commercial flowsheet simulation tools, such as Aspen Plus (2013) and gPROMS 
(Process Systems Enterprise 2020), are widely available and certainly are sufficient for 
conventional chemical process simulation and design. However, the focus of these 
software packages is not on pharmaceutical manufacturing. PSE does offer gPROMS 
FormulatedProducts as a platform for digital twin analysis of active pharmaceutical 
ingredient (API) synthesis and drug product processing, but the scripting capabilities, 
such as those seen within the IDAES framework (Lee et al. 2021), are lacking. We want 
to address the gap in available software by providing an open-source tool that enables 
flexibility in user control while still offering adequate modeling fidelity and numerical 
accuracy. Note that the goal is not to replace tools like gPROMS FormulatedProducts, 
rather it is to offer a complementary platform to fill the gap in end-to-end hybrid process 
design and operation that these established tools do not address. 

2. Description of PharmaPy 
The software tool PharmaPy is implemented in Python to incorporate powerful, pre-
existing computational packages and utilize flexible scripting capabilities. It has two 
major themes as a platform for the design and optimization of pharmaceutical facilities 
(Casas-Orozco et al. 2020). The first theme addresses process modeling and simulation. 
PharmaPy utilizes state-of-the-art numerical tools, such as Sundials (Hindmarsh et al. 
2005), which are required for the efficient solution and inter-communication of dynamic 
DS/DP pharmaceutical unit operation models. The package employs the sequential 
modular equation-solving strategy (Hillestad and Hertzberg 1986) and an object-oriented 
software architecture and organization of the model library. 

The second theme addresses superstructure and flowsheet optimization. Here, PharmaPy 
utilizes a semi-heuristic algorithmic structure. First, we coordinate the generation of 
flowsheet alternatives using full-space combinatorial analysis. Subsequently, the full 
space of flowsheet designs is reduced using design feasibility constraints along with an 
experimentally conscious rule-based system. Finally, the reduced set of flowsheet 
alternatives may be compared in a simultaneous optimization scheme in Pyomo.GDP 
(Chen et. al. 2018). In addition to these two computational themes, PharmaPy  
provides an open-source collection of common pharmaceutical unit operation  
models, which will be accessible to users through the PharmaSystems Hub 
(https://pharmahub.org/groups/pharmasystems). 

The process of utilizing PharmaPy for flowsheet simulation and/or optimization begins 
with the creation by the user of a data file containing the physical and thermodynamic 
properties of participating species. Next, the pharmaceutical unit operations and their 
connections are selected and/or defined using text-based, object-oriented programming 
in Python. The flowsheet may then be executed in a manner appropriate to the function 
being performed, i.e. parameter estimation, process simulation or flowsheet optimization. 
The text-based, open-source representation of PharmaPy allows the process of running 
flowsheets, especially when analysing various operating conditions and/or equipment 
specifications, to be systematized with a high degree of user control.  

Ultimately, users may then employ the second theme, mentioned above, to compare and 
contrast alternative flowsheet representations in an automated, direct optimization 
framework. This second theme is still in development stages, thus flowsheet alternatives 
in this study are generated and compared manually. In the next section, analysis focuses 
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on the first theme of PharmaPy and is illustrated with simulations of three concrete 
flowsheet alternatives, comparing and contrasting API production under continuous, 
batch, and hybrid operating modes. 

3. Case studies 
3.1. Description of the flowsheets 
Three flowsheets describing the synthesis and separation of lomustine were used as proof-
of-concept case studies to demonstrate the capabilities of PharmaPy. Lomustine is an API 
for the treatment of brain cancer, for which a continuous synthesis framework has been 
recently reported (Jaman et al. 2019). Lomustine (L) is produced in a sequence of two 
reactions: in the first reaction, an intermediate (I) is synthesized from 2-chloroethyl 
isocyanate (ISO) and cyclohexylamine (CHA); in the second reaction, species I reacts 
with tert-butyl nitrite (TBN) to produce lomustine and tert-butyl alcohol (TBA). A third, 
undesired reaction between ISO and TBA yields a condensation subproduct (SUB1). 

 1

THFISO CHA I
I TBN L TBA
ISO TBA SUB

 
  

    
The first flowsheet alternative for lomustine synthesis is the continuous process (except 
the last recovery step, done by batch filtration) shown in  Figure 1. The flowsheet model 
consists of two plug flow reactors (PFRs) in series, followed by a solvent switch operation 
(VAP01) in which THF is replaced by Heptane (C7), facilitating improved lomustine 
crystallization. Afterwards, a slurry containing lomustine crystals is formed in a mixed 
suspension, mixed product removal (MSMPR) cooling crystallizer (CR01), modelled by 
a one-dimensional population balance including nucleation, size-independent growth, 
and dissolution. The output stream from CR01 is collected in a dynamic receiver 
HOLD01 (which operates in semibatch mode), and then, the collected material is sent to 
a batch filter (F01), where lomustine crystals are recovered. Reactors R01 and R02 are 
initially filled with THF, whereas VAP01 and CR01 have their holdups initially filled 
with C7. All units are initialized at standard temperature and pressure, except for VAP01, 
which is required to operate at vapor-liquid equilibrium under vacuum. 

The reactions are assumed to be first order with respect to participant species. Lomustine 
solubility (S) in C7 as a function of temperature (T) was fitted to a polynomial form of 

the type 2S A BT CT   , using experimental data, and further modified to the form 
' (1 )THFS ax S   ( xTHF: liquid mole fraction of THF, a: empirical factor) to account 

for the significant increase of lomustine solubility caused by the presence of THF in the 
solution (Mackey et al. 2020). The inhibition effect of species other than lomustine on its 
crystallization growth kinetics was represented by a simplified multi-impurity model 
(Borsos, Majumder, Nagy 2016): 
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where α is an effectiveness factor, Ci are mass concentrations (kg m-3) and Ki are 
adsorption constants (m3 kg-1). The second flowsheet is an end-to-end batch version of  
Figure 1, with R01 and R02 modeled as batch, stirred tank reactors. The solvent switch 
operation in VAP01 is carried out by mixing the contents from R02 with C7 after the 

335



 

reaction is completed, and then boiling off the solution until a desired THF composition 
is attained. Batch crystallization is performed with a linear cooling temperature profile.  

 
Figure 1. Schematic of the continuous flowsheet  

The third flowsheet is a hybrid operation, where lomustine is synthesized continuously in 
R01 and R02 ( Figure 1), and the resulting effluent (collected in HOLD01) is transferred 
to VAP01, where semibatch solvent switch is executed by vaporizing the solution while 
continuously feeding C7. Finally, batch crystallization and batch filtration are carried out 
under the same conditions as the end-to-end batch process. 

Regardless of the operation mode, two key factors are to be considered for process design 
purposes: i) degradation temperature of lomustine (308 K, Mackey et al. 2020), and 
lomustine solubility in the liquid phase. These factors must be continuously monitored 
during the solvent switch operation in VAP01, where significant temperature and solvent 
composition changes are expected. The dynamic models used to describe the operation 
of the evaluated operating modes consist of systems of ODE/DAEs, and are drawn from 
the literature (Rawlings, Miller, and Witkowski 1993; Sahlodin, Watson, and Barton 
2016). The balance equations which are PDEs (i.e. the PFRs and crystallizers) are 
discretized either by upwind or high-resolution schemes (LeVeque 2002). The continuous 
and hybrid operation explicitly considers the start-
up of each piece of equipment from the initial 
conditions described above. Lomustine production 
for each flowsheet is 0.5 kg of dry lomustine in the 
exiting filtration cake. Residence times, and cycle 
times, in R01 and R02 were kept equivalent 
between the two flowsheets respectively. 
3.2. Results 
As shown in Table 1, more operation time must be 
allocated to produce 0.5 kg lomustine in the 
continuous flowsheet compared to the batch and 
hybrid flowsheets. It should be noted, however, 
that the initial transient state that must be 
completed before attaining steady-state operation 
contributes to this deficiency. This effect can be 
observed in Figure 2, where there is an initial 
period with no lomustine in CR01 and HOLD01. 
This start-up period results in no lomustine crystal production during the first 1.6 hours 
of operation. 

Figure 2. Concentration profiles for 
continuous crystallization-receiver set. 
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Table 1. Processing times 

Unit 

Time (min) 

Batc
h 

Residence   Operation   
Continuou
s 

Hybri
d 

Continuou
s 

Hybri
d 

R01 10 10 10 

438 

248 
R02 60 60 60 
VAP0
1 102 5 -- 60 
CR01 60 18.8 -- 60 
F01 9 -- --- 90 2 
Total 241 -- --- 528 370 

As seen in Figure 2, by the time crystals are first formed in CR01 (ca. 1.6 h), 37.3 L of 
liquid without any lomustine (a mixture of mostly C7 and THF) is already accumulated 
in HOLD01. This means that for the time period covered by the shaded region in Figure 
2, crystals in the stream entering to HOLD01 get diluted to some extent, since this slurry 
gets mixed with a volume of sub-saturated liquid. This ultimately contributes to low 
lomustine productivity observed for the continuous process. 
Another important factor to consider is the attainable 
degree of separation in VAP01 for the continuous 
case. Figure 3 shows a steady-state VAP01 
composition of 22 and 76 mol% THF and C7, 
respectively, operating between 6.3  kPa and 6.9 kPa 
and a heat transfer media temperature of 308 K. This 
final remaining composition of THF in the outlet 
stream of VAP01 increases the solubility of lomustine 
in C7 by a factor of 2.4, inhibiting lomustine 
crystallization in the continuous case.  
Moreover, the equilibrium temperature in VAP01 for 
the continuous case must be relatively low, here at 
291 K, to ensure solubility constraints are met by the 
THF/C7 solvent mixture. In contrast, vaporization in 
the batch case realizes much greater separation of 
THF in VAP01. These conditions result in a final 
solution with 12.7 kg/m3 of lomustine in VAP01 
(lower than the continuous case, Figure 3) but with 
much lower THF content (1.4 mol%) and higher 
temperature (301 K). The differences in vaporization lead to differing final crystallization 
temperatures, 268 K in continuous and 283 K in batch, to achieve similar recovery of 
lomustine. These results suggest that diverting material from CR01 during the startup 
period could increase crystal yield. Moreover, an improved solvent switch operation such 
as a staged distillation column may be necessary to circumvent the high solubility caused 
by the remaining THF, especially in the continuous operation, after the vaporization step 
proposed in this work. 
 

Figure 3. Solvent molar fractions 
(top) and mass concentration of 
solutes (bottom) in VAP01 for the 
continuous flowsheet. Dotted line: 
Lomustine solubility. 
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Under the hybrid mode, the semibatch solvent switch allows operation at lower 
temperatures compared to the batch case (slow addition of C7) which results in slower 
evaporation of THF and subsequently a final liquid with higher THF composition. Given 
that THF increases lomustine solubility, batch crystallization in the hybrid case operates 
at higher initial concentration, which leads to increased yield and less reaction time 
needed to manufacture 0.5 kg of lomustine crystals. 

4. Conclusions 
This work demonstrates the features of PharmaPy to analyze a diverse set of 
pharmaceutical flowsheets, through the use of dynamic, first-principle models. In the case 
study presented, start-up effects and thermodynamic limitations mark the key differences 
and challenges in translating an end-to-end batch process to a fully continuous operating.  
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Abstract 
This work presents a computer-aided framework for the screening of deep eutectic solvent 
(DES) systems by using the α-tocopherol extraction from methylated oil deodorizer 
distillates (MODD) as an example of practical relevance. Taking advantage of the 
differences in the hydrogen bond donating abilities of α-tocopherol and methyllinoleate 
(model compounds in MODD), the DES screening task is to select suitable components 
that can achieve the associative extraction of α-tocopherol by in situ DES formation at 
high selectivity against methyllinoleate. The COSMO-RS model is employed in the DES 
screening for two purposes: (1) The solid-liquid equilibria between α-tocopherol and each 
candidate component are calculated to check the potential for DES formation and identify 
the existence of a proper liquid window. (2) The infinite dilution capacity and selectivity 
of different components for the α-tocopherol/methyllinoleate extraction are predicted to 
estimate their potential for the separation task. The components preselected by COSMO-
RS evaluation are further examined regarding other physical as well as environmental, 
health, and safety (EHS) properties. 
Keywords: Eutectic solvent, component screening, COSMO-RS, α-tocopherol extraction 

1. Introduction 
Eutectic solvent systems, in most cases also coined as deep eutectic solvents (DES), not 
only have physicochemical properties similar to ionic liquids (ILs), such as negligible 
vapour pressure and a wide liquid phase existence range, but also feature green and 
sustainable characteristics such as non-toxicity, biodegradability and low cost (Smith et 
al., 2014). For these reasons, DES are widely expected as promising alternative to 
conventional organic solvents in many chemical processes, especially for the extraction 
of natural products from bio-resources, for instance, the extraction of α-tocopherol from 
methylated oil deodorizer distillates (MODD) (Qin et al., 2017). However, despite the 
great interests in DES, most current studies still rely on empirical knowledge to 
experimentally test different combinations of components (Abbott et al., 2017; Qin et al., 
2019) while computer-aided methods guiding DES selection are still scarce. So far, only 
few works (Bezold et al., 2017; Salleh et al., 2017) have attempted to theoretically design 
or screen DESs, which are limited to a small set of already reported DESs or hypothetical 
component combinations assuming eutectic system formation. Moreover, while mainly 
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concentrating on the application performance of DES, their environmental, health, and 
safety (EHS) properties are usually taken for granted, even without an estimation of such 
properties of the pure components. Very recently, our group developed a quantitative 
correlation model for the prediction of freezing point depression to facilitate the search 
of novel DES and subsequently proposed a systematic DES screening method integrating 
the estimation of EHS properties of components (Song et al., 2020a). Nevertheless, due 
to the limited availability of experimental data, this method only applies to DES with 
choline chloride (ChCl) as the hydrogen bond acceptor (HBA) and cannot directly 
estimate the eutectic temperature without knowing the eutectic composition. In the 
present contribution, we propose a general framework for screening DES systems that 
could virtually cover any component of interest. The extraction of natural α-tocopherol 
from MODD, an abundant by-product in vegetable oil refining, is taken as an industrially 
relevant case study. 

2. Method 
As α-tocopherol is a weak hydrogen bond donor (HBD) while methyllinoleate (model of 
the undesirable MODD components) is a weak hydrogen bond acceptor (HBA), the DES 
screening task in the case study is formulated as to select suitable HBA components that 
can in situ form DES with α-tocopherol at high selectivity against methyllinoleate. In this 
context, a computer-aided DES screening framework is proposed as shown in Figure 1. 
It consists of five steps: (1) collection of candidate components, (2) generation of 
COSMO files, (3) estimation of DES formation, (4) evaluation of extraction potential, 
and (5) assessment of physical and EHS properties. In the following, each of these steps 
is briefly described. 

 
Figure 1. Framework for the computer-aided screening of DES. 

Collection of candidate components

Generation of COSMO file

Estimation of DES formation

Literature search
Tm, Hfus

QC calculation

Evaluation of extraction potential 

Assessment of physical & 
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β & S prediction

QSAR analysis or 
database search
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2.1. Collection of candidate components 
To maximize the probability of finally identifying a suitable component, the first step is 
to collect a significant number of candidates. However, estimating the DES formation 
between two components essentially requires not only the evaluation of the non-ideality 
of mixtures, but also the pure component fusion properties (i.e., melting temperature and 
fusion enthalpy or entropy). Therefore, we only collect the candidate components with 
known fusion properties, which include already reported components of DES systems as 
well as other potential ionic liquids or salts. 

2.2. Generation of COSMO file 
As the next two steps are based on the COSMO-RS model (Eckert and Klamt, 2002), the 
COSMO files of all the collected candidate components are required. In this work, all the 
COSMO files of the collected conventional candidates, and α-tocopherol and 
methyllinoleate in the target mixture are already covered in the current COSMObase, and 
can be directly taken for use. For salt components, their COSMO files need to be 
calculated as ion pairs (cation-anion) since Abranches et al. (2019) have demonstrated 
that this manner is more reliable than the one as electroneutral mixture (cation, anion) for 
SLE prediction of DES systems by COSMO-RS. The details for the COSMO file 
calculation of salt components can refer to our earlier work (Song et al., 2020b). 

2.3. Estimation of DES formation 
The COSMO-RS solid-liquid equilibria (SLE) prediction is performed to check whether 
component combinations can form DES or not. With the required COSMO files and 
fusion properties of each component, the SLE of binary systems can be calculated from 
Eq. (1) by neglecting the secondary term related to heat capacity upon melting: 

      (1) 

where ΔHfus and Tm represent the fusion enthalpy and melting temperature; x and γ stand 
for the mole fraction and activity coefficient in the liquid phase, respectively. The liquidus 
curves (solubility curves) of the two component in the systems are calculated separately, 
and their intersection point, if it exists, is identified as the eutectic point (Te). By 
comparing the predicted Te with the Tm of two individual components, the potential 
formation of DES systems can be estimated. 

2.4. Evaluation of extraction potential 
After checking the possibility of forming DES systems, different candidate components 
should also be evaluated with regard to their extraction potential. In this step, the infinite 
dilution capacity (C) and selectivity (S) on the mass basis of different candidates for the 
extraction task are calculated as defined in Eqs. (2) and (3). 

       (2) 

        (3) 

Here, γ∞ 
i and γ∞ 

j  are the infinite dilution activity coefficients of the target solute (i) and the 
dilute (j) in each candidate component to be evaluated; MWi, MWj, and MWcom denote the 
molecular weights of i, j, and candidate component, respectively. Similar criteria have 
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been demonstrated to be effective for screening ionic liquids as solvent with high mass-
based extraction performance (Song et al., 2017) and thus are also used here for DES 
component selection. 

2.5. Assessment of physical and EHS properties 
As there is currently no general method for predicting the physical and EHS properties of 
DES systems, such properties of the individual components are analysed instead as 
empirical reference. In this step, the candidates retained after the above steps are first 
searched through chemistry databases (e.g., PubChem) to check whether there are 
experimental data on the related properties; if no experimental data are available, 
quantitative structure-activity relationships (QSAR) models from literature are then 
sought for preliminary analysis, as introduced by Song et al. (2020a). The candidates with 
desirable physical properties and potential EHS compatibility are finally retained as 
promising DES components for further studies. 

3. Application 
In the case study for the extraction of α-tocopherol from methyllinoleate, overall 133 
candidates with known fusion properties are collected from literature. This candidate 
database includes 21 salts and 62 conventional components that have been involved in 
already reported DES systems as well as 50 salt compounds (in some cases can be referred 
as ionic liquids) newly introduced here. 
The COSMO files of all the collected salt components are calculated by Gaussian 09 
(Frisch et al., 2009) following the same procedure as introduced earlier (Song et al., 
2020b). As it has been demonstrated that the conformers of salt component have a notable 
effect on the SLE prediction by COSMO-RS, different anion locations around cation are 
taken into account as initial configuration for the geometric optimization in the procedure. 
For each salt component, two to six stable conformers are correspondingly obtained and 
are selected simultaneously in the SLE calculation. 
To screen components that can form a DES if mixed with α-tocopherol, the binary SLE 
of {candidate component + α-tocopherol} are calculated by COSMO-RS and compared 
with those of {candidate component + methyllinoleate}. As both α-tocopherol and 
methyllinoleate are of low polarity (as implied by their structures of long alkyl chain, 
Figure 2) and high fusion enthalpy (56.28 and 48.16 kJ/mol, respectively, as estimated by 
the Joback method (Joback and Reid, 1987)), COSMO-RS can be considered as a reliable 
approach for predicting the Te of such systems (Song et al., 2020b). 

 
Figure 2. Molecular structures of (a) α-tocopherol and (b) methyllinoleate. 

After the SLE calculation, the DES formation of different binary systems is judged by: 

      (4) 

(a) (b)

K5),min( cale,Bm,Am, >-TTT

344



Computer-Aided Design of Deep Eutectic Solvent Systems for the Associative 
Extraction of α-Tocopherol from Deodorizer Distillate 
   
where Tm,A and Tm,B represent the melting temperatures of two individual components, 
and Te,cal is the eutectic temperature calculated by COSMO-RS. By applying Eq. (4), only 
the combinations with a predicted Te that is at least 5 K lower than the melting 
temperatures of both two components are selected for potential DES formation. It is worth 
mentioning that the judgement of “true” DES may be more physically complex than 
simply based on the difference between the Te of mixture and melting temperature of pure 
components, as discussed by Martins et al (2019). However, as we mainly focus on the 
application potential here, Eq. (4) can be used for the purpose of fast screening. Based on 
this constraint, 36 of the 133 candidates are retained. Besides, 9 candidates with melting 
points below 293.15 K that are directly applicable as extraction solvents are also kept for 
comparison of the separation potential in the next step. 
The C and S of the 45 candidates retained above for the α-tocopherol and methyllinoleate 
extraction at 293.15 K are calculated based on Eqs. (2) and (3). As compared in Figure 3, 
the 9 additional candidates (with Tm below 293.15 K) have much lower C and S than the 
36 candidates selected based on the judgement of DES formation. This comparison well 
demonstrates the advantage of the strategy of associative extraction of α-tocopherol from 
methyllinoleate over the direct extraction approach. The best candidate with the highest 
C and S is [P4,4,4,4][MeSO3] and the second one is [N4,4,4,4][Cl]. Following that, 
[N2,2,2,2][Cl], [N6,6,6,6][Br], R-camphor, and [N5,5,5,5][Br] are better than the remaining 
ones. These six candidates can be regarded as the top six candidates from the point of 
view of their extractive power. When further investigating these candidates in PubChem, 
R-camphor is found to be flammable and hazardous to health while the other 5 salt 
candidates have currently not been reported to violate critical EHS criteria. It is interesting 
to note that [N4,4,4,4][Cl] has already been experimentally demonstrated to be able to form 
DES with α-tocopherol. It exhibits an excellent extraction performance for this separation 
task (Qin et al., 2017). This finding confirms the suitability of the proposed DES 
component design method, and indicates that the other selected candidates, especially 
[P4,4,4,4][MeSO3], are very interesting to be assessed in future experimental studies. 

 
Figure 3. Comparison of the extraction potential of the 45 retained candidate components. 
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4. Conclusions 
In this work, a computer-aided framework for the screening of DES systems based on the 
SLE prediction by COSMO-RS is presented and applied to the case study of searching 
suitable HBA components for the associative extraction of α-tocopherol from 
methyllinoleate. This framework could be readily extended or adjusted to other similar 
processes to rationally guide the DES or DES component selection prior to costly 
experiment studies. 
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Abstract
A photo-electrochemical reactor has been gaining interest and has been seeking
improvements in design, production efficiency, and cost reduction. As these
improvements can make a photo-electrochemical reactor compatible with renewable
fuel production devices, photo-electrochemical reactors’ design aspects are critical to
reaching optimal performance through distinct and optimal reactor architectures. Thus,
this study demonstrates designing factors related to single and double reactors following
prior design decisions and performance indicators as these decisions play a significant
role in achieving optimal design. Therefore, the results demonstrate that simplicity,
functional convenience, and operational costs are the major decisions that need to be
taken before the designing phase. Overall operation yield, current efficiency, energy
efficiency, overall selectivity, and specific energy consumptions are performance
indicators used to compare designed reactors. These decisions and indicators can
provide insights into practical reactors’ designs.

Keywords: PEC, single reactor, double reactor, design, design indicator

1. Introduction
The most abundant energy sources is solar energy, but it is scattered and

intermittent, this requiring storage through a fuel conversion (e.g., ammonia, hydrogen,
etc.). Photosynthesis is a route that is a viable low temperature for solar fuel generation.
Artificial photosynthesis applies the same concept as photosynthesis using
semiconductors that capture lights and attached to electrodes covered by catalysts.
Then, catalysts generate hydrogen or other products and generate oxygen through
electrochemical reactions. Extensive research has been devoted to developing
solar-driven electrolysis materials; however, the design aspects of the electrochemical
system have gained little attention. The design aspects of these systems are critical
because the combination of the materials that offer optimum performance in such a
system is significantly dependent on the system’s architecture and operating conditions.

Significant efforts have been devoted to the development of
photo-electrochemical (PEC) reactor performance for solar-driven fuels. One of the first
works conducted by Fujishima and Honda in 1972 proposed the use of flat plates of
single-junction light-absorbers attached in an electrolyte as PEC (Fujishima and Honda,
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1972). After their work, multi-junction PEC reactors have been suggested.
Multi-junction PECs increase photocatalysis efficiency due to improvements in the
sunlight absorption (Khaselev and Turner, 1998). Additionally, two electrode reactors: a
photoactive semiconducting and a metallic counter (e.g., SrTiO3 and KTaO3), have been
suggested for solar fuel production (Domen et al., 1980). PEC systems can be used for
various fuels such as hydrogen, ammonia, and methanol. Recent studies have
investigated designs based on nano-structured and micro-structured components where
the embedded nanoparticles in the electrolyte serve as electrocatalytic reaction sites and
as a light absorber. Consequently, such a structure allows a larger specific surface for
the reactions to occur and enhances the sunlight (James et al., 2009).

One of the significant components in double or compact PEC reactors is
separators. Separators facilitate product extraction, increase safety, increase
performance, and limit products and electrolytes to crossover, thus limit unwanted
reactions to happen. Separators can be polymer membranes, thin capillaries, and porous
media. Prior research proposed using multi-functional membranes that provide multiple
processes, including product separation, ionic conduction, reactivity, and structure
support(Yang, 2010). Such membranes can be obtained using nano-composite materials.

The design aspects of photo-electrochemical reactors are critical to reaching
optimal performance through distinct and optimal reactor architectures. Some of the
significant design criteria for photo-electrochemical reactors focuses on; (i)
maximization of solar photons’ absorption by photo-electrodes for higher production
yield, (ii) minimization of product gases reaction/recombination by proper separation,
and (iii) minimization of possible losses occurring between electrodes. The second and
the third design criteria are typical for solar-driven reactors and conventional
(electricity-driven) reactors. In contrast, the first design criteria are only for solar-driven
reactors as it targets maximization of solar photons absorption. Previous studies
emphasize that PEC without solar concentrating optics can only operate at a peak
current density of 10-30 mA cm-2. On the other hand, if an external electricity source is
applied, the PEC is used at the current density of 1 A cm-2. Such differences impacted
the optimal PEC design (Haussener et al., 2012).

There exists a considerable body of literature on PEC reactor materials.
However, the design aspects and criteria of PEC reactors are still faded. Reactor
performance indicators for designers to compare and evaluate the manufactured PEC
are not collected in solid form, and general rules to follow before designing the PEC are
also missing in the literature. Thus, additional studies to understand the fundamental
tenets of design criteria are required. In this regard, the objectives of this study are as
follows:
● Presenting advantages and disadvantages of implementing electrochemical reactions

in single and double reactors.
● Revealing design criteria for selection of reactor type.
● Demonstrating general rules before designing PEC reactors.
● Providing reactor performance indicators to evaluate and compare PEC reactors.

2. Advantages and Disadvantages of PEC Reactor Types
Differences between two types: single and double reactors are presented in the
proceeding sections, following a brief description of each reactor.
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2.1. Single PEC Reactor
Open beaker cell is a single and the most basic PEC reactor. The cell is filled with
electrolyte in which the reactor body is submerged. Anode and cathode electrodes are
positioned in the same electrolyte. There is no membrane in such a reactor. So, for
ammonia production via a single PEC reactor, hydrogen passes through the anode and is
converted into protons, which then transports through the electrolyte to the cathode over
which nitrogen passes. Moreover, one of the issues facing open baker cells is that
cathode and anode reaction in the same reactor body makes product quantification less
convenient. Another problem of a single PEC reactor is the electrolyte leaking and air
diffusion into the reactor.

Several studies suggested using proper sealing to prevent air diffusion into the
reactor and electrolyte leaking (Bosserez et al., 2015). The air distribution into the
reactor can cause several issues, such as overestimating oxygen production in the cell as
the oxygen can act as an electron acceptor at the anode. Similarly, underestimation of
hydrogen production in the cell can occur as the oxygen can recombine with hydrogen.
Regarding PEC single reactor body materials, the body of these reactors can be made of
glass such as Quartz and Pyrex since these material types are visible and UV-light
illumination. However, these materials are expensive, so they are not preferable. Hence,
polymer materials (e.g., Teflon and Poly Ether Ketone) are used in building such
reactors (Bosserez et al., 2015). A single PEC reactor’s significant drawback is
recombination reactions due to a mixture of products (hydrogen and oxygen gases).
There is also a safety concern if the hydrogen concentration reaches the explosion limit
(Schröder et al., 2004). Thus, proper PEC design can collect produced hydrogen
separately.

2.2. Double PEC Reactor
One of a double PEC reactor’s main features is separating cathode and anode electrodes
via a membrane. Various conditions can be maintained in each compartment in the
double reactor. Higher Coulombic efficiency can be obtained because of the diffusion of
oxygen into an anode compared to a single reactor. Most of the double PEC reactor
designs are based on a proton exchange membrane (PEM) with the occurrence of water
formation reaction in the opposite electrochemical direction. The membrane is placed in
the middle of the two compartments where anodic and cathodic reactions occur, and it is
placed with appropriate sealing to prevent leaking. In such a reactor, the critical
parameters for improving reactor performance are the suitable choice of electrolyte,
electrolyte volume, and ionic path length (Hernández-Pagán et al., 2012). One of the
main disadvantages of double PEC is the membrane occurrence as the membrane
increases the set-up cost and increases complexity. As reported in the literature, the
membrane’s price is 24% of the total fuel cell (Perry et al., 2020).

3. Design Criteria – Single or Double Reactor
One of the first decisions researchers/designers can take in PEC reactor design is using a
single or double reactor. The single reactor operates where the cathode and anode are in
a single electrolyte compartment, whereas the double reactor operates with separated
cathodic and anodic electrolyte compartments by a membrane. The absence of a
membrane is one of the main advantages of a single reactor. The reactor’s design
becomes more straightforward. The cost becomes lower as the materials associated with
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the membrane, such as gaskets and fittings, are not needed in a single chamber, and
membrane degradation is not considered. As recorded in the literature, the membrane’s
cost in a PEM fuel cell accounts for about 24% of its total cost (Perry et al., 2020).
Furthermore, a single type photo-electrochemical reactor without a membrane has more
negligible ohmic resistance than a double type as the membrane impedance is absent.

On the other hand, a double photo-electrochemical reactor avoids producing
unwanted side reactions due to the separation of catholyte and anolyte electrodes. One
of the complex decisions in the double reactor is selecting membrane-type, whether
cationic or anionic. The membrane-type needs to maintain the material balance of both
reactions in cathode and anode to maintain neutrality and avoid pH changes. Cationic
membranes repel neutral molecules and anions, and they are stable in the alkaline
environments as they produce a chemical imbalance when OH- is consumed. Whereas
anionic membranes repel neutral molecules and cations and are unstable in alkaline
environments, they keep the chemical balance by replacing OH- from the electrolyte.
Besides, bipolar membranes have been introduced to overcome the challenges limitation
of cationic or anionic membranes. Bipolar membranes have two layers structure of
cationic and anionic, which prevent unwanted products from crossover. However, these
membranes still need care as some undesired ions can cross over(Blommaert et al.,
2020). The disadvantages of bipolar membranes are delamination and dehydration(Shen
et al., 2017).

4. Initial Decisions During Reactor Design
Despite the diversity of PEC reactors, some general rules are required in reactor design.
Noting that these rules sometimes provide conflicting requirements of the reactor
design. Hence, a critical thinking approach needs to be applied to achieve a suitable
design.
● Simplicity: The reactor design needs to meet the process requirements while

keeping the design structure as simple as possible. This can be achieved by
lowering the capital and operational costs and rendering the used technology.

● Reliability and functional convenience: The reactor must handle routine process
operations such as product extraction and maintenance. For example, the reactor
should facilitate inspection of electrodes and membranes followed by replacing
parts or cleaning. The reactor also needs to operate in a high degree of safety,
reliability, and security.

● Integration: The reactor should integrate into the overall process or environment
directly and conveniently. Hence, the shape, space, and reactor ancillaries must be
considered. It may be advantageous to have all operations such as gas separation
and solvent extraction within the reactor body in some cases.

● Reaction engineering parameters: This category covers optimization of selectivity,
mass transport rate, current distribution, and production rate. To achieve the
optimal speed and selectivity of production, current distribution, and control of the
potential are required. For example, high production rates involve a uniformly high
mass transport over the electrode.

● Operational costs: These costs can be minimized by several factors, including (a)
low and reliable reactor components, (b) small reactor voltage, which results in a
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suitable choice of the material and shape of the electrodes, and (c) absence of high
power mechanical devices for pumping purposes or electrode movement.

5. Reactor Performance Indicators
Since there is a variety of reactor designs, the need for reactor performance indicators is
essential. Table 1 shows the reactor performance indicators and the expressions of the
indicators and their observations. These indicators help designers to evaluate the
performance of the manufactured reactor.

Table 1: Reactor performance indicators

Reactor
Performance
Indicator

Definition Expression Observations

Fractional
conversion (x)

The fraction of
reactant, that is
consumed by the
electrochemical
reaction

𝑥 =
𝑚

𝑖
−𝑚

𝑡

𝑚
𝑖

, initial molar amount of𝑚
𝑖

reactant
, molar amount at time t𝑚

𝑡

Overall
operational yield
( )θ

𝑝

The maximum
molar amount of
desired product
obtained from 1
mole of reactant

θ
𝑝

=
𝑚

𝑝

𝑛
𝑝 

𝑚
𝑖

, moles of reactant𝑚
𝑝

converted to product
, number of moles reactant𝑛

𝑝
consumed

Current
Efficiency ( )∅

The yield based
on electrical
charge passed
during
electrolysis

∅ = 𝑊𝑛𝐹/𝑀
𝑞

, weight of active material𝑊
, number of electrons𝑛

transferred per mole reaction
, Faraday’s constant𝐹
, molecular weight of the𝑀

material
, total charge𝑞

Overall
Selectivity ( )𝑆

𝑝

The ratio of
desired product
to total products

𝑆
𝑝

=
𝑚

𝑝
/𝑛

𝑝

∑𝑚
𝑝,𝑖

/𝑛
𝑝,𝑖

, moles desired product of𝑚
𝑝

P
, number of moles of𝑛

𝑝
wanted product of P

, moles of all product𝑚
𝑝,𝑖
, number of moles of all𝑛

𝑝,𝑖
product

Specific Energy
Consumption (
𝑆𝐸𝐶)

The amount of
substance on a
mass

𝑆𝐸𝐶 =
−𝑛 𝐹𝐸

𝑐𝑒𝑙𝑙

∅ 𝑀

, cell potential𝐸
𝑐𝑒𝑙𝑙

Energy
Efficiency ( )𝐸

It can be
indicated with
respect to energy
yield

𝐸 = ∆𝐺 ∅
𝑛 𝐹𝐸

𝑐𝑒𝑙𝑙
=−

(𝐸
𝑒
𝐶−𝐸

𝑒
𝐴)∅

𝐸
𝑐𝑒𝑙𝑙

, equilibrium potential for𝐸
𝑒
𝐶

cathode
, equilibrium potential for𝐸

𝑒
𝐴

anode

6. Conclusions
This study summarizes the main design criteria for PEC reactors. As there are various
PEC reactor designs, this study lists some reactor performance indicators to compare
and evaluate PEC reactors, including energy efficiency, fractional conversion, current
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efficiency, etc. Besides, we listed few general rules to consider when designing PEC,
such as simplicity, reliability and functional convenience, integration, reaction
engineering parameters, and operational costs. Design criteria for selecting the type of
reactor (single or double) have been presented, and the results have shown that a double
reactor has more advantages compared to a single reactor as different conditions can be
maintained in each compartment of the double reactor, higher Coulombic efficiency can
be obtained because of diffusion of oxygen into the anode. However, the existence of a
membrane causes more complexity in the reactor.
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Abstract 
The advanced exergoeconomic analysis performed on different industrial processes is 
used to determine the avoidable exergy destruction and inversion cost rates in order to 
increase the rentability and sustainability of a factory. This study focuses on the 
performance of an advanced exergoeconomic analysis of a double effect evaporation 
process (DEEP) of coffee extract in a factory located in Ecuador. The avoidable and 
unavoidable exergy destruction cost rate and the avoidable investment cost rate were 
determined for each component by exergoeconomic balances using the results from the 
process simulation with the best operational conditions and with the worst operational 
conditions. The avoidable exergy destruction cost rate represents 18.3% of the overall 
exergy destruction cost rate. It was estimated that around 70.3 $/h of the overall 
operational costs could be saved if the exergetic efficiency of the first double effect 
evaporator (D-101) and the steam condenser (E-103) increased from 46.3% to 60.7% and 
52.3% to 61.6%, respectively. Additionally, an increment of the initial concentration of 
soluble solids in the extract can reduce the avoidable operational costs by 15%.  
 

Keywords: Advanced exergoeconomic analysis, Process simulation, Double effect 
evaporation, Avoidable cost rate 

1. Introduction 
Instant coffee is a widely consumed product worldwide, its market is projected to grow 
in the next seven years (Coherent Market Insights, 2019). One of the steps in industrial-
scale instant coffee production is the evaporation of water from the extract in order to 
increase the concentration of soluble solids in preparation for the drying process. This 
evaporation process is energy-intensive, and consumes large amounts of fossil fuels since 
water has a high latent heat. Additionally, previous studies show that this process has low 
energetic and exergetic efficiencies (Mojarab Soufiyan et al., 2016), which lead to a high 
level of energy waste, and consequently raise production costs. In order to address these 
inefficiencies, it is not only necessary to identify and quantify the losses, but also to 
determine the fraction of avoidable losses. The advanced exergoeconomic analysis 
developed with computational tools allows for the determination of the exergy destruction 
rate and the avoidable and unavoidable costs of each component of the system. This 
analysis therefore becomes an important decision-making tool in production industries to 
reduce operational costs and increase the sustainability of the processes.  
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Some conventional exergy analyses have been done in food industries that have 
evaporation as part of their process, such as the production of tomato paste (Mojarab 
Soufiyan et al., 2016), powdered milk (Bühler et al., 2018), and yogurt (Mojarab Soufiyan 
and Aghbashlo, 2017). However there are no advanced exergoeconomic analyses 
performed in food industries; these studies would allow for the determination of the real 
potential for improvement of each component of the process (Liu et al., 2020).  
In this context, this work presents an advanced exergoeconomic analysis of the double 
effect evaporation process of coffee extract, by using real operational data from a factory 
located in Ecuador. The aims of this study are to identify the main sources of exergy 
destruction that significantly affect the operational cost, and to quantify the avoidable cost 
that could be reduced. Additionally, a parametric study is performed to analyze the effect 
the initial concentration of soluble solids has on the operational cost indicators. 

2. Methodology 
2.1. Process Description 
Figure 1 describes the double effect evaporation process of coffee extract in a factory 
located in Ecuador. Coffee extract (stream 1) is an aqueous solution with an initial 
concentration of soluble solids of 18 w/w%, from Robusta and Arabica beans. This 
extract is pumped to a heat exchanger (E-102) for pre-heating it up to 50ºC by using 
steam. The steam is generated in the boiler (B-201) by using fuel oil Nº6.  Meanwhile, an 
already concentrated extract (stream 7) leaves the second effect (D-102); part of it is 
mixed with the heated extract and recirculated to D-102.The other part is sent to the first 
effect (D-101). The evaporated water (stream 11) in D-102 enters the condenser (E-101), 
where the temperature is reduced from 50°C to 32°C. The condensate water (stream 15) 
is mixed with condensate from de D-102 (stream 16) and then it is discarded. The 
concentrated coffee (stream 8) that leaves the D-101 reaches a concentration of 50 w/w% 
and then it is cooled from 66°C to 11°C in a heat exchanger of multiple flow (E-103), 
where cooling-tower water (C1) and chilled water (W3) are used. 

 
Figure 1. Process flow diagram of the double effect evaporation of coffee extract and the 
steam generation unit. 

The process simulation was developed taking into account the following assumptions:  
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The system was at steady state and the elevation in the coffee extract boiling point, 
due to concentration of solution, was assumed to be negligible.  

 
The heat loss rate and the pressure lost in all the components were negligible.  

 
A complete combustion was assumed in the combustion chamber.  

 The steam and gases were considered as ideal gases when the pressure was below 
1000 kPa. For higher pressures, the SRK-Equation was used as the equation of state. 

 The coffee extract and liquid water were considered as ideal solutions. 
2.2. Advanced Exergoeconomic Analysis 
The advanced exergoeconomic analysis of the double effect evaporation process of coffee 
extract was performed with the aim to determine the avoidable (AV) and unavoidable 
(UN) exergy destruction cost rates and investment cost rates at a component level. This 
analysis was done with the real operational data (ROD) from the plant. The dead state in 
the system was considered at 298 K and 1 atm.  For each component the best operational 
conditions (BOC) and the worst operational conditions (WOC) were established based on 
a previous study (Morosuk and Tsatsaronis, 2019) as shown in Table 1. The BOC were 
used for the process simulation in Pro/II ®. The values of each state and the results from 
the kth component were used to perform the exergetic analysis (to calculate 𝐸 , ), the 
economic analysis (to calculate 𝑐 , ) and the exergoeconomic analysis at a component 
level (to calculate 𝐶 , ). The thermodynamic model formulation was performed in 
Engineering Equation Solver (ESS), software.  

Table 1. Values of Parameters for Different Operation Conditions. 

 
The equations used for the exergetic analysis, the economic analysis (TRR methodology) 
(Bejan et al., 1996) and the advanced exergoeconomic analysis (Petrakopoulou et al., 
2012) are presented in Table 2. The auxiliary equations and specific costs for were 
obtained from a previous study (Tinoco-Caicedo et al., 2020).  
Table 2. Equations used for Exergy, Economic and Advanced Exergeconomic Analyses. 

Exergetic/Economic Analyses  Advanced Exergy/Exergoeconomic Analyses 
Parameters Equations  Parameters Equations 

Exergy Balance 𝐸 = 𝐸 + 𝐸   Exergoeconomic 
Balance 𝐶 , = 𝐶 , + 𝑍 − 𝐶 ,  

Exergy 
destruction rate  𝐸 , = 𝐸 , − 𝐸 ,   Exergy destruction 

cost rate (𝐶 , ) 𝐶 , = 𝑐 , 𝐸 ,  

Levelized Total 
Revenue  

𝑇𝑅𝑅 = 𝐶𝑅𝐹 𝑇𝑅𝑅(1 + 𝑖 )   Relative cost 
difference (𝑟 ) 

𝑟 = 𝑐 , − 𝑐 ,𝑐 ,  

Component Parameter ROD BOC WOC 
D-101 ∆𝑇 [℃]  35.0 9.5 50.2 
D-102 ∆𝑇 [℃] 15.1 5.0 20.0 
P-101  𝜂 [−]  0.80 0.95 0.70 
P-102 𝜂 [−] 0.80 0.95 0.70 
P-103 𝜂 [−]  0.80 0.95 0.70 
P-104 𝜂 [−] 0.80 0.95 0.70 
P-105 𝜂 [−]  0.80 0.95 0.70 
E-101 ∆𝑇 [℃]  4.0 2.0 23.0 
E-102 ∆𝑇 [℃]  77.0 10.0 85.0 
E-103  ∆𝑇 [℃]  10.0  2.0  20.0 
E-103 ∆𝑇 [℃]   6.0 2.0  20.0 
B-201 𝜆 [−] 1.24 1.00 1.93 
P-201 𝜂 [−] 0.80 0.95 0.70 

●

●
●
●

●

355



 Tinoco-Caicedo D.L. et al. 

  

Exergetic/Economic Analyses  Advanced Exergy/Exergoeconomic Analyses 
Parameters Equations  Parameters Equations 

Requirement 
levelized 

carrying charges 𝐶𝐶 = 𝑇𝑅𝑅 − 𝐹𝐶 − 𝑂𝑀𝐶   Exergoeconomic 
Factor (𝑓 ) 𝑓 = 𝑍𝑍 + 𝐶 ,  

Annual carrying 
charges (𝑍 ) 𝑍 = 𝐶𝐶𝜏 ∗ 𝑃𝐸𝐶∑ 𝑃𝐸𝐶  

 Unavoidable 
Exergy destruciton 

rate (𝐸𝑥 , ) 
𝐸𝑥 ,  = 𝐸𝑥 , 𝐸𝑥 ,𝐸𝑥 ,  

Annual 
operating and 
maintenance 
costs (𝑍 ) 

𝑍 = 𝑂𝑀𝐶𝜏 ∗ 𝑃𝐸𝐶∑ 𝑃𝐸𝐶  

 Unavoidable 
Exergy destruction 

cost rate (𝐶 , ) 
𝐶 , = 𝑐 , 𝐸𝑥 ,   𝐶 , = 𝐶 , − 𝐶 ,  

Annual total 
costs (𝑍 ) 𝑍 = 𝑍 + 𝑍  

 Unvoidable 
investment cost 

rate (𝑍 ) 
𝑍 = 𝐸𝑥 , 𝑍𝐸𝑥 ,

 
 𝑍 = 𝑍 − 𝑍  

 

Furthermore, the unavoidable investment cost for the kth component was determined 
following the same methodology (simulation, exergetic analysis, economic analysis and 
exergoeconomic analysis), using the worst operational conditions (WOC) which implies 
the lowest possible component purchase costs (Gungor et al., 2015). 

3. Results and Discussion 
The results from the advanced exergoeconomic analysis are shown in Table 3. The 
components that have the highest avoidable exergy destruction rate (𝐸 , ) are (in 
descending order): B-201, D-101 and D-102. However, the components that have the 
highest avoidable exergy destruction cost rate are (in descending order): D-102, E-103 
and D-101. These results are interesting because although B-201 is responsible for 71.7%  
of the overall avoidable exergy destruction rate, it only represents the 4.6% of the overall 
avoidable operating costs (𝐶 , + 𝑍  ). On the other hand, despite having a low 𝐸 , , the E-
103 is responsible for 15.9% of the overall avoidable exergy destruction cost rate. This is 
due to this component having the highest specific cost of the system (2x10-3 $/kJ) because 
it uses tower water and chilled water for cooling the concentrated extract.  

Table 3. Results of the Advanced Exergoeconomic Analysis 

 

Comp. 𝑓 (%) 𝑟  𝐸 , (𝑘𝑊) 𝐸 , (𝑘𝑊) 𝐶 , $ℎ 𝐶 , $ℎ 𝑍 $ℎ 𝑍  $ℎ  

E-101 2.0 4.5 0.4 51.0 2.4 300.1 0.7 5.4 
D-102 55.0 1.5 27.9 12.7 57.2 26.2 7.8 93.5 
D-101 86 6.4 27.7 60.6 4.3 9.3 4.1 78.1 
E-103 8 8x10-4 1.6 2.0 13.1 16.5 8x10-3 2.7 
B-201 8 2.5 168.5 596.9 4.2 15.0 0.2 1.3 
E-102 23 7.4 6.8 13.3 1.1 2.2 4x10-2 0.9 
P-101 89 2.8 0.6 0.3 3x10-2 0.1 1x10-2 0.7 
P-102 90 2.7 0.6 0.2 0.1 2x10-2 4x10-2 0.7 
P-104 91 2.9 0.2 0.2 2x10-2 2x10-2 2x10-2 0.4 
P-103 91 2.6 0.6 0.2 0.1 2x10-2 3x10-2 0.7 
P-105 93 3.0 0.1 0.1 1x10-2 1x10-2 3x10-3 0.3 
P-201 93 3.8 1x10-2 0.1 1x10-3 1x10-2 1x10-3 0.2 
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Additionally, component D-102 was found to have the greatest improvement potential, 
given that 68.6% of its exergy destruction costs are avoidable. In contrast, the pumps 
don’t have improvement potential, as they account for less than 1% of the overall 
avoidable operating costs. 
The required modifications should be focused to reduce the exergy destruction cost rate 
(even if this results in a higher investment cost), because the components that have the 
highest operating cost, also have the lowest exergoeconomic factor (less than 10%). These 
modifications could be done through changes to the operating conditions or through 
structural changes in the three components with the highest avoidable cost (D-102, E-103 
and D-101) in order to increase their exergetic efficiency. 
Figure 2 shows that an increase in the initial concentration of soluble solids in the extract 
from 18 w/w% to 26 w/w% causes a reduction of the avoidable exergy destruction cost 
rates of the D-101 and D-102, from 5.5 $/h to 3.3 $/h and 71.5 $/h to 46.8 $/h, 
respectively. Additionally, the avoidable investment cost in D-101 and D-102 are reduced 
from 4.5 $/h to 3.7 $/h and 8.6 $/h to 7.1 $/h, respectively. 

 
(a)                                                                (b) 

Figure 2. Effect of the initial concentration of soluble solids in coffee extract on the 𝐶 ,  and  𝑍  of the components (a) D-101 and (b) D-102.  
 
Figure 3 shows that an increment of the initial concentration of soluble solids increases 
the 𝑟  value in both evaporators (D-101 y D-102), causing a reduction of the final product 
cost from 22931 $/T to 21875 $/T. Furthermore, 𝑓  presents an increment in evaporators 
D-101 and D-102 of 3.9% and 5.6%, respectively. This means that an increment in the 
initial concentration of coffee extract could also improve the balances between the 
investment rate and exergy destruction cost rate.  
 

(a)                                                                (b) 

Figure 3. Effect of the initial concentration of soluble solids in the coffee extract on the 𝑟  and 𝑓  of the components (a) D-101 and (b) D-102. 
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4. Conclusions 
The purpose of this study was to perform an advanced exergoeconomic analysis of the 
double effect evaporation process of coffee extract. The results of this research show that 
although B-201 is the component with the highest avoidable exergy destruction rate, it 
does not have a high avoidable cost rate. The components that have the highest potential 
for improvement are D-101, D-102 and E-103 because they have the highest avoidable 
exergy cost rate. Additionally, the initial concentration of soluble solids proved to be a 
significant parameter for the process, given that an 8 w/w% increase of the initial 
concentration of soluble solids reduced the avoidable exergy destruction cost by 15%. 
These results suggest that a reduction of the avoidable exergy destruction rate in these 
components can be achieved and it is possible to have annual savings of $8.37x105 in the 
overall operating costs. 
Further research is needed to optimize the solid-liquid extraction of coffee, in order to 
achieve a higher initial concentration of soluble solids in the coffee extract. Also extended 
parametric and structural change studies are recommended in the double effect 
evaporation process in order to maximize the exergetic efficiency and minimize the 
operational costs. 
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Abstract 
The energy requirement for the separation of a given mixture via a multistage membrane 
cascade depends on the choice of the cascade and its operating conditions. Identifying the 
optimal cascade along with its optimal operating conditions is challenging, since it 
requires the solution of a nonconvex mathematical program. To address the challenge, we 
propose novel Mixed Integer Nonlinear Programs (MINLPs) that are formulated such that 
they can be solved using off-the-shelf global optimization solvers. We illustrate the 
practicality of our models with two case studies: (1) separation of p-xylene from o-xylene 
(2) recovery of natural gas liquid (NGL) from shale gas. Further, for NGL recovery, we 
determine the target selectivity and permeability that will enable membrane technology 
to outcompete the conventional demethanizer. These target values provide guidance for 
experimental groups that are developing new membrane materials for NGL recovery. 
 
Keywords: membranes, optimization, energy efficiency, shale gas 

1. Introduction 
For some separations, membrane technology has been demonstrated to be advantageous 
because of its operational simplicity, modular scale-up flexibility, and relatively low 
capital cost. Nowadays, membranes are used in important applications such as water 
desalination, natural gas sweetening, and nitrogen production. Owing to the commercial 
success in the above applications and some other applications, there has been an increased 
interest in expanding the use of membranes to other separations. Nevertheless, a majority 
of state-of-the-art membranes still have at most moderate permeability and selectivity 
values. This can be a limitation for separations that require both high purity and recovery 
of the component of interest; as a single membrane stage is typically insufficient to meet 
the specifications. One alternative to overcome the limitation is to use a multistage 
membrane cascade. It is well-known that a plethora of cascades exists even for the 
simplest case of a binary mixture (Agrawal, 1997). However, the energy requirement and 
the cost between alternative cascades can differ substantially. Moreover, even for a given 
cascade, the energy requirement and the cost can vary with the operating conditions. 
Identifying the optimal cascade along with its optimal operating conditions is challenging, 
since the equations governing the permeation process are nonconvex. Here, we develop 
two optimization models: (1) a Mixed Integer Nonlinear Program (MINLP) that is 
applicable for both liquid and gaseous binary mixtures (2) an MINLP that is applicable 
for a multicomponent gaseous mixture. For brevity, we highlight only the key elements 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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of our models, and refer the reader to Chavez Velasco et al. (2020); Chen et al. (2020) for 
further details. 
 
While many optimization models have been proposed in the literature (e.g. Qi and 
Henson, 2000; Adi et al., 2016), our models differ in the following aspects. First, several 
formulations oversimplify the permeation process which leads to a significant reduction 
in model’s fidelity. We, on the other hand, retain the essential physical aspects of the 
permeation process that are often ignored in the oversimplified models. Second, most of 
the studies rely on optimization solvers that do not always yield the global optimum. Here, 
we guarantee global optimality of the solutions by formulating the problem such that it 
can be solved using global optimization techniques, such as those implemented in 
BARON (Tawarmalani and Sahinidis, 2005; Kılınç and Sahinidis, 2018). The rest of the 
paper is outlined as follows. In section two, we describe the key elements of the proposed 
optimization models. In section three, we illustrate the practicality of our approach with 
two case studies. Finally, in section four, we present concluding remarks. 

2. Two novel membrane cascade optimization formulations 
2.1. Single-stage permeator model 
The validity of the optimal solution depends on the fidelity of the single-stage permeator 
model. In this work, we use a permeator model that is reasonably accurate, and at the 
same time, is viable for global optimization. We use flux equations derived from the 
solution-diffusion theory (Wijmans and Baker, 1995) together with the crossflow model 
(Weller and Steiner, 1950) to model the permeation across a membrane. The governing 
equations constitute a system of differential algebraic equations (DAE) shown below: 
 𝑑𝑥𝑑𝑓 = 𝑦 − 𝑥𝑓 ,     𝑦 = 𝑆 (𝑥 − 𝛾  𝑦 )∑ 𝑆 (𝑥 − 𝛾  𝑦 ),     𝑥 (𝑓 ) = 𝑥 ,     𝑖 = 1, … , 𝑛. (1) 

 
Here, 𝑛 denotes the number of components in the mixture, 𝑥  and 𝑦  denote the local mole 
fraction of component 𝑖 on the retentate and permeate sides, respectively, 𝑓 denotes local 
retentate flow, 𝑆  denotes the selectivity of component 𝑖 with respect to the component 𝑛, 𝑥  denotes the mole fraction of component 𝑖 in the inlet stream, and 𝛾 =1/𝑟  for gases, exp(−𝑉 Δ𝑃/𝑅𝑇 ) for liquids  where 𝑟, Δ𝑃, 𝑅, 𝑉  and 𝑇  correspond to 
the transmembrane pressure ratio, transmembrane pressure difference, the universal gas 
constant, molar volume of component 𝑖, and the operating temperature, respectively. We 
solve the DAE system in Eq. (1) analytically for binary mixtures (see Chavez Velasco et 
al. (2020)). For a multicomponent mixture, we approximate the DAE system with a 
piecewise constant parametrization technique (see Chen et al. (2020)). Extensive 
numerical studies show that the approximated solution agrees well with the exact solution 
of the DAE system. 
 
2.2. Proposed formulations  
In this subsection, we briefly describe our optimization models. Figure 1 shows the 
superstructure we considered for binary liquid separations. The superstructure for binary 
gaseous mixtures has the same stream connections, but the pumps are now replaced with 
compressors. In either of these networks, the permeate stream from each stage can be 
recycled to any of the two immediate previous stages, or can be withdrawn from the 
cascade to be part of the final permeate product. Moreover, the feed can be located at any 
of the membrane stages. In the case of multi-component gaseous separations, currently, 
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we have considered a simpler cascade superstructure where the permeate stream can only 
be recycled to the previous stage.  

 
Figure 1: Cascade superstructure for binary liquid separations (Chavez Velasco et al., 2020). TC 
stands for turbocharger 

The optimization problem for both binary and multi-component separations is 
summarized as: for a given feed, find the membrane cascade with at most N stages along 
with its operating condition that separate the given mixture into two product streams with 
a specified composition while minimizing the energy consumption. The optimization 
problem is formulated as MINLP. Here, binary variables are introduced to regulate the 
flows along the paths that connect various splitters and mixers. Whereas continuous 
variables model stream compositions and flows. Furthermore, in the case of binary 
separations, the pressure ratio (or trans-membrane pressure difference) was modeled as a 
continuous variable. Nevertheless, in the case of multicomponent gaseous separations, 
the pressure ratio is modeled as a discrete variable as it helps to expedite the convergence. 
The objective function computes the total power needed to operate the pumps (or 
compressors). The main constraints in the optimization model are: 1) overall and 
component mass balance constraints around mixers, splitters and each membrane, 2) 
single-stage permeator model for each of the membranes in the cascade, 3) constraints to 
restrict flows along specific paths. 
 
2.3. The challenge of guaranteeing global optimality 
To obtain global optimality certificate in a reasonable amount of time with BARON 
(Kılınç and Sahinidis, 2018), we derive additional cuts for the problem using physical 
insights and by exploiting mathematical properties of the governing equations. Some of 
these cuts, although implicit in the model, are not implied in the relaxation. Therefore, 
providing these cuts explicitly helps in expediting the convergence characteristics of 
BARON. We refer the reader to Chavez Velasco et al. (2020) for the details and numerical 
experiments demonstrating their potential. 

3. Exploring the potential of membrane cascades  
The energy requirement of a membrane cascade depends on the permselectivity of the 
chosen membrane. When evaluating the energy potential of a membrane-based process 
for a given separation, one of the following scenarios can be found: 1) a specific 
membrane with a specific permselectivity is available, 2) no specific membrane is 
available, and thus, the permselectivity is unknown. In the first scenario, the solution of 
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our proposed optimization model would allow to identify the optimum-energy membrane 
cascade along with its optimal operating condition. Then, the energy consumed by this 
cascade can be compared against the energy required by alternative separation options. If 
it happens that the optimum cascade consumes higher energy than that of alternative 
separation processes, or as in scenario 2, no specific membrane is available for the given 
separation task, it becomes relevant to determine what would be the target membrane 
permselectivity that is needed for the membrane-based process to make it more energy 
efficient. The following examples illustrate this targeting procedure. All membrane 
cascade optimization cases discussed in this section were solved to 5% of global 
optimality gap using BARON 18.5.8 (Kiliç and Sahinidis, 2018). 
 
3.1. Separation of p-xylene/o-xylene 
We consider the separation of a liquid mixture with 65 mol% p-xylene and rest o-xylene 
at 1 bar and 30 °C. Our goal is to recover p-xylene with 99 % recovery at 99.5 % purity. 
First, we consider a membrane with a p-xylene permselectivity of 50. For these 
conditions, the optimal four-stage membrane cascade identified by our approach 
consumes 52 kW per mole of feed for pumping the feed and the recycle streams1. 
Membrane permselectivity values of 60, 77, and 106 would reduce the membrane cascade 
power by 10 %, 20 %, and 30 % respectively. The procedure illustrated here helps in 
guiding material researchers to determine the membrane target properties needed for a 
given application. 
 
3.2. Natural gas liquid (NGL) recovery from shale gas 
Here, the objective is to separate shale gas into a CH4-rich stream and an NGL stream 
containing C2H6, C3H8, C4H10, and C5H12. Traditionally, this separation is performed 
using a cryogenic demethanizer (Yoon et al., 2017). However, the traditional technology 
is not suitable for modularization, and membranes are perceived as a potential alternative 
for modular plants. Nevertheless, even the state-of-the-art membrane materials have a 
low selectivity towards CH4 (around 5 for C2H6/CH4), so a single membrane stage is not 
sufficient to meet the desired product specifications. Most of the membranes designed for 
this separation have a reverse permselectivity, meaning that the heavy components, NGL, 
permeate faster than the light component, CH4 (Merkel et al., 2000). For a comparative 
analysis between a cryogenic demethanizer and a membrane cascade, we consider 200 
million standard cubic feet per day (MMSCFD) of shale gas from the Bakken Basin, 
which contains 60 % CH4, 20 % C2H6, and 20 % C3+ (C3H8, C4H10 and C5H12 lumped as 
a single component). The feed and the retentate are assumed to be at 30 bar. Since the 
feed is already at high pressure, we send it directly to the cascade without any further 
compression. Furthermore, given that the separated retentate stream needs to be 
transported via pipeline, we also do not consider the expansion of this stream for the 
purpose of recovering energy from it. This eliminates the turboexpander shown in Figure 
1. For the demethanizer, we simulated in Aspen Plus the process flowsheet proposed by 
Yoon et al. (2017). Our simulation shows that the demethanizer consumes 12,000 kW to 
produce CH4 with 96 % recovery and 94 % purity. In our analysis of the alternative 
separation through a membrane cascade, we approximated the feed as three-component 
feed, which has 60 % CH4, 20 % C2H6, and 20 % C3H6.  Here all the C3+ components are 
lumped as a pseudo component with the same selectivity as C3H6. The selectivity of 
CH4/C2H6 is 5 for a polymeric membrane (Starannikova et al., 2006) and we assumed a 

                                                           
1 The efficiencies of the pumps and the turbocharger were assumed to be 75% and 80% respectively 
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selectivity of 100 for CH4/C3H8. After solving our MINLP, we found that the optimum 
two-stage and three-stage membrane cascades would require a total energy of 84,181 kW 
and 28,456 kW respectively to produce CH4 with the same recovery and purity as that 
obtained from the demethanizer2. By performing sensitivities on C2H6/CH4 
permselectivity, we determined that a target selectivity of 25 and 20 would be needed for 
the two-stage and three-stage membrane cascade respectively in order to consume the 
same energy as the demethanizer. 
 
It is important to mention that the viability of using either a cryogenic demethanizer or a 
membrane cascade not only depends on energy consumption, but also on economics. 
Therefore, we also calculate and compare the net present value (NPV) for the two 
processes. The NPV, which accounts for both capital and operating costs, was calculated 
assuming a plant-life of 15 years and 10 % discount rate. We note that although the 
membrane permeance does not affect the power consumption of a membrane cascade and 
the cost of the compressors, it strongly affects the required membrane area, and 
consequently the membrane cost. To identify the target combination of permeance and 
permselectivity that would be needed for the analyzed separation through a two-stage 
cascade, we generated the permeance-selectivity curve shown in Figure 2. This plot 
provides useful guidance to quickly determine if a two-stage membrane cascade would 
be economically attractive. To elaborate, if the membrane permselectivity and permeance 
falls above the corresponding curve in Figure 2a), an optimum two-stage membrane 
cascade would be more economical than the conventional cryogenic demethanizer. 
Different from the Robeson upper bound curve which reflects the challenge of improving 
both permeance and selectivity, the permeance-selectivity curve introduced here provides 
a lower bound on permeance and selectivity for an economically attractive process. Figure 
2b) shows the net present value distribution for the circled point in the permeance-
selectivity curve. 
 

 
Figure 2: a) Net present value breakdown of the cryogenic demethanizer and the membrane cascade 
as function of selectivity and permeance. All points on each curve yield the same net present value, 
and require the same energy consumption as that for the cryogenic demethanizer. b) Cost 
distributions for the circled point in a) 

                                                           
2 For each compressor in the membrane cascades we assumed an isothermal efficiency of 75% 
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4. Conclusions 
In this article, we have briefly described two different membrane cascade optimization 
models that for a given mixture, either liquid or gaseous binary mixture, or 
multicomponent gaseous mixture, finds the optimum membrane cascade along with its 
corresponding operating conditions that minimize the energy input. To illustrate the 
utilization of our proposed MINLP models, we analyzed two separation examples. For 
these examples, we described a targeting procedure that for a given separation, helps to 
determine target membrane properties such as permselectivity that would be needed to 
outperform the energy efficiency of alternative separation options. Furthermore, for the 
analyzed separation of NGL from shale gas, we introduced an easy-to-use graphical tool 
that guides on which combination of permselectivity and permeance would be needed for 
a two-stage membrane cascade in order to be economically attractive as compared to a 
conventional demethanizer process. 
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Abstract 
Carbfix is a technology to permanently store captured CO2 and other sour gases from 
emission sources as rocks in the subsurface. CO2 charged water is injected into the basalts 
to promote the carbonization of CO2. The dissolution of CO2 into the aqueous phase 
facilitates the mineralization of CO2. It has been demonstrated that over 95% of CO2 
captured and injected was turned into a rock in the subsurface in less than two years. In 
the original project, this technology aims to store CO2 from geothermal power plants in 
Iceland. However, it can be applied to the CO2 capture from a combined-cycle natural gas 
power plant as well. This study would like to apply this technology to store the CO2 from 
a combined-cycle natural gas power plant to achieve the near-zero emission target. 
Therefore, the CO2 storage process has to be modeled and optimized based on this 
technology. In this process, the water consumption is determined by the depth of the 
injection well, the temperature, and the water's salinity. The capital costs (injection wells, 
monitoring wells, injection surface facilities) and operating costs (maintenance, 
electricity, water cost) interact with each other. In this study, a detailed techno-economic 
evaluation of Carbfix technology is performed in the context of a 500 MW combined 
cycle power plant in the US. The sensitivity analysis is carried out with respect to water 
price, electricity price, equipment cost, etc. The key factors are identified based on the 
tornado diagram. This methodology can be integrated with the power plant and CO2 
capture model to optimize the whole system simultaneously in future work. 

Keywords: Carbfix technology, techno-economic evaluation, operating cost, capital cost, 
sensitivity analysis 

1. Introduction 

Increasing CO2 concentration can largely be attributed to the usage of fossil fuels. Carbon 
capture and storage (CCS) play a fundamental role in achieving the goals of the Paris 
Agreement to limit global warming to 1.5-2°C (Snæbjörnsdóttir et al., 2020). It is reported 
that 37% of the total man-made greenhouse gas emissions are from the power sector 
(Selosse and Ricci, 2017). Therefore, the decarbonization of the power sector is the 
primary target on the way to a zero-emission world. However, large-scale deployment of 
CCS has yet to be achieved (Snæbjörnsdóttir et al., 2020). To accommodate the huge 
storage demand of CO2 in the future, CO2 storage technology has become of interest to 
both academia and industries. Carbfix technology, in which CO2 is injected into reactive 
basaltic rocks, is one of the promising technologies for CO2 storage because of the 
abundance of basaltic rocks on Earth’s surface (Gislason and Oelkers, 2014). It has been 
demonstrated that over 95% of CO2 captured and injected was turned into carbonate 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50058-9



 M. P. Etcheverry et al. 

minerals in the subsurface in less than two years in Carbfix technology. Carbonate 
minerals provide a long-lasting, thermodynamically stable, and environmentally benign 
CO2 storage solution (Gislason et al., 2010). However, a huge amount of water is 
consumed to dissolve the CO2 during the injection. Therefore, the cost of water and 
electricity to drive the pumps in the system has to be evaluated precisely before the 
implementation of the technology along with a natural gas power plant. Ragnheidardottir 
et al. (2011) assessed the costs of Carbfix technology for the Hellisheidi geothermal 
power plant. However, the geothermal power plant has its characteristics, and the cost 
analysis heavily depends on the application. This study aims to evaluate the techno-
economic performance of the Carbfix technology to extend it from a geothermal power 
plant to natural gas combined cycle power plant located in the vicinity of North American 
Basalt Formations such as the Columbia Plateau basaltic aquifer in Washington state. 

2. Problem statement and methodology 

This study is novel in that it determines the cost per ton of CO2 stored in USD and 
understands the cost drivers for implementing Carbfix technology in the US market. The 
cost model for the Carbfix system follows the framework allocation described below, and 
it is directly linked to the performance model which calculates the storage unit 
performance requirements based on the upstream technical assumptions. Performance 
and cost analysis including the profitability and sensitivity assessment are implemented 
in a MS Excel spreadsheet. There are three types of costs calculated by this model: 
2.1 Site Costs 

The site costs are those costs specific to the site itself. They are categorized into two 
categories:  
Site screening: Involves the evaluation of regions within a larger area to identify selected 
areas that are potentially suitable for basalt mineralization and CO2 storage. The site 
screening cost is based on the study of Smith et al. (2001), adjusted for inflation. 
Permitting and licensing: Mainly associated with Environmental Impact Assessment, 
which is a crucial process to the successful permitting of the project. The licensing and 
permitting costs are estimates provided by the Carbfix team, converted to US dollars. 
2.2 Capital Costs 

The capital costs are fixed, one-time expenses incurred on the design, purchase of 
equipment, installation, and construction of the storage unit. The purchase of the land is 
excluded from capital costs. They are categorized into five categories:  
Design: The cost associated with the conceptual, preliminary, and detailed engineering 
design of the whole system. It is calculated as 12% of the remaining capital costs.  
Injection well: The cost associated with the engineering, procurement, and construction 
of a single injection well. It is calculated using a unit rate-based cost estimating as a 
function of depth. Quantities and rates in the breakdown were validated with the Carbfix 
team. Assumed diameter: 12″, depending on the injected flow. 
Monitoring well: The cost associated with the engineering, procurement, and construction 
of single monitoring well. The monitoring well cost is a lump sum estimating provided 
by the Carbfix team. Assumed diameter: 9″.  
Equipment: Includes pump compressors, valves, piping, and instrumentation, aside from 
the wells. The cost of equipment is scaled using the pilot project equipment cost 
(Ragnheidardottir et al., 2011) adjusted by inflation and the following formula: 𝐶𝑎𝑝𝑒𝑥 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐹𝑙𝑜𝑤 /𝐹𝑙𝑜𝑤 .  

366



Techno-economic evaluation of Carbfix technology for carbon storage in the US

Installation: The labor and machinery costs involved in the installation of equipment. It 
is scaled using the pilot project installation cost (Ragnheidardottir et al., 2011) adjusted 
by inflation and the formula above. 
2.3 Operation & Maintenance (O&M) 

The O&M costs are the costs incurred for maintaining and operating the whole system. 
They are categorized into four categories: 
Fixed O&M: The cost of operating and maintaining the system regardless of the CO2 

tones stored. It is assumed as 2.5% of Capex.  
Electricity: The cost associated with energy requirement for the injection, split up 
between pumping (7.5%) and auxiliary systems (92.5%). It does not include compression 
(CO2 pressure provided by source). It is assumed that pumping energy requirements scale 
linearly with flow rates from the pilot case, and auxiliary system power consumption uses 
the power scaling factor (Ragnheidardottir et al., 2011). Electricity price from 
Washington state, USA (International Energy Agency, 2020). 𝐹𝑙𝑜𝑤 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐹𝑙𝑜𝑤 /𝐹𝑙𝑜𝑤  𝑃𝑜𝑤𝑒𝑟 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐹𝑙𝑜𝑤 /𝐹𝑙𝑜𝑤 .  
Water: The cost associated with water consumption, based on the performance model 
requirements and the average industrial water price in the USA (Bunch et al., 2017). 
Monitoring: it involves the cost of operating the monitoring well provided by 
Ragnheidardottir et al. (2011) adjusted by inflation, converted to US dollars. 

3. Case study  
The case study inputs are based on a combined-cycle natural gas power plant plus a 
thermal amine CO2 capture unit (Table 1). However, both the power plant and the CO2 
capture unit are out of scope. The injection site is considered to be nearby the power plant, 
so the CO2 injection pressure is equal to the CO2 dispatch pressure from CO2 capture unit. 
The target injection formation is assumed at 400-800 m depth consisting of basaltic lavas 
(Alfredsson et al., 2008). The reservoir capacity is such that it can store the power plant's 
annual emissions over a 30-year life (24Mt of CO2).  
 
Table 1. Upstream system characteristics         Table 2. Storage unit performance details 

Nameplate Cap. (MW) 500  CO2 Flowrate (kg/s) 25.1 
Capacity Factor 0.56  H2O Flowrate (l/s) 552.2 
Generation (MWh/year) 2,452,800 Injection Wells 6 
Emissions (t/year) 833,158  Monitor Wells  1 
Capture Eff. 95%  Energy Req (kWh/year) 56,690,312 
CO2 Pressure (bar) 30 Lifetime (years) 30 

By using the assumptions above and the referenced upstream system technical 
characteristics (Table 1), a performance model for CO2 storage is executed (Table 2). The 
ratio of water to CO2 required to dissolve the CO2 stream at equilibrium is 22, defined as 
a function of temperature, pressure (or depth), and salinity of the water (Gislason et al., 
2010). When at the injection well, both the CO2 and water streams are injected separately 
until a depth in which the water reaches the same pressure as the CO2 (around 350m for 
a 500m well, water level 100m), allowing the full dissolution while descending in the 
injection well. The number of injection wells is based on an assumed well injectivity of 
92 l/s, and associated energy requirements are scaled utilizing a flow scaling factor of 35 
and a power scaling factor of 4 from respective formulas (Ragnheidardottir et al., 2011). 
The ratio of monitoring wells to the injection well is 9 (National Petroleum Council, 
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2019). Table 3 summarizes cost analysis based on the performance model. Figure 1 shows 
the component level contribution in annualized costs (site costs considered under capex).  
Once cost estimation is done, a profitability assessment optimizes the CO2 storage price 
to reach an acceptable internal rate of return (IRR) for the project. Each of the cost 
estimation components described in Section 2 were assessed using a cash flow model 
with the assumptions in Table 4. Taxes and escalation are not considered at this point.  
 
Table 3. Cost analysis results                                              Table 4. Financial details                                                        

Site Costs (USD)  $         2,118,500  Working Capital  15% 
 Site screening   $         2,000,000  DR 12% 
 Permitting and licensing  $            118,500  IRR 15% 

Capital Costs (USD)  $       27,805,395  Equity Financing 30% 
 Design   $         3,089,488  Loan Financing 70% 

 Injection well x 6   $         2,834,559  
Loan Interest 
Rate 4.6% 

 Monitoring well   $            214,000  Payback (years) 15 
 Equipment   $       11,304,703  Inflation (O&M) 1.5% 
 Installation   $       10,362,644    

O&M Costs (USD/year)  $       13,298,270    
 Fixed O&M   $            695,135  
 Electricity   $         2,993,248    
 Water   $         9,249,886    
 Monitoring    $            360,000 `  

 

 
Figure 1. Component level CO2 storage price contribution for case study 

The case study results in a required price of 21.9 USD/tCO2. Subsequently, sensitivity 
analysis was applied to profitability, setting low and high inputs for all the components 
based on market prices across the US. The tornado in Figure 2 shows the analysis’ results.  
In addition, the CO2 storage price was evaluated by benchmarking within the US. 
According to the storage cost assessment performed by FE/NETL (Grant and Morgan, 
2017), there are four saline formation regions with a storage cost of 15USD/tCO2 and one 
region, North Central, with a cost of 22USD/tCO2. In 2019, the NPC updated each 
region's storage costs using the FE/NETL model assumptions but modifying the 
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requirements for site screening and monitoring activities (National Petroleum Council, 
2019). As a result, sites requiring strict monitoring would likely be excluded during initial 
site selection. These adjustments to the assumptions had the effect of reducing the cost of 
storage by approximately 50% compared with the FE/NETL results (Grant and Morgan, 
2017). The US Carbfix price standing among typical US saline storage prices is shown in 
Figure 3. As noted, it is significantly higher than NPC prices. This is mainly because the 
NPC report considered a volume-weighted average cost only for regions with significant 
volumes of CO2 storage, such as 11-135 Gt of CO2.  

 
Figure 2. Tornado diagram for case study price 

 
Figure 3. Saline formation CO2 storage cost by region compared to US Carbfix cost 

4. Conclusions 
This paper reviews the cost analysis for a proposed case study in the US, based on the 
Carbfix pilot project and methodology. The cost analysis is used for the purposes of 
profitability and a sensitivity assessment.  
The resulting cost is heavily weighted in operational costs, specifically water and 
electricity, which should be carefully examined for cost reduction strategies. More 
research should be carried out to study the water requirement to acquire the correct 
reactions and minimize water, and thus power usage. If minimum water quantity is 
achieved, using seawater or recycling water from the reservoir, once the CO2 carbonated, 
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are the main alternatives to reduce costs. In terms of electricity, although the case study 
price for electricity is among the lowest in the US, there is some room for improvement 
by considering on-site generated renewable energy. It was also found that well borehole 
depth affects the cost significantly when varying depth from 400m to 800m. Although the 
single injection well cost increase with depth, water demand decrease, which creates 
important cost reductions. However, injectivity rates from a different formation than the 
one assumed in the case study can determine a different number of injection wells, 
altering the results.  
The profitability assessment results in a price of 21.9 USD/tCO2, which is higher than the 
current prices for saline formations in the US. However, Carbfix technology seems to be 
a good alternative when conventional storage formations are not available. By improving 
water demand and costs, the US Carbfix CO2 storage price may become competitive. The 
tornado diagram shows that the total price of 11.3USD/tCO2 can be achieved with a 
minimum cost of water. 
In light of the findings, it is recommended to perform a study for different basalt 
formation locations around the US, getting specific data regarding the reservoirs and 
available utilities. In future work, this methodology will be integrated to SESAME 
framework, which is a system-scale energy analysis tool to assess the system-level 
greenhouse gas (GHG) emissions of today’s changing energy system. 
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Abstract 
In this work, molecular simulation is utilized to perform the adsorption based separation 
of the ammonia-hydrogen-nitrogen mixture on Metal-Organic Frameworks (MOFs) 
operating conditions relevant to enabling low-pressure Haber-Bosch. MOFs are 
nanoporous structures that possess several desirable features; among them is the 
tunability in which one can target specific molecules through replacement or 
functionalization of organic linkers, metal nodes, and finally, cage decoration. This study 
aims to provide an efficient ammonia separation to reduce operating pressure in the 
ammonia reactor and highlight MOFs’ potential as material for novel applications in gas-
gas separation. The pressure/temperature swing adsorption operational scheme is 
investigated, and the working delivered capacity and purity of ammonia are determined 
accordingly. Molecular simulation provides a way to examine nanomaterial potential in 
such applications inspecting a range of process conditions where the material is 
characterized based on loading, selectivity, and regeneration ability. Following an initial 
computational screening, Co2Cl2BBTA MOF is selected, and force field modifications 
have been done to fit experimental data. Besides analyzing the performance of 
Co2Cl2BBTA, encapsulation of ionic liquid (IL) [bmim][Tf2N] effect was analyzed from 
structural and adsorption properties. Interestingly, an optimum IL loading is determined 
based on the performance objective. Purity factor reached 93.3% at IL loading of 0.372 
weight fraction. When considering capacity and purity factor, IL composition in MOF 
corresponding to 0.165 weight fraction revealed the best performance. Implementation of 
adsorption enhanced Haber-Bosch is expected to reduce immensely the amount of 
electrical power utilized to recycle the unreacted syngas to the ammonia synthesis reactor 
and produce ammonia at high pressures desirable for urea synthesis.  

Keywords: Molecular simulation, metal-organic framework, ammonia, separation 
processes, efficiency 

1. Introduction 
The Haber-Bosch process is the primary method in producing ammonia from nitrogen 
and hydrogen. Ammonia produced, utilized mainly as fertilizers, currently responsible 
for approximately 1.8% of carbon dioxide global emissions (The Royal Society, 2020). 
Efforts have been made to decarbonize the process, hoping to reduce the emission-
intensive nature by implementing renewable energy sources. A critical parameter that 
drives current research investigations is to reduce the pressure and thus energy  
demand of ammonia production. One way to reduce pressure is by implementing 
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absorption/adsorption processes to target ammonia as it is produced. Palys et al. modeled 
an absorbent enhanced ammonia synthesis and optimize the operating conditions to 
minimize the cost (Palys et al., 2018). The work was motivated by introducing enhanced 
absorbent ammonia using a bed of supported alkali metal salt (Malmali et al., 2018; 
Wagner et al., 2017). 
Metal-organic frameworks (MOFs) have been linked to ammonia in the literature due to 
MOFs’ potential towards air purification of toxic chemicals (Wang et al., 2018). In 2018, 
a MOF was reported as the highest loading and capacity of ammonia (Rieth and Dincă, 
2018). The top material showed 8.56 mmol/g capacity under personal protection 
equipment relevant conditions. The capacity value is higher than the previous state of the 
art HKUST-1 MOF by 27% (Rieth and Dincă, 2018). At equilibrium, on the other end, 
the adsorption at 1 bar reached 19.79 mmol ammonia per gram of the MOF 
(Cu2Cl2BBTA). Also, ammonia adsorption was studied in four MOFs (MIL-47, IRMOF-
1, IRMOF-10, and IRMOF-16) (Yu et al., 2012). Ammonia adsorption on these MOFs 
indicated relatively weak ammonia-MOF interactions.  
One way to functionalize a MOF for a particular application is evolved because of these 
materials’ permanent porosity. The incorporation of organic materials inside MOFs’ 
cages has been investigated in the literature, mostly for CO2 capture. The most common 
molecules are ionic liquids (IL), which has several desirable and unique characteristics to 
bind to polar molecules. Han et al. constructed IL incorporated in MOF composite for 
increased ammonia adsorption capacity (Han et al., 2020). The materials thus possess 
several adsorption sites important for capturing ammonia in humid and dry conditions. 
The obtained structure of [BoHmim][Zn2Cl5]@MIL-101(Cr) was shown to have a record 
of 24.12 mmol/g at 1 bar and 298 K. Not only this excellent capacity is observed under 
dry conditions but also at conditions nearing the water-saturated ammonia solution as 
water provides additional sites for ammonia adsorption.  
This work investigates MOFs’ potential towards integration in the ammonia synthesis 
loop in low-pressure adsorption enhanced Haber-Bosch conditions using molecular 
simulation. The exploration is initiated by screening a small MOFs dataset followed by 
adsorption performance evaluation. Moreover, the influence of IL encapsulation in MOFs 
on ammonia capacity and selectivity is examined. 

2. Methodology 
2.1. Screening of MOFs and Force Field Modification 
In this work, the structure set from (Rosen et al., 2019) was used for screening purposes 
and evaluating structure-property relationships. The dataset is based on experimental 
MOFs with various organic linkers and metal nodes. Structures in this dataset are open 
metal site MOFs which present a higher loading capacity of polar molecules. Grand 
Canonical Monte Carlo (GCMC) simulations have been throughout the study to compute 
the adsorption properties of structures using RASPA software (Dubbeldam et al., 2016). 
Structural parameters such as pore limiting diameter (PLD), largest cavity diameter 
(LCD), and pore volume have been evaluated using zeo++ code (Willems et al., 2012). 
Ammonia and nitrogen have been modeled using the TraPPE force field (Martin and 
Siepmann, 1998; Zhang and Siepmann, 2010), whereas hydrogen is modeled using 
Darkrim-Levesque three-site model. MOFs have been assumed as rigid structures and 
parameters for non-bonded interactions obtained from Universal Force Field (UFF) 
parameters (Rappe et al., 1992). Although the choice of force field impacts gas separation 
performance evaluation, Dokur and Keskin showed that MOFs’ ranking using metrics is 
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not sensitive (Dokur and Keskin, 2018; McDaniel et al., 2015). The structures are first 
screened for ammonia capture properties using a combination of ideal selectivity of 
NH3/N2 using the ratio of Henry’s constants at 298K (𝐾 ) and the adsorption of ammonia 
at 1 bar and 298K (𝑁 , ). Factor 𝑓 in Eq. (1) combines the importance of ammonia 
capacity while desiring selectivity. 
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As a result of the presence of open metal sites (OMS), computational of the adsorption 
figures are not precise due to the rise of unique interactions between adsorbates and the 
unsaturated metal centers (Daglar and Keskin, 2020). Here, we modify the MOF 
structure’s UFF structure, altering its cohesive energy to match ammonia’s adsorption 
isotherm before performance evaluation. This technique has been previously used to fit 
experimental adsorption properties data (Pérez-Pellitero et al., 2010). 
2.2. Encapsulation of Ionic Liquid and Performance Evaluation of MOFs and IL@MOFs 
In this work, IL pairs’ insertion was accomplished in the canonical ensemble at various 
IL loading values as implemented previously in the literature (Mohamed et al., 2020, 
2019). The LJ and point charges of atoms in [bmim][Tf2N] IL were obtained from the 
literature (Androulaki et al., 2012). Computations towards adsorption properties were 
carried similar to the procedure aforementioned. The investigation of MOF and IL@MOF 
towards the enhanced Haber-Bosch process was to estimate adsorption of the studied 
structures at adsorption and desorption conditions. Adsorption conditions at 20 bar and 
170 oC, whereas desorption conditions are at 13 bar and 500 oC. Ammonia mole fraction 
at the reactor’s outlet is 4.5% (Palys et al., 2018). As a result, the adsorber’s inlet has a 
mole composition of 23.9%, 71.6%, and 4.5% of N2, H2, and NH3, respectively. The 
composition of the desorption conditions was determined per the equilibrium adsorption 
at the adsorption stage. Equilibrium absolute adsorption is determined in multicomponent 
GCMC simulations. Three critical indicators are investigated, the regenerability factor 
R% (Bae and Snurr, 2011), used here for ammonia adsorption as in Eq. (2), and a new 
parameter 𝑃 that can be observed as the purity of the stream after the desorption step (Eq. 
(3)). Parameter 𝑃 is similar to the working capacity indicator in previous literature studies. 
In order to combine purity with capacity, metric 𝑆 is introduced in Eq. (4). 
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3. Results and Discussion 
The first part of the results is related to the initial screening of the selected set of 
structures. Equation 1 is used to highlight the best performing materials for ammonia 
capacity and best selective ones. The initial screening demonstrated that Co2Cl2BBTA 
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(BBTA: 1H,5H-benzo(1,2-d:4,5-d′)bistriazole), Ni-BTP (1,3,5-tri(1H-pyrazol-4-
yl)benzene) and Cu3(DMTRZ)2(ox)2 are the highest 𝑓 factor among the MOFs in the 
dataset while possessing required PLD for the particular application. The factor reached 
12.3, 26.3, and 18.1 for the MOFs, respectively. It has to be noted that if one observes the 
ideal NH3/N2 selectivity, MOFs built from 1,3,5-benzenetricarboxylate (BTC) organic 
linker exhibit the highest selectivity behind Cu3(DMTRZ)2(ox)2. However, the 
combination of capacity and selectivity is the goal behind this screening. Structural 
analysis showed that Co2Cl2BBTA and Ni-BTP have LCD of 10.3 and 14.9 Å, 
respectively, which can be exploited via IL’s insertion to increase materials’ adsorption 
selective properties. 

 
Figure 1. (a) Adsorption isotherms of NH3 in Co2Cl2BBTA at different temperatures and 
pressures (b) effect of IL loading composition on adsorption and selectivity of ammonia 
 
To obtain precise performance evaluation, adsorption isotherms, especially ammonia, 
have to fit experimentally available data. As mentioned in the methodology section and 
because the generic force field does not resemble interaction between MOFs with OMS 
and adsorbates, further modification of the MOF’s LJ parameters must be conducted. 
Among the top three candidate materials, Co2Cl2BBTA has to be selected for this study 
as it has been studied experimentally and presented the highest ammonia capacity at the 
time of its publication. Several trials to modify the UFF towards a better agreement with 
experimental ammonia adsorption data, most notably between 0.5 and 1 bar. The depth 
of the potential well of the LJ potential 𝜖 was adjusted to 2.25 times the previous UFF, 
and relatively good agreement can be seen in Figure 1(a) to the experimental 
measurements. The modified parameters do not provide an accurate representation of the 
isotherm at the near zero-pressure limit; thus, further modification and incorporation of 
quantum chemistry computation are necessary. The adjusted value reflects the increase 
in dispersion-repulsion interactions cohesive energy of NH3. Figure 1(a) also reveals the 
influence of temperature on the adsorption isotherm using the modified force field. The 
effect of temperature is useful to better select adsorption and desorption conditions based 
on the sorbent. 
Incorporation of IL inside MOFs’ cavity can result in enhanced adsorption or selectivity 
depending on the studied mixture’s components. The insertion of [bmim][Tf2N] in 
Co2Cl2BBTA was accomplished computationally at three different IL loading 

376



Computational Exploration of Adsorption Enhanced Haber-Bosch using  
MOFs and Ionic Liquid/MOFs for Low Pressure Ammonia Synthesis 

(composition).  The IL loading effect on structural properties such as free volume and 
surface area have been studied first, Then, adsorption of ammonia at 1 bar and 298K using 
the modified force field for the MOF. It can be observed that the presence of IL reduced 
the available volume significantly in the MOF. IL loading at 0.372 has reduced the free 
volume up to 64% relative to the pristine MOF. Besides, from Figure 1(b), adsorption of 
ammonia per kg of the total structure (MOF+IL) decreases as more ILs pairs are 
incorporated. The reduction in adsorption per mass can be explained as ILs covers 
essential favorable adsorption sites for ammonia. Meanwhile, selective adsorption is 
favored higher IL loading structures as a result of cavity volume reduction. 
Co2Cl2BBTA and ILs incorporated structures are also investigated based on the 
conditions relevant to the low-pressure Haber-Bosch process. Relevant parameters have 
been calculated as described in the methodology section for the structures. The low vapor 
pressure of ammonia presents a challenge for high capacity and selectivity since the mole 
fraction of ammonia at the inlet is as low as 4.5%. The metrics results show that IL 
inclusion increases the purity parameter 𝑃 which a factor of selectivity at adsorption and 
desorption conditions (Table 1). The inclusion of ILs reduces the free volume, which 
increases the selectivity significantly towards ammonia at adsorption conditions. The 
parameter 𝑃 reaches a maximum at 0.372 weight fraction, while higher IL reduced the 
figure. However, when combining 𝑃 with the working capacity of ammonia, lower IL 
loading composition at 0.165 shows the best ta 1.533. The reason is the working capacity 
is slightly lower than pristine MOF while having better selectivity. The regenerability 
factor reached 72.68% for the pristine MOF. Reduction in regenerability factor is 
observed as ILs pairs increase in number as expected.  
 
Table 1. Performance parameters for Co2Cl2BBTA MOF and IL encapsulated structures 
 

IL weight 
composition 

Ammonia adsorption (mol/kg) 
at adsorption condition 𝑷 𝑺 𝑹% 

Pristine MOF 3.311451 0.626 1.507 72.68 
0.165 3.145765 0.761 1.533 64.03 
0.372 1.496324 0.933 0.584 41.86 
0.496 0.381627 0.915 0.084 24.13 

4. Conclusions 
Adsorption enhanced Haber-Bosch has the potential to reduce the pressure in the 
ammonia synthesis loop. High ammonia affinity at relatively lower partial pressure is 
necessary to achieve significant adsorption figures. In this work, MOFs have investigated 
the implementation of a low-pressure ammonia synthesis loop using molecular 
simulations. The study is initiated by screening synthesized MOFs small dataset, in which 
candidate materials were highlighted. Co2Cl2BBTA MOF was selected as one of the three 
top-performing materials, while experimental adsorption data is available. Modification 
of generic force to describe LJ parameters of MOFs was carried out to fit experimental 
data. Following that, performance evaluation of Co2Cl2BBTA and IL encapsulated MOF 
Co2Cl2BBTA was determined using several metrics and indicators, including purity and 
regenerability of adsorption sites. It has been shown that IL loading plays a role in 
increasing selectivity towards ammonia while reducing the capacity. An optimum 
composition is set given the objective function. From an overall point of view, these 
adsorbents increase the cost of the system’s separation and may jeopardize the purity of 
the product. However, they provide a means to reduce the intensity of the ammonia 
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chemical plant. Therefore, a possible synergy between adsorption based and vapor-liquid 
separations could be a viable alternative.  
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Abstract 
Enantiomers are molecules found in two variants being non-superimposable mirror 
images of each other. Chemical synthesis typically produces a 50:50 % mixture of both 
enantiomers. The separation of such a mixture is crucial for many applications, because 
enantiomer and counter-enantiomer often have completely different effects on biological 
organisms or the human body. However, the separation is a challenging task, as the 
physical properties of both enantiomers are identical.  

The presented work consists of two parts, which are based on model optimization. The 
first part of this paper describes the process of fitting the model to experimental data 
described in (Gänsch et al., 2020). The focus of the second part is on optimization 
considering two conflicting objectives: total harvested product mass and purity of the 
product. A sensitivity analysis presented in (Gänsch et al., 2020) is used as a basis for the 
selection of optimization variables. Some parameters have a significant impact, and their 
optimization allows to control not only the key characteristics as productivity and purity, 
but also the mean crystal size. The genetic algorithm CMAES (Hansen, 2006) and parallel 
computing techniques are applied for optimization.  

Keywords: enantiomers, separation, mathematical modelling, population balance 
equation, genetic optimization 

1. Introduction. Enantiomers and process setup 
 
Enantiomers are optically active stereoisomers being non-superimposable mirror images 
of each other. They can exist as levorotatory (-) and dextrorotatory (+) molecules and are 
denominated usually as L and D. While possessing identical physical properties, 
enantiomer and counter enantiomer may have different effects on biological organisms 
and the human body. Based on the physical identity of the enantiomers, separation 
becomes a challenging task that requires right technique and operation conditions. In the 
concept of the preferential crystallization (PC), a desired enantiomer is separated from a 
racemic solution by providing its single seeds. Cooling crystallization technology is 
applied to promote crystal growth in the solution. Detailed explanation of the PC concept 
is provided in (Coquerel, 2006).  The setup of the fluidized bed crystallizer considered in 
this work and a proof of principle were given in (Temmel et al, 2020).  
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Super-saturated solution enters the bottom of a tubular crystallizer (see Fig. 1) and causes 
growth of seeding crystals inside the crystallizer. Small crystals move with the liquid flow 
to the crystallizer top and are recycled in a feed tank. Larger crystals sink to the bottom, 
are crushed in a mill and sent back to the crystallizer as new feed. The product is 
withdrawn at an outlet on the side of the crystallizer. This is done in a periodic pulsewise 
manner. To describe the periodic product removal, the triggering of an upper photo sensor 
(position ℎ , Fig. 1) has to be modeled. It is assumed that the product withdrawal is 
initiated by the volume fraction of the liquid phase at the sensor position ℎ  falling below 
a pre-specified volume fraction  𝜖 . In a next step the withdrawal of a segment of 
the suspension is described. In the model, this is assumed to happen instantaneously, i.e. 
the suspension located within the height segment ∆ℎ  located above the product outlet, 𝐻 , is taken out as the harvested product. The removed volume in the height segment ∆ℎ  is equal the volume between the two  sensors, ∆ℎ .During product collection the 
suspension above  𝐻 + ∆ℎ  moves downwards over the length ∆ℎ . In a last 
modeling step, the upper part of the crystallizer, which is now “empty”, has to be 
replenished. This is done by filling up the empty top segment of the crystallizer with pure 
liquid possessing the racemic inlet composition. 
 

 
 

Figure 1. Scheme of a single fluidized bed crystallizer for continuous 
preferential enantioselective crystallization. 

 
Process model and variables 

Crystallization processes are complex and difficult to model and control, e.g. they are 
multicomponent systems, multiphase systems, there are property, space and time 
dependent variables. However, when information of the solubility and kinetics are 
available, modeling and further control of the separation process is possible. For 
understanding and designing the process, it is not enough to rely only on experimental 
studies. The model used should be sufficiently detailed, and at the same time allow 
computations to be performed with reasonable effort. 
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A model, which provides a reasonable compromise between these conflicting objectives, 
has been published in (Mangold et al., 2017). It could be shown that that model describes 
the interaction between crystal growth, particle transport, and fluid dynamics in the 
isothermal case with reasonable accuracy. A refined process model from (Gänsch et al., 
2020) distinguishes between the L and the D enantiomer. This allows to evaluate the 
purity of the withdrawn product, which is important when productivity of chiral substance 
increases. Further, it is well known that crystallization kinetics crucially depend on the 
temperature, for this reason an energy balance equation is added. Detailed description of 
the model assumptions and equations is provided in (Gänsch et al., 2020). 

A few of the main model assumptions are listed below (for further details, see Gänsch et 
al., 2020). The crystal population is described by a number density function that depends 
on a single space coordinate h in direction of the liquid flow, a single property coordinate 
L representing a characteristic crystal size, and on time t. Plug flow conditions are 
assumed for the liquid. The particle velocity, which differs from the liquid velocity, is 
described by the classical model by Richardson and Zaki (Richardson and Zaki, 1954). 
Prediction of the crystal shape is based on available experiment data and it is described 
by the sphericity parameter 𝜓   (Binev et al., 2015). The only asymmetry between the two 
enantiomers comes from the initial conditions. Crystal growth is modeled by 
experimentally validated kinetics (Temmel et al., 2020). Nucleation kinetics of a similar 
structure as the growth kinetics are assumed in order to assess the purity of the product.  
Instead of assuming a constant product flow rate as in (Mangold et al., 2017), the periodic, 
pulse-wise withdrawal of product crystals is modeled. As a simple model of the disperser, 
we use a standard population balance model with breakage. 

The developed model allows for studying the process and making predictions in terms of 
productivity, yield and mean product crystal size. 

Laboratory experiments described in (Gänsch et al., 2020) are used as nominal case for 
the presented study. It could be shown that the model agrees reasonably well with 
experimental data. However, a systematic adaptation of parameter values not accessible 
to direct measurements has not been done, yet. This is one objective of  this contribution 
with the aim to provide a valid and efficient process model. The second objective is to 
maximize productivity and purity by finding optimal operation conditions in numerical 
optimizations. Both tasks are non-trivial due to the high system order of the process 
model, the inherent nonlinearities of the process, and the periodic operation regime.    

Model parameters 

Based on the sensitivity analysis presented in (Gänsch et al., 2020), it was determined 
that not all parameters equally affect the key characteristics of the crystallization process. 
For a better understanding of the process, all the model parameters are divided into two 
groups. The first group of parameters has confirmed values obtained from separate  
measurements made in the laboratory. The values of the second group are based on the 
preliminary study. 

Due to the availability of laboratory experiments, only those parameters are fitted in the 
following chapter that do not have experimentally confirmed values. Four model 
parameters belong to the second group and are chosen as optimization variables: 𝑥 - critical breakage size 𝐿  , [𝜇𝑚 . The critical particle size  𝐿 , above which breakage 
may occur, is chosen as the gap between rotating blade and stationary parts of the 
disperser. 
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𝑥 -  desired fraction of the fluid 𝜀  at the sensor position, which in the model 
determines the triggering of a new product removal pulse.  𝑥 - number of daughter crystals 𝑝 in a break-up event inside the mill  𝑥 - sphericity 𝜓. It is defined as the ratio of the surface area of a sphere, which has the 
same volume as the particle, to the surface area of the particle.  
Asparagine monohydrate is used as an example, corresponding data on solubility and 
kinetic parameters were obtained experimentally and presented in (Temmel et al.,2020).  

2. Optimization of the process model 
 
Parameter fitting 

The main idea of this chapter is to minimize the difference between the values of the 
objective functions 𝑂𝐹 obtained by experimental and simulation methods using a genetic 
algorithm CMAES (Hansen, 2006). 
The focus of this optimization round is to achieve productivity close to the nominal case 
described in (Gänsch et al., 2020). Desired productivity as well as results of performed 
simulations presented in Table 1.  
 𝑶𝑭𝟏 = 𝒇𝒔𝒊𝒎𝟏 − 𝒇𝒆𝒙𝒑𝟏 𝟐, 

where 𝒇𝟏- productivity 𝑷𝒓, [𝒈 · 𝒍 𝟏 · 𝒉 𝟏  

(1) 

 
Table 1. Results of the productivity fitting 𝒇𝒆𝒙𝒑𝟏  33.1 

Iteration GA 1 2 3 4 5 6 7 𝒇𝒔𝒊𝒎𝟏  41.07 38.4 37.4 37.1 36 35.82 31.33 𝑶𝑭  63.52 28.09 18.49 16 8.41 7.4 3.13 

 

The use of the CMAES algorithm allows us to get closer to the experimental productivity. 
However, achieving the desired productivity leads to a decrease in other process 
characteristics. In order to find compromise between conflicting criteria, the extended 
objective function 𝑂𝐹  defines a weighted square error of four criteria 𝑓 : 𝑓 - productivity  𝑃𝑟, [𝑔 · 𝑙 · ℎ ; 
 𝑓 - time between 2 withdrawals after reaching cyclic steady state △ 𝑡, [ℎ ;  
 𝑓 - mean crystal size of the product 𝐿, [𝜇𝑚 ; 
 𝑓 - standard deviation of the product size distribution 𝜎, [𝜇𝑚 ;.  

Since the criteria 𝑓  have due to their nature a different scale, they are weighted with 
weighting coefficients 𝑤 , which assure similar impact of each criterion on the objective 

𝑶𝑭𝟐  =  𝒘𝟏 · 𝒇𝒔𝒊𝒎𝟏 − 𝒇𝒆𝒙𝒑𝟏 𝟐 + 𝒘𝟐 · 𝒇𝒔𝒊𝒎𝟐 − 𝒇𝒆𝒙𝒑𝟐 𝟐 + 𝒘𝟑 · 𝒇𝒔𝒊𝒎𝟑 − 𝒇𝒆𝒙𝒑𝟑 𝟐+ 𝒘𝟒 · 𝒇𝒔𝒊𝒎𝟒 − 𝒇𝒆𝒙𝒑𝟒 𝟐 

(2) 
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function 𝑶𝑭 .For this the values 𝑤 = 0.08, 𝑤 = 26, 𝑤 = 0.07, 𝑤 = 0.0028  were 
chosen. 

The results of the parameter identification are summarized in Table 2. The parameter 
fitting process shows an improvement of the criteria.  

Table 2. Results of the model fitting  

Criteria Experiment Simulation 1 2 3 4 5 𝑓  33.1 35 48.54 49 47.88 47.6 𝑓  0.65 1.7 1.22 1.16 1.08 1.06 𝑓  271.4 291 269.88 273.14 271.34 271.02 𝑓  58.2 16.50 13.63 12.76 12.53 12.31 
OF 60.71 33.19 32.87 28.12 27.18 

 

Optimization of the operating parameters 

After finding the reference solution and achieving the quantitative agreement between the 
simulation and experiment results, we return to sensitivity analysis to determine 
parameters for further optimization. It was confirmed (Gänsch et.al, 2020) that operating 
parameters such as inlet liquid concentration 𝑐 , and inlet volume flow rate 𝑉  play a 
significant role in the crystallization process. The focus of this section is on the periodical 
steady state solution of the crystallization process and its dependence on the operating 
parameters. 

The bi-criterial optimization problem is converted to a single objective problem by 
introducing a Pareto coefficient w varying from 0 to 1. The resulting optimization 
function is presented in the form: 𝑶𝑭𝟑  =  𝟏 − 𝒘 · 𝒑𝒖𝒓𝒊𝒕𝒚 + 𝒘 · 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 (3) 

The aim of the simulation is to find optimal operating parameter values to increase the 
productivity and the purity of the product enantiomer.. When using the coefficient w= 0, 
the purity of desired enantiomer is maximized, when using the coefficient w =1, emphasis 
is on the amount of harvested mass. As an initial estimate for new points on the Pareto 
front, the maximum value of the objective function calculated of the previous step is used. 

 
Figure 1. Pareto Front, obtained by using the CMAES algorithm. Number of individuals 
inside population 𝜆=88 for the first iteration, 𝜆=33 for subsequent iterations. Initial 
conditions for the inlet volume flow rate and the inlet liquid concentration were used from 
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the reference case (Gänsch et.al, 2020). Operation condition corresponding to the 
depicted points are given in the Appendix. 

As a result of operating parameters optimization, suitable values for the inlet liquid 
concentration and the inlet volume flow rate were determined depending on the goal set.  

Conclusions 

Improved parameter fitting made it possible to provide a model that simulates key process 
characteristics as productivity, time window between harvestings, mean crystal size, and 
standard deviation of the withdrawal product. Subsequent optimization of essential 
operating parameters has demonstrated the potential of the process with respect to achieve 
high purity and productivity. The evolutionary algorithm CMAES showed high efficiency 
and ispromising for other studies. In view of the big data and the complexity of 
calculations, parallelization techniques should be applied.  
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Appendix 

 Table A1. Operating conditions 𝑐 [𝑘𝑔 · 𝑚 ] 0.045 0.0458 0.046 0.052 0.054 0.0541 0.047 0.05 0.048 0.045 𝑉 [𝑙 · ℎ ] 7.56 7.7 7.6 7.6 8.1 8.4 11.0 11.3 11.7 14.3 𝑚 [𝑔] 30.1 29.92 28.45 28.9 28.06 23.8 23.76 22.7 21.7 19.953 𝑝𝑢𝑟𝑖𝑡𝑦  0.5 0.53 0.7 0.703 0.78 0.85 0.91 0.976 0.99 0.99 
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Abstract 
Waste tyres are part of solid waste materials that are toxic to the environment but have 
the potential to be converted to something of value. South Africa contributes 
approximately 11 million tyres to the global 1.5 billion tyres produced per annum. With 
waste tyres identified as a potential energy source due to its high carbon content and heat 
value, it is not surprising that the government of South Africa has invested in the creation 
of waste tyre management plan intending to recover products and energy from this waste 
material. In this paper, a waste tyre to methanol and electricity process is assessed from 
a thermodynamic and environmental perspective. Two key factors are analysed, carbon 
efficiency and chemical potential efficiency. The purpose of this study is to contribute to 
this research by finding the limit of performance for the conversion of waste tyres to 
methanol and power from a fundamental thermodynamic perspective. For the system 
developed a carbon efficiency of 54.6% and the chemical potential efficiency of 63% 
were achieved. Equally the system produces 2.42 GJ/ ton of waste tyre and has the 
potential to generate a revenue of $ 620/ton of waste tyre. The study shows converting 
tyres to methanol is achievable, however, 45% of the carbon resource will end up as 
carbon dioxide.  
 
Keywords: gasification, waste-to-methanol, electricity, carbon emissions, efficiency 
 

1. Introduction  
 
Solid waste materials such as biomass, waste tyres, and municipal solid waste, have been 
shown to contain adequate energy content to have the potential to substitute fossil fuels 
in the production of power and useful chemicals. Many existing technologies currently 
used for solid fossil fuels can be utilised easily to accommodate these waste materials, 
thus making the transition to alternate fuels achievable. Much of research in energy has 
largely focused on the optimization of technologies such as gasification, pyrolysis, 
combustion and liquefication to estimate the optimum operating conditions to efficiently 
convert solid waste materials to useful products and power.  
 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50061-9



 A-e Mavukwana et al. 

Developing countries such as South Africa have seen an increase in energy needs as the 
economy grows to include the participation of previously disadvantaged persons. 
However, South Africa’s energy needs have been in dire straits in the last decade with the 
state producer Eskom losing most of its available capacity plunging the country into 
severe rolling blackouts, requiring upwards of 6000MW of power demand to be removed 
from the electrical grid to prevent a catastrophic failure of the nation’s power network 
Equally, the country saw the cost of liquid fuels also increasing due to the weakening 
currency and fluctuations in global crude oil prices, and demand. In 2020 the government 
announced plans to diversify South Africa’s energy sources which will embrace new 
entrants and capacity into the energy space. This will allow generation for own use and 
securing power from independent power producers (IPP), creating easy access to cheap 
and clean energy (South Africa, 2020). 
 
In terms of waste generation, the country has identified 38 waste streams that need to be 
diverted from landfills, and one such waste materials is waste tyres. South Africa 
contributes approximately 11 million tyres to the global 1.5 billion tyres produced per 
annum. Waste tyre recycling is identified in the National Waste Management Strategy 
(NWMS) as an area which can contribute towards South Africa’s economic growth and 
the creation of green jobs (Godfrey and Oelofse, 2017). Waste tyres have a high carbon 
content and heat value, much of the research on waste tyres have been dedicated to 
recover products and energy from this waste material.  
 
Methanol is a promising clean-burning fuel with a high octane number, and is an 
antecedent to the production of more complex chemical structures, such as dimethyl ether, 
methylamine, acetic acid, methyl tertiary butyl ether, etc (Dalena et al., 2018). The 
conversion of waste tyres to methanol and electricity would would contribute to the 
country’s energy mix. Studies by (Borgogna et al., 2019; Rivarolo et al., 2016) show that 
there is an environmental benefit to converting waste into methanol than burning it for 
energy as the CO2 emissions reduced by an average of 14%. Whereas (Iaquaniello et al., 
2017, 2018) studies show that  converting refuse-derived fuel to methanol leads to about 
40% and 30-35% reduction in greenhouse gas emissions for methanol production from 
fossil fuels and bio-resources, respectively. Waste to methanol process CO2 emissions are 
half the emissions produced by waste to energy route. 
 
The purpose of this study is to contribute to this research by finding the limit of 
performance for the conversion of waste tyres to methanol and power from a fundamental 
thermodynamic perspective.  

2. Methodology 
 
In this work, the thermodynamic efficiency of the process converting waste tyre to 
methanol and power is measured using two basic metrics, mainly; carbon efficiency and 
chemical potential efficiency. The properties are described as follows: 
 𝐶𝑎𝑟𝑏𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐶 =              (1) 𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝜂 , =                  

(2) 

388



Methanol and power production from waste tyres: a process synthesis  
approach    

Equation 1 measures how much of the carbon in the feed stream ends up in the desired 
products. Less than 100% carbon conversion leads to carbon dioxide emissions. Equation 
2 measures how much of the chemical potential stored in the feed material is translated 
to the desired products during chemical transformation (Sempuga & Yao, 2017). The 
thermodynamic properties of waste tyres utilised in this work can be found in 
(Mavukwana et al., 2020).  

3. Result and discussion 
3.1. Methanol production from tyres 
 
The process starts with the gasification of tyres with steam to produce syngas. Steam is 
selected as the gasification agents since it yields a higher composition of H2/CO compared 
to oxygen. The syngas from gasification is cleaned of acid gases and its H2/CO ratio is 
adjusted in the water gas shift reactor to meet the required ratio for methanol in the 
synthesis reactor. The recommended ratio of H2/CO is 2. The adjusted syngas is fed to 
the methanol synthesis reactor to produce methanol and water.  
 
The overall material balance for the process producing methanol is:  𝐶𝐻 . 𝑂 . 𝑁 . 𝑆 . + 1.166𝐻 𝑂 = 0.814𝐶𝐻 𝑂𝐻 +  0.186𝐶𝑂 + 0.007 𝐻 𝑆 +0.005 𝑁𝐻               (G1) ∆𝐻 = 73.99 𝑘𝐽, ∆𝐺 =  105.36 𝑘𝐽 
The performance of this process in equation G1 is as follows: 𝐶𝑎𝑟𝑏𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  81.4% 𝜂 = 86.3% 
It is assumed that all the available sulfur leaves as hydrogen sulphide, since chemicals in 
the tyre rubber, such as zinc oxides, prevent sulfur-oxidising.  
 
Equation (G1) represent the ideal process or the maximum achievable conversion of 
waste tyres to methanol. This process represents a case where all the operating units are 
energy integrated, with all the units that are exothermic sending their energies to the 
endothermic gasification step. That is, the water-gas shift, and the methanol synthesis will 
send all their energy to the gasification step, to try and achieve an adiabatic process. 
However, the overall mass balance of the process shows that the system still requires 
energy input. If this energy is not added the process would thus be infeasible. One strategy 
for supplying this energy is to combust a portion of the tyre feed.  
 
Figure 1 shows the system that is fuelled by burning an additional number of tyres. The 
process is fully integrated and the overall material balance for the system is: 1.231𝐶𝐻 . 𝑂 . 𝑁 . 𝑆 . + 1.057𝐻 𝑂 + 0.284𝑂 = 0.814𝐶𝐻 𝑂𝐻 +  0.418𝐶𝑂 +0.009 𝐻 𝑆 + 0.006 𝑁𝐻        

         (G2)
 ∆𝐻 = −29.9 𝑘𝐽, ∆𝐺 =  0 𝑘𝐽 

The performance of this process in figure 1 equation G2 is as follows: 𝐶𝑎𝑟𝑏𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  66% 𝜂 = 70.1% 
Therefore, supplying the required energy by burning an additional number of tyres 
increases the carbon emissions and thereby reduces the carbon efficiency to 66% and the 
chemical potential efficiency decreases to 70%. However, the process in figure 1 is not 
possible with conventional technology. Since the gasification step operates at higher 
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temperatures than the other units, the transfer of energy between the various process units 
would have to be done against a temperature gradient and practically that might require 
expensive equipment (Fox & Stacey, 2019).  

 

 
Figure 1: Fully integrated methanol process 

 
Due to practical difficulties in implementinn Figure 1, let us cosider the approach of
partial integrating the process, by supplying the energy needed for the gasification 
step only.  
Figure 2 and equation G3 shows the overall material balance to produce methanol when 
additional tyres are burned to supply the energy needed for the gasification step only.  1.413𝐶𝐻 . 𝑂 . 𝑁 . 𝑆 . + 0.971𝐻 𝑂 + 0.506𝑂= 0.814𝐶𝐻 𝑂𝐻 +  0.599𝐶𝑂 + 0.010 𝐻 𝑆 + 0.0071 𝑁𝐻         (G3) ∆𝐻 = −111.23 𝑘𝐽, ∆𝐺 =  −82.55 𝑘𝐽 
The performance of this process in Figure 2 and equation G3 is as follows: 𝐶𝑎𝑟𝑏𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  57.6% 𝜂 = 70% 
The decision to not fully integrate the G3 process means more tyres need to be burned, 
since the energy from the water gas shift and methanol synthesis is no longer available. 
This leads to higher carbon dioxide emissions and thus the carbon efficiency of the 
process reduces to 57%. The system also produces excess work, if not recovered the 
system will lose it to the environment. The excess energy is recovered by applying heat 
engines at the different units. This leads to the production of 82.55 kW of shaft work 
which can be converted to electricity as show in Figure 2.  
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Figure 2: Partially integrated methanol process 

 

3.2. Effect of temperature 
The process is described on Figure 2 and equation 3 is assumed to be operating at the 
Carnot temperatures. The Carnot temperature can be viewed as the “ideal” temperature 
to operate a process, since neither heat nor work is being wasted. However, Carnot 
temperatures often prove to be impractical. Reaction kinetics are a common limitation to 
the use of Carnot temperature which necessitates a deviation from the ideal. For instance, 
gasification operates at temperatures above 1000oC to ensure high conversion of the 
carbon sources whereas the water gas shift and methanol synthesis reactor must operate 
at temperatures befitting the catalyst used. 1300oC is recommended for gasification of 
waste tyres (Mavukwana et al., 2020), 450oC for water gas shift and 220oC for the 
methanol synthesis. Operating at a temperature other than the Carnot temperature results 
in the loss of some of the potential work. To compensate for the lost work, more feed is 
burned. However, this increases the CO2 emissions even more. The operating temperature 
for the water gas shift reactor is greater than the Carnot temperature, which means the 
unit will require further work input since operating at higher temperatures than Carnot 
temperature recovers more work than the system can provide. Using the notion of heat 
engines, the work produced by the process reduces from 82kW to 48 kW, which is 
equivalent to 2.42 GJ/ ton of waste tyre. An additional amount of 0.492 mol/s of tyres is 
required to make the process feasible. However, the carbon efficiency decreases to 54.6% 
and the chemical potential efficiency decreases to 63%. This, therefore, means that 
converting tyres to methanol is achievable, however, 45% of the carbon resource will end 
up as carbon dioxide. Furthermore, by operating the gasification unit at elevated pressures 
and then expanding the gaseous products, extra work will be recovered.  
 
3.3. Revenue potential  
The revenue potential of the process is obtained by a difference of the product selling 
price and of the cost of feed material. The analysis excludes the capital costs associated 
with each pathway. When electricity is sold at $ 0.098/kWh and methanol sold at $ 
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480/ton (Global petrol prices, 2019), a waste tyre to methanol process has the potential to 
generate a revenue of $ 620/ton of the tyre.  

4. Conclusion  
This work presented a method for process analysis at the “systems” level. This method 
allows a “big-picture” perspective. Such an elevated perspective further allows for the 
possibilities and limits to be investigated before significant time and resources are 
expended in more details-orientated methods. The analysis presented here focused on the 
performance limits of converting waste tyres to methanol and power. A notable result of 
this method shows that high process efficiency can only be achieved through a high 
degree of process integration and with the practice of co-production. Highly specialized 
processes that focus on producing only a few products, will always make a sacrifice in 
overall process efficiency. This study showed that 45% of the carbon feed is lost to carbon 
dioxide when tyres are converted to methanol and power. However, the process has a 
revenue of approximately $ 620/ton of waste processed. Therefore, from an economic 
perspective, converting waste tyres to methanol is preferable to landfilling, as it reduces 
the volume of a hazardous waste stream by converting it to a useful transportation fuel 
and power. However, another pollutant, CO2 is produced.  
 

References 
Borgogna, A., Salladini, A., Spadacini, L., Pitrelli, A., Annesini, M. C., & Iaquaniello, G. (2019). 

Methanol production from Refuse Derived Fuel: Influence of feedstock composition on 
process yield through gasification analysis. Journal of Cleaner Production, 235, 1080–
1089. https://doi.org/10.1016/j.jclepro.2019.06.185 

Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A. (2018). Methanol 
Production and Applications: An Overview. In Methanol: Science and Engineering. 
Elsevier B.V. https://doi.org/10.1016/B978-0-444-63903-5.00001-7 

Fox, J. A., & Stacey, N. T. (2019). Process targeting: An energy based comparison of waste 
plastic processing technologies. Energy, 170, 273–283. 
https://doi.org/10.1016/j.energy.2018.12.160 

Global petrol prices. (2019). Https://Www.Globalpetrolprices.Com. 
https://www.globalpetrolprices.com/diesel_prices/ 

Iaquaniello, G., Centi, G., Salladini, A., & Palo, E. (2018). Waste as a Source of Carbon for 
Methanol Production. In Methanol: Science and Engineering. Elsevier B.V. 
https://doi.org/10.1016/B978-0-444-63903-5.00004-2 

Iaquaniello, G., Centi, G., Salladini, A., Palo, E., Perathoner, S., & Spadaccini, L. (2017). Waste-
to-methanol: Process and economics assessment. Bioresource Technology, 243, 611–619. 
https://doi.org/10.1016/j.biortech.2017.06.172 

Mavukwana, A., Fox, J. A., & Sempuga, B. C. (2020). Waste tyre to electricity : 
Thermodynamics analysis. Journal of Environmental Chemical Engineering, 8, 103831. 
https://doi.org/10.1016/j.jece.2020.103831 

Rivarolo, M., Bellotti, D., Magistri, L., & Massardo, A. F. (2016). Feasibility study of methanol 
production from different renewable sources and thermo-economic analysis. International 
Journal of Hydrogen Energy, 41(4), 2105–2116. 
https://doi.org/10.1016/j.ijhydene.2015.12.128 

Sempuga, B. C., & Yao, Y. (2017). CO2 hydrogenation from a process synthesis perspective: 
Setting up process targets. Journal of CO2 Utilization, 20, 34–42. 
https://doi.org/10.1016/j.jcou.2017.05.004 

South Africa. (2020). The South African Economic Reconstruction And Recovery Plan. 
1(October), 1–32. https://www.gov.za/sites/default/files/gcis_document/202010/south-
african-economic-reconstruction-and-recovery-plan.pdf 

392



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey
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Abstract
Protein extraction is essential to the design and manufacture of bioproducts. A benign
method of increasing academic and commercial interest is aqueous two-phase extraction
(ATPE) (Iqbal et al., 2016), wherein a phase forming additive (in this case polyethylene
glycol with phosphate buffer) separates an aqueous mixture into a target-rich top phase
and a contaminant-rich bottom phase. This paper concerns a multistage separation, per-
formed by repeating the ATPE iteratively to achieve a target protein yield or purity (Rosa
et al., 2009). A McCabe-Thiele diagram is used to compute the number of stages required
to achieve the target.

Unfortunately, the protein phase equilibrium curves used to construct the McCabe-Thiele
diagram are subject to substantial variation depending on the precise composition and
temperature of the mixture being separated. In order to assess the reliability of a multi-
stage ATPE, we examine the robustness of the McCabe-Thiele diagram to variations in
the phase equilibrium curves. It is seen that error propagation is weak, in that the same
number of stages are required to achieve target under a variety of error scenarios. When
this is not the case, a novel method of predicting the number of extra stages required is
presented.

Keywords: protein extraction, multi-stage extraction, ATPE, model uncertainty, error
analysis

1. Introduction

The extraction and purification of biomolecules is central to the manufacture of a vast
range of bio-pharmaceuticals and speciality biochemicals (Doran, 2012). Aqueous Two-
Phase Extraction (ATPE) is an efficient, benign and environmentally-friendly, low-cost
and easily scalable bioseparation technique (Azevedo et al., 2009), suitable for batch or
continuous processing. A solute is fractionated between two aqueous phases, e.g two
polymer solutions or a polymer and a salt, accumulating preferentially in one of the
phases. ATPE has been implemented with a diverse range of solutes (Iqbal et al., 2016),
including proteins, enzymes (Kula et al., 1982), nucleic acids, anitbodies (Rosa et al.,
2013), viruses, metals and metal ions.

A multistage fractionation, repeating the same ATPE, is often needed to meet the exact-
ing requirements for purity and yield demanded in bio-processing applications (Chandler
et al., 2021; Rosa et al., 2009). A Solute is extracted from lean phase x to rich phase y,
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Figure 1: A schematic experimental design for a 3-stage ATPE.

iterating through stages according to

ay,n+1−ax,n =−A≤ 0 (1)

where a denotes amount of solute (in mol or kg), of which A is lost during each stage.
Starting from a0 := ax,0 > ay,0 := 0, N stages are required to reach a desired goal

Xa0 ≥ ax,N = ay,N+1 +A (2)

Where the goal is removal of X × 100% solute (contaminant), x is the extract phase.
Where the goal is recovery of (1−X)× 100% of solute (product), x is the waste phase.
The process is illustrated in Figure 1.

The iteration through stages is classically expressed in the McCabe-Thiele diagram Fig-
ure 2(a), stepping between the operating line ay = ax−A and the phase equilibrium curve
ay = ay(ax) lying above it. Experimentally, however, the total amount a := ax +ay > 0 is
measured more reliably and accurately than either phase, as protein is known to precipi-
tate into the interface between phases (Chandler et al., 2021; Andrews and Asenjo, 1996).
Therefore we work with phase equilibrium curves written as

f (a) := ay = a−ax (3)

and an operating line (which is usually not straight) depicting

fn+1 = ax,n−A = an− fn−A (4)

as shown in Figure 2(b). The midpoint between the equilibrium curve and the operating
line is the straight line 2 f = a−A. The goal Equation (2) becomes fN+1 ≤ Xa0−A.

This paper studies the robustness of the iteration to measurement errors in the construction
of the McCabe-Thiele diagram, essential to planning multistage ATPEs effectively. Such
analyses have only been conducted for liquid-vapour fractionations (Medina et al., 1974),
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Figure 2: A 3-Stage McCabe-Thiele iteration depicted (a) classically and (b) in total
amount terms.

exploiting the particular algebraic form of equilibrium curve in these systems. Section 2
of this article analyses the propagation of errors through McCabe-Thiele iteration. The
robustness of the number of stages N required to achieve X with respect to errors in
the phase equilibrium curve f (a) is described in detail. This analysis is applied to the
extraction of haemoglobin using 13% w/w PEG 1500 (polyethylene glycol, a polymer)
and 11.2% w/w potassium phosphate (at pH 8.0) in Section 3. This is a particularly
awkward extraction to perform experimentally, and so an ideal test and application of
theory. Discussion is provided in Section 4.

2. Error Analysis

We are primarily concerned with errors in the equilibrium curve f , whose value differs
from truth f̂ by δ fn := fn− f̂n.

This error propagates through the amount an, shifting it from its true value ân by δan :=
an− ân

The total error of equilibrium evaluation linearises to

en := fn− f̂ (ân) = δ fn + f ′nδan (5)

where e1 = 0. Introducing g := (1/ f ′−1)> 0, substitution in iteration Equation (4) yields

en+1 = gnen− (gn +1)δ fn (6)

An easy induction on Equation (6) provides the goal error

eX :=
eN+1

a0
=−

N

∑
n=1

(gn +1)δ fn

a0

N

∏
k=n+1

gk (7)

This formula is easily adjusted to incorporate (less significant) errors in the initial con-
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centration (δa0) and the stagewise loss (δAn)

eX =
δa0−δA0

(g0 +1)â0

N

∏
k=0

gk−
âx,N

â0

δa0

â0
−

N

∑
n=1

(gn +1)δ fn +δAn

â0

N

∏
k=n+1

gk (8)

Restating these results for classical McCabe-Thiele iteration is simply a matter of replac-
ing f with y and

g :=
(

1
f ′
−1

)
=

(
∂ay

∂ax

)−1

(9)

When error invalidates apparent succes at stage N, the goal is not truly achieved until

f̂N+J+1 ≤ Xa0−A < f̂N+1 (10)

Linearising an arbitrary approximant f about A

fn := fA + f ′A(an−A) ∀ n > N (11)

such that

J

∑
j=1

g− j
A δ fN+ j ≤

J

∑
j=1

g− j
A δ fA (12)

eventually recasts Equation (10) as

Xa0−A− (gA +1)
(gA−1)

f̂A ≥
(

f̂N+1−
(gA +1)
(gA−1)

f̂A

)
gJ

A (13)

The goal is therefore achievable if and only if

(gA−1) f̂N+1 < (gA +1) f̂A (14)

It would appear one has some freedom to choose f , provided Equations (12) and (14)
are satisfied. The other quantities in this formula should be opaque: f̂A := f̂ (A) can be
measured carefully in advance, and f̂N+1 is the result given by any failed extraction.

3. Results

This Section analyses errors in the extraction of haemoglobin using 13% w/w PEG 1500
and 11.2% w/w potassium phosphate (at pH 8.0), experiments described in Chandler et al.
(2021). This system is one of the more difficult ATPEs, because a significant amount
of haemoglobin precipitates into a solid interface between the top and bottom phases,
where it joins contaminant solids. Such interface effects are a common problem in protein
ATPEs (Andrews and Asenjo, 1996), but usually less dramatic. The interface is variable
and hard to measure, but may be inferred from the top and bottom phases. A compromise
must be struck between recovering target precipitate and rejecting clogging contaminant
solids. The compromise in Chandler et al. (2021) took the extract phase y as 87% of
the top phase, plus the interface whenever the total haemoglobin a exceeded 0.458mg in

396



Analysing the robustness of multi-stage bioseparations to measurement errors

Figure 3: Phase equilibrium curves fitting various quadratics to experimental data f .

a 1.555ml system. Otherwise the interface was added to the waste phase x, along with
the bottom phase and the remainder of the top phase. Figure 3 shows the results of OLS
fitting of quadratic phase equilibrium curves

a−I f (a) = B2a2−I +B1a1−I (15)

The Good equilibrium curve fits the extract phase with I = 0. The Bad equilibrium curve
fits the extract phase with I = 1, overemphasizing the goodness of fit at small a. The
Combo equilibrium curve takes I = 0 to fit the top, bottom and interface curves separately,
then allocates the interface phase post hoc by combining these three quadratics.

In analysing errors in the equilibrium curve, we must accommodate another difficulty
with this system, which is the proximity of the equilibrium curves to the midpoint line
(and therefore the operating line(s)) in Figure 3. For the purpose of analysis we use the
Good equilibrium curve as f , and take in turn each other curve as truth f̂ . Included in

f B2 B1 e2 e4 J Predicted X
Good -0.012 0.582

Combo (I in W) -0.122 0.465 0.029 0.012 0
Combo (I in E) -0.105 0.672

Bad 0.225 0.384 -0.020 -0.132 3 0.04
Good– 0.155 0.450 -0.007 -0.079 1 0.14
Good- 0.071 0.516 -0.004 -0.038 0
Good+ -0.095 0.647 0.005 0.033 0

Good++ -0.179 0.713 0.010 0.057 -1

Table 1: Results of McCabe-Thiele iteration, using the experimental values A =
0.069mg,a0 = 0.5mg and X = 0.1, corresponding to 90% recovery of haemoglobin. The
first row is used as f , yielding N + 1 = 4, the remaining rows used successively as f̂ to
assess errors. The final column gives the X achieved in Equation (13).
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the latter are versions of the Good equilibrium curve in which the coefficient B1 is shifted
up (+) or down (-) by its regression standard error once or twice, setting B2 to obey the
expectation f = B2a2 +B1a. This is designed to invite failure – the slowest equilibrium
curves to reach the goal will be those true ones whose gain in each step is squeezed by
proximity to the midpoint (and therefore operating) line.

The results are collected in Table 1. The number of stages required is quite robust, despite
the fact that errors accumulate quite dramatically between e2 and e4, an effect clearly
exacerbated as the equilibrium curve is lowered towards the midpoint line. Shifting B1 up
or down by two standard deviations only subtracts or adds 1 stage, lesser shifts having no
effect.

Equation (13) is seen to be an excellent predictor of extra stages, although it narrowly
fails to achieve the goal when the Good– curve represents truth. The failure is small (an
extra stage will fix it), and Good– skirts very close to the operating line, so one expects
errors to creep in.

4. Conclusions

In this short paper we have presented and tested an analysis of error propagation in the
McCabe-Thiele method applied to multi-stage ATPE. It is hoped the analysis provided
in Section 2 will be applied to many other ATPE processes. Equations (7) and (8) might
provide useful error bounds, though these remain somewhat elusive. More valuable are
Equations (13) and (14) giving the requirements for extra steps. These strongly encour-
age experiments to refine the phase equilibrium curve around the goal f (Xa0) and the
stagewise loss f (A) (which will often be close to f (0) = 0). The comparison with ex-
perimental results shows excellent agreement, given that we have chosen one of the most
difficult ATPEs imaginable to perform this research on.

References
B. Andrews, J. Asenjo, oct 1996. Protein partitioning equilibrium between the aqueous poly(ethylene glycol)

and salt phases and the solid protein phase in poly(ethylene glycol)-salt two-phase systems. Journal of
Chromatography B: Biomedical Sciences and Applications 685 (1), 15–20.

A. M. Azevedo, P. A. Rosa, I. F. Ferreira, M. R. Aires-Barros, apr 2009. Chromatography-free recovery of
biopharmaceuticals through aqueous two-phase processing. Trends in Biotechnology 27 (4), 240–247.

E. Chandler, J. Cordiner, S. Brown, feb 2021. Accounting for interface behaviour in multi-stage aqueous
two-phase extraction. Chemical Engineering Science 230, 116172.

P. M. Doran, 2012. Bioprocess Engineering Principles. Elsevier LTD, Oxford.
M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M. A. B. Shabbir, H. I.

Hussain, S. Ahmed, Z. Yuan, oct 2016. Aqueous two-phase system (ATPS): an overview and advances
in its applications. Biological Procedures Online 18 (1).

M.-R. Kula, K. H. Kroner, H. Hustedt, 1982. Purification of enzymes by liquid-liquid extraction. In: Reaction
Engineering. Springer Berlin Heidelberg, pp. 73–118.

A. Medina, C. McDermott, N. Ashton, dec 1974. On the effect of experimental error on the calculation of the
number of stages for a given distillation separation. Chemical Engineering Science 29 (12), 2279–2281.

P. Rosa, A. Azevedo, I. Ferreira, S. Sommerfeld, W. Bäcker, M. Aires-Barros, dec 2009. Downstream pro-
cessing of antibodies: Single-stage versus multi-stage aqueous two-phase extraction. Journal of Chro-
matography A 1216 (50), 8741–8749.

P. A. J. Rosa, A. M. Azevedo, S. Sommerfeld, M. Mutter, W. Bäcker, M. R. Aires-Barros, jan 2013. Continuous
purification of antibodies from cell culture supernatant with aqueous two-phase systems: From concept
to process. Biotechnology Journal 8 (3), 352–362.

398



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey

Improvements in Methyl Ethyl Ketone Production
Through Intensified Processes
Eduardo Sánchez-Ramíreza,*Heriberto Alcocer-Garcíaa, Ana Gabriela
Romero-Garcíaa, Gabriel Contreras-Zarazuaa, Juan Gabriel Segovia-Hernandeza

aDepartamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta s/n,
Guanajuato, Gto., 36050, México.
*Corresponding author. Email:eduardo.sanchez@ugto.mx

Abstract
Methyl ethyl ketone (MEK) is a widely used chemical in the industry. Most of the MEK
uses are directly related to industrial application; however, recent studies suggest the use
of MEK as a possible fuel for spark-ignition engines. The industrial process to produce
MEK is performed through the hydration of butylene and the dehydration of that
alcohol. Butylene is produced from oil cuts. However, petroleum is a recognized finite
resource and is pointed out as a major cause of environmental issues. An alternative to
improve a process is process intensification (PI). In this work, an intensified alternative
to produce MEK from 2,3- Butanediol is proposed. 2,3-Butanediol might be produced
by a fermentation process based on renewable biomass. The intensified alternatives
consist of a reactive distillation column, an extractive distillation column, and three
conventional distillation columns. The novel alternatives produce and purify MEK,
1,2-BD, 2MPL, and water, from 2,3-BD using calcium phosphate as catalyst were
modelled in Aspen Plus. To evaluate the intensified alternative, it was considered the
energy requirements per kilogram of MEK, conversion, selectivity as well as an
environmental impact index, the greenhouse gas emissions. The RD column resulted in
a conversion of 99.86 % and a selectivity for MEK of 44 %. After evaluation, the direct
scheme resulted as the most promising one, with energy requirements of 2790
kcal/kgMEK (11.6 MJ kg/MEK). Regarding the environmental impact, the direct scheme
reported 7.07 tCO2/h of greenhouse gas emissions.

Keywords: Methyl-Ethyl Ketone Production, Process Intensification, Biofuels
Production, Hybrid Processes, Downstream Process.

1. Introduction
Political and governmental organizations have promoted agreements to mitigate the
environmental effects generated using fuels derived from petroleum. An important
sector to achieve the agreed objective is transportation, which in fact contributes with
23% of total CO2 emissions. Even though electricity has been highlighted as a
promising alternative for CO2 reduction, biofuels are designated as responsible for
reducing CO2 emissions. Recently, methyl ethyl ketone (MEK) has been screened as a
possible biofuel. MEK, also named 2-butanone, is a common industrial compound. Its
use is mainly oriented as a solvent. Currently, MEK production is generated primarily as
an oil-derived cut. However, Hoppe et al. (2016) carried out interesting studies that
prove the feasibility of using MEK in internal combustion engines. Hoppe et al. (2016)
concluded that the use of MEK generates greater heat of combustion, lower emissions
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of greenhouse gases and better cold ignition. In a green process framework, MEK can
be produced directly by fermentation, however, the process yields are quite low, 0.004
gMEK/gglucose (Yoneda, Tantillo and Atsumi, 2014). On the other hand, an interesting
process with the highest yield potential is using 2,3-Butanediol (2,3-BD) as an
intermediary. 2,3-BD can also be produced by fermentation of lignocellulosic material,
but unlike MEK fermentation, the yield in the production of 2,3-BD is high and the
theoretical limit is quite close, 0.5 g2,3-BD/gglucose (Syu, 2001). Once 2,3-BD is
produced, it can be dehydrated and converted directly to MEK. As mentioned, the final
part of the process is dehydration of 2,3-BD. This process has been addressed on
multiple occasions. The use of zeolites, clays, calcium phosphate, etc has been reported;
and most of the cases with selectivity between 90-95%. However, despite the large
number of papers published in this regard, none of these papers addresses production
kinetics in detail. In an interesting work reported by Song (2016), a set of detailed
equations and reaction kinetics were reported for the dehydration of 2,3-BD to 1,3
Butadiene and Methyl Ethyl Ketone over a catalyst of Calcium Phospate. In subsequent
work, Song et al. (2017) presented an alternative to produces and purify MEK from
2,3-BD. In their proposal, they presented a production scheme based on a reactor
followed by a series of separation columns and decanter, making a total of 10 separation
units and a reactor (See Figure 1). Most of all separation units are distillation columns.

Figure 1. Conventional process to produce MEK from 2,3-BD

An alternative to improve a process is the intensification of the process (PI). PI is
distinguished by five characteristics: reduced size of equipment, the increased
performance of the process, reduced equipment inventory, diminishment in using
utilities and raw materials, and increased efficiency of process equipment
(Ponce-Ortega, 2012). Considering the background mentioned, the aim of this work is
to propose intensified alternatives based on intensified schemes such as reactive
distillation and extractive distillation to produce and purify MEK in order to improve
energy requirements and the number of equipment, having as reference the current
technology to produce MEK. For comparison purposes between the intensified
alternatives, it will be used the energetic requirements per kilogram of MEK, the CO2
global emissions and an environmental index (the eco-indicator 99). So, the target is to
generate new and feasible technology to improve the current MEK production.
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2. Intensified Alternative and Kinetics
Song et al. (2017) presented a proposal for MEK production. In the reaction stage, all
reaction can be summarized as follow:

Table 1. Chemical reactions and kinetic parameters for MEK production

Reaction Activation
energy

Kinetic
constant

1) 2.33 E+05 7.45E-04

2) 2.82E+05 4.41E-04

3) 1.93E+05 6.64E-04

4) 1.66E+05 1.27E-04

Being 2,3-BD, 3B2OL, 1,3-BD, MEK and 2MPL, 2,3-Butanediol, 3-Buten-2-ol,
1,3-Butadiene, Methyl Ethyl Ketone, and 2-Methylpropanal respectively. In the
reference case of Figure 1, Song et al. (2017) considered a reasonable number of
decanters which result in many waste streams and consequently only 1,3-BD and MEK
are partially recovered. The reason for such design is the thermodynamic complexity of
the stream to be purified. In the mixture of five components, there are 4 azeotropes: 3
heterogeneous between 1,3-BD and H2O, MEK-H2O, and 2MPL-H2O respectively, and
1 azeotrope homogeneous between 3B2OL-and H2O. As shown in Figure 2, the
alternative presented in this work is designed considering a reactive distillation column
and an extractive distillation column, using glycerol as extractant. The intensified
alternative accomplish a recovery constraint of at least 98% wt for all components, and
a purity constraint of 99.5% wt for MEK, 99% wt for 3-Buten-2-ol, 99% wt for 2MPL,
99% for 1,3-butadiene and 99.99% for glycerol, the purity of MEK is set in such
number since 99.5% wt is the lowest purity for being considered as fuel (Penner et al.,
2017). As highlighted by Huang et al. (2005) there is no general and structured
methodology for the optimal design of reactive distillation columns. Therefore, in this
work, the heuristics proposed by Subawalla and Fair (1999) were considered. This
heuristic is summarized in an algorithm that can be used to estimate parameters such as
column pressure, location of the reactive zone, theoretical stages of the column, reflux
ratio, column diameter, etc. These variables were varied with the objective of increasing
the yield and production of MEK. The size of the holdup was not established arbitrarily,
to find an appropriate value the guide proposed by Barbosa and Doherty (1988) was
followed. The methodology initially consisted of specifying the compositions of the
products and the value of the reflux ratio (obtained with the strategy of Subawalla and
Fair; in this way, the volume of the plates could be found so that the chemical reaction
was carried out. The implementation of the algorithm proposed by Subawalla and Fair
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(1999) is simple but does not guarantee the optimal design. Esta no es la unica
metodología, disponible, algunas ideas basadas en la integración de building block.
These building blocks can be associated with different process phenomena (Demirel et
al., 2017) Based on the results of the short methods, they were rigorously simulated in
compliance with the MESH equations using the Radfrac module of Aspen Plus. In order
to warranty the minimal energy consumption, several sensitivity analysis were
performed to identify the correct design parameters.

Figure 2. Intensified process to produce MEK from 2,3-BD

3.Performance Evaluation Indices
A major drawback in the operation of distillation columns is the energy requirements.
The first performance index is the energy requirements. The main idea is to realize the
amount of energy invested in the process which is further represented in units like
MJ/KgMEK. The second performance index is the eco-indicator 99 (EI99). The
eco-indicator 99 is calculated as follow (Goedkoop, M., & Spriensma, 2000):

Where βb represents the chemical b released per unit of reference flow due to direct
emissions, αb,k is the damage caused in category k per unit of chemical b released to the
environment, ωd is a weighting factor for damage in category d, and δd is the
normalization factor for damage of category d. Finally, the third performance index is
greenhouse gas emissions, which are indeed related to the energy requirements. The
CO2 emission is calculated as follows (Gadalla et al., 2005):

Where α = 3.67 is the ratio of molar masses of CO2 and C, while NHV (kJ/kg)
represents the net heating value of fuel with a carbon content of C%. For CO2 emission
calculation, we assume that the energy involved in both processes, reaction-separation
and intensified process comes from burning CH4 gas. The target is to generate as little as
it is possible CO2 emissions.

3. Results
Once the intensified was designed and through a sensitivity analysis a minimal energy
requirement obtained, the conversion and selectivity for the MEK production were
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calculated, obtaining a conversion of 99.86% and a selectivity of 44%. The energy
consumption of the intensified scheme was 1218797 kcal/h (5073 MJ/h). Thus,
considering the total production of MEK, energy consumption would be 2786
kcal/kgMEK (11.6 MJ/kgMEK). Equally weighting all compounds, MEK, 1,3-BD, and
2MPL; The energy consumption for the entire product would be 1218 kcal/kgPROD (5.07
MJ/kgPROD). Moreover, in the hypothetical scenario where all MEK produced as fuel
was burned, with 31.45 MJ/kg as energy density, the energy profit would be 8601 MJ.
The design parameters for the intensified alternative are shown below.
Table 2. Design parameter for the intensified alternative

 RD ED C1 C2 C3
Number of stages 80 50 80 46 30
Reactive Stages 10-80  ---  ---  ---  ---
Solvent (kg h-1)  --- 400 ---  ---  ---

Reflux ratio 2.95 0.5 5.488 4.712 0.039
Feed stage 76 5, 46 23 25 14

Operative pressure (kPa) 101.353 101.353 101.353 101.353 101.353

Distillate flowrate (kg h-1) 999 770 270 437.6 230

Reboiler duty (kcal h-1) 485962 130535 184390 256145 161765
CO2 Emissions (ton h-1) 7.07

Eco-Ind (points y-1)   1.825E+06   

The energy involved in the upstream process in the scheme reported by Song et al.
(Figure 1) (Song, Yoon, and Lee, 2017) is 11140000 kcal/h (46640.96 MJ/h) to produce
4385 kg/h of MEK. Thus, the energy consumption per kilogram of MEK is 2540.5
kcal/kgMEK (10.64 MJ/kgMEK). So far, the scheme presented by Song et al. (2017) seems
interesting, however, when it is considered the production of the other purified
by-product (3340 kg of 2,3-BD) the picture changes completely. If the production of
MEK and 2,3-BD is considered together, the energy requirements change to 1142.1
kcal/kgPROD (6.04 MJ/kgPROD). In other words, when jointly considering the production
of MEK and all the by-products generated in the process, the intensified scheme
proposed in this article overwhelmingly exceeds that presented by Song et al. (2017) by
an average amount of 76kcal/kgPROD (0.97 MJ/kgPROD). It should be noted that, due to the
lack of data published by Song et al. (2017) in this analysis, the energy consumption of
the reactor is not being considered. However, it can be inferred that the energy
consumption of the scheme presented by Song et al. (2017) would increase since as
discussed Song et al. (2017), the reactor operates at a temperature of 360 °C. On the
contrary, in the energy analysis, the energy consumption of the reactive distillation
column was considered. In this way, we can assume a favorable scenario for the
intensified scheme in terms of energy consumption. Probably one of the reasons why
the intensified process energetically exceeds the conventional scheme presented by
Song et al. (2017), is the number of decanters present in the whole process. Note, for
example, that in the scheme presented in Figure 1, several streams called “fuel” are
presented, which can be inferred as a MEK stream but with a lower purity to consider
MEK as fuel for ignition purposes. The above is assumed due to the presence of a
stream named specifically MEK. Additionally, note that there is at least one waste
stream in which MEK is involved (MEK/CHEX stream) which shows that the recovery
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of MEK may not be high. Unfortunately, in the work of Song et al. (2017), a complete
mass balance is not presented to verify these assumptions.

4. Conclusions
In this chapter, the intensified technology proposal to produce MEK was analyzed,
having 1,2-BD, 2MPL, and water as by-products. 2,3-BD was used as a raw material in
a reactive distillation column, having previously studied calcium phosphate as a
catalyst. Once the reactive distillation column was implemented, it was possible to
obtain conversion of 99.86% and a MEK selectivity of 44%. At the outlet of the reactive
distillation column, an effluent with the compounds was obtained and purified using an
extractive distillation column and three conventional distillation columns. After
evaluation, the intensified alternative resulted with energy requirements of 2790
kcal/kgMEK (11.6 MJ/kgMEK). Regarding environmental impact the greenhouse gas
emissions, that scheme A reported 7.07 tonCO2/h. Even though, there is not a direct and
fair comparison; previous work has proposed a conceptual design using a reactor and a
set of 10 separation units accomplishing to purify MEK and 1,3-BD. In this work, the
intensified scheme can purify all products obtained in the reactive distillation, with less
equipment and higher selectivity for MEK. So, we consider most promissory this
intensified alternative in comparison with the conventional alternative previously
presented.
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Abstract 
In recent years, process intensification and design under uncertainty have been topics of 
major concern in the Process Systems Engineering (PSE) domain. Flexible unit design 
resulted of particular interest when applied to bio-processes since biomass shows an 
intrinsically unstable nature with respect to the year’s seasons and their location. Spirits 
distillation can be seen as a millenary bioprocess. It is based on well-established 
techniques that were, at first, mainly empirical and relied on the expertise of the distillers. 
During the last decades, available technologies allowed a deeper knowledge of the 
process impact on the final product properties by means of a detailed modelling of the 
aroma compounds and process units performances. Therefore, the flexibility analysis 
focused on an Armagnac continuous distillation process whose detailed modelling and 
simulation were carried out in collaboration with the French National Interprofessional 
Office of the Armagnac (BNIA) by means of ProSimPlus® simulator. The Armagnac 
continuous distillation, performed this way since the 14th century, is a highly energy 
integrated system since the feed stream is used as a coolant for the column condenser and 
wood or gas combustion as the reboiler duty. The heat integration has been included in 
the analysis and showed to substantially constrain the process flexibility. In particular, 
the preheater was detected as the most critical unit from and possible design alternatives 
have been proposed. In conclusion, the presented flexibility analysis allows a more 
detailed understanding of the Armagnac distillation process and a better analysis of the 
perturbations impact on the product properties. Moreover, it sets the basis for future 
studies on advantages and drawbacks of process intensifying alternatives from a 
flexibility perspective. 

Keywords: flexibility, energy integration, distillation, Armagnac, ProSimPlus®. 

1. Introduction 
In recent years, bioprocesses have seen a renewed interest in the Process Systems 
Engineering due to the sustainability goals imposed by the EU. However, in the food and 
beverage industry, agricultural feedstocks exploitation is at the basis of a relevant number 
of centuries old processes and related well-established procedures. In this list of 
bioproducts, spirits can be certainly classified among the eldest ones. Their production 
processes have been widely studied from the fermentation up to the ageing phase and the 
resulting methodologies give rise to thousands of different product varieties according to 
the specific way they are performed. As the majority of processes based on agricultural 
feedstocks, they are affected by uncertain raw material properties along the year’s seasons 
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and according to their geographic location. The impact of these uncertainties on the 
thermodynamic feasibility constraints in water-alcoholic mixtures have been indeed 
discussed in detail by Di Pretoro et al. (2020a). 

This research work focuses on an Armagnac distillation case study. Armagnac is one of 
the main spirits produced in France, in particular in the south-western region. In order to 
meet the French AOC label requirements, it should be produced by continuous distillation 
in a specific tray column, during a specific time of the year and with fixed product 
properties in terms of alcoholic composition (JORF, 2015). All these product standards 
are thus coherent with previous remarks about bio-processes characteristics. Moreover, 
the “alambic armagnacais” is a highly process-intensified unit since the feed stream is 
preheated by the top product and, at the same time, it serves as a condenser coolant as 
later discussed in more detail. On the other hand, wood, sometimes replaced by gas fuel, 
is used as heat duty in the reboiler. The constraining impacts of process intensification 
from a flexibility point of view was introduced in recent studies by Di Pretoro et al. (2021) 
and the same procedure based on the flexibility indicators is used in this work. 

For all these reasons, the presented case study is totally worth a flexibility assessment 
both to highlight the impact of uncertainties on bioprocesses with very strict product 
standards and to discuss the effects process intensification from a flexibility perspective. 

2. Flexibility assessment 
In the PSE domain, the flexibility assessment tool is based on well-established procedures 
aimed at quantifying the ability of a system to accommodate a set of uncertain parameters. 
This analysis is carried out by means of the several flexibility indices proposed in 
literature during the last decades. 

These indicators can be mainly classified in two categories, namely deterministic and 
stochastic, and the former will be explored in this research work. In particular, the class 
of deterministic indices estimates the maximum magnitude of the disturbance load, of one 
or more uncertain parameters at the same time, that can be withstood by the system 
without becoming infeasible regardless of its probability. 

The best established and most commonly used deterministic flexibility index is the one 
proposed by Swaney and Grossmann (1985), hereafter called FSG. 

 
Figure 1 – Swaney & Grossmann deterministic flexibility index 
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It is defined as the solution of the following flexibility index optimization problem: 𝐹 max 𝛿 (1) 𝑠. 𝑡. max∈ minmax∈ 𝑓 𝑑, 𝑧, 𝜃 0 (2) 

where θ refers to the uncertain variables, d to the design parameters, z to the control 
variables. Finally, δ is the scaling factor of the hyperrectangle: 𝑇 𝛿 𝜃: 𝜃 𝛿Δ𝜃 𝜃 𝜃 𝛿Δ𝜃  (3) 

represented in Figure 1. 

These indices were then used to perform the flexibility analysis of the Armagnac 
distillation case study that is presented in detail in the following section. 

3. The Armagnac distillation case study 
As previously discussed, this research work will focus on the Armagnac spirit. It is 
produced in the south-western region of France and, by law, the distillation should take 
place between the end of the grapes harvest and the 31st march of the following year. 

a)   b)   
Figure 2 – a) Armagnac distillation layout and b) ProSimPlus® process simulation diagram 

The “alambic armagnacais”, shown in Figure 2a, is an atmospheric tray distillation 
column. The wash, that in this case is wine, is produced by fermentation of white grapes 
and its alcohol (ethanol) by volume concentration (hereafter ABV) at 20°C should range 
between 7.5% v/v and 12.0% v/v. Before ageing, the distillate ABV is fixed between 
52.0% and 72.4 % v/v according to the last regulation (JORF, 2015). The commercial 
product is obtained by reducing the aged distillates to a minimal ABV of 40% v/v. 

A 15 trays (condenser and reboiler included) column was simulated (cf Figure 2b) 
considering an ideal behaviour for the vapor phase and using the NRTL activity 
coefficient model to describe the liquid phase non-ideality (Puentes et al., 2018a). Since 
the purpose of this study is to define the feasibility boundaries of the operation, mainly 
water and ethanol were accounted for in the distillation unit since volatile aroma do not 
affect mass and energy balances due to their low concentrations (Sacher et al., 2013). The 
employed binary interaction parameters are those obtained by Puentes et al. (2018b). 
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Process parameters Name Value Unit 

 Wine inlet temperature 13.1 ° C 

Process specifications Alcohol loss (bottom) 1 % 

 Distillate temperature 18 °C 

 Distillate ABV ≥ 52 % 

Deviation Wine ABV 0.5 % 

 Wine flowrate 0.05 m3/h 

Table 1 – Process parameters and specifications 

For this flexibility assessment an innovative approach was used. The wine ABV was 
selected as the first uncertain variable since it is the parameter that mainly vary according 
to the available wine. Then, the feed flowrate was included as a second uncertain variable. 
When operating the particular “alambic armagnacais” column, the feed flowrate is the 
second manipulated variable together with the reboiler heat duty. Therefore, this 
flexibility analysis is carried out from a unit design perspective, with an external 
perturbation and a manipulated variable as uncertain parameters. The column layout is 
fixed as well as the alcohol losses in the vinasses and the distillate temperature after the 
wine preheater. The distillate ABV cannot be fixed but the AOC constraints should be 
respected. The reboiler heat duty and the preheater surface area sizing are calculated for 
the variable operating conditions, i.e. ABV and wine flowrate. Finally, process 
parameters and specifications are resumed in Table 1. 

4. Results 
The “alambic armagnacais” flexibility assessment was then performed according to the 
well-established procedure proposed by Di Pretoro et al. (2019) for distillation units. In 
particular, the feed ABV uncertain interval ranged from 7,5 - 12 % according to the actual 
legislation, while its flowrate uncertain domain varied from 0.6 to 1 m3/h that is the 
capacity range of the studied alambic unit. The required heat transfer surface area as well 
as the distillate ABV value trends will be discussed over the entire uncertain domain and 
coupled with the flexibility index. It is finally worth remarking that the following are 
intentionally very conservative results since they are obtained for a distillate temperature 
at the outlet of the preheater equal to 18° C that is the desired value and not the upper 
boundary (that is about 25 °C). 

4.1. Sensitivity analysis 

Figure 3a shows the trend of the distillate ABV variable. For the given specifications, it 
achieves higher value if the feed ethanol content is lower. This phenomenon is due to the 
fact that, since the alcohol losses are fixed at 1 %, in case of higher ethanol fraction in the 
feed a more sever vaporization is required and, thus, a higher amount of water is 
withdrawn with the distillate that results in a more diluted mixture. For the same reason, 
the ABV value increases along with the feed flowrate due to the less effective preheating 
and the lower amount of water in the top vapor in absence of a rectifying section. 

On the contrary, the required heat transfer surface area (Figure 3b) increases for higher 
ABV in the feed due to the more severe separation conditions related to the product 
streams adjustments in order to keep low the ethanol losses in the bottom. 
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a) b)  
Figure 3 – a) Distillate ABV % and b) preheater heat transfer surface area (log10-scale) 

Moreover, considerable inlet flowrates have also an impact on the preheater size due to 
the higher thermal capacity of the process stream. These two phenomena, i.e. poor ethanol 
losses allowed combined with a more heat to be exchanged, result in an exponential 
growth of the preheater heat transfer surface area. 

4.2. Flexibility results 

a) b)  
Figure 4 – a) Distillate ABV and b) preheater heat transfer surface area vs flexibility 

The outcome obtained by coupling the flexibility index with the previous results is shown 
in Figure 4. The plots should be read as follows:  FSG equal to δ corresponds to δ times 
the Δθ deviation both for the value of the feed ABV (0.5 %) and for its flowrate (0.05 
m3/h) and both positive and negative. Thanks to the domain convexity it was possible to 
simplify the nonlinear optimization solution algorithm by using the vertex analysis. 

On the one hand, the maximum ABV that can be obtained increases with the deviation 
magnitude. All the values over the uncertain interval fall in the required ABV range 
despite the very constraining specifications selected. On the other hand, the required heat 
transfer surface slightly increases for a flexibility index between 0 and 6, while an 
exponential growth can be detected for higher deviation magnitude. Besides the impact 
of the higher capacity, this trend is the expected consequence of process intensification 
as already highlighted by Di Pretoro et al. (2021). 

Therefore, from the flexibility assessment results, a few important aspects can be 
deducted. First of all, the ABV plot shows that the operation feasibility is not 
compromised in the operation range. Then, the flexible design for the preheater not only 
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allows quantify the unit oversizing but also highlights the process limitations from a 
flexibility perspective. Since, in the alambic distillation common practice, the feed 
flowrate is used as manipulated variable to manage the top ABV specification, the 
flexibility analysis outcome suggests not to approach flowrates higher than 0.9 m3/h. 
Indeed, poor heat integration would be performed under those operating conditions. 

5. Conclusions 
The alambic simulation and flexibility analysis were successfully performed over the 
selected uncertain domain. The obtained results allowed to identify the criticalities of the 
operation and the most constraining design parameters of the distillation unit that 
represent the bottleneck from a flexibility point of view. 

In particular, the desired distillate temperature can be achieved with a reasonable 
preheater sizing for moderate deviation magnitude while it becomes more and more 
difficult to attain if higher deviations are expected. Even for this unit then, the 
consequences of the process intensification result to be evident and critical for the 
operation. Therefore, in these cases, suitable design solutions can be applied. One of them 
could be the addition of a coil fed by water on the utility side in order to enhance the 
distillate cooling down to the desired temperature. Although already adopted in the 
common practice, further studies and a detailed flexibility assessment could allow to 
analyse this additional process integration solution and outline in detail its limitations. 
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Abstract 
To enhance the availability of superstructure optimization as a tool in process design for 
industries as well as science this work presents a fully Open sUperstrucTure moDeling 
and OptimizatiOn fRamework (OUTDOOR). This framework is written in Python using 
object-oriented programming in combination with algebraic modeling utilizing the 
PYOMO modeling language. In addition, an Excel-based data preparation tool, called 
Excel-Wrapper is presented. It provides an intuitive way to prepare process data and 
generate superstructures, which are ready-made for solving using open-source as well as 
commercial optimization solvers.  
 
Keywords: Superstructure Optimization, Python, Open Source 

1. Introduction 
Superstructure optimization is a powerful tool to perform preliminary process design. 
Superstructure models map all possible flowsheets to produce a product from a specified 
set of raw materials. Such models are defined as mixed integer (non)-linear mathematical 
programming (MI(N)LP) models and can be solved for different objective functions, e.g. 
minimal production costs using open-source and commercial optimization solvers. 
Superstructure models have been applied to different areas, from biomass-based economy 
up to power-to-x processes (Galanopoulos et al., 2019; Kenkel et al., 2020) . However, 
they can be formulated in different ways leading to unnecessary complexity and 
ambiguity. The common practice is that research groups develop their own models and 
tools, often using commercial software, e.g. GAMS. Only a few software solutions for 
generic superstructure optimization have been presented, none of them being fully open 
source (Mencarelli et al., 2020). In addition, the application of superstructure models in 
industry is limited by its complicated algebraic formulation and data provision. Generally, 
straight forward graphical solutions are preferred over complex mathematical models and 
extensive programming codes.  
 
This work proposes an approach to solve both problems, presenting an Open 
sUperstrucTure moDeling and OptimizatiOn fRamework (OUTDOOR). This framework 
is setup in Python using a combination of modular object-oriented programming and 
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algebraic model formulation in PYOMO. Its focus is to construct deterministic MILP 
models to solve superstructure design problems. 

2. Programming and modeling fundamentals 
The presented framework is a tool for intuitive construction of superstructure models. It 
utilizes different concepts such as superstructure optimization modeling, object-oriented 
programming as well as the open-source optimization modeling language (PYOMO). The 
combined effort leading to OUTDOOR is briefly discussed in the following sections. 
2.1. Superstructure optimization and algebraic modeling 

Superstructure optimization is a methodology which is used for process design. It is based 
on mathematical models derived from mass- and energy balances in combination with 
cost calculation of capital expenditures and operational costs to optimize process flow 
sheets for different objective functions (Quaglia et al., 2015)]. These models are 
formulated as depicted in Eq. (1). Here c and b are vectors of known constant parameters, 
while x is a vector or variables (continuous as well as integer), and A is matrix of known 
parameters. 
 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒄𝑻𝒙 𝑠. 𝑡 𝐴𝒙 = 𝒃 𝒙 ≥ 0 

 
(1) 

 
Recurring equations are often formulated using indexed variables and parameters. For 
example, the electricity demand 𝐸  of a unit operation u is dependent of the total inlet 
flow 𝐹  and a specific factor 𝑝  (kWh/tInput). If this holds for each unit operation u in a 
set of U, the equations can be written as shown in Eq. (2). 
 𝐸 =  𝑝 · 𝐹  𝑤𝑖𝑡ℎ 𝑢 ∈ 𝑈 (2) 

 
The fixed parameters of 𝑝  are then supplied to the model as an indexed list of a set U 
inside of a data file. 
 
2.2. Object-oriented programming  

Object-oriented programming, in contrast to procedural programming, uses classes and 
objects as containers to allocate attributes and methods. These objects can be used to store 
data related to unit operations (such as the presented specific electricity demand 𝑝 ) 
directly in the process unit object. This way process-data can be built up around the 
process classes and objects, presenting a more intuitive way to handle and store data 
compared to indexed lists. 
2.3. PYOMO Modeling language 

PYOMO is a Python-based, open-source optimization language with a diverse set of 
capabilities to solve algebraic optimization models, while providing access to 
optimization solvers such as CPLEX or IPOPT. (Hart et al., 2017) The user benefits from 
PYOMO implemented direct access to solver configurations and solver output regarding 
calculation procedure, infeasibilities or other occurrences.  
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3.  OUTDOOR 
OUTDOOR combines the concepts that were discussed in the earlier sections. It provides 
an intuitive workflow for superstructure model creation and solving. Figure 1 depicts the 
main concepts and workflow of the application of OUTDOOR, and will be discussed in 
the following sections. 
 

 
Figure 1: Visualization of the OUTDOOR workflow.   

3.1. User input  

As a first step user input is required. This input of data can be divided into two categories. 
The first category is the superordinate system data. An object of the provided 
Superstructure-Class is created and initialized using Python scripting. This object 
demands important attributes such as the costs for electricity, the occurring chemical 
compounds or reactions or the desired product and objective. The second category is the 
input of considered unit operations. Different objects of the Process-Classes such as 
stoichiometric reactors or stream splitters are created and initialized with their respective 
data such as the required electricity demand or stoichiometric coefficients. The 
initialization of data of the different objects (step 2) is performed by calling predefined 
setter-methods, which are provided by the Classes.  
Next, (step 3) the process objects are added to the superstructure creating a complete 
superstructure system with all unit operations and external parameters such as electricity 
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prices. An input of initial guesses is not required at this state, however it could be 
necessary in the future to investigate more complex problems. When all inputs are 
provided, the user calls the solve_OptimizationProblem() method from the OUTDOOR 
module (step 4) to start the OUTDOOR program and solve the optimization problem.  
3.2. OUTDOOR program 

OUTDOOR processes the inputs provided by the user in a series of steps. First (step 5) 
the data in the process and superstructure objects is translated to a Python dictionary. 
Generally, two different types can be generated. The first one comprises easy convertible 
parameters and the second one comprises complex convertible parameters.  
 
The specific electricity demand 𝑝  (kWh/tInput) is an illustration of a parameter of the first 
type. It stores only a numeric value which has to be converted into the right format while 
being assigned to the right unit operation. 
 
Other relationships however, demand more complex translation methods. One example 
is the allocation of the referred reference flow of the electricity demand calculation. This 
flow can be the total inlet flow as depicted in Eq. (2). It could also be the outlet flow, or 
even just specific components of one of these flows. Hence, a method which translates 
correlations like “outlet flow” or “inlet flow” into algebraic understandable parameters 
is required. The procedure of these methods will be explained exemplary for this 
electricity demand reference flow in the following. The program needs two different 
information. The delivery of these information is still conducted during the input-phase 
of the user. One of the already mentioned setter-methods of the process class asks if “FIN” 
or “FOUT” has to be considered. Another setter-method demands the input of a Python 
list of components or the string “all components”.  

 

 
Figure 2: Python code example for calculation of references flow in electricity consumption 

Subsequent to the translation of input into the right format, the program creates the 
generic equations of the model (step 6). This model is written as an object of the PYOMO 
AbstractModel Class, which means it contains empty parameters which can be filled at a 
later stage using a data file.  

 

During the calculation, the program calls a translation method which transforms the input 

of the user into process specific  and  parameters. The first one is a binary 

parameter being 1 if the component i is to be considered for electricity in unit operation 

u. The second parameter determines if the reference flow is the inlet (Value = 1) or the 

outlet flow (Value = 0). These parameters are integrated into the algebraic model using 

 as equation parameter and  as a conditional factor in construction of the 

constraint (cf. Figure 2).  
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Step 7 of the program uses the created Python dictionary (data file) and the abstract model 
to create a concrete model, depicting the algebraic formulation of the defined 
superstructure. This model is then handed over to the selected optimization solver using 
the capabilities of the PYOMO modeling language (Step 8) and optimized for the defined 
objective function (Step 9) 
3.3. User output 

After the solver found a solution to the optimization problem, the complete raw results 
are returned to the user. It is possible to check the solutions for the variables and 
constraints utilizing the Python console. However, to simplify the results access, the 
OUTDOOR program also processes them (step 10). This step includes the presentation 
of selected results in the Python console as well as the saving of the main results as a .txt 
file into a chosen folder. The main results include the net production costs and CO2 
emissions, the cost breakdown and the energy consumption details including heat 
integration details. 
3.4. Extensions and development 

OUTDOOR depends on the user input data in form of a Python script using the definition 
of objects as well as calling setter-methods and the solve_OptimizationProblem() -
method. This is however, not really user friendly for non-programmers. Therefore, two 
extensions are under development. The first module is an Excel-Wrapper. This tool 
enables user to insert data via a predefined Microsoft Excel template, Afterwards the user 
has to start the Excel-Wrapper tool, which itself creates the objects, calls the solve-
function and saves the results. The second module presents a graphical user interface in 
which processes can be created by drag and drop, and data can be provided by popup 
tables. Other features of interest which are under development include more detailed and 
customized error handling and output, as well as capabilities for multi-criteria decision 
making and robust decision making taking stochastic programming into account.  

4. An example: Power-to-methanol process 
The goal of this case study is to investigate renewable methanol production with three 
different CO2 sources as well as five hydrogen supply technologies and two offgas 
utilization methods. Two objective functions were considered in the superstructure 
optimization: i) Minimal net production costs and ii) Minimal net production CO2 
emissions. Detailed outcomes of the study are presented in Kenkel et al. (2020).  
To construct and solve the superstructure model, OUTDOOR is applied in combination 
with the Excel-Wrapper. All relevant data was entered into the predefined Excel sheet 
provided by OUTDOOR. Data on considered unit operations was implemented in single 
Excel sheets. Figure 3 depicts an excerpt of this user input in form of the specific energy 
demand, reference flow and component for one unit operation. Afterwards, OUTDOOR 
automatically translated the input into a readable data file, formulated the general model 
including mass- and energy balances as well as cost and emission functions. The 
generated model is automatically handed to the Gurobi solver and optimization results in 
terms of chosen technologies, net present costs and emissions, as well as costs and energy 
break-down are presented in the Python console as well as in a .txt. file. The cpu time of 
the data collection using the excel-wrapper is 0.016 seconds. The construction of the 
superstructure objects takes 2.3 seconds, resulting in a MILP with 29411 variables (5746 
binary) and 43581 constraints. The cpu time for solving this problem and returning the 
results using Gurobi is 11.1 seconds.  
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Figure 3: Excerpt of Excel-based parameter input for OUTDOOR 

5. Conclusions 
The main programming concepts and workflow of the Open sUperstrucTure moDeling 
and OptimizatiOn fRamework (OUTDOOR) were presented in this work. This 
framework enables the initialization of data as unit operation related attributes using 
object-oriented programming, while still writing the actual model as algebraic model 
utilizing the PYOMO optimization language. To connect both of these concepts, different 
methods in terms of so-called translation functions were developed. To further strengthen 
the applicability of the tool an Excel-Wrapper was developed which uses data stored in 
predefined Excel-Templates as well as the Class-specific methods to create the 
superstructure, solve it and display and save the results. First results were derived using 
a beta-version of the framework. These results were presented in Kenkel et al. (2020).  
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Abstract 
The open-ended complexity of abiotic conditions in bioreactors means that it is generally 
infeasible to model its dynamic behaviour comprehensively. Learning optimization-
oriented probabilistic models encoding a parsimonious representation is far more efficient 
for bioprocess development and optimization. In this work, active inference is integrated 
with reinforcement learning to demonstrate that useful probabilistic models for bioreactor 
optimization can be learned by balancing optimization-oriented and information-seeking 
objectives. The baker’s yeast bioprocess is used as a case study. For online Bayesian 
update of model parameter distributions, simulation results demonstrate that highly 
informative data can be sampled by minimizing the variational free energy of the expected 
future. The resulting probabilistic model is thus biased towards bioreactor optimization.  

Keywords: active inference, optimization, probabilistic models, reinforcement learning. 

1. Introduction 
Even though is not yet accepted nor recognized, abstract (e. g., macroscopic or cybernetic) 
models used for bioreactor optimization are too shallow to account for the complexity of 
switching in metabolic pathways when responding to changes in the abiotic conditions 
(Richelle et al., 2014). A challenge in modeling for optimization is how such models can 
be learned from designed experiments given (i) the rich complexity of profiling operating 
conditions, and (ii) the circular dependence of model learning and information content of 
sampled data, which may lead to suboptimal performance. As most bioreactor models are 
not a veridical representation over a wide region of operating conditions, it is infeasible 
to achieve parametric precision comprehensively, let alone design optimally informative 
experiments for this objective (Martínez et al., 2013; Luna and Martínez, 2017). 
Probabilistic models are more efficient to deal with the process-model structure mismatch 
and hidden states present (Daunizeau et al., 2014). In this work, we illustrate how ideas 
from active inference (Tschantz et al., 2020) can be integrated with reinforcement 
learning (Sutton and Barto, 2018) to unify optimization-oriented and information-seeking 
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objectives in modeling for optimization using the variational free energy of the expected 
future (Parr and Friston, 2019) over the shrinking horizon of a dynamic experiment.  

2. Probabilistic modeling and active inference 
A probabilistic (causal) model of a bioreactor is defined by a joint probability distribution 
over the following set of stochastic variables: 

 x; y: the n x nt   hidden states time-series; the p x nt observations (sampled data), 
 u: the nu x nt   manipulated (controlled) inputs time-series, 
 ;: the n x 1 evolution parameters; the n x 1 observation parameters, 
 : the state noise precision (structural errors), 
 : the measurement noise precision (analytical and sensor calibration errors). 

From sample to sample in a dynamic experiment, these variables follow the equations: 𝑥 = 𝑓(𝑥 , 𝜃, 𝑢 ) + 𝜂 ; 𝜂 = 𝑁(0, 𝛼 𝑰),       (hidden) state evolution 𝑦 = 𝑔(𝑥 , 𝜑) + 𝜀 ;   𝜀 = 𝑁(0, 𝜎 𝑰),                   observation (samples) 
       (1) 

where f (resp. g) is the first-principles model (observation model), and t (observationt) 
is the state (resp. measurement) modeling errors (noise). A probabilistic model m of a 
bioreactor is completed by specifying the (initial) Gaussian prior distributions for its 
parameters 𝜃, 𝜑. Also, Gamma distribution priors are defined for the precision 
hyperparameters 𝛼, 𝜎. Given these priors, the left part of Eq. (1) induces a (so-called semi-
Markovian process) prior density on the trajectory of hidden states x. Similarly, the right 
part of Eq. (1) yields a likelihood function which measures how plausible an observation 
y is when the bioreactor content is sampled at time t. Uncertainties from noisy 
observations and model imperfections are thus taken explicitly into account.  

In the variational Bayesian framework, model identification (or inversion) entails the 
estimation of the marginal likelihood or evidence of a bioreactor model, that is a 
probabilistic description of the main (causal) metabolic mechanisms by which sampled 
data are generated. Probabilistic Bayesian treatment of an experiment data makes full 
usage of prior assumptions regarding the statistical distributions for initial conditions, 
evolution/observation parameters and state/measurement noise (Daunizeau et al., 2014). 
Inverting a probabilistic model m requires approximating the conditional density 𝑝(𝜉|𝑦, 𝑚) of the unknown hidden states and parameters 𝜉 = 𝑥, 𝑥 , 𝜃, 𝜑, 𝛼, 𝜎  given a 
data set of sampled measurements y and computing the model evidence 𝑝(𝑦|𝑚). 
Nonlinearities in the probabilistic model prevent exact analytical solutions to the model 
inversion problem which can approximately be solved using Bayesian variational 
approaches such as active inference. Active inference is a normative theory that unifies 
observation, external stimulus and model learning under a single imperative—the 
minimization of the variational free energy (Parr and Friston, 2019). More specifically, 
probabilistic model learning is posed as the maximization of a free-energy lower bound 𝐹(𝑞) for the model evidence with respect to an approximate density 𝑞(𝜉): 

  𝐹(𝑞) = 〈ln 𝑝(𝜉|𝑚) + 𝑝(𝜉|𝑦, 𝑚) − 𝑝(𝜉)〉 = ln 𝑝(𝑦|𝑚) − 𝒟 𝑝(𝜉); 𝑝(𝜉|𝑦, 𝑚)   (2) 
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where 𝒟  is the Kullback-Leibler divergence between two distributions and the 
expectation 〈∘〉  is taken under the approximate posterior distribution q. As can be 
deduced from Eq. (2), maximizing the functional 𝐹(𝑞) with respect to q drives the 
Kullback-Leibler divergence between 𝑝(𝜉) and the exact posterior 𝑝(𝜉|𝑦, 𝑚) to zero. The 
reader is referred to the work of Daunizeau et al. (2014) for methodological details and 
the therein described VBA Toolbox for variational Bayesian analysis. 

Active inference proposes that the modeler´s goal or intent are encoded in the 
probabilistic model as a prior preference for favourable observations (e. g., higher 
biomass productivity or protein expression). Thus, active inference demands that 
parameter distributions in the probabilistic model are based on data sampled from 
favourable operating conditions. This can be achieved by means of online experimental 
redesign aiming at minimizing the free energy of the expected future (Parr and Friston, 
2019), which corresponds to the trajectory of hidden states that is expected to occur from 
applying the optimal sequence of decisions (sampling times and manipulated inputs) that 
maximise the model evidence in the desired region of operating conditions.  

Let 𝑧 :  denote a sequence of variables through time, 𝑧 : = 𝑧 , . . , 𝑧 , and let define a 
policy as a sequence of actions 𝜋 = 𝑢 , … , 𝑢 . In “modeling for optimization,” the 
specific aim is to minimize the free energy of the expected future 𝐹 , which is defined as: 

   𝐹 = 𝒟 𝑞(𝑦 : , 𝑥 : , 𝚽|𝜋)‖𝑝∗(𝑦 : , 𝑥 : , 𝚽) ; 𝚽 = (𝜃, 𝜑, 𝛼, 𝜎)                            (3) 

where 𝑞(𝑦 : , 𝑥 : , Φ|𝜋) models the probability distribution for future trajectories in a 
dynamic experiment under a given policy 𝜋, whereas 𝑝∗(𝑦 : , 𝑥 : , 𝚽) defines the joint 
probability distribution for the optimal trajectory of the hidden states, model parameters 
and preferred observations. Thus, when 𝐹  is driven to zero, the policy 𝜋 becomes the 
(probabilistic) optimal policy. Notice that by minimizing 𝐹 , the surprise − ln  𝑝(𝑦 : |𝑚) 
is also minimized, which implies that the Bayesian model evidence is also maximized.     

3. Adaptive optimization-oriented experimental design 
In this section, we describe an efficient implementation of the proposed objective function 
for online experimental redesign in the context of reinforcement learning (Sutton and 
Barto, 2018). To select actions for purposely biasing the model, we iteratively optimise a 
policy 𝜋 at each time step t using different samples from the distributions of model 
parameters. A pseudocode for the proposed algorithm for adaptive experimental design 
is shown in Fig. 1. The internal loop has a forward pass where the density 𝑞(𝑦 : , 𝑥 : , Φ|𝜋) is increasingly converted into a posterior density upon simulated data 
using a stagewise greedy redesign procedure based on Thompson sampling (Russo et al., 
2018) of the posterior distribution 𝑞(𝚽) for model parameters. At each stage, an action 
is chosen by solving an optimization problem for the expected look-ahead reward based 
on the predicted impact on the biased model evidence 𝑟 (𝑦 ) = ln  𝑝(𝑟(𝑦 )|𝚽, 𝑢 ) of 
simulated data 𝑦  for alternative redesign decisions in a bounded compact set Ω:  

  𝑢∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈  𝑟 (𝑦 )                                                                                         (4) 

where 𝑟 is a reward (or desirability) function for observations and their underlying hidden 
states.  The predicted observation 𝑦  and the action 𝑢∗ are then used to generate the 
posterior distribution for model parameters 𝑞(𝚽𝒌) to be used at t+1. Thompson sampling 
is again applied and using Eq. (4) the action 𝑢∗  is calculated and the corresponding 
simulated observation 𝑦  is computed. This forward pass is finished when 𝑢  is 
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computed and the kth policy 𝜋 = 𝑢 , … , 𝑢  is completely defined. For each iteration 
of the outer loop, a different policy 𝜋  is computed.  The generated sequences are then 
ranked based on their corresponding cumulative rewards ℛ  over the planning horizon 𝑡, . . 𝑇 . From the top ranked policy 𝜋∗, only the first action 𝑢∗ is used for redesigning the 
dynamic experiment in the bioreactor and, at the next sampling time t+1 the observation 𝑦  is obtained. Using experimental data (𝑢∗, 𝑦 ), the joint posterior distribution 𝑞(𝚽) 
for the parameters of the probabilistic model is updated using variational Bayesian 
inference (based on the Laplace approximation) and the master (external) loop begins re-
estimating the optimal policy 𝜋∗  from t+1 until the end of the experiment at time 𝑇.   

  
Figure 1. Adaptive optimization-oriented experimental design 

4. Case study: Baker´s yeast 
The macroscopic model proposed by Richelle et al. (2014) for fed-batch baker's yeast 
production process in which the nitrogen and glucose consumptions are coordinated is 
used to test the adaptive experimental procedure in Fig. 1. The model includes a reaction 

Inputs: T, K, 𝑥 , prior 𝑞(𝚽), state evolution and observation functions 𝑓, 𝑔 
 For t = 1 to 𝑇 − 1  

       Infer current state 𝑥  using 𝑢∗ , 𝑥  and Thompson Sampling of prior 𝑞(𝚽) 

  For k = 1 to 𝐾  

      𝑞(𝚽𝒌) =  𝑞(𝚽) 

  While 𝑡 𝑇       (Forward Pass) 

Thompson Sampling of the prior 𝑞(𝚽𝒌): 𝜙 = 𝑻𝑺 : 𝑞(𝚽𝒌)  

   𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈  𝑟 (𝑦 |𝜙 , 𝑥 ) 

Simulate redesign using 𝑢  and predict   𝑟 𝑦 𝑢 , 𝑥   

Update prior: 𝑞(𝚽𝒌) 𝑞(𝚽𝒌|𝑢 , 𝑦 ) using (𝑢 , 𝑦  ) 

Accumulate reward: ℛ = ℛ +  𝑟 𝑦 𝑢        
    End while   

        Define the policy: 𝜋 = 𝑢 , … , 𝑢  with its corresponding ℛ  
 End for 

           Rank policies 𝜋𝑡𝑘, 𝑘 = 1, . . , 𝐾, using ℛ𝑘  

           Select the best policy 𝜋∗ = 𝑢∗, … , 𝑢∗   with the highest ℛ  

           Redesign the experiment using only 𝑢∗ and measure  𝑦  at 𝑡 + 1   
           Update prior: 𝑞(𝚽) 𝑞(𝚽|𝑢∗, 𝑦 ) using experimental data (𝑢∗, 𝑦  ) 
  End for 

Outputs: 𝜋∗ = 𝑢∗, … , 𝑢∗ , 𝒚 = 𝑦 , … , 𝑦 , 𝒓 = (𝑟 , … , 𝑟 ), 𝑞(𝚽) 
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in which the nitrogen and α-ketoglutarate are consumed to produce biomass. Also, the 
inhibition effect on glucose consumption by the accumulation of α-ketoglutarate is 
accounted for. The model has 15 parameters that define the reaction rates in biomass and 
ethanol production and consumption of glucose, nitrogen, and α-ketoglutarate. The 
concentration of α-ketoglutarate is a hidden state which is inferred using the model. The 
inputs which are redesigned in each experiment are the feeding rate profiles for glucose 
and nitrogen. The duration of each modelling experiment is fixed to 20 hours, bioreactor 
initial conditions are known, and its content is sampled every hour to measure the 
concentration of biomass, ethanol, glucose, and nitrogen. Sample processing time is 
assumed equal to 30 min, leaving a maximum of 30 min to compute the redesign decision 
to be applied at the next time step. The parameter K in the algorithm (Fig. 1) is set to 10. 

The aim is to purposefully bias model identification towards operating conditions that 
maximize the total amount of biomass that can be obtained at the end of the culture. Thus, 
the reward function 𝑟  is defined to achieve a steady increase in the biomass concentration 
for consecutive samples. Results obtained are summarized in Fig. 2 and Fig. 3. Notice 
that due to initial uncertainty (prior distributions), for the first experiment exploration is 
significantly high. Also note that final biomass concentrations for modeling run #1 and # 
2 in Table 1 are quite high despite they are not “one-shot” optimized feeding profiles 
using the probabilistic model with the updated parameter distributions. After two 
modeling experiments, as shown in Table 2, the parameter distributions have been 
updated to make the probabilistic model biased towards the most profitable region of 
operating conditions (Richelle, et al., 2014) where biomass production is higher. 

Figure 2. Substrate feeding profiles in run #1 and #2 

 

 

Table 1. Biomass final concentration 
Modeling Run #    Biomass   [g/L] 

1 24.11 
2 32.64 

Richelle et al. 
2014 

32.00 (Exp. 
measurement) 

  
          
      
  
  Figure 3. Biomass production in run #1 and #2. 
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   Table 2. Prior and posterior Normal distributions N( 2) of the model parameters 
       Prior Dist. Post. Run 1 Post. Run 2  
Param. Units        
k1 gX/gG 0.5431 0.250 0.6232 0.112 0.7012 0.010  
k2 gX/gG 0.0612 0.020 0.0578 0.011 0.0851 0.006  
k3 gX/gE 0.8929 0.085 0.8500 0.005 0.8091 0.002  
k4 gE/gG 0.2647 0.080 0.2450 0.009 0.2350 0.002  
k5 gA/gX/gG 0.2589 0.080 0.0189 0.005 0.2162 0.037  
k6 gX/gN 1.0150 0.150 0.9733 0.088 0.8817 0.044  
Omax gG/gX/h 0.4445 0.125 0.4210 0.039 0.4198 0.028  
Gmax gG/gX/h 2.5364 0.200 2.6472 0.145 2.7116 0.009  
Nmax gN/gX/h 1.1903 0.150 1.2279 0.067 1.2009 0.011  
KG gG/L 0.1524 0.030 0.1208 0.025 0.0989 0.010  
KI gE/L 3.1817 0.050 3.2011 0.443 2.9442 0.031  
KN gN/L 2.9370 0.050 2.9674 0.632 3.3598 0.278  
KA gA/gX/L 9.0014 2.000 9.4569 1.227 10.106 0.583  
KIA gA/gX/L 5.5981 0.500 5.8919 0.389 6.2991 0.267 
KIA2 gA/gX/L 5.5737 0.210 6.131 0.201 5.8404 0.113 

5. Concluding remarks 
A novel probabilistic method for modeling the dynamic behaviour of bioreactors in the 
most profitable region of operating conditions is proposed. Based on simulation data, a 
dynamic experiment is redesigned online through active inference. Reinforcement 
learning is used to maximize the Bayesian model evidence, that is, minimize surprise. 
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Abstract 
In this work, the numerical simulation of bubbles of kerosene in a column with water is 
performed by using the Smoothed Particles Hydrodynamics (SPH) method. The SPH 
method allows a good representation and monitoring of the interface between two or more 
miscible or immiscible fluids, advantage that can be used to study the hydrodynamic of 
bubbles in an immiscible environment). In this study, the contribution of the surface 
tension and wetting model in a biphasic flow of bubbles of kerosene along a column filled 
with water is analysed. The simulations are performed using a modify version of the free 
access code DualSPHyics. The validation is performed by coding the case of an ascending 
bubble and comparing the numerical results with the data reported in the literature. 
Several 2D simulations of kerosene injection in a column with water for three different 
flow rates, contact angles and injector diameters are performed, bearing a total of 27 cases 
of study. The center of mass and rise velocity in the validation case have good agreement 
with the data reported the literature. In the cases of injection, it has been determined that 
the length of injection is the principal parameter affecting the size of the bubbles. In 
conclusion, the SPH method can properly and naturally represent the creation of the 
bubbles due to its purely Lagrangian description. The surface tension model allows a 
stable surface drop during the rise of the bubble; moreover, with this model it is possible 
to study the rise of drops for different regimes. 
 
Keywords: Multiphase flow, SPH, CFD, Rising Bubble, Injection of Bubble. 

1. Introduction 
The problems that exist in the injection of bubbles for processes of absorption, distillation 
and design of reactors make their study complex, due mainly to the wide variety of 
configurations related to the spatial distribution of both phases in the column. Many 
authors in the literature had studied the rise of drops and bubbles. Hysing et al. (2008) 
propose reference configurations for quantitative validation and comparison of 
incompressible interfacial flow codes, which model two-dimensional bubbles that rise in 
columns of liquid. The reference quantities: circularity, centre of mass and mean elevation 
velocity are defined and measured to control convergence towards a reference solution. 
Zhang et al. (2015) analyse several cases of individual bubbles rising through viscous 
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fluids, and the SPH results are validated by both experimental data and other numerical 
results in the literature. Furthermore, bubble coalescence phenomena are simulated in 
both vertical and horizontal directions and the results agree well with the experimental 
data. The bottom pressure in the equation of state was found to be essential to keep the 
multiphase interface smooth and stable when the Bond number is relatively small. In the 
study by Vahabi & Kamkari (2019) the increase and deformation of a single bubble in a 
viscoelastic fluid that obeys the Giesekus model is numerically simulated by a modified 
version of weakly compressible smoothed particle hydrodynamics (WC-SPH). In this 
work, the numerical simulation of the injection of a kerosene bubble in a water column is 
presented using the standard method of Smoothed Particles Hydrodynamics (SPH) which 
has increased its application for studies of computational dynamics of fluids. The 
numerical model used to simulate interfacial tension is based on a pairwise force of 
interaction between particles reported by Tartakovsky and Panchenko (2016). The 
simulations were performance using a modify version of the free code DualSPHysics v3.2 
(Crespo et al., 2015). In the section 2 is presented the complete SPH numerical model 
used in the simulations. In the section 3 is presented a validation test of the rising bubble 
to prove the accuracy and convergence of the numerical results. In the section 4 are 
reported several simulations where different values of the inlet velocity, the injection 
diameter and the contact angle are evaluated as the injection conditions. Finally in the 
section 5 is reported the conclusions. 

2. The SPH Numerical Model 
For viscous incompressible flows, the governing equations are given by the Navier–
Stokes equation expressed in SPH form as 𝑑𝐯𝑑𝑡 = − 𝑚 𝑝 + 𝑝𝜌 𝜌 + Γ 𝛁 𝑊 + 𝐠 (1) 

where ρ is the density, p the pressure, v the velocity field, W is the kernel function, g is 
the gravity acceleration and Γ is the viscosity dissipative term. In a standard SPH 
formulation, where the pressure is given as a function of the density, local variations of 
the pressure gradient may induce local density fluctuations in the flow. Therefore, the 
flow is modelled by an artificial fluid that is approximately incompressible. The mass of 
a fluid element remains constant and only its associated density fluctuates. Such density 
fluctuations are calculated by solving the continuity equation expressed in the SPH in Eq. 
(2). The dynamical pressure pd, which for simplicity we shall denote by p, is calculated 
using the relation expressed in Eq. (3) (Becker and Teschner, 2007). 

 = ∑ 𝑚 𝐯 − 𝐯 ∙ ∇ 𝑊 , (2) 𝑝 = 𝑝 𝜌𝜌 − 1  (3) 

where γ=7,  p0= c02ρ0 /γ, ρ0 is a reference density, and c0 is the sound speed at the reference 
density. This equation enforces very low density fluctuations since the speed of sound 
can be artificially slowed with accurate results in fluid propagation. The viscous term in 
equation (1) is modelled using the artificial viscosity model proposed by Monaghan 
(1992) due to the simplicity and numerical stability. Finally, the surface tension is 
modelled according to Tartakovsky and Panchenko (2016) where a Pairwise-Force is 
inserted in the Eq. (1) 𝑑𝐯𝑑𝑡 = − 𝑚 𝑝 + 𝑝𝜌 𝜌 + Γ 𝛁 𝑊 + 𝐠 + 𝑭𝑚  (4) 

where 𝑭  is calculated from the interaction particles using the Eq. (6) . 
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In Eqs. (4) the pressure gradient is written in SPH form using the symmetric 
representation proposed by Colagrossi and Landrini (2003), which ensures numerical 
stability at the interface between two media with large density differences, while the 
surface tension term 𝐹  is calculated according to the sum of the 𝐹   formulations given 
by Tartakovsky and Panchenko (2016) in Eq. (6).  
 Γ = −𝛼𝑐̅ 𝜇𝜌 𝐯 ∙ 𝒓 < 00 𝐯 ∙ 𝒓 ≥ 0, (5) 

where 𝜇 = ℎ𝐯 ∙ 𝒓 / 𝒓 + 𝜂 , 𝑐̅ = 0.5 𝑐 + 𝑐 , where 𝑐  y 𝑐  are the speed 
of sound for particle a and b respectively, 𝜂 = 0.01ℎ  and α is a free parameter that can 
be adjusted according to the simulation case. 𝐹 = 𝑆 𝑐𝑜𝑠 1.5𝜋3ℎ |𝑟 − 𝑟 | 𝑟 − 𝑟|𝑟 − 𝑟 |, |𝑟 − 𝑟 | ≤ ℎ0,            |𝑟 − 𝑟 | > ℎ, (6) 

where the Sab parameter can be calculated from the surface tension fluid, the smoothing 
length the kernel function and the contact angle between the wetting fluid and the bound  
as is reported by Tartakovsky and Panchenko (2016). 
No-slip boundary conditions are implemented at the walls of the vessel using the method 
of dynamic boundary particles developed by Crespo et al. (2007). In this method, a linear 
distribution of uniformly-spaced particles is placed at the walls of the enclosure, with 
separations of ≈ h/1.42. This external particles are used to cope with the problem of kernel 
deficiency outside the computational domain. The wall particles are updated using the 
same loop as the inner fluid particles and so they are forced to satisfy Eqs. (9) and (10). 
However, they are not allowed to move according to Eqs. (14) and (15) so that their initial 
positions and velocities (vw=0) remain unchanged in time. In this way, the presence of the 
wall is modelled by means of a repulsive force, which is derived from the source term of 
the momentum Eq. (1) and includes the effects of compressional, viscous, and 
gravitational forces.   

3. Simulation of ascending bubble. 
For the validation case the numerical approach and convergence of the numerical SPH 
model was verify. One bubble of air in a column filled with water was set according to 
the parameters reported by Hysing et al. (2009). The initial condition of the simulation is 
shown in the Figure 1 where the radio of the bubble is 2.5 centimetres, the simulation was 
performance in 2D considering the bubble as a circular shape. The ratio between the 
density and viscosity of the disperse phase (ρ1) and the continuous phase (ρ2) is ρ1/ρ2=0.1. 
The value of gravity acceleration is 1 m/s2, the surface tension is 24.5 and the Re and Eo 
dimensionless numbers are 35 and 10 respectively. The evolution of the center of mass 
of the bubble was compared with the numerical data reported by Hysing et al. (2009). 
Moreover, four simulations with different number of particles (1250, 5000, 20000 and 
40000) were performance to evaluate the convergence of the numerical results. In the 
Figure 2 is shown the numerical convergence and error (ε=RMSE) of the SPH data with 
the numerical results reported by (Hysing et al., 2009). 
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Figure 1. Left frame: Initial condition and dimensions of the simulation of an air bubble 
in water used in the validation case. Right frame top: Center of mass. Right frame bottom: 
Rise velocity. 

4. Influence of Injection Conditions. 
A 2D simulation of a kerosene flow with different injector diameters was carried out. 
Bubbles do not, in truth, have the capacity to exist in two dimensions. However, it is 
possible to create an environment in which they behave as though they existed only in 
two dimensions for example in a "sandwiching" the foam between two sheets of glass. So 
long as the separation of the sheets of glass is much smaller than the cell size of the 
bubbles, the foam can be treated in two dimensions. In two dimensions, the foams still 
follow the Young-Laplace equation for thin films, but the cell walls are only circular arcs 
instead of a three dimensional curve. It was chosen to use three different flows (q = 1, 2, 
3 cm3/min), three injection length (L=1, 1.5, 2 mm) and three contact angles (θ = 90o, 
50o, 130o) to carry out the analysis of injection conditions in the creation of bubbles. In 
this way, they were made 27 study cases. The fluid and SPH parameters used for the 
simulations are shown in Table 1 and the geometry is shown in Figure 2. In the left frame 
of the Figure 3 is shown the evolution of the bubble formed by injection of Kerosene in 
the column filled with water. The variation of the area of the bubbles formed due to 
different injections conditions is reported in the right frame of the Figure 4. The numerical 
results show that the length of injections is the principal parameter that modify the size 
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of bubbles, moreover, when the contact angle increase the size of bubble decrease but to 
a lesser extent.  
 

Table 1. Initial parameters for the SPH simulations in the injection study case. 
Parameter Amount Parameter Amount 
Water density 1000 kg/m3 Total simulation time 4 s 
Kerosene density 890 kg/m3 Gravity 9.8 m/s2 
Water  viscosity (α) 0.05 Total particles (Np) 145961 
Kerosene viscosity (α) 0.05 Surface tension 47 - 49 mN/m 

 

 
Figure 2. Left frame: Initial condition and dimensions for the simulations of analysis of 
injection conditions. Right frame: Contact angles for the fluid injected. 
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Figure 3. Left frame: Example of the evolution of one bubble. Right frame: Area of the 
bubbles obtained from numerical results. 
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5. Conclusions. 
In conclusion, the SPH method can properly and naturally represent the creation of 
bubbles due to its purely lagrangian description. The model reported in the methodology 
and solved with the SPH method generates representative results with good precision as 
is prove with the numerical results obtained in the validation test. The surface tension 
model allows a stable surface drop during the rise of the bubble; moreover, with this 
model it is possible to study the rise of drops for different regimes. According to the 
parameters used in simulations, the length of injections is the principal parameter that 
modify the size of bubbles. The size of bubbles don´t be affected by the flows used in the 
simulations. The 2D simulation is enough to know the area and speed of the bubbles, 
however, it is not able to predict well the shape of the bubbles. So, a 3D simulation is 
preferable for cases where is necessary to know about the shapes, movement and other 
important events. 
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Abstract
In classical thermodynamic, the estimation method of pure compounds properties was
based on Newtonian physics, which required experimental data. It is proven to be
inadequate for the growing demand of the novel chemical synthesis. There were several
studies on the prediction of the pure compound properties based on QSPR methods.
However, the conventional group-contribution based methods predictive capability was
limited by the available measured data. Therefore, this study aims to approach the
property prediction with a novel statistical-based method. The proposed method is
derived using supervised machine learning algorithms. The experimental data used to
train and validate the models were collected from the published literature. These data set
are composed of the alkanes, alkenes, and alkynes derivatives containing 1-12 carbon
atoms. The results show the improved accuracy of the model prediction compare to the
conventional method in terms of root mean square error (RMSE) and mean absolute
percentage error (MAPE).

Keywords: Properties prediction, Machine learning, Organic compounds

1. Introduction
Normal boiling point is defined as the temperature at which the vapor pressure of a
liquid is equal to the atmospheric pressure. This thermo-physical property is important
to design and calculation unit equipment of chemical engineering such as storage tank,
vessel, flash drum, distillation column and so on. Typically, normal boiling point can be
obtained as a result of the experiment. The boiling point is usually measured by
small-scale simple distillation and microscale method (Shriner et al., 2004); however
experimental measurements are often difficult, time-consuming, expensive, and
sometimes hazardous. When the property is not accessible, the prediction methods are
alternatives to determine the normal boiling point.

In general, normal boiling point of a compound is related to its molecular structure.
Different models were used to correlate the boiling points of organic compounds with
the different methods i.e. Constantinou and Gani (1994) develop a group contribution
for estimating properties of pure compounds; Cordes et al. (2002) proposed a group
contribution method for estimation of normal boiling point of organic compounds;
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Al-Malah (2013) proposed a correlation between molecular weight and carbon atomic
fraction to the normal boiling point of hydrocarbons; and Ghasemitabar and
Movagharnejad (2016), develop a new group contribution model to estimate the normal
boiling point of organic compounds. These estimation methods can use to estimate
normal boiling point for organic compounds, but it limited in nonetheless. In recent
years, the large amount of information leading to the development of predictive
techniques as machine learning which can find correlation from the dataset. Díaz et al.
(2018) successfully used to predict the viscosity of ionic liquids with artificial neural
network (ANN) models.

In this work, the proposed method is developed a novel method by applying machine
learning techniques. The normal boiling point of organic compounds is expressed as a
function of the simplified molecular-input line-entry system (SMILES).

2. Methodology
2.1. Data set
The accuracy and precision of prediction models depend on the number of experimental
data and the comprehensiveness of the applied data set. In this work, the data set for the
normal boiling point consists of 560 compounds. The experimental data are taken from
ProCAPE software and the CRC Handbook (2010). The database of hydrocarbon
compounds includes the following categories:

(1) Normal paraffin: n-alkane.
(2) Non-normal paraffin: example: iso-alkane, methyl-alkane, and

ethyl-alkane.
(3) Naphthene: cyclo-alkane.
(4) Olefin: example: alkene, methyl-alkene, and ethyl-alkene.
(5) Diolefin: example: alkadiene, methyl-alkadiene, and ethyl-alkadiene.
(6) Cyclic olefin: cyclo-alkene, methyl-cylo-alkene, and ethyl-cyclo-alkene.
(7) Alkyne: example: acetylene, propyne, and butyne.

The smile structure used to train and validate the models was collected from the
published literature. To preparing data, the attribute set consists: the number of carbon
atom ‘C’, the number of double bonds ‘=’, the number of triple bonds ‘#’, the number of
branches ‘(‘, and the number of rings ‘numeral’ was created. The data set that consists
of these 5 attributes were divided into a training set (460 compounds) and a test set (100
compounds).
2.2. Supervised machine learning algorithms
Supervised learning is a machine learning task for the predictions of unknown values by
learning a model from labeled training data consisting of a set of training example
input-output pairs (Russell and Norvig, 2010). The training set use to train the model by
selected learning algorithms. To measure the accuracy of the learned model, the
performance of the resulting model was measured on a test set of examples that are
distinct from the training set. If the results are not satisfactory then changing learning
algorithms is available. The options of supervised machine learning are classification
and regression when the output is a finite set of values and a number, respectively. In
this work, the regression methods are used to predict normal boiling point of
compounds. A flowchart of the supervised machine learning model is displayed in
Figure 1.
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2.3. Model development
To select the appropriate regression methods, need to find correlations between each

attribute and the experimental value. The attributes mentioned in the previous section,
the number of carbon atoms has the best tendency to predict the normal boiling point
properties as shown in Figure 2. Then we choose the number of carbon atoms as the
basis of the prediction, the effect of this attribute is presented in equation (1). However,
the values obtained from the first prediction were very different from experimental data.
Thus, using the other attributes are used to improve the approximate value to the actual
value. To find an effect of double bonds, triple bonds, branches, and rings. The
regression methods were used to estimate as weight. The combination of first and
second prediction is expressed in equation (2).

(1)

(2)
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where is a first predicted value based on the number of carbon atoms, is a

second predicted value based on double bonds, triple bonds, branches, and rings, is

an explanatory variable, is a dependent variable , and are constants from
prediction.
2.4. Data analysis
The performance analysis of predicted normal boiling point of this method used root
mean square error (RMSE) and mean absolute percentage error (MAPE).

3. Results and discussion
The novel supervised machine learning method was evaluated by using a data set
composed of 560 compounds belonging the most chemical families of compounds. The
number of carbon atoms ranges from 1 to 12. The predicted value of normal boiling
point using the novel method in comparison with the experimental data are presented in
Figure 3. The values of the predicted normal boiling point as well as the status in the
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method (the training set or the test set) are presented as supplementary information. The
Statistical parameter of the method is presented in Table 1. For this method, the RMSE
and MAPE are 8.340 and 0.016, respectively.
As a result, it seems possible to use the novel machine learning method to predict the
chemical properties with this attributed label. Nonetheless, the problem with using this
method is the inability to clearly specify the difference between similar compounds,
examples are shown in Table 2. These six compounds have the different SMILES
structures and boiling points; however, their set attributes are the same with 7 number of
carbon atoms, 1 number of double bonds, and 1 number of rings. Therefore, the
predicted boiling points of these 6 compounds turned out to be identical.
3.1. Comparison to other prediction methods
To demonstrate the accuracy of the novel method with other works developed for the
similar purpose. The prediction result will be compared with those of MG (Marrero and

Gani, 2001), CG (Constantinou and Gani, 1994), and JR (Joback and Reid, 1987). The
comparison results are presented in Table 3.
Comparing to MG method, this novel method exhibits far lower error in terms of both
RMSE and MAPE for every chemical category. Similarly, this method exhibits an
improved accuracy of the prediction over JR method. Although the CG method made a
better prediction to the alkanes and alkenes groups; the novel method still exhibits lower
error overall.
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4. Conclusions
The novel supervised machine learning method has been applied for the prediction of
chemical properties. The aim of this development is to simplify the input; as well as
improve the prediction accuracy. Normal boiling point has been selected for the
demonstration of the method. In the first regression step, the number of carbon atoms
shows the best tendency with the predicted property; therefore, it is used as the primary
attribute. Then the other attributes are used to improve the approximation value
accuracy with weighted regression.
The results of the estimated normal boiling points of 560 chemical compounds in 7
categories show acceptable error for both the training and the test sets. Around 1.6%
error of prediction in term of mean absolute error has been achieved. Comparing to the
conventional methods, this novel method exhibits far lower error than the
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Marrero-Morejon and Gani method, a bit improvement over Joback and Reid method,
and a comparable result to Constantinuo and Gani method. However, it is worth noted
that the mentioned conventional methods are developed for the prediction of a bigger
data set of chemical compounds. Therefore, the error may increase over the expansion
of the data set involved, which need to be addressed in further study.
In conclusion, the novel supervised machine learning method has been proven to be
useful for the prediction of normal boiling points of chemical compounds with simplify
input. It should be further applied for the prediction of various other properties; as well
as further applied for larger group of compounds. Moreover, the supervised machine
learning method can also be used for the improvement of the conventional
group-contribution methods by re-parameterization the groups attributes.
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Abstract 
In this contribution, we propose an algorithm for replacing non-linear process simulation 
integrated in multi-level optimization of an energy system superstructure with surrogate 
models. With our approach, we demonstrate that surrogate models are a valid tool to 
replace simulation problems in multi-stage optimization frameworks and enable the 
improvement of their computational performance. Furthermore, we want to show that the 
quality of the results is not penalized and flexibility is provided to the optimization.  
It is desired to keep the amount of labeled data samples needed to create the surrogate 
model to a minimum, since their creation is computationally expensive.  
In our algorithm, sampling methods are used to create an initial set of data points in the 
input domain in the decision variables of the simulation model to be replaced.  
ANNs are trained on the initial training set. Using Dropout as a Bayesian approximation 
for quantifying the uncertainty of a prediction, the predictions can be qualified. New data 
points are continuously labelled and added to the training set based on the achieved 
prediction quality, until a minimum quality of the model is met. When applied in the 
optimization superstructure, the ANN can only be used when the prediction quality for 
the given data point is satisfying. Integrating these surrogate models in an optimization 
framework of an energy system will allow to only access the computationally expensive 
simulation when the quality of the prediction of the surrogate model is not sufficient. 
Simultaneously, a continuous improvement of the surrogate model will be achieved by 
using the created simulation results to parallelly refine the surrogate model by adding the 
created data points to the training set and therefore improve the model's validity range. 
It is found that the methodology of continuously adding the data points based on the 
prediction uncertainty improves the quality of the surrogate model. Initial results indicate 
that when applied in the optimization framework, the suggested methodology holds 
potential to improve computational time and flexibility. 
Keywords: Energy System Optimization, Process Design, Surrogate Models, Artificial 
Neural Networks, Active Learning 
 

1. Motivation and Background 
 

One of the main challenges we are facing as society is moving away from fossil energy 
carriers, searching for alternatives to sustainably and safely provide energy. Industries 
converting woody biomass hold a great potential of supporting the energy transition by 
valorizing their resources in such a way they can on the one hand help to provide storage 
options of volatile energy carriers, and on the other hand reduce their emissions and thus 
increase their carbon efficiency. Selecting and integrating the biorefinery processes in a 
complex industrial energy system requires systematic approaches like computer 
simulation, mathematical modelling and superstructure optimization. These techniques 
lead to highly complex, large scale mixed integer nonlinear optimization models that face 
some computational challenges (Cozad et al., 2014). High computational cost, noisy 
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function evaluation of simulation-based optimization models as well as solving issues due 
to complexity and non-convexity of rigorous first-order process influence the efficient 
solution generation (Fahmi and Cremaschi, 2012). In an attempt to reduce a model’s 
complexity and to address the issues described above, the interest in developing surrogate 
models has increased over recent years. Surrogate models are especially interesting for 
application to multi-objective optimization problems that include superstructure 
consideration. These types of models are computationally expensive - due to the presence 
of many possible alternative configurations and operating conditions that need to be taken 
into account (Teske, 2014) - and hence, calculating the model at each iteration point is 
not practical. With surrogate models, new calculations or estimations can be performed 
in less computational time than with the original model. Furthermore, they are able to 
generalize the model result without running into convergence issues.  
Especially artificial neural networks (ANNs) have been widely applied in chemical 
process modeling (Nascimento et al., 2000; Teske, 2014; Fahmi and Cremaschi, 2012; 
Tock and Maréchal, 2014). It was reported that neural networks have the ability to fill 
gaps in the search grid caused by the absence of analytical solutions (Nascimento et al., 
2000) and that integrating surrogate models of certain processes in the optimization 
reduces the computational time considerably without penalizing the power plant 
operation quality (Tock and Maréchal, 2014).  
Apart from ANNs, other approaches such as polynomial- and Kriging-based techniques 
were proved be valid for surrogate modeling in process design (Caballero and Grossmann, 
2008; Henao and Maravelias, 2011; Pedrozo et al., 2020).  
Alternatively to using static data sets for training a surrogate model, one can let the 
machine decide which data to add best at the current state. Active learning is especially 
valuable when labelling data is computationally expensive, or where the purpose is to 
update the model by data that arrives continuously (Settles, 2012). Active learning is 
closely linked to hyperparameter optimization, as there the goal of the both is to choose 
data and model parameters in the most efficient way (Jablonka et al., 2020; Lookman et 
al., 2019). The objective of the research presented is to develop an approach for designing 
surrogate models of chemical process units with an active learning strategy. The design 
shall help to replace complex simulation of chemical processes in optimization 
frameworks with more flexible design and avoid non-convergence issues in the master 
optimization. Correlations between the inputs and outputs of the complex non-linear 
relations should be detected and replaced in the global optimization framework. Since 
labelling data is computationally expensive; it is anticipated to leave the number of data 
points at a minimum, and the surrogate model shall be able to continuously improve itself. 
 
2. Methodology 
 
2.1. Energy system design and optimization strategy 

 
Figure 1: simplified OSMOSE methodology (Kermani, 2018) 
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Systematic modelling and optimization approaches are required to design complex energy 
systems. The mass and energy integration and optimization model of an industrial sector 
used in this study is built in the OSMOSE platform, which is continuously developed in 
the Industrial Process and Energy Systems Engineering Group (PESE) at EPFL (Figure 
1). OSMOSE follows a two-stage decomposition approach, where the slave problem 
consists of a mass and energy integration framework developed as a mixed-integer linear 
programming (MILP) problem. Depending on the case study, it contains non-linear 
process unit simulations modelled in commercially available software. An evolutionary, 
multi-objective optimization algorithm is used in the master problem to solve a mixed-
integer nonlinear programming (MINLP) problem considering economic and 
environmental objectives (Gassner and Maréchal, 2009). 
 
2.2. Adaptive Surrogate model design 
 
The relationship between the design variables and the system responses of complex 
thermochemical processes currently approximated by flowsheeting software in the 
overall energy system superstructure (see grey box in Figure 1) shall be investigated. For 
this purpose, a reliable presentation of the respective process with as few label generations 
as possible is anticipated. Integrating the developed surrogate model in the energy system 
superstructure shall allow for an estimation of the quality the surrogate model achieves 
for each provided prediction, and respectively enable the model to improve itself 
continuously. 
 
2.2.1. Surrogate model design 
 
For addressing the requirement of as few labelling points as possible when creating the 
model, we propose the algorithm shown in Figure 2. 

 
 
 

Design of experiments  
The design space D is created by drawing samples for the design variables of the process 
that shall be replaced in an initial design of experiment (DoE).  
Initial feature and label generation  

Figure 2: Proposed algorithm for designing ALAI 
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For a randomly selected feature subset 𝑋 of samples from 𝐷 of the size 𝑛 , the 
respective labels 𝑌 are created by calling the simulation software with samples present in 𝑋. Artificial neural network design and evaluation  
ANNs are used to replace the flowsheeting process models in the presented approach. 
Features 𝑋 and labels 𝑌 are transformed to distributions centered around zero and unity 
variance by applying standard scaling. The model is built and trained on a share of the 
provided data 𝑉, the remaining share is used for testing. Depending on the performance 
of the ANN, the ActiveLearningAritficialIntelligence (ALAI) instance is accepted to be 
used in the OSMOSE superstructure instead of the flowsheeting software. Hereby, the 
performance is determined by the metrics achieved for evaluating the test set. In case the 
metrics is not satisfying, the ALAI instance is further improved by adding more 
datapoints to 𝑉.  
 
Adaptive model improvement  
For adding new datapoints to 𝑉, the uncertainty of the prediction ALAI makes on the 
remaining unlabelled features in 𝐷 is measured. We label the sample points with the 
highest obtained uncertainty and add them to 𝑉. For approximating the uncertainty of a 
prediction, we use Dropout layers in the ANN as it is demonstrated by Gal and 
Ghahramani (2016). According to Gal and Ghahramani (2016), when applying Dropout, 
layer nodes are randomly deactivated following a Bernoulli distribution during training. 
A neural network with Dropout applied before every weight layer is mathematically 
equivalent to a Bayesian approximation of the Gaussian process (Gal and Ghahramani, 
2016). To apply this concept, a second ANN including Dropout layers is built with the 
same hyperparameters as the first one and added to the ALAI instance. For each sample 
in 𝐷, we obtain a range of corresponding predictions from the ANN with Dropout. With 
this range of predictions per sample, the standard deviation can be computed and applied 
as a measure of uncertainty (Gal and Ghahramani, 2016). The unlabeled samples with the 
highest uncertainty are labelled and the resulting new features  𝑥  and labels 𝑦  are added 
to the training and testing data. This procedure is repeated i times until the resulting test 
metrics of the ALAI instance satisfies the quality demands. 
 
2.2.2. Surrogate model application and continuous improvement 
 
After the designed ALAI instance has achieved high enough quality for being integrated 
in the energy system superstructure defined, it can replace the call of the flowsheeting 
software. When OSMOSE calls for the flowsheeting unit that has been replaced by ALAI, 
the labels 𝑦  for the features 𝑥  given by the master optimization are predicted with the 

Figure 3: Proposed algorithm for improving ALAI 
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the ANN without dropout. Apart from the predicted labels, ALAI returns the predicted 
uncertainty  𝑢  by using the ANN with dropout layers. The results of the ANN are used 
in the master optimization if the uncertainty of the prediction is lower than a specified 
threshold 𝑈 . However, if ALAI returns a high uncertainty for the given prediction, the 
call is discarded and instead, OSMOSE is calling the original flowsheeting software to 
label the samples and continue the optimization call. Parallel to completing the 
optimization call with the generated labels 𝑦 , 𝑥  and 𝑦  are added to dataset 𝑉  and ALAI 
is updating itself with the new set of training data. 
 
 
 
3. Case study 
 
The overall energy system used for validation of the suggested approach consists of a 
Fischer Tropsch (FT) production unit modelled with the flowsheeting software Belsim 
Vali, a steam network superstructure and various utilities and service that interact with 
each other. For validating the suggested approach, the flowsheet for the FT fuel 
production is approximated with an ALAI instance. The decision variables the master 
optimization can chose include 7 variables (operating conditions) that affect the FT 
production, and 63 outputs (operating conditions, mass and energy flows) are predicted 
by the flowsheet that are needed by OSMOSE. For starting the ALAI design, a design of 
experiments with 10000 sampling points of the 7 features is performed, out of which ninitial 
= 1000 random samples are labelled and added to 𝑉 with which the initial ANNs are 
trained. The regression metrics for evaluating the models performance chose is the mean 
squared error (MSE) The maximum accepted MSE for testing with the initial ANN design 
MSEth is set to 15%. The size of data batches added to 𝑉 in each iteration 𝑖 is set to 𝑛𝑏𝑎𝑡𝑐ℎ = 300. For predicting the uncertainty of generated labels 𝑦 , the ANN with 
Dropout is evaluated 200 times. For being accepted in for being used in the optimization, 
ALAI needs to predict an uncertainty smaller 𝜎𝑡ℎ = 10% for respective decision variables. 
 
 
 
4. Preliminary results and discussion  
When initially applying the proposed 
methodology for training the model 
adaptively, the test MSE reaches below 
15% after 25 iterations, or 8200 labelled 
datapoints. We decided to stop the 
adaptive training here and work on further 
model improvements, so that the 
performance of ALAI can be improved 
before adding more labelled data. Using 
the current version of ALAI with  
OSMOSE results in 72% OSMOSE calls using ALAI, while the rest is calling the 
flowsheeting software. The call of an ALAI instance from OSMOSE takes approximately 
30% less computational time than calling a the original flowsheeting software.  
 
However, when validating the results OSMOSE computes with ALAI to the ones that are 
achieved with the flowsheeting software, considerable deviations in objective functions 

Figure 4: Mean squared error development 
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of 23% are observed, which means the ALAI performance has to improve considerably 
before being applied. Future work will include the optimization of the ALAI’s 
hyperparameters, in order to achieve the required metrics with fewer labelled datapoints. 
Furthermore, combining multiple ANNs for prediction and using combinations of other 
algorithms such as Random Forests and Kringing interpolation shall be investigated for 
performance improvement. The effects of different threshold for metrics and uncertainty 
will be investigated, and the results of the optimization will be further validated by 
comparing them to the results achieved with applying flowsheeting instead of ALAI. 
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Abstract 
Optimum selection of input variables, number of hidden neurons and connections 
between the network elements delivers the best configuration of an artificial neural 
network (ANN), resulting in reduced over-fitting and improved performance. In this 
study, a superstructure-oriented ANN design and training algorithm is suggested and 
implemented on an industrial Ethylene Oxide (EO) plant for the prediction of product 
related variables (i.e. EO production rate). Proposed formulation is a mixed integer 
nonlinear programming problem (MINLP), which takes the existence of inputs, neurons 
and connections of the network into account by binary variables in addition to continuous 
weights of existing connections. Investigations show that almost 90% of the connections 
are removed compared to the fully connected ANN (FC-ANN) with 50% decrease in the 
number of inputs of the ANN, approximately. The modified ANN delivers a better 
prediction performance over FC-ANN, which suffers from over-fitting. 
Keywords: machine learning; artificial neural networks; superstructure optimization; 
process modelling; mixed integer nonlinear programming 

1. Introduction 
Ethylene oxide (EO), a captive product used for the production of ethylene glycols (MEG, 
DEG, and TEG), is produced through selective oxidation of ethylene and oxygen in the 
presence of an Ag supported α-Al2O3 catalyst in the EO/EG plant located in the Socar 
Turkey/Petkim Petrochemical plant in Turkey. The EO process takes place in two parallel 
fixed-bed multi-tubular reactors at a temperature and pressure range of 240–260 °C and 
17–18 bar, respectively. Both ethylene epoxidation and EO combustion occur in the 
reactors and only the former is desirable. Side reactions reduce the EO yield and an 
increase in CO2 emission from the plant. From both safety and optimum control 
perspectives, the monitoring of the concentrations of the streams, which are measured 
through two separate online gas chromatography (GC) instruments, is of great 
importance. The former is designed for hydrocarbons and permanent gases whereas the 
latter focuses on the chlorine-based compounds. The operating strategy of the reactors is 
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to maximize the EO yield under various operational constraints. The simplified process 
flow diagram of the process is shown in Fig. 1. 

 
Figure 1: Simplified process flow diagram of EO process. 

High number of criteria is considered during EO production at the desired levels under 
the continuous and sluggish catalyst deactivation. These criteria lay the foundation of the 
features of information matrix exploited throughout this study as detailed in Table.1. All 
the feed compositions are measured before the reactor (i.e., after EO and CO2 absorption 
section). Fresh VCM feed is introduced into the reactor inlet stream right before the 
reactor. Real-time optimization and automation of such a complex process is a 
challenging task, requiring significant effort in first principles and mechanistic modeling. 
Alternatively, Artificial Neural Networks (ANNs) are promising empirical models to  
estimate the product related variables from easily measurable variables (i.e. temperatures 
and pressures). 

Table.1 Descriptions of the features and inputs. 
TAG Description Unit TAG Description Unit 

Lean absorbent flow rate t/h Fresh C2H4 feed t/h 
CO2 absorber overhead pressure kg/cm2g Fresh CH4 feed kg/h 

Feed composition (C2H4) % (v/v) CH3Cl (methyl chloride) in the recycle ppm 
Feed composition (O2) % (v/v) VCM (Viniyl chloride monomer) in the recycle ppm 
Feed composition (N2) % (v/v) C2H5Cl (ethyl chloride) in the recycle ppm 
Feed composition (Ar) % (v/v) Reactor A coolant pressure kg/cm2g 

Feed composition (CH4) % (v/v) Reactor A inlet pressure kg/cm2g 
Feed composition (C2H6) % (v/v) Flow rate to reactor A t/h 
Feed composition (CO2) % (v/v) Fresh VCM feed to reactor A kg/h 
Feed composition (EO) % (v/v) Product composition (EO) % (v/v) 

Fresh O2 feed t/h   

2. Methodology: Optimal Superstructure-based Design of ANNs 
The standard application of ANNs includes using fully connected networks, where all 
inputs, neurons and outputs are entirely connected. Fully connected ANN architectures 
(FC-ANNs) have high number of parameters. Typically, as the dimensions get larger, 
higher number of connections and parameters are introduced. It is usually expected that 
the increase in the number of parameters provides higher capability of fitting to the 
training data. Nevertheless, it is worthwhile here to mention that this increase may easily 
result in overfitting, and therefore poor prediction capability of the ANN model. 
Introducing more data is usually not a satisfactory effort as new data do not carry 
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additional statistical information unless they are collected from a different location in the 
plant. A feedforward ANN model is generally expressed as: 𝑦 = 𝑓 (𝐴 ⋅ 𝑓 (𝐵 ⋅ 𝑢 + 𝐶) + 𝐷) (1) 

where f1 and f2 are output and hidden layer activation functions respectively. A typical 
activation function is the hyperbolic tangent function, which is used in this study as well. 
A  and B  are weight matrices; C and  D are bias vectors; u is the input vector and y is the 
output vector. Related ANN parameters are all continuous, and theoretically unbounded, 
and their dimensions depend on the number of inputs, outputs, and number of neurons 
which is determined manually before training. Identification issues of these ANN 
parameters may result in poor testing performance. A typical solution to this problem is 
to include a regularization term to penalize the large values of ANN parameters, which 
unfortunately cannot regularize the hyper parameters ([1]). Pruning is another method to 
reduce the number of connections in ANNs ([2-3]). Dua proposed using a general mixed-
integer optimization formulation to eliminate overfitting by detecting the optimal 
configuration of ANNs ([4]). Both number of neurons and existence of the 
interconnections are included in the objective function. Yet, this formulation does not 
consider selection of optimum input variables. Moreover, resulting formulations are 
either mixed-integer linear programs with fixed parameter weights or small scale 
MINLPs with fixed structures, number of nodes and/or interconnections, exhibiting poor 
flexibility. On the other hand, this significant study shows that much better test, and thus 
prediction performance can be achieved with fewer neurons and connections.  
 
In this study, a novel MINLP (mixed-integer nonlinear programming) formulation is 
developed for the design and training of an optimal architecture feedforward ANN (OA-
ANN), by modifying traditional ANN equations. The MINLP formulation introduces 
additional binary variables to the traditional ANN equations to represent the existence of 
network elements. The resulting superstructure formulation also takes the selection of the 
input variables into account in addition to the number of hidden neurons and connections, 
which in turn maximizes the overall flexibility and strength of the formulation. 
Accordingly, the proposed MINLP problem, whose objective is to minimize the number 
of connections of the ANN, is given by: 𝑚𝑖𝑛, , , , , , , 𝐴 , + 𝐵 ,,     𝑠. 𝑡.   𝐹 = ‖𝑓 ((𝐴 ∘ 𝐴 ) ⋅ 𝑑𝑖𝑎𝑔(𝑁 ) ⋅ 𝑓 ((𝐵 ∘ 𝐵 ) ⋅ 𝑑𝑖𝑎𝑔(𝑈 ) ⋅ 𝑢 + 𝐶) + 𝐷) − 𝑦 ‖𝐹 ≤ ℰ𝐴 , ≤ 𝑁 ,𝐵 , ≤ 𝑈 ,𝐴 , , 𝐵 , , 𝐶, 𝐷 ∈ [−4,4]𝐴 , 𝐵 , 𝑁 , 𝑈 ∈ {0,1}

(2) 

where ∘ is the Hadamard product operator; ui and yi are the ith input and output sample 
respectively. N is the number of samples used for the training. Abinary,ij and Bbinary,ij are 
matrices with binary values representing the existence of connections. Nbinary and Ubinary 
are the binary vectors defining the existence of a neuron and an input, respectively. The 
existence of a particular connection between a neuron and an input is defined by the 
binary variable Bbinary,ij. Aij is the continuous weight parameter of the connection between 
the jth neuron and the ith output. Similarly, Bij represents the connection between an input 
and the corresponding neuron. ℰ is the upper bound for the overall training error. This 
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way, a trade-off is included into the training, which in turn is expected to increase the test 
performance after implementing the proposed formulation. Please note that suggested 
formulation has the flexibility to result in a fully connected network once ℰ is set to a 
small value. In other words, a fully connected ANN is the upper bound of the suggested 
formulation. Problem (2) is a non-convex, and generally a large-scale MINLP, which is 
quite challenging to solve to the global optimum. In this work, an adaptive and 
evolutionary algorithm is used to solve the resulting non-convex MINLP problem. This 
method has a similar idea with [5] and it decomposes the original MINLP into an integer 
program (IP) and a nonlinear program (NLP). IP’s only include binary decision variables 
that can be adjusted during optimization, whereas NLP’s only involve continuous 
decision variables. The IP stands on the outer loop and is solved via the genetic algorithm 
based IP solver of Matlab while the inner loop NLP is solved by using IPOPT ([6]). Two 
problems are solved sequentially until the tolerance value of the original problem 
objective value or the maximum wall clock time is reached.  
 
Please note that IPOPT is a local solver and might add randomness to the outer problem 
as the IP solution is based on a black-box genetic algorithm. Thus, we do not propose any 
integer cuts to be provided during the iterations. In addition to that, sensitivity analysis of 
the proposed method might be of interest to fully assess the regularization of the optimal 
ANNs using heuristic solutions, which is left as a future study. A global NLP solver can 
also be used for the inner problem to deal with the aforementioned challenges. On the 
other hand, investigations show that suggested method usually provides a sufficient 
heuristic solution in less than 3 min. 

3. Results and Discussion 
The proposed MINLP based approach is tested on the industrial EO plant. Corresponding 
data cover hourly measurements of 105 randomly selected days. We tested different 
training ratios, e.g. 20%, 50%, and 70%, to demonstrate the impact of the approach. OA-
ANN architecture from the training with 20% of the data is shown in Fig. 2 as a typical 
demonstration. In the design of OA-ANN with 20% of the data for training, 9 inputs, out 
of 20, are selected from which connections exist to hidden layer as shown in Fig. 2. The 
thickness of the connections represents the absolute magnitude of the corresponding 
weight. Note that only significant connections are maintained, eliminating the ineffective 
connections and thereby tightening the non-linear training optimization problem. 

 
Figure 2: OA-ANN for 20% training data 

In addition, the OA-ANN architecture, with only 4 hidden layer neurons, does not have a 
fully connected architecture as the selected inputs do not have connection to all hidden 
neurons. As a result, a more efficient information flow is obtained through the network. 
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On the other hand, there are many different architectures which may deliver a similar 
performance since the MINLP problem is highly non-convex and inherently contains 
input multiplicity both due to input variable correlations and parameter dependencies. 
Accordingly, the heuristic solution method and even the optimization algorithm tuning 
parameters might result in different architectures. The selected inputs include the lean 
absorbent flow rate, absorber overhead pressure, feed composition of N2 and Ar, feed 
CO2 composition, fresh O2 feed, fresh CH4 feed, Vinyl chlorine monomer and ethyl 
chloride feed. Note that some input variables show significant correlation and there are 
many subset combinations to deliver a similar performance. Thus, the selected inputs, 
likewise the structure in Fig. 2, is not a unique solution; different initial guesses and 
MINLP solution approaches would result in a different optimal subset. Fig. 2 also reveals 
the impact of the input variables on the network, which is represented by the thickness of 
the connection and scaled by the corresponding weight. For instance, N2 composition in 
the feed contributes to the network calculations in smaller scale compared to the chlorine 
compounds, which have a significant impact on the process control. A similar observation 
is also valid for O2 feed, as well. 
Detailed training and test performance comparison of FC-ANN and OA-ANN at various 
training ratios are presented in Table 2 which includes some common statistical measures. 

Table 2: OA-ANN and FC-ANN detailed performance comparison 
Train  
ratio 20% 50% 70% 

 OA-ANN FC-ANN OA-ANN FC-ANN OA-ANN FC-ANN 

 Train Test Train Test Train Test Train Test Train Test Train Test 
RMSE  0.003 0.004 0.0001 0.0140 0.003 0.0035 0.0004 0.031 0.0045 0.005 0.0004 0.047 

CV  0.046 0.061 0.008 0.147 0.051 0.061 0.018 0.25 0.065 0.093 0.017 0.296 
MAE - 0.424 - 2.481 - 0.49 - 4.53 - 0.37 - 1.03 

Table 2 includes root mean square error (RMSE), coefficient of variation (CV) and 
maximum absolute error (MAE) as a comparison metric. Due to the eliminated over-
fitting, the training and the test performances of OA-ANN show a good agreement at all 
training ratios. Although FC-ANN demonstrates significantly lower training error with 
high number of connections, it suffers from larger test error compared to OA-ANN. 
Similar insight can also be obtained from CVs. In all cases, test performance of OA-ANN 
is superior to FC-ANN despite higher training error. The architecture comparisons are 
given in Table 3. The network dimensions of OA-ANN are significantly less than FC-
ANN in all training ratios, providing additional computational advantages when ANN 
update is necessary. Overfitting causes poor test performance as shown in Fig. 3. This 
issue stemms from high number of connections in FC-ANN, whose weights could not be 
identified based on the statistical content of the current training data. Both FC-ANN and 
OA-ANN test results are demonstrated in addition to normalized measurements in Fig. 3. 
Note that the OA-ANN has a better capability to predict a different operating condition, 
as shown between sample numbers 400-500. 

Table 3: OA-ANN and FC-ANN architecture comparison 
 OA- ANN FC-ANN 
 20% 50% 70% - 
Neurons 4 3 5 10 
Connections 22 19 26 210 
Inputs 9 9 8 20 
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Figure 3: Test data performance of OA-ANN and FC-ANN. 

4. Conclusion 
The design and synthesis of ANNs is a challenging and important task. Ineffectively large 
networks provide significant test errors due to over-fitting. Test performance of the 
proposed approach is significantly better compared to the FC-ANN, despite using 
approximately 10% of the connections and half of the inputs only. Reduced input space 
is advantageous for the real-time operation when model update or sensor failures are 
under consideration. Furthermore, the OA-ANN is superior in various training ratios, 
more robust to extrapolation and prediction of different operating conditions. The 
heuristic MINLP solution algorithm provides a satisfactory network architecture and still 
has theoretical potential for development. Our current focus includes the implementation 
to actual plant. 

5. Acknowledgements 
This publication has been produced benefiting from the 2232 International Fellowship for 
Outstanding Researchers Program of TUBITAK (Project No: 118C245). However, the 
entire responsibility of the publication belongs to the owner of the publication. 

6. References 
[1] M. Manngård, J. Kronqvist, and J. M. Böling, “Structural learning in artificial neural networks 
using sparse optimization,” Neurocomputing, vol. 272, pp. 660–667, 2018. 
[2] Y. Zhou, G. G. Yen, and Z. Yi, “A Knee-Guided Evolutionary Algorithm for Compressing Deep 
Neural Networks,” IEEE Trans. Cybern., pp. 1–13, 2019. 
[3] Xie, H. Zhang, J. Wang, Q. Chang, J. Wang, and N. R. Pal, “Learning Optimized Structure of 
Neural Networks by Hidden Node Pruning with L1 Regularization,” IEEE Trans. Cybern., vol.50, 
no. 3, pp. 1333–1346, 2020. 
[4] V. Dua, “A mixed-integer programming approach for optimal configuration of artificial neural 
networks,” Chem.Eng. Res. Des., vol. 88, no. 1, pp. 55–60, 2010. 
[5] Pintaric, Z.N.; Kravanja, Z. The two-level strategy for MINLP synthesis of process flowsheets 
under uncertainty. Comput. Chem. Eng. 2000, 24, 195–201. 
[6] Waechter, A., and L. T. Biegler. On the Implementation of a Primal-Dual Interior Point Filter 
Line Search Algorithm for Large-Scale Nonlinear Programming, volume 106. 2006. 

450



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

 

Novel Tool for Selecting Surrogate Modeling 
Techniques for Surface Approximation 
Bianca Williams and Selen Cremaschi* 
Department of Chemical Engineering, Auburn University, Auburn, AL, United States 

selen-cremaschi@auburn.edu 

Abstract 
Surrogate models are used to map input data to output data when the actual relationship 
between the two is unknown or computationally expensive to evaluate for several 
applications, including surface approximation and surrogate-based optimization. Many 
techniques have been developed for surrogate modeling; however, a systematic method 
for selecting suitable techniques for an application remains an open challenge. This 
work compares the performance of eight surrogate modeling techniques for 
approximating a surface over a set of simulated data. Using the comparison results, we 
constructed a Random Forest based tool to recommend the appropriate surrogate 
modeling technique for a given dataset using attributes calculated only from the 
available input and output values. The tool identifies the appropriate surrogate modeling 
techniques for surface approximation with an accuracy of 87% and a precision of 86%. 
Using the tool for surrogate model form selection enables computational time savings 
by avoiding expensive trial-and-error selection methods. 

Keywords: surrogate model, process design/optimization, surface approximation

1. Introduction 
Surrogate models are simplified approximations of more complex, higher-order models. 
They are used to map input data to outputs when the actual relationship between the two 
is unknown or computationally expensive to evaluate. Surrogate models are of 
particular interest where expensive simulations are used or when the fundamental 
relationship between the design variables and output variables is not well understood, 
such as in the design of cell manufacturing processes (Williams et al., 2020). Surrogate 
models can also be constructed for surrogate-based optimization when a closed 
analytical form of the relationship between input data and output data is not available or 
is not conducive for use in conventional gradient-based optimization methods. Several 
techniques have been developed for surrogate modeling, requiring a systematic 
approach for selecting which technique may be appropriate for an application. 

Current standard practices for selecting which surrogate model form is appropriate rely 
on process-specific expertise. Numerous studies have been conducted to compare 
surrogate modeling techniques (Davis et al., 2017). However, most of these only 
evaluate a few models on a limited number of functions or applications. Recently, 
progress has been made in generalizing the process for selecting a surrogate model to 
approximate a surface by using meta-learning approaches to build selection frameworks 
(Cui et al., 2016; Garud et al., 2018). These frameworks provide “best” 
recommendations for surrogate modeling techniques based on the attributes calculated 
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from the data being modeled and avoiding expensive trial-and-error methods. Few of 
the developed meta-learning tools take model complexity into account, which can lead 
to overfitting, or consider that multiple models might perform similarly to the one 
identified as best.  

This work aims to comprehensively investigate the performance of several different 
surrogate modeling techniques for approximating smooth, continuous functional 
relationships and to link that performance to the characteristics of the data being 
modeled. The performance metric used for evaluating how well the surrogate modeling 
techniques approximate surfaces is the adjusted R2, which considers both model 
accuracy and complexity. Simulated data was generated using a suite of optimization 
test functions. Data attributes were calculated based only on input and output values for 
each dataset to represent its overall behavior. Attributes that have the most influential 
relationships for predicting the adjusted R2 were selected using feature reduction. These 
attributes were used as inputs to construct a Random Forest based tool to make 
predictions on the surrogate models’ performance and provide recommendations for 
which surrogate modeling technique(s) may be most accurate for the dataset.  

2. Computational Experiments 

2.1  Test Functions 

The test functions used to simulate data for constructing the surrogate models and the 
recommendation tool are from the Virtual Library of Simulation Experiments 
optimization test suite (Surjanovic & Bingham, 2013). The functions are divided by 
their shapes, which include the categories: multi-local minima (29 functions), bowl-
shaped (31 functions), plate-shaped (9 functions), valley-shaped (12 functions), and 
other-shaped (18 functions) that do not fit into the other four categories.  Functions with 
two (29 functions), four (20 functions), six (17 functions), eight (17 functions), and ten 
(16 functions) inputs were used.  

2.2   Surrogate Model Performance Comparison 

Input-output pairs were generated from each test function using three different space-
filling sampling methods: Halton Sequence Sampling, Sobol Sequence Sampling, and 
Latin Hypercube Sampling (LHS). Data was generated at seven different sample sizes 
sizes (50, 100, 400, 800, 1200, and 1600 samples), producing 693 total datasets. Eight 
surrogate modeling techniques were used for comparison: multivariate adaptive 
regression splines (MARS);(Friedman, 1991), random forests (RF);(Breiman, 2001) 
single hidden layer feed-forward artificial neural networks (ANN);(Haykin, 2009), 
extreme learning machines (ELM);(Haykin, 2009), Gaussian process regression 
(GP);(Rasmussen & Williams, 2005), support vector machines (SVM);(Drucker et al., 
2002), Automated Learning of Algebraic Models using Optimization (ALAMO);(Cozad 
et al., 2014) and radial basis function networks (RBFN);(Gomm & Yu, 2000). Surrogate 
models were trained using the input-output pairs with each of the surrogate modeling 
techniques for the test functions. This process yielded 16,632 trained models. When 
necessary, the hyperparameters of each surrogate modeling technique (such as the 
number of hidden neurons for the neural network-based models and the number of trees 
in RF models) were optimized before training the models using ten-fold cross-
validation. After the surrogate models were trained, the adjusted-R2 values were 
calculated for each modeling technique-dataset pair. 
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2.3  Recommendation Tool Construction 

Cui et al. (2016) and Garud et al. (2018) extract information from the datasets for use in 
their recommendation frameworks in the form of attributes. The attributes include 
common statistical measures, such as mean and standard deviation, gradient-based 
attributes, and attributes related to the extrema of the output values. We have defined 
additional attributes, including the first four statistical moments of the determinants of 
the estimated Hessian matrices of the datasets, and as the number of data points in the 
dataset, to use as potential inputs for predicting the model performance with the 
recommendation tool, resulting in a total of 40 attributes. The attributes aim to capture 
the overall behavior of the underlying model that generated the dataset. They were 
calculated for the datasets generated from the 99 test functions and used to construct the 
surrogate model recommendation tool. 

A RF model was trained for each surrogate modeling technique to predict its adjusted-
R2 value using the identified attributes as inputs. Random forests are decision tree-based 
machine learning models, where the final output of the model is the average of the value 
predicted by every decision tree in the forest. Feature reduction was performed to 
determine which attributes had the most influence on the predicted output value for each 
modeling technique. Feature reduction techniques included linear and rank correlations 
(Zou et al., 2003) between the adjusted-R2 value and the attributes, and the built-in 
feature selection method in RF models. In RFs, features are selected based on how well 
they improve the data separation at each decision node in each decision tree in the RF 
(Brieman, 2001). For each dataset, based on the adjusted-R2 values, each of the 
surrogate modeling techniques was classified as either being recommended or not 
recommended for both the predicted and actual metric values. These classifications 
were compared and used to evaluate the quality of the selection recommendations. 

3. Performance Metrics 
The adjusted-R2 value is used to assess the surrogate models’ performance for surface 
approximation. The formula for calculating adjusted-R2 ( ) is shown in Eq. (1). 𝑅2 = 1 − 1 − 𝑅2 𝑛 − 1𝑛 − 𝑘 + 1 (1) 

In Eq. (1), R2 is the R-squared regression coefficient, n is the number of data points in 
the training set, and k is the number of model parameters (or hyperparameters). The 
adjusted-R2 takes into account both the surrogate model accuracy and complexity 
(Miles, 2005). Taking complexity into account is essential in ensuring that the model is 
not overfit as overfit models do not generalize well to new data.  values typically fall 
between zero and one, with an  of one indicating a perfect fit. However, with the 
adjustment for model size, adjusted-R2 values can become negative.  

The metrics used to evaluate the performance of the recommendation tool (i.e., the 
classification of surrogate modeling techniques given a dataset) are accuracy, precision 
(Sokolova & Lapalme, 2009), and the hit ratio (Cui et al., 2016). The accuracy is the 
percentage of recommendations that are correct. Precision is the probability that a 
model classified as recommended should actually be recommended. The hit ratio is the 
percentage of the time the model with the highest calculated adjusted-R2 is included in 
the set of recommended models. All three performance metrics range from 0 to 100%. 
Monte Carlo cross-validation was used to evaluate the performance of the 
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recommendation tool with 100 Monte Carlo trials. Each trial had a test set size of 75, 
which was about 11% of the total simulated data.  

4. Results and Discussion 
4.1  Surrogate Model Performance 

The surrogate modeling technique that yielded the model with the highest adjusted-R2 
value was selected as the “best” one. For each shape category, the number of times a 
technique was selected as best was tabulated. These tabulated values were divided by 
the total number of datasets in the category to calculate the fraction of datasets for 
which each surrogate modeling technique was selected as the best performing (Fig. 1). 
There was no significant difference in the adjusted-R2 values among the three sampling 
methods. Therefore, only results for Sobol sequence sampling are shown here. For 
valley, bowl, and other-shaped functions, GP models provide the highest adjusted-R2. 
However, ALAMO and MARS models produce the highest adjusted-R2 most frequently 
for bowl and multi-local minima-shaped functions, respectively. These results indicate 
that the underlying function shape has an effect on which surrogate modeling technique 
may be most appropriate for approximating a dataset. While in general, GP models may 
provide the most accurate approximation, specific shape characteristics may lead to 
another technique’s being more appropriate. It should be noted that although these 
results only reflect a single technique being selected with the highest adjusted-R2, in 
many cases, there were multiple techniques with values that were not significantly 
different than that of the highest adjusted R2 value. 

 

 
Figure 1- Percentage of datasets grouped by function shape for which each surrogate 

modeling technique had the highest adjusted-R2 
4.2  Attribute Selection for Adjusted-R2 Prediction 

From the comparison results, we can conclude that there is a relationship between the 
underlying shape of the surface being modeled and the performance of each of the 
surrogate modeling techniques. The minimum Mahalanobis distance (De Maesschalck 
et al., 2000) between any two points in the simulated dataset was moderately correlated 
to the calculated adjusted-R2 of RF models, with a linear correlation coefficient of -0.58 
and a rank correlation coefficient of -0.71. The position of the data points in the dataset 
and how close they are to each other may be correlated to the approximation of RF 
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models due to the need for the models to partition the design space of the surface when 
determining the decision nodes in each tree in the RF model. Data points that are closer 
together lead to smaller partitions and more accurate predictions.  

For the feature selection by RF models, each technique had a different set of selected 
attributes for prediction. For ALAMO, ANN, RBFN, and SVM models, 18 different 
attributes were selected as important. Random forest models selected 19, 11, 20, and 17 
attributes as important for ELM, GP, MARS and RF models, respectively. The attribute 
most commonly selected as being important for predicting the adjusted-R2 was the 
minimum Mahalanobis distance between training points. Other commonly selected 
features include those related to the distributions of output values, specifically the 
relative size of the output distribution tails and the output distribution skewness, and the 
ratios of the average estimated gradient to the minimum and maximum estimated 
gradients for all of the data points in the dataset. These results suggest that the 
distribution and location of the sample points and the relative steepness and smoothness 
of the surface have a high level of influence on how well each of the surrogate models is 
able to approximate that surface. 

For all of the neural network-based models (ANN, ELM, and RBFN) and RF models, 
the attribute selected with the highest importance was the percentage of the simulated 
data points that were located in the upper tail of the output distribution. The closely 
related attributes of the ratio of the upper and lower tail sizes and the skewness of the 
output value distribution were selected as most important for GP and MARS models, 
respectively. These attributes may have an effect on the accuracies of all these 
techniques as having data unevenly concentrated (or sparse) at the extreme values may 
skew models to predict more accurately in areas of data concentration and less so for 
other areas of the design space. For example, in the case of RF models, uneven tails 
could cause decision nodes in the model trees to split more frequently at the extremes of 
the output values while more finely split partitions are really needed elsewhere, such as 
where the gradients are steeper. For the neural network-based models, the on-off nature 
of the hidden layer nodes may make them more suitable for making accurate predictions 
for surfaces where large areas of the design space have similar output values, creating 
flat or nearly flat areas. The coefficient of variation (COV) was selected as the most 
important feature for the prediction of the performance of SVM models. The COV is 
inversely related to the signal-to-noise ratio of a surface (Wang et al., 2013). This 
attribute may be important for SVM model performance as the support vectors fitted in 
the model construction can easily become sensitive to noise as they are only dependent 
on a small set of the data used to train the model (Sabzekar et al., 2011). For ALAMO 
models, all of the selected attributes had roughly equal amounts of importance. 

4.3  Recommendation Tool Performance 
The selected attributes were used as inputs to train a RF model for the eight techniques 
to predict the adjusted-R2 for a given dataset. Based on the predicted adjusted-R2 value, 
the recommendation tool then classifies each of the surrogate models as being 
recommended or not for that dataset. This recommendation scheme allows for multiple 
similarly performing surrogate modeling techniques to be suggested for use in surface 
approximation. The selection tool identified which techniques should be recommended 
for the simulated datasets with an accuracy of 87%. The precision, or the probability 
that a recommended technique should actually be recommended, was 86%. The hit 
ratio, the percentage of time techniques that had the highest adjusted-R2 for a dataset 
were included in its set of recommended models, was 80%. 

455



 B. Williams and S. Cremaschi 

5. Conclusions 
Selecting an appropriate surrogate modeling technique depends on the characteristics of 
the dataset being modeled. We identified attributes of datasets that are appropriate for 
use in predicting the adjusted-R2 value. Using these attributes, we have constructed a 
tool that can recommend surrogate modeling techniques for approximating a dataset 
with 87% accuracy and 86% precision. Future work on the tool will include expanding 
it to surrogate-based optimization recommendations and investigation of additional 
attributes and machine learning techniques to improve recommendation quality.  
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Abstract 
ProREFD is a computer-aided software for refrigerant design, analysis and verification, 
which consists of six tools that are suitable for different aspects of refrigerant design and 
verification. The six tools are the following: three databases plus a search engine; pure 
component properties estimation; mixture properties estimation; refrigerant selection 
and/or design; refrigeration cycle simulation; and modelling. The database tool consists 
of a database of measured pure component properties of especially selected refrigeration 
related compounds; a database of measured vapor-liquid equilibrium data of binary 
mixtures; and a database of measured binary azeotrope data. The property estimation tools 
employ a collection of especially developed and tested property models suitable for 
refrigeration processes. The refrigerant selection and/or design tool helps the user to select 
and/or design a refrigerant (single compound or mixture), given a set of target properties. 
The refrigeration cycle simulation performs simulation for the selected refrigerant and 
specified cycle operation conditions. The modelling tool is used to revise and/or add new 
property or process models. The paper presents the different implemented tools in 
ProREFD and highlights its use through several illustrative examples. 
Keywords: Refrigerant, Refrigerant design, Properties, Refrigerant cycle simulation 

1. Introduction 
Refrigeration systems, whether for industrial or home applications, are very common 
since they perform the important operation of maintenance of temperature at a desired 
value. The selection and testing of any refrigerant involve many steps, such as identifying 
a suitable chemical (single compound or mixture) through evaluation of its properties, 
testing its efficiency in the actual refrigeration operation, matching of the desired 
operational specifications and many more. Moreover, due to increased health, safety and 
environmental concerns, the refrigerants selected for application must satisfy 
environmental, safety and sustainability constraints. Therefore, there has been a 
continued interest in finding new refrigerants that are significantly better than the 
currently available ones (Wei, 2007; Sahinidis et al., 2003). In this case, a computer-aided 
tool as a virtual reality that can systematically guide the engineer through the steps of 
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refrigerant selection and/or design as well as verification would be very useful, especially, 
if it can quickly and reliably identify promising candidates and thereby reduce time and 
cost for refrigerant development by focusing on experiments only at the last step to verify 
the performance of a small set of promising candidates. With these objectives in mind, 
the ProREFD software has been developed as a computer-aided hybrid data-model based 
tool suitable for refrigerant design, analysis and verification by extracting already 
developed tools from ProCAPD (Kalakul et al., 2018) and OptCAMD (Liu et al., 2019) 
but including especially developed property models for refrigerant molecules and their 
associated measured data as well as refrigeration process model. The goal of ProREFD is 
to mimic the steps typically employed in reality mode for refrigerant selection and 
verification. It should also be able to provide typical analysis tools such as databases, 
property estimation (pure component and mixture properties) tools that help with the 
virtual selection and verification steps as well as virtual analysis of available refrigerant 
candidates. The objective is not to replace experiments but to guide and focus them. This 
paper gives an overview of the ProREFD software, highlighting the work-flow and data-
flow of its main functions as well as a short description of its six main tools. The use of 
the different tools of ProREFD is highlighted through illustrative examples.  

2. Overview of ProREFD and its embedded tools 
ProREFD is a systematic computer-aided tool, which combines the main steps of any 
refrigeration system study by providing the necessary functions (tools) and their 
associated models and sub-tools. The six tools of ProREFD, highlighted in Figure 1 
(overview) and Figure 2 (data-flow and work-flow) are briefly described below. 

 
Figure 1: Overview of ProREFD 

 
Figure 2: Information flow of each feature in ProREFD 
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 2.1 Tools of ProREFD 
Tool-1: Modelling Toolbox (MoT) is a mathematical modelling solver, which consists of 
in-house algebraic solvers, integrators, ordinary differential equation solvers and 
optimizers. MoT (Fedorova et al., 2015) is an equation-based simulation software that 
allows users to perform simulation processes without having to write any source code and 
has an option to convert models into COM-object s for use with external software. 
Tool-2: As shown in Fig 1, the Database Manager is a tool for searching and retrieving 
of the refrigerant properties (pure compounds and/or mixtures). The search engine allows 
forward search (given a compound identification, show all available properties) and an 
advanced reverse search (given a set of target properties, show all compounds that match 
the property targets). This feature is very useful in the selection of a refrigerant based on 
measured properties. The database tool also includes a collection of measured binary 
mixture data in terms of PTxy-data from phase equilibrium experiments as well as a 
collection of binary azeotropic data. Table 1 lists the available data related statistics for 
the three databases.  

Table 1: Statistics of available data in the Database Manager 
Pure properties statistic VLE data statistics Azeotropic data statistics 

Compound  Known 
refrigerants 

Binary 
pairs 

Data 
sets 

Data 
points 

Com-
pounds 

Binary 
pairs 

Data 
points 

Com-
pounds 

1766 306 1340 9304 113887 214 795 2130 238 

 

Tool-3: Property Estimation (Pure), is a property estimation toolbox for pure compounds 
(see Fig 1). This toolbox allows users to predict the properties of 60 different pure 
component properties. As refrigerant compounds are usually small molecules, the well-
known group contribution property estimation methods that are suitable for larger 
molecules have been found to be not suitable. Therefore, a new set of property models 
for a basic set of properties (normal boiling point and critical properties) have been 
developed (Kuprasertwong et al, 2021). Using these properties, other pure component 
properties, such as, heats of vaporization, heat capacities, densities, etc., are computed 
through validated models. As environmental properties of refrigerants are important, 
properties such as ozone depletion potential, global warming potential, auto-ignition 
temperature, etc., are also estimated. This toolbox is integrated with the modelling 
toolbox so that model parameters can be fine-tuned with available measured data.  
Tool-4: Property Estimation (Mixture) is the toolbox (see Fig. 1) that provides the 
predicted properties of refrigerant (organic) mixtures that are needed for refrigeration 
system design and analysis. For a specified binary or multicomponent mixture, this tool 
box predicts, as highlighted in Fig 2, phase equilibrium properties (Vapor Liquid 
Equilibrium), saturated conditions (bubble/dew points) as well as properties for a given 
phase such as density, viscosity, liquid or vapor enthalpies and heats of vaporizations. 
Also, for this toolbox, a collection of validated in-house mixture property models is 
available (correlations, cubic equations of state, PC-SAFT, etc.).   
Tool-5: Refrigeration Cycle Simulation is a toolbox that allows users to perform 
simulations of a refrigeration cycle comprising of evaporator, compressor, condenser and 
expansion valve units connected in a single-loop (see Fig 1 for more details). The 
refrigerant can be a single molecule or a mixture of up to 5 compounds. Before simulation, 
the tool checks if the given operating conditions and the properties of the refrigerant 
satisfy a set of consistency rules. This toolbox also computes, employing in-house 
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equations of state, thermodynamic diagrams (such as pressure-enthalpy diagrams) and 
embeds the cycle operation into these diagrams. Another useful feature of this toolbox is 
a sensitivity analysis option, where the sensitivity of compound properties or operational 
variables to the calculated Coefficient of Performance (COP) are checked. More details 
of the process models are given in (Kuprasertwong et al., 2021).    
Tool-6: Refrigerant Selection is the toolbox that helps to design, select and optimize 
refrigerants (single molecules or mixtures) for a specific application based on user defined 
requirements (target properties), as highlighted in Fig 1). Users can select and compare 
the feasible alternatives based on their target properties, additional properties (not used 
as targets) as well as refrigeration cycle performance. More details on the refrigerant 
selection method is given in (Kuprasertwong et al, 2021). Note that exact matches of all 
Set-1 target properties are possible, while for Set-2 target properties they are satisfied 
within the defined bounds. 
 

3. Application Examples 
In this section, two main toolboxes of ProREFD, which are Refrigerant Cycle Simulation 
and Refrigerant Selection including comparison of calculations with external software are 
highlighted through illustrative examples. 

3.1. Application example 1: Verify the refrigeration cycle operation of R-134a  
In this case, 1,2,2-Tetrafluoroethane (R-134a) is used in a refrigeration cycle operating 
with room temperature and ambient temperature of 298.15 and 303.15 K, respectively. 
The evaporator pressure and condenser pressure are set to be 3.5 and 15 bar with 0.9 
isentropic efficiency of the compressor. The R-134a mass flow rate is 180 kg/h. The 
expansion valve is assumed to be an isenthalpic system. Using the properties of R-134a  
(retrieved from the database), the consistency rules are checked and are found to be 
satisfied. Next, the cycle simulation is performed and the COP is determined. Next, the 
thermodynamic diagram is calculated and the operation of the cycle conditions is 
embedded into it. Finally, by perturbing the operating conditions (such as condenser 
pressure or evaporator pressure), the improvement of COP is checked.  Figure 3 shows 
several screen shots from ProREFD. On the left-hand side, the refrigeration cycle 
simulation is shown together with the specified and calculated values. On the right-hand 
side (top), the thermodynamic diagram is shown and on the right-hand side (below), the 
sensitivity analysis plots are shown. From the thermodynamic diagram, it can be seen that 
decreasing the condenser pressure or increasing the evaporation pressure can increase the 
COP. The sensitivity analysis shows that Tb (normal boiling point) is the most sensitive 
property of the refrigerant and the critical pressure, although used to check the 
consistency rules, is not sensitive to COP. 
3.2. Application example 2: replace R-134a  
In this example the replacement of R-134a with other refrigerants (single, binary mixture, 
and ternary mixture) are highlighted. For verification, the refrigeration cycle is considered 
to operate at the same conditions as given in section 3.1. Results for selected refrigerant 
alternatives are highlighted in Figure 4 (screenshots from ProREFD). Figure 4 shows that 
the Refrigerant Selection toolbox allows users to replace a specified refrigerant with other  
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Figure 3: Results from Refrigeration Cycle Simulation function 

 
Figure 4: Results from refrigerant selection function 

ProREFD: Tool for Automated Computer-Aided Refrigerant Design, Analysis,
and Verification
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single or mixture refrigerants. Here, the reverse database search and/or molecular-mixture 
design methods (Kalakul et al., 2018) are employed to determine the alternatives. 
Furthermore, users can compare each designed alternative and optimize it to achieve the 
most efficient refrigeration cycle. See also Sahinidis et al., (2003) for a similar example. 

3.3. Application example 3: ProREFD refrigeration cycle model validation 
The simulated refrigeration cycle results with R-134a as the refrigerant, which are given 
in section 3.1, are compared and cross-validated with simulations of the same 
refrigeration cycle at the same conditions and for the same refrigerant with two external 
process simulators (PRO/II and AspenPlus). The simulated results given in Table 2 
confirm that at least the three software tools give approximately similar results.  

Table 2: Comparison of results from ProREFD with commercial simulators 
  Calculation Source 

Parameters Unit ProREFD External 
Simulator-1 

External 
Simulator-2 

COP 3.57 3.59 3.60 
Evaporator Heat Duty (Qevap) kJ/h  22,206  22,061  22,132 
Compressor Work (Wcomp) kJ/h  6,228  6,148  6,154 
Condenser Heat Duty (Qcond) kJ/h  28,434 28,210  28,286 

 
4. Conclusion 
The capabilities of ProREFD have been highlighted through illustrative examples. The 
Refrigerant Selection toolbox has the potential to find appropriate candidates that may 
not exist in any database of refrigerants, especially mixed refrigerants. For Refrigeration 
Cycle Simulation, the features of embedding the simulation results on the thermodynamic 
diagrams help to identify how to change the operating conditions to improve the process 
performance. The sensitivity analysis helps to identify the parameters of the refrigerant 
that can influence the process operation the most. Hence, ProREFD is a promising 
software tool that can play a leading role in refrigeration process development by helping 
to find promising candidates and more sustainable solutions rapidly, reliably and 
efficiently. ProREFD is unique as no other tool that have all the functions integrated in 
one software could be found. Due to unavailable property data, currently, the number of 
compounds with boiling points below 250 K is not many. Consequently, the number of 
new refrigerants that can be generated is also limited. To overcome this issue, current and 
future work is increasing the number of small molecules with 1, 2 and 3 carbon atoms so 
that truly novel alternative refrigerants can be found.  
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Abstract 
The use of autosamplers connected to high throughput analytical devices allows for a high 
sampling frequency and analytics with reduced manual labor, leading to better process 
characterization (Maurer et al., 2015; Hofer et al., 2020). Increased sampling often leads 
to a significantly increased information content in the generated data. However, in 
combination with miniaturized or lab-scale reactors, the effect of volume change by the 
frequent sampling becomes challenging.   

Sampling leads to fast, almost instantaneous volume changes in the reactor. This process 
represents a discontinuous behavior in the continuous-time kinetic model. A commonly 
applied so-called “time stepping” method ignores the discrete behavior and relies on the 
solver’s local error estimator to solve continuous-time differential equations. Therefore, 
in regions where discontinuities of the solution or its derivative occur, the method may 
fail to deliver an accurate solution. An alternative is the so-called “event driven” method, 
which explicitly accounts for discontinuities in the model. During the solution 
(integration) of the model, the method accurately locates time points, where 
discontinuities occur (event detection), e.g., volume changes and continues the solution 
process (Dieci and Lopez, 2012). It is well-known that  proper handling of discontinuities 
can significantly increase the models' accuracy and reduce simulation runtime 
(Alsoudani, 2016). Still, bioprocesses developers often ignore or tolerate discontinuities 
when implementing models in simulation software. Hence, this contribution highlights 
the importance of a proper handling of discontinuities in a relevant common case study 
for bioprocess development. Results are presented for the determination of kinetic 
parameters of Sonnleitner and Käppeli’s (1986) Saccharomyces cerevisiae growth model 
on a lab-scale fed-batch process with fast volume changes caused by frequent sampling. 
It turns out that the “time stepping” method misses several volume changes. In contrast, 
the “event driven” method does not. Accordingly, the “event driven” method yields 
accurate model predictions which are not affected by the reactor volume’s prediction error 
and thus improves the model calibration, lowers parameters uncertainty, and supports a 
robust convergence to the best fitting model parameters. 

 
Keywords: parameter estimation, kinetic modelling, event driven modelling 

1. Introduction 
The acceleration of bioprocess development for decreasing time to market (TTM) of 
biopharmaceuticals has not only been known since the COVID-19 pandemic. For this 
purpose, mechanistic models represented by systems of ordinary differential equations 
(ODE’s) are indispensable tools for bioprocess design, monitoring, and control 
(Narayanan et al., 2020). However, the challenge of underfitting these models is present 
when an insufficient number of observations is used for model calibration. This problem 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50073-5



 M.A. Jouned et al. 
 

usually leads to correlated model parameters, which could hinder clear interpretations of 
the results. Autosamplers and automated analytical devices allows for tackling this 
challenge by increasing the sampling frequency without additional manual labor (Maurer 
et al. 2015; Hofer et al. 2020). Frequent sampling inevitably leads to significant volume 
changes in the reactor, which besides being a bottleneck in miniaturized systems, needs 
to be properly considered during modelling steps.  
Volume changes of an ideal stirred tank reactor are usually modeled by considering mass 
balance equations. The changes in the volume over time is calculated as the difference 
between input and output flow rates (Doran, 2012). It is widely accepted to consider 
sampling volume F  as a part of the flows that are leaving the reactor (Rocha, 2003; 
Callewaert and De Vuyst, 2000; Kager et al., 2020). Hence, volume changes are written 
usually as (where V: volume, F: liquid mass flow rates):  

 dVdt =   F −  F = F + F + F − F  (1) 

In usual fed-batch fermentation, the measured flow rates (except F ) usually show 
comparatively smooth curves. These curves are represented by discrete signals and can 
be transformed to smooth functions with relatively little effort, e.g., by applying a 
smoothing filter and by subsequent interpolation using piece-wise spline interpolation. 
Avoiding discontinuities on the right-hand-side of eq. 1 can significantly improve the 
efficiency and accuracy of its solution (Alsoudani, 2016). F  represents strongly 
discontinuous curves defined by (negative) pulse signals. A transformation of these sharp 
peaks by smoothing is not a viable solution. The result is highly nonlinear terms, which 
would require an (inefficient) dense time grid for accurate integration of eq. 1.  
In the “time stepping” method (TSM), which is implemented by using standard ODE 
solvers, the sampling volume is calculated by the integration of eq. 1 considering a 
(negative) pulse signal. The method relies on the solver error estimator to determine the 
step size (Dieci and Lopez, 2012). Hence, in regions where discontinuities of the solution 
or its derivative occur, i.e., sampling timepoints, there is a probability to miss certain 
events such as sampling volume, causing inaccurate volume calculation. This is 
exemplarily shown in Figure 1. This results in a wrong volume mass balance and therefore 
affects subsequent calculations. The extent of the errors resulting from improper handling 
of samples volumes depends on the ratio of the sampled volume to the reactor volume. 
The errors are expected to have a bigger influence on smaller platforms, e.g., miniaturized 
bioreactor systems (< 0.3 L), where often no reactor volume measurement is available. 

 
Figure 1: Modeling of volume changes due to sampling. Sampling volumes are considered by a 
“sampling” flow rate represented by a flow pulse signal. The time stepping method (TSM) does 
not accurately track the sudden changes in the flow pulse signal. The ODE solver steps miss the 
second pulse (overstepping problem), which has an immediate effect on the volume.  
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In contrast, the “event driven” method (EDM) accurately locates time instances (so-called 
events) where instantaneous sampling happens. At these time points, the integration is 
stopped, the volume is updated, and the integration is restarted with the updated volume 
as initial condition. By this, the EDM efficiently prevents missing any sample, leading to 
a correct and robust volume balance during model simulations.   
It is noted that established simulation software like gProms and Modelica/Dymola use 
built-in routines to automatically detect discontinuities, locate events, and restart 
integration (Process Systems Enterprise Limited, 2013; Dynamic Modeling Laboratory, 
2004). However, in low-level modeling languages such as the frequently used MATLAB 
(ODE Suite, 2020) or Python (SciPy package, 2020), the proper handling of 
discontinuities needs tailored solutions and special programming efforts as the ODE 
solvers provide only the basic functionalities by the so-called “event functions”.  

2. Materials and Methods 
2.1.  Cultivation process and Sampling 
A S. cerevisiae fermentation process is considered as an experimental case study. Samples 
were withdrawn from the fermentation medium at irregular time intervals either by-hand 
(10 samples of roughly 20 ml per sample) or automatically using (Numera from 
Securecell) autosampler (20 samples of roughly 7 ml per sample) and distributed along 
the time of the experiment. The reactor's initial volume was 1.5 liter. The experiment 
consists of a batch and a fed-batch phase with different feed regimes.   
2.2. S. cerevisiae fermentation model 
The model from (Sonnleitner and Käppeli, 1986) considers the growth on glucose and 
ethanol substrates. It describes fermentative and oxidative growth based on all forms of 
biomass specific intake (𝑞 ,  𝑞 ,  𝑞 ) using (𝑌 /    , 𝑌 / , 𝑌 / )  yields parameters. Total growth is written as:  
 𝜇  =  𝑌 / ∙ 𝑞 + 𝑌 / ∙ 𝑞+  𝑌 / ∙ 𝑞  (2) 

Mass balances equations are (x: biomass, s: glucose, e: ethanol, F: flow rate)  

2.3. Time-stepping method (TSM) versus event-driven method (EDM) 
Eq. 1 is used to model volume changes in both methods. In EDM, F  is omitted 
from eq. 1, and an external algebraic equation is used instead to account for volume 
changes.  Figure 2 illustrates the working principles of the TSM and EDM. In the EDM, 
to accurately locate each sampling timepoint 𝑡  , the simulation time interval is separated 
into k sub- intervals, where for each sampling point 1, 2, 3 …. K, the volume is corrected 
outside the ODE system using the additional algebraic equation; 𝑉 = 𝑉 − 𝛥𝑉. Following 

d Cdt = − q + q ∙ 𝐶 − F𝑉 ∙ 𝐶 + F 𝑉 ∙ 𝐶 , 𝑑 𝐶𝑑𝑡 = 𝑞 −  𝑞 ∙ 𝐶 − F 𝑉 ∙ 𝐶  

 d Cdt  =  μ  . C  − F 𝑉 . C  
 

(3) 
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the integration is restarted with the 
updated volume. In TSM, the 
sampling volume rate is integrated 
into eq. 1 without special treatment. 
The same initial conditions applied 
to both methods. 
2.4. Convergence analysis of 
parameter estimation 
To highlight the negative effects of 
improper handling of sampling 
volume, the model predictions are 
fitted to the experimental data. The 
performance of the fitting is 
assessed by applying either TSM or 
EDM. The following parameters  𝜃 = [ 𝑞 , 𝑞 , 𝑌 / , 𝑌 / , 𝑌 / ]  
are selected for estimation based on 
the local parameter sensitivities and 
an identifiability analysis based on importance ranking (López et al., 2013). The 
robustness of both methods is assessed through a Monte Carlo approach. 500 uniform 
distributed initial parameter guesses are generated over a +/- 25% interval around the 
literature's nominal values (Sonnleitner and Käppeli, 1986). For each parameter 
realization, an estimation problem was solved using MATLAB R2017b “ODE15s” solver 
and the nonlinear fitting algorithm “lsqnonlin”. Normalized residual sum of squares 
(NRSS) between model predictions and measurements was used as an objective function.  

3. Results and Discussion 
Figure 3 (right) shows a visual comparison of one simulation run to highlight the 
differences in the calculated volume using both methods. It can be noticed that TSM 
oversteps certain sampling times and consequently doesn’t update volume correctly. The 
wrong volume affects the other model states (concentrations) described in eq. 3 and 
displayed in Figure 3 (right) for two identical model simulations. The error becomes more 
pronounced towards the end of the simulation as its effect accumulates over time. 
In TSM, to account for sampling volume changes correctly, solver steps must exactly 
locate sampling times. However, TSM locates solver steps based on the integrator's local 
error estimator, which is a tool to control approximation error at each step. If the solver 
oversteps a sampling time interval, the local error estimator does not indicate an 
approximation error. Consequently, sampling instances are located by chance. Therefore, 
by evaluating the model at slightly different initial conditions or with slightly different 
parameter values, the solver may overstep very different sets of sampling timepoints. The 
accuracy of model simulations might be strongly affected. This is also critical for model 
parametrization, as the deviations in model volume and predictions are different at each 
optimization run, which adds artificial noise to the optimization problem. This is shown 
in Figure 3 (left).  
In contrast, EDM accurately locates all sampling events and uses an external algebraic 
equation to correct the volume and to restart the integration at each sampling timepoint. 
By doing this, it suppresses the noise and provides accurate and reproducible model 
simulations. This behavior is illustrated in Figure 3 (left), which shows the optimization 

Figure 2: TSM and EDM for handling instantaneous 
volume changes because of sampling.  
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surface for two selected parameters. The noisy nature of the surface in TSM reduces the 
effectiveness of the gradient-based optimizer to seek an optimum. Tables 1 & 2 highlight 
this observation by comparing the means of prediction errors of the calibrated models 
obtained by both methods. The two-tailed p-value of the t-test is less than 0.0001, 
indicating a strong statistical significance. The results clearly indicate a higher probability 
to obtain better predictions using EDM and to converge to the best fitting parameter 
estimates. Reducing the solver tolerance in TSM might reduce these effects but not 
completely avoid them, as the error estimator still does not directly address the underlying 
reason of the problem, aside from increasing the computational cost.  

 
Figure 3: Left) States, flow rates and volumes calculated by the same model and parameters using 
EDM and TSM. Using TSM certain sampling times are overstepped. EDM delivers accurate results 
by accurately locating sampling times. Right) Optimization (NRSS) surfaces are smoother in case 
of EDM compared to standard TSM, allowing for a better convergence and efficiency of gradient-
based optimization algorithms. 

 

Table 1 & 2: Results of Monte Carlo procedure (n=500). EDM shows a statistically significant 
lower mean of the model prediction errors. 

 
  𝜃  𝜃  𝜃  𝜃  𝜃  

Mean of Estimated. 𝜃 TSM 3.28 6.81 0.46 0.05 0.70 
EDM 3.30 6.56 0.44 0.05 0.69 

95% confidence 
interval  

TSM 0.97 2.50 0.16 0.018 0.24 
EDM 0.92 2.25 0.14 0.016 0.24 

 TSM EDM 
Mean of prediction error 3.1 2.3 
Standard deviation ( 𝜎 ) 1.65 1.35 
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4. Conclusion 
Using EDM to consider sampling volume in S. cerevisiae fermentation models delivers 
more reproducible and accurate model predictions. Moreover, for model calibration, the 
quantitative analysis reveals a significantly improved convergence of the parameter 
estimation algorithm. Accordingly, EDM results are obtained with a lower prediction 
error and parameters uncertainty. The reason is a smoother optimization surface that leads 
to more robust convergence to the best fitting model parameters. 
EDM is ready-for-use in high-level symbolic modelling languages such as gProms and 
Modelica/Dymola. In low-level languages, e.g., MATLAB or Python, EDM can be 
implemented with a reasonable effort using available initial value solvers with event 
detection. Hence, this method is simple to implement for fermentation processes with 
high sampling rates and platforms where explicit weight measurements are crucial but 
not available or hard to obtain, e.g., mini multi-bioreactor systems. This will allow for 
more consistent results, resulting in reduced iterations in bioprocess development and, 
therefore, a decreased time to market (TTM) of biopharmaceuticals.  
 
Acknowledgment  
This work was partially funded by the Austrian Research Funding Association (FFG) 
within the program Bridge 1 in the project ”AdaMo” (No. 864705). 

References 
Alsoudani. 2016. Discontinuities in Mathematical Modelling : Origin , Detection and Resolution. 

University College London Department. 
Callewaert & De Vuyst. 2000. “Bacteriocin Production with Lactobacillus Amylovorus DCE 471 

Is Improved and Stabilized by Fed-Batch Fermentation.” Applied and Environmental 
Microbiology 66 (2): 606–13. 

Dieci & Lopez. 2012. “A Survey of Numerical Methods for IVPs of ODEs with Discontinuous 
Right-Hand Side.” Journal of Computational and Applied Mathematics 236 (16): 3967–91. 

Doran. 2012. Bioprocess Engineering Principles: Second Edition. Bioprocess Engineering 
Principles: Second Edition. Vol. 9780080917. Academic Press. 

Dynamic Modeling Laboratory. 2004. “Dymola.” Dynasim AB. Lund, Sweden: Dynasim AB. 
Hofer, Kroll, Barmettler, & Herwig. 2020. “A Reliable Automated Sampling System for On-Line 

and Real-Time Monitoring of CHO Cultures.” Processes 8 (6): 637. 
Kager, Tuveri, Ulonska, Kroll, & Herwig. 2020. “Experimental Verification and Comparison of 

Model Predictive, PID and Model Inversion Control in a Penicillium Chrysogenum Fed-
Batch Process.” Process Biochemistry 90 (March): 1–11. 

López, Barz, Peñuela, Villegas, Ochoa, & Wozny. 2013. “Model-Based Identifiable Parameter 
Determination Applied to a Simultaneous Saccharification and Fermentation Process 
Model for Bio-Ethanol Production.” Biotechnology Progress 29 (4): 1064–82. 

Maurer, Skerker, Arkin, Miller, Biksacky, & Huether-franken. 2015. “Automated Bioreactor 
Sampling – Process Trigger Sampling for Enhancing Microbial Strain Characterization.” 

Narayanan, Luna, von Stosch, Cruz Bournazou, Polotti, Morbidelli, Butté, & Sokolov. 2020. 
“Bioprocessing in the Digital Age: The Role of Process Models.” Biotechnology Journal. 
Wiley-VCH Verlag. 

Process Systems Enterprise Limited. 2013. “Model Developer Guide.” London, UK. 
http://www.psenterprise.com. 

Rocha. 2003. “Model-Based Strategies for Computer-Aided Operation of a Recombinant E . Coli 
Fermentation.” Braga: Escola de Engenharia Universidade do Minho. 

Sonnleitner & Käppeli. 1986. “Growth of Saccharomyces Cerevisiae Is Controlled by Its Limited 
Respiratory Capacity: Formulation and Verification of a Hypothesis.” Biotechnology and 
Bioengineering 28 (6): 927–37. 

 

468 M.A. Jouned et al. 



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

  

Process System Engineering Tool Integration in the 
Context of Industry 4.0 
Manuel Rodríguez Hernández*, Ismael Díaz Moreno 

Universidasd Politécnica de Madrid, José Gutierrez Abascal 2, Madrid 28006 

manuel.rodriguezh@upm.es 

Abstract 
The objective of this work is to have a model (or series of models) of a process plant that 
is available during the whole lifecycle of the system (process + product). To achieve this 
goal, we use a Model Based Engineering approach. In this work we will show how very 
different tools can be integrated and applied for a single process, we will illustrate (as a 
proof of concept) the integrations of the following tools (and languages): Aspen, Excel, 
MATLAB, and surrogate models. This will be demonstrated using Phoenix Integration 
software that provides mechanisms to automate the execution of different simulation and 
modelling tools in a single simulation workflow. In this integration, besides the tool 
integration, we will show how a superstructure optimization using an Aspen model 
(rigorous model) can be implemented and the simulation and optimization of a process 
composed of some rigorous units along with some surrogate units. The process used is 
the production of ethylbenzene from benzene and ethylene. 

Keywords: Tool integration, model based engineering, process integration 

1. Introduction 
Industry is in constant evolution. Nowadays we are in what is called the fourth industrial 
revolution, Industry 4.0 (Schwab, 2016 and Kagermann et al., 2013). Its target is to make 
more efficient and flexible plants, reduce times and costs of projects and products 
lifecycle. This target has a strong basis in the use of digital twins. In the case of process 
plants there are a lot of specific software packages that are used by different agents 
(operators, maintenance workers, engineer, etc) in all the phases of the plant from 
planning to decommissioning this generates numerous documents and data that are prone 
to have inconsistencies (Fillinger et a., 2019) which can have an important impact on the 
plant in several aspects like safety or economic performance (Herzig, 2014). Several 
existing initiatives address the data transfer between tools, like Cape Open Laboratories 
Network (CO-LaN, 2018) for process simulators or the Namur initiative for data 
exchange between P&IDs and process control systems (NAMUR, 2018). Most of these 
approaches lack of a holistic view and focus on specific phases in the lifecycle. A Model 
Based Systems Engineering approach is needed to cover all the development phases, and 
to guarantee the traceability and consistency along the complete plant time span 
(Friedenthal, 2014). Several software frameworks exist for MBSE like Syndeia provided 
by Intercax (Bajaj et al., 2016) or ModelCenter provided by Phoenix Integration. In this 
work we use the latter to show tool integration in different applications following a Model 
Based Engineering approach, the ongoing work is to extend this approach to cover from 
the requirements of the process/product to its conception, design and operation. 
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2. Phoenix Integration ModelCenter 
ModelCenter is a software developed by Phoenix Integration. It is an environment for 
Model Based Engineering (ModelCenter 2020). It is a vendor-neutral software which 
allows the integration of different tools in a single automated workflow. Several analyses 
can be conducted on the created workflow as design of experiments, optimization or trade 
studies. 

The software also can create Response Surface Models (surrogate models) that can be 
used instead of or combined with original models in order to reduce computational burden 
or search for a global optimization solution. Finally, an important feature of the software 
(not presented in this work) is the enabling of Model Based Systems Engineering in order 
to have a complete framework to develop a process/product including the whole lifecycle 
and guaranteeing the achievement of the established requirements. 

ModelCenter includes some plug-ins for some tools (like MATLAB, Maple PTC, Ansys, 
etc.), although almost any external program can be wrapped and included in a library of 
available models. The simulation/analysis workflow is created by dragging and dropping 
wrapped applications from the library and combining them using if-then branches, loops 
or other flowchart-like constructs. Any program that can use a text file as an input and 
output file is easily wrapped, basically ModelCenter operates writing user values into the 
input file and reading the results from the output file. The wrapped models can be 
distributed in different machines with different operating systems. In this paper we will 
show the integration of MATLAB, Aspen and Excel and the use of surrogates in 
simulation and optimization. 

3. Tool integration 
3.1. Process description 

Benzene and ethylene are fed to an isothermal Continuous Stirred Tank Reactor (CSTR) 
where ethylbenzene (EB) is produced along with some diethylbenzene (DEB) as side 
product. The effluent of this CSTR is fed to another reactor (in this case it is adiabatic) 
where transalkylation of the DEB with benzene to EB is produced. The outlet stream is 
fed to a separation section with  two distillation columns, the first one separates non 
reacted benzene as distillate that is recycled to the firs reactor and the second one obtains 
the EB product at the top and non-reacted DEB at the bottom that is recycled to the second 
reactor. Figure 1 shows the developed Aspen simulation file of the process. 

 
Figure 1. Ethylbenzene production process 
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3.2. Tool integration, an extra value to software communication 

This section shows how different tools can be integrated in a single workflow and 
automate a simulation of the process. The ethylbenzene process is simulated according to 
the data provided by (Luyben, 2011). There is a tradeoff in the reactors volume and the 
amount of B recycled in order to minimize costs. A case study has been created to include 
an Excel file where the initial data and results are stored, an aspen file with the simulation 
and a MATLAB file that computes the Total Annualized Costs. Fig 2 (left) shows the 
wrapped models, the aspen model is etilb-master and has been created writing to the text 
input file (.inp file) and reading to the report text file (.rep file).  Fig 2. (right) shows how 
the costs can be also calculated in Excel and in separate files for different equipment costs 
and then combined to get the overall amount. This allows to work by different users 
without interference in different parts of the process. This integration provides the 
mechanisms to establish initial requirements, perform the simulation and assess the 
achievement of the requirements, guaranteeing consistency between different views or 
parts of the model and traceability of the whole process. 

 

 
Figure 2. Tool integration: MATLAB, Aspen and Excel integration 

4. Model Integration and applications 
4.1. MATLAB inside Aspen 

Sometimes, the available models in Aspen cannot represent a complex unit or a model of 
a unit has already been developed for some other purpose. In this case it would be 
desirable to integrate the external model into the Aspen process flow diagram. Model 
reuse and interoperability has been an important research field and some important 
initiatives have been developed (CO-Lan, 2018).  

Using this framework, the integration is straightforward, in Aspen the Reactor is removed 
from the model and an input stream is added to the flowsheet. The original input is fed to 
the MATLAB model that calculates the output from the reactor and sends it to Aspen 
which calculates the flowsheet and obtains a new stream that should be equal to the 
MATLAB input. ModelCenter includes a module called Converger that changes the input 
to MATLAB until convergence is achieved. Basically, it is the convergence of a tear 
stream as it happens in a recycle or design spec in Aspen. A model developed with any 
other software or programming language could be integrated in the same way or even 
more than unit could have been replaced (for example one reactor developed with 
MATLAB and the other one with Python).  
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4.2. Superstructure optimization inside Aspen 

In the design of a process several alternatives have to be considered. In order to get the 
optimal process, a superstructure optimization is usually created. This is usually created 
with a simplified model as the equations (and, overall, the physical properties) are not 
available. Still, in case of implementing the equations it takes an important amount of 
time while the Aspen model is many times available and its development is usually easier. 
The optimization problem is the same outlined previously, the tradeoff between reactors 
volume and recycled benzene but in this case the costs of the different routes are included 
in the optimization. In this case, we show how a superstructure can be created using the 
rigorous Aspen model. Fig 3. shows the superstructure created with two possible reactors 
(one CSTR and one PFR) and two possible separations (a flash and a distillation column). 
Splitters have been added to the simulation to allow for the different process paths. New 
feeds to the column and the flash have been added with a negligible amount, this is to 
avoid initial convergence problems with the simulation for the non-selected route. The 
flowchart (bottom left of the figure) optimizes the process sending different Boolean 
values to the splitters.  

 
Figure 3. Superstructure optimization using Aspen rigorous model 

 

The result obtained is the original flowsheet, CSTR and distillation column. This case can 
be combined with the previous one commented in section 4.1 and some of the units could 
be external models developed with other software than Aspen.  

4.3. Using Surrogates 

The use of surrogate models is gaining importance lately, if well designed, they can have 
similar performance than the original models (in the range of values of its design) 
allowing for faster execution and global optimization. ModelCenter has a module to 
create Response Surface Models. In this case we have created a surrogate model of the 
ethylbenzene process and a surrogate model of the process and the costs. ModelCenter 
provides two methods to create the surrogates, Polynomial and Kriging, and different 
Design of Experiment techniques (Full factorial, Orthogonal Array, Central Composite, 
Box-Behnken, Latin-Hypercube, etc). Several methods can be run for a DoE.  

In this case Orthogonal Array supplemented with Latin-Hypercube was used to get the 
surrogate model with the Kriging approximation.  Fig 4. shows the validation of the two 
surrogate models against the original one (left). The original process is in the middle and 
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the two surrogated alternatives are up and down, the results are compared in order to 
validate the surrogates. The implementation of the optimization using the surrogated 
model of the process is shown in Fig 4 right. 

 

 
Figure 4. Surrogate modelling implementation, simulation (left) and optimization (right) 

Next table shows the optimization results obtained using Aspen and using both surrogate 
models. 
Table 1. Surrogate modelling performance comparison 

 Simulation Process Surrogate  Complete 
Surrogate 

Reactor volume (m3) 248.4 248.4 248.4 

Recycled Benzene (kmol/h) 1513 1522 1510 

TAC ($/y) 3.94M 3.98M 3.92M 

Execution time 40min 3min 1min 

 

4.4. Future applications 

The next applications that the authors are working on are: 

Multiscale modelling. Our research focus is not only on the lifecycle of the process but 
also in considering all the scales needed in a model from molecular modelling to macro 
scale modelling. Molecular modelling is approached with the integration of 
COSMOThermX, used for properties prediction of complex substances, with process 
simulation tools (such as Aspen Plus). The macro scale model and its impacts are being 
done integrating LCA tools, in this case SimaPro. The final target is to have an automated 
multiscale process for decision making, obtaining the optimal components and operating 
conditions to get the most sustainable process (considering the three dimensions 
economic, environmental and societal). 

Operational integration. The multiscale modelling is mostly used in the design phase, in 
the operational phase the integration of standard engineering applications is important to 
guarantee a good plant performance. P&ID integration into the operating model, alarm 
recognition or safety assessment are some of the functionalities to be integrated with the 
central model. 
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Model Based Systems Engineering. The last application the authors are working on is the 
integration of PSE tools with standard MBSE languages (SysML) and tools (like IBM 
Rhapsody) in order to guarantee the traceability and consistency from the requirements 
phase to the commissioning phase. The idea is to have a core single model that will be 
used from the concept phase (requirements) to the final phase (decommission). 

5. Conclusions 
Nowadays we are in a digital transformation where models and gaining each day more 
importance. To have a framework that allows for vertical (whole lifecycle) as well as 
transversal (different tools and applications in each phase) integration using models that 
represent the actual process (and product) in a multiscale dimension is the overall goal of 
this work which is completely aligned with the current digital transformation. In this work 
we have presented a model-based engineering approach integrating different applications 
for different uses. This work has presented the potential uses and benefits of having a 
single model built with different standard software tools and the future steps towards 
having a model for a holistic view of the process/product to be developed and used.  
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Abstract 
Surrogate models are an efficient method to expedite the process design by superstructure 
optimization. For their application in biorefineries’ process design, several surrogate 
models are benchmarked in a case study regarding their validation metrics and their 
performance in a reference superstructure optimization problem. Despite good validation 
metrics for most surrogate models, their prediction quality in the superstructure 
optimization does not reflect this. For the use of surrogate models in superstructure 
optimization, the need for a profound assessment of options, and the possible use of 
dynamic sampling strategies become evident. 

Keywords: Biorefinery, Process Design, Superstructure Optimization, Surrogate 
Modelling, Machine Learning. 

1. Introduction 
A key approach in promoting the transition towards a bio-based economy is the 
conceptual design and implementation of integrated second-generation biorefineries. A 
conceptual design approach for these biorefineries is Superstructure Optimization (SSO), 
which yields an optimal candidate process topology, but which is inherently limited by 
the initial search space and the fidelity of the models (Mencarelli et al., 2019). This 
contrasts highly with the complexity of fermentation processes and disregards advances 
in synthetic biology to optimize cell factories (Straathof et al., 2019). However, high-
fidelity models, as, e.g., mechanistic models, which resemble the underlying physical, 
chemical, and biological phenomena with suitable mathematic descriptions, can describe 
this complexity well. 
 
To facilitate the computational tractability of the SSO with high-fidelity models, 
surrogate models, which are commonly machine learning or other statistical models, can 
be used instead in the superstructure formulation (Mencarelli et al., 2020). Regarding the 
use of surrogate models in SSO, we hence propose and benchmark five different 
alternatives to determine the most suitable surrogate alternative for a process design task. 
The first four alternatives comprise 1) a Gaussian Process Regressor, 2) a Support Vector 
Machine Regressor, 3) a Regression Tree Ensemble, and 4) an Artificial Neural Network 
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as a surrogate model, which are respectively fitted to flowsheet-wide simulation data over 
the design space. The fifth alternative serves as a comparison to the prior four and is a 
regression model based on linear regression in multiple dimensions. Each model is 
validated, and relevant metrics are assessed and compared. With the respective surrogate 
models for each flowsheet option in the superstructure, the underlying optimization 
problem of the SSO, which is classically a mixed-integer nonlinear program, can be 
reformulated either as a series of nonlinear programs for the first four models or as a 
mixed-integer linear program for the last surrogate. The optimization problem’s solution 
with each surrogate and validation with the original flowsheet model serves as the 
benchmarking purpose in this study. 

2. Methods 
2.1. Gaussian Process Regression 

Gaussian Process Regression (GPR) is a prominent type of machine learning model with 
a plethora of applications. The regression is based on a stochastic process. In this 
stochastic process, a kernel function correlates any point in the input space to the points 
used to fit the GPR (Al et al., 2019). GPRs are extremely versatile regarding their 
application and can interpolate very well with small amounts of data available; however, 
they work best for low-dimensional problems, steady design spaces, and moderately sized 
datasets (McBride and Sundmacher, 2019). 
2.2. Artificial Neural Network 

Artificial Neural Networks (ANN) are another prevalent type of machine learning model 
with applications reaching from standard machine learning and deep learning tasks up to 
artificial general intelligence. One of the simplest representations of an ANN is a 
multilayer perceptron (MLP) with one input layer, at least one hidden layer, and one 
output layer, where each hidden layer contains a certain number of nodes that use a 
specific transfer function to calculate the node’s outputs to all its inputs (Al et al., 2019). 
The hyperparameters of the network architecture, e.g., number of layers, neurons, types 
of the transfer function, and training algorithms, can be screened in the fitting process 
using a grid search approach to improve the model quality. ANNs are especially suitable 
for highly nonlinear and high-dimensional systems; however, their functionality is 
hindered by low amounts of data unless shallow ANNs are used (McBride and 
Sundmacher, 2019). 
2.3. Support Vector Regression 

Another heavily used representative of machine learning models for surrogate modelling 
are support vector machines. The general idea of support vector machines is to fit 
hyperplanes in the n-dimensional input space to maximize the distance of the points in 
the input space to the hyperplane by utilizing kernel functions. The fitted hyperplanes 
then serve as the basis for the regression (Williams and Cremaschi, 2019).  
2.4. Regression Tree Ensemble 

The last introduced machine learning concept is a so-called regression tree ensemble 
(RTE), belonging to the class of ensemble methods, where several decision trees are fitted 
to the data, and the weighted combination of these trees serves as the basis for regression. 
The concept of a single decision tree is visually very well depicted by dividing input data 
based on several input criteria onto different branches of the tree. Tree ensembles are 
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quite powerful as they can effectively fit sparse datasets with exceptional predictive 
capacities (Thebelt et al., 2020). 
2.5. Delaunay Triangulation Regression 

In addition to all the introduced machine learning models, the idea behind Delaunay 
triangulation regression (DTR) as a surrogate model is the extension of the concept of a 
piecewise-linear function in multiple dimensions (Franke, 1979). Triangulation as a 
mathematical topology is a homomorphism to the n-dimensional design space 𝑋 ∈ 𝑅 , 
consisting of a set of 𝑛-simplices. An 𝑛-simplex consists of 𝑛 + 1 vertices, which are set 
to be the sampling points 𝑝 ∈ 𝑋 in the design space. Any point 𝑥 within the simplex can 
be described as a linear combination of the vertices. 
2.6. Surrogate Model Validation 

As sampling strategy for each surrogate model, Latin Hypercube sampling is chosen. 
Alternatively, Sobol sequences can be used with similar results (Williams and Cremaschi, 
2019). Each surrogate model type is then fitted to the set of sampled points, while the fit 
is optimized respectively with a corresponding routine. All machine learning models are 
cross-validated, employing a 𝑘-fold cross-validation. The cross-validation methodology 
is altered to preserve the convex hull for the DTR surrogate model, as the DTR model 
intrinsically has no extrapolative capabilities. The calculated validation metrics are the 
coefficient of determination 𝑅  and the root mean squared error 𝑅𝑀𝑆𝐸 for the testing and 
training datasets with 𝑘 = 5. 
2.7. Superstructure Optimization 

The superstructure for superstructure-based process design can be transferred into an 
optimization problem to solve it mathematically. While there are different ways of 
postulating a superstructure, e.g., as state-task-network or state-equipment network, the 
underlying optimization problem is commonly a mixed-integer problem (MIP):  𝑀𝐼𝑃:   𝑧 = 𝑓(𝑥, 𝑦)    𝑠. 𝑡. 𝑔(𝑥, 𝑦) ≤ 0 ℎ(𝑥, 𝑦) = 0 𝑥 ∈ 𝑋, 𝑦 ∈ [0,1]  (1) 

With 𝑧 being the objective to be minimized, 𝑓(𝑥, 𝑦) being the functional relation of 
respectively one of the surrogate models, 𝑔(𝑥, 𝑦) representing inequality constraints, ℎ(𝑥, 𝑦) representing equality constraints and 𝑦 defining binary decision variables. If 
either of the functional relationships is nonlinear, the MIP is denoted as a mixed-integer 
nonlinear program (MINLP). Due to the strenuous computational tractability for state-of-
the-art solvers to solve MINLPs, two different reformulation strategies are chosen: The 
first is the reformulation to a series of nonlinear programs (NLP), eliminating all integer 
variables by iterating over each flowsheet alternative. The second option is the 
reformulation to a mixed-integer linear program (MILP), where all nonlinear functional 
relations in the model are linearized. 

3. Results & Discussion 
3.1. Case Study 

As a case study, previously presented by Vollmer et al. (2020), a base-case biorefinery 
setup is chosen, with wheat straw as substrate and xylitol as the product. For this work, 
one reference flowsheet with fixed topology out of the entire superstructure is chosen. 
The reference flowsheet involves a pretreatment unit, an evaporator as an upconcentration 
unit, a fermentation unit for converting the hemicellulosic sugars to xylitol, an 
evaporation unit, and two crystallization units in the downstream processing (Vollmer et 
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al., 2020). For all unit operations, mechanistic models based on mass and energy balances 
and kinetic equations for the respective process are employed. All models are 
implemented in MATLAB. All models are analyzed regarding their robustness by a 
comprehensive Monte Carlo-based uncertainty and a variance-based sensitivity analysis. 
The selected variables for the input space t are the acid concentration for the pretreatment 𝐶 , the fermentation time 𝑡 , the inoculum concentration for the fermentation process 𝐶 , the vapor fraction of the upconcentration unit 𝑣  and the evaporation unit 𝑣 . 
The other variables are set to fix values within their operational ranges. The calculated 
output variables are the produced mass of xylitol 𝑀 , the concentration of two 
inhibitors (5-HMF and acetic acid) after the final crystallization step 𝐶  and 𝐶 , as 
well as a ratio 𝜑, indicating the mass of produced CO2 by steam generation for providing 
process heat in the upconcentration and evaporation unit per mass of produced xylitol. 
3.2. Surrogate Model Creation and Validation Results 

The input space with the five variables is sampled with 𝑁 = 125, 250, 500, and 1000 
samples. For the GPR, the SVM, and the RTE, the Statistics & Machine Learning toolbox 
functionalities of MATLAB are used. An internal routine respectively optimizes the 
hyperparameters for all three in MATLAB. For the ANN, the functionalities of the Deep 
Learning toolbox of MATLAB are used. The ANN’s fitting is performed by grid search 
functionalities implemented within the easyGSA toolbox (Al et al., 2019). The DTR 
model’s triangulation is obtained by the Delaunay triangulation functionality of the scipy 
library for Python. The parity plots in Figure 1 show that the GPR surrogates fit best for 
all the sampling sizes. The SVM surrogates show a significant amount of outlier for 
increasing sampling sizes, and the RTE surrogates to a lesser amount. However, the ANN 
surrogates also show good fitting qualities with a larger variance than the GPR surrogates. 
 

 
Figure 1: Parity plots of the fit for the GPR, SVM, RTE, and ANN surrogates with all data points. 
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The validation results for 𝑁 = 1000 samples are shown in Table 1. The metrics for all 
machine learning surrogates show a good fit. The DTR surrogate predicts unseen data 
poorly, worsening the quality metrics. Similar metrics result for all other sample sizes. 
Table 1: Metrics for the k-fold cross-validation of all surrogates with N=1000 samples. 

N=1000 GPR SVM RTE ANN DTR 𝑅  1 0.95 0.99 0.995 1 𝑅  0.981 0.937 0.921 0.985 0.68 𝑅𝑀𝑆𝐸  0.017 2.858 1.057 0.961 0 𝑅𝑀𝑆𝐸  1.818 3.382 3.721 1.602 7.788 

3.3. Superstructure Optimization Results 

The input variables for the optimization problem are considered in the following range: 
the acid concentration 𝐶 = [0.5, 2] g/100g biomass, the fermentation time 𝑡 =[12, 48] h, the inoculum concentration 𝐶 = [0.5, 3] g/L, the vapor fraction of the 
upconcentration unit 𝑣 = [0.4,0.6] and the vapor fraction of the evaporation unit 𝑣 = [0.99, 0.998]. Furthermore, the concentration of 5-HMF and acetic acid 
respectively in the last unit operation cannot exceed 𝐶 , 𝐶 ≤ 0.5 g/L. Equally, not 
more than 10 kg of CO2 can be produced per kg of xylitol produced, so 𝜑 ≥ 0.1. The 
objective is chosen to be the produced amount of xylitol 𝑧 = 𝑀 . For all NLPs, a 
surrogate is fitted to the input samples and, respectively, one output variable and solved 
with the MATLAB solver fmincon (SQP algorithm) and a multi-start method to seek 
global optimality. For the MILP, one DTR surrogate is fitted to the input samples, 
capturing all four outputs, implemented in Pyomo and solved with the GUROBI solver. 
The following table shows the optimization results and the corresponding validation 
simulation with the original model. 
Table 2: Results for the objective function and the constraints from the NLP/MILP (left) and the 
validation simulation (right). 

125 GPR ANN SVM RTE DTR 𝑀  55.9 52.6 54.8 54.2 64.8 0.00 55.2 0.00 47.1 48.2 𝐶  0.50 0.90 0.5 0.52 0.5 2.82 0.34 8.82 0.50 0.50 𝐶  0.03 0.03 0.03 0.02 0.04 0.18 0.04 0.31 0.02 0.02 𝜑 0.12 0.12 0.13 0.13 0.17 0.00 0.11 0.00 0.11 0.11 
 

250 GPR ANN SVM RTE DTR 𝑀  52.6 49.2 85.3 0.00 62.7 47.0 43.0 37.2 48.7 48.7 𝐶  0.50 0.90 0.50 14.0 0.50 0.31 0.48 2.28 0.42 0.43 𝐶  0.01 0.03 0.11 0.27 0.00 0.02 0.04 0.07 0.02 0.02 𝜑 0.12 0.11 0.15 0.00 0.18 0.11 0.09 0.09 0.11 0.11 
 

500 GPR ANN SVM RTE DTR 𝑀  53.9 53.9 53.3 53.8 84.4 0.0 47.9 2.80 50.0 51.1 𝐶  0.50 0.45 0.50 0.34 0.50 3.76 0.25 2.80 0.50 0.45 𝐶  0.02 0.02 0.02 0.02 0.07 0.13 0.10 0.13 0.02 0.02 𝜑 0.12 0.13 0.12 0.13 0.61 0.00 0.11 0.01 0.12 0.12 
 

1000 GPR ANN SVM RTE DTR 𝑀  54.3 51.0 52.1 53.1 56.1 0.00 47.2 4.24 49.2 50.4 𝐶  0.50 0.75 0.50 0.34 0.5 2.82 0.44 4.74 0.50 0.35 𝐶  0.02 0.03 0.02 0.02 0.04 0.13 0.05 0.15 0.02 0.02 𝜑 0.13 0.12 0.12 0.12 0.12 0.00 0.11 0.01 0.11 0.12 
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For the GPR, the predictions are constantly on a high accuracy level independent of the 
sample size. However, the GPR tends to overpredict the objective function value and to 
underpredict the concentration constraints. The ANN shows good predictions of the 
objective functions and no bound infringements except for the case with N=250. Both the 
SVM and the RTE mostly fail to predict the objective value accurately due to poor fitting. 
Lastly, the DTR model predicts the objective function value accurately for all cases 
without bound violations despite the impaired validation metrics. 

4. Conclusion 
It becomes evident that despite the brilliant predictive qualities of most machine learning 
surrogates, this is not reflected in the SSO. The DTR model performs best in the 
benchmark, indicating a promising potential as surrogate modelling technique for 
optimization applications. Possibly, the predictive quality of all models could be 
improved with dynamic sampling strategies, reducing the inconsistencies in prediction 
over differently sized datasets. Overall, the crucial role of cross-validation and case-
dependent analyses of different surrogate models becomes evident, as sampling size and 
strategy clearly play a role in the resulting model quality and the optimization results, 
thus application strategies can hardly be generalized. 
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Abstract 
A comprehensive evaluation of toxic chemicals and understanding their potential harm to 
human physiology is vital in mitigating their adverse effects following exposure from 
environmental emergencies. In this work, we develop data-driven classification models 
to facilitate rapid decision making in such catastrophic events and predict the estrogenic 
activity of environmental toxicants as estrogen receptor-α (ERα) agonists or antagonists. 
By combining high-content analysis, big-data analytics, and machine learning algorithms, 
we demonstrate that highly accurate classifiers can be constructed for evaluating the 
estrogenic potential of many chemicals. We follow a rigorous, high throughput 
microscopy-based high-content analysis pipeline to measure the single cell-level response 
of benchmark compounds with known in vivo effects on the ERα pathway. The resulting 
high-dimensional dataset is then pre-processed by fitting a non-central gamma probability 
distribution function to each feature, compound, and concentration. The characteristic 
parameters of the distribution, which represent the mean and the shape of the distribution, 
are used as features for the classification analysis via Random Forest (RF) and Support 
Vector Machine (SVM) algorithms.  The results show that the SVM classifier can predict 
the estrogenic potential of benchmark chemicals with higher accuracy than the RF 
algorithm, which misclassifies two antagonist compounds. 

Keywords: Predictive modeling, estrogen receptor activity, classification analysis, big-
data analytics, image analysis. 
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1. Introduction 
Advancements in machine learning algorithms combined with computational power and 
storage capacities of modern computers have enabled data-driven modeling as a 
promising approach for prediction and decision-making in biological and environmental 
systems (Yin et al., 2015).  Specifically, data-driven algorithms enable pathways to 
understand similarities between complex chemicals (Onel et al., 2019, Onel et al., 2018) 
and facilitate rapid detection and evaluation strategies for predicting the endocrinological 
activity of unknown chemicals created during environmental emergencies (Mukherjee et 
al., 2020). In such catastrophic situations (i.e., hurricanes, earthquakes, etc.), many 
unknown chemicals are mobilized, increasing the risk of exposure and long-term adverse 
biological effects on living organisms (Cooper and Wardropper, 2020). Understanding 
the effects of these novel chemicals on a key transcription factor that regulates the most 
fundamental biological processes in the human body, such as the Estrogen Receptor-α 
(ERα), is crucial for diagnosing potential health hazards.  

The toxic compounds created during and after environmental emergencies are capable of 
binding to the ERα and initiating a biological response as agonists or interfere with the 
receptor function as antagonists (Warfvinge et al., 2020). The agonistic and antagonistic 
behaviors of chemicals can be measured using cell-based high content/high throughput 
microscopy imaging, which records numerous intensity and morphology features of 
treated cells (Szafran et al., 2017). Recently, we have shown that this multidimensional 
imaging data with population-averaged samples can be used to classify agonist and 
antagonist benchmark chemicals with high accuracy using linear and nonlinear models 
(Mukherjee et al., 2020). In this work, we use cell-level data (instead of the population-
averaged data) to assess the predictive capabilities of nonlinear classifiers, namely the 
Random Forest (RF) and the Support Vector Machine (SVM) algorithms. To sustain cell-
level information in the dataset, we fit non-central gamma probability distribution 
functions to the data and use their corresponding distribution shape parameters (i.e., 
alpha, beta, delta) as the descriptors in our predictive models. We further follow a rigorous 
training and testing procedure to build and assess the predictive capabilities of our data-
driven models. 

2. Experimental Data Gathering: High Content Image Analysis 
We used high-throughput microscopy and image-analysis pipelines to measure the 
estrogenic activity of chemicals using an engineered biosensor, a multi-parametric cell-
based in vitro assay as described in Ashcroft et al. (2011). Biosensor cells were treated 
for 2 hours with different concentrations of 45 reference endocrine-disrupting chemicals 
(EDCs) identified by the EPA to be either ERα inactive, agonist, or antagonist. The 45 
reference chemicals with known estrogenic activity were supplemented with 8 additional 
known ERα antagonists to partially balance the number of known agonists and 
antagonists tested.  The cell-level response was imaged and recorded, and 70 size, shape, 
and intensity features per cell were extracted using custom-built software (Szafran et al., 
2014). These features describe several key mechanistic steps of the ER pathway 
including, ERα expression levels, its subcellular/subnuclear distribution, and DNA 
binding (Szafran et al., 2017).  A single screen of the aforementioned analysis generates 
60 GB of image data, from which approximately 50 million object-based data points are 
extracted. This high-dimensional dataset is reduced prior to the classification model 
building step using a technique described in the following section.  
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3. Data Pre-Processing: Dimensionality Reduction 
Each complete screen of the EDCs and reference chemicals consists of five 384-well 
plates with each unique chemical-concentration combination having a minimum of 4 in-
screen replicate sample wells. A total of 5 complete screens were completed.  For 
classification model development, a subset consisting of the highest tested concentration 
of each active (either agonist or antagonist) chemical was generated.  This subset contains 
32 agonists and 15 antagonist chemicals and 39 cell-level features (the discarded 31 
features were of the medium) were utilized. To sustain the cell-level information while 
making the dataset amenable for classification model building, a non-central gamma 
distribution with 3 parameters (i.e., alpha, beta, and delta) was fitted for each sample. 
This reduced the size of the dataset to 0.15 % (by a factor of approximately 3/2000) of its 
original size. Figure 1 shows example histograms and the fitted non-central gamma 
distribution for representative compounds 100 µM Genistein, 100 µM Fenarimol, and 10 
µM 4-Nonylphenol, and features array total pixel intensity (PI), array mean PI, and array 
circularity, respectively. In these plots, alpha, beta, and delta, the parameters of the fitted 
gamma distributions, are shown in the legends. These characteristic shape parameters 
were calculated for every feature, compound, and concentration.  
 

 
Figure 1. Non-central gamma distribution fit on the cell-level data for reference compounds. The 
values of the characteristic shape parameters alpha, beta, and delta are listed on the legends. 

Once the parametrization of the dataset is complete, the outliers in each feature-parameter 
were removed. Following, the dataset was column-wise scaled using the minimum-
maximum scaling procedure. Then, for each feature, the data for alpha was plotted against 
beta, and beta was plotted against delta for all the compounds and concentrations to 
visualize the distribution of agonist and antagonist compounds in the parametrized space. 
Figure 2 shows a representative set of plots of alpha versus beta and beta versus delta for 
the “Nucleoplasm Pixel Intensity (PI) Variance” feature, which quantifies the statistical 
variance of GFP-ERα pixel intensity in the nucleoplasm of the cell. The visualization 
results show that agonist and antagonist data points mostly separate into two distinct 
groups. Yet, several data points belonging to the opposite classes are very close to each 
other, indicating that a model using linear classification algorithms may not result in high 
accuracy prediction.  

Similar trends were observed for almost all the features. Therefore, the elimination of less 
indicative features by this qualitative assessment could not be made. To follow this 
observation with quantitative analysis, we performed Principal Component Analysis 
(PCA). The PCA results showed that 19 components out of 117 accounted for 90 % of 
the variance in the original data and 40 components out of 117 accounted for 99 % of the 
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variance in the data, indicating that the variability across many features in the dataset was 
similar and not distinct. This result is different from our previous study for the population-
averaged data where 5 top informative features led to satisfactory linear and nonlinear 
classification results (Mukherjee et al., 2020). Note however that the dataset and pre-
processing strategies used in the previous study were different from those in this study. 
Nevertheless, the qualitative difference is noteworthy.   
 

 
Figure 2. Alpha vs. beta and beta vs. delta plots to visualize the grouping of compounds per feature 
per concentration based on their estrogenic potentials.  

4. Data-Driven Model Building: Nonlinear Classification Algorithms 
Once the pre-processing step was completed, the following supervised learning models 
were built to predict the estrogenic potential of chemicals as agonists or antagonists: (1) 
The RF classifier, (2) 1-class nonlinear SVMs for predicting agonist or antagonist classes, 
and (3) 2-class nonlinear SVM. RF fits several decision trees on various sub-samples of 
the data and uses averaging to improve the accuracy of the classifier prediction and 
control over-fitting. 2-class SVM finds the optimal separating hyperplane to maximize 
the width of the gap between the two categories. In 1-class SVM, the width is maximized 
with respect to the category used for training and the rest are regarded as anomalies.   
 

 
Figure 3. Algorithm for classification model building. 

We follow the steps outlined in Figure 3 for building our classification models using the 
experimental image analysis data. 70% of the dataset per replicate was used for training 
and the remaining 30% was used for testing. After dimensionality reduction, in RF, a 
recursive addition algorithm was followed for simultaneous feature selection and model 
building. In this method, an RF model using all the features was built and the features 
were ranked according to their importance in model prediction. Following, the accuracies 
of model predictions using recursive addition of features in the model were recorded. The 
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model (and thus features) with the maximum accuracy was selected. In both 1-class and 
2-class SVMs, the radial basis function kernel was used, and the model parameters were 
tuned to maximize the accuracy of prediction of the testing dataset using grid search.   

5. Results and Discussions 
Table 1. Testing performance of the RF, 1-class SVM, and 2-class SVM classification models.  

 Accuracy Precision Sensitivity Specificity F-Score 
RF 0.875 1 0.6 1 0.75 
1-class SVM 
(agonist) 

0.763 1 0.763 - 0.865 

1-class SVM 
(antagonist) 

0.72 1 0.72 - 0.837 

2-class SVM 0.925 0.952 0.8 0.982 0.869 
 
Table 1 lists the model prediction summary statistics for all the model types. For the RF 
model, the recursive feature addition step resulted in 61 features to be selected out of 117 
to yield the maximum predictive accuracy. The final RF model predicts the test data with 
an accuracy of 87.5%. It correctly classifies 55/55 agonist samples, whereas 10 out of 25 
antagonist samples are misclassified as agonists where the prediction sensitivity is 0.6 
and the precision is 1. The two antagonist compounds, namely ICI 182 780 and AZD 
9496, are misclassified in all 5 replicate datasets.  Interestingly, these two chemicals are 
unique in the tested set of ERα antagonists in that they are known to destabilize ERα 
expression via the same pathway activated by ERα agonists. As these two chemicals 
mechanistically resemble agonists, the classification model cannot distinguish them as 
antagonist chemicals.  

Furthermore, the 1-class SVM predicts the agonist class with an accuracy of 76% and the 
antagonist class with an accuracy of 72%, which are lower than the RF model. The 2-
class SVM model, predicts the outcome of the test data correctly with an accuracy of 
92.5%, the highest among all analyzed classification models whereas the specificity of 
the 2-class SVM is reported to be less than the RF model. However, it is observed that 
the 2-class SVM is more sensitive towards classifying antagonist compounds correctly 
where ICI 182 780 is correctly classified as antagonist for all replicates by the 2-class 
SVM. On the other hand, the RF is more precise when classifying agonist compounds 
correctly where 7,4'-Dihydroxyisoflavone, a weak agonist is misclassified as an 
antagonist by the 2-class SVM. Therefore, if the dataset has a considerable number of 
antagonist compounds, then the 2-class SVM will provide higher predictive accuracy, 
else, the RF will outperform. 

6. Conclusions 
High-throughput microscopy and single-cell image analysis followed by machine 
learning were used to predict the Erα activity of environmentally relevant chemicals. 
Dimensionality reduction was performed on the experimental big-data by fitting a non-
central gamma probability distribution function. The scaled characteristic shape 
parameters of the distribution were used as the features for the classification analysis. 
Among three different nonlinear classifiers tested, namely the Random Forest (RF) 
algorithm, the 1-class Support Vector Machine (SVM), and the 2-class SVM, the 2-class 
SVM predicted the outcome of the test data with the highest accuracy of 92.5%, compared 
to 87.5% for the RF, and 73.3% and 72% for the 1-class SVMs, respectively. Overall, it 
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is observed that cell-level information increases the complexity of data handling, analysis, 
and model building steps. We believe that this study will encourage researchers to 
investigate further the trade-offs between obtaining additional information from cell-level 
measurements and increasing the complexity of big-data handling and classification 
model development. This research was funded by the U.S. National Institutes of Health 
(NIH) grant P42 ES027704. 
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Abstract 
Li-ion batteries are a popular choice of rechargeable battery for use in many applications 
like portable electronics, automobiles as well as stationary applications for providing 
uninterruptable power supply. State of Charge (SoC) and State of Health (SoH) are 
important metrics of a Li-ion battery that can help in both battery prognostics and 
diagnostics for ensuring high reliability and prolonged lifetime. The ML algorithms 
available in the literature for SoC and SoH prediction involves use of various derived 
features rather than directly measurable features making it difficult for industrial 
applications.  In this work, we use battery data obtained from different batteries to develop 
supervised models that can be used for the on-line estimation of SoC and SoH. This work 
involves two parts: a) developing a classifier based on SoH b) dynamic prediction of 
battery SoC given the past operational data of current, voltage, and temperature of the 
battery which are easily measurable. Random forest algorithm is used for battery site 
classification based on the SoH data available from the manufacturer. The battery SoC 
estimation is performed using a random forest algorithm and Neural network-based 
NARX model. 
Keywords: Li-ion battery prognostics, SoH, SoC, Random forest, NARX. 

1. Introduction 
Lithium-ion batteries are widely used rechargeable batteries in electric cars, smartphones, 
laptops, and telecommunication base stations due to their high reliability, high energy 
density, high efficiency and long cycle life. Since their invention in the late 20th century, 
Li-ion batteries have established themselves as the frontrunner of rechargeable batteries 
in providing power solutions across several fields such as military, aerospace, medical, 
telecommunication, residential, and industrial applications. To ensure a prolonged 
lifetime as well as optimum performance, it is necessary to continuously evaluate the 
health condition of the battery. Battery health prognostics refers to the task of assessing 
the current health of the battery and forecast degradation and detect the occurrence of any 
abnormalities. For developing reliable techniques for battery health prognostics, accurate 
estimation of State of Charge (SoC) and State of Health (SoH) plays a major role. SoC is 
the ratio of available charge in a battery to the maximum attainable charge in that battery 
at its current health.  Although there exist numerous techniques for SoC estimation, there 
is no technique that meets all the requirements for accurate estimation of SoC online. SoH 
is an overall battery health indicator that quantifies the deviation of battery behavior from 
its ideal behavior. Unlike SoC that is well-defined mathematically (though difficult to 
accurately estimate), there is no unique mathematical representation for SoH as health is 
a broader concept than what can be represented using a single numerical value.  
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SoH is an important diagnostic and prognostic measure for battery operation. At any 
instant of operation, the knowledge of the battery’s SoH will help the user to make 
informed decisions.  It is undesirable to operate a battery below a threshold value of SoH 
as it may result in short-circuiting, thermal runaway and explosion. If a user can a-priori 
know the SoH, it is possible to predict when the battery may fail.  

The objective of this work is to build models using actual battery data collected from four 
different batteries that could be used for two purposes: develop a classifier based on SoH 
and perform dynamic prediction of battery SoC given the past operational data (current, 
voltage, and temperature) of the battery. An online data-based SoC estimator can help the 
user to decide the range, when to recharge etc and can be implemented in online battery 
management systems. A historic data-based SoH classification algorithm can help in 
identifying the current SoH of a battery and can help the user to make decisions on the 
operating conditions of the battery. Additionally, the dynamic variation of SoC depends 
on the battery’s SoH. Hence, the information derived from the SoH classifier can help in 
better prediction of SoC in a battery. 
 
1.1. Battery State of Health 
Battery state of health is largely identified as a measure of the battery aging process due 
to capacity degradation or power fade. Estimating battery SoH can help in predicting 
when the battery should be removed from operation. Since battery health is a difficult 
measure to quantify, battery SoH is defined in literature as the ratio of the maximum 
available capacity to the battery nominal capacity. The capacity of the battery could 
degrade over its operational period due to voltage effects (over-voltage, under-voltage or 
over-discharge), thermal effects (thermal runaway, reduced power due to low-
temperature operation), and mechanical effects (expansion/contraction of electrodes, 
mechanical stress) (Suresh et al., 2016). When the battery SoH drops below a critical 
value, the battery is considered to be of poor health and is removed from operation. A 
newly produced battery would have 100% SoH. The determination of battery SoH is a 
challenging task as it cannot be directly measured. Several methods are reported in 
literature for SoH estimation, which includes using battery capacity degradation models 
developed using first principles models and battery state estimators and data-based 
lifetime estimation models developed using algorithms like fuzzy logic or neural 
networks (NN) trained using data collected from accelerated aging experiments 
(Berecibar et al., 2016; Severson et al., 2019). However, these techniques use various 
derived features as input and hence, are difficult to implement for industrial applications. 
1.2. Battery State of Charge 
One of the tasks of the Battery Management System (BMS) is the accurate estimation of 
the energy stored within the battery for its efficient utilization by avoiding situations of 
over-charge and over-discharge in a battery. The battery SoC is a physical quantity of the 
battery that is related to the average Li+ ion concentration in the negative electrode, which 
in turn is related to the passage of current during charging or discharging. The battery 
SoC is a derived quantity and cannot be measured directly. There are various model-based 
SoC estimation methods where the model could be first principles-based, surrogate first 
principles-based, data-based or hybrid models  (Suresh et al., 2016). Neural network is a 
powerful and scalable machine learning (ML) tool that can handle multiple inputs and 
outputs and has good generalization and self-learning abilities. This makes NN suitable 
for modeling battery characteristics for SoC estimation. Multilayer perceptron 
architecture trained using the backpropagation algorithm has been used by researchers to 
model a battery using labeled charge-discharge cycling data available in various 
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repositories that are obtained through carefully designed experiments. Some of the works 
cited in the literature (Chemali et al., 2018) use NNs to predict the SoC using battery 
states such as measured current, voltage, temperature, remaining capacity assuming that 
the samples are independent of each other. However, the SoC in a battery not only 
depends on the present values of the independent features like current and voltage, but it 
also depends on the path taken to reach the present state. In other words, SoC at any time 𝑡 also depends on the past values of SoC, current, voltage, etc. To account for these 
causalities, a NN-based NARX (non-linear auto-regressive model with exogenous inputs) 
model is used in this paper as it has capabilities for time-series modeling, unlike a regular 
neural net. 

2. Battery Data 
The data is collected from 48V-3.9kWh battery modules with NCA (Nickel Cobalt 
Aluminum) electrochemistry used for telecommunication application. The battery 
module consists of 14 cells, PCBs, and a built-in Battery Management System (BMS). A 
new battery has 100% SoH, which implies that it has full capacity when it is completely 
charged. When the battery reaches its end of life, the value of SoH variable is 0%, and 
this indicates that the battery capacity is 70% of what it had at the beginning of its life. 
The module starts discharging whenever the network voltage drops below the battery 
terminal voltage with a lower cut-off voltage of 42Vdc. The module recharges with a 
constant current/constant voltage (CC/CV) profile when the terminal voltage of the 
battery drops below the network voltage with an upper cut-off voltage of 56 Vdc. The 
time-series data for the module charge/discharge current, maximum module temperature, 
module voltage, SoC and SoH sampled at every 10 minutes is collected from battery 
modules in four different health condition defined as Site I (100% SoH) , Site II (74% 
SoH), Site III (49% SoH)  and  Site IV (24% SoH) over two different time periods named 
as Dataset 1 (total 24735 data samples) and Dataset 2 (27503 data samples). 

3. SoH Classification 
The objective is to identify the health status of the battery by building a model using the 
current, voltage, temperature, and SoC data from the four sites as input features for 
capturing the underlying behavior and predict the SoH for a new test dataset. An ensemble 
supervised learning technique of random forest classifier is implemented for classifying 
the data samples collected from the battery to determine the health of the battery. The 
random forest classifier is a versatile classification tool that makes an aggregated 
prediction using a group of decision trees trained using the bootstrap method with extra 
randomness while growing trees by searching for the best features among a randomly 
selected feature subset. The input features are first scaled using Min-Max normalization 
to bring all values into the range [0, 1]. 70% of the total data in Dataset 1 (17314 samples) 
is used for training, and the remaining 30% (7421 samples) is used for testing the 
predictive ability of the classifier for the same dataset. 

Accuracy is the fraction of samples that are correctly identified with respect to the total 
number of samples tested. Among 7421 test samples, the algorithm correctly identified 
6447 samples and hence, the accuracy is 86.87%. The performance of the developed 
classifier on the test set of Dataset 1 is evaluated using various metrics and is provided in 
Table 1 along with the confusion matrix.  It could be observed that the recall for Site II 
data is 0.52, which implies that around half the Site II data points were misclassified. 

489



 

To determine the ability of the developed model in predicting the SoH for a different 
instant of operation, we tested the developed model on Dataset 2. The input features of 
Dataset 2 scaled using Min-Max normalization (based on the training data set used for 
developing the classifier) is used for determining the SoH. The classification using the 
random forest model yielded an accuracy of 53.19%. Out of the total mislabelled samples, 
51% of samples are from Site II. The confusion matrix and various performance metrics 
for Dataset 2 are presented in Table 2. The precision, recall, and F1 score of Site II are 
very low compared to other classes indicating that for all the data points that truly belongs 
to Site II, the percentage of them being labeled as Site II is only 8%, i.e., the number of 
false negatives is higher for Site II data. It is possible that the true data for Site II is flawed.  
Site I has very large false positives (Type I error) while site IV has the highest Type II 
error (False negatives). Site III data has an overall low F1 score. 

 
Figure 1: Parity plots of random forest-based SoC prediction for Dataset 2 

 
Figure 2: Parity plots of NARX-based SoC prediction for Dataset 1 

 
Figure 3: Parity plots of NARX-based SoC prediction for Dataset 2 

4. SoC Prediction 
A random forest model using time-lagged variables from Site I data of Dataset 1 was 
implemented to predict the dynamic variation of SoC. The input and output orders were 
assumed to be 2. When tested on Dataset 2, the model always predicted SoC to be greater 
than 40%, even though the true SoC was varying between 20% to 100% (ref Figure 1). 
Whenever the true SoC was below 40, the model predicted it to be close to 40%. The 
training data obtained from the battery site 1 had battery SOC values in a limited range 
and did not span the entire 0-100%. Thus, the model was not able to generalize well and 
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the prediction was of poor quality as shown in the parity plots (Figure 1). NN-based 
NARX model was used later to improve the quality of SoC prediction.  

NARX is a time series modeling method used for modeling non-stationary and non-linear 
multivariate time series. The NARX model is described by the following equation:   𝑦 𝑡 𝐹 𝑢 𝑡 𝑑 , … , 𝑢 𝑡 1 , 𝑢 𝑡 , 𝑦 𝑡 𝑑 , … , 𝑦 𝑡 1                  1  
u(t) and y(t) represent input and output of the model at time t, F is a non-linear function, 
and du and dy are the input and output order, respectively. The process time delay is 
assumed to be 0. NARX neural network model is a dynamic recurrent neural network 
consisting of a feedback connection between its layers. The network prediction is a 
weighted sum of non-linearly transformed regressor variables. A two-layer feedforward 
NARX network is used in this work with a hidden layer having a sigmoid transfer function 
and the output layer having a linear transfer function. The previous values of the input 
variables and the predicted output variables are stored using tapped delay lines. The 
output, y(t), being a function of its past values, is sent back to the input layer of the 
network (through delays). Series-parallel architecture is used to train the network for more 
accurate predictions using the observed values of battery SoC instead of feeding back the 
estimated SoC values. This open loop configuration thus becomes similar to feed-forward 
architecture, where backpropagation could be used for training the network. The model 
is built using battery current, voltage, temperature, and battery SoH as input features. The 
SoH information used for SoC prediction is the measured values obtained from battery 
sites. In case there is no SoH information available, the SoH classifier mentioned in the 
paper could be used to estimate the SoH, and the accuracy of the SoC prediction will 
depend upon the accuracy of the classifier. The values of du and dy are assumed to be 2.  

Table 1: Confusion matrix and performance metrics of the 4-class SoH classifier on Dataset 1 

            
Table 2: Confusion matrix and performance metrics of the 4-class SoH classifier on Dataset 2 

              

70% of the data available for Site I (4642 samples) is used for building the predictive 
model, and 15% (995 samples) is used for the validation step that ensures network 
generalization. The remaining 15% of the data from Site I data (995 samples) is used for 
testing the model. The SoC estimation model is tested on the data from Site II, Site III 
and Site IV. A single hidden layer is used and the number of neurons in that hidden layer 
is set to 3. The network is trained using the Levenberg-Marquardt algorithm. The neural 
net model at epoch 38 was chosen as the best model as it had the least validation error. 
The training, validation and testing results on Site 1 data of Dataset 1 show very good 
performance with small RMSE values and R2 values close to 1 (refer Table 3).  SoC 
prediction using the developed model on Sites II, III and IV of Dataset 1 also show good 
performance with R2 values above 0.95 as shown in Table 3. The linear model that best 
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fits true SoC and predicted SoC for the test set almost coincides with the 45-degree line 
indicating the goodness of the model as shown in the parity plots presented in Figure 2. 
Using the NN model built with Site I data of Dataset 1, SoC values are predicted for all 
the four sites’ data in Dataset 2. The results are presented in Figure 3 and Table 4. It could 
be observed that the model predicts the SoC values for all four classes reasonably well 
with R2 values greater than 0.94 in all cases. 

Table 3: Performance metrics of NARX neural network on Dataset 1 

 
Table 4: Performance metrics of NARX neural network on Dataset 2 

 
5. Conclusion 
This paper has two major contributions to battery health monitoring. Firstly, a data-driven 
model is built using a random forest algorithm on BMS data and is able to determine the 
health condition of the battery and identify whether it is in good, bad, worse, or worst 
health. This is critical as battery SoH degradation affects the accurate estimation of 
battery SoC. Secondly, a NN-based NARX model is developed for SoC estimation taking 
into consideration the non-linearity, dynamic nature and SoH of the system. The accuracy 
of predictions shows that the machine learning approaches trained using actual battery 
data could provide prognostic solutions to battery health management without the need 
for a complex physics-based model. The future work aims to develop a predictive model 
for estimating the remaining useful life of battery based on a hybrid model built using 
battery data and first-principles model for capacity degradation. 
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Abstract 
In industrial unit operations involving liquid-liquid dispersions, switching to model based 
prediction is essential for equipment design, scale-up and control purposes. In this regard, 
an Adaptive Radial Basis Method (ARBM) is presented to model the hydrodynamics 
behaviour of liquid-liquid dispersions, based on the Population Balance Equation (PBE). 
In this meshfree method, the number density function is expanded by a series of Gaussians 
(GA) basis at a finite number of particles along the droplet diameter. The supporting 
particles are allowed to move to change their locations, based on the distribution 
properties, to accurately track the dynamic evolution of the number density function. 
Moreover, the Leave-One-Out Cross Validation (LOOCV) algorithm is adapted to 
optimize the GA shape parameter in a statistical sense. Accordingly, the ARBM neither 
inverts badly scaled matrices nor requires large number of collocation particles to 
reconstruct the distribution shape. The ARBM predictions are validated for stirred tank 
reactors at different levels. The results revealed that, the method is conservative and able 
to handle sharp and wide distributions, resulting from breakage and coalescence dominant 
processes respectively. Based on this, the ARBM is convenient and suitable to model 
liquid-liquid dispersions. 

Keywords: ARBM, PBE, breakage and coalescence, Liquid-liquid dispersions 

1. Introduction 
Liquid-liquid dispersions are very common in different unit operations ranging from 
batch stirred tank reactors to solvent extraction columns. In such unit operations, the 
droplet size distribution is the key parameter, which determines the overall efficiency and 
the range of the operating conditions. Therefore, an accurate prediction of the size 
distribution is of prime importance. Due to the growing computational power, the 
computer-based design approach and process digitalization have gained more attention 
recently. Consequently, there is a growing demand toward rigorous models, which are 
able to take all of the possible hydrodynamics interactions into account, to describe the 
prevailing physical behaviour. Unlike the lumped models, which ignore the discreet 
nature of the dispersion, the population balance model is based on more fundamental basis 
to account for the local droplet-droplet interactions, which include the breakage and 
coalescence phenomena. The PBE has a complex integro-differential form and hence 
analytical solutions are limited to simplified special cases. As a result of this, intensive 
research efforts have been carried out to develop efficient numerical methods, in terms of 
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accuracy and computational cost, to solve the PBE. These methods can be categorized 
into three main groups namely: stochastic Monte Carlo, moments-based and sectional 
methods. For more information about these methods, the reader can refer to Kumar and 
Ramkrishna (1996). In a recent work, a novel Radial Basis Method (RBM) (Alzyod and 
Charton, 2020) to solve the PBE was presented. The RBM avoids the typical numerical 
diffusion problems, encountered when applying the sectional methods, and conserves the 
number density function, which is lost when using the moments based methods. In spite 
of the RBM accuracy, more collocation particles maybe required when dealing with sharp 
or wide moving distributions, for which additional computational efforts maybe required. 
This inherent problem is also reported in the radial basis functions literature, where a set 
of adaptive particles can be used to avoid it (Driscoll and Heyudono, 2007). Therefore, 
the main concern of this work is to derive an adaptive version of the RBM to overcome 
this fundamental problem.  

2. Solution of the PBE using the Adaptive Radial Basis Method (ARBM) 
In a homogenous space, the dynamic evolution of the number density function,  ,n d t , 

accounting for breakage and coalescence is given by (Kumar and Ramkrishna, 2000): 
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Where d is the droplet diameter,   3 3 3,d d d d    ,  d is the breakage kernel,  d d   

is the daughter distribution function, and  ,d d   is the coalescence kernel respectively. 
The main idea behind the ARBM is to replace the unknown nonnegative number density 
function appearing in Eq.(1) by a series of converging GA radial basis kernels: 
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Where  ˆ ( ),n d t t  is the reconstructed number density function, ( )j t is the weighting 

coefficient, and p is the shape parameter. The norm ( ( )) ( ) ( )j jr d t d t d t   represents 

the Euclidean distance between d and the centre particles dj. Here, the centres are allowed 
to change their lactations, to track the moving density function as follows: 
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Where  1( ) ( ), ( )j Ncd t d t d t . The values of d1(t) and d2(t) are calculated using the first 
three low-order moments as follows: 
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Where ( )k t is the kth moment, m is the machine epsilon and the operator . is used to 

maintain the maximum positive value. Note that, the adapted centers are distributed 
around the arithmetic mean 1 0( )  . Therefore, in case of very sharp distributions 
(approaching zero variance) the ARBM is still able to reconstruct the distribution located 
at the mean particle location. To reconstruct the number density function, the required 
unknown weighting coefficients ( ( ))j t appearing in Eq.(2) can be calculated by 
enforcing the condition: ˆ( ( ), ) ( ( ), ) ( )j j jn d t t n d t t s t  for all 1, , cj N   at the 

adaptive moving particles, which results in following linear system of equations: 
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This system of equations can be expressed in a compact matrix form as: S  , where 
 is the radial basis matrix. Note that,   is a real symmetric and positive definite square 
matrix and hence the resulting linear system of equations has always a unique solution. 
Indeed, solving this system of equations requires inverting the radial basis matrix, which 
may lead to inaccurate results if it is nearly singular. To avoid this problem, a proper 
shape parameter value can be used to minimize the condition number of  . To achieve 
this, the LOOCV algorithm of Rippa (1999) is adapted and utilized to find the optimal 
shape parameter value. In this algorithm, the optimal shape parameter is obtained by 
minimizing the following objective function: 
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Here, ( )pe  is the error between the reconstructed and targeted distributions respectively, 
1
,j j is jth diagonal element of the inverse of radial basis matrix 1  . Note that, using Eq.(6) 

allows us to minimize the objective function without any prior information about the 
targeted distribution. Based on this, the resulting linear system of equations given by 
Eq.(5) can be solved using Cholesky decomposition based on the obtained optimal shape 
parameter value. Finally, by applying the collocation method at the adapted moving 
particles locations, Eq.(1) is transformed into the following system of ordinary 
differential equations: 

       cj
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3. Model validation and discussion 
This section is devoted to test the ARBM performance. In this regard, the explicit forward 
first-order Euler’s method is implemented to solve the ARBM with a constant time step 
of 0.01t  s. Moreover, the integral source terms are approximated using Gauss-
Legendre quadrature. To obtain the optimal shape parameter value, a constrained 
LOOCV-optimization problem is solved using the MATLAB fmincon solver. All of the 
numerical experiments were carried out using a Laptop with 4 GB RAM and 2.4 GHz 
speed performing a single task. 

3.1. Case one: Analytical validation 

The first case study is devoted to validate the ARBM predictions analytically for 
combined breakage and coalescence processes in a uniform stirred tank reactor. In this 
regard, the analytical solution of McCoy and Madras (2003) is used as a reference 
solution. The initial locations of the adapted particles are calculated from the initial 
condition 2 3(3 exp( ))d d . Moreover, a constant coalescence kernel ( )ck  is 
considered, while a power function is assumed for the breakage kernel 3( ( ) )bd k d  . 
The simulation is performed using 25 adaptive particles and the final simulation time is 
set to 15 s. Figure (1) shows a comparison between the numerical the analytical solutions 
for two breakage and coalescence dominate cases at three selected time steps: 0, 5 and 15 
s respectively.  

  

Figure (1): Comparison between the ARBM predictions at the moving particles (diamonds), and at 
selected stationary particles (circles) and the analytical solution (McCoy and Madras, 2003) (dashed 
line): (A) Breakage dominant process (kb = 0.1, kc = 0.001). (B) Coalescence dominant process (kb 
= 0.001, kc= 0.1).  

It can be observed that, the adapted particles are able to track the moving distribution for 
both cases. Therefore, the ARBM reconstructs accurately the shape of distribution at the 
selected stationary points as compared with the analytical solution. To check the ARBM 
consistency, the first four low-order moments of the number density are computed and 
compared with the corresponding analytical moments as depicted in Figure (2). It is clear 
that, the total number of droplets 0( ) increases with time for the breakage dominant case, 
while it decreases for the coalescence dominant case. Moreover, the total volume 3( )
remains constant as expected for both cases since the total volume of droplets is 
conserved. Therefore, it can be concluded that the ARBM is a conservative method. An 
excellent agreement between the numerical and the analytical moments is evidenced.  

496



The Adaptive Radial Basis Method (ARBM): An application to the  
hydrodynamics of liquid-liquid dispersions   

 

  

Figure (2): Time evolution of the first four low-order moments as predicted by the ARBM 
(diamonds), and comparison with the analytical solution (line): (A) Breakage dominant process (kb 
= 0.1, kc = 0.001). (B) Coalescence dominant process (kb = 0.001, kc = 0.1).  

3.2. Case two: Numerical and experimental investigations 

In the second case study, the ARBM is numerically validated using the RBM (Alzyod 
and Charton, 2020) and the Fixed Pivot Technique (FPT) (Kumar and Ramkrishna, 1996). 
In this regard, the reported experimental data by Qi et al., (2015), in a stirred tank, is used 
as a reference solution. The chemical test system is heptane in chloroaluminate. Here, the 
rotational speed is fixed at 500 rpm, while the holdup ( )d  is varied between 0.1 and 0.5 
respectively. A normal distribution is used as an initial condition   .exp 0.5(( ) )a d d  

Concerning the hydrodynamics kernels, the breakage and coalescence kernels are given 
by (Coulaloglou and Tavlarides, 1977): 
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Here c1, c2, c3 and c4 are fitting parameters. These parameters, as well as the initial 
distribution parameters, are estimated by solving an inverse PBE problem based on the 
ARBM and kept the same for the RBM and the FPT. The optimization is carried out, 
using MATLAB fmincon solver, to minimize the objective function: 2exp sim

i i
i

F n n  .  

Based on this, the optimized parameters are shown in Table (1).     
Table (1): Hydrodynamics optimized parameters 

Holdup a d (mm)  (mm) C1 C2 C3 C4 

0.1 0.1679 0.0892 0.0162 0.5 500.1971 0.3369 482.6460 
0.5 0.2267 0.1052 0.0176 0.5 500.1971 0.6461 482.6461 

 

.
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Figure (3) depicts a comparison between the simulated steady state number density 
function, for two dispersed phase volume fractions, using the three numerical methods 
and the reported experimental data. A very good agreement is obtained for both cases 
using the same optimized parameters for all of the numerical methods.   

  

Figure (3): Comparison between the simulated number density and the experimental data at two 
different dispersed phase holdup values. 

4. Summary and Conclusions 
The ARBM is introduced to solve the PBE for breakage and coalescence. The method is 
validated analytically and numerically at different conditions. The ARBM is found to be 
conservative and able to track the moving number density thanks to the adaptive particles. 
To assess the ARBM performance, an experimental case study is presented to simulate 
the hydrodynamics of a stirred vessel. The required kernels parameters are estimated by 
solving an inverse PBE problem, where a positive validation is obtained.   
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Abstract 
This paper deals with modeling and multi-criteria optimization of an industrial 
phosphoric acid process.  More specifically, the digestion tank where the phosphate ore 
is attacked by a concentrated solution of sulfuric acid is considered. A process model is 
first developed based on mass and heat balances along with Pitzer's thermodynamic 
equation. It is then identified by means of a set of data made up of experimental 
measurements carried out and measurements taken from the literature. The resulting 
model is then used within a multi-criteria optimization problem to determine the optimal 
operating conditions that minimize the phosphate losses and increase the productivity of 
the phosphoric acid while meeting the constraints on the temperature and on the excess 
of sulfuric acid. The optimization problem is solved by means of the epsilon-constraint 
method and the results are consistent with the current operating conditions of the digestion 
tank. They also show that the implementation of optimal results on an industrial scale 
would significantly improve the performance of the tank and under maximum safety 
conditions. 
 
Keywords: Modeling, Multi-criteria optimization, Wet-process, Measurements, 
Phosphoric acid, Phosphate ore. 

1. Introduction 
Phosphoric acid is mainly produced by digesting a phosphate-containing mineral 
(generally apatite) using a concentrated sulfuric acid solution. The digestion is carried out 
in the wet process which is by far the most common route to produce phosphoric acid. 
The main reaction that takes place in the digestion tank is highly exothermic and given 
by Becker (1989) as: 

 3 4 2 2 4 2 3 4 4 2( )  3    2  3 ,  ;   0;0.5; 2Ca PO H SO y H O H PO CaSO xH O x      

During the digestion, sulfuric acid 𝐻 𝑆𝑂  dissociates into 𝐻  and 𝑆𝑂  ions. The 𝐻  
ions react with the phosphate compounds containing phosphorus to produce phosphoric 
acid 𝐻 𝑃𝑂 , and simultaneously the 𝑆𝑂  ions are captured by the calcium ions 𝐶𝑎  to 
produce solid calcium sulfate 𝐶𝑎𝑆𝑂 𝑥𝐻 𝑂. The two reaction products are then separated 
in a filtration unit downstream of the digestion tank. Phosphoric acid is recovered and 
mainly used in the production of phosphate fertilizers, while the calcium sulfate is 
removed from the process as an unwanted by-product.  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Figure 1: Schematic representation of an industrial phosphate digestion tank 

On an industrial scale, the reaction is carried out in a cylindrical tank made up of nine 
continuous reactors in series, of the same volume and uniformly distributed. The tank is 
divided into three sections of three reactors each. Sulfuric acid feed flow rate is divided 
into three streams each feeding a section of the tank. The phosphate ore is fed into the 
first reactor of the first section and the product leaves the tank at the last reactor of the 
third section (Fig.1). 
 
Depending on the operating temperature, the calcium sulfate can be gypsum 𝐶𝑎𝑆𝑂 2𝐻 𝑂 
or bassanite 𝐶𝑎𝑆𝑂 0.5𝐻 𝑂. It is therefore very important to control the temperature in 
order to avoid the production of the bassanite since it increases the viscosity of the 
reaction mixture in the tank and consequently decreases the filtration performances. 
Moreover, sulfuric acid feed flow rate and its distribution ratios (𝑤 ; 𝑤 ; 𝑤 ) over the 
three sections are relevant for optimal operation of the production unit. Indeed, a sulfuric 
acid deficit during the digestion step causes a decrease in the concentration of 𝑆𝑂  ions 
and consequently the 𝐶𝑎  free ions tend to capture the phosphate-based ions of the same 
polarity. 𝐻𝑃𝑂 ions are more specifically captured to produce the solid brushite 𝐶𝑎𝐻𝑃𝑂 : 2𝐻 𝑂 thus decreasing the chemical yield of the process since all the solid phase 
is removed as an unwanted product. These losses are referred to as syncrystallized losses. 
Conversely, an excess of sulfuric acid causes on the one hand a local increase in 
temperature due to the heat of dilution, and on the other hand leads to an excessive 
production of calcium sulfate which forms a solid layer around the phosphate particles. 
This is referred to as the coating phenomenon which prevents the particles from further 
attack by sulfuric acid thus decreasing also the chemical yield. These resulting losses are 
termed unattacked losses. 
 
In this paper, the objective is to determine the operating conditions of the digestion tank 
that minimize the phosphate ore losses (syncrystallized and unattacked) while meeting 
the constraints on the excess of sulfuric acid above the stoichiometric amount and on the 
reaction temperature. Beforehand, Pitzer's thermodynamic model, needed in 
optimization, is calibrated using experimental measurements. 

2. Optimization problem formulation 
The optimal operation of the process described above aims to determine the trade-offs 
between the following objectives: (i) limit the syncrystallized losses by minimizing the 
production of the brushite, (ii) improve the process productivity by maximizing the 
production of gypsum, (iii) minimize the unattacked losses by keeping the excess of 
sulfuric acid above the stoichiometric amount between two limit values set to ensure 
optimal operation of the process, (iv) control the reaction temperature in order to limit the 
production of the bassanite and consequently improve the filtration process downstream. 
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These objectives are taken into account in the formulation of a constrained multi-criteria 
optimization problem. The first two objectives are defined as optimization criteria while 
the last two objectives are taken as constraints. The objective functions, the decision 
variables, the equations of the process model and the constraints of the optimization 
problem are detailed in the next section. 
 

2.1. Objective functions 
 

In this optimization problem, the two (conflicting) optimization criteria used are defined 
by the saturation index of the brushite to be minimized all over the three sections of the 
digestion tank to limit its production, and the saturation index of the gypsum to be 
maximized to improve the productivity. The two indices are expressed as: 
 

   2 2 2 21 24 4

1 1
1 2,    

j j

s sCa HPO Ca SO
j j

f log a a k f log a a k   
    (1) 

where 𝑎  are the activities of the components in the reaction mixture, 𝑘  and 𝑘 are the 
solubility of brushite and gypsum respectively and, 𝑗 refers to the number of the section. 
 

2.2. Decision variables 
 

The decision variables consist of sulfuric acid excess 𝑆  over the stoichiometric amount 
required by the reactions, its distribution ratios over the three sections, i.e. (𝑤 ; 𝑤 ; 𝑤 ), 
and the cooling heat 𝑄  to be removed from the process to control the temperature. 
 

2.3.  Equality and inequality constraints 
 

The constraints involved in the optimization problem include (i) the operating constraints 
of the process, (ii) and the model equations. Two operating constraints are more 
specifically involved in the problem. The first one sets the values of the upper and lower 
limits of the excess of sulfuric acid above the stoichiometric amount required by the 
reactions in order to minimize the unattacked losses. These limits are set at 1 % and 3 % 
(Becker, 1989). The second one concerns the reaction temperature that should remain 
below 355 K to avoid the production of the bassanite:  
 

1 %  3 %      355  cS and T K     (2) 
 

The process model equations consist of material balance Eq. (3), charge balance Eq. (4), 
equations of equilibrium constants Eqs. (5-6), and heat balance Eq. (7). 
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where 𝑁𝐶 and  𝑁𝑅 are the number of components and reactions respectively, (𝑀)  is 
the given total inlet concentration of element 𝑀 (i.e, sulfur (𝑆), phosphorus (𝑃), Fluorine (𝐹), silica (𝑆𝑖), calcium (𝐶𝑎)), 𝑚  is the unknown molality of the component 𝑖 involved 
in the reactions listed in Table 1, 𝛿 ,  is equal to the number of element 𝑀 in component 𝑖. For example, the mass balance on (𝐹) develops as: (𝐹) =  6 𝑚H2SiF6 +  𝑚F− + 6 𝑚 + 𝑚 + 2 𝑚 . 𝑧  are the electrical charges, 𝛾  is the activity coefficient of 
component  𝑖. 𝛼 ,  is the stoichiometric coefficient of component 𝑖 involved in reaction 𝑗. 𝐾  and ∆𝐻  refer to the equilibrium constant and the enthalpy of the reaction 𝑗 at 𝑇 =298 𝐾 respectively, their values are reported in Table 1. 𝑄 , 𝑄 , 𝑄 , 𝑄   and 𝑄  are the enthalpy of the inlet products, the agitation heat, the sulfuric acid dilution 
heat, the enthalpy of the slurry leaving the reactor and the heat to be removed from the 
process to control the operating temperature respectively. 
 
In addition to the above equations, Pitzer's thermodynamic model (Pitzer, 2018) is used 
to compute the activity coefficients as: 
 

 
2

2 '
, , , ,

, ,

ln   2    3 
2
i

i j i j i j k i j j k i j k
j j k j k

z f m z m m m m         (8) 

where i, j, k refer to different components and  𝑓 is the Debye-Huckel function. λ , ,  λ ,  
and  ψ , ,   are the unknown Pitzer model parameters, they should be determined from the 
equilibrium measurements carried out in this work and presented in the next section. 
Furthermore, a suitable estimability analysis method is used to determine the most 
estimable parameters from the available experiments. 

3. Experimental data 
Different series of experimental measurements of sulfuric and phosphoric acid solutions 
have been carried out to measure the molalities of the ionic and molecular species 
involved in the reaction mixture. For all experiments, 98 𝑤% sulfuric acid and 65 𝑤% 
phosphoric acid are used to prepare several samples. The temperature and concentration 
of samples are varied respectively from 298 𝐾 to 353 𝐾 and from infinite dilution to 4 𝑚𝑜𝑙𝑒𝑠/𝑘𝑔𝑤 for sulfuric acid and 12 𝑚𝑜𝑙𝑒𝑠/𝑘𝑔𝑤 for phosphoric acid. Moreover, 
calcium sulfate solubility data are collected from the literature (Shen et al., 2020) they 
consist of gypsum and anhydrite solubilities for a large range of temperatures and 
concentrations. 

4. Results and discussion 
The estimability of the unknown parameters of Pitzer's model is carried out using our 
recently developed method (Bouchkira et al., 2021) and the most estimable parameters 
are identified by minimizing the mean-square error between the predictions of the model 
and the available experiments. As example of results, Figs. 2A-C show the sulfuric and 
phosphoric acid speciation and the calcium sulfate solubility at 298 𝐾. The high values 
of the Pearson product-moment coefficient 𝑟 show the good accuracy of the developed 
model. The multi-criteria optimization problem is then solved within 𝐺𝐴𝑀𝑆 environment 
using Baron solver based on a branch-and-reduce algorithm to achieve global optimality. 
The 𝜀-constraint method (Deb, 2014) was used to transform the multi-criteria 
optimization problem into a single-objective optimization problem which is solved many 
times to determine the Pareto front. The CPU time needed to perform the simulations is 
about two hours using a Dell Precision T7810 Bi-Xeon 12 x Core 64GB workstation. 
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Figure 2: (A, B): Sulfuric and Phosphoric acids speciation, (C): Gypsum and Anhydrite solubility 

 
Figure 3: (A): Pareto Front, (B): Syncristallized losses, (C): Unattacked losses 

The Pareto front of the problem (Fig. 3A) shows that: (i) the brushite saturation index is 
negative for all the optimal solutions meaning that the syncrystallized losses are 
minimized, (ii) and the gypsum saturation index is positive meaning that the productivity 
of the industrial units is maximized. To better visualize the optimal solutions, four points 
of the Pareto front (Fig.3A) are shown in Table 2 with their corresponding decision 
variables, constraints, cooling heat and phosphate losses. It can be seen that for each point, 
as the conversion rate of digestion increases from the first to the last section, the demand 
for sulfuric acid varies in the opposite direction and decreases from the first to the third 
section for all the computed solutions (i.e., 𝑤 𝑤 𝑤 ). Furthermore, sulfuric acid 
excess lies between 2 % and 3 % which is consistent with the optimal conditions of 
gypsum crystallization (Becker, 1989). Finally, the heat quantities to be removed via the 
flash cooler (Fig.1) enable to meet the reaction temperature constraint in order to limit 
the bassanite production, and to improve the quality of the downstream filtration unit. 

Figs. 3B-C show a comparison between industrial losses taken from (El Bouzidi, 2016; 
Bouchkira and El Fariq, 2017) and the results of two computed optimal solutions chosen 
from the Pareto front using the Multi-Attribute Utility Theory (Dyer, 2005). The 
computed solutions are very close to the industrial measurements which are obtained by 
performing several run-to-run on the plant by changing the values of the decision 
variables from one run to the next to improve the productivity and minimize the phosphate 
losses. Moreover, the values of the decision variables used to carry out industrial 
experiments are sub-optimal and must be adjusted depending on the composition of the 
phosphate ore which further increases the number of runs. It is easy to understand under 
these conditions that obtaining these measurements is very costly since it involves 
significant labor cost, consumes time and huge quantities of reagents, decreases the 
productivity of the plant and poses some safety issues. Modeling and multi-criteria 
optimization have proven to be effective since they provide optimal solutions that 
minimize the number, duration, cost of runs, and security risks. 
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Table 1: Equilibria involved in the digestion reaction (Aqueous phase) 
 Equilibria 𝐾  ∆𝐻  (J/mol) References 
1  H SO  →  HSO  +  H  - - - 
2 HSO   ⇌  SO +  H  0.0103 -1.274. 10  (Gustafsson, 2011; Pitzer, 2018) 
3 H PO   ⇌   H PO +  H  0.0071 -4.271. 10 (Gustafsson, 2011; Ball and Nordstrom, 1991) 
4 H PO  ⇌  HPO  +   H  4.2.10  -9.266 10  (Gustafsson, 2011; Ball and Nordstrom, 1991) 
5 H PO +  H PO    ⇌ H P O    0.2550 -1.329. 10  (Gustafsson, 2011) 
6 HF  ⇌  F +  H    7.2.10  -1.329. 10  (Gustafsson, 2011) 
7 HF +  F ⇌  + HF  0.3. 10  -4.799. 10  (Gustafsson, 2011) 
8 H SiF   ⇌  SiF +  2H  0.3. 10  -4.799. 10  (Gustafsson, 2011) 
9 CaSO  ⇌  Ca  + SO  0.6394 -7.200. 10  (Pitzer, 2018; Shen et al., 2020) 

Table 2: Four solutions from the Pareto front (Syn: syncristallized; Una: Unattacked) 𝑤  𝑤  𝑤  𝑇 (𝐾) 𝑆 (%) 𝑄 (𝐾𝑗/ℎ) Syn. losses (%) Una. losses (%) 
1 0.73 0.27 0 349.45 2.12 -1.333. 105 0.62 0.12 
2 0.70 0.30 0 350.25 2.18 -1.351. 105 0.64 0.14 
3 0.67 0.33 0 350.75 2.23 -1.355. 105 0.63 0.16 
4 0.63 0.37 0 351.35 2.54 -1.358. 105 0.64 0.15 
 

5.  Conclusions 
Optimal operating conditions of the digestion tank of an industrial phosphoric acid 
production process are determined by means of a multi-criteria optimization method. The 
objectives used (i.e. saturation indices) have proved to be effective in minimizing the 
phosphate losses and increasing the acid productivity. Furthermore, the two inequality 
constraints on the temperature and on the excess of sulfuric acid above the stoichiometric 
amount required by the reactions were relevant to ensure an optimal operation of the 
digestion tank. The optimization results are consistent with the measurements carried out 
on an industrial installation, thus showing that optimization is a powerful tool for reducing 
the cost and duration of industrial experiments under maximum safety conditions. 
However, it is noteworthy that some side reactions can occur due to the impurities present 
in the phosphate ore which are not considered in this work. Their consideration in future 
works would undoubtedly improve the performance of the digestion tank.   
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Abstract 
An increasing challenge faced in the process industries is the significant reduction of 
experience levels in chemical plants due to retirements of the baby boomers and more 
mobile younger generations. Additionally, many plants have ageing equipment which are 
deteriorating which changes risk levels with time and impacts repair timing decisions that 
need to be well informed, balancing budgets versus risk. HAZOP teams have less 
experience to identify and risk rank hazardous scenarios. This work presents a tool that 
uses criteria to identify appropriate scenarios and their rating, as well as recommend 
potential appropriate controls and mitigations.  The tool allows dynamic HAZOPs that 
can be updated with the changing condition of safety critical equipment and suggest 
temporary mitigation measures, whilst also informing leaders of the risk of delaying 
repair. 

Keywords: hazan, automated risk rating, automated hazop 

1. Introduction 
In development and in manufacture personnel are required to make many decisions. With 
changing demographics, for example baby boomers retiring and more mobile younger 
generations, there is a rapid and significant reduction in expertise and experience in all 
safety critical roles from leadership, engineers, maintenance, and operations technicians. 
As a result, tools for development through to manufacturing such as expert informed 
automated hazard analysis and risk assessment are needed. These will inform design and 
guide engineers in critical areas and guide critical experiments and data needed.  
 
HAZAN (Hazard Analysis) at early-stage development and HAZOP (Hazard and 
Operability Studies) for detailed design of chemical plants are used very extensively and 
are dependent on the knowledge and experience that the team carrying out the study have. 
“Shortcomings could be due to lack of expertise or experience within the HAZOP team”. 
(Paul Baybutt, 2015). Importantly, the assessments of the severity and frequency can be 
inaccurate. “When you cannot express it in numbers, your knowledge is of a meagre and 
unsatisfactory kind.” (Thomson, 1883). Inaccurate risk ranking can lead to under 
controlling risks and have the potential to lead to catastrophic consequences. 
Alternatively, we can overspend resources for low level risks assigned to high a ranking.  
 
Using published guidance from verified sources the HAZOP Study Tool was developed 
that improves upon the current flaws in the traditional method of identifying and risk 
ranking scenarios.  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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2. Methodology 
The HAZOP Study Tool provides guidance for participants of a study in the areas of 
hazard identification and risk ranking. The tool consists of three main elements. The first 
helps the identification of the hazardous properties that the process chemicals being used 
may have. Comparing these hazardous properties to the operating conditions and 
guidance from several different sources, e.g the Global Harmonized System of 
Classification and Labelling of Chemicals (GHS), a set of classification criteria that was 
developed. These determine the nature and relative severity of the hazard of a chemical 
substance, allows a severity ranking to be assigned to each property, based upon these 
criteria as such as shown in Table 1.  
 

Severity Ranking 
Insignificant [1] Low [2] Medium [3] High [4] Serious 

[5] 
FP > OT by 
150°C or more 

FP > OT by a 
range of 149°C - 
100°C 

FP > OT by a 
range of 99° - 
50°C 

FP = OT           
or                      
FP > by 49°C 
- 1°c 

OT > 
FP 

Not classified as 
a flammable gas 

Not classified as a 
flammable gas. 

Category 2 Category 1B Categor
y 1A  

0.5 atm abs > 
VP >0.1 atm abs 

1 atm abs > VP 
>0.5 atm abs 

2 atm abs > VP 
≥   1 atm abs 

3 atm abs > 
VP ≥   2 atm 
abs 

VP ≥   
3 atm 
abs 

AI Temp > OT 
by 120°C or 
more. 

AI Temp > OT by 
90°C  

AI Temp > OT 
by 60°C 

Ai Temp = 
OT ± 15°C 

AI 
Temp < 
OT 

Table 1 - The severity ranking criteria for specific hazardous chemicals (Element 1 of HAZOP 
Study Tool. 

The second element of the tool aids the identification of the failure rate of different types of 
equipment. This element addresses a common uncertainty or misjudgment that occurs within 
HAZOP studies. Lack of understanding regarding the failure types and rate of the equipment makes 
it very difficult to accurately risk rank this hazard. Element two of the study tool aids the ranking 
of likelihood of equipment failure based upon quantitative criteria as shown in the sample in Table 
2. The tool allows a HAZOP team to identify these failure rates for the process equipment in 
question and guides the user to a likelihood ranking for this hazard. 

Sampled Equipment: 
Ambient Temperature 
and Pressure Vessel 
 
Large Vessel 
 

Likelihood Ranking 

Extremely 
Unlikely [1] 

Very 
Unlikely 

[2] 

Low [3] Likely 
[4] 

Very 
Likely 

[5] 

 (Per vessel per year) 
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Severity/Type of 
Release 

≤1E-06 >1E-06,     
≤1E-05 

>1E-05,    
≤1E-04 

>1E-04,    
≤1E-03 

>1E-03 

Catastrophic 5.00E-06         
Major 1.00E-04

Minor 
 

2.50E-03 
 

Roof         2.00E-03 

Table 2 - The likelihood ranking criteria for equipment failure (Element 2 of HAZOP Study Tool) 

 
The third element of the tool provides information regarding the underlying causes and 
contributors to both equipment failures and equipment-based accidents to aid scenario 
identification and ranking. Often there is more than one contributor to an incident. The 
statistics regarding the number of contributors that occur that result in an equipment-
based accident are stated and the main contributor and sub-contributors for each type of 
equipment failure are outlined.  
 
This element of the tool is laid out in several tables, each table shows a variation of ways 
in which the contributors to an equipment-based accident can be broken down into more 
specific events that could cause an incident. Each table contains figures and statistics to 
show the proportion in which each cause has the possibility to have contributed to an 
incident.  
 
The first table in the third element of the tool which expresses the breakdown of 
equipment-based accidents into the percentages that shows the proportion in which type 
of equipment are involved. For example, this draws attention to items’ such as piping as 
data shows that piping is the type of equipment that most frequently causes equipment-
based accidents.  
 
The function of the third table is also to aid the identification of the less frequent accident 
contributors that still carry a high impact. These contributors are like ‘black swan’ events. 
To tool aims to predict what otherwise would be unforeseeable or beforehand seem to be 
beyond what is expected.  

3. Applying the Tool 
3.1. Case Study based on Williams Geismar Olefins Plant Incident 
The plant in question is the Williams Geismar Olefins Plant in Louisiana, USA. This plant 
produces ethylene and propylene for the petrochemical industry.  
 
The raw materials of the olefin production are cracked before being cooled and separated. 
This case study will focus on one small section of this process, the depropaniser. This 
section of the process uses high-pressure distillation to separate propane and propylene. 
Assumptions that have been made for the purpose of the case study are as follows, the 
fractionator operates at 55°C and 19 bar. 
 
3.2. Identifying the Hazards 
Using the HAZOP Study Tool embedded within excel, a formal process was carried out 
to identify the potential hazardous scenarios present within the node in question. The 
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hazardous scenarios identified are as follows, loss of containment (LOC) of propane 
and/or propylene from heat exchanger/reboiler, from propylene fractionator and/or from 
pipework.  
3.3. Comparing Traditional Risk Ranking to HAZOP Study Tool Assisted Risk Ranking 
To make a valid comparison, the same scenario is compared between the traditional risk 
ranking method of relying upon the knowledge, opinions, and experience of engineers 
within the HAZOP team against the risk ranking procedure utilizing the HAZOP Study 
Tool. Ten BEng level chemical engineering graduates were asked to rank one of the 
hazardous scenarios that was identified, ‘LOC of propane and propylene from propylene 
fractionator that’s operating at 55°C and 19 bar’, in terms of severity and likelihood. The 
results are shown in the figures 1 and 2 below. 
 
3.3.1. Chemical Engineering Graduates Rankings 
The results as shown in table 3 that 4 engineering graduates ranked the scenario a ranking 
of ‘High (4)’ and 6 a ranking of ‘Serious (5)’. Although there is an agreement that the 
severity is significant, almost 50% of engineers rank the severity differently. 

Severity Ranking 
Graduate Insignificant [1] Low [2] Medium [3] High [4] Serious [5] 
1           
2           
3           
4           
5           
6           
7           
8           
9           
10           

Table 3 - Chemical engineering graduates severity ranking for hazardous scenario. 

The likelihood rankings of the hazardous scenario are significantly widespread as shown 
in table 4. Three engineers rank the likelihood of the loss of containment of a propylene 
fractionator, ‘Very Unlikely (2) which lies between 1E-06 and 1E-05. Whereas on the other 
side of the spectrum, two engineers believe that the likelihood is ‘Likely (4)’ which lies 
between 1E-04 and 1E-03.  
 

Likelihood Ranking 
Graduate 
No. 

Extremely 
Unlikely [1] 

Very Unlikely 
[2] 

Low 
[3] 

Likely 
[4] 

Very Likely 
[5] 

1           
2           
3           
4           
5           
6           
7           
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8           
9           
10           

Table 4 - Chemical engineering graduates likelihood ranking for hazardous scenario. 

 
3.3.2. HAZOP Study Tool Assisted Rankings 
The use of the HAZOP study tool and each of the elements within the tool allowed a 
conclusion to be made that both propane and propylene presented a ‘Serious (5)’ level of 
severity in relation to being a fire and explosion hazard and propane presented a ‘Medium 
(4)’ level of severity in relation to toxicity to aquatic life and environment. 
 
With focus on the vessel in question, or the propylene fractionator, the HAZOP study tool 
allows the evaluation of the likelihood of a variety of different types of release, such as, 
‘Catastrophic release’, ’25 – 50mm diameter hole’, ‘13mm diameter hole’ and ‘6mm 
diameter hole’. In this specific case, each of the types of release as listed were concluded 
to be ‘Very Unlikely (2)’, except for the ‘6mm diameter hole’ that has a failure rate of 
4E-05 per vessel per year and is ranked as a ‘Low (3)’ level of likelihood.  
 
3.4. Discussion 
When comparing the traditional, experience and knowledge-based approach to risk 
ranking and the HAZOP Study Tool assisted method there is a lot of differences that can 
be observed: 

 When the rankings are collated on a risk matrix the traditional method arrived at 
five different risk rankings, each of which is coming from a verified source, a 
qualified engineer within the field of chemical engineering. The study tool 
assisted rankings are based upon semi-quantitative information gathered from 
verified industry sources which introduces an element of consistency across all 
processes, regardless of the team carrying out the HAZOP. 

 Each person has varying levels of industry experience and knowledge which 
have an effect on the rankings that are assigned. The HAZOP study tool allows 
the user to take use the information on the process and compare it to the criteria 
that has been created based upon varying sources to allow them to arrive at an 
accurate ranking. The tool provides guidance for personnel of all levels of 
experience and enables unexperienced personnel to operate competently within 
a HAZOP team and avoid misleading a study because of their lack of experience.  

 It has been shown that assigning likelihood and severity is dependent on 
experience. Whereas the tool assisted method focuses on breaking down the 
hazardous scenario in question and providing semi quantitative information that 
directs the scenario ranking. The tool assisted method breaks a process down 
and inspects the failure rate of every piece of equipment providing more of a 
comprehensive overview of how likely the realization of a hazardous scenario 
really is.     

4. Conclusions 
The HAZOP study tool is valuable guidance and expert advisor for teams who 
increasingly lack the depth of experience and expertise due to demographic changes and 
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younger generation’s increased mobility. Methods of passing down knowledge and rapid 
access in a way that can be used by inexperienced engineers must be developed.  
 
The quality of the judgement of a team or an individual during a risk assessment is highly 
dependent on the expertise and experience of the team. The outputs from a risk assessment 
should be considered to be ‘high risk’ due to the potential of catastrophic consequences 
if it is done incorrectly. The addition of semi-quantitative guidance adds expertise that 
can be used by teams to improve scenario identification, risk ranking and identifying 
mitigations. The HAZAN and HAZOP study tool is an expert advisory tool and a step in 
the direction of automated risk assessment for a wide variety of chemical processes. 
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Abstract 
The co-processing of algae hydrothermal liquefaction oil (AHTLO) and vacuum gas oil 
(VGO) in an existing refinery has been proposed to decrease the production cost of algal 
bio-fuels by utilizing existing infrastructures of the refinery. Techno-economic analysis 
of the co-processing of AHTLO and VGO shown that the larger AHTLO co-processing 
ratio, the higher minimum selling price. In this work, an investigation between the 
AHTLO co-processing ratio and minimum selling price is conducted by multi-objective 
optimization (MOO). The proposed MOO model is solved to obtain the Pareto fronts by 
ε-constraint method. The trade-off solution for the co-processing technology is obtained 
using function evaluation method. The effects of the weight factor on the trade-off 
solution are also carried out. 

Keywords: Algae, HTL, VGO, Co-processing, Multi-objective optimization. 

1. Introduction 
The development of bio-energy is one of the ways to deal with the problems of resource 
shortage and environmental pollution. To further reduce the production cost of bio-fuels, 
the co-processing of bio-oil and vacuum gas oil has been proposed by using the existing 
refinery infrastructures. The third-generation bio-energy, algae was also used as the raw 
material to obtain the algae hydrothermal liquefaction oil (AHTLO) which was then co-
processed with vacuum gas oil (VGO) in an existing fluid catalytic cracking unit. The co-
processing of AHTLO and VGO shown high technical feasibilities (Santillan-Jimenez et 
al. 2019). A techno-economic analysis shown that the co-processing technique can reduce 
the production cost of the algal fuels. Furthermore, the minimum selling price (MSP) of 
gasoline was increased with the increase of AHTLO co-processing ratio. (Wu et al. 2020). 

In this work, a multi-objective optimization model is established for the co-processing of 
AHTLO and VGO in an existing refinery to discuss the relationship between the AHTLO 
co-processing ratio and minimum selling price (MSP) of gasoline. As there are two kinds 
of algae production methods, algal turf scrubbers (ATS) and open raceway ponds (ORP), 
two co-processing scenarios (ATS scenario and ORP scenario) are proposed to illustrate 
the differences between the two scenarios. The Pareto fronts and the trade-off solution 
are calculated by ε-constraint method and evaluation function method, respectively. The 
effects of weight factor on the trade-off solution are also discussed. 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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2. Materials and methods 
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Figure 1: The co-processing diagram 

Figure 1 has been shown the basic flowsheet of the co-processing process. This figure 
can be divided into two parts, the one part is production process of AHTLO, the other 
part is co-processing of AHTLO and VGO. Algae produced by ATS or ORP can be 
directly hydrothermally liquefied to obtain AHTLO. Then, the AHTLO and VGO are co-
fed into the FCC to produce the co-processing products, gasoline and diesel with bio-
carbon. Then, the FCC gasoline and diesel are hydrotreated to obtain the gasoline and 
diesel fuels. 

2.1. Objective functions 

In this work, the relation between the co-processing ratio of AHTLO in FCC feed oil and 
the MSP of gasoline is discussed by using a multi-objective model. It is easy to conduct 
that more bio-carbon would exist in co-processing product if a larger AHTLO co-
processing ratio was adopted. Therefore, the objective functions of the multi-objective 
model are set as the minimization of the gasoline MSP and the maximization of the 
AHTLO co-processing ratio. MSP can be calculated by net present value (NPV) and 
internal interest of rate (IRR) according to the mass balance, energy balance, operating 
cost, investment cost, profit margin and tax rate. More details can be found in Wu et al. 
(2020). 

ATHLOmax R  (1) 

min MSP  (2) 

2.2. Constraints 

The constraints are main the mass balances of the co-processing process. 

out in=j i j
j i

m m y
 (3) 

where m denotes the flow rate, in t/h; superscript in, out indicate charge and discharge; 
subscripts i, j are the ith charging port and jth discharging port respectively. 

2.3. Trade-off between MSP and co-processing ratio 

In this work, the evaluation function is used to obtain the trade-off solutions. 

512



Multi-objective optimization of co-processing of algae hydrothermal  
liquefaction oil and vacuum gas oil: a survey of algal oil co-processing  
ratio and gasoline selling price 

   max max min/s s
o o o o ou O O O O    (4) 

s
o
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o
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where O indicates the objective function; u is the evolution function; w denotes weight 
factor; Subscript O indicates Oth objective function; Superscript min, max and s are the 
minimum solution, maximum solution and sth solution of u. 

3. Case study 
3.1. Basic data 

The co-processing of AHTLO and VGO in the FCC unit, the annual operation time is 
8400 h and the average annual processing capacity is 1.2 million tonnes. The yield of 
AHTLO and gas are 44% and 19% in the HTL process. In the FCC unit, the yields of 
gaseous products, coke, gasoline and diesel are 18%, 6.6%, 99.5% and 91.2%, 
respectively. 

Table 1 presents the basic operating cost of the two algal production method, ATS and 
ORP, which includes power, nutrients, fresh water, fuel or flocculants, labor and 
maintenance or insurance. 
Table 1: Basic inputs for the ATS and ORP processes (Hoffman et al, 2017) 

Operating cost /$·t-1 a) ATS ORP 
Power 56.12 65.26 

Nutrients / 104.25 
Fresh water / 0.988 

Fuel or Flocculants 19.14 56.36 
Labor 13.30 14.69 

Maintenance/Insuranc
e 29.26 25.53 

Note: a) the cost unit is dollar per ash free dry tonne  

3.2. Optimal results of ATS scenario 

3.2.1. Pareto front in ATS scenario 

Figure 2 presents the relations between the MSP of gasoline and the ratio of AHTLO. It 
can be observed that the MSP increases with the increase of co-processing ratio of 
AHTLO. When the AHTLO co-processing ratio is 1%, the MSP is 2.04 $·gal-1. When 
the AHTLO co-processing ratio is 20%, the MSP is 3.80 $·gal-1. Considering the relative 
low MSP of gasoline, the co-processing of VGO and AHTLO to produce gasoline and 
diesel may be a potential way to partially replace petroleum derived gasoline. 
From the breakdown of gasoline price, in ATS scenario. It can be obtained that when the 
co-processing ratio is 1% and 20%, the proportion of VGO cost in the MSP is the largest 
proportion, which is 80% and 45%, respectively. Then, as the tax is controlled at 39%, it 
ranks second with 45% and 42%, respectively. It can be seen from the figure that the cost 
and tax share of VGO are reduced due to the addition of AHTLO. Since, the scenario 
does not consume nutrients and fresh water, the proportion of nutrients is 0. 
According to Figure 3, the mass balances flow chart of ATS scenario under the condition 
of AHTLO ratio of 1% and 20%. Since the consumption of energy, nutrition and water 
can be ignored, in ATS scenario, the input amount is 0 t/h. Algae are produced in ATS, 

513



 Shuai Zhang et al. 

  

and AHTLO is obtained by HTL. When the co-processing ratio is 1%, the AHTLO is 
1.43 t/h, and the VGO is 141.43 t/h co-processing into FCC. And the obtained gasoline, 
diesel and GP are 70.91 t/h, 30.38 t/h and 0.73 t/h respectively. When the co-processing 
ratio of AHTLO is 20%, the AHTLO is 28.58 t/h, and the VGO is 114.28 t/h co-
processing into FCC. Products of gasoline, diesel and GP are 70.91 t/h, 30.38 t/h and 0.73 
t/h respectively. 

  
Figure 2: a) The Pareto fronts and the breakdowns of MSPs, b) 1% and 20% AHTLO co-processed 
(N=Nutrient, H=Hydrogen, U=Utilities, OOC=other operating cost, BPR=by product revenue, 
ACC=annual capital cost) 

 
Figure 3: Mass balances of ATS scenario (GP=Gas products, fuel gas and LPG) 

3.2.2. Effect of the weight factor on the trade-off solution 

Effect of the weight factor on the trade-off solution of ATS scenario is shown in Table 2. 
According to Table 2, when the weight factor is 0.6, the optimal AHTLO ratio is 3% and 
the corresponding MSP is 2.38 $·gal-1. The optimal AHTLO ratio would be 8% and MSP 
would be 2.94 $·gal-1 if 0.5 is chosen as the weight value. When the weight ratio is less 
than 0.4, the AHTLO ratio is 20%, and the MSP is 3.80 $·gal-1; if the weight ratio is more 
than 0.7, the AHTLO ratio is 1%, and the corresponding MSP is 2.04 $·gal-1. 
Table 2: Effect of weight factor on the trade-off solution of ATS scenario 
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3.3. Optimal results of ORP scenario 

3.3.1. Pareto front in ORP scenario 

As indicated in Figure 4a), the relationship between MSP and co-processing ratio, and in 
Figure 4b), the Pareto frontier diagram. The results are similar to those under ATS 
scenario. MSP of co-processing production oil increases with the increase of co-
processing ratio of AHTLO. When AHTLO ratio is 1%, MSP is 1.62 $·gal-1; AHTLO 
ratio is 20%, MSP is 3.70 $·gal-1. Whether the ratio of AHTLO is 1% or 20%, the effect 
is likely to replace part of gasoline and diesel refined that from petroleum. Whether the 
proportion of AHTLO is 1% or 20%, the co-processing effect can reduce the production 
cost of gasoline and bio-diesel, and it may also replace part of gasoline and diesel oil 
refined from petroleum. 

  
Figure 4: a) The Pareto fronts and the breakdowns of MSPs, b) 1% and 20% AHTLO co-processed 
(N=Nutrient, H=Hydrogen, U=Utilities, OOC=other operating cost, BPR=by product revenue, 
ACC=annual capital cost). 

The detailed chart which breakdown of gasoline price under the ORP scenario with 
AHTLO ratio of 1% and 20%. It is similar to ATS scenario. In the MSP, the cost of VOG 
accounts for 93% and 45% respectively; the second is tax, 52% and 46%, which is also 
due to the tax control of 39%. Different from ATS, nutrients accounted for 1% and 7%, 
which was 0% in the ATS.  

 
Figure 5: Mass balances of ORP scenario (GP=Gas products, fuel gas and LPG) 
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As demonstrated in Figure 5, the mass balance flow chart of ORP scenario under the 
condition of AHTLO ratio of 1% and 20% is shown. It is similar to ATS scenario, but 
there are differences in energy, nutrition and water consumption, which are 65.39 t/h and 
493.51 t/h respectively; the others are the same as ATS scenario. 

3.3.2. Effect of the weight factor on the trade-off solution 

Table 3 shows the influence of weight factor on the trade-off solution, which is the same 
as ATS scenario. When the weight factor is 0.6, the optimal AHTLO ratio is 3% and the 
corresponding MSP is 1.99 $·gal-1. The optimal AHTLO ratio would be 8% and MSP 
would be 2.62 $·gal-1 if 0.5 is chosen as the weight value. When the weight ratio is less 
than 0.4, the AHTLO ratio is 20%, and the MSP is 3.70 $·gal-1; if the weight ratio is more 
than 0.7, the AHTLO ratio is 1%, and the corresponding MSP is 1.62 $·gal-1. 
Table 3: Effect of weight factor on the trade-off solution of ORP scenario 

Weight factor 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Bio-oil ratio/% 20 20 20 20 20 8 3 1 1 1 1 

MSP/$·gal-1 3.7
0 

3.7
0 

3.7
0 

3.7
0 

3.7
0 

2.6
2 

1.9
9 

1.6
2 

1.6
2 

1.6
2 

1.6
2 

4. Conclusion 
In this work, a multi-objective optimization of the co-processing of AHTLO and VGO in 
the existing catalytic cracking pyrolysis is carried out to investigate the relation between 
the MSP and co-processing ratio. As there are two algae growth technologies, ATS and 
ORP, two scenarios were proposed to give a comparison between the two technologies 
when the algae were adopted as the raw materials for the HTL process. This study proved 
that co-processing of AHTLO and VGO can reduce bio-fuels cost. Indicating that 
AHTLO and VGO may be a potential way to partially replace petroleum derived gasoline 
in both cases. 
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Abstract 
The new wastewater treatment plants in Morocco are increasingly equipped with 
intensive biological treatment processes (bacterial beds and activated sludge) to the 
detriment of lagooning. Activated sludge treatment is a very interesting choice given its 
satisfactory efficiency.  
The objective of this work is to list the formulas already published concerning the 
activated sludge and lagooning technique after having studied its operation, to draw up 
the sizing algorithms for the most reliable methods and then to program them in order to 
develop an easy-to-use software for sizing activated sludge type wastewater treatment 
plants with a low load saving. This software will contribute to reduce the duration of the 
study as well as of the implementation of the WWTP project and will constitute a tool for 
decision making. 
This program will help designers to design and verify the purification performance. This 
tool also allows considerable time savings compared to conventional calculation methods 
while offering easy data entry. 
 
Keywords :  wastewater, treatment, program. 

 
1. Introduction  
The dimensioning of a wastewater treatment plant follows several steps, first of 
all by collecting basic data and essential parameters describing the quality and 
quantity of effluents, in order to be able to estimate the dimensions of each 
structure constituting the treatment plant. This estimation is often very expensive 
and generally requires a lot of time, concentration and energy to the WWTP 
designers, especially when it comes to working on several variants. The objective 
of this project is to develop a software called EMASN which allows to determine 
the dimensions of a wastewater treatment plant by lagooning plus de facto a cost 
estimate from some basic data. In order to achieve this, we use Excel and the 
programming language 'Visual basic'. 

2. Material and method 
 
2.1. Calculation formulas 
2.1.1. Lagooning 
Wastewater treatment by lagooning is done by various processes based on 
physical, chemical and biological phenomena. 
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The decontamination of wastewater requires a succession of steps involving 
physical, physico-chemical and biological treatments. Apart from the largest 
waste present in the wastewater, the treatment must allow, at the very least, to 
eliminate most of the carbonaceous pollution. 
 

Anaerobic basin :  
Basin surface = gross BOD5/ (volume load (Cv)Data in meters 

Basin volume = Area * Depth 
Residence time =Volume / flow rate 

Outgoing pollutant load = Input pollutant load - (Efficiency*Input pollutant load) 
 

Optional basins : 
Pond surface = BOD5 load at the outlet of the anaerobic ponds / surface load Cs 

Basin V = Basin surface * Depth (1.5 m) 
Residence time =Volume / flow rate 

Outgoing pollutant load = Input pollutant load - (Efficiency*Input pollutant load) 
Curing tanks : 

Volume of the tank = flow rate * Residence time (5 d) 
S(M) = Basin volume / Depth (1 m) 

 
2.2. Language and tool used 
 
Visual Basic (VB) is a third-generation event-driven programming language and 
integrated development environment created by Microsoft for its COM1 
programming model. Visual Basic is directly derived from BASIC and allows 
rapid application development, creation of graphical user interfaces, access to 
databases using CAD, ADO and RDO technologies, and the creation of ActiveX 
controls or objects. Scripting languages such as Visual Basic for Applications and 
VBScript are syntactically similar to Visual Basic, but are used and behave 
significantly differently. 
 
3. Results and discussion 
3.1. Client  
The client (Fig. 1), allows you to orientate yourself towards your directions 
concerning the software (dimensioning lagoon, activated sludge, bacterial bed, 
cost estimate). 
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Figure 1 : Interface du logiciel 

3.2. Calcul des débits  
The first sizing step is to calculate the incoming wastewater flow (Fig. 2). 
 

Figure 2: Calculation of Wastewater Inlet Flow Rate 
 

3.3.  Calcule des charges polluantes 
Through the application of the calculation forum, the user can calculate 

the pollutant load at the inlet of the WWTP according to the population (Fig. 3). 

Figure 3: Calculation of the pollutant load at the inlet of the WWTP 
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3.4. Lagooning 
The third step consists in calculating the dimensioning of the treatment basins. 
(Fig.4). 
 

 
Figure 4: Basin and Grid Computation Interface 

3.4.1. Screening 
Before starting the calculation of the treatment basins, it is essential to dimension 
the elimination grid for large elements. 

Figure 5: Calculation of grid dimensions 
 

3.4.2 Lagoon dimensions 
 
After the user finishes the calculation of the first step, which is the pre-treatment, 
he can start the step of calculating the basin volumes. (Fig.6) Based on the 
calculation formulas and results obtained in the first step, the software alculates 
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the dimensions of the three treatment basins respecting the residence conditions 
for each basin, Aerobic, Optional and Maturation.  

 

Figure 6: Calculation of basin volumes 
 

3.4.2. Cost Estimate 
After determining the technical elements of the project and sizing the volumes of 
the treatment basins, the user has the power to estimate the project cost. The cost 
estimate is made in proportion to the number of equivalent inhabitants according 
to the manual proposed by ONEE-BE. The user must add the field cost according 
to the study site in order to properly estimate the project and compare the 
treatment cost with other processes and choose the most appropriate process.   

Figure 7: Project Cost Calculation 
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Conclusion  
Today the treatment of liquid effluents, especially wastewater from cities, has 
become a high priority for the state so that it can preserve its natural resources 
and protect aquatic ecosystems from pollution caused by the physico-chemical 
and biological interactions of pollutants with biotopes.  
This program makes it easier for designers to design and thus verify the 
purification performance of natural lagoon-type treatment plants. In addition, this 
modelled calculation tool offers a significant time saving compared to 
conventional calculation methods, while providing easy data entry. And it 
compares the cost of treatment compared to other wastewater treatment 
processes.  
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Abstract 
Uncertainty in parameters is increasingly considered in the optimization of design and 
operation of chemical process systems. A possible approach solving such optimization 
problems under uncertainty is the application of the chance constraint method. However, 
this approach requires high computational effort for calculating the probability of 
constraint satisfaction. To quickly solve chance-constrained optimization problems, an 
approach using data-driven models has been developed and proposed for single chance-
constraints. In this contribution, the developed framework for data-driven chance 
constrained optimization is extended to joint chance constraints and analysed on a basic 
mathematical nonlinear model for easier evaluation of the method and on a simplified 
Williams-Otto process model with complex and nonlinear behaviour. 
 
Keywords: Optimization under uncertainty, Joint chance-constrained optimization, Data-
driven modelling 

1. Introduction 
Deterministic optimization approaches are well developed in the process industry and are 
used for offline and online process optimization (Li et al., 2006). However, many 
uncertainties within and outside of a process, such as feed stream, demanded product 
amount and kinetic parameters are often not considered, which can lead to serious 
deficiencies in the system or to economic loss (Giunta, 2004). To tackle this, approaches 
for process optimization under uncertainty can be applied on the design and operation of 
process systems in chemical industry. A possible approach solving such optimization 
problems under uncertainty is the application of chance-constrained (CC) optimization. 
However, this approach requires high computational effort for calculating the probability 
of constraint satisfaction for multidimensional distributions in order to achieve the desired 
probability level (Ostrovsky et al., 2013). To enable CC optimization in real-time 
applications even for complex processes, which is not possible using conventional 
approaches, a data-driven CC optimization framework has been proposed (Weigert et al., 
2019). The framework has been successfully tested for single chance-constraints, which 
are satisfied individually with a prescribed confidence level. To increase the flexibility 
and robustness of the optimization problem, joint chance-constrained programming can 
be used which is able to guarantee a user-defined probability level of meeting all 
restrictions simultaneously. This is generally solved through two approaches of the joint 
chance constrained problem: sampling based and analytical approximation (Yuan et al., 
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2017). In this contribution, we extended the existing framework to joint chance 
constraints as a new method and analysed its behaviour. 

2. Optimization under uncertainty 
In general, the basic idea of optimization under uncertainty is to integrate the available 
stochastic information into the optimization problem formulation. To systematically solve 
the optimization problems under uncertainty, three different methods can be 
distinguished: (1) Scenario-based optimization approach, (2) Stochastic approach and (3) 
Parametric approach (Wets et al., 1994). A possible approach solving such optimization 
problems using the second method is the application of single chance-constrained 
optimization which can be formulated as follows: 

with expectation operator 𝐸, original objective function Φ, decision variables 𝑢, state 
variables 𝑥, uncertain parameters 𝜉, equality constraints 𝑔, and inequality constraints ℎ. 
In most implementations 𝜉  is assumed to be described by a multivariate normal 
distribution with the mean value 𝜇  and covariance matrix 𝐶𝑜𝑣.  Pr represents the 
probability of complying with the inner constraint being feasible to be greater than a user-
predefined confidence level 𝛼 ( 0 ≤ 𝛼 ≤ 1 ). The uncertain input ξ  makes the 
corresponding output variable h  (x, u, ξ)  also uncertain, so further processing of the 
inequalities must be carried out in order to quantify possible violations and it can be 
formulated as Eq. (1c). Another way of formulating the equation is joint chance constraint 
and can be written as (Arellano-Garcia, 2009): 

In this case, the joint chance constraint requires the satisfaction of all inner constraints to 
be satisfied simultaneously with a predefined confidence level. In addition, this approach 
increases the flexibility of the optimization problem in the inequality variable space 
resulting in decreased values of the objective function while still retaining the overall 
probability level. 

3. Data-driven input-output and uncertainty modelling 
A data-driven CC optimization framework (Weigert et al., 2019) has been developed to 
reduce the computational cost of the existing chance constrained optimization framework 
and tested successfully for single chance-constraints. The data-driven framework consists 
of two submodels: a process model (PM) and an uncertainty model (UM). The PM 
represents the correlation between the decision variables and the expected values of the 
objective function and the inequality constraints, while the uncertainty model (UM) 
determines the probability distribution parameters needed to compute the probability of 
the inequality constraint as a function of all the decision variables. 
3.1. Data preparation and data-driven model generation 
To generate the data-driven model (here: artificial neural network, ANN), training and 
testing data have to be prepared based on the formulation of the chance-constrained 
optimization problem. Data sampling is performed in a space of predefined decision 
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variables (uniform distribution) and the uncertain parameter (normal distribution) using 
the framework, which solves the rigorous model in AMPL. Prior to model training, the 
following details have to be specified: the output uncertainty at each available input point, 
the expected values of the objective function and the inequality constraints. In particular, 
a model for describing the probability distribution is selected and its characteristic 
parameters are specified as the output variables of the UM. Normal and beta distributions 
are used in this work. Their defining parameters are the variances for the normal and two 
positive shape parameters (𝛼 and 𝛽) for the beta distribution, which can be determined 
by model training. With prepared data sets and the essential parameters, the process and 
uncertainty model are trained using the machine learning toolbox Scikit-learn (Pedregosa 
et. al., 2011). 
3.2. Data-Driven Model for process optimization under uncertainty 
By applying the PM and the UM to the chance-constrained optimization problem of Eq. 
(1), only decision variables are required to solve this problem, since the influence of x 
and 𝜉 on the optimization problem is already included in the submodels. The optimization 
problem can be now simplified to:  

The framework can solve the optimization problem by obtaining expected objective 
function values from the PM and the probability information of satisfying the chance 
constraint from the UM. To calculate the probability in chance constrained optimization 
using the framework, just the cumulative distribution function (CDF) and the expected 
values of the inequality constraints from the PM are used. These can be derived directly 
from the outputs of the PM and the UM which depend on the decision variables.  
3.3. Computing the probability of a joint chance constraint 
One uncertainty model is created for each individual chance constraint defined by the 
user. In each model, all probability distribution parameters are determined only as a 
function of all decision variables to calculate the probability constraint. Therefore, the 
UMs do not depend on each other and can be used in calculating the probability of joint 
chance constraint method using the following formula: 

In order to carry out and test the approach for joint chance constraints, the proposed 
method is implemented in the developed framework. 

4. Case study 
The testing of the extended framework for joint CC is carried out with two different 
examples: a simple mathematical equation system, and the simplified Williams-Otto 
process. In both case studies, training and testing datasets (500,000 sample points) are 
generated according to the procedure described earlier, and data-driven models for the 
case study are created based on these datasets. The data generation times for the first and 
second case are 12400 s and 13240 s respectively, whereas their model training times 
(both the PM and the UM) are 1231 s and 1501 s.    
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4.1. Case Study I: Simple mathematical model 
In order to evaluate the performance of the proposed approach for joint chance 
constraints, an arbitrary nonlinear equation system with three active constraints is chosen 
and can be described as follows: 

with mean values ξ 1, ξ 2, ξ 5 and decision variables u  in the interval [1.2, 
2.2], u  in the interval [2.0, 16.0]. The joint chance-constrained optimization problem is 
solved for varying αJoint and uncertainty variances σ. To verify the probability of the 
optimization result (PrSolver), Monte Carlo (MC) Simulation is applied based on the 
uncertainty parameters in the system. To estimate the probability using this method 
(PrMC), numerous simulations with randomly chosen samples from the uncertain 
parameter distributions are carried out using the original model with fixed decision 
variables from the optimization result. Then the number of points in the simulation result 
is counted which simultaneously satisfy all inequality constraints. 

Figure 1: Optimization results: (a) Influence of 𝜎  on the objective function value and max. 
achievable probability, (b) Influence of the probability level 𝛼Joint on the objective function value. 
 
Fig. 1 (a) shows the fact that the maximum achievable joint constraint probability 
decreases with the increasing variance of the uncertainty parameter. This means that all 
three inner constraints in Eq. (5b) are active simultaneously, affecting the feasible area in 
which all uncertainty-affected inequality constraints are jointly satisfied. As expected, it 
can be seen that the objective function value increases with increasing 𝜎  value. The 
objective function values also rise with increasing probability level 𝛼Joint (see Fig. 1 (b)), 
since the optimal solution moves away from the global minimum in order to increase the 
probability of the distribution being fulfilled. This is also the expected behaviour. 
According to the optimization results, the probability of the optimization result (PrSolver) 
and the probability obtained by MC simulations (PrMC) show a high match rate, and the 
difference between the two probabilities | |  is less than 1%. Furthermore, 
compared to the sampling-based method (Monte Carlo with 10,000 sample points, taking 
approx. 348 s per iteration), the new approach only takes less than a second to calculate 
the probability of meeting the joint chance constraint for each optimization iteration. 
Thus, solving this joint CC optimization problem takes only a few seconds in total.   

526



Joint Chance Constraint Approach based on Data-Driven Models for  
Optimization Under Uncertainty applied to the Williams-Otto Process  

4.2. Case Study II: Williams-Otto Process 
The Williams-Otto process (Williams and Otto, 1960) consists of a continuously stirred 
tank reactor (CSTR), a decanter, a distillation column and a recycling part of the column 
into the reactor. Two raw components A and B are fed separately into the CSTR, in which 
three exothermic reactions take place producing product P, intermediate components C, 
E and byproduct G. To describe each reaction, an Arrhenius-type kinetic is used. The 
byproduct G is an expensive waste and hence causes additional costs, which is thus 
limited to mass fraction 4% at the outlet of the reactor. In addition, it is essential to keep 
the reactor temperature below 110�C to avoid degradation process. The original model 
is simplified and therefore the equation system consists of 22 equations. The following 
optimization problem has been specified for the joint chance constraint:  

The optimization problem has two decision variables, which are the two feed streams for 
components A and B (𝐹  and 𝐹 ). As uncertain parameters, the three preexponential 
coefficients of the Arrhenius reaction rates with a standard deviation of 3% of the 
specified value are used. The objective function is formulated in such a way that the 
unconstrained global optimum lies outside the feasible area, which enables the constraints 
(6b) to be activated. The optimization problem for joint chance constraint is formulated 
based on the description of this section and solved using the data-driven model. 

 
Figure 2: Optimization results: (a) the probability distribution of the concentrations 𝑤  and 𝑤  of 
the individual sampling point for single and joint chance constraint methods with 𝛼Joint 0.95, (b) 
Influence of the probability level 𝛼Joint on the objective function value. 
 
Figure 2 (a) shows the MC Simulation Results of the concentration 𝑤  and 𝑤  (with 
10,000 sample points), taking into account the above mentioned 3 uncertainty parameters 
at 𝛼Joint 0.95. The single CC method solves the formulated optimization problem by 
satisfying the two inequality constraints separately (Pr1 𝑤 (𝐹 , 𝐹 ) 0.082  = 94.8 % 
and Pr2 𝑤 (𝐹 , 𝐹 ) ≤  0.04} = 94.9 %, but Pr1∩Pr2 = 90.4 %). Since the joint CC 
approach considers both inequality constraints simultaneously, it is more severe than the 
single CC with same probability level values. The simulation result distribution keeps a 
distance from both constraints to jointly satisfy the required probability (PrJoint = 95,0 %). 
In comparison with the single CC, the objective function values from joint CC are shifted 
to a more conservative solution to simultaneously meet the required concentrations of 
products and by-products under uncertainty (see Fig. 2 (b)). As already shown in the first 
case study, the optimization results here also show that the objective function values 
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increase as expected with increasing 𝛼Joint (see Fig. 2 (b)). In this case study, the obtained 
optimization results also show a good agreement between the probability from the 
optimization result and probability obtained by Monte Carlo sampling, resulting in a max. 
deviation of less than 1.5 %. The proposed method also takes less than a second to 
calculate the probability for each iteration of joint CC optimization compared to the MC 
sampling technique (approx. 378 s per iteration, with 10,000 sample points). Hence, only 
a few seconds are required for solving this joint CC optimization problem.  Furthermore, 
the max. operating cooling power limit (Q ≤ 200 kJ/s), designed not to exceed the 
max. allowable temperature of the reactor, is integrated into the joint chance constraint 
(Eq. (6b)) to test the approach for a higher multidimensional distribution. The joint CC 
optimization problem is formulated and solved successfully at an 𝛼Joint of 80 % to 90 %. 
The maximum possible probability is 90.2 %. The reason for this is that more inequality 
constraints are jointly considered and therefore the desired probability cannot be reached 
within a feasible area. The calculation time of the probability for joint CC with these three 
constraints is not significantly different from the case study II with two constraints. 

5. Conclusion and Outlook 
In this contribution, an approach for joint CC is proposed to improve the robustness of 
the single chance constrained optimization solution using a data-driven model. The 
method is implemented in a developed framework and tested using two case studies. The 
joint CC method can solve the process optimization problem under uncertainty and 
provides results while meeting the desired minimum probability level varied from 80% 
to 99%, which is satisfying all uncertainty-affected inequality constraints jointly. Thus, 
when constraints are related to safety consideration of a process operation, the joint CC 
approach using the data-driven model can be applied. In addition, it takes less than a 
second to calculate the probability of meeting the joint chance constraint. In future work, 
the extended framework will be tested with measurement data from different chemical 
processes and will be applied in model-based frameworks for dynamic processes 
(Weigert et al., 2020). Furthermore, a possible application of the approach for real-time 
optimization can be investigated. 
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Abstract 
The unsteady state simulation of gas-solid cyclone separator was carried out to investigate 
the performances of 0.29 m diameter (DB) cyclones with five different dustbin geometries, 
including dustbin without dipleg (cylindrical bin) and dustbins with 0.5DB, 1.0DB, 1.5DB, 
and 2.0DB (divergent conical bin) height divergent conical diplegs. The diameter and total 
height of five dustbins were 1DB and 2DB, respectively. The gas flow and turbulence fields 
inside the cyclones with the Reynolds number of 280,000 were simulated by Reynolds 
averaged Navier-Stokes equations (RANS) with Reynolds stress model (RSM). The 
collection efficiencies were investigated by using discrete phase model (DPM). For model 
validation, the simulated velocity profiles of the cyclone with cylindrical dustbin have 
been compared to the previous experimental data available in literature and were in good 
agreement with the previous results. Further, the simulated results revealed that the 
Stairmand cyclone with divergent conical and simple cylindrical dustbins respectively 
represented the highest and lowest collection efficiencies indicated by 50% cut-off 
diameter, which corresponded to the diameters of 1.692 and 1.744 microns, respectively. 

Keywords: CFD, cyclone, dipleg, dustbin, and separation 

1. Introduction 
Gas cyclones are one of the important gas-solid separators. They are commonly employed 
in various chemical industries because of their advantages, e.g., simple geometry, no 
moving parts, low operating cost, etc. They use centrifugal force to remove the solid 
particles from gas streams. Due to the cyclone advantages, many researchers attempted 
to enhance their performances by modifying the cyclone parts. 

Cyclone inlet, cyclone barrel, cyclone cone, cyclone vortex finder, dipleg, and dustbin 
were previously studied to improve the cyclone performances by using experiments and 
computational fluid dynamics (CFD) simulations. The dust outlet geometry was one of 
the cyclone parts which widely studied by previous works. 

Kaya and Karagoz (2009) employed CFD to investigated the gas cyclones prolonged with 
diplegs. They concluded that the dipleg length considerably affected the collection 
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efficiency rather than the pressure drop, especially for lower inlet velocities. Elsayed and 
Lacor (2012) numerically studied the influence of dustbin geometry. They reported that 
the different pressure drops and collection efficiencies were observed for different dustbin 
geometries. Moreover, the dust outlet geometry significantly affected the axial velocity 
profiles. Shapiro and Ben-Shmuel (2012) also used CFD to study the effects of cylindrical 
and divergent diplegs on pressure drop, cut size, and separation efficiency. Later, the 
cylindrical dustbins and diplegs (Elsayed et al., 2020) and cylindrical dustbins with 
various dipleg designs (Parvaz et al., 2020) were numerically investigated. 

Although the different dustbin geometries were studied as mentioned earlier, however, 
the effect of angle for conical dipleg is not investigated. Hence, in this paper, this 
influence was investigated with the help of CFD. The five different dustbin geometries, 
including dustbin without dipleg (cylindrical bin) and dustbins with 0.5DB, 1.0DB, 1.5DB, 
and 2.0DB (divergent conical bin) height divergent conical diplegs, were studied.    

2. CFD simulations 
2.1. Configurations of gas-solid cyclones 

In this paper, the 0.29 m diameter Stairmand cyclone as reported by Hoekstra (2000) was 
preliminary considered. Further, the Stairmand cyclones with different dust outlet 
geometry designs were studied. The dimensions of these cyclones can be summarized as 
depicted in Table 1.  

Dimension  
Length (mm) 

0.0DB 0.5DB 1.0DB 1.5DB 2.0DB 
Inlet height, a 145 145 145 145 145 
Inlet width, b 58 58 58 58 58 
Inlet length, Li 246.5 246.5 246.5 246.5 246.5 
Barrel Diameter, DB 290 290 290 290 290 
Cone tip diameter, DC 108 108 108 108 108 
Dustbin diameter, DD 290 290 290 290 290 
Vortex finder diameter, DV 145 145 145 145 145 
Cyclone height, hT 1,160 1,160 1,160 1,160 1,160 
Barrel height, hB 435 435 435 435 435 
Inner vortex finder height, S 145 145 145 145 145 
Outer vortex finder height, hV 435 435 435 435 435 
Dipleg height, hL - 145 290 435 580 
Dustbin height, hD 580 435 290 145 - 

2.2. Grid generation 

The hexahedral grids were generated inside gas cyclones with the help of domain 
decomposition technique (Bumrungthaichaichan and Wattananusorn, 2019) by using 
GAMBIT 2.4.6 as demonstrated in Figure 1.  

Table 1: Dimensions of the studied gas cyclones 
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Figure 1: Schematic diagram of cyclone and surface grids for the five tested gas cyclones 

2.3. Governing equations 

The flow and turbulence fields inside gas cyclones were obtained by solving Reynolds 
averaged Navier-Stokes equations (RANS) with Reynolds stress model (RSM). Further, 
the particle motion was simulated by discrete phase model (DPM). The description of 
these governing equations were clearly described by Elsayed and Lacor (2012). 

2.4. Material properties and boundary conditions 

The density (ρ) and viscosity (μ) of air were 1.096 kg·m-3 and 1.81623×10-5 kg·m-1·s-1, 
respectively. The solid density were 2,740 kg·m-3 (Derksen, 2003). At inlet, the velocity-
inlet boundary condition type was adopted. The uniform inlet velocity (Uin) of 16 m·s-1 
was specified, which corresponded to the Reynolds number based on barrel diameter of 
280,000. The turbulence kinetic energy (k) and turbulence kinetic energy dissipation rate 
(ε) were respectively computed by k = 1.5(UinI)2 and ε = Cμ3/4k3/2/l. From isotropic 
turbulence assumption, the normal stresses were 2k/3. Moreover, the shear stresses were 
zero. The outflow boundary condition type was assumed at outlet. Further, the no-slip 
boundary condition and scalable wall functions were employed at the cyclone wall. 
2.5. Numerical methods and solution strategy 

The ANSYS FLUENT finite volume CFD code was adopted to simulate gas cyclones. 
The pressure-velocity coupling scheme was SIMPLEC. The spatial discretization 
schemes of pressure, momentum, turbulence quantities, and Reynold stresses were 
PRESTO!, QUICK, second order upwind, and first order upwind, respectively (Elsayed 
and Lacor, 2012). The temporal discretization scheme was second order implicit (Shukla 
et al., 2011). Further, the time step size of 0.0001 s and maximum iterations per time step 
of 40 were used. The scaled residuals of 10-5 for all quantities were adopted as the 
convergence criteria. 
2.6. Particle motion simulation and collection efficiency prediction 

The particle motion was simulated by DPM because of the low particle loading. In order 
to obtain grade efficiency curves for the five cyclones, the 10,660 uniform particles with 
the different diameters, including 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, and 10 
microns, were released at the cyclone inlet section. The inlet particle and gas velocities 
were assumed to be identical. Moreover, the collection efficiencies (η) for different 
particle sizes were evaluated by the number of escaped particles (nout) and the total 
number of injected particles (ntotal) and as shown in Eq. (1).  
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Figure 2: Comparison of (a) tangential velocity profile and (b) axial velocity profile at  
z = 0.75DB between the present CFD and the experimental data of Hoekstra (2000) 
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(1)

2.7. Grid independence study 

Regarding to the previous work of Pechmanee (2019), he compared the predicted velocity 
profiles inside 0.29 m diameter Stairmand cyclone without dustbin of three different grid 
resolutions, including 90,436, 199,440, and 450,498 cells. The results indicated that the 
grid independency was obtained by medium grid level. However, in order to eliminate 
any uncertainties, he employed the fine grid level to study the gas cyclones. So, in the 
present work, the same grid qualities, e.g., near-wall grid size, growth ratio, etc., were 
generated inside cyclone barrel and cone. Moreover, the similar grid qualities were also 
applied inside five different dustbin geometries. The total number of grids for five tested 
cyclones were 756,788 cells.   

3. Validation 
The predicted tangential and axial velocity profiles at z of 0.75Db below the cyclone roof 
were validated by comparing with the experimental data of Hoekstra (2000) as 
demonstrated in Figure 2. In Figure 2, the predicted profile and maximum value of the 
tangential velocity are in good agreement with the experiment. Whereas, the comparison 
shows the underprediction of the axial velocity at the inner vortex region. Due to the 
complexity of flow inside cyclone, it can be considered that the present CFD model was 
reasonably employed to study the effect of angle for conical dipleg.  

4. Results and discussion 
4.1. Cyclone static pressure and pressure drop 

Figure 3 represents the contours of static pressure at plane y = 0 for five different cyclones. 
These contours exhibit that the static pressure is found to increase radially from the core 
vortex at centreline to the cyclone wall. Further, the pressure drop of these cyclones are 
slightly different. The percentage difference of pressure drop, which can be defined as a 
ratio of the difference between the maximum and minimum pressure drops to the
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Figure 3: Contours of static pressure at plane y = 0 for the five tested gas cyclones (unit in Pa) 

maximum value, was lower than 1.5%. It can be implied that the dustbin geometries 
insignificantly affected the cyclone pressure drop. 

4.2. Tangential velocity and axial velocity 

The tangential velocity and axial velocity contours of five different cyclones are shown 
in Figure 4. The results reveal that the tangential and axial velocities inside cyclone barrel 
and cone are slightly different. At the region near cone tip and dustbin, the velocity fields 
are significantly different, especially for tangential velocity. It can be summarized that 
the dustbin shapes influenced on the flow patterns. 

 
Figure 4: Contours of (a) tangential velocity and (b) axial velocity at plane y = 0 for the five tested 
gas cyclones (unit in m·s-1) 
 

 
Figure 5: Comparison of (a) grade efficiency curves  and (b) tangential velocity profiles at  
z = 5DB for five tested cyclones 
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4.3. Collection efficiency 

The grade efficiency curves of five different tested cyclones are plotted in Figure 5(a). 
Figure 5(a) shows that the cyclone efficiencies are found to increase with increasing the 
particle sizes and these efficiency curves are similar. However, the 50% cut-off diameters 
were determined to investigate the collection efficiencies of these cyclones. The cut-off 
diameters of 0.0DB, 0.5DB, 1.0DB, 1.5DB, and 2.0DB cyclones were 1.744, 1.749, 1.711, 
1.699, and 1.692 microns, respectively. Meaning that, the cyclone with divergent conical 
bin (2.0DB cyclone) provided the best separation performance as comparing with the 
others because of the highest magnitude of tangential velocity as shown in Figure 5(b). 

5. Conclusions  
In this paper, the effect of angle for cyclone conical dipleg was investigated by using 
RANS with RSM turbulence model and DPM. The validation confirmed that the present 
CFD model was reasonably adopted to study the conical dipleg effect. The simulated 
results indicated that the dustbin shape affected on gas flow patterns, especially for 
tangential velocity. Moreover, the 50% cut-off diameter of 2.0DB cyclone was about 3% 
better than cyclone with cylindrical dustbin (0.0DB cyclone). Meaning that, the change in 
angle for cyclone conical dipleg can improve the separation performance.     
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Abstract 

We present a universal inversion method to reconstruct the underlying probability density 

function (pdf) and its cumulative distribution (cdf) from the embedded information in the 

quadrature nodes and weights of QMOM. These nodes and weights are evolved according 

to the kinetics governing the interactions among the particles of the dispersed phase such 

as nucleation, condensation, evaporation, splitting and aggregation. This pdf is 

represented by a dynamic histogram supported with moving bin boundaries. The inverted 

pdf and cdf are general and free of any prior assumption about the type of the distribution. 

We called this method “InvQMOM” which is supposed to converge to the exact pdf and 

cdf as the number of quadrature nodes increases. The order of convergence of the inverted 

pdf is O(h2) and O(h3) for cdf, where h is the spacing between the two quadrature nodes 

that encompass the node from which the point functional value is reconstructed. 
 

Keywords: InVQMOM, probability density, cumulative distribution, Inverse. 

 Introduction 

Population balances is an established transport framework which is used to model the 

evolution of dispersed phase number density concentration. These systems are of core 

industrial, biological and medical importance where numerical solutions are called for in 

general (Bart et al., 2020, Durr and Buck, 2020). The Quadrature Method of Moments 

(QMOM) is one of the most elegant reduction methods used to solve such complex 

transport equations (McGraw, 1997). Since its introduction by McGraw (1997) it has 

found considerable theoretical and applied research during the last two decades (Bart et 

al., 2020). These applications cover wide areas which include aerosols microphysics, 

nanoparticle formation, turbulent mixing, dispersed phase flows, crystal morphology, cell 

growth and differentiation and uncertainty propagation through dynamical systems, to 

name but a few (Attarakih et al., 2019, 2020, Bart et al., 2020, Durr and Buck, 2020). 

Since QMOM is an integral averaging method, there is no simple direct and general 

inversion algorithm to reconstruct the unknown weight function which describes the 

distribution of the particulate phase from the available average information embedded in 

its moments. To fill this gap, a universal inversion method is proposed to reconstruct the 

probability density function and its cumulative distribution from the adaptive quadrature 

nodes and weights of QMOM. The weights of QMOM are local information propagated 

along the characteristics of the internal particle space according to the kinetics governing 

the interactions among the particles of the dispersed phase which include nucleation, 

condensation, evaporation, splitting and aggregation. This pdf can be represented by a 
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dynamic histogram supported by moving bin boundaries. The inverted pdf and cdf are 

general and free of any prior assumption about the type of the sought distribution. We 

called this method Inverse the QMOM: “InvQMOM” to emphasize the inversion of the 

pdf from the characteristic points and weights (probability per unit system volume) of the 

QMOM. The order of convergence of the inverted pdf is O(h2) and O(h3) for cdf, where 

h is the spacing between the two quadrature nodes along the particle property space that 

encompass the node from which the point functional value is reconstructed. 

 InvQMOM 

The integral form of the Population Balance Equation in one particle property space 

(particle diameter x) over an average number concentration function f(x,r,t) is given by:   

max max

min min

max max

min min

3 3 /3

( ' )
' ' 1 '

         ( ) ( ')[ ' ] ' ', 0,1,..

rx x
r r

r rx x

x x
r r r

x x

m Gx f
m dx f x dx

t x

f x f x x x x x dxdx r

u
         (1)    

The nonlinear integral source term takes into account particle breakage and aggregation 

while the integral particle growth term appears as an additional positive source term. The 

mean velocity vector of the particulate phase is u, the rth moment of the number 

concentration function f(x,:) is mr and r is the rth moment of the dimensionless daughter 

particle size with respect to a given daughter particle distribution where r = 0, 1, ... . Due 

to the general form of the respective particle growth, breakage and aggregation functions 

G,  and  , the integral terms in Eq.(1) cannot be written in terms of mr and hence present 

a challenging closure problem. These integrals remain without general closure algorithm 

until the introduction of the QMOM by McGraw (1997) where an adaptive and boundary 

free Gauss-Christoffel quadrature is introduced by transforming the source term in terms 

of a finite set of low order moments mr, r = 0, 1, ..Nq. This transformation leads to the 

loss of the local information in the particle number concentration function f(x,:) which 

becomes latent in the low order moments mr. Decoding of this information during the 

evolution of these moments in space and time is a nontrivial problem (Attarakih et al., 

2020, 2020, Durr and Buck, 2020). In theoretical physics, this problem is known as the 

classical moment problem (CMP) and in particular the Stieltjes or Hausdorff moment 

problem (Gzyl & Tagliani, 2010). The CMP tries to recover a unique and positive number 

concentration function f(x,:) from its low order moments. The methods of inversion and 

the method of moments were reviewed recently by Attarakih et al. (2013, 2019,2020) and 

Durr and Bruck (2020) respectively. Motivated by the QMOM, one can physically 

interpret the adaptive quadrature node as characteristic points (discrete curves) in the t- 

space for homogeneous flow systems where  is the particle property space and t is time.  

 The QMOM  

The QMOM can be mathematically presented as an adaptive Gauss-Christoffel 

quadrature for 0   <  as follows: 

( , ) ( ), 0,1,..2 1, 0,1,.. 1j j r q qw Al m r N j N                                              (2) 

where (w) is quadrature weight vector, () is quadrature node vector and (Al) is a suitable 

inversion algorithm which is required to solve the following system of nonlinear 

equations and function of mr only: 
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Two famous algorithms (Al) are used to solve Eq.(3) which are the PD-Algorithm as 

adapted by McGraw (1997) and the Chebyshev-QMOM algorithm proposed and 

evaluated by Upadhyay (2012). Upadhyay (2012) showed that the Chebyshev-QMOM is 

superior to the PD-Algorithm. The Chebyshev-QMOM algorithm is found to be more 

robust than the PD-algorithm and can be used for a wider class of problems when high 

number of nodes is required as in our present work.  

 InvQMOM with local integral limits 

Note that the quadrature weights (w) given by Eq.(2) are probabilities of f(x,:) per unit 

system volume sampled carefully from precomputed points (nodes) (). By definition, 

these probabilities are given by: 

 
1/2

1/2

( ,.) ,  j 0,1,.. 1
j

j
j qw f x dx N                                                                      (4) 

where j1/2 are unknown grid boundaries (histogram bins); but they satisfy j-1/2 < j < 

j+1/2. If f(x,:) is normalized, then the vector (w) is composed of true probabilities that are 

satisfying the natural constraint (wj =1). The problem now can be posed as follows: 

Given an accurate value of the true probability (wj) at a characteristic point j, then invert 

Eq.(4) to find an estimate of f(j;:). This is an inverse problem where a unique solution is 

required with sufficient accuracy to approximate f(j,:) from the available information. 

The integral in Eq.(4) can be approximated using the one-point Gauss-Legendre 

quadrature or the midpoint rule which results in the following normalized discrete 

probability density approximation of f(x,:) at each characteristic point j: 

* 21
( ;:) ( ),  j 0,1,.. 1j
j j q

j j
j

w
f O N

w
                                                 (5) 

where j = j+1 - j-1 with the constraint j-1 < j-1/2 < j and j < j+1/2 < j+1. Eq.(5) provides 

a complete theoretical inversion of the latent probability density function f*(x,:) = 

f(x,:)/m0. The order of convergence is proportional to the square of the distance between 

the (j-1) and (j+1) characteristic curves of the particle size.  

* 3
1/2

00

1
( ;:) ( ),  j 0,1,.. 1

j

j j j q
j

F w O N
m

                                                 (6) 

Moreover, the cumulative distribution of f(x;:) can be easily derived from Eq.(5) and is 

presented in Eq.(6), where m0 is the zero moment of f(x,:) and j+1/2 = 0.5[j + j+1]. It is 

clear by comparing the order of errors in Eq.(5) and (6) that the inversion of cumulative 

distribution function from the available QMOM information (j,wj) is more accurate than 

the recovery of the pointwise values of f(x;:). The two normalized pointwise and 

cumulative densities given by Eqs.(5) and (6) are formally the two inversion formulas for 

the QMOM and are named the “InvQMOM”. 
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 Results and discussion 

In this section we present sample results of using the proposed InvQMOM. The method 

is validated intensively including analytical cases where exact solution is available, cases 

of fluid hydrodynamics due to droplet breakage in continuous industrial stirred tank, 

uncertainty propagation in smoke height prediction in fire system design and uncertainty 

of the reproduction number of the SIR (Susceptible, Infectious and Recovered) model 

used in the prediction of COVID-19 dynamics. Due to the limited space, two practical 

and intensive case studies are presented below.   

 Droplet breakage in industrial scale vessel  

As an example of our inversion results, Figure (1-Left) shows a sample from 26 low-order 

moments as function of time for the population balance equation describing the dynamics 

of a continuous industrial scale vessel with 10 m3 volume (Alopaeus et al., 1999).   

 

  

Figure (1): Left: Comparison between the first three low-order moments (m0, m2, m3 starting 

from origin) using Chebyshev-QMOM and the OPOSPM-Weibull corrected method for liquid 

droplet breakage in a continuous industrial stirred tank (x-axis is time). Right: Reconstructed pdf 

using InvQMOM with 13 quadrature nodes at final time of 250 s (x-axis is dimensionless droplet 

diameter) as compared to OPOSPM-Weibull method (solid line).  

The continuous red lines are calculated by the Chebyshev-QMOM while the blue 

diamonds are based on the pointwise evolution of the probability density function using 

the OPOSPM-Weibull corrected method (Attarakih and Bart, 2020). The accuracies of 

the two methods are extremely high; however, the Chebyshev-QMOM method requires 

CPU time around 50 percent less than that of the OPOSPM-Weibull corrected method at 

the expense of lost distribution. Now having a set of accurate moments at hand, the pdf 

is reconstructed from the available nodes and weights using the InvQMOM method 

(Eq.(5)) as shown in Figure (1-Right). The accuracy of the inverted pdf as compared to 

the continuous one as predicted by the OPOSPM-Weibull corrected method (solid line) 

is remarkable (Attarakih & Bart (2020)). Note that the InvQMOM is a post processing 

step where the pdf and cdf can be reconstructed. The only limitation that might arise is 

the difficulty to calculate a number of nodes more than 10 by the Chebyshev-QMOM. 

However, it is found that this limitation is not a problem for pure particle growth as 

described by the population balance equation.  Since InvQMOM is a post processing step, 

it has no profound effect on the CPU time of QMOM where the inversion step has 

negligible CPU time and does not depends on the original QMOM complexity.  

 Uncertainty propagation of smoke layer height 

The model that we used here is the Available Safe Egress Time (ASET) model (Upadhyay 

& Ezekoye, 2008).  This is a deterministic fire model with input parameters (area of 

enclosure and ventilation, height and location of events) that are assumed to be known 
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with no random components. However, the heat release rate is considered to be uncertain 

variable and is sampled from the historical data of known distribution. Here the beta 

distribution is used with two shape parameters and a scaling factor to model the heat 

release rate.  

 

  

Figure (2): Left: Comparison between beta cdf used to model uncertainty in the input heat release 

rate (solid line) and the inverted cdf using InvQMOM (filled diamonds) with Chebyshev-QMOM 

(Nq = 12, x-axis is R). Right: Comparison between inverted smoke layer height cdf using 

InvQMOM (filled diamonds) at tc = 120 s (x-axis is smoke layer height) with the reconstructed 

cdf (solid line) using the Differential Maximum Entropy Method (Attarakih & Bart, 2014).   

Mathematically, let the stochastic heat release rate be (R) with a pdf  (R/b, s1,s2) where 

s1 = 1and s2 = 4 are shape factors and b = 200 is scaling parameter (case I in Upadhyay & 

Ezekoye (2008)). This input stochastic uncertainty is propagated as an output of the ASET 

model with pdf f(z,t). For a given critical time (tc) at which z(tc) is the smoke layer height 

from the ground, the input uncertainty is propagated by the equivalence principle between 

the two pdf’s: (R,t0)dR = f(z,tc)dz where the propagated information is conserved 

between t = t0 to t = tc.  The smoke layer height z(t) is obtained by the dynamic solution 

of ASET model with p parameters (Upadhyay & Ezekoye, 2008): 

0

( , )
( , ), (0)

dz R t
G p R z z

dt
                                                                                       (7)           

1

0 0
0

( ) ( ) ( ) ( ) ( )
qN

r r r
r c c j j c

j
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The classical way to propagate the uncertainty in the heat release rate is to use the Monte 

Carlo (MC) simulation by sampling the random variable (R) from its known distribution 

((R)). Then the fire model is integrated using a given random sample (R) up to t = tc. 

Repeating this procedure sufficient number of times will produce the required cdf of the 

propagated uncertainty of z(R,tc). If the model is sufficiently complex, then the MC 

method will be computationally expensive.  To circumvent this, we follow the same idea 

presented by Upadhyay & Ezekoye (2008) where the characteristic values (j) are used 

as samples of the random variable (R). Keeping in mind that the propagated information 

is conserved, then the low order moments of f(z,tc)  are calculated from those of the pdf 

of the input uncertainty as given by Eq.(8). To this end, the output uncertainty cdf is 

required to provide all the statistical information required for risk assessments. With the 

QMOM nodes and weights at hand, the InvQMOM is used to reconstruct the cdf of smoke 

layer height at given time (tc) where the results of this case study are shown in Figure (2). 

In Figure (2-Right), the cdf of the propagated input uncertainty (Left) is extracted from 

the moments of Eq.(8) using InvQMOM (Eq.(6) with 12 nodes) which is compared to the 
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inverted cdf (solid line) using the DMaxEntM (Attarakih & Bart (2014)). This cdf is 

useful for risk assessments since the probability of the layer being below any given value 

is immediately available from the inverted cdf as shown in Figure (2-Right). Note that 12 

quadrature nodes were used to sample the input uncertainty from the cdf of beta 

distribution as shown in Figure (2-Left) (case I in Upadhyay and Ezekoye (2008)).   

 Conclusions 

The InvQMOM is a post processing method which can be used in complex computational 

environment such as CFD and online real time simulations. As a main conclusion, the 

InvQMOM is a universal distribution reconstruction method when the QMOM and its 

variants are used. It needs only a sufficient number of nodes and weights to work with 

negligible computational cost. Using different analytical and practical case studies, it is 

found that five to ten nodes were sufficient to reconstruct the pdf and cdf with an accuracy 

of O(h2) and O(h3) respectively.  
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Abstract 
Recurrent neural network (RNN) is a dynamic neural network where the current network 
output is related to the previous outputs. Long short-term memory network (LSTM) has 
emerged as a high-performance RNN. However, the original LSTM does not consider 
variable and sample relevance for process modelling. To overcome this problem, the 
paper proposes a Dual-layer Attention-based LSTM (DA-LSTM) network to model a fed-
batch fermentation process. In the proposed DA-LSTM, LSTM is used to extract features 
of the input data and multiple time series results of the hidden layer, an encoder input 
attention mechanism is to select relevant driving series in the input data sequence, and a 
temporal decoder attention mechanism is used to measure the importance of encoder 
hidden states. The model with this deep architecture for high-level representations can 
learn very complex dynamic systems. To demonstrate the effectiveness of the proposed 
method, a comparative study with the original LSTM, signal attention-based LSTM is 
carried out. It is shown that the proposed method gives better modelling performance than 
others.  

Keywords: LSTM, attention mechanism, machine learning, fed-batch processes, 
encoder-decoder 

1. Introduction 
Batch processes are suitable for the responsive manufacturing of high value-added 
products such as pharmaceuticals, polymers and semiconductors. In recent years, due to 
the increasing demand for high value-added products and the high variety of such 
products, the proportion of batch processes in modern industry has increased rapidly. In 
batch processes, maximising the yield while satisfying the quality and operation 
constraints is the main objective, but it is hard to achieve because of the process 
characteristics including non-steady-state condition, batch-to-batch variations and strong 
nonlinearity. Process optimisation based on detailed mechanistic models for responsive 
manufacturing using batch processes is infeasible or very difficult to implement in 
practice. To overcome this difficulty, data-driven modelling and optimisation using 
statistical and machine learning techniques should be capitalised for batch processes. 

In order to analyze and mine the information from monitoring data, several data-driven 
modelling methods can be utilized for modelling complex batch processes, such as 
principal component analysis, principal component regression, and partial least squares. 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Compared with these data-driven modelling methods, artificial neural networks which 
also known as machine learning have attracted an increased attention in data-driven 
nonlinear modelling. However, due to complex physical and chemical reaction 
mechanisms, industrial processes, especially batch processes, have inherently complex 
nonlinear dynamic behavior. To model highly nonlinear processes, recurrent neural 
networks (RNN) are widely used. In contrast with feedforward neural networks, some 
neuron outputs are feedback to the neurons themselves or other neurons in the previous 
layer, so the basic characteristic of RNN is to exhibit dynamic temporal behavior and 
process arbitrary sequences of inputs by its internal memory. The traditional RNNs suffer 
gradient vanishing and/or exploding problems when computing the gradients of network 
outputs with respect to network weights (Pascanu et al., 2013).  

To overcome gradient vanishing or exploding, the gated recurrent neural networks have 
been established, including long short-term memory (LSTM) and gated recurrent units 
(GRU) (Schmidhuber et al., 1997). LSTM and GRU networks allow creating gradient 
paths that neither disappear nor explode along time. Although LSTM is very useful in 
capturing long-term dependencies, it cannot focus on different variables in different time 
steps. To solve this problem, a well-constructed autoencoder network which is also named 
as encoder-decoder network is developed (Cho et al., 2014). Based on the gated RNN 
units, the sequence-to-sequence problems can be solved by encoder-decoder network. 
Through the encoder part, the input sequence is converted into a fixed-length vector, and 
then the decoder converts the generated fixed-length vector into an output sequence. 
However, as the length of the input sequence increases, the performance of the encoder-
decoder network will rapidly decline. Moreover, due to the quality variables are usually 
predicted based on long lagged input sequences, this problem is more serious when 
applied to product quality prediction in batch processes. Attention-based encoder-decoder 
architecture attempts to distinguish hidden states with different attention weights among 
all time steps of a prediction window and could be a solution to this problem.  

To address the above issues, a new multiple-stage attention-based LSTM network is 
proposed in this paper. It is inspired by the theory of human attention that the human 
attention is modelled by multiple-stage attention mechanism. In the first attention stage, 
attention mechanism is used to adaptively extract the relevant information in the input 
series at each time step by referring to previous encoder hidden state. In the second 
attention stage, a temporal attention mechanism is proposed to select high correlation 
encoder output. Both attention mechanisms are integrated with double layers long short-
term memory networks and can be trained by back-propagation.  

2. Methodology 
2.1. Long Short-Term Memory Network 

Long short-term memory network is an advanced recurrent neural network (Hochreiter 
and Schmidhuber, 1997) and provides a well-constructed structure by establishing 
“gates” in its basic unit which is named as “cell”. These gates can capture both the long-
term memory and short-term memory along the time steps and avoid gradient exploding 
and/or vanishing in standard RNNs. The gates are named as “forget gate”, “input gate”, 
and “output gate”. The detail structure of LSTM in presented in Figure 1. 
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The operation of an LSTM unit can be summarized as: 

1( )t g i t i t i     i W x U h b                                                                                 (1) 

1( )t g f t f t f     f W x U h b                                                                             (2) 

1tanh( )t c t c t c    c W x U h b
                                                                          (3) 


1t t t t t c f c i c                                                                                                   (4) 

1( )t g o t o t o     o W x U h b                                                                              (5) 

tanh( )t t th o c                                                                                                       (6) 

 
Figure 1. Graphical illustration of the long short-term memory network 

2.2. Attention-based Encoder-Decoder Networks 

An encoder-decoder is a popular framework in deep learning, especially in sequence-to-
sequence modelling. The key idea is to encode the input sequences into the hidden state 
sequence and then the hidden state sequence is converted into a fix-length vector. After 
that, the decoder generates a target output with the pervious fix-length vector. However, 
there is an obvious drawback of encoder-decoder framework that, with the increase in the 
length of the input sequence, the context vector will lose long-term information from 
input sequence and this will lead to rapid reduction in prediction performance. Due to this 
issue, the attention mechanism is a novel addition of encoder-decoder networks. In 
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attention mechanism, an approved context vector ct is better than a fixed context vector 

c, an individual attention weight wt  of each encoder hidden state hi is calculated, 

and the approved context vector ct is defined as (Bahdanau et al., 2015) 
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                        (7) 

In order to optimize the attention-based encoder-decoder network performance in 
industrial application and inspired by some theories of human attention (Hübner et al., 
2010), a new Dual-layer Attention-based LSTM network (DA-LSTM) is proposed. In the 
first attention stage, attention mechanism is used to adaptively extract the relevant 
information in input series at each time step by referring to previous encoder hidden state. 
In the second attention stage, a temporal attention mechanism is proposed to select high 
correlation encoder output.  
The input attention mechanism can be achieved as follow: 

1 1tanh( )i i
t e e t e t e t ee        V W h U s Z x b                                                    (8) 

and 

1

exp( )
exp( )

i
i t
t n i

ti

e
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                                                                                                      (9) 

where ht is hidden state and st is cell state in the encoder LSTM unit. 

When the input attention weights are obtained, the input sequence can be converted to  

 1 1 2 2( , , , )n n T
t t t t t t tx x x   x                                                                                    (10) 

The decoder with temporal attention can be calculated by: 

1 1tanh( )i d
t d d t d t d i dr        V W d U s Z h b              1 i T                   (11) 

and 
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               (12) 

where dt is the decoder hidden state and st is the cell state in the decoder LSTM unit. 

When the temporal weights are obtained, the approved context vector tc  can be 
achieved by 

1

T
i

t t i
i




c h
                                                                                        

                       (13) 

2.3. Proposed modelling strategy 

The model is trained by a mini-batch stochastic gradient descent optimization called 
Adam optimizer (Kingma and Ba, 2015), which is a widely used optimization algorithm 
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for training neural networks and has advantages such as fast convergence and good 
adaptation to local minima issue. Moreover, in the training procedure, two training 
methods, which are teacher forcing method and non-teacher forcing method, are used 
together. Figure 2 shows the flowchart of the proposed model. 

The mean squared error (MSE) is used as the loss function in this paper which can be 
defined as: 

2(( ) )pMSE E y y                                                                                               (14) 

Where y and yp are the target value and model prediction respectively. 
 

 
Figure 2. Flowchart for proposed model framework  

3. Results and discussions 
The benchmark industrial penicillin fermentation simulator, IndPenSim (Goldrick et al., 
2015), is used to produce simulated process operation data. Ten benches of data generated 
by IndPensim are used in model development. Eight batches are used as training data, 
one batch is used as validation data, and the remaining batch is used as the unseen testing 
data. 
To investigate the effectiveness of DA-LSTM, it is compared with other two baseline 
methods which are attention-based encoder-decoder network (Encoder-Decoder) and 
long short-term memory network. The comparison between DA-LSTM and encoder-
decoder is to evaluate the input attention mechanism effectiveness on complex bio-
processes. With all these LSTM-based methods, 30 controllable and monitoring variables 
are taken as input variables, and the penicillin concentration is taken as the target output. 
In all these three models, the number of hidden units is 50, the maximum training epochs 
are 500, the initial learning rate is 0.005, and the dropout factor is 0.2. 

 
Figure 3. Predictions of penicillin concentration 
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For visual comparison, the penicillin concentration prediction result is shown in Figure 3 
with the MSE of each method shown in the legend. Figure 4 shows the corresponding 
prediction error. From Figures 3 and 4, it can be seen that comparing to the normal LSTM 
prediction result, the prediction of DA-LSTM and encoder-decoder are more accurate, 
especially when the slope starts to get steep. From Figure 3, it can also be seen that the 
prediction error increases when penicillin starts to ferment. At this period, the input 
variables are changed rapidly to control the fermentation process. This shows the 
encoder-decoder framework are more robust against the noise in input data. On the other 
hand, the prediction accuracy of DA-LSTM outperforms Encoder-Decoder because 
adaptively extracting driving series by input attention mechanism can provide more 
reliable input features to make accurate predictions. Overall, the DA-LSTM integrating 
the input attention mechanism as well as temporal attention mechanism achieves the 
lowest MSE among all three methods.  

4. Conclusions 
In this paper, a new dual-layer attention-based LSTM network is proposed and it 
integrates an input attention mechanism and a temporal hidden state attention mechanism. 
The encoder input attention mechanism is for selecting relevant driving series in the input 
data sequence, and a temporal decoder attention mechanism is used to measure the 
importance of encoder hidden states. Based on the preliminary results, the DA-LSTM can 
improve the performance of LSTM on modelling complex bioprocesses, especially with 
multiple input variables. The developed model will be used in process optimisation and 
control in the future. 

 
Figure 4. Errors in penicillin concentration prediction  
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Abstract 
Pandemic-induced lockdowns, restrictions on commercial activities, or natural disasters 
can disrupt a supply chain for prolonged time periods. These disruptions significantly 
impact network connectivity and consumer demands which in turn affect the capacity and 
profitability of a supply network. In this work, we address the resilience and economic 
survivability of interconnected networks during connectivity disruptions. Resilience is 
the ability to defend against and recover from potential disruptions. Economic 
survivability (ES) is the ability to maintain positive cash flows. We introduce 
optimization-based metrics to quantify the resilience and ES in supply chain design and 
operation. We also develop multi-scenario and multi-period models and systematic 
approaches which lead to supply chains with maximum profitability for desired resilience 
and ES.  
 
Keywords: Network Resilience, Supply Chain Survivability, Interconnected Supply 
Chains 

1. Introduction 
Disruption events can impair the economic performance of supply chains, and negatively 
impact the social welfare since demands cannot always be met. Graph-theoretic resilience 
quantification (Latora and Marchiori, 2001; Yazdani et al. 2011), connectivity 
reinforcing, installing additional capacity and emergency supplies (Turnquist and Vugrin, 
2013; Zhang et al., 2020) and other approaches have been proposed to tackle network 
disruptions. However, pandemic-induced lockdowns (e.g., COVID-19), geo-political 
conflicts, sanctions and restrictions on commercial activities, and sudden natural disasters 
give rise to new challenges (Ivanov and Dolgui, 2020; El-Halwagi et al., 2020). Some of 
these lead to remote employment, productivity reduction, loss of connectivity links and 
sudden changes in product demands. These disruptions often continue for prolonged time 
periods, which may eventually lead to partially or completely shutting down a supply 
chain. 
 
In this work, we first address the resilience of interconnected networks against 
connectivity disruptions. We use resilience quantification metrics to analyze the system 
performance against single-connectivity failures. We also propose a mixed-integer linear 
program (MILP) to design resilient systems with minimum overdesign for interconnected 
supply chains (Chapter 2). Next, we introduce the concept of economical survivability 
(ES) to express the sensitivity of a supply chain network to demand decreases (Chapter 
3). A case study is presented to illustrate the concepts in Chapter 4. 
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2. Resilience Analysis of Interconnected Networks 
We address the resilience analysis of interconnected supply chains with multiple 
products. A representative example is the Water-Energy Nexus (WEN) (Tsolas et al., 
2018), where the energy and water networks act upon shared energy and water sources, 
acting as water and energy sinks respectively (Fig. 1). First, we analyze WEN resilience 
by quantifying the performance of interconnected supply chains after single-edge failures. 
Specifically, we measure the impact of removing one designed connection, and repeat it 
for the rest of a given infrastructure. The impact is measured using the following metrics: 
(i) network structural robustness ρ, which is the fraction of single-connectivity removals, 
after which the rest of the network is still feasible; (ii) operational resilience θ, which is 
the average fraction of demand satisfaction across all removals; and (iii) excess nexus 
capacity ξ, defined as the excess consumer demands that can be satisfied in nominal 
operation without disruptions.  

Figure 1: Water-energy nexus design and operation model 
 
Over-designing improves the ability to operate after connections fail, but also increases 
the cost. One can avoid over-designing by paying a penalty if demand violation occurs. 
To capture this trade-off, we introduce the concept of minimum cost of resilience 
(MCOR), which is defined as 𝑀𝐶𝑂𝑅 =       . MCOR is 
the normalized cost difference between an overdesigned WEN (improved resilience) and 
the nominal design network (no disruptions). 
 
Consider a WEN with the I,J energy and water resources, P,Q energy and water 
consumers, and K,L potential energy and water sources. To account for supply chain 
resilience in the design phase and ensure minimum overdesign (MCOR) we introduce 
disruption scenarios, equal to the number of potential connections to be designed. In each 
scenario, one connecting flow is imposed to be zero. The operating variables (generation, 
connecting supplies) and all operating balances are expanded for every scenario 𝑠 ∈ 𝑆. 
Representative operating scenario-dependent balances are shown in Eqs. (1)-(6). Eq. (1) 
calculates the generation of energy from the energy sources k at every scenario s, based 
on the total input and a conversion factor βk. Eq. (2) captures the dependence of energy 
generation from the water network via the intensity factor φk. Eq. (3) ensures that the 
demands of energy consumer p are satisfied for every scenario s. Also, operational 
resilience θ is a decision variable, as unsatisfied demands are penalized as cost. Eqs. (4) 
and (5) connect the scenario-dependent operating variables with the maximum design 
capacities. Finally, Equation (6) fix the operating flow rates of the missing links to zero, 
for each scenario-connection combination 𝑂 ∗, ∗, ∗. These combined with the operating 
equations ensure that balances hold across all disruption scenarios. Finally, the optimizer 
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will determine the cost-minimum common maximum capacities 𝑐𝑎𝑝 , 𝑐𝑎𝑝 , , …  that 
will bound the scenario-dependent operating variables. The objective is to minimize the 
total WEN infrastructure cost, which is comprised of the fixed investment, capital, and 
scenario-dependent operating expenditures. 

3. Economic Survivability of Supply Chains 
In this section, we consider geographically interdependent supply chains with the same 
product. The interdependence arises from the raw material and product flows between 
supply chains from different regions. We consider the multi-period design and operation 
of a 5-echelon supply chain with raw material suppliers I, warehouse storage facilities J, 
processing facilities K, distribution centers L, and consumer centers M. In the design 
problem, given are consumer center demands that need to be satisfied in multiple regions. 
The objective is to determine the optimal connectivity and combination of storage and 
processing facilities to be designed, which will lead to minimum total network cost.  
 
The supply chain design gives rise to an MINLP formulation, governed by operating 
balances to determine the time-dependent generation 𝑔𝑒𝑛 , , flow rates 𝑓 , , , and 
inventory levels of storage facilities 𝑠𝑡𝑜𝑟 , , to satisfy the consumer demands 𝑑 , . 
Representative operational constraints are depicted below. Eq. (7) ensures the availability 
of the raw material suppliers 𝑎 ,  is respected. Eq. (8) and (11) calculate the inventory 
levels of warehouses J,L across the periods t. Eq. (9) expresses the product generation 
balance at processing facilities K, given by the total input from warehouses J and a 
conversion factor 𝛽 . Finally, equation (12) ensures that the total flows reaching the 
demand centers from the distributors L will satisfy the consumer demands. 

 
We now address the survivability-aware design of supply chains in the event of 
lockdown-induced demand fluctuations. Our objective is to ensure that multi-regional 
supply chains maintain positive cash flows during disruption events. We express this by 
introducing economic survivability (ES). Disruption-induced demand decreases create 
negative cash flows since existing systems are designed for nominal higher demands. We 
define ES as the threshold of demand fraction for which the total profit of the supply chain 
remains non-negative. We define 𝜆  as this demand decrease fraction with lower values 
corresponding to higher survivability. The total profit 𝑃 𝐷  is given by the total sales 
revenue 𝑅𝐸𝑉 𝐷  minus the capital cost of investment 𝐹𝐶 𝐷  and the total operating 
cost 𝑂𝐶 𝐷 : 𝑃 𝐷 = 𝑅𝐸𝑉 𝐷 − 𝐹𝐶 𝐷 − 𝑂𝐶 𝐷 . 
The expression is calculated so that the network is designed to satisfy nominal demands  
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𝐷 . If there is a demand reduction 𝐷 = 𝜆 ⋅ 𝐷  , the capital cost of investment is not 
affected since it is a function of the capacity variables, and the original network was 
constructed for nominal demands 𝐹𝐶 𝐷 . However, the total revenue 𝑅𝐸𝑉 𝐷  and 
operating cost 𝑂𝐶 𝐷  are reduced by 𝜆 , hence 𝑅𝐸𝑉 𝐷 = 𝜆 ⋅ 𝑅𝐸𝑉 𝐷  and 𝑂𝐶 𝐷 =𝜆 ⋅ 𝑂𝐶 𝐷 . So, we can calculate or impose the economic survivability threshold of a 
supply chain using the following expression: 𝑃 𝐷 = 𝜆 ⋅ 𝐷 = 𝜆 ⋅ 𝑅𝐸𝑉 𝐷 − 𝐹𝐶 𝐷 − 𝜆 ⋅ 𝑂𝐶 𝐷 0  (13) 𝜆 𝐹𝐶 𝐷𝑅𝐸𝑉 𝐷 − 𝑂𝐶 𝐷  (14) 

 
Our objective is to minimize this demand threshold to make supply chains more 
survivable. 

4. Results 
4.1. Resilience-aware Design 
In the first part of the results we 
demonstrate the resilience-aware design of 
a WEN. We utilize the MILP multi-
scenario formulation to obtain the resilient 
grass-root design for a given initial 
superstructure. For parametric values of 
external grid purchasing cost, which is the 𝜆  parameter that penalizes the unsatisfied 
demands, we derive the resulting resilience 
indices and the MCOR.  
 
The distribution of the performance metrics 
is demonstrated in Fig. 2a. For low 
penalties λ, a network is not required to 
satisfy the demands, since the nexus relies 
solely on external supply purchasing. The 
metrics in that region are equal to zero. As 
λ increases, the network's size and 
contribution to the demands (Operational 
resilience θ) increase as well. Interestingly, 
for very high penalty λ, the network is 
100% self-sufficient in terms of demand 
satisfaction and 100% resilient against single-connectivity disruptions (θ=ρ=100%). 
Finally, the excess demand satisfaction ξ is almost 50% in that region. This entails that 
the nexus can satisfy 50% increased demands in the absence of disruptions.  
 
In Fig. 2b the MCOR distribution is presented. In the low penalty region, the multi-
scenario formulation provides the same solution as the non-resilient economical 
optimization of the same initial superstructure. Also, since there is no network to satisfy 
the demands, no connectivity disruptions can be observed. For higher penalties, the 
network is created to contribute to the demand satisfaction, increasing the MCOR until its 
maximum value. The last region corresponds to the maximum investment increase to 
fortify the supply chain with provisions to satisfy all demands against all disruption 

Figure 2: Resulting resilience metrics (a) and 
MCOR (b) for parametric penalty λ. 
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scenarios. However, this investment cost increase (MCOR) corresponds to the minimum 
possible that can achieve 100% resilience. That is compared to heuristic-based resilience 
improvements and over-design strategies. 
 
4.2. Survivability-aware Design 
Finally, we explore the effect of economic survivability in the design of multi-regional 
supply chains. We consider a supply chain spanning across two regions R=2, with 
suppliers I=2, warehouses J=3, facilities K=4, distribution L=3, and consumer centers 
M=2. The distribution of the initial nodes across the corresponding regions is 
demonstrated in Fig. 3. 
 
For the first part of the results, we maximize the global economic survivability 𝐸𝑆 , by 
minimizing the threshold 𝜆 , for the whole supply chain. The resulting network (Fig. 
3b), leaves region 2 without any warehouses allocated and receives the required flows 
from region 1. The total profit is 219, and the total survivability threshold is 𝜆 = 0.652. 
However, the calculated individual thresholds are 𝜆 = 0.929, 𝜆 = 0.426. This 
entails that the first region can handle smaller demand decreases and still maintain 
positive cash flows. This can be explained by the additional investments of the warehouse 
that operates in region 1 and supplies to region 2.  

 
Figure 3: Comparison between optimizing a two-region supply chain for (a) global and (b) local 

survivability. 
 
In the second part, we minimize the summation of the individual regional thresholds 𝜆 , 𝜆 . The resulting network (Fig. 3b) has total profit of 217 units, total survivability 
threshold 𝜆 = 0.656, and 𝜆 = 0.65, 𝜆 = 0.652. In this case, the optimizer still 
allows inter-regional supplies, but now allocates each region with its required facilities. 
We have assumed that the capital investments and operating expenditures of inter-
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regional supplies are compensated in the source region's total cost. As a result, the profit 
of the whole supply chain decreases and obtains 99% of the maximum potential profit. 
The total survivability is almost equal to the first case, but the individual thresholds are 
more balanced and closer to the average. The fixed investment of the facilities is also 
shared across the different regions more evenly.  
 
We can conclude with the following remarks: (i) There is a strong positive correlation 
between return on investment (ROI) and economic survivability (ES). (ii) Maximizing 
global economic survivability (ES) leads to higher profitability of the whole supply chain. 
(iii) Maximizing local economic survivability 𝐸𝑆 + 𝐸𝑆 + ⋯ ensures that 
investments on storage and generation facilities is more evenly distributed across multiple 
regions, in the expense of lower profit. 

5. Conclusions 

We have introduced two key concepts for the resilience- and survivability-aware analysis 
and design of interconnected supply chain networks. The first concept is the minimum 
cost of resilience (MCOR) and allows us to analyze and compare different network 
configurations for safe-guarding interconnected networks in the events of potential 
transportation link failures. The second key concept is the economic survivability 
condition, which ensures that a supply chain is immune to sudden changes in demands 
due to prolonged lockdowns or restrictions on inter-regional flows. We found that there 
is a strong correlation between economic survivability and return-on-investment, both at 
the global and local supply chain levels. Therefore, it is important to evenly allocate 
infrastructure to ensure the survivability of individual local regions that constitute a global 
chain. While this may reduce the profit, it ensures the sustainability of the overall supply 
chain in the long run. 
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Abstract 
Liquid entrainment fraction is a key parameter for designing and optimizing downstream 
oil and gas production equipment and needs to be reliably estimated. In this study, a 
hybrid modeling (HM) approach, which combines existing mechanistic and semi-
mechanistic (white-box) models and data-driven (black-box) models, is introduced for 
estimating entrainment fraction and its uncertainty. The hybrid model incorporates six 
white-box models and discrepancy models developed using Gaussian Process Modeling 
(GPM) trained with 1,562 experimental data. The average root-mean-square-error 
(RMSE) of the hybrid model is 0.06, which is a 61% reduction compared to the RMSE 
of the white box models (0.17). 
 
Keywords: Hybrid Modeling, Entrainment Fraction, Gaussian Process Modeling 

1. Introduction 
In two-phase annular flow, the liquid forms a thin film around the pipe while the gas 
flows in the core of the pipe. Some portion of the liquid is entrained from the liquid film 
to the gas core. The ratio of the entrained liquid droplets mass flow rate to the total liquid 
mass flow rate in the pipeline is defined as the liquid entrainment fraction (Cioncolini and 
Thome, 2010). The liquid entrainment fraction is an essential parameter for the estimation 
of pressure drop, flow rate, liquid holdup, dry-out in annular flow, as well as for designing 
and optimizing separation facilities (Al-Sarkhi et al., 2012). Although mechanistic and 
semi-mechanistic models have been developed for predicting the liquid entrainment 
fraction, this is a complicated process, and none of the models capture all relevant 
phenomena, nor can they be applied over a wide range of operating conditions. 
Hybrid modeling (HM), where part of a model can be formulated using first principles 
(white-box), and part of the model has to be inferred from data because of a lack of 
understanding of the mechanistic details (black-box) (Marquardt, 2002), is a good 
approach for estimating liquid entrainment fraction in two-phase flows. There are 
numerous hybrid modeling applications in chemical engineering, e.g., Zahedi et al. (2011) 
developed an ethylene oxide (EO) fixed bed reactor model with reaction kinetics 
estimated by an artificial neural network (ANN). In a more recent example, Bangi and 
Kwon (2020) integrated first principles models with a deep neural network (DNN), and 
applied it to a hydraulic fracturing process. 
In this paper, a hybrid model is developed to estimate the liquid entrainment fraction. A 
database composed of entrainment fraction measurements and six semi-mechanistic 
models for predicting liquid entrainment fraction (white-box models) is constructed. The 
black-box models were then built for predicting the model discrepancy, which is defined 
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as the difference between the experimental and predicted entrainment fraction. The black-
box models were trained using the Gaussian Process Modeling (GPM) (Williams and 
Rasmussen, 2006). The GPM outputs are the mean and variance of the model 
discrepancy, which were used to estimate confidence intervals. To obtain a more robust 
and accurate prediction, the bootstrap aggregating (bagging) technique is applied. 
A brief overview of the six white-box models and the database used to build the black-
box model is given in Section 2. Section 3 gives the details of the hybrid modeling 
approach. The result and discussion are given in Section 4. Finally, conclusions are 
summarized in Section 5. 

2. Liquid Entrainment Fraction Database 
We selected three widely-used models for predicting liquid entrainment fraction in 
different flow orientations, namely horizontal and vertical pipelines, as flow orientation 
significantly changes the underlying entrainment phenomena. The white-box models 
selected are Oliemans et al. (1986), Zhang et al. (2003), and Cioncolini & Thome (2010) 
for vertical pipeline orientation; and Pan & Hanratty (2002b), Mantilla (2008), and 
Nakazatomi & Sekoguchi (1996) for horizontal orientation.  
The database contains 1,562 liquid entrainment fraction measurements at different 
experimental conditions, which are collected from open sources. Classified by the 
pipeline orientation, the number of measurements in vertical and horizontal orientations 
are 1,083 and 479, respectively. Nine experimental conditions (pipe diameter, inclination 
angle, gas density, liquid density, gas viscosity, liquid viscosity, gas-liquid surface 
tension, superficial gas velocity, and superficial liquid velocity) are the input variables 
that are relevant for entrainment fraction.  

3. Hybrid Model Development Methodology 
The liquid entrainment fraction measurement (ye) at an operating condition can be 
decomposed and expressed by Eq. (1) (Jiang et al. 2013). 

e my  y  δ    (1) 

In Eq. (1), ym is the entrainment fraction prediction of the white-box model, and δ is the 
model discrepancy, which is the difference between the entrainment fraction 
measurement and white-box model prediction. Here, we develop GPM-based black-box 
models (Jiang et al., 2013) to estimate the model discrepancy. 
The training and validation data for developing the black-box models are obtained using 
the liquid entrainment measurements and the corresponding white-box model predictions 
for each pipeline orientation. For example, Oliemans et al. (1986) model is employed to 
calculate entrainment fractions and the model discrepancies for all 1,083 experimental 
conditions corresponding to the vertical pipeline orientation. These conditions are the 
inputs (X), and the calculated model discrepancy is the output (δ) for training the 
discrepancy model for Oliemans et al. (1986) model. This process resulted in six training 
and validation data sets. 
3.1. Gaussian Process Modeling (GPM) Development with Bagging 
The Gaussian Process (GP) algorithm is a supervised learning method with a theoretical 
basis in statistics. A GP is characterized by its mean function and covariance function or 
kernel function (Williams and Rasmussen, 2006). A constant mean function and square 
exponential kernel function with different length scales for each input dimension is 
utilized. Then, the GP prior is represented in Eq. (2):  
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In Eq. (2), f represents the underlying function value at the input x, m(x) is the mean 
function of the GP, and k(xp,xq) is the covariance function representing the spatial 
covariance between any two points (xp and xq) at the process. In the covariance function, 
d is the dimension of input x, lh represents the characteristic length scale corresponding 
to the hth dimension of input x, σn2 is the output variance, and the parameter σf2 is output-
scale amplitude. Δpq is Kronecker delta, which is one if p = q and zero otherwise. The 
hyperparameters for the GP in Eq. (2) are θ={a, σf, σn, l1, l2,…, ld}, and they are estimated 
by the Maximum Likelihood Estimation (MLE) (Rasmussen, 2003) using a Python-based 
package, GPy (GPy, 2012). 
As shown in Eq. (3), the value of the mean function and its variance for the unseen test 
location X* are inferred by calculating the posterior distribution using the training data set 
(X, δ) via Eq. (3). 
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where f* is the outputs of the test data given the inputs X and outputs δ of the training data 
and the inputs of the test data X*. K is the covariance matrix. I is the identity matrix. Eq. 
(4) is employed to estimate model discrepancy ̂  and its variance 2

̂  using the GPM at 
an unseen experimental condition.  
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  (4) 

In this study, bootstrap aggregating (bagging) is utilized to obtain more robust and 
accurate predictions. In bootstrap aggregating, a set of models are developed to 
characterize the same relationship between input and output variables. One hundred 
training data sets are generated with replacement and used to train one hundred models 
for predicting model discrepancy that corresponds to each white-box model. To test the 
model's generalizability, for each model, only data that is not included in the training data 
set is used as testing data. The averaged predictive mean and variance from each model 
developed using bagging is calculated based on the property of the Gaussian mixture 
model shown in Eq. (5) and Eq. (6) (Chen and Ren, 2009): 
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where  ˆE  is the averaged model discrepancy,  Var ̂ is the averaged variance from one 
hundred GP models. Variable C represents the number of single GP models, which is 
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equal to 100 in this work. The final form of the predicted entrainment fraction from 
bagging GPM is shown in Eq. (7).  
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3.2. Metrics to Evaluate the Hybrid Model Performance 
To assess the prediction performance of the hybrid model, three quantitative metrics, 
Root-Mean-Square-Error (RMSE), Area Metric (AM), and Calibration Score (CS), are 
adopted. The RMSE is a widely used metric to measure the overall difference between 
prediction and measurement. The definition of RMSE is shown in Figure 1, where J is 
the number of predicted points. A lower RMSE value indicates a smaller difference 
between prediction and actual value, which represents a better model accuracy. 
The AM compares both the mean and the variance of measurement and prediction (Ferson 
and Oberkampf, 2009). In Figure 1, the AM is the shaded area between the cumulative 
probability distributions of ey and ˆey . A lower AM value represents a more accurate 
prediction. An AM value higher than the RMSE indicates that the experimental 
measurement is covered by the predicted confidence interval. 

 
Figure 1. Definition of RMSE, AM and CS 

The CS is the fraction of experimental measurements that are covered within a selected 
confidence interval (Richardson et al., 2019). In Figure 1, [ ]I represents the Iverson 
bracket. In our study, the 95% confidence interval is used. This metric is used as a 
minimum requirement check. 

4. Results and Discussion 
The performance metrics for the hybrid models are compiled in Figure 2. The RMSE and 
AM results are shown in Fig. 2(a), while the CS result is shown in Fig. 2(b). The AM for 
the white-box model is equal to the RMSE as there is no variance information. As can be 
seen from Fig. 2(s), there is a 60% reduction in both the average RMSE and AM with the 
introduction of hybrid models. If the results for vertical (Fig. 2(a) left of the dotted line) 
and horizontal pipeline (Fig. 2(a) right of the dotted line) orientations are compared, the 
RMSE and AM of models for the vertical orientation is lower (better) compared with the 
models for the horizontal orientation. Figure 2(a) reveals that the bagging technique 
reduced the RMSE and AM for all models compared to using a single GP model and 
improves the hybrid model prediction accuracy. The lower AM values and CS being 
closer to 0.95 for the bagging GP models indicate that bagging provides a more moderate 
and reliable confidence interval. 
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(a) 

 
(b) 

Figure 2. Entrainment Fraction Prediction Result 

5. Conclusions 
In this study, a hybrid modeling approach, which combines white-box models and GPM-
based black-box models, is developed to estimate the liquid entrainment fraction in two-
phase flow. Six mechanistic and semi-mechanistic models explaining the underlying 
physical phenomena are employed as white-box models to predict entrainment fraction, 
while the GPM is used as a black-box model to estimate the difference between 
experimental measurements and white-box model predictions. The bagging technique is 
added to obtain a more robust and accurate black-box model. The results reveal that the 
hybrid modeling approach yields models that have lower RMSE than the white-box 
models. Furthermore, the GPM-based hybrid model provides an estimate of the prediction 
uncertainty, which is not possible to obtain with the white-box models. Future work will 
investigate approaches to increase the hybrid model prediction accuracy and shrink the 
confidence interval, such as data clustering and input and output transformations prior to 
hybrid model training. 
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Abstract 
This paper makes a detailed investigation of the construction of the balances of mass, 
energy and entropy, aiming at a comprehensive analysis of the behavior of tubular 
reactors (Plug Flow Reactors - PFRs). The correlation between the physical base (space-
time) and thermodynamic concepts was also explored with a view to making the 
relationship between the physical and thermodynamic quantities clearer. While doing so, 
new insights were obtained which led to showing that these balances can be used to 
improve the performance of tubular reactors in a simple and inexpensive way. A typical 
case study is discussed in order to demonstrate that the contribution of this paper is to put 
forward a model that can also be applied to PFRs and improve their performance. 
 

Keywords: balances, entropy production, energy saving, cost. 

1. Introduction 
From statements made at conferences or even from comments in reviews of papers, it 
seems clear to us that there is a gap in understanding the main concepts of 
thermodynamics and in how best to apply them in the context of chemical processes. This 
has generated a wide array of misunderstandings, particularly when applied to models for 
plug flow reactors (PFRs). 
When our thoughts turn to process analysis, simulations, balances, building models, and 
some other techniques, the excellent textbooks by Thomas Edgar and David Himmelblau 
(Edgar et al., 2001; Himmelblau and Bischoff, 1968), though first published more than 
20 years ago, still come to mind today. However, some details are not focused on in much 
depth and it can therefore make an exploration of the concepts that underpin them 
difficult, especially for beginners. 
The classical case is concerned with saving energy for which the First Law of 
Thermodynamics is the major reference to establish the procedures. However, using only 
this Law does not appropriately solve such issue, because it does not deal with the nature 
constraints imposed on the processes. A quick analysis, carried out when the Gibbs 
function ∆𝐺 = ∆𝐻 − 𝑇∆𝑆 is taken into account, reveals that when the process occurs (∆𝐺 
negative) and since ∆𝑆 is always increasing, then on minimizing energy (∆𝐻), ΔG 
becomes more negative and this can seem to be good for the process, because it becomes 
more spontaneous. However, this occurs at the expense of an increase in the  level of 
entropy, thus indicating a loss of the level of organization of the reactive system, which 
may indicate a higher production of by-products has taken place. Hence, the Second Law 
of Thermodynamics should also be used to deal appropriately the system, so as to generate 
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a more realistic scenario, taking into account a trade-off between energy and entropy 
(Andresen,2011; Bispo et al.2013). For these reasons, this paper tackles and explores the 
constructive details of these balances, as a result of which new insights were obtained. 

2. Theoretical basis 

                           
 
 
 
 
Figure 1: Outline representation of a PFR                                                
 
In dealing with mass balance, the following equation can be derived as a function of time 

 + + + ∅ ∅ = generation or consumption of i + 𝑚𝑎𝑠𝑠. 𝑑𝑖𝑓  (1)                                                 
  

Given that  =  =   results in  = ∓ 𝑟 𝑉𝑀 , then Equation 1 can be 
rewritten as:   + + + ∅ ∅ = ∓ 𝑟 𝑉𝑀 + mass diffusion                                     (2)                                          
 𝑟  is the reaction rate of generation or consumption of the component 𝑖 while 𝑀  is its 
molecular mass. Since 𝑚 = 𝐶 𝑉𝑀  and the transport by mass diffusion can be given by 𝐽 = 𝐷 + ∅ + ∅ ∅ ∅ ∅ , where 𝐷  denotes the diffusion coefficient, Eq. 2 
does not seem to meet the needs of analysis, because the working variables, i.e., those 
normally used, have not been adequately inserted. Consequently, the working variable as 
concentration should be introduced. Therefore, Equation 2 can be rewritten as: 
 𝜕𝐶𝜕𝑡 + 𝜕𝐶𝜕𝑙 𝑑𝑙𝑑𝑡 + 𝜕𝐶𝜕𝜃 𝑑𝜃𝑑𝑡 + 𝜕𝐶𝜕∅ 𝑑∅𝑑𝑡 = ∓ 𝑟 + 𝐷 𝜕 𝐶𝜕𝑙 + 1∅ 𝜕 𝐶𝜕𝜃 + 1∅ 𝜕𝜕∅ ∅ 𝜕𝐶𝜕∅  (3) 

Having in mind the general formulation applied to the energy balance, the following 
Equation can be derived in which energy expresses 𝐸 (total) with regard to the 
kinetic(𝐸 ), potential (𝐸 ) and internal energy (𝑈). Given that 𝐻 = 𝑈 + 𝑃𝑉 which can 
be rewritten as 𝐻 = 𝑈 + 𝐸 , it is easy to note that total energy can be replaced by 𝐻, 
enthalpy, since kinetic energy can be neglected. Thus, the energy balance can be given 
by the following Equation:  

 

 

   ( , , ,∅) = + + + ∅ ∅ =  ±𝑄 ±  𝑊 +  𝑡ℎ𝑒𝑟. 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛                   (4)                             
It should be pointed out that Eq. 4 represents the state variable 𝐻 as a function of space 
and time. However, in order to explore the thermodynamic behavior of the system, what 
is needed is to make this Equation appropriate, by introducing the state variable 𝐻 as a 
function of 𝐻(𝑇, 𝑃, 𝑛 ), where 𝑇, 𝑃 and 𝑛  denote temperature, pressure and moles of 
component 𝑖, given by: 

Changing concentration 

Axial flow  

Elementar volume 
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(t), length (l), angle () and radius ().



 
 𝑑𝐻 = 𝜕𝐻𝜕𝑇 𝑑𝑇 + 𝜕𝐻𝜕𝑃 𝑑𝑃 + 𝐻 𝑑𝑛  (5) 

where 𝐻  represents the partial molar enthalpy. By placing Eq. 5 into Eq. 4, Eq. 6 can be 
obtained: 
 + + + + + +

∅ + ∅ ∅ = ±𝑄 ±  𝑊 + heat generated by the reactive system   +
thermal diffusion                                                                                                     (6) 

 
or rewritten as: 
 

 

+ + + + + +
∅ + ∅ ∅ = ±𝑄 ±  𝑊 + ∆𝐻 (−𝑟. 𝑉) + 𝐾 + ∅ + ∅ ∅ ∅ ∅        (7)   

 
It should also be noted that Eq. 4 does not contain such a heat generated by the reactive 
system. It is important to emphasize that t heat generated by the reactive system arose 
in Eq. 6 due to the difference between the partial molar enthalpy between reagents and 
products. The dependence relationships between 𝐻 and 𝑇 or 𝑃 are well known and they 
can be easily found by means of the Maxwell equations. 
Since the heat generated by the chemical reaction is given by ∆𝐻 (−𝑟. 𝑉) and 
considering the mass balance besides the thermal diffusion given by 𝐽 , then Eq. 6 
can be rewritten as shown in Eq.7.

 

To make the in-depth analysis of the process, which was mentioned in the introduction, 
the entropy balance must be introduced to meet analytical needs. Therefore, the Second 
Law of Thermodynamics should be used. 
 𝑑𝑆(𝑡, 𝑙, 𝜃, ∅)𝑑𝑡 =  𝜕𝑆𝜕𝑡  + 𝜕𝑆𝜕𝑙 𝑑𝑙𝑑𝑡 + 𝜕𝑆𝜕𝜃 𝑑𝜃𝑑𝑡 + 𝜕𝑆𝜕∅ 𝑑∅𝑑𝑡 = 𝛿𝑄𝑇 + 𝛿σ + 𝑒𝑛𝑡𝑟𝑜. 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 (8) 

where 𝑄 denotes the heat flow through the surface and 𝜎 represents the entropy 
production rate while Equation 8 expresses entropy change as a function of space and 
time. In the same way that was followed for previous balances, the entropy change must 
be expressed as a function of 𝑇, 𝑃 and 𝑛  to give thermodynamic sense to the analysis. 
The entropy change can be given by: 𝑑𝑆 = 𝜕𝑆𝜕𝑇 𝑑𝑇 + 𝜕𝑆𝜕𝑃 𝑑𝑃 + 𝑆̅ 𝑑𝑛  (9) 

By introducing Eq.9 into Eq. 8, the following equation can be obtained: 
 𝜕𝑆𝜕𝑇 𝑑𝑇𝑑𝑡 + 𝜕𝑆𝜕𝑃 𝑑𝑃𝑑𝑡 + 𝜕𝑆𝜕𝑇 𝑑𝑇𝑑𝑙 + 𝜕𝑆𝜕𝑃 𝑑𝑃𝑑𝑙 𝑑𝑙𝑑𝑡+ 𝜕𝑆𝜕𝑇 𝑑𝑇𝑑𝜃 + 𝜕𝑆𝜕𝑃 𝑑𝑃𝑑𝜃 𝑑𝜃𝑑𝑡 + 𝜕𝑆𝜕𝑇 𝑑𝑇𝑑∅ + 𝜕𝑆𝜕𝑃 𝑑𝑃𝑑∅ 𝑑∅𝑑𝑡= 𝛿𝑄𝑇 + 𝛿𝜎 − ∆𝑆 (−𝑟𝑉) + entropy diffusion  

(10) 

where 𝜎 denotes the entropy production rate. Entropy diffusion (𝐽 ) is given by 𝐽 =  
(Umpierre, 2015). 
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REDUCING THE DIMENSIONALITY OF THE SYSTEM 
In practice, it is always important to make some simplifications. Thus, it is not difficult 
to verify for most practical cases that the following conditions can be assumed: 
• There is no shaft work, the fluid properties are constant, the velocity of the fluid is 

sufficiently high to neglect the effects of diffusions, the external temperature is 
maintained constant, only the effects and interactions along the length are considered 
and the drop in pressure is negligible. 

• In addition, another substantially significant one can be assumed, namely: the steady 
state.   

As the objective is to bring the system as close as possible to reversibility, which 
corresponds to a particular steady state and since the above conditions are easy to verify 
in practice, considering also that 𝑣   and ∆𝑆 = ∆ ,  because ΔG=0 when the system 
goes towards reversibility, then Eqs. 3, 7 and 10 can be reduced to: 
 𝑣 = ∓ 𝑟   ;   𝑣 = ±𝑄 + ∆𝐻 (−𝑟. 𝑉) ; 𝜕𝑆𝜕𝑇 𝑑𝑇𝑑𝑙 𝑣 =  𝛿𝑄𝑇 + 𝛿𝜎 − ∆𝑆 (−𝑟𝑉) 

(11) 

Thus, by rearranging Equations in (11), it is easy to conclude the following: 𝜎 =  2 ∆𝐻𝑇 (−𝑟𝑉) (12) 

Eq. 12 expresses the rate of entropy production for a PFR, which satisfies the restrictions 
aforementioned. For more complex cases and with reduced restrictions, the complete 
structure previously formulated should be used. The resulting set of couple differential 
Equations can be easily solved by means of one of several numerical methods widely 
cited in the literature (Fogler, 2016).   

3. Results and Discussion 
A simples but significant case has been used as a case study, for which the reduction of 
the dimensionality of the system has been taken into account. The classical tubular reactor 
presented by Bilous (Bilous and Amundson, 1956) also addressed by Himmelblau 
(Himmelblau and Bischoff, 1968) considers a simple reaction 𝐴 → 𝐵, irreversible, first 
order, for which the data sheet, extracted from Bilous and Amundson (1956). By using 
such data, jointly with the balance model established, the behavior of the concentration 
of the reagents and the system temperature are shown below. Additionally, since the 2nd 
Law of Thermodynamics plays a pivotal role in the optimization of results, then the 
entropy production rate and the entropy production for two wall temperatures are also 
depicted below (Jaynes, 1980). It should be emphasized that the model with the 
aforementioned restrictions fully reproduces the results obtained by Bilous and 
Amundson. 
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Figure 2: Concentration profile, temperature and the entropy production. The rate of entropy 
production and its maximum value are also shown for two wall temperatures (Tw). 
From graphical results presented above it is noted an increase in the conversion as too in 
the production of entropy, with probably the generation of by-products, which can 
energetically overload the separation section. Thus, the global energy saving may not 
meet the initial expected savings. 
 
Additional insights derived from entropy analysis 
The idea to develop a relation between concentration and entropy comes from cost 
analysis that it seems to be direct and very relevant, with a view to determining the 
optimum length of the reactor. This can be done by establishing a trade-off between 
conversion and the entropy production. The graph below shows the quantities, 
concentration and the entropy production, with data normalized on a scale from 0 (zero) 
to 1 (one) and plotted on the Cartesian plane. 
The area under the concentration curve in Figure 3 A shown below can be viewed as 
income because it generates the product of economic interest while the area under the 
entropy production curve in the same Figure can be regarded as the entropic cost (variable 
cost). Thus, the shaded region can be considered as an indicator of net profit because it is 
the result of the difference between the revenue and the cost. Note also from the 
intersection point of the two curves, that the area between the concentration and the 
entropy production may indicate a monetary loss because the operating costs denoted by 
the production of entropy is higher than the revenue represented by the concentration. 
Figure 3 B shows a difference ∆𝐴 between the area (𝐴 ) of concentration (profit) and the 
area (𝐴 ) of entropy production (cost), as a measure of the net profit or loss. Another 
relevant feature of the graph shown in Figure 3 B is the maximum point of the curve that 
represents the difference ∆𝐴 between the areas of concentration less entropy production 
that is, the maximum profit. If ∆𝐴 < ∆𝐴  , this would generate a smaller profit. 
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Figures. 3 A: Trade-off between concentration and the entropy production. 3 B: 
Difference ΔA between the area (AC) of concentration (profit) and the area (Aσ) of entropy 
production (cost), as a measure of the net profit or loss. 
 
Concluding Remarks  
This paper showed the development in detail of the balances of mass, energy and 
additionally the entropy balance applied to PFR with a view to bridging the conceptual 
gaps that the literature has discussed over the last 20 years. 
The results also showed the behavior of the system in relation to conversion, temperature 
and the entropy production rate, in addition to the entropy production. It should be noted 
that the result for conversion and temperature of the system reveal the same behavior 
obtained by Bilous (Bilous and Amundson, 1956). It was also shown that from the 
economic point of view, the intersection of the curves, conversion and the entropy 
production, establishes the optimal point, which denotes economic efficiency. Taking into 
account the optimal point and since there is a strong relationship between it and the length 
of the reactor, then it is possible directly to determine the optimal length of the reactor for 
producing the best economic results, mainly regarding the saving of energy due to 
reduced overloading of by-products for separation section. 
Finally, the methodology has proved to be a feasible strategy, easy to apply and of low 
operating cost.  
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Abstract 
Data-driven operation monitoring and optimization of chemical plants can be performed 
using Digital Twin, along with intelligent algorithms. This study proposed a sequence-
to-sequence rolling training algorithm to overcome the challenge of rolling predictions. 
The data were generated through dynamic simulation of the vapor-recompression C3 
process using Aspen Plus. Studies showed that StS with rolling training could better fit 
the real data than the StS model. Moreover, StS with rolling training was able to present 
efficient long-term predictions as Digital Twin. 
 
Keywords: Digital Twin, sequence-to-sequence model, rolling training, long-term 
prediction. 

1. Introduction 
Digital twin (DT) defines the application of holistic simulations to virtually mirror the 
physical systems. Adopting digital twins can assist engineers to monitor productions, 
evaluate the benefits and safety of the control in an isolated virtual environment, and 
operation strategies by interacting with the twin model before going online (Rosen et al. 
2015; Eckhart and Ekelhart, 2018; He et al. 2019).  
A digital twin can be developed through the first principle models (FPMs) and data-
driven models (DDMs) (Chou et al. 2019). Commercial DT solutions for chemical 
plants are generally based on data-driven models improved purely from the measured 
data of the targeted industrial plants (Brenner and Hummel, 2017; Magargle et al. 
2017). DTs based on data-driven methods depend on the black-box models created to 
attain correlations between the inputs and outputs of the plant (Pantelides and Renfro, 
2013). These systems are applied to find specific production anomalies or to achieve 
production forecasts. However, they cannot be used to predict abnormal plant operation 
situations not covered by the available collected data because they are based only on 
measurement data attained from the plant. Moreover, they need proficient interpretation 
and are thus complicated to scale up (Eckhart and Ekelhart, 2018). Data-driven DT 
application depends on the automation and the monitoring systems to provide 
information about the plant state (Pantelides and Renfro, 2013). In contrast, the 
advantage of the first principle model can be ensuring that a physical process response 
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is correct. The drawbacks are including a lot of domain knowledge is required, a lot of 
information may not be readily available, the model development life cycle will be a 
very long-time, the accuracy of the model may be limited and restricted by the use of 
commercial software (Boschert and Rosen, 2016; Martínez 2018). Some researchers 
have studied the application of DT in engineering optimization (Rosen et al. 2015; 
Gabor et al. 2016). There is no guarantee that the data-driven method can extrapolate 
beyond existing data because very little domain information about the process is used. 
Therefore, there are always doubts about whether such models can serve as true DTs. 
Sequence-to-Sequence (StS) model is the closest approach as a DT, but the prediction is 
not long enough (Chou et al. 2019).  
This study proposes a novel training algorithm to ensure that the StS model is able to 
generate infinite long-term rolling predictions as a DT. The paper combines the research 
within the dynamic simulation and rolling prediction. DT is developed and used for the 
quality and process control of a chemical plant. The procedure not only minimizes the 
output errors but also errors in the prediction of the hidden state as a rolling prediction 
without new sensor input is performed. 

2. Methodology 
2.1. Process Description 
Aspen Plus was employed for dynamic process simulation of the vapor-recompression 
C3 (propane-propylene) distillation column, and about 106 data were generated with 
random disturbances of the inlet compositions and flow rate. The vapor-recompression 
C3 flowsheet is shown in Figure 1. 

 
Figure 1. VRC C3 process schematic. 
 
Data of three manipulated variables (ut), five sensor variables (svt) such as flows, 
pressures, temperatures, and one quality variable (qv) were available every minute, as 
Table 1 presents. 106 data of variables were collected by averaging every 10 minutes, in 
2~3 years. The manipulated variables were adjusted in the process, but the sensor 
variables were measured. The StS model was trained for the rolling prediction. Then, 
the results of StS model and StS with rolling training for quality and sensor variables 
were compared for one day and eight days of rolling predictions. The coefficient of 
determination (R2), a statistical measure of the goodness of fit with respect to variations, 
of test data predictions was used as an indicator of the prediction accuracy of the model. 
The higher coefficients are indicators of better goodness of fit for the observations. 
Figure 2 shows StS rolling prediction of the quality variable for one day. The model 
could only predict well for the first nine hours while the error increased along with the 
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rolling. R2 was calculated 0.217 for this case and it confirmed that horizontal prediction 
is not equal to the rolling prediction. Therefore, the StS model was trained for the 
rolling based on the algorithm mentioned in Figure 3.  
 
Table 1. Variables of the process 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. StS Rolling prediction of one day for the quality variable. 
 
2.2. Rolling training algorithm 
The new procedure designs rolling training for the StS model in each epoch (Figure 3). 
The StS model is composed of two sections comprising an encoder (En) and a decoder 
(De), each of which is a chain of cells corresponding to different time steps. The 
encoder is an observer, and the decoder is a predictor. Based on Figure 3, when 
Rolling =1                                  , , , 0,En r t De r th h                            r = 0,…,W 

Rolling =2                                 , , 1 , 0, 1En r t De r th h                         r = 0,…,W 

Rolling = W-1                            , 0, ( 1), , 1 De r t WEn r t Wh h                r = 0,…,W-1 

r = 0 is defined as horizontal prediction. 
 
 
 
 
 
 
 

Variables 
u1 SC1 Compressor speed control 
u2 FC1 Reflux rate control
u3 HV1 Valve control 
qv1 AI1 Bottom composition measurement 
sv1 FI1 Steam rate measurement
sv2 FI2 Flow of top vessel measurement 
sv3 TI1 Temperature of major reflux measurement 
sv4 TI2 Temperature of distillation measurement 
sv5 PI1 Pressure of major reflux measurement 
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Figure 3. Architecture of StS network with rolling training 

3. Result and discussion 
3.1. Rolling prediction of quality variable  
 

 
Figure 4. Rolling prediction for one day using the StS model. 

 
Figure 5. Rolling prediction for one day using StS with rolling training. 
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Figure 6. Rolling prediction for eight days using the StS model. 

 
Figure 7. Rolling prediction for eight days using StS with rolling training. 
 
Table 2. Comparison of R2 for variables predictions 
 

 R2

 StS     
(1 day) 

StS with rolling 
training (1 day) 

StS  
(8 days) 

StS with rolling 
training (8 days) 

qv1 0.217 0.975 0.170 0.972
sv1 0.433 0.950 0.370 0.975 
sv2 0.906 0.990 0.956 0.996 
sv3 -6.703 0.734 -2.088 0.895
sv4 0.911 0.985 0.877 0.994 
sv5 0.906 0.985 0.868 0.993 

 
A comparison study of the StS model and StS with rolling training is shown in Figures 
4–7 and Table 2. As shown in Figure 5, the rolling prediction of the quality variable for 
one day was able to closely follow the real data, and R2 improved by 0.76 compared 
with the StS model (Figure 4). According to Figures 6 and 7, rolling prediction of the 
quality variable for eight days did not match the real data for the StS model but, for 
long-term rolling prediction, StS with rolling training could show good performance 
and R2 improved by 0.80. Table 2 confirms the superiority of StS with rolling training 
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compared with the StS model. For all variables, the errors for StS with rolling training 
are less than the StS model, especially for qv1, sv1, and sv3 that the difference is 
considerable. Rolling training on the StS model could significantly improve sv3 because 
R2 increased by 7.43 and 2.98 for one day and eight days predictions, respectively. 
Moreover, the determination coefficients of StS with rolling training for eight days 
could better fit the real data compared with one-day rolling training. Besides, sv3 could 
present an improvement of 21.93% in the long-term prediction. 

4. Conclusions 
In this study, the rolling training algorithm could enhance the performance of long-term 
StS rolling predictions in the process of vapor-recompression C3. The model could 
predict dynamic responses over a near infinite horizon using various manipulation 
sequences that were not included in the training data, with only a short window of 
observed data. StS model with long-term rolling predictions could better fit the real data 
than the StS model. Therefore, the StS model with rolling training was concluded as a 
true data-driven digital twin of a physical simulator in this study. 
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Abstract 
Model-based approaches are essential for the operation, optimization, and control of 
applications in the process industry. Different structures are often investigated to build 
representative and robust models, and a set of parameters with the same attributes are 
required to utilize them effectively. Parameter estimation gets arduous with the increasing 
complexity of the process, the model, and the size of the parameter space. In this work, a 
parameter-estimation problem based on a steady-state model of diesel 
hydrodesulfurization is investigated using gradient-based and gradient-free optimizers. 
The optimal parameter sets obtained are then assessed in terms of performance and 
computational time for the different optimizers. Furthermore, the sensitivity of the 
various parameters is also investigated. Due to the catalytic reactions in this process, some 
parameters have to be updated depending on the catalyst activity. In addition to the initial 
estimation, the updated parameters are also studied, and instead of a time-based one, a 
tolerance-based recalculation schedule is suggested. Finally, the robustness of the final 
model is analyzed by giving different operating conditions and feed characteristics. The 
adaptive parameter approach proved better data fitting capabilities by improving the 
coefficient of determination for temperature predictions.  
Keywords: parameter estimation, optimization, sensitivity analysis. 

1. Introduction 
Environmental regulations to decrease the land and sea vehicles’ SOx emissions have 
urged refiners to produce low sulfur fuels. For the production of ultra-low-sulfur diesel, 
ultra-low-sulfur gasoline, and low-sulfur marine grade fuels, to meet the most recent 
Emission Control Area (also known as global sulfur cap) regulations (IMO, 2016), 
hydrodesulfurization (HDS) systems are used at various locations in a refinery, i.e., 
pretreatment of naphtha isomerization, reforming, and heavy-oil cracking feedstock, post-
treatment of fluid catalytic cracking product. HDS reactors generally consist of a series 
of fixed catalyst beds at 300 – 400 °C and 30 – 130 bar (Jiménez et al., 2007).  
Tasks of design, simulation, optimization, and control of HDS are aided by mathematical 
models of the system akin to other refinery operations, which differ from most chemical 
process models by the number of compounds and chemical reactions involved. There are 
different approaches to model such systems used for these tasks, some more convenient 
than the others reflecting the behavior of high numbers of compounds and reactions. To 
describe the kinetics of the HDS reactions, power-law (Dorneles de Mello et al., 2018) 
and Langmuir - Hinshelwood (Borgna et al., 2004; Jarullah et al., 2011) models are 
widely used in the available literature. While the power-law models are simpler with 
fewer parameters involved, Langmuir – Hinshelwood models are more informative on 
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the surface-catalyzed reactions. Furthermore, a lumping methodology is commonly used 
for HDS models. Discrete lumping (Yang et al., 2017), continuous lumping (Aydin et al., 
2015; Elizalde & Ancheyta, 2012), and structure-oriented lumping (Ghosh et al., 2009) 
offer varying levels of fidelity, and these methods are previously discussed according to 
the required input data and computational effort (Iplik et al., 2020).  
Discrete lumping and continuous lumping models are often used for simulation and 
optimization studies due to their simplicity compared to structure-oriented lumping. 
During the commercial process with fixed bed reactors, catalyst loses its activity due to 
coke and metal deposition in the porous structure (Maity et al., 2013). Although this 
phenomenon is studied and modeled (Takatsuka et al., 1996), and it causes an increase in 
the operational temperature, it is rarely included in the simple power-law models. If the 
deactivation is not included in the model, an optimization with a final sulfur concentration 
constraint will fail to estimate optimal operating conditions as the catalyst activity 
decreases.  
A continuous lumping model for a hydrocracker, by Elizalde and Ancheyta (2014), is an 
example considering catalyst deactivation with an additional time-dependent model 
equation for activity decay that has a constant parameter dependent on the operating 
conditions and feed. As useful as it is for single crude processing refineries, most 
refineries operate with varying feedstock; therefore, it is hard to assume a constant decay. 
In this work, we suggest a reaction rate constant update schedule based on the difference 
between the model predictions and the process measurements. 

2. Methods 
Continuous lumping models are based on the assumption of the liquid mixture being a 
continuum with respect to a selected attribute (e.g., true boiling point, carbon number, 
reactivity) (Becker et al., 2015). This type of model is found useful for petrochemical 
applications due to its ability to represent the complexity of the mixture with a few 
parameters. The model used for this work consists of 1D differential mass and energy 
balances (Eq. 1 and 2) and a correlation of true boiling point to reactivity derived by Sau 
et al. (1997) (Eq. 3). True boiling point (TBP) is normalized by equation 4, and the 
distribution of the sulfur species is shown by equation 5. The term N represents the 
number of species in the mixture, and as D(k) is their distribution function, equation 6 
ensures the conservation of species (Chou & Ho, 1988). First-order kinetics was 
considered for all the reactions. Details of the model can be found in Elizalde and 
Ancheyta’s work (2012) that used the same mass balance equation. 

 
(1) 

 
(2) 

 
(3) 
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(5) 

 
(6) 

The model with the given equations has five parameters, kmin, kmax, β, Ea, and ∆H. While 
kmin and kmax represent the reactivities of the highest and the lowest boiling point 
compounds that consist of a sulfur atom, respectively, β is the exponential correlation 
coefficient. Ea and ∆H are the activation energy and the heat of reaction; however, rather 
than belonging to a single reaction, these values represent all the reactions of the 
continuous mixture. 
The initialization of the concentration distribution on the TBP curve was formulated as a 
constrained optimization (Govindhakannan & Riggs, 2007) and solved with a sequential 
quadratic programming algorithm. The sulfur compounds are normally distributed on the 
same TBP curve. Differential material and energy balance equations were solved with a 
5th order Runge – Kutta method. The parameter estimation problem was structured as a 
sum of temperature and sulfur residuals given in equation 7.  

 

(7) 

Two methods were tested to solve the problem, gradient-based optimization and gradient-
free optimization. Both solvers were given constraints to prevent impractical results such 
as negative activation energy. Multiple initial points were randomly distributed by Latin 
hypercube sampling, and in total, 190 initialization sets were employed for the gradient-
based solution. Matlab fmincon solver with an interior point algorithm was used as the 
gradient-based method, and simulated annealing was used as the gradient-free method. 
Unlike the gradient-based solution, simulated annealing was initialized only once due to 
its ability to avoid local minima. 
The data was collected from a real HDS plant with three catalyst beds; therefore, all the 
parameters were estimated for each bed. The resulting parameter sets were evaluated on 
test data. A sensitivity analysis was applied to the best fitting parameter set by 
perturbation of ±10% on each parameter. Finally, an update schedule for the reaction rate 
constant was tested, recalculating the parameters within ±10% constraints of their latest 
value, when any temperature prediction has an error over 2 K. While updating the 
deviating bed’s parameters, activation energy and specific heat of reaction were not 
recalculated. The cost function of the update included only the relevant bed’s temperature 
residual and the final sulfur residual. 

3. Results and Discussion 
Using the temperature and the sulfur measurements of the process, the parameter 
estimation problem was solved with two different algorithms. Within the analysis of the 
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190 resulting parameter sets of the gradient-based algorithm, 62% of them were found in 
local minima, compensating the temperature residual with the sulfur residual or vice 
versa. The feasible parameter sets, together with the one obtained from the simulated 
annealing algorithm, were tested by using a data set that was not included in the solution 
of the parameter estimation problem. Consecutive data sets were selected for the 
parameter estimation and the test case to eliminate the effect of catalyst deactivation on 
the reaction constants. The best-fitting parameter set was found by the gradient-based 
optimization, given in Table 1. 
Table 1: Estimated best-fitting parameters. 

1st bed 2nd bed 3rd bed 
kmin1 [h−1]  0.89 kmin2 [h −1 ] 1.49 kmin3 [h −1 ] 1.49 
kmax1 [h−1] 2.45 kmax2 [h −1 ] 9.95 kmax3 [h −1 ] 1.51 
β1 [−] 9.96 β2 [−] 1.00 β3 [−] 5.79 
Ea1 [kJ/kmol] 65500 Ea2 [kJ/kmol] 66500 Ea3 [kJ/kmol] 51800 
∆H1 [kJ/kgsulfur] -7555 ∆H2 [kJ/kgsulfur] -5230 ∆H3 [kJ/kgsulfur] -8278 

 
One point to keep in mind is the time needed to estimate these parameters. The gradient-
free algorithm took roughly 48 hours to calculate a single set of parameters, which was 
not the best fit. The gradient-based algorithm estimated a set of parameters, on average, 
every 15 minutes that resulted in 190 parameter sets taking the same time. With the 
increasing number of dimensions and the nonlinearity of the models, parameter 
estimation requires high computational time, and the fast gradient-based algorithms might 
fail to calculate a feasible set. However, with a simple set up, the design space can be 
investigated thoroughly, and a useful set of parameters can be estimated.  
Perturbation of the parameters given in Table 1 by ±10% showed that the changes in 
Ea and ∆H do not have a considerable effect on the temperature or sulfur concentration 
predictions of the model. On the other hand, kmin, kmax, and β changes affected the model 
outputs significantly. The extent of the changes is given in Figure 1 for some parameters 
of the first bed. Since the sulfur measurement is only available for the final product, the 
right-hand side axes of all the graphs show the effect of each parameter on the final value, 
whereas the left-hand side axes demonstrate the impact on the given bed temperature.  

 
Figure 1: Sensitivity analysis results of some parameters. (□ - Temperature, ◊ - Sulfur) 

Based on the sensitivity of the parameters, kmin, kmax and β were selected for the update 
procedure to explain the catalyst deactivation, therefore, to predict the relevant values 
better. Temperature measurements were chosen to set the update threshold, and each 
catalyst bed was evaluated separately. When the bed temperature prediction failed to stay 
in the 2 K error threshold region, kmin, kmax, and β of the related bed were recalculated by 
using the last measurements as explained in the previous section. 
As expected, the first bed parameters were updated more often due to faster deactivation. 
None of the updates were periodic; the time passed between the updates varied between 
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two to eight weeks. Lacking a regular trend shows the benefit of the error threshold based 
parameter updates. The difference in the feed characteristics causes a difference in the 
deactivation pattern. 
 

 

 
Figure 2: Model outputs with and without the parameter update schedule 

The difference between the temperature measurements and the model predictions are 
given for bed temperatures and sulfur content in Figure 2. The improvements in the model 
prediction capabilities can be seen from the graphs. Especially in the first two catalyst 
beds, the fixed parameter set fails to give reasonable estimates as the temperature 
increases. The update procedure prevents this significant deviation that indeed occurs due 
to lower catalyst activity. The final sulfur content prediction has a higher error than the 
other model outputs and, its coefficient of determination increased to 0.65 from 0.45 after 
the updates. 

4. Conclusion  
A steady-state continuous lumping model was used to explain real data of an HDS reactor 
with three catalyst beds. The parameter estimation problem was solved with a gradient-
based and a gradient-free algorithm. The best fit was chosen, and the sensitivity of the 
parameters was checked in the ±10% region. The parameters related to the reaction rate 
constants were found to be more sensitive than the activation energy and the heat of 
reaction values. The sensitive parameters were selected to be recalculated when the model 
failed to predict the temperature with a greater error than 2 K, assuming that the reason 
was the deactivation of the catalyst over time. The model predicted the bed temperatures 
better with the update schedule. The deactivation is compensated with a temperature 
increase, and a high temperature causes a premature deactivation. Therefore, it is crucial 
to update the models to predict the desired process values correctly; an outdated model 
cannot be used for optimization or control. The refineries using changing feed should 
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consider a check of prediction deviations as the deactivation will differ according to the 
processed mixture. 
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Abstract 
In this study, we developed a model of amine regeneration process with electrodialysis 

reclamation unit based on the removal of heat stable amine salt (HSAS) and conducted 
techno-economic analysis (TEA) by applying the developed model. The HSAS produced 
in the amine regeneration process acted as a corrosive factor and reduced the efficiency 
of heat exchanger and the amount of amine available. During development, the model 
was divided into the amine gas sweetening process and amine regeneration unit 
construction. The thermodynamic equation considered electrolyte phase equilibrium 
using the electrolyte nonrandom two liquid model. A RadFrac model was used for 
regeneration, the removal process of H2S, and the HSAS removal unit considered the 
reaction with the sodium hydroxide solution by utilizing the RCSTR model. According 
to TEA, the total capital investment increased by $1,823,530, but the total plant cost 
decreased by $485,994; therefore, the payback period was calculated at 3.75 y. We 
believe that the model could provide a guideline for process application if implemented 
for the optimization of other variables, such as the consumption of raw materials. 

Keywords: heat stable amine salt, amine regeneration process, electrodialysis 
reclamation unit 

1. Introduction 
 

Recently, sulfur compounds, such as H2S, which occur in the refinement of crude oil, 
are considered the main cause of air pollution. Unlike other air pollutants, they account 
for about 80% of the emissions generated during the combustion of plants and factories. 
In addition, they have a fatal effect on the human body and act as a corrosion factor in the 
process. Hence, many factories focus on the removal of these compounds, with most of 
them following the amine gas sweetening process for this purpose. This process involves 
the absorption and removal of H2S generated during the combustion of crude oil using 
amine. After the absorption of H2S, the amine is regenerated from the stripper and reused; 
this process is called amine regeneration. The absorption and regeneration mechanism of 
the amine is due to the pKa difference from H2S. In the absorber of the amine gas 
sweetening process, the pKa difference is greater than one, and thus, the amine is 
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absorbed from H2S because it operates at relatively low temperature and high pressure. 
Subsequently, the regeneration of amine occurring in the pKa difference is smaller than 
one by creating relatively high and low pressure conditions in the stripper of the amine 
regeneration process. However, if the amine reacts with relatively strong acids, such as 
formate, acetate in the acid gas, and even strippers under high and low pressure 
conditions, heat stable amine salt (HSAS) is produced because the pKa difference is 
greater than one. Because the HSAS remains in the process and acts as a corrosion factor, 
reducing the efficiency of the heat exchanger, it should be removed through additional 
processes. Among the various methods, electrodialysis reclamation is a method of the 
selective elimination of HSAS through a negative ion and positive ion permeability 
membrane via a reaction with a basic solution, such as NaOH, which has high electricity 
consumption and device cost. Therefore, when practically implementing the 
electrodialysis reclamation units, we must compare them with conventional processes 
through techno-economic analysis. Here, we developed a model of the amine 
regeneration process with electrodialysis reclamation unit and validated the model with 
the real data of the commercial plant. We carried out the economic assessment by 
applying the developed model, calculated the net present value (NPV) through the annual 
cash flow considering depreciation and inflation rate, and estimated the payback period 
(PBP) for annual total plant cost (TPC) reduction in comparison with the increased total 
capital investment (TCI). 

2. Process description 
Figure 1 depicts a simple workflow for the amine gas sweetening process. First, to 

remove the H2S generated during the refinement of crude oil from sour gas, the gas enters 
the sour gas absorber. The sour gas absorber typically uses a tray column, and the bubble 
cap on each plate is deployed to facilitate the contact between gas and liquid. The H2S is 
afterward absorbed and removed through an exothermic reaction under relatively low-
temperature and high-pressure conditions by contacting with amine (Eq. (1) ). 
 

 
Figure 1 - Schematic diagram of amine gas sweetening process. 
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The amine that absorbs H2S, called rich amine, is discharged into the lower part of the 
absorber and undergoes the amine regeneration process.  

 

 MDEA+H2S ↔ MDEAH++HS- (1) 
 

The hydrocarbons in rich amine are removed by weight difference in rich amine flash 
drum, which operates at low pressure to maintain the amine flow to the regenerator. To 
reduce the heat load of the reboiler in the regenerator and remove H2S, the rich amine is 
preheated through the Lean/Rich heat exchanger before entering the regenerator. 
Subsequently, it enters the regenerator for regeneration. The regenerator utilizes the tray 
column like sour gas absorber. The steam produced in the reboiler applies sufficient heat 
to the amine solution to aid the removal reaction. After the regeneration, acid gas is cooled 
through the condenser and released via the treatment process. Thereafter, the regenerated 
amine circulates in the lower part for reuse. The amine that removed the H2S can be reused 
through the removal process and is called lean amine. The regenerated lean amine is 
reused by reducing the temperature using the Lean/Rich heat exchanger, thereby entering 
the absorber through Lean amine cooler and filter. In addition to H2S, the sour gas 
produced during the combustion of crude oil contains relatively acidic substances, such 
as acetic acid and formic acid, which generate HSAS when reacted with amine. The 
typical HSAS contains acetate and formate, and the salt-producing reaction formula is as 
follows (Eq. (2), (3)). 

 

MDEA+CH3COOH → MDEAH++CH3COO- (2) 

MDEA+HCOOH → MDEAH++HCOO- (3) 
 

3. Model development  

 
Figure 2 - Schematic diagram of amine gas sweetening process. 
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In this study, Aspen plus V10 was used to simulate the amine regeneration process. Figure 
2 presents a schematic diagram of the amine gas sweetening process. The electrolyte 
nonrandom two-liquid model was used as the thermodynamic model for considering the 
gas phase and the chemical reaction mechanism of the absorption and regeneration of H2S 
in the amine regeneration process using the Redlich–Kwon equation. The equilibrium 
constant of absorption, regeneration, and HSAS removal reactions was obtained by 
minimizing the Gibbs free energy. In process modeling, SEP1 was simulated using the 
Separator model as rich amine flash drum, which input the split fraction as much as the 
emission flow from the actual process. Afterward, the rich amine entered the Lean/Rich 
Heat Exchanger, which was HX1, and heat exchange occurred. HX1 used MHeatX model 
and entered the outlet temperature of the actual condition. The regenerator was simulated 
using the RadFrac model and referenced the operating condition in the actual process, 
such as feed stream to stage, reboiler type. It is also reflected in the model considering 
the reaction of the regeneration of H2S. Finally, EL-STACK was simulated using the 
RCSTR model as the electrodialysis stack. Operation conditions were set to 40 °C and 5 
atm, assuming equal temperature and pressure, and the reactor volume was entered 
referring to design basis. The design conditions are based on those of a commercially 
operated electrodialysis reclaiming unit with a capacity of 0.5 kg-mol/day.  

Table 1 lists the validation results for design. These results indicate that the composition 
was mostly consistent with the simulation results; however, there was a difference in the 
amount of HSAS and H2S removed. This is because the difference of the values was 
calculated using the equilibrium constant obtained by minimizing the Gibbs energy, 
which was influenced by other factors in the actual process, such as temperature and 
pressure. However, factors that affect the equilibrium constant must be derived through 
experimental study. Therefore, in the future, the model could be modified considering 
other factors that affect the reaction. 
 
Table 1 - Validation results for design [kg/h]. 

Category Stream ELEC-IN  Stream TR-AMINE  Stream B-RETURN  
Design Simulation Design Simulation Design Simulation  

H2O 23.0340 22.9770 23.0340 22.9760 256.3300 256.6800 
H2S 0.0366 0.0000 0.0366 0.0000 0.0000 0.0000 
MDEA 12.3430 12.3430 14.8250 14.6760 0.0000 0.0001 
MDEAH+ 3.1372 3.1372 0.6336 0.7843 0.0000 0.0000 
HCOO- 1.1165 1.1165 0.2021 0.2791 0.0000 0.0000 
CH3COO- 0.0770 0.0770 0.0462 0.0193 0.0000 0.0000 
HCOONa 0.0000 0.0000 0.0000 0.0000 1.3813 1.2650 
CH3COONa 0.0000 0.0000 0.0000 0.0000 0.0428 0.0801 
NaOH 0.0000 0.0000 0.0000 0.0000 5.2966 5.3468 

582



Model Development of Amine Regeneration Process with Electrodialysis  
Reclamation Unit   

4. TEA 

 
Figure 3 - TEA diagram of the process. 

 
Figure 4 - Cash flow of the process 

Techno-economic analysis (TEA) is performed to determine the potential for investment 
by reviewing economic feasibility in advance. Figure 3 presents the TEA diagram of the 
process. Here, we conducted TEA with existing processes to determine their economic 
feasibility with electrodialysis reclamation unit using the developed model. The NPV was 
calculated based on the 20-year recovery period and PBP was estimated using the 
decreased annual TPC. Table 2 lists the equipment costs and Table 3 the utility costs of 
the reclamation unit obtained from the Aspen Process Economic Analyzer software. 

Table 2 - Equipment cost of the process.   

Category Equipment Cost [$]  
Flash drum  74,400 
Rich amine pump  9,044.53 
Heat exchanger 1,374,600 
Stripper 463,500
Condenser 352,900 
Lean amine pump 8,711.29 
Cooler 16,100
Filter 50,600 
Overhead drum 14,600 
Electrodialysis 
reclamation unit 1,550,000 

 

Table 3 - Utility cost of the process. 

Category Usage Unit 
Cooling water 134,942.0 $/y 
Steam 4,937,273 $/y 
Electricity 73,937.60 $/y 
Makeup water 22.44294 $/y 
The TCI includes equipment, labor, and 

land costs necessary for the construction 
and installation of the initial process. 
Generally, it includes the fixed capital 
cost (FCI), startup cost, and working 
capital. The TPC is the cost incurred by 
the production or service of a product. 
Tables 4 and 5 list the TCI and TPC of 
each process, respectively.  

Table 4 - TCI of each process. 

Classification Conventional process Improved  process Unit 

FCI 11,916,857 11,916,857 $ 
Startup cost 1,191,685.7 1,191,685.7 $ 
Working capital 2,313,272.3 2,586,801.7 $ 
TCI 15,421,815 17,245,345 $ 
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Table 5 - Total plant cost (TPC) of each process. 

Classification Conventional process Improved  process Unit 
Manufacturing cost  10,591,552 10,004,559 $ 
General expense 0.000000 0.000000 $ 
Reclamation unit cost  - 101,000 $ 
TPC  10,591,552 10,105,558 $ 

 

The NPV is the conversion of annual cash flows throughout the investment period into 
the present value (Eq. (4)). If the NPV has a positive value, it is considered a reasonable 
investment. However, because the amine regeneration process covered in this study is not 
a profitable process, the NPV always has a negative value when costs are converted 
according to current prices. The NPV of the two processes were calculated, and units with 
lower absolute values were determined to be economical. Table 6 lists the NPV of each 
process.  
Table 6 - NPV of each process. 

Category NPV Unit 
Conventional process  -2,539,231 $/kg HSAS reclaimed 
Improved process -2,531,225 $/kg HSAS reclaimed 

 

The NPV calculations revealed that the installation of additional processes increased 
TCI, but NPV had smaller values owing to low raw material and maintenance costs, 
thereby making the improved process economical. In addition, PBP was calculated at 
approximately 3.75 y in comparison with increased TCI. 

5. Conclusions  
In this study, we developed a model of the amine regeneration process with 

electrodialysis reclamation unit. The simulation results using the developed model were 
validated against the data of the actual commercial process. In TEA, TCI increased by 
approximately $1,823,530, while the annual TPC decreased by $485,994. Hence, the cost 
per kilogram of HSAS reclaimed decreased by approximately $8,006. We believe that 
this model could be a guideline for further optimization of real processes  
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Abstract 
The fundamental process step within the production of SNG from biomass is methane 
production. In the present work, methanation is considered to be carried out in a series 
of adiabatic fixed bed reactors with inter-cooling and product recycle. A robust 
mathematical model for the considered configuration has been developed that would 
essentially capture the fundamental operations of the methanation process and help to 
provide optimal guidelines for industrial operations. In detail, several CO/CO2 feed ratio 
compositions and recycle ratios were analyzed.  
 
Keywords: Methanation, Adiabatic Packed Bed Reactors, Power-to-Methane, 
Dynamical Model. 

1. Introduction 
The reduction of CO2 emissions and, more in general, the sustainable production of 
adequate amounts of energy are unescapable challenges that our societies have to tackle. 
In this context Power-to-Methane (PtM) is a very interesting technology, for the role 
that it can play in the storage and distribution of electric energy produced by renewable 
sources, overcoming their intrinsic uncertainty (Bareschino et al. (2020)). Actually, 
methane is widely used in the industry, energy, and transportation sectors worldwide 
and its already developed grid distribution network makes its production preferable 
when compared to other gaseous fuels. Relying on the features of Chemical Looping 
Combustion (CLC) residual biomasses can be used as source of heat and CO2 
(Bareschino et al. (2020), Diglio et al. (2017a)). Indeed, in this process the combustion 
of a fuel is carried out in such a way as to reach an inherent separation of CO2 and water 
from the combustion flue gas, leading to a gaseous stream that is ready to be fed to the 
methanation reactor (Adanez et al. (2012), Diglio et al. (2018)). Furthermore, high 
purity CO2 streams may also be obtained from integration of Calcium Looping (CaL) 
with concentrated solar power (Tregambi et al. (2021)). The conversion of CO2 to SNG 
needs hydrogen, which in real applications is usually produced from excess renewable 
energy (solar and/or wind) (Rönsch et al. (2015)). Carbon dioxide methanation is a 
highly exothermic and reversible reaction favored at low temperature and high pressure. 
The catalysts are easily deactivated due to the thermal stress and the methane yield is 
limited because of the exothermic reaction approaching the chemical equilibrium. The 
design and development of a methanation reactor is therefore complex owing to both 
the large amount of heat produced at high pressure and mass transfer and equilibrium 
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limitations. Several reactor concepts have been consequently proposed and investigated 
in literature to control the temperature rise associated to the highly exothermic Sabatier 
reaction so to avoid catalyst sintering while approaching the best thermodynamic 
condition for the process (Kopyscinski et al (2010)), ranging from multiple adiabatic 
layers fixed beds with inter-cooling and optional product recycle (e.g. TREMP or Lurgi 
methanation) to fluidized bed reactors. The reactor configuration studied in the present 
work consists of three adiabatic fixed bed reactors with gas recycle and inter-stage 
cooling to displace the gas temperature in the direction of higher equilibrium 
conversion. A recycle loop is adopted to decrease the hot spot temperature by diluting 
the inlet reactants concentration. In this background, the main goal is to develop a 
robust mathematical model for the proposed configuration. Such a model would 
essentially capture the fundamental operations of the methanation process and help to 
provide optimal guidelines for industrial operations. In particular, by assuming a 
production scenario, several recycle ratio and feed composition have been studied. 

2. Kinetic scheme and mathematical model 
The reported methanation process is carried out in a series of adiabatic fixed bed 
reactors with nickel-based catalysts and inter-cooling between each stage. In Fig. 1 a 
schematic layout scheme of the reported methanation process is depicted. After entering 
the reactor, the temperature of the gas mixture rises to values between 300 and 700 °C 
because of the exothermicity of the methanation reaction. At the exit of each reactor 
stage, cooling and water condensing occurs so to partially remove water and adjust the 
dew point of the gas, in this way the equilibrium is shifted towards the products. 

 
Figure 1 – Adiabatic fixed bed methanation with inter-cooling and recycle; H1-H2: heater, C1-C4: 
cooler, HP1-HP2 high-pressure boiler and 3 adiabatic methanation reactors, see (Kopyscinski et 
al., 2010) for more details. 

Methanation unit inlet pressure was set to 20 bar, according to Rönsch et al. (2015), so 
to achieve high conversion degree. The recycle ratio (molar gas flow rate of the recycle 
stream divided by that of the stream leaving the reactor) was varied between 0.5 and 2.0 
both to shift the balance towards the formation of methane and to limit reactor 
temperature below 700 °C in order to avoid catalyst sintering and carbon deposition 
(Diglio et al. 2107b). 
To describe axial temperature and concentration profiles in each fixed bed methanation 
reactor, a numerical 1D model has been used. In the model it is assumed that the reactor 
is adiabatic and pseudo-homogeneous, hence neglecting the heat and mass transfer 
resistances between the phases and within the catalyst. Therefore, the model complexity 
is considerably lower in comparison to heterogeneous models (Kopyscinski et al. 
(2010)). Finally, homogeneous properties are considered, and catalyst surface is 
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assumed to be completely exposed to the bulk fluid conditions, so fluid-to-particle heat 
and mass transfer resistances are neglected. An analogous model for CO methanation 
has been developed and validated by Er-rbib and Bouallou (2014). 
The material balance for each gas component (i=CH4, CO, CO2, H2, H2O) was written 
as: 

(1 )i i
g sg g c i

C C
u r

t x

 
      

 
 (1) 

where x is the dimensionless axial position along each reactor belonging in [0,1], εg 
represent the bed porosity, C (kmol.m-3) the gas concentration, ρc (kg.m-3) the packed-
bed density, and ri (kmol.kgcat-1.s-1) the rate of consumption or formation of i-species 
(i=CH4, CO, CO2, H2, H2O); this latter is determined by summing up the reaction rates 
of that species in all the reactions Rj (see Table 1) according to the stoichiometric 
coefficient as follow: 
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,
1
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   (2) 

The gas superficial velocity (usg (m.s-1)) has been calculated as follow: 

,( , ) ( , )in
sg sg in

PM
u x t T x t u

PM
  (3) 

where PM is the molecular weight (kg.kmol-1) and the subscript in represents the inlet 
conditions. Finally, the energy balances were written as: 
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Table 1 – Reactions scheme and associated standard enthalpies of reactions. 

Reaction ∆H298 (kJ.kmol-1)  
2 4 23CO H CH H O    -206 R1 

2 2 2CO H CO H O    41 R2 

2 2 4 24 2CO H CH H O    -165 R3 

 
The detailed kinetic model for Ni-based catalyst and the reaction rate constants can be 
found in Xu and Froment (1989). 
The mathematical model Eqs. (1)-(4) is completed with the following boundary and 
initial conditions: 
 

,(0, ) , ( , 0) 0i i in iC t C C x        (5) 

0(0, ) , ( , 0)inT t T T x T         (6) 
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where  and cp (J.kg-1.K-1) represent the density and heat capacity for gas (g) and solid 

(c), respectively, while HRj (kJ.kmol-1) is the reaction enthalpy for Rj reaction. The 

complete CO/CO2 methanation reaction scheme is reported in Table 1. 
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The operating conditions, reactor volumes, and catalyst properties used in the 
simulations are reported in Table 2. 
Partial differential equations governing reactor dynamics were reduced to a set of 
ordinary differential equations by the application of finite differences over a uniform 
grid of 200 discretization nodes. The reduced set of ordinary differential equations has 
been numerically solved by making use of the Fortran library DLSODES (e.g. (Altimari 
et al., 2012)). Both reactions R1 and R3 (Table 1) are exothermic and characterized by a 
substantial volume contraction. 
 
Table 2 – Parameters used in the simulations. 

Parameter Value Parameter Value 
P, bar 20.0 V3, m3 35 
Tin1, °C 300 cpc, J.kg-1.K-1 1100 
T0, °C 400 ρc, kg.m-3  2350 
V1, m3 7 εg 0.4 
V2, m3 16 usg0, m.s-1 1 

 
The high reaction enthalpy associated with the above reactions, reported in Table 1, 
results in large potential adiabatic temperature increase that may cause catalyst sintering 
and possibly leads to carbon particles formation. To avoid catalyst loss and carbon 
deposition it is therefore recommended to operate at a temperature below 700 °C 
(Rönsch et al. (2015)). Accordingly, the reactor can be cooled with the help of product 
recirculation, this being state-of-the-art for adiabatic methanation reactors during 
steady-state operation. The recycle ratio is typically chosen in a range between 0.5 and 
3.0 for methanation reactors (Matthischke et al. (2018)). 

3. Results 
Several types of fed stream were considered as feed for the above described reactors 
network. Namely, a CO2 pure stream leaving a CLC process and two different syngases 
coming from PW (poultry waste) and PE (polyethylene) CLC-gasification (Qingyu  
et al. (2019) are considered. For the synthesis of methane, the additional hydrogen 
required for the methanation process comes from an array of high-pressure polymer 
electrolyte membrane cells (HP-PEM) (Bareschino et al. 2020). According to reactions’ 
stoichiometries (R1 and R3 in Table 1), the stoichiometric number (SN) for the 
composition of the feed is: 

2 2

2

H CO

CO CO

mol mol
SN

mol mol





 (7)  

The SN value is 3 and according to this value, the hydrogen demand by HP-PEM unit 
has been defined.  
In Fig. 2 are shown methane molar fraction and temperature time series at reactors exit. 
The methane molar fraction increases moving along the reactor series and at the exit of 
the last reactor a H2 and CO2 conversion degree of 0.97 and 0.96 is respectively 
observed, corresponding to a yCH4=0.96 on a dry basis. Under the same operating 
conditions, the time series of the temperature at the exit of each reactor are depicted in 
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Fig. 3. The adiabatic temperature rise in the first, second and last reactor is 280 °C, 
200 °C, and 45 °C, respectively. 

  
Figure 2 – Methane molar fraction and temperature at the exit of each reactor according to the 
legend for yCO2in=0.2 and yH2in=0.8, and recycle ratio equal to 1 (other parameters are those 
reported in Table 2). 

To gain insight about the effectiveness of the displacement of gas temperature in the 
direction of higher equilibrium conversion by intermediate cooling (Fig. 2), the 
evolution of the H2 conversion is illustrated in Fig. 3 for 3 methanation reactors as well 
as the adiabatic temperature effect. Each diagonal line represents an adiabatic reactor 
(inlet and outlet conditions), and each horizontal line represents an intermediate cooling.  

 

Figure 3 – H2 conversion vs temperature 

When the syngas is produced by CLC-Gasification the following feed composition are 
considered, yCO=0.14, yCO2=0.09 and yH2=0.77 for PW and yCO=0.21, yCO2=0.04 and 
yH2=0.77 for PE gasification. As previously discussed for SN=3 in the fed the required 
hydrogen is produced by HP-PEM system. Due to the higher exothermicity of R1 
respect to R3 (Table 1), increasing the CO/CO2 ratio in the feed increases the maximum 
temperature reachable. Therefore, to guarantee that the maximum temperature does not 
exceed 700 °C, a higher recycle ratio (RR) is required. In particular, for the GCL output 
by PW a RR=2 is used while for GDC output by PE a RR=2.5 is considered. 
It is important to underline that the concentration of methane on the dry basis obtained 
in this scheme matches in all the considered cases the level required for its direct supply 
in the natural gas grid (see Table 3) wherever the minimum required threshold is set by 
special regulations for the injections of SNG at > 95% methane content. 
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Table 3 – Methanation unit results on dry basis. 

 PW PE 

CH4 95.5 95.3 

XH2 97.4 98.1 

 

4. Conclusions 
The performance of the methanation unit was evaluated by using a series of adiabatic 
fixed bed reactors filled with Ni supported on alumina, with inter-cooling, water 
condensation at the exit of each reactor, and product recycle. Several feed compositions 
and recycle ratio has been investigated to achieve high reactor performances while 
limiting temperature increase so to avoid catalyst sintering. The results show that in all 
the investigated cases the methane concentration on the dry basis is high enough to be 
injected in the methane grid without the necessity of further upgrade processes. 
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Abstract
Hybrid modelling has caught renewed attention in many fields of engineering in the last
two decades. By combining machine learning with first principles modelling, hybrid
modelling is in many cases a more pragmatic modelling approach compared to first
principles modelling, and at the same time a more robust alternative to data-driven
modelling. However, quantifying uncertainty associated with hybrid models has not
been investigated in detail thus far. Thereby, in practice, some models fail to reliably
provide information for their performance under uncertainty. In this work, an integrated
probabilistic modelling approach is presented for simultaneous modelling and
uncertainty quantification using a hybrid model structure. The approach accounts for
three types of uncertainty, including training data uncertainty, process stochasticity and
model structure uncertainty. To demonstrate the advantages of this approach, the
modelling strategy is highlighted through the modelling of a flocculation process. Here,
mass and population balance models are combined with a probabilistic machine
learning based kinetic model for estimating the particle phenomena kinetics. The model
predictions are compared to predictions from a deterministic hybrid model counterpart.

Keywords: Hybrid modelling, Probabilistic modelling, Machine learning.

1. Introduction
With the increasing demand for fast process development alongside the requirement of a
transition to sustainable productions, there has never been more focus on generating and
utilizing mathematical models for chemical and biochemical processes. Modelling of
these processes based on traditional first principles is in many cases not a trivial task
and may easily require a significant number of time-consuming experiments. In some
cases, the cost of developing a process model is even assessed not to be commensurate
with the benefits of having a process model in the first place. This results in process
models not being applied to the extent possible, even though they could facilitate a
faster process development and secure a more sustainable production.

To reduce the time and efforts spent on modelling a chemical/biochemical process,
various machine learning approaches have been proposed. The application of

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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data-driven modelling has been accelerated in the last two decades by the significant
improvements in various sensor techniques, advancements in systems engineering and
digitalization of data collection, and the development of highly efficient computational
techniques for training data-driven models. Especially the combination of first
principles modelling of fundamental phenomena and machine learning, also known as
hybrid modelling, has caught renewed attention in the past few years. Application of
first principles modelling here ensures that model predictions obey chemical and/or
physical laws, which make the machine learning more robust and requires less training
data. Hybrid modelling has been applied for modelling of various chemical and
biochemical processes showing good predictive capabilities (Glassey and Von Stosch,
2018). More advanced hybrid model structures have also been proposed recently, where
one example is the integration of computational chemistry into hybrid modelling, which
may facilitate multi-scale modelling (Nazemzadeh, 2020). Recently, Nielsen et al.
(2020a) have demonstrated how even complex hybrid models can be trained in real-time
by utilizing automatic differentiation and backpropagation.

Many of the hybrid models suggested in literature are lacking a quantification of the
prediction uncertainty, which makes it difficult to assess whether the model prediction is
supported by the training data or it is a result of an uncertain extrapolation. Knowing
about this uncertainty is crucial in the development of new processes where data may be
scarce, but also when a hybrid model is used for process control. For instance, it was
recently shown by Nielsen et al. (2020b) that a hybrid model based predictive control
may suffer from the lack of uncertainty quantification, as it may converge to a solution
that is based on a highly uncertain prediction.

With a part of the hybrid model being data-driven, the model accuracy and uncertainty
will heavily depend on the data quantity and data quality used for training. This also
means that the model uncertainty will change, when hybrid models are used for adaptive
learning, where data is continuously acquired from a process and used for training the
process model. Therefore, it is necessary to re-estimate this uncertainty continuously
based on the current training dataset.

In this work, a hybrid modelling approach is presented, which integrates the
quantification of model uncertainty into the model training. The uncertainty
quantification includes the training data uncertainty, the uncertainty due to process
stochasticity and the model structure uncertainty. The uncertainty of the training data is
here estimated based on prior knowledge of the sensor precision, whereas the process
stochasticity and the model structure uncertainty are estimated based on the training
data. The modelling approach is subsequently applied for modelling of a flocculation
process and compared to a deterministic hybrid model.

2. Probabilistic hybrid model
In this work, a hybrid model structure presented by Nielsen et al. (2020a) will be used,
where a set of mechanistic models based on first principles are supplemented with a
machine learning model that predicts a number of hidden process variables, . The𝑦
machine learning model estimates the hidden process variables using the current
measured process variables, , and control actions, . The mechanistic models are here𝑥 𝑧
formulated as a system of differential equations for the measured process variables, .𝑥
To train the hybrid model, a set of time-series data is required for the measured process
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variables, where the hybrid model is trained to predict the process dynamics between
pairs of measurements that are distanced with a small time-horizon .∆𝑡

Figure 1: Probabilistic hybrid model structure, based on the hybrid model structure suggested by
Nielsen et al. (2020a)

In this work, the sources of model prediction uncertainty in the hybrid model are
divided into three, addressing the training data, the process stochasticity, and the model
structure uncertainty respectively. The three types of uncertainty will be treated slightly
differently, and will be summarized in the following sub-sections, followed by a
procedure for training the probabilistic model. A schematic overview of the
probabilistic hybrid model structure can be found in Figure 1. To simplify the
uncertainty quantification in this work, we assume that structural model uncertainty of
the mechanistic models can be neglected, and that the only source of model uncertainty
is within the machine learning model.

2.1. Training data uncertainty

To estimate the uncertainty of the training data, prior sensor/sampling knowledge is
required. A probability distribution must be specified for each measured process
variable to estimate the uncertainty due to sensor precision. Furthermore, the standard
deviation for each individual process sensor reading must be estimated. This is done
based on prior knowledge of the specific sensor resolution and/or by estimating the
uncertainty due to sampling.
2.2. Process stochasticity

To estimate the process stochasticity, the machine learning model is expanded to not
only predict the mean value of the process variables, , but also to estimate the standard𝑦
deviation of these process variables, , corresponding to their stochasticity. This meansσ

𝑦
that the output size of the machine learning model is doubled compared to a

machine learning
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deterministic hybrid model counterpart. A probability distribution must here be selected
for each hidden process variable.
2.3. Model structure uncertainty

To estimate the model structural uncertainty, a probabilistic machine learning model is
used as the data-driven model. Compared to a traditional deterministic machine learning
model, this type of machine learning model will not only give a prediction, but also
quantify the uncertainty of the prediction. This is done by treating the machine learning
weights, , as statistical parameters. The mean values of the weights, , and their𝑤 𝑤
corresponding standard deviations, , are here estimated using variational inference,σ

𝑤
based on the training data. To carry out the variational inference, a prior probability
distribution needs to be specified. In this work, the prior probability distribution is set to
have a trainable mean value and a fixed standard deviation, corresponding to Empirical
Bayes. To carry out the variational inference in this work, the stochastic variational
inference method by Kingma and Welling (Kingma, 2014) is used.

After model training, for each model prediction, a new set of weights is sampled from
the inferred probability distributions, and thereby estimates the uncertainty of the
model. This does not differ significantly from a parameter-based uncertainty analysis of
a conventional model. However, as the weights, , in a machine learning model can𝑤
have much greater impact on the model structure compared to parameters in a
conventional first principles model, this uncertainty quantification will not only estimate
the parameter uncertainty but also the overall model structure uncertainty.
2.4. Model training

The presented probabilistic hybrid model is trained using a gradient descent method,
where the gradient is calculated using automatic differentiation. The loss function that
needs to be minimized (see Equation 1 and 2) is the negative log-likelihood, based on
the mean and standard deviation of the model predictions of the future measured
process variables, after the various model uncertainties have been propagated𝑥,  
through the hybrid model. An additional term in the loss function is furthermore added,
consisting of the divergence between the prior probability distribution and the posterior
probability distribution of the model weights, which allows for training the prior mean.

(1)

(2)

When training the probabilistic hybrid model, for each training epoch, a number of
samples, , are drawn from the probability distributions for the measured process𝑛
variables, , with the measured mean and their corresponding estimated standard𝑥
deviation, . These samples are then used as inputs to the machine learning model, σ

𝑥
where the model weights have been sampled from the posterior probability distribution.
For each sample, the predicted mean, , and standard deviation, , are used to sample𝑦 σ

𝑦
the stochastic hidden variables. The hidden stochastic variables are then propagated
through the set of mechanistic models alongside the sampled initial process variables, ,𝑥
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resulting in sample predictions for each training entry, which can be transformed into𝑛
probability distributions where the likelihood of a given outcome can be calculated.
Note that the samples from the various probability distributions are only drawn once for
one training entry as it is here assumed that the hidden process variables will remain
constant for short time-horizons , which is used during model training.∆𝑡

3. Case study: A lab-scale flocculation of silica
In this section, the presented probabilistic hybrid model will be applied for modelling of
a lab-scale flocculation process of silica particles in water, using experimental data that
was obtained from a 200 mL stirred glass reactor. The particle size distribution and pH
were monitored for in total 11 batch operations, with varying pH. The particle size
distribution was here monitored by at-line image analysis using the ParticleTech
solution (ParticleTech ApS, Farum, Denmark). pH was monitored using an in-line pH
probe. A low pH was observed to promote agglomeration of the silica particles and
stirring would result in breakage of particles. This process has previously been
examined and modelled using a hybrid machine-learning assisted model by Nielsen et
al. (2020a), using the same dataset for training the model, and will here be used for
comparison to the predictions from the probabilistic hybrid model. To allow for
comparison, the same non-linear discretization scheme has been applied.

As for the previously demonstrated deterministic hybrid model (Nielsen et al., 2020a),
the mechanistic models here consist of a discretized population balance model that
accounts for the mass balances involved in the agglomeration and breakage phenomena.
pH is assumed to be perfectly controlled, meaning that it is possible to model the future
pH using the control action . The machine learning model used in the probabilistic𝑧
hybrid model is here a deep Bayesian neural network (BNN) with in total 4 layers,
where the prior probability distributions are normal distributions for all model weights.
The BNN estimates the bin-specific rate of effective agglomerations, the bin-specific
rate of breakage and the bin-specific daughter-particle distribution coming from
breakage. The stochasticity of the predicted rates is assumed to follow normal
distributions.

The estimated standard deviation for the pH measurements was estimated based on the
resolution of the sensor, which was 0.01. The estimated standard deviation for the
discretized particle size distribution was done based on the sensor resolution and the
sampling uncertainty. First, the uncertainty due to the image analysis sensor resolution
was introduced. As the image resolution of the ParticleTech solution is 0.5 μm/pixel,
this was used as the standard deviation. For each detected particle, gaussian noise with a
mean of zero and a standard deviation of 0.5 μm was added to the detected particle
diameter. This was done for 100 samples, where each result was discretized based on a
non-linear discretization scheme. For each discretized result, the standard error of
sampling was estimated, giving a mean and standard deviation of the discretized particle
size distribution.

The probabilistic hybrid model structure was trained using TensorFlow and TensorFlow
Probability by Abadi et al. (2014), where both the Bayesian neural network and the set
of mechanistic models were implemented as custom models. For training the model, 20
samples were used for each training entry, resulting in a roughly 20 times longer
training time compared to the corresponding deterministic hybrid model (Nielsen et al.,
2020a). End-of-batch predictions from the probabilistic hybrid model and the

An uncertainty-aware hybrid modelling approach using probabilisitic
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deterministic hybrid model counterpart can be seen in Figure 2. The predictions are
based on a set of test data coming from a low-pH batch, where the time-horizon of the
prediction is one hour.

When comparing the mean prediction of the probabilistic hybrid model and the
single-point predictions from the deterministic hybrid model, both models can be seen
to succeed in capturing the agglomeration kinetics to an acceptable degree. The
probabilistic hybrid model does however offer more information, in the form of
reasonable estimations of the prediction uncertainty. It is here evident that the
predictions are quite uncertain, especially

Figure 2: End-of-batch predictions from the probabilistic hybrid model (left) and the
deterministic hybrid model counterpart by Nielsen et al. (2020a) (right)

for the agglomeration phenomenon, which cannot be seen easily from the deterministic
hybrid model. Further studies are however needed to confirm the reliability of these
uncertainty predictions, and the methodology must be tested for varying sets of training
data to check its ability to adapt the uncertainty quantification accordingly.

4. Conclusions
In this work, a hybrid model structure and training procedure has been proposed where
prediction uncertainty is integrated into the modelling process. This approach could
allow for quantifying the model uncertainty for a given set of training data, by
addressing uncertainty related to training data, process stochasticity and model structure
uncertainty. At the cost of an increased computational time for training, the probabilistic
hybrid model has been shown capable of giving a reasonable quantification of the
model prediction uncertainties. Additional studies are however needed to confirm these
findings.
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Abstract
Beer production is an elaborate process, where, from the same critical ingredients, a
greatly complex mixture of compounds is obtained depending on the operating
conditions. The different combinations of these species, also called off- and on-flavors,
are responsible for each beer's distinctive taste.
Improving any step of the beer production process will significantly influence the
success of a brewery. Therefore, it is essential to carefully describe the beer production
process's different stages to optimize process conditions and beer flavor. To do so, in
this work, a comprehensive fermentation model and optimization problem were
formulated to determine how an up-to-date industrial beer production should optimally
operate. To achieve this, a dynamic optimization problem using a Genetic Algorithm is
formulated and implemented to maximize the conversion of substrate to ethanol and
minimize fermentation time while setting the final acceptable concentrations of the
by-products as strict constraints. Results show that each by-product affects beer flavor
as well as process performance in a unique manner.
Therefore, we believe that this work contributes to a comprehensive understanding of
the impact of different off- and on-flavors on the optimal beer flavor profile and
optimizing process conditions.

Keywords: fermentation, modelling, optimization, beer flavor

1. Introduction
Brewing is one of the oldest processes in which biotechnology has been used to produce
alcoholic beverages. The main production steps in beer brewing are: (i) wort production,
alcoholic fermentation and maturation, further processing, and stabilization.
Fermentation and maturation are the lengthiest steps in the brewing process;
fermentation takes three to six days, and the maturation stage takes up to two weeks
(Vassilev et al., 2013). Wort, a sugar-rich intermediate, is produced from a starch source
such as malted barley (Rodman and Gerogiorgis, 2017). The fermentation occurs
through the yeast's enzymatic activity, where sugar is converted to pyruvate, and, in
anaerobic conditions, the yeast then converts pyruvate to ethanol and CO2. Off- and
on-flavor compounds, being by-products, are produced during fermentation and
maturation (Bosse and Griewank, 2014). Thus, beer flavor is highly dependent on the

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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yeast’s metabolism. There are over 800 compounds present in the final beer, and they
are categorized as follows: higher alcohols, esters, fatty acids, vicinal diketones
(VDKs), aldehydes, and sulfidic compounds. However, not all of these species have the
same impact on the final beer flavor. Higher alcohols, esters, and VDKs are the
strongest flavor impacting compounds produced by yeast. Higher alcohols and esters are
desirable volatile constituents of a pleasant beer (on-flavor), while VDKs and sulfidic
compounds are considered off-flavors. The main sulfidic compounds are H2S and SO2
which are highly related to the yeast activity during fermentation. The concentration
profile of all the flavor-active species must be under control in order to keep some
compounds from dominating and destroying the delicate flavor balance.
Therefore, this work's primary goal is to model and optimize the beer fermentation
process to provide the breweries with a competitive edge by improving beer flavor and
decreasing costs. To achieve this, the following steps are taken: (i) a comprehensive
fermentation model is developed based upon kinetic models, including a yeast growth
model, ethanol and by-products production (fusel alcohols, esters, vicinal diketones,
acetaldehyde, and sulfidic compounds); (ii) a sensitivity analysis is performed on the
initial variables of fermentation model; and, (iii) a dynamic optimization problem is
formulated and implemented based upon the genetic algorithm strategy to optimize the
flavor profile and operation.

2. Methods
2.1. Fermentation model scope, development & implementation

The model developed and implemented in this work is built upon the lager beer
fermentation model presented in (Ramirez and Maciejowski, 2007), including the
biomass growth model, amino acids uptake, ethanol formation, and flavor model. In this
model, there are twelve yield parameters that relate the yeast growth and nutrients
uptake to the production of flavor compounds, and these are assumed to be constant
(except the growth and amino acids uptake rate). They are obtained by averaging the
values given in (Gee and Ramirez, 1994). Thus, in this study, an important modification
to the model has been made to account that the enzymatic activity involved in the
production mechanisms varies with temperature. Therefore, not only the kinetic rates
should change with temperature, but the yield coefficients should also be
temperature-dependent. For this reason, instead of assuming that the production yields
remain constant during the fermentation, we have introduced temperature dependence
on said yields by using a 2nd order polynomial equation. This has shown to be a good
option, but the details of such adjustments are not presented here due to the space
limitations.
Furthermore, to the best of our knowledge, there is no more freely available data on the
production of the remaining flavor compounds. Since the current work aimed not to
perform experiments, only ten flavor species have been included in the final model.
The model has been implemented in MATLAB and is available upon request.

2.2. Sensitivity analysis

A sensitivity analysis is performed on the initial variables to test the effects of upstream
processing conditions and different raw materials. To do this, one-factor-at-a-time
(OAT) sensitivity analysis is applied. It is one of the most common methods to perform
sensitivity analysis since it is simple and easy to implement. The OAT approach
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modifies one input variable at-a-time, keeping the remaining parameters at their
baseline (Saltelli and Annoni, 2010). Any change observed in the output will
unambiguously be due to the changes in the input. However, one disadvantage is that
OAT does not account for the effect of simultaneous variation of input variables; thus, it
doesn’t spot correlations between inputs.
In this work, as presented in Section 3, we assess the impact on the final concentrations
of the biomass, ethanol, and by-products when having a 25 % variation in the initial
variables (e.g., G0, M0, X0).

2.3. Dynamic optimization

Several model parameters influence the yeast metabolism and thus final beer flavor
profile. Among these parameters, in order to reach optimal flavor and operation,
fermentation time and the temperature were selected as the variables to be optimized.
The reactor’s operating temperature has a significant impact on the resulting beer flavor
and aroma by affecting the yeast growth and reaction rates as well as the yield
coefficients. To increase the profit margin, breweries continuously try to minimize the
fermentation time. However, a minimum time is required to consume all the sugars,
produce enough ethanol, and allow the re-assimilation of VDKs to occur successfully
(Smart, 2003). Moreover, these parameters are two of the few easily adjustable
parameters in an existing fermentation process.
The genetic algorithm (GA) was chosen as the optimization strategy to optimize time
and the temperature profile. Genetic algorithms are stochastic search algorithms based
on natural selection and natural genetics principles.GA has been chosen since it avoids
getting trapped in local optima like other traditional optimization methods. This is due
to the fact that being a population-based algorithm, it leads to a better exploration of the
search space. For more details on GA and its implementation, please refer to (Potgieter
and Engelbrecht, 2007).

3. Results & Discussion
3.1. OAT Sensitivity Analysis

As previously stated in Section 2.2, a 25 % variation (uncertainty range) is applied to
the initial variables to test their impact on the concentrations of substrate (Table 1)
during the fermentation and on the biomass, ethanol, and by-products concentration
(Table 2).
As observed in Table 1, the initial concentration of glucose and the initial yeast
concentration are undoubtedly the initial concentrations with a greater influence on
sugars and amino acids' consumption rates. This is due to the compounding effect given
by the fact that the presence of sugars boosts yeast growth. In contrast, once the initial
concentration of one amino acid is changed, only the corresponding amino acid
consumption rate is impacted.
The maximum variations observed regarding the final concentrations of biomass,
ethanol, and by-products (flavor species) are presented in Table 2.
Changes in the initial maltose and yeast concentration are highly influenced by the
concentration of acetaldehyde, VDKs, ethyl caproate, and ethyl acetate. Furthermore,
the initial concentrations of amino acids seem to be the most influential parameters in
the production of all fusel alcohols and isoamyl acetate (directly related to the formation
of isoamyl alcohol). Furthermore, the relationship between ethyl acetate's final
concentration is also affected by changes in the initial concentration of maltose. This is
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because ethyl acetate is directly linked to sugar metabolism. Thus, higher initial
concentrations of maltose lead to a higher final concentration of ethyl acetate.
Table 1: OAT sensitivity analysis: 25 % variation on initial variables and their impact on the time
required to drop to 50% of substrate concentration. Red represents highly sensitive input-output
pairs, white stands for zero sensitivity.

Table 2: OAT sensitivity analysis: 25 % variation on initial variables and their impact on the final
concentration of biomass, ethanol, and by-products. Red represents highly sensitive input-output
pairs, white stands for zero sensitivity.

3.2. Dynamic optimization: time and temperature

As stated in Section 2.3, GA is the optimization strategy chosen to perform the dynamic
optimization of the beer fermentation process (time and temperature profile). Four
fitness functions (Eqs. 1 to 4) have been designed to test and analyze the following
objectives.
To minimize: the concentration of off-flavors (fusel alcohols, VDKs, acetaldehyde) and
fermentation time; To maximize: concentration of on-flavors (ethanol and esters).
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𝐹𝐹(𝑂1) =  𝑄𝐼𝐵 + 𝑄𝐼𝐴 + 𝑄𝑀𝐵 + 𝑄𝑃 + 𝑄𝐸𝐴 + 𝑄𝐸𝑐 + 𝑄𝐼𝐴𝑐
+ 𝑄𝑉𝐷𝐾 + 𝑄𝐴𝐴𝐼

+ 𝑄𝐸𝑡𝑂𝐻 + 𝑄𝑡 
(1) 

𝐹𝐹(𝑂2) =  𝑄𝐸𝑡𝑂𝐻 + 𝑄𝑡 (2) 

𝐹𝐹(𝑂3) =  𝑄𝐸𝐴 + 𝑄𝐸𝑐 + 𝑄𝐼𝐴𝑐
+ 𝑄𝐸𝑡𝑂𝐻 + 𝑄𝑡 (3) 



𝐹𝐹(𝑂4) =  𝑄
𝐼𝐵

+ 𝑄
𝐼𝐴

+ 𝑄
𝑀𝐵

+ 𝑄
𝑃

+ 𝑄
𝑉𝐷𝐾

+ 𝑄
𝐴𝐴𝐼

+ 𝑄
𝑡 (4)

The fitness function penalizes low concentrations of esters, ethanol and fermentation
time as well as high concentrations of fusel alcohols, VDKs, and acetaldehyde. The
fitness function will only consider penalties above (off-flavors + time) or below
(on-flavors) the extreme values. If the variables are above the minimum population
value (off-flavors + time) or below the maximum population value (on-flavors), the
penalization is given by the squared difference to the extreme value. Besides, the
fermentation time is considered as a penalization factor for all the fitness functions. This
is due to the fact that the targeted minimum fermentation time is reached after 120
hours. In Eqs. 1 to 4, all variables have the same importance. Thus all penalties have
been normalized for time and all the flavor species. Due to space limitations, the
penalization functions, Qi, are not described here.
The optimal temperature profiles obtained with the four fitness functions are presented
in Figure 1. In O2, where the goal is to maximize the ethanol concentration (while
minimizing the fermentation time), the optimal profile keeps the temperature at its
maximum value (287.65 K). In contrast, when the aim is to minimize the off-flavor
species and fermentation time (O4), the optimal profile maintains the temperature at the
minimum acceptable value (283.65 K). In O3, the optimal profile is consistently close to
the maximum temperature value; however, the temperature declines marginally in the
fermentation's early stages. Finally, when all the variables are included in the
optimization problem (O1), the optimal profile starts at the maximum temperature
(287.65 K) and, after 15 hours, drops to the minimum temperature (283.65 K).
Nevertheless, after 60 hours, the temperature rises and reaches 287.65 K once again.

Figure 1: Optimal temperature profiles for optimization scenarios O1 to O4.

In scenarios O2 and O3, the penalization values of isobutanol, isoamyl alcohol, and
2-methyl-1-butanol are relatively high. That means that when the fermentation
temperatures are close to the maximum value during the entire fermentation (O2 and
O3), the fusel alcohols' production increases significantly, leading to undesired levels.
Similar behavior is observed in scenario O4, where the low optimal temperature leads to
low values of esters and ethanol production (also undesired). Hence, these low final

Modelling and Dynamic Optimization of beer fermentation towards optimal
flavor and peration

603



C.L. Gargalo et al.

concentrations lead to the high penalization values for ethanol and esters in run O4. As
mentioned above, due to space constraints, the values of all the penalization factors for
the four optimal temperature profiles are not presented.

4. Conclusions
This fermentation model has been carefully examined and improved, as well as tested
through a sensitivity analysis. The model is able to assess the trade-off between
time-minimization and the final states of the fermentation process, and it has been
designed to include all temperature effects. Finally, an optimization problem is solved
based on the GA method, which has been applied in order to obtain an optimal flavour
profile and within the minimum fermentation time possible. The results obtained from
the optimization study show that low temperatures keep the production of the undesired
compounds low and high temperatures are required to maximize the ethanol production.
Due to the model challenges presented before, it is audacious to claim that the exact
optimal profile obtained with the optimization O1 is the best temperature profile for the
studied beer fermentation. However, we are confident to affirm that the temperature
must be kept low during the first days of the fermentation to avoid over-production of
off-flavour species, and afterwards it must be increased to enhance the ethanol and
esters production in a minimal time. Future work is two-fold, the authors want to
explore the effect of variables like pitching rate and wort composition and also expand
the fermentation model to include other flavor compounds and for that we are planning
experiments.

Nomenclature
G0 - Glucose concentration for t=0 IB - Isobutanol IAc - Isoamyl acetate
M0 - Maltose concentration IA - Isoamyl alcohol VDK - Vicinal diketones
N0 - Maltotriose concentration for t=0 MB - 2-methyl-1-butanol AAI
X0 - Biomass concentration for t=0 P - 2,3-Pentadione EtOH - ethanol
I0 - Isoleucine concentration for t=0 EA - Ethyl acetate t -  time
V0 - Valine concentration for t=0 EC - Ethyl caproate
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Abstract 

The maximum likelihood estimate is a method for fitting failure models to lifetime data. 

In the literature, a commonly used practice is to find a combination of model parameter 

values where the partial derivatives of the log-likelihood are zero. We show that greater 

log-likelihood values can be found by using the Nelder-Mead optimization algorithm with 

adaptive parameters. We demonstrate that the improved fitting has a significant impact 

on the decision-making on a selective maintenance optimization problem, defined using 

the failure model by Sarhan and Apaloo (Reliab Eng & Syst Saf, 2013, 112, 137-144). 

 

Keywords: model fitting, reliability, optimization, decision-making. 

1. Introduction 

The components of an industrial production plant degrade over time, reducing the overall 

reliability. An unexpected failure in a critical component may cause significant 

production losses. In order to improve the reliability of the plant, the operators plan 

maintenance shutdowns, during which degraded components are either replaced or 

repaired. However, as modern production plants often comprise thousands of 

replaceable/repairable components, the operators are rarely able to maintain all the 

components. Identifying the best subset of maintenance actions, subject to time and cost, 

is referred to as selective maintenance optimization. In the corresponding literature, the 

component lifetimes are typically assumed to follow either the Weibull or exponential 

distribution with given parameters without directly considering any lifetime data (Cao et 

al., 2018). Thus, we recently performed a selective maintenance optimization study that 

links lifetime data into selective maintenance optimization with the focus on the bathtub-

shaped failure rates (Ikonen et al., 2020). 

 

The bathtub-shaped failure rate is a combination of three contemporaneous failure modes: 

a decreasing infant mortality rate, a constant random failure rate, and an increasing failure 

rate due to degradation. The literature is fairly established in terms of failure distributions 

of such models. However, the fitting of model parameters to lifetime data is often 

performed inadequately. While some authors explicitly maximize the log-likelihood 

function (e.g. by PROC NLMIXED in SAS or MaxBFGS in the Ox language), a 

commonly used approach is to find a point in the parameter space where the partial 

derivatives of the log-likelihood are zero. This approach is, for example, performed by 

Xie et al. (2002), El-Gohary et al. (2013), and Sarhan and Apaloo (2013) when fitting 

their failure models to the widely studied lifetime dataset by Aarset (1987). As the log-
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likelihood functions of the models are non-convex, the resulting fitting may well 

correspond to a local optimum, or even a saddle point. 

 

In this paper, we first show that better fits, i.e., greater log-likelihoods, can be found to 

the lifetime dataset by Aarset (1987) for the failure models proposed in the three 

abovementioned studies by using the Nelder-Mead algorithm with adaptive parameters 

(Gao and Han, 2012). Second, we demonstrate how the improved fitting of the failure 

model by Sarhan and Apaloo (2013) affects the decision-making on a selective 

maintenance optimization problem. 

2. Model fitting 

The failure rate ℎ(𝑡) and the reliability function 𝑅(𝑡) of the failure model by Sarhan and 

Apaloo (2013)1 are defined as 

 

{
  
 

  
 
ℎ(𝑡) =  
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(2) 

where 𝜆, 𝛼, 𝛽, 𝛾 > 0 are the parameters of the model and 𝑡 ≥ 0 is time. The likelihood 

function is defined as 

 

ℒ(𝜃) =∏ℎ(𝑡𝑖)
𝑑𝑖𝑅(𝑡𝑖)

𝑛

𝑖=1

, 

 

(3) 

where 𝜃 is an array of the model parameters, 𝑛 is the number of samples in the lifetime 

dataset, 𝑡𝑖 is the service time of component 𝑖 and 𝑑𝑖 indicates whether the component has 

failed (𝑑𝑖 = 1) or is still functioning, i.e., a right-censored  sample (𝑑𝑖 = 0). In the dataset 

by Aarset (1987), all components were operated until failure, so let us assume here that 

𝑑𝑖 = 1, ∀𝑖 ∈ {1…𝑛}. Substituting Eqs. (1) and (2) into Eq. (3), and taking the natural 

logarithm from both sides, yields the log-likelihood function 

 
ln ℒ(𝜃) = 𝑛[𝛼𝜆 + (1 − 𝛽) ln𝛼 + ln𝛽 + ln𝜆 + ln𝛾]        
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)
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𝛽

𝑛
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+ (𝛽 − 1)∑ln 𝑡𝑖

𝑛

𝑖=1

+ (𝛾 − 1)∑ln (1 − exp {𝜆𝛼 (1 − 𝑒(𝑡𝑖/𝛼)
𝛽
)})

𝑛

𝑖=1

. 

 

 

 

(4) 

Sarhan and Apaloo (2013) maximize the log-likelihood function, ln ℒ(𝜃) (Eq. (4)), by 

solving numerically a system of four non-linear equations. These equations are defined 

by setting the partial derivative of ln ℒ(𝜃) with respect to the four model parameters 𝜃 =
 {𝛼, 𝛽, 𝛾, 𝜆} to zero. The same approach is used by Xie et al. (2002) and El-Gohary et al. 

(2013).  

                                                           
1 For brevity, we do not include the correspondents of Eqs. (1), (2) and (4) for the models by Xie 

et al. (2002) and El-Gohary et al. (2013). The equations are available in the papers in question. 
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In this paper, we maximize ln ℒ(𝜃) (Eq. 4), by the Nelder-Mead algorithm with adaptive 

parameters (Gao and Han, 2012), which we implemented using the SciPy.minimize 

library (Harris et al., 2020). Further, in order to avoid local maxima, we perform a multi-

start of 100 optimization procedures with randomized starting points. The function 

evaluations are implemented using NumPy (Virtanen et al., 2020). 
 

The dataset by Aarset (1987) contains the lifetimes of 50 components (Table 1). We fitted 

the model by Sarhan and Apaloo (2013), as well as the models by Xie et al. (2002) and 

El-Gohary et al. (2013), to this dataset using the above described approach. The resulting 

log-likelihoods ln ℒ(𝜃) and the model parameters are listed in Table 2. Our approach 

yields log-likelihoods greater than those reported in the references for all three models. 

Table 1: Lifetime dataset by Aarset (1987). The dataset consists of failure times of 50 

components, reported here on multiple lines. 

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 

18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67 

72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86  

 

Table 2: Log-likelihoods ln ℒ(𝜃) and parameters of the trained models. 

model method ln ℒ(𝜃) parameters 

Sarhan and 

Apaloo 

(2013) 

Nelder-Mead -203.6972 𝛼 = 79.3949, 𝛽 = 39.0646, 𝛾 = 1.4040e-2,  

𝜆 = 1.1116e-12 

reference -213.858 𝛼 = 49.05, 𝛽 = 3.148, 𝛾 = 0.145, 𝜆 = 7.181e-5 

Xie et al. 

(2002) 

Nelder-Mead -231.6466 𝛼 = 13.7467, 𝛽 = 0.5877, 𝜆 = 8.7597e-3 

reference -236.247 𝛼 = 110.0909, 𝛽 = 0.8408, 𝜆 = 1.41e-2 

El-Gohary 

et al. (2013) 

Nelder-Mead -222.2441 𝜆 = 8.9592e-5, 𝑐 = 8.2786e-2, 𝜃 = 0.2625 

reference -224.080 𝜆 = 1.43e-3, 𝑐 = 4.4e-2, 𝜃 = 0.421 

 

Figure 1: Probability distributions of the model by Sarhan and Apaloo (2013) with the tuned (by 

the Nelder-Mead algorithm with adaptive parameters) and the reference parameters. 

Figure 1 shows the reliability function 𝑅(𝑡), failure rate ℎ(𝑡), and probability density 

function 𝑓(𝑡) of the model by Sarhan and Apaloo (2013) with the tuned parameters, 
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obtained by the Nelder-Mead algorithm, and the reference parameters. The distributions 

are clearly different. First, the reliability function with the tuned parameters is steeper in 

the time period of 𝑡 = 80…90 than that with the reference parameters, capturing the 

frequent occurrences of failures at the end of time in the dataset (c.f the empirical 

reliability function). Second, the failure rate ℎ(𝑡) remains nearly constant longer with the 

tuned parameters (until around 𝑡 = 75) than with the reference parameters (until around 

𝑡 = 50). In other words, the ‘bottom of the bathtub’ is wider with the tuned parameters 

than with the reference parameters, indicating that the failures due to degradation appear 

later. 

3. Selective maintenance optimization 

In our earlier work (Ikonen et al., 2020), we derived a variable describing the change in 

the component-specific reliability Δ𝑅y, if it is replaced, and presented a contour plot of 

Δ𝑅y in the space of component age 𝑎 and the length of the next operation window 𝑡w. 

The change in reliability is defined as 

 
𝛥𝑅𝑦 = 𝑅𝑦 − 𝑅0 = 𝑅(𝑡𝑤|0) − 𝑅(𝑎 + 𝑡𝑤|𝑎)𝐹 

(5) 

where 𝐹 is a parameter indicating whether the component is functioning before the 

maintenance break, and 𝑅y and 𝑅0 are the reliabilities if the component is replaced or left 

untouched, respectively. The conditional reliabilities in Eq. (5) are 

 

{
𝑅(𝑎 + 𝑡𝑤|𝑎) =  

𝑅(𝑎 + 𝑡𝑤)

𝑅(𝑎)

𝑅(𝑡𝑤|0) = 𝑅(𝑡𝑤).

 

 

(6) 

 

(7) 

Figure 2(a) and Figure 2(b) show the contour plots of Δ𝑅y for the model by Sarhan and 

Apaloo (2013) with the reference and tuned parameters, respectively. In the earlier work, 

we pointed out that, if the component is functioning before the maintenance break and 

the hazard rate is bathtub-shaped, a region exists in the contour plot where the reliability 

is negative (indicated by the white region in Figure 2(a) and Figure 2(b)). The replacement 

of a functioning component lying in this region is not sensible. 

 

Figure 2: The improvement in reliability, Δ𝑅y, if a functioning component is replaced, based on 

the model by  Sarhan and Apaloo (2013) with the reference (Subfigure a) and tuned parameters 

(Subfigure b). 
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In the earlier work (Ikonen et al., 2020), we studied a small-scale bi-objective selective 

maintenance optimization problem as an illustrative example. The two conflicting 

objectives are to maximize the overall reliability of the system, 𝑅sys, and to minimize the 

maintenance cost 𝑐tot. The system consists of 18 components with various levels of 

criticality. The reliabilities of all components in the system are assumed to be equivalent 

to that used in generating the dataset by Aarset (1987). The decision variables define 

whether individual components are repaired, replaced, or left untouched, and the number 

of maintenance personnel, 𝑝, invited to perform the maintenance actions. The next 

planned operation window has a length of 𝑡𝑤 = 10. For more details of the optimization 

model and the selective maintenance optimization problem the reader is referred to 

Sections 3.2 and 4, respectively, of the paper by Ikonen et al. (2020).  

 

Let us now return to this optimization problem and solve its Pareto front using the failure 

model by Sarhan and Apaloo (2013) with the tuned and reference parameters2. We 

transform the bi-objective optimization problem into a series of single-objective 

optimization problems by 𝜖-constraint method  (Haimes et al., 1971), and solve them 

using the global optimization solver BARON 20.4.14  (Kılınç and Sahinidis, 2018). 

Figure 3 shows the obtained Pareto fronts, as well as representative solutions. Each grid 

element in the representative solutions corresponds to a single component, the age of 

which has been indicated by its color. 

 

 

Figure 3: Pareto fronts of the selective maintenance optimization problem, in which the 

component-specific reliabilities are determined using the model by Sarhan and Apaloo (2013) 

with the tuned and reference parameters. 

                                                            
2 The results obtained with the reference parameters have already been reported in Ikonen et al. 

(2020). 
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Starting from the bottom left corner of the Pareto fronts, the first three solutions are the 

same with both parameters. However, the modeled system reliabilities, as well as the 

following solutions on the Pareto front are drastically different. The reason is that with 

the tuned parameters, all components lie in the region of Figure 2(b), where the 

replacement of a functioning component is not sensible. Thus, even at the top right corner 

of the corresponding Pareto front, only the failed components are repaired (see 

Representative solution (4)). The use of reference parameters would result in unnecessary 

(and costly) component replacements, which would not improve the overall reliability of 

the system. 

4. Conclusions 

Fitting a failure model to lifetime data by maximizing the log-likelihood requires solving 

a non-linear, and often non-convex, optimization problem. We show that performing a 

multi-start of the Nelder-Mead optimization algorithm with adaptive parameters (Gao and 

Han, 2012) yields greater log-likelihoods for the models by Xie et al. (2002), El-Gohary 

et al. (2013) and Sarhan and Apaloo (2013) than the reported reference parameters. We 

demonstrate that the improved fitting of the model has a significant impact on the 

decision-making of maintenance actions on an optimization problem, defined using the 

failure model by Sarhan and Apaloo (2013). 
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Abstract 
Simulation times of complex chemical processes are often too long for real-time 
applications, especially when first principles nonlinear dynamic models are used. Data-
driven surrogate models of those first principles models trained with simulation data offer 
a competitive alternative for advanced process control (APC) applications. When 
sampled with standard methods, processes with a narrow feasible dynamic input space 
generate datasets with scarce feasible samples. As a representative example, the startup, 
operation and shutdown of a vacuum batch distillation process separating a binary 
methanol-water mixture was simulated using a rigorous dynamic pressure-driven model 
in Aspen Plus dynamics. Expert knowledge was introduced in the form of operation 
recipes to reduce the vast dynamic input space to a time independent parameter sampling. 
Using the generated datasets in the form of timeseries, nonlinear ARX and RNN systems 
were identified. The prediction accuracies of both data-driven models were compared, 
taking into account their model complexity. 
Keywords: data-driven modelling, batch distillation, dynamic simulation, sampling 

1. Introduction 
In general, it is prohibitive to conduct the minimum amount of experiments necessary for 
process optimization in real chemical plants. Therefore, process modelling and simulation 
is used to generate those predictions. Even so, simulation times are often too long for real-
time applications, especially when first principles models are used. To counter this, data-
driven surrogate models of those mechanistic models are trained with simulation data to 
reduce computation time during online operation, sacrificing prediction accuracy 
(Caballero and Grossmann (2008)). One important challenge arises when processes with 
a narrow feasible input space are sampled with standard methods (such as amplitude-
modulated pseudorandom binary sequences (APRBS), among others. See Isermann and 
Münchhof (2011)), generating datasets with scarce feasible samples. 
As a descriptive example, in this contribution a batch distillation process consisting of a 
vacuum column separating a binary methanol-water mixture is simulated using a rigorous 
dynamic pressure-driven model in Aspen Plus dynamics (APD) from cold and empty 
start-up and subsequent shutdown with nitrogen purge. Optimization of the startup of 
reactive distillation processes has  been performed by Reepmeyer et al. (2004); Forner et 
al. (2006); Lukacs et al. (2006) and Carmona (2011), but using computationally expensive 
first principles models. Startup strategies for pressure swing distillation were also 
developed by Klein and Repke (2007), and distillation of three-phase mixtures was also 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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analysed by Tran et al. (2003), yet based also on first-principles models. Complex 
dynamic processes like these show a narrow feasible input domain, where standard 
nonlinear dynamic sampling methods either generate input-output data in a non-
representative domain, or more often sample over a hypercubic domain defined by input 
upper and lower bounds which leads to mostly non-converging simulations. To tackle 
this, expert knowledge is introduced in the form of operation recipes (Löwe (2001)) to 
reduce the vast dynamic input space to a time independent parameter sampling. 
To test the usability of this sampling method in real-time applications, data-driven models 
are trained and tested. As a benchmark, the prediction accuracy of a more conventional 
nonlinear autoregressive model with exogenous variables (NARX) with a tree partition 
nonlinearity is compared to a recurrent neuronal network (RNN) with two long short-
term memory (LSTM) layers with a similar amount of trainable parameters.  

2. Methods 
2.1. Simulated batch distillation process 
A batch distillation process for the separation of a water-methanol mixture shown in Fig. 
1 was modelled in APD, with geometric dimensions and specifications shown in Tab. 1. 
Pressure changers (valves and pumps) had to be placed at every material stream. NRTL 
was chosen as thermodynamic activity coefficient model with N2 as Henry component. 
Phase equilibrium efficiency was chosen as 100%. 

 
Figure 1: Screenshot of the model implemented in APD, including control 

loops, inertization stream (N2) and non-condensable gases (NCG). The 
distillate tank was simulated as a cumulative distillate flow. 

 
Table 1 Operating conditions and plant specifications for a sieve tray column 

parameter value units description 𝑤 ,   0.5 kg/kg feed mass fraction of methanol (rest is water) 𝑇   21.0 °C feed temperature ℎ  8.0 m column height 𝐷  80.0 mm column inner diameter 𝑉   0.08 m3 max. volume of sump ℎ   0.08 m weir height 𝑛   10  number of equilibrium stages 𝑠   5  feed stage 𝑈𝐴   1.0 kW/K overall heat transfer coeff. times area of condenser 𝑐 ,   4.187 kJ/(kg·K) cooling medium specific heat capacity 𝑈𝐴   1.635 kW/K overall heat transfer coeff. times area of reboiler 𝑐 ,   1.670 kJ/(kg·K) heating medium specific heat capacity 
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2.2. Dynamic sampling through recipes 
Batch distillation processes are inherently dynamic. Since in this contribution the scope 
is to generate surrogate models capable of predicting whole operation cycles, this process 
was simulated starting from a cold and empty state at ambient pressure, with all valves 
closed, pumps off and heating and cooling mediums at 21°C. Subsequent shutdown with 
nitrogen inertization was also simulated. The developed first principles model was set up 
to have 12 inputs (see Tab. 2) and 26 outputs (although an arbitrary amount can be 
selected from the flowsheet simulator). Since performing classical nonparametric input 
samplings would lead to mostly non converging simulations (due to nonphysical 
behaviours with strong nonlinearities like pumping out empty trays), process knowledge 
is introduced to constrain the dynamic input sampling space using operation recipes. 
Different recipes are described in Löwe (2001) and Wang et al. (2003), among others. 
Here the “conventional strategy” (according to Löwe) described in Tab. 3 will be adopted. 
A time independent parameter sampling on the parameter set Θ = 𝜃 … 𝜃  is translated 
to dynamic input signals. Hammersley sampling over a hypercubic domain of −10%, +10%  from nominal values with normal sampling distribution was chosen. 
 

Table 2 Selected plant inputs 
ID variable description 
1 𝑥   nitrogen valve position 
2 𝑃𝐶   pressure controller setpoint 
3 𝑥   feed valve position 
4 𝑅𝑅𝐶   reflux ratio controller setpoint 
5 𝑇 ,   reboiler heating medium inlet temperature 
6 𝐿𝐶   level controller mode (∈ 0 = 𝑎𝑢𝑡𝑜, 1 = 𝑚𝑎𝑛𝑢𝑎𝑙 ) 
7 𝐿𝐶   condenser level controller setpoint 
8 𝐿𝐶   condenser level controller output 
9 𝑃𝐶   pressure controller mode (∈ 0 = 𝑎𝑢𝑡𝑜, 1 = 𝑚𝑎𝑛𝑢𝑎𝑙 ) 
10 𝑃𝐶   pressure controller output 
11 𝐿𝐶   sump level controller mode (∈ 0 = 𝑎𝑢𝑡𝑜, 1 = 𝑚𝑎𝑛𝑢𝑎𝑙 ) 
12 𝐿𝐶   sump level controller output 

 
Table 3 “Conventional strategy” starting from an empty and cold column 

step description 
1 wait for time 𝜃  with system cold and empty 
2 generate vacuum ramping down 𝑃𝐶  to 𝜃  during a period of 𝜃  
3 start filling sump with feed ramping up 𝑥  to 𝜃  during a period of 𝜃  
4 wait until sump level reaches 𝜃  and close feed valve (𝑥 = 0) 
5 heat up reboiler ramping up 𝑇 ,  to 𝜃  during a period of 𝜃  
6 wait until condenser level reaches 𝜃  
7 start extracting distillate shrinking 𝑅𝑅𝐶  from ∞ to 𝜃  
8 turn on condenser level controller (𝐿𝐶 = 0, 𝐿𝐶 = 𝜃 ) 
9 rise reboiler temperature (ramp up 𝑇 ,  to 𝜃  during a period of 𝜃 ) 
10 wait until achieving cumulative distillate composition 𝜃  
11 stop distillate extraction (𝐿𝐶 = 1, 𝑅𝑅𝐶 = 0) 
12 stop generating vacuum (𝑃𝐶 = 1, 𝑃𝐶 = 0) 
13 cool down reboiler ramping down 𝑇 ,  to 𝜃  during a period of 𝜃  
14 wait until reaching a reboiler temperature of 𝜃  
15 start inertization ramping up 𝑥  to 𝜃  during a period of 𝜃  
16 empty bottoms (𝐿𝐶 = 0, 𝐿𝐶 = 𝜃 ) 
17 stop inertization (𝑥 = 0) 
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2.3. Design and training of data-driven models 
In this contribution, the more classical NARX and newer RNN models are analysed in 
terms of prediction accuracy over a testing dataset. As an extension of linear time-
invariant polynomial models to the nonlinear case, NARX extends ARX models by a 
nonlinear block (Schoukens and Ljung (2019)). Here, a tree partition nonlinearity was 
chosen. The amount of tree partition units of the NARX model was set to generate a 
model with a similar complexity as the RNN (in terms of trainable parameters 𝑛 ). The 
architecture of both data-driven models is specified in Tab. 4. If not specified, default 
settings of the corresponding toolboxes were used. 
The prediction accuracies can be analysed comparing the mean squared errors (MSE) 
between min-max normalized testing (𝑦 ) and predicted (𝑦 ) data for each model, 
according to: 

𝑀𝑆𝐸 = 𝑛 𝑛 𝑛 + 1 𝑦 − 𝑦  

where 𝑠, 𝑡, 𝑐 are sample, timestep and channel indexes with cardinalities 𝑛 , 𝑛  and 𝑛 . 
 

Table 4 Chosen data-driven model architectures and number of trainable parameters 𝑛  
model NARX RNN 

architecture 

1 input regressor with input 
delay of 1 timestep for each 
output. Nonlinearity: tree 
partition with 231 units. 
focus: prediction 
method: PEM 

sequence of layers: 
� LSTM (64 units), returning sequences 
� LSTM (64 units), returning sequences off 
� dense layer 
solver: adam 
loss function: MSE 

toolbox Matlab/System Identification 
Toolbox version 9.13 tensorflow 2.1.0/Keras 𝑛   729,456 730,426 

3. Results and discussion 
A total of 1000 Hammersley parameter samples were generated. 645 of these led to 
converging simulations, shown in Fig. 2. Each complete batch cycle consists of 𝑛 = 401 
timesteps with a sample time of 𝑇 = 0.01 h. 

Figure 2: Simulated mass flow of MeOH in the distillate for converged runs in APD. One 
sample is highlighted in black, others are shaded. Visible batch phases: (1) cold phase, 
(2) first distillate production, (3) further heating and (4) distillate depletion and shutdown. 
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The input time series 𝐗 generated by the recipe in Tab. 3 as well as the output time series 𝐘 from APD were collected in a 3D data structure in the form: dim 𝐗 = 𝑛 , 𝑛 , 𝑛  
with 𝑛 = 12 input channels, and dim 𝐘 = 𝑛 , 𝑛 , 𝑛   with 𝑛 = 26 output channels. 
A training/testing data ratio of 3/1 was selected to split the converged samples (𝑛 = 645) 
into sample sizes 𝑛 = 483 and 𝑛 = 162. The resulting training and testing 
datasets were min-max normalized for each corresponding channel in the training set. 
For similar complexity (in terms of trainable parameters), the MSE over all testing 
samples was 5.24 ⋅ 10  for the NARX model and 9.83 ⋅ 10  for the RNN model. Fig. 
3 shows one testing sample example and the predictions of both data-driven models.  
Although higher, the MSE achieved by the RNN model and its lack of unexpected peaks 
makes this combination of recipe sampling and RNN as surrogate model a promising 
strategy for APC applications. The peaks observed in the NARX prediction might be 
consequence of overfitting by forcing its number of parameters 𝑛  to equal those used in 
the RNN. To tackle this issue, alternative model architectures and their hyperparameters 
must be studied in more depth. 
 

 
 

Figure 3: Outputs predicted by NARX and RNN models for one of 162 testing samples 

4. Conclusion and outlook 
A dataset for the identification of data-driven models was generated from a pressure-
driven dynamic batch distillation column simulation in Aspen Plus Dynamics. Even 
though expert knowledge in the form of operation recipes was introduced to reduce the 
dynamic sampling space to a time invariant parameter space, 35.6% of the Hammersley 
samples led to non-converging APD simulations. NARX and RNN models were 
identified using data from converged simulations, where the NARX model achieved a 
higher prediction accuracy on a testing dataset than the RNN model in terms of its MSE 
with a similar number of trainable parameters, although showing unexpected peaks in its 
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prediction. Therefore, the combination of recipe sampling and RNN as surrogate model 
shows promising properties for APC applications. 
The methodology of dynamic sampling through recipes may be applied to other complex 
dynamic processes where the feasible sampling domain is highly constrained. Adaptive 
sampling strategies might decrease the amount of non-converging simulations and 
enhance prediction accuracies of data-driven models. Since data from non-converged 
simulations carry information about operation constraints, in future works those 
trajectories will be included in the training dataset. Furthermore, the architecture of 
NARX and RNN models may also be studied in more depth to avoid overfitting by 
varying the amount of regressors and trainable model parameters. 
Batch operation may be optimized based on data-driven models, and these models may 
be adapted for their use in real-time applications. 
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Abstract  

The paper presents an accelerated approach for global optimization that is applied on 

quadratic programming problems. The global optimization is based on a decomposition 

method using cutting planes that are generated, analysed, and screened using advanced 

analytics. The work capitalizes and builds on innovations by Baltean-Lugojan et al. 

(2019) who recently presented a generic and effective outer approximation method 

suitable for semidefinite relaxations. The use of data analytics is applied in populations 

(P) of cutting planes, experimenting with different metrics and clustering methods. The 

proposed approach achieves a reduction in the integrality gap by 18-30% with the largest 

reductions in relation to larger problems (jumbo problems: 100 variables, 75% density). 

Keywords: global optimization, outer- approximation, cutting planes, quadratic 

programming, machine-learning 

1. Introduction 

Global optimization is a dynamic and thriving area of research with several powerful 

methods already in place. The effectiveness of algorithms varies with the particular form 

of the objective function and constraints, the number and type of variables and constraints, 

and/or the problem sparsity/structure. Even for smooth objective functions and 

constraints (e.g. polynomials), the optimization problem is generally difficult to solve 

while providing proper guaranties for the optimum and solution at acceptable times. 

State-of-the-art (SoA) solvers in global optimization rely on iterative algorithms that 

establish progress through local optimization steps or, in the case of decomposition 

methods, in the successive optimization of sub-problems. Cutting plane approximation 

methods classify among the most promising algorithms of that sort. As a general remark, 

algorithms generate data that are not fully turned to account. Emerging technologies in 

machine learning and advanced data analytics can be deployed to exploit such data 

streams as they are generated and produced internally. Data populations may relate to 

individual iterations or relate to the entire sequence of iterations. Open challenges include 

means to translate interim data into exploitable populations, methods to map data 

analytics with decisions, and techniques to formulate approximations suitable to improve 

optimization efficiency and speed. In this paper we examine the potential of embedding 

data analytics in conjunction with SoA optimization methods, specifically advances in 

quadratic programming featuring outer-approximation methods and cutting planes 

following the work by Baltean-Lugojan et al. (2019). The new approach leads to a new 
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class of separation problem and is particularly amenable to the data-driven approach 

studied in the paper. The purpose of the research has been to particularly examine the 

correlation of the cutting planes as they are selected by the algorithm in the QP problems 

and to formulate selection criteria appropriate for each individual iteration. In Section 2, 

the approximation of the original QP and the decomposition of the cutting planes are 

presented. Section 3 demonstrates the methodology establishing data metrics and 

analytics. The emphasis in the research experiments has been to improve the solution 

quality. Results are presented in Section 4. They consider a wide range of examples and 

rather encouraging evidence. 

2. Problem description and background 

The optimization problem is considered a nonconvex quadratic problem that is box and 

linearly constrained, i.e.  

𝑧𝑞𝑝 = 𝑚𝑖𝑛
𝑥

{𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥| 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ [0,1]𝑁} (1) 

with an N-variable vector 𝑥, 𝐴 ∈ ℝ𝑝×𝑁 and 𝑄 ∈ ℝ𝑁×𝑁 assumed to be an indefinite 

matrix. For the problem to be solved a series of reformulations and relaxations are taking 

place as proposed in Sherali and Fraticelli (2002). Each quadratic term 𝑥𝑖𝑥𝑗 is replaced 

by a new variable 𝑋𝑖𝑗. Let the lifted variables 𝑋𝑖𝑗∀𝑖, 𝑗  form the symmetric matrix 𝑋 =

𝑥𝑥𝑇 and let 𝑄 ∙ 𝑋 = 𝑇𝑟(𝑄𝑇𝑋) = ∑ 𝑄𝑖𝑗𝑋𝑖𝑗𝑖,𝑗
, representing the Forbenius inner product. 

Then 𝑧𝑞𝑝 is lower bounded by, 

𝑧𝑞𝑝(ℬ): = 𝑚𝑖𝑛
𝑥,𝑋

{𝑄 ∙ 𝑋 + 𝑐𝑇𝑥| 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ [0,1]𝑁 𝑎𝑛𝑑 (𝑥, 𝑋) ∈ ℬ} (2) 

parametric on any convex set ℬ that adds valid constraints to the basic lifted formulation 

of the quadratic problem. 

 

The relaxation of the nonconvex 𝑋 = 𝑥𝑥𝑇 to 𝑋 ≽ 𝑥𝑥𝑇, or equivalently  [1 𝑥𝑇

𝑥 𝑋
] ≽ 0 

results in the semidefinite relaxation (SDP) of the quadratic problem with a positive 

semidefinite (PSD) restriction Sherali and Fraticelli (2002); Qualizza et al. (2012). The 

SDP relaxation is augmented by the reformulation-linearization technique (RLT), 

Anstreicher (2009), for  0 ≥ 𝑥𝑖 , 𝑥𝑗 ≤ 1. 

 

In the initial round of optimization, the PSD constraint is omitted. Let the solution 

of the initial round be 𝑋∗, 𝑥∗, to evaluate if the PSD constraint is guaranteed, 

eigendecomposition is performed on [ 1 𝑥∗𝑇

𝑥∗ 𝑋∗ ], with 𝑡 the negative eigenvalues of the 

matrix. If 𝑡 = 0 then PSD is met, if 𝑡 ≥ 1 then PSD is violated. For every 𝑡 the 

corresponding eigenvector 𝑣𝑘 is used to generate the violated cutting planes 

𝑣𝑘
𝑇 [1 𝑥𝑇

𝑥 𝑋
] 𝑣𝑘 ≥ 0, ∀𝑘 ∈ 1, ⋯ , 𝑡 which are used as PSD constraints in the following 

round. 

Qualizza et al. (2012), observed that the generated cuts are few, one cut per negative 
eigenvalue, and also very dense, i.e., almost all entries in 𝑣𝑘are nonzero, causing the 
reoptimization of the linear relaxation to slow down. For that reason, they 
introduced a heuristic for the sparcification of the PSD cuts.To overcome the 
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problem of few dense cuts, Baltean-Lugojan et al. (2019), introduced low-
dimensional approach leading to lighter linear relaxations. 
  
With 𝒫 denoting the power set of the vertex 𝑉: {1, ⋯ , 𝑁} and 𝜌 ∈ 𝒫(𝜌 ⊆ 𝑉) any 

arbitrary index subset, let  𝑥𝜌ℝ|𝜌| the vector slice of 𝑥 and 𝑋𝜌ℝ|𝜌|×|𝜌|  the submatrix 

slice of 𝑋. For any subset of 𝒫 the following semidefinite relaxation is introduced, 

(∀ℱ ⊆ 𝒫) 𝒫(ℱ): = {(𝑥, 𝑋)| ∀𝜌 ∈ ℱ ∶  [
1 𝑥𝜌

𝑇

𝑥𝜌 𝑋𝜌
] ≥ 0, 𝑋𝑖𝑖 ≤ 𝑥𝑖∀𝑖 ∈ 𝜌} (3) 

A fixed cardinality 𝑛(1 ≤ 𝑛 ≤ 𝑁) is imposed on 𝒫 such that: 

𝒫𝑛: = {𝜌 ∈ 𝒫| |𝜌| = 𝑛}, 𝑤𝑖𝑡ℎ |𝒫𝑛| = (
𝑁
𝑛

) (4) 

A separation problem arises since there are (
𝑁
𝑛

) available inequalities to create cutting 

planes. In Baltean-Lugojan et al. (2019), the separation problem is addressed with one 

of the following strategies: feasibility, or optimality and combined selection. In feasibility 

strategy cutting planes are selected based on most negative eigenvalues of the SDP 

relaxations. Optimality strategy represents the improvement of the objective function 

resulted by the selection of a specific cut and is calculated by an artificial neural network. 

Combined strategy selects optimality cuts with negative eigenvalues. 

 

In order to make the Master problem efficient we need to find the best underestimators 

which will allow faster convergence of the optimization algorithm. We are imposing 

an extra sorting criterion for the inequality constraints added in the Master problem by 

Baltean-Lugojan et al. (2019). The cutting planes should not only be highly ranked based 

on eigenvalues(feasibility) or the improvement of the objective function (combined) but 

they should also be independent to each other. They rationale here is that if one cutting 

plane is selected, there must be a guarantee that any additional selected cutting plane 

added to the list of constraints provides new information for the problem. Both may be 

informative enough however the information they provide may be overlapping. 

3. Proposed acceleration methodology and machine learning 

experiments 

The proposed algorithm consists of 3 main steps that involve: 

• Step 1: Solution of 𝑧𝑞𝑝(ℬ) from Eq. (2) 

• Step 2: Creation and evaluation of ordered sets of cutting plane populations  

• Step 3: Screening and selection of cutting planes 

 

The convex set ℬ initially consists of RLT constraints. Each solution of Eq. (2) is attained 

by the Branch and Cut algorithm (Step 1). For each on-going solution the decomposition 

provides for the low-dimensional PSD constraints. Each constraint is examined regarding 

the selected measure/condition for feasibility (Baltean-Lugojan et al., 2019); all PSD sub-

problems satisfying the condition (e.g., 𝜆𝜌 < 0) enter the population (P) used for analysis. 

(P) consists of N-D vectors with 
𝑛

𝑁
· 100% density and its population is ordered in 

descending feasibility. The analysis uses both Euclidean metrics and alternative metrics 

introduced by means of an affinity distance,  𝑑𝑎(𝑥, 𝑦), that is formally introduced 
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thereafter. The complementarity within (P) is determined by clustering techniques (Step 

2) such as k-means and agglomerative clustering that are deployed using fixed and/or 

variable numbers of clusters. Hybrid methods explored sequential implementations of 

Euclidean and affinity metrics.  

 

The affinity metric 𝑑𝑎(𝑥, 𝑦) holds similarities to the Hamming distance and was used to 

evaluate differences between vectors for each sub-problem population. For 𝑥, 𝑦 ∈ ℝ𝑁, the 

affinity metric is defined by, 

𝑑𝑎(𝑥, 𝑦): = ∑[1 − 𝑔(𝑥𝑖 , 𝑦𝑖)]

𝑁

𝑖

, 𝑤ℎ𝑒𝑟𝑒  𝑔(𝑥𝑖 , 𝑦𝑖) = {
1, 𝑖𝑓 𝑥𝑖 = 𝑦𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

In Step 2 the Euclidean and/or the affinity distance are applied to analyse the population 

of (P). In the case of the affinity metric defined by Eq (5), the distance between the vector, 

𝑥1

~
, that is corresponding to |𝜆|𝑚𝑎𝑥 , is first computed against all other vectors in P. Vectors 

featuring  𝑑𝑎(𝑥1

~
, 𝑦

~
) = 2 are declared similar and subsequently removed from (P) into a 

cluster. The analysis proceeds with the next vector 𝑥2

~
; the process terminates once the 

full population is clustered. In Step 3, vectors are selected from the created clusters to 

suggest cutting planes and to update the convex hull ℬ. Within each cluster, a shortcut 

criterion (C1) can be used to select the highest-in-rank vector (𝑚𝑎𝑥|𝜆𝜌|) while other 

criteria may also be applied featuring additional levels of sophistication. A mixed use of 

metrics has also been applied where clustering is implemented twice in Step 2 and 3: 

clustering using the Euclidean distance and selecting cutting planes using the affinity 

norm (Hybrid1) or with the use of the affinity metric first and the Euclidean next 

(Hybrid2).  

4. Results 

Machine learning experiments are performed over the test set of BoxQP studied 

by Baltean-Lugojan et al. (2019). For all computational experiments n = 3, namely 

the dimensionality of the cutting planes. The feasibility is the cut selection measure. The 

number of rounds and cuts are dictated by literature so that to compare the proposed 

approach with reference work (Rf1). The number of iterations in the optimization 

algorithm is 20; the added cuts for each round (e.g. the selection size) are set to 100. 

Following Baltean-Lugojan et al. (2019), the convergence limit and the final solution is 

achieved when cut rounds are 40 and cut/round are set to 5% of the available sub-

problems. Results are evaluated based on the convergence of the algorithm and the final 

solution. The computational experiments are carried in python 3.5 using cplex 12.8 

python API solver and scikit-learn v0.2 (Pedregosa et al., 2011) package for k-means and 

agglomerative clustering. 
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a 

 
                                b 

                                   c                              d 

Figure 1 Gap closure between 𝑧𝑞𝑝(ℬ) and the convergence limit targeted by the outer-

approximation using the feasibility measure to rank the population P. The different clustering 

methods are embedded in the reference algorithm (Rf1) resulting in an extra sorting of P 

As a general remark, the proposed approach achieves significant gap closures that are 

especially evident in problems of higher complexity as shown in Fig.(1b) (15-21% gap 

decrease) and Fig.(1d) (18-31% gap decrease). Accordingly, the approach proves 

particularly useful in cases where conventional methods feature large convergence gaps. 

To a lesser degree, improvements are achieved in the lower-density and lower-

dimensionality problems shown in Fig.(1a) and Fig.(1c). The convergence performance 

in using the affinity metric in Step 2 performs with similar trends to Hybrid2. The use of 

affinity in Step 3 performs with similar trends to Hybrid1 and proves an inferior option 

suggesting that the use of the affinity metric is a much stronger choice when applied in 

earlier stages of analysis. The shortcut criterion (C1) is generally found to outperform 

other sophisticated options studied in this work. 
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Clustering based on 𝑑𝑎(𝑥, 𝑦) provides remarkable improvements not only over the 

reference algorithm but also over the conventional clustering method of k-means. 

Furthermore, the convergence of the optimization solution follows a consistent trendline 

in all cases, demonstrating that the 𝑑𝑎(𝑥, 𝑦) is a suitable metric for a wide range of QP 

instances. The emphasis of the paper has been to exclusively reduce the integrality gap. 

The reduction has subsequently affected CPU times with an increase reported either in 

the use of the affinity metric or, primarily, the use of clustering algorithms. The affinity 

metric used for clustering increased CPU times by 5-60 times. The largest delays are 

observed in small complexity instances where the original algorithm has fast 

convergence. Over-the-self clustering algorithms delayed the algorithm by 7-25 times 

with computational time increasing with problem complexity. Given the current emphasis 

of the paper, there is significant scope to improve such times in future developments.  

5. Conclusions 

The use of data analytics by cutting plane algorithms has proved an essential drive for 

improvements in global optimization. The conclusion is demonstrated with a study of a 

wide range of optimization problems.  Results demonstrate significant room to reduce the 

cutting plane populations generated by the conventional algorithms. The affinity metric 

introduced in Eq (5) proved a promising approach to handle cutting plane redundancies 

and to support clustering. Reinforcing the methodology by selection criteria biased on 

both feasibility and complementarity performance has enabled improvements in the 

original algorithm. The use of the affinity metric has generally outperformed general-

purpose clustering (e.g. k-means, agglomerative clustering) while in hybridized forms the 

metric led to better results though without impressive improvements. Remarkably, the 

clustering approach has a greater impact in high-dimensional & medium-to-high density 

problems indicating a promising and encouraging scope to improve existing algorithms. 
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Abstract 
Industrial scale bio-manufacturing processes are transitioning towards Industry 4.0, 
which promises to change the competitive landscape. As part of this (r)evolution, there is 
an increased focus on developing digital twins of critical operations, such as fermentation 
processes. A key economic driver for the enthusiastic embrace of digital twins by this 
industry is the promise of increased process efficiencies and resource utilization, mainly 
through improved plant operations. However, for digital twins to move from the “current 
hype” to a beneficial solution in the industry, some challenges must be overcome. This 
manuscript attempts to identify these challenges and opportunities by developing a 
Digital Model of a Pilot Scale Bioreactor producing Green Fluorescent Protein (GFP) 
currently used for Teaching purposes.   

Keywords: Digital Twins, Validated models, Bioreactors, Fermentation. 

1. Introduction 
The digitalization movement in bio-manufacturing promises improved process operations 
through informed decision-making (Udugama, Gargalo, et al., 2020). One key pillar in 
the discussion of digitalization is the concept of Digital Twins. Digital Twins, through 
the creation of virtual plants, accurately represent the behavior, including the “look and 
feel” of a physical plant (Lukowski et al., 2019). 
In Process Systems engineering, the development of mathematical/process models has 
been a standard practice for decades. There are remarkable examples of benchmark 
simulations such as the MIT-Novartis Continuous pharmaceutical production process 
(Benyahia et al., 2012) and the Benchmark Simulation Model (BSM) for wastewater 
treatment plants (Rosen et al., 2006) being amongst a countless number of mathematical 
models. In the bio-manufacturing industry, mathematical models have also been used for 
decades and continue to be a popular alternative to physical experiments when it comes 
to design and optimization of different processes and unit operations (Mears et al., 2017; 
Narayanan et al., 2020). Today, these mathematical models are often referred to as Digital 
Model and make up the core “prediction engine” of a Digital Twin  (Lopez et al., 2020).  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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The Accelerated Innovation in Manufacturing Biologics (AIM-Bio) project is a joint 
initiative between North Carolina State University and the Technical University of 
Denmark (DTU) established to create a “world-class program in bioprocess research and 
development and workforce training that focuses on products and technologies for the 
future of biopharmaceutical manufacturing”. As a part of this initiative, the (PROSYS) 
center at DTU collaborates with BTEC at North Carolina State University to develop 
digital models of their pilot scale bio-manufacturing facility, primarily used for education 
purposes. The overall goal of this endeavor is to develop Validated Digital models that 
can be in the form of Operator Trainer Simulators to enhance students' learning.  
As in many bio-manufacturing processes, fermentation is a central part of the pilot scale 
bio-manufacturing operations. BTEC produces GFP as a model protein through an E. coli 
based fermentation process. More specifically, the process employs an induced 
fermentation batch using E. coli (BL21(DE3)) with a plasmid pET17-b to produce GFPuv 
with a T7 promoter (IPTG) in a Sartorius Stedim 300-L Bioreactor. This bioreactor is 
equipped with a standard set of sensors such as temperature, pressure, pH, and off-gas 
measurements. An industrial distributed control system (DCS) is used to operate the 
reactor, while a process historian is used for logging the available process data. Moreover, 
advanced analytical equipment is used for off-line monitoring of the batch's progression, 
similar to standard industrial practice.  
This contribution aims to understand the level of detail and the necessary auxiliary 
elements (e.g., GUI) that a mathematical model of a fermentation process needs to have 
in order to fulfill the role of being a standalone Virtual Plant. Furthermore, this work will 
also enable us to better understand the level of detail/fidelity, and additional complexity 
that a mathematic model must incorporate so as to become a Digital Twin.  

2. Digital Model Development 
As an initial push towards developing a fully-fledged digital model, a macro-kinetic 
process model that accounts for overflow metabolism and the associated acetate excretion 
and substrate consumption inhibition was set up in Matlab Simulink. The ordinary 
differential equations describing the mass balances were set up in accordance with earlier 
models reported by Xu et al. (Xu et al., 1999), Anane et al. (Anane et al., 2017), and Pham 
et al. (Pham et al., 1998).  

2.1. Macro kinetic model formulation 
The set of ordinary differential equations uses five inputs and a set of auxiliary algebraic 
equations describing the intracellular kinetics: biomass formation and oxygen 
consumption, substrate, and acetate consumption. The substrate is primarily glucose and 
is modled accordingly, while15 g of ampicillin are added as antibiotics are added at BTEC 
reactor to control unwanted bacteria growth, this is not modelled in the digital model. 
There are six output/state variables, which are: volume, biomass concentration, 
extracellular substrate concentration, acetate concentration, dissolved oxygen, and mass 
of GFP produced.  
The inputs used in the model were chosen due to the fact that they are important and 
manipulatable physical variables: feed flow rate (L/h), feed glucose concentration (g/L), 
temperature (C), headspace pressure (atm), volumetric mass transfer coefficient. The 
Matlab model developed by Anane et al. (2017) was used as the starting point for 
developing a Digital Model. And the temperature was kept at a constant 30 °C. 
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2.2.     Structural Modifications to the Model   
Two main structural changes were carried out in this work. First and foremost, the model 
was converted into a Matlab Simulink operated model. This allows the model to be run 
similar to a prediction engine, where outputs and inputs can be altered externally in real 
time, lending it to be used as a Digital Model. Secondly, along with the process variables, 
the model was extended to also have other key state variables as output, in case that they 
can be monitored at the pilot plant in the future.  

2.3.     Introduction of GFP  
The mechanistic model of the GFP production after the induction with IPTG has been 
developed using standard biochemical yield kinetics (Figure 1). The kinetics are based on 
how much substrate is available for product formation and given as total mass because 
GFP is formed intercellularly with minor extracellular concentration as a result of lysis 
and only being sampled after harvesting the batch. After induction, the cell production is 
also reduced, assuming that all induced cells only produce GFP and do not reproduce. 
The switch from the growth phase to the production phase is modeled based on mixing 
experiments performed at BTEC on the actual reactor. This results in a nearly 
instantaneous switch from growth to production due to the reactor's short mixing times. 
IPTG can be toxic to cells when used at high concentrations causing cell stress.  However, 
the concentration used at BTEC is optimized so that this problem in negated. 

 

Figure 1. Current modeled GFP increase with IPTG induction at 5.8 hours (dotted line). 

3. Challenges and Opportunities  
3.1.  Modelling the Cell line  
A key learning from the initial endeavor was that an accurate digital representation of the 
process requires us to go beyond the standard mathematical modeling and explore the cell 
factory. To this end, a digital model of the process seems to require a multi-scale 
approach. Of particular interest was to understand how IPTG influences the cell behavior 
so that the cell is induced to produce GFP. From a chemical engineering perspective, this 
type of process behaviour can be modeled using a kinetic equation activated when IPTG 
is introduced into the reactor. However, based on BTEC's observations, this concept of a 
hard production switch is incorrect. Instead, the observations suggest that the cell growth 
rate is significantly reduced at that induction time point. Even before induction, some 
“minor” GFP production rate is expected. Moreover, the reduction in growth rate is a 
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function of the concentration of IPTG introduced into the reactor.  Considering all these 
aspects, efforts are underway to model the cell itself, where parameters such as reduced 
growth rate and GFP production rate present in the mechanistic model will be determined 
by solving the cell model at appropriate time intervals during a batch.  
3.2. Lack of Process Data 
A critical limitation that had to be overcome in the development of the digital model was 
the lack of process data that was initially available for parameter estimation and model 
validation purposes. This is another key aspect in transitioning a mathematical process 
model into a digital model.  
The main benefit of adopting the E. coli growth model developed by Anane et al. (Anane 
et al., 2017) is that the process parameters related to biomass growth have been validated 
against an actual fermentation process, although in a lab-scale setup. To identify if the 
process parameters suggested in (Anane et al., 2017)  yield an accurate digital 
representation of the fermentation process at BTEC, a Monte-Carlo analysis on the 
process model was performed, where key process parameters including 𝑞𝑆  and 𝑌  
were varied. The results of this analysis were plotted together with the single process data 
set that was available. They are displayed in Figure 2 (a) and (b).  
Figure 2 shows that the data points and the process model have a similar but slightly 
shifted growth curve when only varying a single parameter from values based on lab-
scale data (Anane et al., 2017). Note however that a lack of data points during regular 
periods of operation means that further process data is required to make a definitive 
conclusion. Compared to biomass growth rate data, only a final value of GFP produced 
is available for GFP production. This is due to the fact that GFP is stored intracellularly, 
and by following the current standard operating procedure (SOP), the amount of GFP 
produced in a bio-reactor is measured by processing the biomass into cell paste using a 
sample taken at the end of the process. 
A clear plan has been put in place to improve the quality of the data to be gathered in the 
future. Firstly, the volume of data gathered will be improved, as multiple experimental 
runs are currently planned and protocols in place to collect the process data generated. 
Specific experiments are also designed to capture the GFP production rate through 
running trial experiments where batches are not induced. This will allow for substrate 
consumption ratio for biomass production vs. protein yield to be calculated throughout a 
batch.  
3.3. Validation vs. Complexity 
Based on the current trends and interpretation of digital models, which, in short, need to 
be a virtual representation of the physical process, only a multi-scale model that integrates 
the “cell factory” and the reaction kinetics would be sufficiently complex and accurate. 
To achieve this, a digital model of such a process should include this multi-scale 
phenomenon and even consider fluid dynamic dependencies due to the potential 
heterogeneity present within a 300 L bioreactor. Such a multi-scale model is more 
complicated than the current off-the-shelf solution that employs a set of Ordinary 
Differential Equations to describe a bioreactor's time-dependent behavior. If the 
necessary process data is available, such a multi-scale model would potentially be much 
more accurate in mimicking an actual bioreactor’s behavior.  
However, from a practical standpoint, there are significant limitations in gathering 
process data. For example, other than temperature, pH, and flow information, BTEC 
currently requires manual operator intervention to collect and analyse off-line 
mesurements to determine dissolved oxygen and glucose concentration. Furthermore, 
capturing effects such as pH gradients is impractical as only a single pH sensor is present 
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in the reactor. Another important consideration is the data preprocessing (e.g., GFP 
concentration measurements), which is tedious and time-consuming. 
All in all, a decision needs to be made regarding the level of detail to be included in the 
final digital model. There are two alternatives: (i) go back to the current approach (ODEs 
representing the reactor); or (ii) gather the necessary data at the cell level, as well as 
potentially other aspects (e.g., bioreactor fluid dynamics), and integrate them into the 
model. In pursuing the second approach, concepts such as high-throughput screening can 
be used to generate data related to the cell model, which then can be used for validation 
purposes at the cell level. Novel measurement technology such as free following sensors 
(Gargalo et al., 2020) can potentially be used to gather information on the bioreactor's 
fluid dynamics. Moreover, fluorescence spectroscopy can be used to track GFP 
production in real-time, which would enable the validation of both cell and reactor 
models.    

`  
Figure 2. Monte-Carlo simulation: 2000 samples varying (a) 𝑌  (b) 𝑞𝑆  with 
induction time. 95% confidence interval (CI) is shown as dotted lines. Outermost incident 
(solid line), process data (*).    

3.4. The role of a Graphical User Interface (GUI) 
A GUI plays a crucial role in transitioning a mathematical process model into a digital 
model. This is because a GUI makes a mathematical process model have the “look and 
feel” of a physical process. In practice, many physical processes in the bio-manufacturing 
industry are often controlled through a controller GUI. To this end, the development of a 
graphical user interface allows students to explore a mathematical model's behavior in a 
similar way to operating a real process (Udugama, Gernaey, et al., 2020).   

4. Conclusions   
A Digital Model of the BTEC Pilot Scale Bioreactor producing Green Fluorescent Protein 
(GFP) has been developed and implemented in Matlab Simulink. Furthermore, by 
analyzing the GFP production details, it was concluded to develop a multi-scale approach 
to increase the digital model's fidelity. To this end, data on different scales, e.g., at the 
cell level and bioreactor fuid dynamics, will be collected and reflected in the model. In 
summary, this contribution layed the foundation in developing a detailed mathematical 
model with the necessary auxiliary elements (such as a GUI)  to fulfill the role of being a 
standalone virtual plant both for in education and in industrial scale bio-manufacturing 
processes. 
 

629



5. Acknowledgement 

The authors wish to acknowledge the financial support provided Novo Nordisk 
Foundation (AIMBio) project (Grant number NNF19SA0035474). 

References 
Anane, E., López C, D. C., Neubauer, P., & Cruz Bournazou, M. N. (2017). Modelling overflow 

metabolism in Escherichia coli by acetate cycling. Biochemical Engineering Journal, 125, 
23–30. https://doi.org/10.1016/j.bej.2017.05.013 

Benyahia, B., Lakerveld, R., & Barton, P. I. (2012). A Plant-Wide Dynamic Model of a Continuous 
Pharmaceutical Process. Industrial & Engineering Chemistry Research, 51(47), 15393–
15412. https://doi.org/10.1021/ie3006319 

Gargalo, C. L., Udugama, I., Pontius, K., Lopez, P. C., Nielsen, R. F., Hasanzadeh, A., Mansouri, 
S. S., Bayer, C., Junicke, H., & Gernaey, K. V. (2020). Towards smart biomanufacturing: a 
perspective on recent developments in industrial measurement and monitoring technologies 
for bio-based production processes. Journal of Industrial Microbiology & Biotechnology. 
https://doi.org/10.1007/s10295-020-02308-1 

Lopez, P. C., Udugama, I. A., Thomsen, S. T., Roslander, C., Junicke, H., Mauricio‐Iglesias, M., 
& Gernaey, K. V. (2020). Towards a digital twin: a hybrid data‐driven and mechanistic 
digital shadow to forecast the evolution of lignocellulosic fermentation. Biofuels, 
Bioproducts and Biorefining, bbb.2108. https://doi.org/10.1002/bbb.2108 

Lukowski, G., Rauch, A., & Rosendahl, T. (2019). The Virtual Representation of the World is 
Emerging. In Future Telco (pp. 165–173). https://doi.org/10.1007/978-3-319-77724-5_14 

Mears, L., Stocks, S. M., Albaek, M. O., Sin, G., & Gernaey, K. V. (2017). Mechanistic 
Fermentation Models for Process Design, Monitoring, and Control. Trends in Biotechnology, 
35(10), 914–924. https://doi.org/10.1016/j.tibtech.2017.07.002 

Narayanan, H., Luna, M. F., von Stosch, M., Cruz Bournazou, M. N., Polotti, G., Morbidelli, M., 
Butté, A., & Sokolov, M. (2020). Bioprocessing in the Digital Age: The Role of Process 
Models. Biotechnology Journal, 15(1), 1–10. https://doi.org/10.1002/biot.201900172 

Pham, H. T. B., Larsson, G., & Enfors, S.-O. (1998). Growth and energy metabolism in aerobic 
fed-batch cultures ofSaccharomyces cerevisiae: Simulation and model verification. 
Biotechnology and Bioengineering, 60(4), 474–482. https://doi.org/10.1002/(SICI)1097-
0290(19981120)60:4<474::AID-BIT9>3.0.CO;2-J 

Rosen, C., Vrecko, D., Gernaey, K. V., Pons, M. N., & Jeppsson, U. (2006). Implementing ADM1 
for plant-wide benchmark simulations in Matlab/Simulink. Water Science and Technology, 
54(4), 11–19. https://doi.org/10.2166/wst.2006.521 

Udugama, I. A., Gargalo, C. L., Yamashita, Y., Taube, M. A., Palazoglu, A., Young, B. R., 
Gernaey, K. V., Kulahci, M., & Bayer, C. (2020). The Role of Big Data in Industrial 
(Bio)chemical Process Operations. Industrial & Engineering Chemistry Research, 59(34), 
15283–15297. https://doi.org/10.1021/acs.iecr.0c01872 

Udugama, I. A., Gernaey, K. V., Taube, M. A., & Bayer, C. (2020). A novel use for an old problem: 
The Tennessee Eastman challenge process as an activating teaching tool. Education for 
Chemical Engineers, 30, 20–31. https://doi.org/10.1016/j.ece.2019.09.002 

Xu, B., Jahic, M., & Enfors, S.-O. (1999). Modeling of Overflow Metabolism in Batch and Fed-
Batch Cultures of Escherichia coli. Biotechnology Progress, 15(1), 81–90. 
https://doi.org/10.1021/bp9801087 

 

 O. Lave et al. 630



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

 
  
Automated Box-Jenkins Methodology to 
Forecast the Prices of Crude Oil and Its 
Derivatives 
Ahmet Can Serfidan,a,b ,Gurkan Ozkan, a Metin Türkay,b  
aTUPRAS, Address, Petrol Cd. No:25 D:No:25, Turkey 
bKoc University, Rumelifeneri, Sarıyer Rumeli Feneri Yolu  

Abstract 
Developing forecasting models that incorporate that external parameters in addition 
to past data for crude oil and derivatives are a challenging task since it is highly 
dependent on economic, geographical, and political issues. However, forecasting the 
prices is very important for strategic planning and oil refineries’ operational 
decisions. This paper presents an automated tool to predict crude oil prices and their 
main products by applying Box-Jenkins methodology for the next two months at the 
beginning of each month in a rolling horizon manner. The resulting forecast is shared 
with related departments to develop their production plans accordingly. We show that 
improved accuracy with this forecasting approach is beneficial in any planning and 
decision-making process and increases profit. 
 
Keywords: price forecasting, crude oil, Cox-Jenkins, SARIMA 

1. Introduction 
 
Refineries are continuous-flow manufacturing facilities that have a considerable effect on 
the global economy. In concise terms, petroleum refineries can be summarized as 
processing crude oil into a more valuable product by using chemical and physical 
operations. Production planning and process scheduling are among the most important 
activities of refineries for maximizing profit. Several software packages optimize the 
refinery operations; these tools need various data such as feedstock prices and products, 
demands for all products and byproducts, and supply limits [1]. Since the usual planning 
period covers the next two months, forecasting the future prices of products is critical. 
Linear programming-based planning systems determine the production plans for all units 
in the refinery. The general approach for the production and scheduling process has two 
phases: (i) Determining monthly rolling plans for crude selection and conducting refinery 
operations in line with forecasting demands. (ii) based on the monthly plans, 
implementing short-term plans for finding operational strategies regarding crude 
availability, product delivery, operational and logistic constraints, and economic issues. 
[2] 
As well as the price of the products itself, the price bracket between related products is a 
key parameter for making decisions on production planning. For example, the price 
difference between the naphtha and gasoline shows the refineries how to add value to the 
upper distillate; either produce gasoline or sell naphtha and reformate separately. The 
price range of diesel and aviation fuel has a strong impact on the refinery's profitability. 
The price bracket between low and high sulfur diesel determines the refineries' 
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profitability of desulphurization units. Furthermore, the prices of low and high sulfur fuel 
oils are important for determining the quantities of additives during the blends of different 
types of marine fuels. 
This paper presents an automated approach to generate price data forecasting by applying 
Box-Jenkins methodology to historical price data. As an industrial implementation, the 
objective is that this monthly-generated data set becomes an input to planning activates 
in operations of a refinery operated by Tüpraş. The improved accuracy of forecasted data 
allows us to improve robustness in scheduling. 

2. Methodology 
 
Box Jenkins ARIMA methodology refers to a set of procedures for identifying, fitting, 
and checking ARIMA models with time-series data [3]. Although there are many works 
related to Box-Jenkins ARIMA methodology, a completely automated Box-Jenkins 
SARIMA tool does not exist. The objective is to create an automated and comprehensive 
forecasting approach that generates price predictions for an oil company.  
 
There are two different approaches to monitoring crude oil and derivatives' price: Ratio 
and crack margin. The ratio is the division of a product price by the crude oil price, 
whereas crack margin is the price difference of the product and crude oil. Instead of the 
ratio, monitoring a product's crack margin is much more meaningful because it does not 
fluctuate rapidly as the crude oil price changes. 
In this study, crack margin data is used for modeling because its variance is lower than 
the ratio. Also, crack margin is a function of both Brent crude oil price and each product's 
price. 
 

2.1 Data Preprocessing 
We start by identifying whether the data is stationary or not [4]. The most usual approach 
is to analyze the series plots and ACF plots [5]. Since the aim is to develop a full-
automated system, we use various tests based on the definition of stationarity.  
 
The corresponding tests and their stopping criterion conditions are as follows:  

(i) Stationary test: Count the number of ACF lags out of the critical level. If the 
result is more than (0.2)x(total number of lags), the series is not stationary,  

(ii) Trend stationary test: We use KPSS (Kwiatkowski, Phillips, Schmidt, and Shin) 
test for this purpose. If the data is stationary, it should not contain trend. [6] 

(iii) Mean stationary test: We divide the data into two pieces, and by using t-test, we 
check whether the mean of the series of time-dependent or not.  

(iv) Randomness test: We use the Ljung-Box Q test over the ACF of the series. The 
aim is to check whether series have autocorrelation for a fixed number of lags.  

(v) Augmented Dickey-Fuller Test: We use the test to check whether time series 
data are stochastically stationary or not. 

 
The algorithm executes the tests mentioned above automatically, and if there is at least 
one test that shows data is nonstationary, then we take the first derivative of data, namely 
order of differencing is increased by one (by default, it is zero). These comprehensive 
tests can easily catch nonstationary data. Nevertheless, we still want to use graphical 
analyses to inform the user. 
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At the end of this section, the algorithm determines whether the data is stationary or not. 
If the data is nonstationary, then it calculates the order of differencing. Original data, box 
plot of monthly divided data, historical data around the desired month, monthly average 
data, ACF and PACF plots of monthly data, and normality plots will be shown to the user 
to justify the findings. 
 

2.2 Model Identification and Diagnostic Checking 
To increase the selection process's robustness, we model all possible combinations. We 
use the fact that orders of AR and MA are usually less than and equal to two. We also 
increased the upper limit of the AR limit to 7. However, model results do not become 
more desirable than increasing model complexity. Thereby, we chose to go over all 972 
combinations of SARIMA models (nonseasonal differencing order is fixed in the first 
step, so 972 is the number of all different combinations). 
For all 972 different SARIMA models, values of coefficients are calculated by using 
maximum likelihood estimation. The estimated parameters for the current model is forced 
to satisfy the following conditions: 

(i) Parameter estimation should converge  
(ii) MA coefficients should be invertible  
(iii) AR coefficients should be stationary 

If one model fails to meet these conditions, we drop this model and do not further 
investigate or use it in the forecasting.  
Having estimated coefficients, we check goodness of the fit for each model. This part 
is diagnostic checking of all available SARIMA models and particularly vital in the 
Box-Jenkins method. All available SARIMA models are assessed with the following 
tests: 

• Significance of parameters: All the estimated parameters should be significantly 
different from zero. We use p values for each parameter of a model for this 
purpose. If the corresponding model has at least one parameter with a higher p-
value than 0.1, we diagnose it as having an insignificant parameter.  

• Testing heteroscedasticity: The standard deviation of standardized residuals 
should be varying at a fixed level. If it is not non-constant, then there is a 
heteroscedasticity issue. In order to detect this issue, we applied the Goldfeld-
Quandt test. We tested whether the sum of squares in the first third of the sample 
is significantly different from the sum of squares in the last third of the sample. 

• Testing normality: We tested for the normality of standardized residuals. For this 
purpose, we used the Jarque-Bera normality test. Standardized residuals should 
have an approximately normal distribution. Otherwise, it violates one of the Box-
Jenkins assumptions. 

• Testing serial correlation: We tested whether there is a statistically significant 
correlation between standardized residuals. The residuals should pose no 
autocorrelation. Otherwise, there is room for improvement. We applied Ljung 
and Box and Durbin-Watson tests to check whether residuals are uncorrelated. 

When a model passes all these tests, it goes to the next stage, which is the final stage for 
selecting the best model. 

2.3 The Best Model Selection 
This section presents each product's best model and is used for forecasting. For this 
purpose, we take the first 85% of the data as training data and the rest of it as the test data. 
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We have approximately 120 data points, so the test data window is around 12 data points, 
namely one year. The best model should capture the trend of last year with minimum 
error. There are many statistics to check this model accuracy; we used mean squared error 
for this purpose.  
After splitting the dataset into training and test sets, we train all candidate models with 
training data, and new models are obtained.  Then, each time step of the test set is iterated. 
Namely, candidate models predict one period ahead, and after that, the actual value of the 
predicted time is given to the model. While preserving the model parameters, new 
coefficients are estimated with this new value, and again one period ahead prediction is 
carried out. “The iterative approach allows a new ARIMA model to be trained each time 
step. Prediction is made each iteration and stored so that all prediction can be compared 
to actual values at the end of the test set, and an error score is calculated. In this case, a 
mean squared error score is calculated”. The best model has the least error score among 
the candidate models. 
We implemented all steps of the model in python 3.6. Built-in Python libraries carry out 
some statistical tests. Anyone can use this comprehensive and complete automated tool 
for any time series data. However, the users must consider the prediction horizons, i.e., 
daily, weekly, monthly, etc. After this specification, the tool provides forecasting values 
for the desired prediction horizon 
The accuracy of the forecast is tested between January 2017 and May 2018. The approach 
in testing is quite similar to selecting the best model. First, only the data between January 
2009 and December 2016 is given to the model. It selects the best model as discussed in 
the previous sections. After it predicts the next month, we calculate the monthly average 
of that predicted month. In the next iteration, the algorithm has data between January 
2009 and January 2017, and the code again carries out all stages. The program in any 
iteration might identify a completely different SARIMA model. We calculate all 
prediction errors for all months and all products by using the mean average percent error 

3. Results and Discussion 
To test the forecasting tool's accuracy, we used the actual oil and its derivatives price data 
published every day. We gather the data daily; however, we used monthly average data 
since the aim is to predict prices monthly. Moreover, a daily variation of prices is too high 
to predict, and the autocorrelation function decays so slowly that even after many 
differencing, it is not stationary. In this study, seven major products and Brent crude oil 
prices are forecasted for sixteen months ranging from January 2017 to June 2018. At the 
beginning of every month, the prices are predicted for the next month and the two months 
ahead. Table 1 shows the average forecasting accuracy for each product and Brent crude 
oil. As a general conclusion, the prediction for n+1th month is better than the one for n+2th 

as expected since the forecasting power decreases as the time period increases. The 
prediction accuracy of gasoline is around 90% for both periods. When middle distillate 
products of aviation fuel, low and high sulfur diesel, are considered, the accuracy ranges 
from 91% to 95%. The application has some development areas when the bottom products 
are considered since the accuracy is between 68% and 86%. Although Brent crude oil 
price is hard to forecast due to factors that cannot be modeled easily, the tool performs 
well, ranging from 93% to 96%. The forecast means absolute error for naphtha is 1.2.  
These calculations are done using mean absolute error (MAE) except naphtha because 
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mean average percentage error (MAPE) is used for naphtha since the magnitude of error 
is small. 

Moreover, to compare our SARIMA Box Jenkins methodology, we implement Single 
Exponential Smoothing, Double Exponential Smoothing, and Triple Exponential 
Smoothing (Holt-Winters Method) for one period ahead prediction. The performance 
measure is the same. Mean absolute average error and the same iteration method are 
applied (first the model predicts, then the corresponding data is introduced). The 
following models' optimal parameters are found by using a similar grid search algorithm. 

 

Table 1. Average Forecasting Accuracy for 16 Months by Stepwise Modeling for 
SARIMA Box Jenkins 

 (n+1)th Month Accuracy (n+2)th Month Accuracy 
Gasoline 10 ppm 91,1% 90,3% 
Aviation Fuel 95,0% 92,4% 
High Sulphur Diesel 93,8% 93,4% 
Diesel 10 ppm 93,6% 91,2% 
Fuel Oil 1% 78,7% 68,3% 
Fuel Oil 3.5% 85,9% 75,0% 
Brent Crude Oil 95,9% 93,1% 

 
Table 2. Average Forecasting Accuracy for 16 Months by Stepwise Modeling with 

Other Models 

 

Single 
Exponential 
Smoothing 

Double 
Exponential 
Smoothing 

Holt-
Winters 

ARIMA SARIMA 

Gasoline 10 
ppm 89.9% 89.1% 88.1% 90.8% 91.1% 

Aviation Fuel 93% 93.2% 92.7% 92.2% 95.0% 
High Sulphur 
Diesel 93.8% 93.5% 91.0% 93.2% 93.8% 

Diesel 10 ppm 93.4% 93.4% 93.2% 91.7% 93.6% 
Fuel Oil 1% 73.7% 73.9% 78.3% 73.3% 78.7% 
Fuel Oil 3.5% 84.8% 84.1% 85.8% 84.7% 85.9% 
Brent Crude Oil 94.9% 95.2% 93.5% 95.2% 95.9% 

Comparisons of actual and forecasted prices are displayed to the user as shown in the 
following figure: 
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Figure 1 Predicted Price (red) vs Actual Price (blue). 

 

4. Conclusions 

This study proposes a new approach to achieve more profitable production planning.We 
extended the Box-Jenkins method by adding a fully automated and comprehensive grid 
search algorithm. This approach substitutes human judgment with statistical tests and 
trying all combinations without giving up any critical stage of Box-Jenkins methodology. 
This tool provides the numbers and very powerful graphs that justify those numbers. 
Since it is an interactive tool, the user may accept or reject the proposed results, mainly 
based on the graphs. We implemented using python 3.6 and made an easy to use interface. 
The tool only needs the original data, time window, and predicted values.To test model 
accuracy, we applied it to forecasting petroleum products' price and Brent crude oil price. 
Generally, our forecasting accuracy is between 90-98%, with one exception, the accuracy 
of Fuel Oil forecasts is close to 75-85%. When we compare the Box-Jenkins Full 
Automated SARIMA model to other well-established model types, it is seen that our 
model has better forecasting accuracy than the other types. This fully automated tool is 
deployed in Tüpraş Foreign Trading Department.  Price prediction dedicated from this 
tool is one of the critical import inputs they use during the crude selection and planning 
processes 
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Abstract
This paper discusses the implementation of interfacial transport in the systematic mod-
elling methodology by Preisig (2012) and how to lecture the approach as well as its impli-
cations to engineering students. We first elaborate on the theoretical concept of interfaces
before abstracting them into topologies that allow for comprehensible as well as precise
mathematical assessments of the transport processes involved. Thereby, any interfacial
transfer is rooted in its fundamental parts of transport towards, across and away from the
interface. These steps can be assessed by only a handful of algebraic equations from an
ontology, which covers the entirety of physical concepts, state derivatives, and conserva-
tion principles. Due to this, interfacial transport can rapidly be implemented in process
models, significantly aiding subsequent model simplification as well as model fitting.

Keywords: process modelling, ontology, topology, dynamics, diffusion

1. Motivation
Many processes like extraction, adsorption and membrane filtration depend on mass, mo-
mentum and energy transfer across interfaces. As shown by Preisig (2014b), these pro-
cesses can conveniently be abstracted into a topology that is a network of capacities;
non-overlapping, finite volumes that only interact with each other by the means of di-
rected arcs. Arcs that are flows of extensive quantities (like mass) driven by gradients of
intensive properties like concentration, temperature or pressure.
The convenience of topology modelling can further be intensified by providing an ex-
pert ontology - a comprehensive collection of fundamental definitions and relations taken
from the application-relevant scientific roots, and by implementing all of this in the highly
automatised modelling suite ProMo [Elve and Preisig (2019); Preisig (2020)]. However,
from lecturing engineering students it transpired that further emphasis has to be placed on
the concept of interfaces and its realization within the methodology.
Consider the case one is asked to model an adsorption column: Most likely, the initial
process topology drawn would be similar to the one depicted in Figure 1. A feed F
enters column C, in which the adsorption of component i on adsorbent A proceeds be-
fore leaving the unit as the processed product P. The process is defined by the con-
ditions at its boundaries to the environment. Since we assume for now that the en-
vironment is infinitely large compared to our process plant, thus not affected by the
process, we depict both the feed F and the product tank P as reservoirs (semi-circles)
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that are infinite volumes of constant properties. On the other hand, C and A are de-
picted as finite, distributed capacities (ellipses), indicating that in these volumes inten-
sive properties are dependent on the location of observation. The process of adsorp-
tion is implemented by flows of mass (black arcs), heat (dotted red arcs) and volume
work (dashed blue arcs) across a boundary (black bar) between C and A. Boundaries
are surfaces without any extensive quantity. Usually, they indicate discrete changes be-
tween two capacities, like fluid | solid interphases in the sketched adsorption process.

adsorbentadsorbate
F

P

AC

Figure 1: A first topology
for any arbitrary adsorp-
tion process

Despite its low granularity and abstract nature, this topol-
ogy appropriately outlines the process in question. However,
as we noticed when lecturing students, most people tend to
stick with their first, rather rough topology when continuing
with the mathematical modelling, not realising that such a
low degree of granularity will cause complications in further
modelling. In the example of Figure 1, students would often
go on to try implementing all transport terms in capacity C,
while A is only contributing the adsorption kinetics. Mean-
while, the boundary is just left as a shallow symbol of in-
tent in the topology, not contributing to any mathematical
modelling despite being the most-important part of the pro-
cess; the process-limiting interphase. This approach usually
ends in the numerical bottleneck that the system in C will be
a partial-differential equation with at least three dependen-
cies: The time t, the radial coordinate x and the axial coordinate y. Furthermore, transport
processes from C to A are compressed into one misleading term in this approach, neglect-
ing the potentially different nature of connected transports in the direction of x and neither
providing nor showing any understanding of the inner workings at hand.
Therefore, we strongly advocate for a systematic approach when modelling processes that
exceed interfaces. By expanding on the discussions in Pujan and Preisig (2020), this paper
presents the proposed methodology while discussing its implications and contributions to
the design and communication of comprehensive but comprehensible process models.

2. Transport processes across all sorts of interfaces
In the following, we refer in our terminology to interphases for interfaces between two
discrete phases, whereas intraphases denominate interfaces without any phase change,
like the discrete difference between a flowing fluid in a pipe and its almost-stagnant fluid
film at the pipe walls.
When an interphase is introduced to a system, fluids form sub-systems on both sides.
These adhere considerably different regimes than the fluid bulks. Those sub-systems are
conventionally called films. However, as we will discuss later, the term f ilm can be mis-
leading in this context. For now, we define as film the volume that manifests an explicit
change of properties on the interphase’s normal coordinate, as depicted in the examples
of Figure 2. We limit the scope of our remarks on material transport, although the anal-
ogy to heat transfer is often self-evident. As the films in Figure 2 indicate, diffusion is in
them commonly the predominant mode of transportation, always in a gradient-successive
direction. This film diffusion gets slower the further it departs from the interphase. Until
it measurably dies out at the level of the bulk fluid. At this point, an intraphase indicates
the discrete change between both, the considerably lumped bulk and the distributed film.
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radial profiles in an adsorption column at length y profiles across a membrane filtration unit at length y

Figure 2: Generic profiles of an adsorption column (left) and a membrane unit (right)

Though it shall be placed emphasis on the fact that the concentration gradient is never ac-
tually zero, what would wrongly imply an absence of transport from the bulk to the film.
In actuality, the gradient inclines towards zero in infinity and the intraphase is only placed
on a x from where on the effective diffusion is conventionally considered to be negligible.
The two examples in Figure 2 splendidly exhibit most kinds of interfaces: a) bulk | film

intraphases; b) fluid | solid interphases; c) fluid | pores intraphases, and d) fluid | mem-
brane interphases. The first two we discussed already, but further discussion is advisable
for the cases of c and d since, in contrast to a and b, they strongly rely on the scale of
model design. Picture that the plots in Figure 2 would been zoomed out for the adsorption
process and zoomed in for the membrane. The film | pores intraphase would turn into a
film | adsorbent interphase, whereas the film | membrane interphase would transform to
a film | membrane pores intraphase. The implication is clear: Pores may be formed by
a solid phase but their contents clearly belong to the fluid phase, thus, a film | pores
intraphase is placed if considered to be constructive. A membrane is fundamentally
nothing more than an elaborate porous material. Accordingly, defining a membrane as
another phase than the fluid may be the conventional as well as constructive approach,
but a fluid | membrane "interphase" remains nothing similar to an actual interphase in a
fluid | fluid system. The interphase-specific concentration jump may occur in the right
plot of Figure 2 just as it would across a water | hexane interphase, however, this effect is
not due to phase saturation but sieve stochastics.
Estimating concentrations at interphases is tricky due to discrete jumps. Thus, no approx-
imations can be made on one side of the interface just from the concentration on the other.
Fortunately, the chemical potential µi does not exhibit jumps so that we can approximate
the concentrations with the aid of Equation (1), where µ◦i is the standard, µ ideal

i the ideal
and µexcess

i the excess chemical potential. Keep in mind though, even there is no jump
in µi, functions of intensive properties are never continuous across interfaces and we can
only approximate interfacial conditions via close-quarter estimations on both sides.

µi = µ
◦
i +µ

ideal
i +µ

excess
i = µ

◦
i +RT ln(xi)+µ

excess
i (1)
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3. Derivation of topology capacities
From the elaborations in the previous section it transpires that interface-exceeding pro-
cesses have to be modelled with the impact of the interface in mind. To stick with the
examples in Figure 2, an adsorption model has to expand a system of bulk - film - pores -
adsorbent, while a membrane model should expand bulk 1 - film 1 - membrane - film
2 - bulk 2. Supposedly, these are the lowest granularities for the associated topolo-
gies, which we can construct solely from six different capacities: I) lumped (circle),
II) dynamic distributed (ellipse), III) steady-state distributed (rectangle), IV ) boundary
(black bar), V ) point capacity (black dot), and V I) reservoirs (semi-circles). According
to Preisig (2012), this is enough to define basic operations as elements of a process and to
construct complete plant models by generating different combinations of them.
Each capacity inherits the fundamentals of any physics ontology, namely the conservation
principles of mass, energy and momentum. Therefore, Equation (2) is part of every ca-
pacity, where ṅi denotes the accumulation of compound i over time and n̂i the compound
flow. In our example, the state variable transformations in Equations (3) and (4) are also
amenable to all, with drj being the place-in for the coordinate expansion normal to A.

ṅi = ∑ n̂i (2)

n̂i = ci V̂ (3)
V = Adrj (4)

The distinction between capacities results from additional definitions like Equation (5)
added to the lumped I and IV -V I (the distributed capacities are left out since ci is not
constant), and the requirement for some kind of transport mechanism in the distibuted
systems II and III. For films and pores, the transport mechanism is the link between
molecular flux and flow in Equation (6), and Fick’s 1st law in Equation (7). Although we
limit our discussion to interface-exceeding processes, note that different transport mech-
anisms would have to be selected for the membrane, and transport outside of films would
have to consider not only diffusional but also convective fluxes. The event-dynamic ca-
pacities III-V I are set with the constraint ∂

∂ t = 0. Additionally, the surface nature of IV
constrains its amount of extensive quantities to zero while connecting flows only on the
boundary’s normal coordinate.

ṅi = ci V̇ (5)
n̂i = Ji,r j A (6)

Ji,r j =−Di,r j

∂ci

∂ r j
(7)

That leaves us with six distinct capacities to build our process on. In the following, we
locate vectors normal to membrane or adsorbent on the x coordinate, whereas the perpen-
dicular flows along the process unit are located on y. We further assume processes on
other coordinates than x and y, and the distribution of compounds in films, pores and the
membrane along y as well as between the adsorbent particles, to be negligible. We know
from Figure 2 that at any discrete y, films and pores inhibit diffusion-induced distributions
in the direction of x, separated by interfaces. Accordingly, we set dynamic, distributed
capacities in the dynamic time-scale of Figure 3, perpendicular to the convective bulk
flows and connected via boundaries. Preisig (2014a) explains in detail how topologies are
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Figure 3: Dynamic topology for any discretionary stage in an adsorption column (left)
and a membrane unit (right)

easily translated into an incidence matrix in order to mathematically assess the model.
The topologies in Figure 3 depict one theoretical stage for each process, thus a discretiza-
tion over y. Given an appropriate number of stages - so that dy→ 0 applies - the bulk flow
can be reduced to a linear function of the boundary conditions at the respective stage. Fur-
thermore, the input conditions for processes in x-direction do not need to be formulated
as a function of y but adhere to the homogeneity assumption. Effectively relieving the
numerics from y as one of the model’s dependent variables.∫

V
ṅi dv =

∫
A

(
n̂i,x0 − n̂i,(x0+dx)

)
da ⇒ ... ⇒ ṅi dx = n̂i,x0 − n̂i,(x0+dx) (8)

n̂i,(x0+dx) = T(x;x0) = f (x0)+ f ′(x0)
(x− x0)

1!
+ f ”(x0)

(x− x0)
2

2!
+ ... (9)

ṅi dx = n̂i,x0 − n̂i,x0 −
∂ n̂i

∂x
dx− ∂ 2n̂i

∂x2
dx2

2
+ ... ⇒ ... ⇒ ṅi =−

∂ n̂i

∂x
(10)

ċi =
Di,x

dx
∂ 2ci

∂x2 = ki,I
∂ 2ci

∂x2 (11)

Every diffusional flow in Figure 3 has one input at an arbitrary x0 and one output at
x0 + dx. By recalling that the accumulation in a capacity ṅi is estimated over the capac-
ity’s volume V while connected flows n̂i are estimated over the capacity’s surface A, we
derive Equation (8) from Equations (2) and (4). Substituting Equation (5) into (8) yields
the balance of a generic lumped capacity. For the distributed capacities in our example
however, we have to expand the unknown n̂i,(x0+dx) in Equation (9) over x0 by means of a
Taylor series T(x;x0). This, together with dx→ 0, formulates the balance of an arbitrary
distributed capacity in Equation (10). The substitution of (10) by the selected transport
mechanism and the common assumption that A and the diffusion coefficient Di,x are in-
dependent of x, closes with Equation (11) - Fick’s 2nd law in disguise.

4. Concluding remarks of advisory
We reason that lecturing process modelling with the presented methodology in mind not
only significantly aids comprehensibility but also trains engineering students in compart-
mentalizing complex processes into their fundamental parts and to design appropriately
comprehensive models that always satisfy the conservation principles. As was shown,
limiting the topology design to the six introduced capacities together with their respective
parts of a fundamental equation ontology enables rapid model design while offering easy
mathematical accessibility as well as pacing options in terms of discretization. This eas-
ing of numerics also significantly reduces computing times, thus empowering the crafted
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models to be utilized in online process control applications.

bulk 1 film 1

x

bulk 2film 2

dynamic concentration profile

tangent of the concentration profile at the interface

α 

β

c i

Figure 4: Schematic representation of
Nernst’s effective diffusion layer thickness

Since we arranged flows on different coor-
dinates in separate capacities, solving the
resulting equations is no longer a problem
of numerics but of parameters only. If no
Di,x are handily available, multiple inter-
facial transport concepts like the two-film,
penetration or surface-renewal theory are
applicable to solve Equation (11) via the
mass transfer coefficient ki,I at each side of
the interface. Furthermore, different kinds
of transport limitations, as depicted in Fig-
ure 2, can be realized by means of time-
scale based model simplifications in the
respective capacities. However, the ma-
terial diffusion coefficient Di,x must not
be confused with the effective diffusion
coefficient applied by Nernst (1904). As
sketched in Figure 4, the effective film thickness δ is derived from the intensive gradient’s
tangent at the interface, whereas the film thickness dx in Equation (11) - and therefore the
dedicated capacity - denotes the range of measurable distribution.
In this paper, we only discussed the dynamic process depiction. The reason is that dy-
namic and steady-state processes are two clearly distinct problems in process simulation.
In a dynamic process, the knowledge of the conditions on one side of an interface suf-
fices the estimations on the other side. In contrast, steady-state estimations are in their
nature boundary-condition problems - Equation (11) with the constraint ∂

∂ t = 0 results in
a gradient of its boundary conditions. Thus, steady-state interfacial processes have to be
assessed from both sides. That raises one particular question, not to be answered within
the scope of this paper but still worth considering: Is it actually constructive to lecture
process modelling with focus on steady-state as the reputedly easy starting point?
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Abstract 
This contribution presents a kinetic study for the identification of the complex reaction 
mechanism occurring during the ABE upgrading, and the development of a kinetic model. 
Employing graph theory analysis, a directed bipartite graph is constructed to reduce the 
complexity of the reaction network, and the reaction rate constants and reaction orders 
are calculated using the initial rate method, followed by the calculation of the activation 
energy and frequency factor for an Arrhenius-type law. Subsequently, using general mass 
balancing a proposed mathematical model is produced to determine the apparent reaction 
rates, which are successfully in line with the experimental results. 

Keywords: reaction mechanism, kinetic modelling, ABE upgrading. 

1. Introduction 
The increase in global energy consumption, correlated with the increase in greenhouse 
gas emissions has prompted interest in the “green” production of fuels and chemicals. 
Biomass conversion, such as sugar fermentation using the bacteria genus Clostridium 
(Qureshi et al., 2010) to produce an acetone, butanol and ethanol (ABE) mixture is a well-
recognised “drop-in” fuel option, and one of the first commercial biofuel production 
methods. Following upgrading and conversion, the products from the ABE mixture are 
compatible with fuel or chemicals sourced from other means, making the process an 
attractive option for the transportation or chemical industry. This opens an avenue for the 
integration of a bio-refinery with an oil refinery, with the aim of moving towards 
sustainable fuels and chemicals production.  

An important aspect of ABE upgrading requiring understanding is the determination of 
the very complex reaction network, which could facilitate the conceptualisation of a 
realistic model of the process. Although various studies regarding the production of long-
chain hydrocarbons from ABE are available (Onyestyák et al., 2015; Sreekumar et al., 
2015), there is little work concerning the kinetic modelling of the involved reactions.   

The following sections present the identification of a reaction network for the ABE 
upgrading based on literature and experimental data (Ketabchi et al., 2020a; Ketabchi 
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et al., 2020b). This network is used as a basis for calculating the kinetic parameters and a 
mathematical model of the process. Finally, the obtained model is compared to 
experimental data to investigate its accuracy. 

2. Acetone, butanol and ethanol catalytic upgrade towards long-chain 
hydrocarbons 
Following upgrading and conversion, the ABE mixture’s products are attractive fuels or 
chemicals for transportation and chemical industry. Despite the complexity of the reaction 
network, it is necessary to identify a starting point so that the kinetics of this reaction can 
be calculated to produce a preliminary model. Even though various studies regarding the 
production of long-chain hydrocarbons from ABE are available (Onyestyák et al., 2015; 
Sreekumar et al., 2015), there is little work concerning the kinetic study and modelling of 
the reactions.  

Starting from these studies, a network of the main reactions taking place during the ABE 
upgrading is proposed in Equations (1) – (11).  𝐴 + 𝐻 → 𝐷        (1) 2𝐸 → 𝐵 + 𝐻 𝑂        (2) 𝐴 + 𝐸 → 𝐹 + 𝐻 𝑂       (3) 𝐴 + 𝐵 → 𝐺 + 𝐻 𝑂       (4) 𝐴 + 2𝐵 → 𝐽 + 2𝐻 𝑂       (5) 2𝐴 + 2𝐵 → 𝐼 + 3𝐻 𝑂       (6) 11𝐵 → 4𝐾 + 7𝐻 𝑂       (7) 2𝐸 + 2𝐹 → 2𝐿 + 𝑂        (8) 𝐵 ↔ 𝑀 + 7𝐻 𝑂        (9) 2𝐴 ↔ 𝑁 + 𝐻 𝑂        (10) 𝐴 + 𝑁 ↔ 𝑃 + 𝐻 𝑂       (11) 

Due to the complexity, with 16 components involved, (A = acetone, B = butanol, E = 
ethanol, D = isopropyl alcohol, F = 2-pentanone, G = 2-heptanone, I = 4-nonanone, J = 
6-undecanone, K = 6-undecanol, L = 4-heptanol, M = 1-butanone, N = mesityl oxide, P 
= isophorone, plus O2, H2O and H2) including equilibrium, series, reversible, and other 
type of reactions occurring at once, this network requires further simplification for the 
scope of this work. 

3. Kinetic modelling of the ABE upgrading 
Using the reactions in equations (1) – (11), as well as their interrelations, a mathematical 
modelling theory is applied using three main algebraic parameters. These parameters are: 
the set of chemical reactions 𝑅 , with 𝑖 = the number of finite sets of reactions occurring; 
the set of chemical species 𝑆 , with 𝑗 = the corresponding species involved in reaction; 
and lastly, the nonnegative integer stoichiometric coefficient of each component 𝛽 . 
Altogether, the model is represented as: 
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𝑅 = ∑ 𝛽 𝑆    𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑛  (12) 

Given that that these parameters are defined, the kinetic rate equation can be defined as a 
nonlinear function of the concentration of chemical species 𝑆 , 𝑓  𝐶 𝑚𝑜𝑙/𝐿 : 𝑟 = 𝑘 𝑓 𝐶    𝑖 = 1, … , 𝑚    (13) 

Where 𝑟  is the reaction rate, and 𝑘  is the reaction rate constant. 

The reactions are considered to take place in a batch reactor with constant volume. 
Applying a mass balance on this batch system, a lumped kinetic model in the form of 
ordinary differential equations (ODEs) is obtained. These equations demonstrate the 
change of concentration against time in the following way: = 𝑟 ∙ 𝛽         (14) 

To simplify the kinetic reaction network, the concept of 
graph theory analysis (Gupta et al., 2016) can be applied. 
This concept is based on the evaluation of unnecessary 
reactions and components that are eliminated as a result of 
the interpolation of complete conversion or quasi-
equilibrium reactions.  

3.1. Identification of chemical reaction network 

In order to identify the connection between the species in 
the proposed reaction network in Equations (1) – (11), a 
directed bipartite graph is defined (Figure 1), which is 
dependent on the components, 𝑆, the reactions, 𝑅, and a set 
of direct links. 

The application of this approach decreases the numbers of 
reactions in the network from 14 (due to the reversible 
reactions (9) – (11) considered each as two separate 
reactions) to only 7 (or 9, as R4X and R5 are reversible): 

R1: 3𝐴 + 3𝐸 → 𝐵 + 2𝐷 + 𝐹 + 𝑂  

R2: 4𝐴 + 11𝐵 → 2𝐺 + 𝐼 + 𝐽 + 2𝐾 + 9𝐻 𝑂 

R3: 2𝐸 + 2𝐹 → 2𝐿 + 𝑂  

R4: 2𝐸 → 𝐵 + 𝐻 𝑂 

R4x: 𝐵 ↔ 𝑀 + 𝐻  

R5: 2𝐴 ↔ 𝑁 + 𝐻 𝑂  

R6: 𝑁 + 𝐴 → 𝑃 

For simplicity in future calculations, the reverse reactions 
of R4x and R5 are denoted as R-4x and R-5, respectively. 

Figure 1. Bipartite graph for 
the ABE upgrading reaction 
network 
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3.2. Kinetic calculations of the chemical reaction network 

Considering the chemical reaction network identified in the previous section, the mass 
balance of the system represented by Equation (14) can be written. The following kinetic 
law, from which the order (𝑥, 𝑦)  and the reaction rate (𝑘 ) are determined is used: 𝑟 = 𝑘 𝑐 𝑐         (15) 

These are calculated based on the initial rate method, in which the rate of reaction at the 
instant that the reactants are first mixed is considered. This initial rate is assumed to be 
equal to the average rate of reaction.  

Subsequently, the different activation energies and pre-exponential factors associated 
with each reaction are determined using an Arrhenius-type equation, by fitting 
experimental data at various temperatures.  

Due to the assumption of equating the initial rate to the average rate, the values obtained 
will be, to some extent, inaccurate. On the other hand, some species will appear halfway 
through the reaction, making the calculated rates underestimated. Therefore, to reduce 
these errors, a parameter optimisation is performed using MATLAB R2019a, in an 
iterative procedure, using the calculated kinetic constants as first guess and optimising 
their value such that the mathematical model fits the experimental data. 

3.3. Experimental procedure 

Four experiments of ABE upgrading are performed in a pressure vessel/Parr reactor (Parr 
Series 5500 HPCL Reactor and a 4848 Reactor Controller) with the volume of 300 mL, 
at autogenous 80 bar pressure and 300 0C (Ketabchi et al., 2020b).  

Table 1. Conversion of reactants and yield of products having the highest concentration at different 
temperatures using Fe catalyst 

Temperature (0C) 200 250 300 

Conversion 
(%) 

A 99.0 99.6 99.6 

B - - 95.9 

E 95.5 95.9 95.2 

Yield (%) 

D 6.45 10 6 

G 3.40 3.40 3.80 

L - 0.60 0.64 

P - - 0.34 

J - - 0.40 

The reactor is purged with N2 to ensure an oxygen-free atmosphere, and filled with 0.5 g 
of reduced Fe catalysts and 83.5 mL of anhydrous ABE mixture (Sigma-Aldrich) with 
the mole ration 3:6:1. After 18 hours, the catalysts are recovered through filtration and 
the liquid products analysed in a gas chromatograph through the SIM mode (Agilent 
HP6890 GC), using a DB-5 Capillary Analytical column and a flame ionisation detector 
(FID). Quantification of the reaction products is performed by establishing GC response 
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factors of the main products identified, by injection of samples with known 
concentrations prepared using standards. The results for the four experiments are shown 
in Tables 1 and 2. 

Table 2. Experimental data used for obtaining kinetic data 

Experiment Acetone (moles) Butanol (moles) Ethanol (moles) 

K1 0.306 0.601 0.2054 

K2 0.153 0.601 0.1027 

K3 0.306 0.300 0.1027 

Original 0.306 0.601 0.1027 

4. Results and discussion 
Using the approach described in Section 3.2, the order and reaction rate constants 
summarised in Table 3 are calculated. 

Table 3. Reaction rate parameters for the ABE upgrading network 

Reaction 
number 

Total reaction 
order 

Reaction rate 
value (× 10−6) 

Unit Ea (kJ/mole) A 

R1 2 2200 𝐿/𝑚𝑜𝑙𝑒 ∙ 𝑠 7.656.3626 17.16590 × 10  
R2 2 2500 𝐿/𝑚𝑜𝑙𝑒 ∙ 𝑠 647.1950 66.21620 × 10  
R3 1.4 330 𝐿/𝑚𝑜𝑙𝑒 ∙ 𝑠 284,122.6360 1.94199 × 10  
R4 0 0.01300 𝑚𝑜𝑙𝑒/𝐿 ∙ 𝑠 146,193.3760 16.09740 × 10  

R4x 0 0.00310 𝑚𝑜𝑙𝑒/𝐿 ∙ 𝑠 317,262.2400 2.03707 × 10  
R-4x 0 0.00135 𝑚𝑜𝑙𝑒/𝐿 ∙ 𝑠   

R5 1 0.15300 1/𝑠 89,358.8720 4.00504 × 10  
R-5 1.028 0.18600 1/𝑠   

R6 1 0.15400 1/𝑠 63,375.1278 9.46455 × 10  
It can be observed that at constant temperature the slowest reaction is R4x, as it has the 
lowest reaction rate and the highest activation energy, which is in good agreement with 
the observations by Narayanan et al. (1998) that Fe is not well suited for aldol 
condensation reactions involving hydrogen transfer. Interestingly, R2 has the highest 
reaction rate constant, showing that the Fe catalyst favours it. The model data is 
subsequently compared to the experiments, in concentration vs. time graphs (Figure 2), 
to assert the model accuracy. The expected trend of decreasing concentration with time 
can be seen with the reactants, while an increase is observed for the remaining 
components regarding the modelled data. However, one limitation of the model 
simplification should be discussed regarding components (such as Ethanol), which are 
both produced and consumed in the ABE upgrading. Production occurs also in   
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irreversible reactions, not considered in the final model. Therefore, for such cases, the 
model is only able to predict the overall trend.  

5. Conclusions 
This contribution identifies a reaction network for the ABE upgrading using graph theory 
analysis, based on previous literature, as well as experimental data. Following this, the 
kinetic model parameters are determined and optimised for Arrhenius law-type of 
equations. The resulting model is compared with the experimental data through 
concentration-time graphs, demonstrating a decent degree of accuracy, despite a few 
components displaying abnormal behaviour. More experiments should be performed to 
obtain more data for these and for additional products to further improve the model and 
its accuracy. 

References 
U. Gupta et al., 2016, Time scale decomposition in complex reaction systems: A graph theoretic 

analyis, Comp Chem Eng 95, pp. 170-181 

E. Ketabchi et al., 2020, Influence of reaction parameters on the catalytic upgrading of an 
Acetone, Butanol, and Ethanol (ABE) mixture: Exploring new routes for modern biorefineries, 
Front Chem 7 (1), pp. 1-14 

E. Ketabchi et al., 2020, Catalytic upgrading of Acetone, Butanol and Ethanol (ABE): A step 
ahead for the production of added value chemicals in biorefineries, Renew Energy 156 (1), pp. 
1065-1075 

S. Naranayan et al., 1998, Acetone hydrogenation over co-precipitated Ni/Al2O3, Co/Al2O3 and 
Fe/Al2O3 catalysts, J Chem Soc 94, 8, pp. 1123-1128 

G. Onyestyák et al., 2015, Acetone alkylation with ethanol over multifunctional catalysis by a 
borrowing hydrogen strategy, RSC Adv 5, 120, pp. 99502-99509 

N. Qureshy et al., 2010, Production of butanol (a biofuel) from agricultural residues, Biomass 
Bioenergy 34, 4, pp. 566-571 

S. Sreekumar et al., 2015, Production of ABE mixture from Clostridium acetobutylicum and its 
conversion to high-value bioefuels, Nat Protoc 10, 3, pp. 528-537 

Figure 2. Comparison between experimental and modelled data 

648



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

 

MOSKopt: A simulation-based data-driven digital 
twin optimizer with embedded uncertainty 
quantification 
Resul Ala, Gürkan Sinb,* 
aNovo Nordisk A/S, DK-2880 Bagsvaerd, Denmark 
bProcess and Systems Engineering Center, Department of Chemical and Biochemical 
Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 

gsi@kt.dtu.dk 

Abstract 
In this work, we present a new stochastic black-box optimizer—named MOSKopt—for 
optimization under uncertainty problems involving expensive-to-evaluate and arbitrarily 
complex simulation models subject to severe uncertainties and multiple design 
constraints. The optimizer relies on a novel surrogate-assisted, simulation-based, and 
data-driven optimization algorithm developed in our earlier work for multiple-
constrained optimization of stochastic black-box systems using a stochastic Kriging (SK) 
type surrogate model, which has shown its promising potential in stochastic simulation 
optimization studies. MOSKopt replaces simulation replications with parallelized Monte 
Carlo simulations to characterize the resulting error distributions of the optimization 
objective and constraints in a more generalized way. In doing so, it broadly extends the 
applicability of SK-based frameworks to other optimization problems exposed to 
uncertain input data or model parameters—a commonly encountered paradigm in process 
simulations driving the digital twins. We benchmark the optimizer and its algorithms on 
three case studies with increasing complexity. The first two are benchmark test problems 
taken from simulation optimization literature, whereas the third optimizes the design and 
operations of a wastewater treatment plant (WWTP) subject to effluent quality constraints 
using a detailed plant-wide simulation model—the closest case to a digital twin—
consisting of several high-fidelity bioprocess models (e.g., activated sludge and anaerobic 
digestion) calibrated for data obtained from full-scale wastewater treatment plants under 
uncertain influent scenarios. The results from case studies quantitatively demonstrate the 
superior efficacy of the MOSKopt algorithm over the literature methods not only in 
maintaining feasibility under multiple stochastic constraints but also in returning better 
objective function values. The results also show the potential of the MOSKopt’s entirely 
non-intrusive workflow, which makes it a suitable optimizer for applications involving 
digital twin projects with non-negligible uncertainties.  

Keywords: simulation-based optimization, digital twins, optimization under uncertainty 

1. Introduction 
Industry is invested in building digital twins that are aimed at mirroring every facet of 
their physical counterparts (e.g., a pharmaceutical manufacturing process) as accurately 
as possible. At the core of this ambition lie high fidelity simulations driven by an 
integrated set of first principles/mechanistic, multiscale, and machine learning models 
that are continually kept up-to-date using data collected from sensors in real-time. There 
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is much to be done to realize the full potential of such ambitious projects. For instance, 
optimizing the design and operations of a physical twin requires a simulation-based and 
data-driven optimization engine that can interface with its virtual replica. To this end, 
simulation-based optimization algorithms hold an appealing promise due to their non-
intrusive ability to seek a near-optimal set of decisions to arbitrarily complex process 
models along with the ability to incorporate stochastic objectives and constraints, thereby 
allowing for the quantification of uncertainties surrounding the decisions made from the 
use of the digital twin technology. In this work, we consider optimization under 
uncertainty problems whose objective and constraints are surrounded by uncertainties and 
can only be estimated by performing high fidelity simulations. For these problems, we 
comparatively evaluate sampling and simulation-based optimization methods.  

2. Methods 
2.1. Benchmark method: Exhaustive sampling 

The exhaustive sampling method represents the standard Monte Carlo sampling-based 
approach to uncertain design space exploration problems. In this method, both the design 
space of the process parameters and the uncertainty space of uncertain input parameters 
are discretized using sampling [1]. At each design sample (xi) the probability of satisfying 
active constraints under uncertainty is computed via Monte Carlo simulations performed 
within the uncertainty space. Table 1 shows several statistical metrics (e.g., mean, upper 
confidence interval of the mean, etc.) that can be used for hedging against the 
uncertainties. Despite being effective, this method often requires a large number of model 
evaluations, making it extremely intensive (computationally), if not prohibitive, 
especially for real practical applications, where the computational cost of running the 
simulation model can be very high. To reduce the required number of simulations and 
also to increase the efficacy of this method, simulation-based methods described next 
employ surrogate models that assist with performing a more informed exploration within 
the design space. 
Table 1: Uncertainty hedging strategies used in this work for satisfying stochastic constraints. 

Identifier Explanation | MCS: Monte Carlo simulations, cl: constraint limit 
Mean mean(MCS) < cl for each constraint 
UCI95 Upper confidence interval of MCS < cl for each constraint 
PF80 The probability of the feasibility of the MCS > 80 % for each constraint 
MeanPlusSigma mean(MCS) + standard deviation(MCS) < cl for each constraint 

2.2. Simulation-based optimization 

In our earlier work [2], we described the simulation-based optimization approach which 
employs stochastic Kriging [3] type surrogate models that are constructed from a dataset 
of initial observations of optimization objective and constraints. A Monte Carlo-based 
uncertainty analysis is also performed on each design sample in the initial dataset. The 
surrogate models are then used to find the next best candidate design points in an adaptive 
sampling stage, which performs an internal optimization using infill criteria. The designs 
proposed by this stage are validated by performing rigorous simulations, and the data 
obtained from these simulations are used to improve surrogate models of the objective, 
constraints, and their uncertainties. Lastly, after a certain computational budget is 
exhausted, the best feasible design among the simulated design points is returned as the 
near-optimal design. Since this design is obtained by taking into account the effects of 
uncertainties on the optimization objective and constraints, it is also the near-optimal 
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design under uncertainty. This workflow has been implemented in the solver MOSKopt 
with two infill criteria:  feasibility enhanced expected improvement (FEI) [4] and multiple 
constrained FEI (mcFEI) [2]. Further details can be found in the original work [2]. 

3. Case studies 
3.1. Case study 1: An illustrative test problem — Sasena 

To demonstrate the benefits of the simulation-based approach, we first consider a widely-
studied illustrative test problem named Sasena from literature [5]. With its two design 
variables and three active design constraints, Sasena readily allows for design space 
visualization and provides a case well representative of actual engineering design 
optimization problems subject to multiple stochastic constraints. To make this problem 
an optimization under uncertainty problem, we arbitrarily introduce four uncertain 
parameters entering the expressions of both the objective and the constraints as follows: 
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We solve this problem using the benchmark method. First, the two-dimensional design 
space of the problem is sampled using Latin hypercube sampling (LHS) with a varying 
number of samples—from a very coarse (10) to a very fine (105) design. Each sample in 
the sampling design is a candidate design for which an uncertainty analysis is performed 
using vectorized Monte Carlo simulations with 103 samples taken from the normally 
distributed input uncertainty space. The results are repeated 50 different times so as to 
alleviate the effects of the randomness in the initial sample locations. Table 2 shows the 
averaged (over 50 repetitions) results of the optimum found and its location. Expectedly, 
increasing the number of design samples results in improved objective values as the finer 
sampling cover the design space more rigorously. A design sample is declared feasible if 
the mean plus the standard deviations (obtained from Monte Carlo simulations) of each 
constraint satisfies the corresponding constraint limits. Similarly, the other hedging 
strategies, as was tabulated in Table 1, are also computed, and the obtained results are 
shown in Figure 1. Using only the mean for uncertainty hedging yields lower optimum 
values (-0.549 for 105 design samples), whereas more conservative approaches uplift the 

 
Figure 1: Uncertainty hedging strategies are compared along with the increasing number of 

design samples. The returned optimum shifts upwards for more conservative strategies. 
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optimum towards the positive axis. The same problem is also solved with the simulation-
based optimizer (MOSKopt) using the two infill criteria (FEI and mcFEI) with a total of 
100 samples in the design space (10 initial, 90 adaptive iteration samples). Table 2 shows 
the good agreement obtained among the methods.  
Table 2: The average results of the optimum value of the objective and its location obtained using 
different methods. The uncertainty hedge is set to MeanPlusSigma. 

Method 
# of LHS design 

samples 
Total # of calls 

to the model 
Optimum 
value (f) 

Location of the 
optimum (x) 

Exhaustive 101 104 -0.395 [0.310, 0.662] 
Exhaustive 102 105 -0.452 [0.204, 0.376] 
Exhaustive 103 106 -0.464 [0.197, 0.465] 
Exhaustive 104 107 -0.467 [0.202, 0.447] 
Exhaustive 105 108 -0.468 [0.200, 0.453] 
FEI 102 105 -0.451 [0.275, 0.932] 
mcFEI 102 105 -0.458 [0.247, 0.445] 

3.2. Case study 2: A high dimensional test problem — Rosen Suzuki 

In order to both investigate the reliability and also compare the performance of both infill 
criteria in higher-dimensional problems, we solve the Rosen Suzuki test problem from 
literature [5]. Similar to the previous case, we introduce uncertain parameters in the 
expressions of both the objective and the constraints as follows:  
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3 3  for 1, .., 4 and ( , ) for j 1, .., 4 and 1,  0.25          i jx i u  

(2) 

Table 3 tabulates the results obtained from 50 different repetitions. The benchmark 
method used 105 design samples, whereas the MOSKopt solver used only 50 design 
samples (20 initial plus 30 infills) to locate the optimum, with the MeanPlusSigma 

Figure 2: Comparison of FEI and mcFEI infill criteria for the Rosen Suzuki test problem. The 
multiple constraint modeling of the mcFEI criterion leads to better convergence. 
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hedging. Comparing the two infill criteria, Figure 2 shows convergences where the mcFEI 
criterion consistently outperforms the FEI criterion in returning better optimum solutions 
satisfying the stochastic constraints. This can be explained with the separate modeling of 
each constraint response and their uncertainty, as implemented in the mcFEI criterion, as 
opposed to the lumped approach of the FEI criterion. As each constraint has different 
scales, separate modeling helps to better identify the uncertain characteristics of the 
problem’s output space and hence leads to the better performance of the mcFEI criterion. 
The solver’s GitHub repository (https://github.com/resulal/MOSKopt) contains the 
working code examples of Sasena and Rosen Suzuki case studies. 
Table 3: Results of simulation-based optimization for the uncertain Rosen Suzuki problem. 

Method 
# of LHS 
samples 

Total # of calls to 
the model 

Optimum 
value (f) Location of the optimum (x) 

Exhaustive 105 108 -42.152 [-0.026, 0.841, 1.951, -0.914] 
FEI 50 50 103 -24.915 [-0.368, 0.607, 1.468, 0.128]   
mcFEI 50 50 103 -42.701 [0.028, 0.608, 1.996, -0.996] 

3.3. Case study 3: WWTP plant optimization under influent uncertainty 

After demonstrating the motivations behind the simulation-based approach with the 
simple test problems, we now turn to the engineering design under uncertainty problems 
subject to multiple constraints. To this end, we build on the results of our earlier work 
[6], where we presented a Monte Carlo sampling-based design space exploration for two 
full-scale WWTPs: Avedøre (Denmark) and Valladolid (Spain). Both plants employ an 
activated sludge process-based wastewater treatment with anaerobic digestion of the 
sludge line. Four influent fractionations, namely soluble inert (SI), readily biodegradable 
substrate (SS), particulate inert organic matter (XI), and active heterotrophic biomass 
(XBH), are allowed to be uncertain around their nominal values with a coefficient of 
variation (σ/µ) of 10 %. The design objective is to minimize a plant-wide operational cost 
index (OCI) while the active design constraints are the regulated effluent quality metrics, 
e.g., chemical oxygen demand (COD), total nitrogen (TN), and ammonia (NH4). A more 
detailed description of the mathematical models, plant-wide simulation strategy, and the 
calculation of plant performance indicators can be found in our earlier work [6]. The 
MOSKopt solver is called with the mcFEI criterion along with the MeanPlusSigma 
hedging and the plants are simulated to a steady-state. Figure 3 shows the progress of the 
objective value in both plants using 150 design samples (60 initial + 90 adaptive), whereas 
Table 4 shows the values of the decision variables obtained at the returned optimum. 
Compared to our earlier work [6], the results obtained here using the simulation-based 
solver show improvement in the returned best objective values, reducing the operational 
costs in both plants under uncertain influent scenarios.  

 
Figure 3: Results of simulation-based design space optimization in full-scale WWTPs. 

MOSKopt: A simulation-based data-driven digital twin optimizer with 
embedded uncertainty quantification
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Table 4: Optimization results for the WWTP design optimization case study. 

Design and operational decision variables Lower 
bound 

Value at 
optimum 
Avedøre 

Value at 
optimum 

Valladolid 

Upper 
bound 

Hydraulic residence time (HRT) [day] 0.125 0.125 0.125 0.5 
Volume ratio of anoxic/aerobic tanks (VR) 0.2 0.49 0.52 0.8 
Solids retention time (SRT) [day] 5 8.32 5.20 15 
Dissolved oxygen setpoint (DO) [g/m3] 0.7 0.70 0.89 1.5 
Surface overflow rate (SOR) [m3m-2day−1] 16 33 31.22 33 
Internal recycle ratio (RRi) 1 2.75 2.78 3 

4. Conclusions 
This work has presented a novel generic stochastic black-box solver designed to meet a 
growing need from industry involved in optimization-based decision making coupled 
with the complex digital twin simulations. The objective was to showcase use cases for 
the solver by also comparing its performance to other literature methods. Results from 
three case studies highlight the importance of integrated uncertainty considerations in 
multiple design constraints in order to increase flexibility and resilience in the face of 
uncertainty. Using an embedded Monte Carlo simulations, the solver makes it possible to 
quantify uncertainties surrounding design constraints and thereby robustify design and 
operational decisions against the effects of possible variations in the influent wastewater 
compositions. The solver’s entirely non-intrusive workflow makes it possible to plug in 
complex simulation models (e.g., via COM interfaces to CFD codes) without the further 
need for model modification and facilitates its wider adoption by non-specialist 
practitioners in other domains.  
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Abstract
Mixed-integer polynomial programs (MIPOPs) frequently arise in chemical engineering
applications such as pooling, blending and operations planning. Many global
optimization solvers rely on mixed-integer linear (MIP) relaxations of MIPOPs and
solve them repeatedly as part of a branch-and-bound algorithm using commercial MIP
solvers. GUROBI, one of the prominent MIP solvers, recently added the capability to
solve mixed-integer quadratically-constrained quadratic programs (MIQCQPs). This
paper investigates global optimization of MIPOPs via their reformulation as MIQCQPs
followed by their solution to global optimality using GUROBI. The effectiveness of this
approach is tested on 60 instances of MIPOPs selected from the library MINLPLib. The
performance of the MIQCQP reformulation approach is compared to the state-of-the-art
global solvers BARON, ANTIGONE and SCIP in GAMS. For the case of single
threading, a reduction of 28% and 42% compared to SCIP and ANTIGONE
respectively is observed. This approach, therefore, holds promise for integration into
existing global solvers to handle MIPOPs.
Keywords: Deterministic global optimization, Polynomial programming, Mixed-integer
nonlinear programming, MINLPLib

1. Introduction
Mixed-integer polynomial programs (MIPOPs) are a special case of mixed-integer
nonlinear programs (MINLPs), whereby the objective and constraint functions are
polynomial in the continuous and discrete variables. They are frequently encountered in
chemical engineering applications, such as pooling & blending (Teles et al., 2013b),
optimal scheduling of multiproduct plants (Castro and Novais, 2009), and short-term
planning of integrated refinery-petrochemical complexes (Uribe-Rodriguez et al., 2020).
Significant research effort has thus been devoted to solving MIPOPs to guaranteed
global optimality. Generic global solvers based on spatial branch-and-bound search such
as BARON (Kılınç and Sahinidis, 2018), ANTIGONE (Misener and Floudas, 2014) and
SCIP (Gamrath et al., 2020), can all handle MIPOPs as special cases. Other algorithms
include the reformulation-linearization technique (RLT) (Sherali and Tuncbilek, 1992),
and the piecewise-linear relaxation approach (Teles et al., 2013a; Nagarajan et al.,
2019). All of the aforementioned algorithms rely on linear (LP) or mixed-integer linear
(MIP) relaxations of non-convex sub-expressions, which are solved using commercial
MIP solvers. Recently, the capability to solve non-convex mixed-integer
quadratically-constrained quadratic programs (MIQCQPs) was added to the GUROBI
MIP solver (Gurobi Optimization LLC, 2020). In this paper, therefore, we investigate a
novel solution approach, whereby MIPOPs are first reformulated as MIQCQPs and then

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-88506-5.50104-2



solved using GUROBI to global optimality. The performance of the reformulation
approach is compared to the state-of-the-art global solvers BARON, ANTIGONE and
SCIP. The rest of the paper is organized as follows: in Section 2 a brief description of
the theory behind the reformulation, its implementation, and the test instances used is
provided; the performance of our approach and comparisons with the aforementioned
global solvers is analyzed in Section 3; finally, conclusions are drawn in Section 4.

2. Methodology
We consider MIPOPs in the form:

(1)𝑝
0
(𝑥,  𝑦) 

(2)𝑠. 𝑡.    𝑝
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2.1. Quadratic Reformulation
The main idea behind reformulating MIPOPs as MIQCQPs is that any polynomial
function can be transformed into a quadratic function via the introduction of auxiliary
variables. The reformulation proceeds by constructing a list of monomials in the𝐵
variables and , with the following properties (Rumschinski et al., 2010):𝑥 𝑦

1. For every monomial in Eqn. (6), there exists such that𝑞 𝑏
1
, 𝑏

2
∈ 𝐵 𝑞 = 𝑏

1
𝑏

2

2. For every monomial of degree higher than 1, there exists such𝑞 ∈ 𝐵 𝑏
1
, 𝑏

2
∈ 𝐵

that 𝑞 = 𝑏
1
𝑏

2

3. 1 ∈ 𝐵

Notice that the list is not unique in general.𝐵

From Property 1, the polynomial functions in Eqn. (5) can be rewritten as quadratic𝑝
𝑖

forms:
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(7)𝑝
𝑖
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where the variable vectors correspond to the elements of ; and for suitable realξ 𝐵

symmetric matrices with obtained using Eqn. (7).𝑄
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ξ 𝑛

ξ
= 𝐵| |

From Property 2, decomposing the elements in with degree higher than 1 into𝐵
products of lower-order monomials also in gives rise to auxiliary quadratic𝐵
constraints:
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for suitable real symmetric matrices and is number of such decompositions.𝑅
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Lastly, bounds on the variables can easily be inferred, e.g., using interval calculationsξ
from the original variable bounds in Eqn. (4). These bounds can be represented by a set
of linear constraints

(9)𝐴ξ ≤ 0

for a suitable real matrix .𝐴
𝑖

∈ 𝑅
2𝑛

ξ
×𝑛

ξ

Overall, an equivalent MIQCQP to the MIPOP in Eqns. (1) – (4) can be written in the
form:
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2.2. Implementation
A script was written in Python v3.7 that reads a GAMS scalar model and imports the list
of all variables and variable bounds, the objective function, and the constraints. The
quadratic reformulation described in Section 2.1 is automated in the library MC++
(Chachuat et al., 2015) by defining expression trees (DAG) from the problem
information in Python. A dedicated class in MC++ returns the vector of monomials,
sparse quadratic forms for all the polynomial objective and constraint functions (7), and
sparse quadratic forms for the auxiliary constraints (8). Bounds on the auxiliary DAG
variables are furthermore inferred using the verified interval library PROFIL (Knüppel,
1994). Ultimately, all of this information is collected by a C++ script that generates a lp
file for the MIQCQP (10) – (14) and passes it to GUROBI (v9.0.3) for global
optimization. This workflow is summarized in Fig. 1.
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Figure 1: Workflow for reformulation of MIPOP as MIQCQP and solution using
GUROBI

2.3. Testing
In order to test the effectiveness of this approach, 60 test instances of MIPOPs from
MINLPLib (GAMS Development Corp., 2018) are considered, which correspond to a
wide variety of applications. These instances comprise between 3--961 variables and
0--5329 constraints and have a degree ranging between 2--8. All of the computations are
performed on a dual 12-core Intel® Xeon® CPU E5-2650 v4 @2.20GHz with 196GB of
RAM and running Centos 7.8. The list of all instances used for testing and the
corresponding '.lp' files can be accesed from
https://github.com/tk3016/Test_instances_ESCAPE31.git.

In solving the reformulated MIQCQPs using GUROBI, only 1 thread is exploited,
denoted as `Gur-1'. This is to allow for a more transparent comparison with the
state-of-the-art global solvers BARON (v20.4.14), ANTIGONE (v1.1) and SCIP (v7.0)
in GAMS (v32.2) that only take advantage of multi-threading in solving the MIP
relaxations. In this study, multi-threading is not exploited in state-of-the-art global
solvers. For all the solvers considered, Absolute termination tolerance is set at ,10−9

Relative termination tolerance is set at , Feasibility tolerance is set at and a10−4 10−5

Time limit of 3600s or 1 hour is imposed.

Performance is assessed using performance profiles (Dolan and Moré, 2002). The
shifted geometric mean (SGM) (Mittelmann, 2020) over all the test instances is also
calculated for each solver based on the wall-time:

(15)𝑆𝐺𝑀 = 𝑒𝑥𝑝 𝑖=1
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where is the wall-time taken to solve instance , is the total number of instances𝑣
𝑖

𝑖 𝑛
considered and is a non-negative shift parameter, set to 5 in this paper.𝑠

ℎ

3. Results and Discussion

As outlined in the previous section, first all the GAMS models are read using a Python
script such that all relevant information about the problem can be collected and passed
to MC++ for reformulation. It is noted that the time taken to process the reformulation
is < 1s for all instances except transswitch0030r (1.222 s), transswitch0039r (1.805 s)
and unitcommit2 (17.234 s). For unitcommit2, the time is unusually high because it
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comprises 960 variables, 5329 linear constraints and a polynomial objective with 480
monomials of degree ≥ 2 and 720 monomials of degree 1. Since the time taken to
process the re-formulation is negligible for majority of the instances, it is excluded from
the discussion henceforth. Based on the performance profiles in Fig. 2, it is observed
that the largest proportion of problems is solved within 1s in Gur-1, with the second
largest proportion achieved with BARON. Within the maximum time limit of 1 hour,
BARON solves 68% of the instances, with Gur-1 a close second at 65%. Similar
behaviour is observed when considering the SGM in absolute and relative terms (Table
1), with the best performance achieved with BARON, followed by Gur-1, SCIP and
ANTIGONE. Focusing on specific problem types, Gur-1 is found to perform worse than
current state-of-the-art solvers for periodic scheduling of continuous multiproduct plants
problems. Among solved instances of this type, BARON and SCIP can solve
multiplants_mtg1a in approximately 1300s whereas Gur-1 and ANTIGONE are unable
to solve the instance within 1 hour. BARON, ANTIGONE and SCIP can solve
multiplants_mtg2 in 1703s, 24s and 1375s respectively which is significantly faster than
Gur-1 which solves it in 3573s. For unsolved instances of this type (mtg1b, mtg1c,
mtg5, mtg6),

Figure 2: Performance profile for the test set showing proportion of instances solved as
a function of wall-time on a log2 scale

Solver BARON SCIP ANTIGONE Gur -
1

Shifted Geometric
Mean

2.01 3.25 4.04 2.34

% reduction (Gur-1) -16 28 42 –
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Table 1: Shifted Geometric Mean of wall-time (s) over the test set for the five
runs.% reduction (Gur-x) refers to the percentage change in SGM between Gur-x
and  the algorithm indicated in the relevant column, relative to that algorithm.

the relative gap is(|(𝑃𝑟𝑖𝑚𝑎𝑙 𝐵𝑜𝑢𝑛𝑑 −  𝐷𝑢𝑎𝑙 𝐵𝑜𝑢𝑛𝑑)/𝑃𝑟𝑖𝑚𝑎𝑙 𝐵𝑜𝑢𝑛𝑑| × 100)
significantly larger for Gur-1 when compared to other global solvers. This can be
attributed to weaker root node relaxations obtained by GUROBI than for other global
solvers. The spatial branch and bound-based global solvers exploit several
pre-processing techniques that reduce the bounds on variables significantly.
Consequently, this leads to tighter relaxations and stronger cutting planes. Such
pre-processing strategies are not employed with the reformulation approach, nor is an
incumbent solution made available at the root node or at the start of the B&B tree.
Despite this, the reformulation process is found to perform more effectively in most
cases than direct solution of the MIPOP with state-of-the art solvers. This demonstrates
the merit of using this approach.

4. Conclusion
A reformulation of MIPOPs into MIQCQPs and their solution with a specialized
algorithm has been proposed and tested for a varied set of problems. Comparison with
direct solution of the MIPOPs indicates that the reformulation approach is a promising
strategy. For the case of single-threading (Gur-1), the performance is better than
ANTIGONE and SCIP but marginally worse than BARON. There is potential to further
improve its effectiveness by incorporating pre-processing strategies. The approach can
be further developed by automating the workflow and using pre-processing strategies
will be investigated. Finally, this approach can potentially be integrated within global
solvers used to solve MIPOPs since reformulation can generally be carried out quickly
and efficiently.
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Abstract 
The paper outlines a generic optimization approach with extensive capabilities to 
distribute the computational work in the optimization, also to explore interim data 
generated by the optimization algorithms without penalizing search times and effort. The 
approach postulates a network of autonomous computing nodes and data pools (data 
repositories); nodes and pools respectively generate and host interim solutions that are 
redistributed in the network with a parallel use of data analytics that constitute 
asynchronous tasks. The approach is demonstrated in complex problems of (single and 
multiphase) reactor network synthesis. The algorithm is implemented using an 
infrastructure of multiple CPU cores. Results confirm significant reductions of computing 
times due to parallelization, also the benefit to explore cost-free analytics over data 
generated internally. Future work includes a more systematic and extensive use of 
machine learning, also the use of dynamic networks of nodes and pools.  

Keywords: optimization, parallel and asynchronous search, data analysis, reactor 
networks. 

1. Introduction and background 
Optimization methods remain in the core of process systems engineering addressing a 
wide range of problems in process and product design (synthesis and process 
development, process integration and intensification) as well as in operations and process 
dynamics. Rather than relying on over-the-self algorithms, chemical engineering has 
pioneered novel optimization technology featuring advanced methods that reach out to 
the wider systems community. Floudas and Gounaris, 2009 offer an extensive list of 
methods presenting strong evidence that chemical engineering contributions have been 
major and lasting. Optimization algorithms include stochastic optimization algorithms 
invariably applied by means of Simulated Annealing, Tabu Search, Genetic algorithms 
and/or hybrid methods. The latter algorithms face the difficulty to choose parameter 
values so that convergence is guaranteed while deterministic algorithms face the 
challenge to transcend local optima and to ensure that the solution is globally optimum. 
Optimization problems in chemical reactor design rank among the hardest to tackle due 
to the complexity and nonlinearity of their state space as well as the numerous degrees of 
freedom to fathom (types of reactors, macro and micro-mining, multiple processing paths 
and kinetics, trade-offs between mass transfer and chemical reactions etc.). Accordingly, 
reactor design sets up an excellent background to benchmark optimization methods 
especially as both deterministic (Achenie and Biegler, 1986) and stochastic methods 
(Ashley and Linke, 2004) are available to compare and test efficiency.  
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Most optimization algorithms, whether deterministic or stochastic, typically involve 
sequences of internal (local search) steps, namely tasks that repeat and iterate before 
convergence is pulled off once they meet appropriately selected criteria (e.g. KKT 
conditions and integrality gaps in deterministic methods; statistical targets in standard 
deviation for stochastic methods). Local search tasks generate significant volumes of 
interim data. Those are hardly explored by conventional algorithms notwithstanding an 
apparent potential for acceleration and efficiency: data can be explored to tune local 
search parameters (that are usually set by heuristics), share interpretation of the state 
space (that could be complex), and/or improve confidence in the solution quality. 
However, efficiency gains are debatable as any meaningful use of data analytics entails 
the introduction of expensive and interruptive steps, possibly more demanding than the 
standard local search tasks. Accordingly, reported efforts are so far restricted to offline 
analysis with a view to extract rules and knowledge from solution sets of stochastic 
optimization experiments (Ashley and Linke, 2004) or to merely reduce degrees of 
freedom in synthesis problems (Kokossis et al., 2016). Separate work has pointed out into 
better prospects to explore data structures in optimization (Cecelja et al, 2014) by 
completely reformulating the algorithm to the purpose. The paper responds to the 
challenge by presenting an algorithm based on a network of autonomous units that 
includes data pools and computing nodes. Numbers of pools and computing nodes are 
design parameters of the algorithm. Units generate, host, and redistribute interim 
solutions. Computing nodes are asynchronous and operate in parallel to generate interim 
solutions stored in data pools. Pools supply initial points for each local search while 
interim solutions may transfer across different pools based on their statistical properties 
and their solution quality. The algorithm is possible to demonstrate advantages provided 
there is access to a distributed network of CPUs, also on the assumption that the 
optimization problem to solve is reasonable complex or large. The following sections 
include the presentation of the methodological approach, the steps of its implementation 
and results in the application of the algorithm to optimize complex reactor networks and 
multiphase reaction systems. 

2. Methodological Approach 
The optimization problem is addressed in a general form: 𝑚𝑎𝑥 𝒻(𝑥, 𝑦), 𝑠. 𝑡{ℋ(𝑥, 𝑦) = 0, ℊ(𝑥, 𝑦) ≤ 0, 𝑥 ∈ ℝ , 𝑦 ∈ {0,1}  }                           (1) 

The set in Eq. (1) defines its feasible region  𝒮 = {(𝑥, 𝑦)|ℋ(𝑥, 𝑦) = 0, ℊ(𝑥, 𝑦) ≤ 0, 𝑥 ∈ ℝ , 𝑦 ∈ {0,1} }                                              (2) 

Let us further introduce  
- a set J={j} of 𝑃  computing nodes  𝑃 = 𝑃 , 𝑗 = 1,2, … , 𝑛                                                                                              (3) 
- a set 𝐼 = {𝑖} of data pools 𝑆  containing  elements 𝑠 ,  in 𝒮 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑆 = 𝑠 , ∈ 𝒮, 𝑖 ∈ 𝐼, 𝑘 = 1,2, …  , 𝑛                                                                               (4) 

where 𝑛 = 𝑐𝑎𝑟𝑑(𝑆 ) is the maximum population of solutions in each pool and 𝑛  and 𝑛  are respectively the total number of pools and computing nodes. The nodes assigned 
to each pool 𝑆   are denoted by 𝑁 , , 𝑖 = 1, … , 𝑛  & 𝑙 = 1, … , 𝑛 , 𝑛  is the total number of 
nodes corresponding to a single pool. Let ℎ : 𝒮 → 𝒮 be a (local) search function assigned 
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at each computing node 𝑃 . The application of ℎ  on a 𝑠 , ∈ 𝑆  yields a new element in 𝑆 , namely  ℎ : 𝑠 , ∈ 𝑆 → ℎ 𝑠 , ∈ 𝑆                                                                                                         (5) 

The successive application of ℎ  constitutes a Markov chain 𝑔  with length 𝐿 .  Given 
the 𝑃 , ℎ  and 𝑠 , ∈ 𝑆  the inclusion of 𝑠 , 𝑆  will k-expand each pool 𝑆  (Fig. 1) to  𝑆 = 𝑆 𝑈 ℎ 𝑠 , = 𝑆                                                                                                                (6) 

Each element 𝑠 , , ∈ 𝑆  is a candidate to process through available nodes 𝑃  where 
successive applications of ℎ  yield new internal solutions along the lines:  𝑔 , , 𝑠 , , = 𝑠 , , → 𝑠 , , → 𝑠 , , → ⋯ → 𝑠 , ,  , 𝑡 = 1,2, … , 𝐿                            (7) 

The new interim solutions 𝑠 , ,  are assessed by the Metropolis criteria (Metropolis et al, 
1953). 

 
Figure 1: The k – expansion of pool 𝑆  through a computing node and a Markov chain. 

Each pool constitutes an autonomous system that can be connected to each other and it is 
also connected to a particular number of the available computing nodes. Local searches 
can be carried out in parallel and are asynchronous as there is no need to stall and wait 
for any other tasks to complete or start. Indeed, additional parallel tasks can be assigned 
to explore clustering, sorting, reduction, or any other type of data analytics. The analysis 
constitutes an asynchronous and independent step from the pool population expansion 
and the search for additional interim data. A clustering approach on 𝑆  will partition the 
pool population into disjoint clusters 𝑆 = 𝑈 𝑆 ,                                                                                                                                        (8) 𝑆 ,  denotes the disjoint partitions in 𝑆 . For pools connected with each other partitions can 
be transferred across pools. Let two pools 𝑆 , 𝑆  with 𝑖, 𝑛 ∈ 𝐼, which are connected 
through a path (𝑖, 𝑛) ∈ 𝐶 , . Let the path 𝐶 ,  indicates all permissible directions partitions 
can follow, essentially controlling data traffic from each pool 𝑆  to 𝑆 . Assuming a 
clustering approach is applied on 𝑆 , a disjoint partition 𝑆 ,  is termed as an inflection of 𝑆  on 𝑆 . A general formulation for the k–inflection is accordingly, 𝑆 = 𝑈 𝑆 , − 𝑆 , , 𝑆 = 𝑆 𝑈𝑆 , , 𝑙 ≠ 𝑛                                                                    (9) 

Network connections are degree of freedom of the approach but is defaulted to serial 
connections in the illustrations that follow. A design parameter 𝑇  is assigned to account 
for the level of acceptance allowed for new entries in each pool. The network structure of 
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Figure 2 is accordingly the default network tested in all illustrations and is defined by ℂ 
as ℂ = 𝑆 , 𝑆 , …  , 𝑆 , 𝑇 𝑇 , ∀ 𝑖 𝑙                                                                 (10) 

 
Figure 2: Mapping between autonomous units of the network ℂ. 

3. Implementation, illustration and results  
Design parameters for the optimization algorithm included  

- The number of pools and nodes: the algorithm used 5-10 pools assigning 1-16 cores 
per pool. Markov chains ranged from 30-100 iterations. 

- Pool parameters (mainly 𝑇 ): assignments ranged from 103 down to10-4 (using 
logarithmic scales between successive assignments) 

- Type and frequency of sorting and clustering tasks: solutions were sorted and 
partitioned discarding the lower 10% and transferring the top 20% over to pools 
with lower 𝑇   

- Upper and lower bounds for the population in the pool: 15-100 solutions 
- Parameters associated with convergence criteria 

 
Figure 3: Computational time vs number of cores 

The algorithm is implemented on python 2.7 using SQLite3 to create a local database 
(refraining the need for an internet connection) while computations relied on the National 
Infrastructures for Research and Technology (GRNET). GRNET operates ARIS 
(Advanced Research Information System), a high-performance system to support that 
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offers 80 cores with Intel Xeon E5-2680v2 10C 2.8GHz processors. Termination criteria 
included upper limits on the computational time, upper and lower limits on the number 
of tasks, progress in the objective function overall and individually at each pool (best 
stored and average). The method has been tested against complex problems in reactor 
network design (Mehta and Kokossis, 1997) using a superstructure approach. The 
engineering problem features multiphase chemical reactors, mass exchange units, mixers, 
and splitters. The set of equations consists of nonlinear equations with few discrete 
options. The domain addresses both single-phase and multi-phase applications and can 
be extended to reactive separations systems. The algorithm has been compared with 
standard annealing algorithm that is unable to parallelize but is empowered to allocate up 
to ~10,000 stages of calculation stages with fixed acceptance criteria (e.g. equivalent to 
the pools proposed in the algorithm). 

Illustration 1. The purpose has been to test the efficiency of the algorithm to converge 
but also the parallelization that can be achieved. The reaction system included the 
following reactions and initial feed concentrations: 𝐴 → 𝐵  (1), 𝑟 = 𝑘 𝐶 , 𝑘 = 0.05 𝑠 ,  𝐴 ,( ) = 1 ;    𝐵 → 𝐶  (2), 𝑟 = 𝑘 𝐶 , 𝑘 = 0.03 𝑠    𝐵 ( ) = 0 ;     𝐶 → 𝐴  (3), 𝑟 =𝑘 𝐶 , 𝑘 = 2 𝑠    𝐶 ,( ) = 10 .  The algorithm managed to converge with only 10 
improvements per pool (while results of the parallelization are summarized in Fig. 3. The 
reason behind the faster performance has been the significant number of unsuccessful 
simulations for both algorithms. The computational time drops as more cores are added, 
sharper initially (as 2 and 3 cores are assigned per pool) and continuing to decrease, 
almost linearly to the point in which 10 cores are assigned per pool (e.g. at a level equal 
to the maximum number of iterations) and decreasing further even as the bound is 
surpassed. The distribution of internal solutions is presented in Figure 4. Markov chains 
ranged from 30-100: in shorter Markov chains (L=30) the new algorithm matched 
annealing but proved 5-6 times slower; it has been faster for higher chains (L=100) where 
it also converged to consistently better solutions. 

 
Figure 4: Population of internal solutions for Illustration 1 

Illustration 2. The purpose of the illustration has been to test the algorithm in a much 
more demanding problem from the literature that involved two phases: (g)-gas and (l)-
liquid. The reaction system included the following reactions and initial feed 
concentrations: 𝐴 𝐹 → 𝐵 𝐻  (1), 𝑟 = 𝑘 𝐶 𝐶 , 𝑘 = 10   ;  𝐴 2𝐹 → 𝐷2𝐻  (2), 𝑟 = 𝑘 𝐶 𝐶 , 𝑘 = 5  ;  𝐵 𝐹 → 𝐶 𝐻  (3), 𝑟 = 𝑘 𝐶 𝐶 , 𝑘 = 2  ;  𝐵2𝐹 → 𝐸 2𝐻  (4), 𝑟 = 𝑘 𝐶 𝐶 , 𝑘 = 1  ; 𝐹 ,( ) = 200 , 𝐴 ,( ) = 100 .  
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The distribution of internal solutions is presented in Figure 5. As in all other examples, a 
higher concentration of solutions is observed in the lower pools. Markov chains ranged 
from 40-100: in all Markov chains the new algorithm has been slower but consistently 
producing 5-20% better solutions than those reported in the literature.  

 
Figure 5: Distribution of internal solutions in Illustration 2 

4. Conclusions 
In all examples the analysis of the interim data produced in the pools remained largely 
unexplored. By a similar token, the options to connect the pools with computer nodes in 
all-inclusive networks has not been researched. The level of analytics employed has 
remained basic and could benefit from machine learning methods available to cluster 
solutions, extract problem features and/or adjust the algorithm in a dynamic fashion. Even 
at its basic form, the algorithm managed to outperform over-the-self developments and 
improve literature results. Its advantages include a significant degree of parallelization 
and its potential to invite data analytics without essential penalties on the search.  
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Abstract 
The chemicals industry is facing a highly dynamic environment. Demand is continually 
fluctuating, and the pressure for new sustainable processes and products is rising. New 
environmental regulations are always expanding and becoming less harmonized globally, and 
customers are demanding sustainable products that are friendly to the environment. To follow 
all the market changes and remain competitive, companies need to invest in capital projects to 
develop new processes and products. However, since it´s a capital-intensive industry, new 
investments in capital projects need to be carefully managed. 

Today, companies need to find ways to be more efficient in the execution of the engineering 
projects. One way is to compress engineering cycles and adapt processes and products to comply 
with sustainable KPIs and new demands. The Unified Engineering methodology is one option 
enabled by the latest technologies and tools available. For decades, engineering to design and 
build industrial plants has been developed through projects with a complex and highly iterative 
workflow, using siloed solutions. The entire process is very time consuming, and the final 
deliverable to the owner of the operation is a set of documents (P&IDs, datasheets, 3D model, 
etc.) with disperse data, with no guarantee of consistency.  

In order to compress engineering cycles, a data-centric approach must be used. With this 
approach, documents and applications are always kept up to date with the latest validated data. 
The data-centric approach is the first step to apply the Unified Engineering methodology, which 
will evolve later to the plant Digital Twin. The Unified Engineering methodology uses a single 
source of information that is available for all the teams involved in the project. Drawings, steady-
state and dynamic process simulations, line lists, datasheets, 3D models, and isometrics, among 
others, are regularly updated with the data available in the unified source of information. 
Engineers become more efficient and work with reliable information as documents and models 
are updated in a controlled way as soon as any change is made. For even greater sustainability 
and effectiveness, the best way is to use the Unified Engineering methodology in the cloud. The 
cloud enables higher degrees of flexibility and collaboration among people working from 
different locations, which means that always the most appropriate resources can be allocated for 
each part of the project.  

Unified Engineering reduces capital project costs, risks, and delays enabling shorter engineering 
cycles required to deliver new sustainable projects. By minimizing engineering errors and 
accelerating project execution, companies can get 50% faster FEED stage, 30% increase in 
engineering efficiency, and 5% reduction in TIC (Total Installed Cost). 

 

Keywords: sustainable products, compressed engineering cycles, unified engineering 
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1. Introduction  
 
As an industrial software provider we support chemical companies achieve superior performance 
in their quest to make sustainable products, align with the circular economy and demonstrate 
product stewardship throughout the product life cycle. By digitally connecting assets, process, 
and people, our solutions empower companies to run safe and responsible operations, mitigating 
EHS risks, and moving toward more circular systems, while remaining profitable.  
 
With more than 50 years of industrial software innovation, AVEVA enables 13 of top 15 
chemical companies and most of the world's petrochemical crackers, with the most 
comprehensive portfolio that ties profitability to sustainability goals. 
Research typically identifies the following Critical Sustainability Drivers: 
 
• Demand higher transparency on a company’s environmental, social & governance (ESG) 

performance by stakeholders 
• Manage a complex environment and provide safety to employees, processes, products and 

local communities. 
• Minimize energy and utilities consumption, so as emissions. 
• Manage liquid effluents, waste and suppliers, seeking the circular economy. 
• Commitments to global and local regulations 
• Portfolio management towards innovation and sustainable products 
 
Today´s technology allows suppliers to develop better solutions to those markets that are in 
constant change. The Digital Twin technologies, initially adopted mainly by the automotive and 
aerospace industries, are now promoting big changes in how chemical plants are operated and 
managed. This type of technology can change the decision-making process since more reliable 
information is available in real time.  
 
Significant step was taken recently in terms of process simulation driven by two major 
sustainability industry trends. For the circular economy industry trend, chemical companies are 
developing new chemical processes that yield materials that can be recycled rather than used one 
time. For the hydrogen economy industry trend, companies will substitute hydrogen fuels to 
reduce CO2 emission into the atmosphere. Both the chemical and hydrogen economy trends lead 
to corresponding advancement in process simulation including modeling and thermodynamics. 
 
Now it is possible for the engineering and operating companies to build the Digital Twin of the 
process plant. The Digital Twin is built on a simulation platform that will support the entire plant 
lifecycle, from design to operation, while also addressing new hydrogen and circular economy 
requirements. 

2. The Digital Twin 
  
The new generation of process simulation uses a platform approach that evolves the simulation 
model from the conceptual engineering to the operation optimization. It allows a new approach to 
be implemented so companies can transition from the conventional scenario to the use of the 
process simulation Digital Twin, expanding benefits to the entire plant lifecycle. The same platform 
is used for process simulation and process utilities (cooling water, flare, steam and others), allowing 
engineers to further evaluate how each system impacts the other. Heat and material balances can 
be re-evaluated after equipment and pipeline sizing, since that information is in the simulation from 
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the beginning, as a result, little or no extra engineering effort is required. Once sizing is validated, 
the simulation is switched to dynamic mode, in which control loops are included to the simulation 
model to validate the process control strategy. As it is easier to shift the simulation to dynamic 
mode, rather than build a completely new model using the conventional approach or converting a 
model that cannot be taken back to the steady state mode, dynamic studies are performed earlier in 
the project lifecycle. This promotes savings in equipment acquisition and in operating costs, since 
control logic responses are evaluated in earlier stages. Plus, when something doesn´t respond as 
expected, simulation is taken back to steady state mode, for re-evaluation of heat and material 
balance and re-sizing. The ability to go back and forth between steady state and dynamic modes is 
critical to increase efficiency in the project lifecycle, leading to huge savings in engineering effort. 
Table 1 summarizes how the new platform approach affects the plant lifecycle and its results.  
 

Lifecycle 
Phase 

Model Benefits 

Conceptual 
Engineering 

The Digital Twin for 
the process plant is 
“first born” 

 Fast evaluation of design alternatives 
due to continuously solved and flexible 
specifications 

 A native cloud application that protects 
IP to reduce IT costs 

 Open modeling for first-of-a-kind 
processes and equipment 

Front End 
Engineering 
and Design 
(FEED) 

The Digital Twin 
further develops to 
represent all process 
equipment 

 One product with one learning curve for 
multiple applications, such as process, 
process utilities, and relief and flare 

 Integrated Asset Modeling of interacting 
but separate systems, such as, an oil 
field gathering and topsides processing, 
or the process and its flare system 

 Automated population of an engineering 
database 

 Automated creation of FEED 
engineering deliverables 

 Multi-user collaboration of a single 
simulation 

Detailed 
Engineering 

Simulation-Driven 
Engineering: The 
Digital Twin grows to 
also represent the 
mechanical design and 
the control strategy 

 Other disciplines, such as controls, 
mechanical, piping, all contribute to the 
engineering database 

 Simulation takes information from the 
engineering database to test the Digital 
Twin continuously as it is designed 

 Process engineering trends towards new 
agile software engineering practices 
with a test-driven development now 
made possible because of the existence 
of the Digital Twin 
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Lifecycle 
Phase 

Model Benefits 

Startup and 
Commissioning 

The Digital Twin is 
used for Operator 
Training and Controls 
Checkout 

 The actual DCS logic can be integrated 
to the Digital Twin 

 Operators are trained without a separate 
operator training simulator investment 

Operations The Digital Twin is a 
master simulation 
model for process 
improvement, 
equipment 
monitoring, 
optimization, and 
more 

 One master Digital Twin model can be 
spawned to many applications, such as, 
training, equipment monitoring, and real 
time optimization to reduce the 
sustainment costs associated with 
separate point solutions 

 No longer need to maintain several 
process simulation models for a plant – 
design model, operator training 
simulator (OTS) model, unit 
performance monitoring and real-time 
optimization (RTO) 

Revamp The Digital Twin is 
used for new 
evaluations since it is 
always up to date.  

 When a modernization or performance 
improvement is required the Digital 
Twin has current information and allows 
calculations and analysis without the 
need of re-engineering for an up to date 
simulation.  

Table 1 – How a maturing Digital Twin develops and provides benefits for each phase 
 

3. Unified Engineering 
 
Companies are beginning to make progress on their digitalization journey, finding the right 
applications for digital transformation and seeing increasingly better returns on their investment. 
While the age-old market environment challenges (such as supply and demand, cost and price) 
haven’t gone away, competitive pressures are making the digital transformation opportunity 
more pressing than ever. Many have already started to leverage the latest data-centric technology 
and work processes for their workforce to collaborate and take control of their data, reducing the 
risk for errors, delays and increased project cost throughout the asset lifecycle. By doing so they 
are in a stronger position to become more competitive, increase their margins and win new 
business. 
 
Unified Engineering is a new proposition to break down the silos between FEED and Detailed 
Design to minimize risk and maximize return on Capital Investment. 
Unified Engineering enables global multi-discipline teams to work concurrently in a common 
data-centric environment, controlling and managing change across the entire project. This breaks 
down the silos between FEED and detailed design. The simulation data created in FEED is 
readily available for use in detailed design and is checked and validated in real-time, increasing 
efficiency, minimizing risk, and maximizing return on investment on your Capital Projects. 
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Never have the stakes been higher for companies when it comes to making improvements to 
their engineering work processes to maximize ROI on Capital Projects. Productivity has not 
developed in decades – the average Capital Project schedule lags by 20 months and goes over 
budget by 80%1.  
 
In many of today’s Capital Projects, there is a disconnect between FEED and Detailed Design. 
In response, AVEVA are the first industrial software provider to pioneer a new solution to break 
down the silos between these engineering disciplines. 
 
Unified Engineering consists of two main components, the Unified Lifecycle Simulation 
Platform (one model), and Integrated Engineering and Design (one database). The two are 
combined to form a robust process model and an engineering database that is able to synchronize 
through bi-directional flow of all 1D, 2D and 3D data on one platform. The bi-directional 
integration of a steady state and dynamic process model with an engineering database makes the 
process seamless and eliminates the need for MS Excel or other intermediate steps to transfer 
information between tools. 
 
With the Unified Engineering model you can have: 

 Verification that the plant will operate as expected, and that controls are properly 
configured 

 Verification that equipment and piping are properly sized 
 One single version of the truth that remains up-to date 

 

 
Figure 1 - Unified Engineering principles 

 

4. Process Simulation lifecycle 
 
Process simulators are irreplaceable tools for every process engineer. Since the nineteen 
seventies, process simulators have found widespread adoption within operating companies in oil 
& gas, refining and chemical industries, as well as the engineering companies and equipment 
manufacturers that service these industries. The tools available in the market today have 
incrementally improved over the years to provide more features and functionality. However, they 
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trace their origins to legacy architectures, operating systems and aftermarket user interfaces, 
which create inherent limitations:  

 They cannot support the full plant lifecycle as they are limited by their single-purpose 
architecture such as steady state process simulation, dynamic simulation, optimization, 
or flow network analysis for which they were originally designed  

 Extending their functionality can be performed by a very small number of software 
developers with chemical engineering knowledge, software programming skills, and/or 
knowledge of that particular specialized program  

 They are often based on decades old programming code that cannot leverage the more 
recent technological developments within the software industry  

 
Today’s simulators typically only support a single phase of the lifecycle and are often based on 
thermodynamics of different simulation vendors and different calculation methods. This not only 
leads to lack of trust in the results, but causes substantial rework by having to build a new 
simulation model in each new tool. And the results are hard to compare.  

The technological limitations of incumbent process simulation tools forestall improvements in 
engineering workflows. Collaboration only occurs outside the simulation, because the software 
cannot accommodate it. Engineering departments send analysis and optimization questions to 
outside specialists because they cannot easily perform advanced simulations with their in-house 
tools and software expertise. These complications trap engineering workflows in a waterfall 
project management paradigm where development is forced into a linear process. Iteration is to 
be avoided because legacy software makes it cumbersome, error-prone, and tedious. 

Global competition, pricing pressure and energy alternatives are now driving the need for a new 
approach. The oil & gas industry has seen high volatility and the lower price level of today is 
seen as the “new normal”. The chemicals industry has a continuous need to innovate for greater 
agility and lower costs.  

The next generation of workers also expects a modern, scalable and easy to use solution with 
technology they now take for granted – high speed internet access, mobile devices, touch screens 
and virtual reality. New concepts like the Industrial Internet of Things (IIoT), Industry 4.0, and 
Artificial Intelligence have created greater opportunities with a new next generation platform 
that provides a “Digital Twin” of the plant through the process lifecycle that cannot be provided 
with today’s tools. 
 
A next generation process simulation platform means that one process model is extended 
throughout the entire lifecycle of the plant, from concept through to operations. This requires a 
process design mode, a fluid flow/rating mode and a dynamic mode, in combination with the 
ability to toggle back and forth between modes. Optimization may be provided to any mode. 
Table 1 describes each phase of the project lifecycle, and how a maturing Digital Twin develops 
and provides benefits for each phase. 
 
A single, easy-to-use simulation platform will allow engineers to move seamlessly between 
questions of design, analysis, and optimization. Engineers will be able to assess the impact of 
design and specification changes quickly and with a holistic view of multiple disciplines. 
Intensive collaboration becomes commonplace. In this environment, organizations will be able 
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to adopt agile engineering workflows based on smaller pieces of work with continuous integrated 
testing to reduce development cost while eliminating surprises at the end of the project. 
 

5. Process Simulations for Sustainable Technology 
 
Physics-based, first-principles models are a critical component of the asset digital twin. As 
industry develop new process technologies to serve sustainable industry trends such as the 
circular economy and the hydrogen economy, process simulation programs must adapt to 
become useful tools for process engineers to design sustainable processes. While academia 
research how to simulate model reactions or chemical thermodynamics, this modeling and 
thermodynamics must be integrated within industrial simulation products so that the unified 
engineering workflow may be applied to develop the digital twin of plants as they are engineered. 
 
There are many Hydrogen-based projects under consideration around the world. Blue, Green, 
and Gray Hydrogen projects need common process simulation advancement that need to be 
modeled in processes that support the hydrogen economy. 
 
Green hydrogen is produced by the electrolysis of water. Process simulators will include new 
electrolyzer equipment models. The Digital Twin for the operation of these plants may use an 
integrated model to optimize the use of wind and solar power generation for electrolysis. 
 
Blue and gray hydrogen is produced by splitting the methane in natural gas into Hydrogen and 
CO2 by steam methane reforming or auto thermal reforming. Development of integrated process 
plant simulation is required for removal of the CO2 for capture and storage to produce blue 
hydrogen. New membrane adsorption models will separate hydrogen for greater purity for 
blending with natural gas. The carbon dioxide created must be removed using new generation of 
amines thermodynamics for CO2 capture by companies that manufacture the amines and 
companies that use the amines for the separation of CO2 for carbon capture. 
 
Due to the low volumetric energy density of gaseous hydrogen when used as a fuel, plants must 
liquify the hydrogen to use it as a transportation fuel. Process simulators will include 
thermodynamic models appropriate for cryogenic hydrogen. In addition, ammonia is used as a 
transition fuel with models and thermodynamics required for ammonia pipelines and hydrogen 
conversion. 
 
Circular economy trends are driving chemical companies to produce materials that may be 
recycled more readily. This drives the development of new thermodynamic methods and 
component data to study new process simulation. Chemical and energy companies are replacing 
fossil based raw materials with renewable feedstocks driving research and development of new 
reaction technology. 
 
Finally, to make all processes more sustainability by reducing their energy consumption 
footprint, new simulation products will include the ability to calculate the cost of utilities such 
as steam, cooling water, and electricity, to minimize operating costs.   
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6. Conclusion 
 
Lifecycle process simulation has been a vision for process simulation providers and their 
customers for a long time. Today’s simulators cannot leverage the rapid developments occurring 
in the software industry due to legacy architecture. 
 
Looking at the industry’s increasing demand for higher transparency, this can only be achieved 
using a data-centric Digital Twin approach. This data-centricity enables an ideal platform for 
new product and process development to create new models and include the management of 
complex environments bringing together both steady-state and dynamic simulation with constant 
iteration and constant solving capabilities. 
 
The integration of the process analysis and simulation with other disciplines also allows to 
breakdown the silos that were typically existing previously. Connecting and remotely controlling 
previously unconnected processes will increase sustainable operations and improve business 
efficiency in a sustainable environment. Over the long term the impact will drive resilience and 
sustainable performance through technologies.  
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Abstract 
Synthesizing chemical processes using rigorous unit operation models often leads to a 
large-scale strongly nonconvex mixed-integer nonlinear programming problem, which is 
difficult to solve. In this work, we propose a homotopy continuation-based branch and 
bound (HCBB) algorithm in which an adaptive variable-step length HC method is used 
to navigate the NLP subproblem to gradually approach a feasible solution. The 
computational results indicates that the proposed HCBB algorithm provides a robust 
convergence to a higher-quality locally optimal solution from different initial points for 
an example of process synthesis compared to existing general MINLP solvers. 

Keywords: Process synthesis, homotopy continuation, branch and bound algorithm, 
rigorous models 

1. Introduction 
Optimisation-based chemical process synthesis and design problem using rigorous 
models usually leads to a large-scale strongly nonconvex mixed integer nonlinear 
programming (MINLP) problem, which is rather difficult to solve (Biegler et al., 1997). 
It is known that the global solvers such as BARON (Tawarmalani & Sahinidis, 2005) and 
ANTIGONE (Misener & Floudas, 2014) often cannot converge or even fail to provide a 
feasible solution for such MINLP problems within acceptable computational effort 
(Gopinath et al., 2016). The branch and bound (B&B) algorithm (Land & Doig, 1960) 
and the outer approximation (OA) algorithm (Duran & Grossmann, 1986) are often used 
to find a locally optimal solution within acceptable computational time (Viswanathan & 
Grossmann, 1993; Zhang et al., 2018). As both OA and B&B algorithms require to solve 
a series of strongly non-convex NLP subproblems, which are vulnerable to divergence. 
Therefore, they also often fail or converge to a locally optimal solution with low quality. 

In this work, we propose a homotopy continuation-based B&B (HCBB) algorithm to 
solve the strongly nonconvex MINLP problem resulting from a superstructure-based 
synthesis of reaction-separation-recycle processes using rigorous models (Ma et al., 
2019). The homotopy continuation (HC) method  (Ficken, 1951) is used to improve the 
performance of the B&B algorithm. At each node, the generalised reduced gradient 
(GRG) algorithm (Drud, 1985) is first employed to find a feasible solution for the NLP 
subproblem using the solution from the previous node as the initial point. Once it fails, 
an adaptive variable-step length HC method is used to gradually approach a feasible 
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solution, which is then used to initialise the GRG algorithm to generate a locally optimum. 
The synthesis and design of a hydrodealkylation (HDA) process (Douglas, 1985) is 
solved to illustrate the capability of the proposed HCBB algorithm. It is shown that the 
HCBB algorithm is able to always converge to the same local optimum of 4.959 M$ y-1 
in 5 minutes even from different initial points, whilst BARON, ANTIGONE and DICOPT 
solvers in GAMS (GAMS Development Corporation, 2014) fail in 1 h. The SBB/GAMS 
solver and the successive relaxed MINLP (SRMINLP) algorithm (Ma et al., 2019) 
converged to a worse solution of 4.713 M$ y-1 from some initial points. 

2. Problem statement 
The problem is stated as follows: for given raw material, product and production 
requirements (e.g., production rates and product purities), we want to get the optimal 
flowsheet structure and reactor types, optimal operating conditions, optimal sizes of 
reactors, distillation columns and heat exchangers. The objective is to minimize total 
annualised cost (TAC) or maximize profit. This is realised through a superstructure-based 
method. The superstructure is composed of a reactor network and a separation network 
for ternary separation. The superstructure for reactor network is from (Lakshmanan & 
Biegler, 1996). There are several stages in the reactor network. At each stage, different 
types of reactors can be used. At most one reactor can be selected at each stage. 
Distillation is assumed to be the only separation technology considered in the separation 
network since it is widely used for separation. The separation network is represented 
using the state equipment network (SEN) representation (Yeomans & Grossmann, 1999). 
The distillation columns are modelled by rigorous equilibrium stage model. The detailed 
model of the whole process synthesis problem can be found in (Ma et al., 2019). 

3.  Homotopy continuation-based branch and bound algorithm 

3.1. Overall framework of the proposed HCBB algorithm 

The proposed HCBB algorithm is shown in Fig. 1. It is based on the classical B&B 
algorithm. At each node, an NLP subproblem requires to be solved using the GRG 
algorithm due to its good convergence. However, the GRG algorithm requires a feasible 
solution before entering optimisation phase, which is difficult to provide (Drud, 1985). In 
the proposed algorithm, the homotopy-continuation method is used to get a feasible 
solution to initialise the GRG algorithm, which is shown in the following section. 

3.2. Homotopy continuation method for the derivation of a feasible solution 

In the B&B algorithm, 𝒙 denotes continuous variables and 𝒚 denotes binary variables. At 
a node 𝑖, there are 𝑺 (𝑠 = 0, 1, 2, … , 𝑆} binary variables in total including 𝑺  fixed binary 
variables and 𝑺  relaxed binary variables. That is 𝑺 ∪ 𝑺 = 𝑺. Then all binary variables 
at this node 𝑖 are denoted as 𝒚 = {𝑦 |𝑠 ∈ 𝐒} with 𝒚 =  {𝑦 | 𝑠 ∈  𝑺 } to denote the fixed 
binary variables and 𝒚 =  {𝑦 | 𝑠 ∈  𝑺 } to denote the relaxed binary variables. Based on 
these notations, an NLP subproblem at a node 𝑖 can be denoted as 𝑃 (𝒙, 𝒚 ; 𝒚 ). All the 
NLP subproblems 𝑃 (𝒙, 𝒚 ; 𝒚 ) have the same constraints and objective function but 
differ in 𝒚  and 𝒚 . 

To get a feasible solution of 𝑃 (𝒙, 𝒚 ; 𝒚 ), we need to solve a corresponding feasibility 
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problem, which is denoted as 𝐹𝑃 (𝒙, 𝒚 ; 𝒚 ). Note that  𝐹𝑃 (𝒙, 𝒚 ; 𝒚 ) has the same 
constraints as 𝑃 (𝒙, 𝒚 ; 𝒚 ), but its objective function is a constant (e.g., 0). We take the 
optimal solution or a feasible solution from the previous node (e.g., the parent node of the 
current node) as an initial point in which we use 𝒙  and 𝒚  to represent the values of 
continuous variables and binary variables, respectively. In other words, 𝒚 ,  = {𝑦 | 𝑠 ∈𝑺 }, and 𝒚 ,  =  {𝑦 | 𝑠 ∈ 𝑺 }. Since the initial point is an optimal solution from a 
previous node, (𝒙 , 𝒚 , ) must be a solution of 𝐹𝑃 (𝒙, 𝒚 ; 𝒚 , ) where 𝒚  is fixed to 𝒚 , . 
To gradually reach to the solution of 𝐹𝑃 (𝒙, 𝒚 ; 𝒚 ) from the solution of 𝐹𝑃 (𝒙, 𝒚 ; 𝒚 , ), 
i.e. the initial point, we can sequentially solve a series of feasibility problems, 𝐹𝑃 (𝒙, 𝒚 ; 𝒚 , ) (𝑚 =  0, 1, 2, … ) with 𝒚 ,  gradually approaching 𝒚  from 𝒚 , , which is the HC 
process. For 𝒚  and 𝒚 , , some of their components may be equal, while the other 
components are different. Thus, we only need to change the components that are different, 
which we call homotopy variables, and are notated as 𝒚  and 𝒚 , , respectively. The 
common components are notated as 𝒚 . Following this, the feasibility problems during 
homotopy can be represented by 𝐹𝑃 (𝒙, 𝒚 ; 𝒚 , , 𝒚 )  ( 𝑚 =  0, 1, 2, … ) with 𝒚 ,  
changing from 𝒚 ,  to 𝒚 . For convenience, we introduce a homotopy parameter 𝑡 (0 ≤𝑡 ≤ 1) , and set 𝒚 , = 𝑡 ∙ 𝒚 + (1 − 𝑡) ∙ 𝒚 , . Thus, the feasibility problems during 
homotopy can be represented as FPi(x, 𝒚 ; tm, 𝒚 , , 𝒚 , 𝒚 ) with tm changing from 0 to 
1. During HC, tm is updated by the step length Δtm though applying tm-1 + Δtm or tm-2 + 
Δtm. To improve both convergence and efficiency, Δtm is allowed to vary adaptively in 
the following rules: 

Algorithm 1. Update ∆𝑡  and 𝑡  according to solution history during homotopy. 
1 Input: convergence status of a solution 𝒁 , ∆𝑡 , ∆𝑡 , 𝑡  and 𝑡 . 

2 If 𝒁  is infeasible then 
3 ∆𝑡 = 0.5 ∙ ∆𝑡  

4 𝑡 = 𝑡 + ∆𝑡  
5 Else if 𝑚 =  1  or 𝛥𝑡  ≠  𝛥𝑡  then  
6 𝛥𝑡  =  𝛥𝑡  
7 𝑡 = 𝑡 + ∆𝑡  
8 Else 
9 𝛥𝑡  =  2 ·  𝛥𝑡   
10 𝑡  =  𝑡  +  𝛥𝑡  
11 End if 

With above discussion, the HC method for solving NLP subproblems is as followings:  

Algorithm 2. Solve an NLP subproblem using the homotopy continuation method. 
1   Input: Select the solution of a previous NLP subproblem as an initial point 𝒁 , set 𝒚 ,  and 𝒚 , set 0 <  𝛥𝑡  <  1, 0 <  𝑡  <  1, 0 <  𝛥𝑡  < 1, and 𝑀 > 0. 

2   For 𝑚 =  1, 2, 3, … 
3         Solve 𝐹𝑃 (𝒙, 𝒚 ; 𝑡  , 𝒚 , , 𝒚 , 𝒚 ) from 𝒁𝟎 and get the solution 𝒁𝒇. 
4         If 𝒁  is optimal and 𝑡  = 1 then  
5               Solve 𝑃 (𝒙, 𝒚 ; 𝒚 ) using 𝒁 as an initial point and get the solution 𝒁∗.  
6               Break #Get the optimal solution of the NLP subproblem 
7         Else if 𝑚 ≤  𝑀  then 
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8                Update 𝛥𝑡  and 𝑡  according to Algorithm 1. 
9                If 𝛥𝑡   <  𝛥𝑡  then 
10 Break #Fail to find a solution 
11              End if 
12       Else 
13              Break #Fail to find a solution 
14       End if 
15 End for  

In this work, 𝛥𝑡 = 0.5,  𝑡 = 0.5, 𝛥𝑡 = 0.01 and 𝑀 = 20. The HCBB algorithm is 
implemented in Python (Python Software Foundation, 2016) through interfacing 
CONOPT solver (Drud, 1985) in GAMS for NLP solution. 

 

Figure 1. Homotopy-continuation-based branch and bound algorithm. 

4. Case study 
The HDA process using toluene and hydrogen to produce benzene and by-product 
diphenyl from (Douglas, 1985) is used to illustrate the capability of the proposed HCBB 
algorithm. The superstructure is given in Fig. 2, where the reactor can be either adiabatic 
or isothermal and there are three distillation columns. The required benzene molar purity 
is 99.97% with a production rate of 124.8 kmol h–1. The objective is to maximize 
economic profit which is calculated by the revenue of benzene and diphenyl minus 
annualised capital cost and operating cost. All parameters for chemical reaction, 
thermodynamic calculation and economic evaluation are from (Kocis & Grossmann, 
1989). While (Kocis & Grossmann, 1989) used short-cut models (i.e., Fenske-
Underwood-Gilliland method for distillation columns), we use rigorous equilibrium stage 
model for distillation columns. There are 8142 constraints, 8643 continuous variables, 
and 13 binary variables. 

Besides the HCBB algorithm, five other algorithms are also used, including DICOPT 
implementing OA algorithm (Duran & Grossmann, 1986), SBB implementing 
conventional B&B algorithm (GAMS Development Corporation, 2014), SRMINLP 
algorithm from (Ma et al., 2019), BARON (Tawarmalani & Sahinidis, 2005) and 
ANTIGONE (Misener & Floudas, 2014). The maximum computational time is set as 1 
hour. We generate five different initial points, with which two local optima are found at 
the root using CONOPT. These two optima are used to initialize the six algorithms. While 
SBB, SRMINLP and HCBB can solve the problem from both initial points with the results 
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provided in Table 1, BARON, ANTIGONE and DICOPT fail in 1 h. From Table 1, SBB 
find a worse local optimum of 4.713 M$ y–1 from the root node 2 than HCBB. This is 
because around half of the NLP subproblems are infeasible as shown in Table 1, which 
misses the better optimal solution. Similarly, SRMINLP also finds a worse local optimum 
with TAC of 4.711 M$ y–1 from the root node 2 because it is easy to be trapped in the 
local optimum. This is because the initial point at root node 2 is close to the worse local 
optimum and the subproblem becomes more and more ill-conditioned and isolated with 
the tightness of the relaxed parameters. HCBB finds nearly the same optimal solution 
from both initial points because it significantly improves the success rate of solving NLP 
subproblems. The HC calculation has been invoked for 3 and 5 NLP subproblems 
respectively due to normal GRG algorithm fails when starting from root nodes 1 and 2. 
The optimal design of HDA process from the HCBB is presented in Fig. 3. 

 

Figure 2. The superstructure for the HDA process. 

Table 1. Comparative design results and computational times of different algorithms 

 
 Profit (M$ y–1)  Computational 

Time (s) 
 No. infeasible NLP/total 

No. of NLP 

 Init 1 Init 2  Init 1 Init 2  Init 1 Init 2 

SBB  4.959 4.713  63 51  3/10 3/7 

SRMINLP  4.956 4.711  120 63  0/2 0/2 

HCBB  4.958 4.957  101 126  0/8 1/9 

 

 

Figure 3. Optimal design of HDA process where the unit of flow rate is kmol h-1 and A, B, C, D 
and E represent H2, CH4, C6H6, C7H8 and C12H10 respectively. 
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5. Conclusions 
In this work, we proposed a HCBB algorithm to solve strongly nonconvex MINLP 
problems resulting from process synthesis and design problems using rigorous models. 
In this HCBB algorithm, an adaptive variable-step length HC method was used to 
navigate the NLP subproblem to approach a feasible solution. The computational results 
demonstrate that the proposed HCBB algorithm is able to converge to the same local 
optimum with a profit of 4.959 M$ y-1 in 5 minutes from different initial points, whilst 
BARON, ANTIGONE and DICOPT fails to find a feasible solution in 1 h. SBB and 
SRMINLP converged to a worse solution with 5% less profit. 
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Abstract 
We introduce ROmodel, a Python package that extends the modeling capabilities of the 
popular modeling language Pyomo to robust optimization problems. ROmodel contains 
a library of commonly used uncertainty sets which can be generated using their matrix 
representations, but it also allows the definition of custom uncertainty sets using Pyomo 
constraints. The resulting models can be solved using ROmodels solvers which 
implement both the robust reformulation and cutting plane approach. We apply the 
problem to a number of instances of three case studies and show some results. 
 
Keywords: robust optimization, optimization under uncertainty, software tools 

1. Introduction 
Robust optimization has become a method of choice for optimization under uncertainty 
in process systems engineering with applications ranging from production scheduling to 
flexible chemical process design (Janak and Floudas, 2005; Li and Ierapetritou, 2008; 
Zhang et al., 2015; Ning and You, 2017; Shang and You, 2018; Grossmann et al., 2016). 
This has been accompanied by considerable development of new techniques: 
distributionally and adjustable robust optimization can reduce solution conservatism  
(Grossmann et al., 2016), data-driven robust optimization designs application specific 
uncertainty sets based on available data (Bertsimas et al., 2018), and approximate robust 
optimization bridges the gap between classic robust optimization and semi-infinite 
programming, making non-linear problems more tractable (Houska and Diehl, 2013). 
While this is undoubtably a positive development, the large number of approaches and 
the required domain knowledge can discourage practitioners from making the transition 
from deterministic optimization to optimization under uncertainty. Furthermore, the lack 
of a platform that allows the easy implementation and application of new algorithms 
means that it is difficult to compare different approaches (Marc and Schöbel, 2016) 
 
In this paper, we introduce ROmodel, a python package that extends the popular, 
Pythonbased modeling language Pyomo (Hart et al., 2017) to facilitate modeling of robust 
optimization problems and implementation of robust optimization algorithms. ROmodel 
combines intuitive modeling of robust optimization problems with the richness of 
Pyomo’s solver interfaces and methods for model transformations and Python’s data 
processing capabilities. It supports both automatic reformulation and cutting plane 
algorithms and can be extended to incorporate other approaches. Uncertainty sets can be 
chosen from a library of common geometries, or custom defined using Pyomo constraints. 
A number of similar software packages for modeling robust optimization problems have 
been introduced in the past: JumPeR extends Julia’s modeling language JumP to robust 
optimization problems (Dunning, 2016), ROME provides a matlab interface (Goh and 
Sim, 2011), and Vayanos et al. (2020) recently proposed the C++ robust optimization 
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solver ROC++. AIMMS also has some capabilities for modeling robust optimization 
problems. One advantage of ROmodel is that it is based on Python and Pyomo. Python is 
becoming increasingly popular in many fields and particularly in data analytics and 
machine learning. ROmodel allows these techniques to be integrated seemlesly with 
robust optimization methods. Pyomo is a very powerful modeling environment and is also 
open source. Because ROmodel is entirely based on Pyomo, it can take advantage of 
many of it’s solver interfaces, model transformations, and more. ROmodel is open source 
and available on Github (Wiebe and Misener, 2020). 
 
The rest of this paper is structured as follows. In Section 2 we introduce the new modeling 
objects which ROmodel provides and show how they can be used to easily model robust 
optimization problems. Section 3 introduces the three solvers which ROmodel contains: 
a reformulation based solver, a cutting plane solver, and a nominal solver for obtaining 
nominal solutions of robust problems. Section 4 introduces the three case studies we use 
to evaluate ROmodel and presents a number of results. 

2. Modeling 
In order to model robust optimization problems within Pyomo, we introduce two new 
modeling objects: 
 

1. UncSet: A class based on Pyomo’s Block class used to model uncertainty sets. 
2. UncParam: A class similar to Pyomo’s Param and Var class used to model 

uncertain parameters. 
 
The two new modeling objects are sufficient for modeling quite generic robust 
optimization problems. Uncertainty sets can be defined in two ways: using Pyomo 
constraints or, for common types of geometries, using their matrix representation. 
2.1. Generic uncertainty sets 
The UncSet class inherits from Pyomo’s Block class and can be used largely in the 
same way. One can use this property to construct generic uncertainty sets by adding 
Pyomo constraints to the UncSet object. The following example shows how a 
polyhedral set can be modeled using this approach: 

This way of modeling uncertainty sets is very flexible, however not every set that can be 
modeled using this approach can necessarily also be solved. We discuss which types of 
uncertainty sets can be solved in Section 3. 
 
2.2. Library uncertainty sets 
For standard uncertainty sets which are commonly used, the above approach is 
unnecessarily complicated. Instead we have implemented custom classes which can be 
used to define them using their matrix representation. Polyhedral sets of the form 𝑈 =
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𝑤:𝑃𝑤 ⩽ 𝑏 can be constructed by passing the matrix 𝑃 and the right hand side𝑏 to the 
PolyhedralSet class, e.g.: 
 

 
Ellipsoidal sets of the form 𝑤 𝜇 𝛴 𝑤 𝜇 ⩽ 1can be constructed using the 
EllipsoidalSet class, the covariance matrix 𝛴 and the mean vector𝜇, e.g.: 

Implementing additional sets simply requires a new Python class collecting the necessary 
data and a function which, given a Pyomo constraint and an uncertainty set returns its 
robust counterpart as a Pyomo block. 
 
2.3. Uncertain parameters 
Once an uncertainty set is defined, we can utilize the UncParam class to easily construct 
uncertain constraints. Consider the following deterministic Pyomo constraint: 

 
If the coefficients c are uncertain, we can model the robust constraint 𝑐 𝑥 ⩽ 0∀𝑐 ∈ 𝑈as: 

 
2.4 Swapping uncertainty sets 
One of the advantages of ROmodel is, that it makes trying different uncertainty sets very 
easy. A robust model can simply be resolved with a different uncertainty set: 
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3. Solvers 

We implement three solvers within ROmodel: A robust reformulation based solver, a 
cutting plane based solver, and a nominal solver. 
3.1 Reformulation 
The reformulation-based solver implements standard duality based techniques for 
reformulating robust optimization problems into deterministic counterparts (Bertsimas 
and Sim, 2004). The solver is illustrated in Fig. 1. It essentially consists of a pre-
processing: 

First, it detects every constraint containing uncertain parameters. Second, it checks the 
structure of each uncertain constraint and the corresponding uncertainty set to determine 
if a known reformulation is applicable. Finally, it applies a model transformation and 
solves the resulting problem using one of the available solvers in Pyomo. 

ROmodel currently implements standard reformulations for ellipsoidal and polyhedral 
uncertainty sets and linear uncertain constraints, but it can easily be extended to include 
other reformulations. Adding new reformulations requires two Python functions: a 
function which detects whether a constraint and uncertainty set have the required structure 
and and a function which generates the robust counterpart. 

3.2 Cutting planes 
The cutting plane solver, outlined in Fig. 2, implements an iterative strategy for solving 
robust optimization problems (Mutapcic and Boyd, 2009). It replaces each uncertain 
constraint by a CutGenerator object which initially just contains the nominal 
constraint. The solver then iteratively solves the master problem and generates cuts to cut 
off solutions which are not robustly feasible. ROmodel’s cutting plane solver can 
generally be applied to any convex uncertainty set. 
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3.3 Nominal 
ROmodel also includes a nominal solver. This solver replaces all occurrences of the 
uncertain parameters by their nominal values and solves the resulting deterministic 
problem. The advantage of this is that it is not necessary to have separate implementations 
of the nominal and robust problem. An implementation of the robust model can easily be 
used to obtain the solution of the nominal problem: 

4. Results 

We use ROmodel to model and solve robust versions of three literature problems: a 
portfolio problem (Bertsimas and Sim, 2004), a knapsack problem, and a pooling problem 
instance (Adhya et al., 1999). We solve each problem with both the reformulation and 
cutting plane solver for ellipsoidal and polyhedral uncertainty sets and using both the 
library approach to generating uncertainty sets as well as the generic, Pyomo constraint-
based approach. We solve each instance for 30 different uncertainty set sizes. 

Table 1: Median time in milliseconds taken to solve the three example problems with 
different uncertainty set geometries using the reformulation and cutting plane solvers 

Table 1 shows the median time in milliseconds taken to solve each problem for a given 
uncertainty set geometry and solver. The reformulation solver generally outperforms the 
iterative cutting solver. An exception is the the non-linear, non-convex pooling problem 
with an ellipsoidal set. For this instance, the cutting plane solver achieves significantly 
better results, which is in line with previous research (Wiebe et al., 2019). 
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5. Conclusion 
ROmodel can be used to easily formulate robust versions of common optimization 
problems. The modeling environment it provides makes robust optimization methods 
more readily available to practitioners and makes trying different solution approaches and 
uncertainty sets very easy. ROmodel is open source and available free of charge and could 
play a vital role as a platform for prototyping novel robust optimization algorithms and 
comparing them to existing approaches. 

6. Acknowledgements 
This work was funded by the Engineering & Physical Sciences Research Council 
(EPSRC) Center for Doctoral Training in High Performance Embedded and Distributed 
Systems (EP/L016796/1), an EPSRC/Schlumberger CASE studentship to J.W. 
(EP/R511961/1, voucher 17000145), and an EPSRC Research Fellowship to R.M. 
(EP/P016871/1). 

References 

N. Adhya, M. Tawarmalani, N. V. Sahinidis, 1999. A Lagrangian Approach to the Pooling Problem. 
Ind. Eng. Chem. Res. 38 (5). 

D. Bertsimas, V. Gupta, N. Kallus, 2018. Data-driven robust optimization. Math. Program. 167. 
D. Bertsimas, M. Sim, 2004. The price of robustness. Oper. Res. 52. 
I. R. Dunning, 2016. Advances in robust and adaptive optimization: Algorithms, software, and 

insights. Ph.D. thesis, Sloan School of Management, MIT. 
J. Goh, M. Sim, 2011. Robust optimization made easy with rome. Oper. Res. 59.  
I. E. Grossmann, R. M. Apap, B. A. Calfa, P. García-Herreros, Q. Zhang, 2016. Recent advances 

in mathematical programming techniques for the optimization of process systems under 
uncertainty. Comput. Chem. Eng. 91. 

W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, J. D. 
Siirola, 2017. Pyomo — Optimization Modeling in Python. Vol. 67. Springer International 
Publishing. 

B. Houska, M. Diehl, 2013. Nonlinear robust optimization via sequential convex bilevel 
programming. Math. Program. 142. 

S. L. Janak, C. A. Floudas, 2005. Advances in robust optimization approaches for scheduling under 
uncertainty. Comput. Chem. Eng. 20 (C). 

Z. Li, M. G. Ierapetritou, 2008. Robust Optimization for Process Scheduling Under Uncertainty. 
Ind. Eng. Chem. Res. 47 (12). 

A. G. Marc, Schöbel, 2016. Algorithm engineering in robust optimization. Algorithm Engineering: 
Selected Results and Surveys. 

A. Mutapcic, S. Boyd, 2009. Cutting-set methods for robust convex optimization with pessimizing 
oracles. Optim. Method. Softw. 24. 

C. Ning, F. You, 2017. A data-driven multistage adaptive robust optimization framework for 
planning and scheduling under uncertainty. AIChE Journal 63 (10). 

C. Shang, F. You, 2018. Distributionally robust optimization for planning and scheduling under 
uncertainty. Comput. Chem. Eng. 110. 

P. Vayanos, Q. Jin, G. Elissaios, 2020. Roc++: Robust optimization in c++. 
arxiv.org/abs/2006.08741. 

J. Wiebe, I. Cecílio, R. Misener, 2019. Robust optimization for the pooling problem. Ind. Eng. 
Chem. Res. 

J. Wiebe, R. Misener, 2020. Romodel 0.1. github.com/johwiebe/romodel. 
Q. Zhang, I. E. Grossmann, C. F. Heuberger, A. Sundaramoorthy, J. M. Pinto, 2015. Air separation 

with cryogenic energy storage: Optimal scheduling considering electric energy and reserve 
markets. AIChE Journal 61 (5). 

688 J. Wiebe and R. Misener



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey
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Abstract
We discuss the underlying aspects of our computational engineering suite, implement-
ing application-specific reductionism. Our Process Modelling suite (ProMo) supports
complex multi-discipline and multi-scale models using discipline-specific basic building
blocks. An application-domain-specific ontology captures the involved disciplines and
their respective basic entities being the smallest granulates in each field. Each basic en-
tity is primarily equipped with a mechanistic mathematical input/output representation.
We augment this mechanistic approach with a holistic component by allowing multiple
definitions of these behaviour descriptions, thereby enabling empirical models. ProMo’s
ontology reasoner handles the resulting multi-directed variable/equation graphs represent-
ing the entity models. The discipline-related model components are linked together over
two mechanisms depending on the nature of their interaction. The concept of ”tokens”
provides the necessary abstraction, allowing for a network of networks description of
multi-disciplinary models.

Keywords: Ontology, multidisciplinary, multi-scale, simulations, digital twin.

1. Mathematical models – modelling

If one takes modelling at its face value, it is omnipresent, and people use the term model
in many different contexts. The term model is ”loaded” with many different meanings and
interpretations. In experimental work, one often plays with geometrical scales: one works
on a small model process instead of the ”real” process. In process systems engineering,
we mainly focus on mimicking the process’ input/output behaviour through mathematical
modelling and simulation. Computational engineering is the primary activity of a process
engineer, and while one also ”plays” with scales, the term has different interpretations.

For process engineers, models are mathematical representations of systems’ input/output
behaviours. One applies reductionism, and the general idea is to describe the process
as a conglomerate of interacting parts. In physics-related science subjects, one typically
proclaims the applicability of the reductionism paradigm. In contrast, one also accepts
that one does not always have enough knowledge or insight that enables one to provide
all fundamental parts or the ability to describe all interactions required to capture the
observed behaviour and one has to resort to a holistic approach.

Here we explore the possibility of combining the two approaches.

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50109-1
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2. The Science Viewpoint

We are careful in defining ”science” as the fundamental approach characterised by re-
ductionism’s ultimate application. Careful, because this view constitutes the belief that
nature builds on fundamental entities. Physics, as theoretical and fundamental science,
does have the objective to find those fundamental entities. The approach is to break the
object of interest recursively down into smaller and smaller bits until no smaller ”bits”
can be identified or detected. Once in a dead-end, one declares the finest-grained entities
as the current fundamental entities, and one continues the search on the next lower scale.

Models must only be good enough for the application and no better – a saying which well-
known and lesser-known people have repeated many times. People construct models for a
purpose (Apostel (1960)). The quality of the model one defines indirectly, namely in the
context of the application. The process of generating a model is therefore recursive and
ranges over design, realisation and application. Based on this consideration, one defines
the termination points of the granularisation on the appropriate level in the break-down
process, which, in a first instance, is a matter of judgment, making modelling to be seen
as an art.

Once one has identified the smallest required entities, one declares them as the funda-
mental entities, and builds the models using them as building blocks.

3. Different complexities

Following those lines of thought, one distinguishes different kinds of complexities:

Many-complexity: The first is on a given level of granularity; the process behaviour
consists of many items. Examples are easy to find. One requires many molecules to
represent a material’s behaviour appropriately. Sand piles consist of many sand particles,
and catalytic beds have many active sites, many surfaces, etc. In these cases, one looks
into thousands to millions of separate objects.

Structur-complexity: In contrast, the second type of complexity is about several scales.
Here just a hand full is considered ”many”.

Discipline-complexity: Having elements from different disciplines is yet another type
of complexity and again ”many” is in the order of a hand full.

4. Scales

The ”frame” in which a physical process lives, is defined by the four-dimensional space-
time and we distinguish between two types of scales, namely time scales and length scales.
Material science is the home of length scales: macro, meso, micro and nano are used in
this context. Not without discussion though, as particularly meso is only defined as the
scales between micro and macro or nano and macro.

Time scales are not often put into the limelight of modelling discussions. The reason may
be that they are linked to the length scales. Obviously, a smaller part of a whole reacts
quicker to a change on its boundary than the larger of the same kind. Though if one
views the modelling process again from the point of not getting too detailed, it is useful
to consider the time-scales.
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Figure 1: Time-scale motivated model reduction: Shrinking and expanding time scales

We claim that each physical process model assumes splitting the time scale into three
sections: constant, dynamic and event-dynamic. The constant part divides into a set of
reservoirs providing the driving forces for the embedded dynamic process, which is a
Carnot-type of view for a process’ operations. The event part is considered to ”just hap-
pen” in the time-scale of the dynamic process. Typical chemical engineering example is
the pressure wave propagation in a plant. Some model reduction methods operate on time
scales. Keywords are singular perturbation with perturbation parameters being assumed
small, which results in merging fast parts of the dynamic system into the event-dynamic
domain. At the same time, on the other end of the dynamic spectrum, large capacities
may be merged into the constant environment, see Figure 1.

5. Disciplines & Interactions

Let us first define discipline in the context of modelling. Here we use the term for a
domain in which the same ”things” are being handled, exchanged, processed ... The term
is thus circularly defined with interactions. The declared basic entities process the tokens
are exchanged between the entities. It is these tokens that indirectly represent the domain
of the discipline. To give an example: declaring mass, energy and momentum as the
tokens define a class of physical systems. One may classify further into particulate and
continuous systems. Thus tokens are per se not the only criteria for the declaration of a
discipline, but we may use it to declare domains of entities that interact with a class of
tokens.

Figure 2: The liquid and the
gas exchange tokens, while
the gas and the thermo do-
main exchange information.

Domains characterised by different classes of tokens may
interact only by exchanging information. Examples are
the interaction between the physical domain and the
domain capturing control. Others may be associated
with analysing the designed process such as life-cycle or
techno-economical evaluations, optimisation or the like.

Two domains of different length scales do not interact
by exchanging tokens but information. As an example:
a macroscopic system may require information about the
material properties. Using molecular simulation technol-
ogy is one possible method to compute the necessary prop-
erties. The input provided by the macroscopic model is the
vector of canonical variables, such as temperature, pres-
sure and molar composition. The molecular code returns

the requested property. The macroscopic level provides state information, mostly in the
form of intensive properties, and in return, it obtains the requested physical quantity in-
formation. Exchanging the molecular code by any empirical model or a database does not
change the nature of information exchange.
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6. On Boxes

The use of boxes is a typical thinking pattern when describing the behaviour of a system.
Generically, a box represents the input/output behaviour of a modelled system. In the
context of reductionism, this implies that a network of the smallest identified entities, the
basic boxes, the basic building blocks, describes the modelled plant’s behaviour. These
networks may become very large, defining the many-complexity, which is approached us-
ing recursion and hierarchical representation of the model. Thus the picture is interacting
boxes in boxes or networks in networks.

Boxes may be classified. The terminologies of using white box for mechanistic models and
black box for empirical models are widely used in engineering and science1. Glass-box is
intuitively the better term for white-box models, as it expresses the fact that one can see
what is inside thereby providing information about the internal state. While mechanistic
models are classically based on the reductionism view, black-box models are not built
on insight but represent only the input/output behaviour without considering the internal
state. They are based on a holistic view.

Many will view the use of the terms white box and black box as traditional. Though
things tend to change with time and the meaning of terms undergoes adaptation to new
or non-traditional fields, like this is the case with the renewed emerging field of artificial
intelligence. For example, in AI literature, one finds explanations like: White-box models
are the type of models which one can clearly explain how they behave, how they produce
predictions and what the influencing variables are. (see Tannam (2020), or SciForce
(2020)).

7. ProMo’s network of network approach

NTNU’s Process Systems Engineering group’s ProMo project is based on reductionisms.
It constructs multi-disciplinary models from the different discipline’s base entities, where
base entities are defined in the context of the model and its granularity.

The European Commission financed the development of the European Materials & Mod-
elling Ontology (EMMO) (EMMC (2020)) and processes are part of the EMMO. The
extension of the EMMO with the respective entity behaviours is NTNU’s PSE groups’
contribution.

Our Process Modelling suite ProMo provides the ontology and simulation construction
tools. It is designed to handle large models that may stretch over several scales and
employ different disciplines. Thus ProMo handles all three types of complexities: many-
complexity, structure-complexity and discipline-complexity. As a basis, we use a network
of networks approach and recursion within the networks. The ”networks” represent the
domains with its interacting boxes with the boxes being the networks’ nodes. The boxes
may again contain networks thereby allowing for a hierarchical representation of domains
with a large many-complexity on the corresponding granularity level Preisig (2010). The
top network links different discipline-specific networks. One has typically macroscopic
continuous physical systems, microscopic particulate systems, control systems, material
models, and databases for chemical engineering processes. The ProMo ontology provides

1A well-formulated definition can be found in Wiener (1961).
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the information of what disciplines are involved by defining a discipline tree.

ProMo’s ontology provides a set of fundamental boxes, a kind of Lego-set from which the
user constructs more complex boxes and finally complete process models. It is ProMo’s
expert section that provides the necessary tools to define the model building instruction
and the basic boxes (Preisig (2020)). For physical systems, the fundamental behaviours
are based on the conservation and the balancing principles. For mechanical systems,
including the molecular level, the Hamiltonian framework serves as a basis. In contrast, it
is the contact geometry that defines the configuration space for thermodynamic systems.

8. Need for Empirical Models

So let us take a step backwards: The underlying philosophical concept is reductionism.
Its idea is to break the object recursively into smaller and smaller parts until a level is
reached, which can be considered the smallest essential component. The relative ”size” of
the smallest elements defines the model’s granularity, with the required details depending
on the application. Latter implies that the nature of the entities is defined in the context of
the application. However, this approach is often not feasible, simply because one has too
little knowledge about what the lower-level entities are and how one can describe their
functionality. Another reason is that one would require a myriad of elements to capture
the system’s behaviour appropriately. The way out is to use another approach, namely
local holistic approach. The holistic approach replaces a (highly) detailed or ill-defined
entity with a surrogate. Surrogates go under various names, but the term ”black-box” does
capture it quite well: one replaces a mechanistic description, in this terminology called a
white-box or glass-box, with a set of interacting functions. This network of functions is
then fitted to input/output data yielding a modelled physical unit’s simulated behaviour.
This idea is by no means new. These models were termed black-box or metamodels,
neural nets, and symbolic regression models (Cozad and Sahinidis (2018)), to mention a
few. They are all functional networks, and so are the mechanistic descriptions. The result
is that one defines multiple representations of the same input/output behaviour.

9. ProMo ’s Handling of Multiplicity of Representations

ProMo ’s expert section has the tools for defining the equations representing the entity
input/output behaviour, allowing for a multiplicity of definitions. An application-tailored
reasoner2 to handle this task. The modeller, called the translator, does though want to
have a unique behaviour description. ProMo ’s reasoner allows selecting an alternative in
each case. The MoDeNa platform (Karolius et al. (2016, 2017)), uses a dynamic alloca-
tion of alternative models. An approach that is new in the domain of what today is termed
”Open System Platforms” adds a great degree of flexibility in computing multi-scale pro-
cesses.

10. Conclusions

ProMo enables the construction of complex models using a few discipline-specific ba-
sic building blocks. By providing a basic set of building blocks, the art of modelling is

2Term reasoner is used in the computer-science’s ontology domain - usually implementing a first-order logic
analysis.
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moved from the writing of the behaviour equations to defining the model’s structure. So
the user’s main task is selecting the structure of the model, selecting the right level of
granularity, and considering the time scale in which the model must represent the mod-
elled object. Model structures are information-exchanging, discipline-specific networks,
each characterised by transferring and processing tokens.

The base entities’ definition is done by experts in the respective field, thus removing
the need for the user to acquire the necessary knowledge. A mechanistic, deductive,
description may not always appropriately capture all behaviours, but one may have to
succumb to an empirical representation rich enough to capture the observed behaviour.
Those models are holistic and mostly empirical or semi-empirical. The multiplicity of
representing individual entities is not a problem to handle. ProMo ’s reasoner is designed
to process the resulting multi-bipartite variable/equation graphs.

The approach taken in the design of ProMo splits the modelling activity into sections,
where experts are providing the behaviour description of the basic building blocks in-
put/output behaviours. A problem translator constructs the complex models using these
building blocks. All input/output relations are automatically compiled and processed in-
ternally, without the user’s need for interaction. The approach eases the construction of
complex models. The problem translator tasks focus on the model’s structure and not
the representation of the basic blocks. The overall result is a reduced time from problem
formulation to simulation, thus increasing the ability to explore alternatives.
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Abstract
Biomass proved promising outcomes as a sustainable alternative to fossil fuels for
energy generation. With the mounting concerns on the environment and the increasing
pressures on natural resources, there is an impetus to investigate new biomass
feedstocks and further develop efficient biomass conversion processes and technologies.
Gasification, amongst other thermochemical conversion processes, is considered as one
of the most efficient and clean processes, generating syngas which can be fed to gas
turbines for electricity production. To enhance the process’ efficiency, the integrated
gasification combined cycle is adopted which utilises the exhaust heat from the gas
turbine to operate a joined steam turbine. In this study, a biomass based integrated
gasification combined cycle (BIGCC) with CO2 recovery is modelled, simulated and
optimised. The carbon recovery segment consists of a post-combustion chemical
absorption carbon capture from the exhaust flue of the BIGCC using potassium
carbonate as solvent. The presented integrated system is able to produce electricity from
date pits at a negative carbon credit. Thus, this system aims at recycling waste for the
generation of valuable commodities, reducing GHG emissions and diversifying the
energy portfolio, all feeding into the concept of sustainability. The proposed system is
simulated as a thermodynamic equilibrium model for the BIGCC and and a rate-based
model for the carbon capture segment in Aspen Plus software. The energy and exergy
efficiencies for the overall system are calculated and optimised. Several parametric
studies were conducted to select impactful operating parameters and their ranges for the
optimisation model. Outcomes of this study indicate that the proposed system generates
420 kW of electricity and captures 80% of the CO2 emitted from the BIGCC. The
integrated system achieves maximum energy and exergy efficiencies of 54% and 61%
respectively.

Keywords: Biomass, BIGCC, Carbon capture, Potassium carbonate, Optimisation.
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1. Introduction
The rapid population growth has led to increasing demand on energy, water and food.
As a consequence, the use of fossil fuel resources for energy generation has grew, and is
now posing significant concerns on the environment because of the high and cumulative
greenhouse gas emissions (GHG) associated with burning these fuels (AlNouss et al.,
2019). A major contributor to greenhouse gas emissions is CO2, which has reached an
amount of 33.1 Gt in 2018 amounting from energy generation activities (IEA, 2019).
Mitigation efforts, and target plans have been set to keep the temperature rise below
1.5ºC to 2ºC, agreed upon during the Paris agreement and put towards actions plans in
the national development goals. Pathways reflecting these efforts include as one of the
priority scenarios the implementation of bioenergy with carbon capture and storage
(BECCS) as a solution (IPCC, 2018). The integration of greenhouse gas control
technologies has become a necessity to mitigate the ever increasing global GHG
emissions while sustaining the population needs in terms of energy, water and food. A
study integrated greenhouse gas control technologies with an energy, water and food
nexus system with the aim of evaluating the corresponding environmental impact of
different scenarios. The achievement of negative GHG emissions was proven in this
study by using bioenergy with carbon capture and storage technology (Al-Ansari,
2017). The optimisation of BECCS technology can lead to less GHG emissions, and can
make the technology less energy intensive and ready for commercialisation. The
optimisation can be done at the different process levels of the integrated system. For
example, a study conducted an optimisation of the syngas produced through
determining the optimal biomass blend used as well as the optimal operating
configurations for the gasifier (AlNouss, 2020). Others studied the efficient integration
of biomass integrated gasification combined cycle (BIGCC) with the carbon capture
segment, extracting heat from one system and feeding it to the other. For example, a
study investigated the use of heat from the low pressure steam turbine to regenerate the
solvent used for carbon capture Monoethanolamine, reaching an energy efficiency of
47.03% (Dinca, 2018). Others focused on studying the carbon capture process
separately like Oyenekan and Rochelle (2009), where they investigated the use of
piperazine promoted potassium carbonate for CO2 removal using a rate-based model.
In this study, an optimisation model is proposed for maximizing the energy and exergy
efficiencies of a BIGCC with post combustion carbon capture using potassium
carbonate (K2CO3) as a solvent. To run the optimisation, a prior rigorous sensitivity
analysis is conducted to select the impactful operating parameters on the efficiencies
and determine their ranges. In the next section, the proposed integrated system is
described and baseline operating parameters are presented. Then, in the third section the
analysis and optimisation model for the system are described.

2. Model development
In this study, a model is developed of a biomass based integrated gasification combined
cycle with a post combustion carbon capture using potassium carbonate as a solvent.
The system is able to generate power, and capture CO2 while reutilising low value heat
streams from the multiple subsytems for a better efficiency. Date pits are chosen as a
biomass and is fed to the gasification unit at a baseline rate of 100 kg/h. The ultimate
and proximate analyses are presented in Table 1(AlNouss, 2018).
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Table 1: Ultimate and proximate analyses of date pit biomass
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77.7 16.31 0.98 5.01 50.84 6.83 37.88 4.45 0

The gasifier operates at a temperature of 800ºC and a pressure of 1 bar. The produced
syngas is then sent to a heat recovery unit to cool the syngas before compression and
combustion. The combusted gas is then expanded in a gas turbine for power generation,
and is discharged at a pressure of 32 bar. The heat value of the syngas is utilised by the
dual-pressure steam turbine along with the exhaust heat from the gas turbine for more
power production. Superheated steam is fed to the high pressure turbine at 538ºC and
124 bar, and to the low pressure turbine at 500ºC and 32 bar. After utilising the heat
from the gas turbine effluent, the stream is transferred to a carbon capture unit along
with potassium carbonate. The gas from the BIGCC called EX-GAS is fed at the bottom
stage of the absorber, and the solvent called LEANIN is fed to upper stage producing a
countercurrent flow. The aqueous potassium carbonate solution (40 wt%) then absorbs
CO2 and exists the absorber as RICHOUT1 and goes through an expansion to decrease
its pressure before entering the stripper at stage two with a pressure of 150 mbar. The
stripper is set to a column pressure drop of 10 mbar. The CO2 is removed from the rich
solution and exits the stripper as ACIDGAS, while the remaining solvent exits from the
bottom of the stripper as LEANOUT1 and is pumped for regeneration as shown in
Figure 1.

Figure 1: System's flowsheet in Aspen Plus

3. Analysis and optimisation
Aspen Plus software is used in simulating the above presented model for the BIGCC
and carbon capture integrated processes. The BIGCC segment is simulated following a
thermodynamic equilibrium model, while the carbon capture unit is simulated using a
based model that takes into consideration the reaction kinetics for more accurate results.
Assumptions taken in this simulation include steady state and steady flow conditions,
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isothermal conditions for the decomposition and separation stages with atmospheric
conditions taken as 25 ºC and 1 bar, adiabatic conditions for the combustion, tar
formation is neglected, and char is considered as 100% carbon. The Peng-Robinson
equation of state with Boston-Mathias modifications is used for the BIGCC unit and the
Electrolyte Non-Random Two Liquid (NRTL) property method is used for the carbon
capture unit. The overall reaction of carbon capture by potassium carbonate is described
in equation (1).

𝐾
2
𝐶𝑂

3
+  𝐻

2
𝑂 + 𝐶𝑂

2
+  ↔ 2𝐾𝐻𝐶𝑂

3
(1)

The kinetics of the reaction mechanisms are calculated using the Power Law as shown
in equation (2).

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑘𝑇𝑛.  𝑒−𝐸/𝑅𝑇

(2)

The model is simulated initially for a baseline scenario following the operating
parameters described in the model development section. The overall energy and exergy
efficiencies are then calculated following equations (3) and (4) respectively. A
sensitivity analysis is then run to see the effect of varying operating configurations on
key parameters of the efficiencies such as the effect of gasification temperature on
power and CO2 mass flowrate, the effect of biomass flowrate on power production and
CO2 mass flowrate, the effect of solvent temperature and pressure and stripper pressure
drop on reboiler heat duty and CO2 captured. This sensitivity analysis works as a basis
for defining a range to be studied for the operating parameters. The efficiencies are then
optimised by changing the studied ranges of the operating parameters and determining
simultaneous optimal values for these parameters that will maximise the energy and
exergy efficiencies.

Variations in each operating parameter are studied through the simulation in Aspen plus.
Results of the sensitivity analyses are transferred to Matlab to build regression models
describing the energy and exergy efficiencies corresponding to changes in each
operating parameter. Energy and exergy efficiency functions for each operating
parameter are developed. The weighted average of these functions is computed to
represent the objective functions of the proposed optimisation model. A pareto front is
developed using Genetic Algorithm (GA) in Matlab to generate optimal solutions for
the simultaneous computing objectives of energy and exergy efficiencies.

Variables:
: net power (W)�̇�

𝑛𝑒𝑡

: CO2 flowrate in acid gas (kg/s)�̇�
𝐶𝑂2

: CO2 enthalpy in acid gas (J/kg)ℎ
𝐶𝑂2

: CO2 total exergy in acid gas (J/kg)𝑒𝑥
𝐶𝑂2

: total exergy of biomass (J/kg)𝑒𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠
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: heat duty of heaters in BIGCC (W)�̇�
ℎ𝑒𝑎𝑡𝑒𝑟𝑠

: reboiler heat duty in stripper (W)�̇�
𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

Decision variables:
: gasification temperature (ºC)𝑇

𝑔𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

: biomass flowrate (kg/h)�̇�
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

: lean solvent temperature (ºC)𝑇
𝑠𝑜𝑙𝑣𝑒𝑛𝑡

: lean solvent flowrate (�̇�
𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑚3/ℎ) 
: stripper pressure drop (mbar)∆𝑃

𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟

Objective function:

Maximise: (3)η
𝑒𝑛

=
�̇�

𝑛𝑒𝑡
+�̇�

𝐶𝑂2
ℎ

𝐶𝑂2

�̇�
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

.𝐿𝐻𝑉+�̇�
ℎ𝑒𝑎𝑡𝑒𝑟𝑠

+�̇�
𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

Maximise: (4)η
𝑒𝑥

=
�̇�

𝑛𝑒𝑡
+�̇�

𝐶𝑂2
𝑒𝑥

𝐶𝑂2

�̇�
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

.𝑒𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

+�̇�
ℎ𝑒𝑎𝑡𝑒𝑟𝑠

(1−
𝑇

0

𝑇
𝑠

)+�̇�
𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

(1−
𝑇

0

𝑇
𝑠

)

Constraints:
700℃≤𝑇

𝑔𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
≤900℃ 

100𝑘𝑔/ℎ≤�̇�
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

≤1000𝑘𝑔/ℎ

40℃≤ 𝑇
𝑠𝑜𝑙𝑣𝑒𝑛𝑡

≤ 80℃

5 𝑚3/ℎ≤ �̇�
𝑠𝑜𝑙𝑣𝑒𝑛𝑡

≤ 30 𝑚3/ℎ

3 𝑚𝑏𝑎𝑟≤∆𝑃
𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟

≤ 10 𝑚𝑏𝑎𝑟

4. Results and discussion
The results of the sensitivity analyses are presented in Figures 2-6. The effect of
gasification temperature on power and CO2 mass flowrate presented in Figure 2
demonstrates an increasing trend for both energy and exergy efficiencies with the
increase in gasification temperature. This is due to the increase in power output and the
decrease in CO2 generation and reboiler duty. Whereas, the increase in biomass flowrate
presented in Figure 3 indicates an increase in exergy efficiency and a decrease in energy
efficiency. This is linked to the important increase in power generation and that of the
energetic heat of the reboiler, but the small increase in the exergetic reboiler heat.
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Figure 2: Effect of gasification temperature Figure 3: Effect of biomass flowrate

The effect of solvent flowrate presented in Figure 4 indicates a decreasing trend for both
energy and exergy efficiencies with the increase in solvent flowrate until a certain point
approximately at 14 m3/h where beyond it the trend starts to increase. This can be linked
to the effective increase in CO2 captured starting a solvent flowrate of 14 m3/h. Figure 5
illustrates the effect of solvent temperature where a decreasing trend in both energy and
exergy efficiencies is demonstrated with the increase in solvent temperature due to the
decrease in CO2 capture.

Figure 4: Effect of solvent flowrate Figure 5: effect of solvent temperature

The effect of stripper pressure drop presented in Figure 6 indicate a decreasing trend in
both energy and exergy efficiencies with the increase in stripper pressure drop. This is
due to the fact that the effectiveness of CO2 capture process decreases with the increase
in column pressure drop and the increase in reboiler duty requirement.

The results of the optimisation problem considering these five sensitive decision
variables are illustrated in Figure 6. The optimisation suggests gasification temperature
approximately at 900ºC, lean temperature at 30ºC, lean flowrate of around 20 m3/h and
stripper pressure drop of 3 mbar for both maximisation cases of energy and exergy
efficiencies. Whereas, the optimisation recommends two different biomass flowrates
with 315 kg/h for exergy efficiency maximisation case and 100 kg/h for energy
efficiency maximisation case. This is due to the distinct behaviour both showed with the
increase in biomass flowrate.
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Thermodynamic optimisation of a biomass based integrated gasification

Figure 6: Effect of stripper pressure drop Figure 7: Optimisation results

5. Conclusions
BECCS technology is considered as a viable strategy and solution to reduce CO2
concentration levels from the atmosphere. In efforts to make this technology applicable
to large scale processes and economically profitable, it is necessary to improve its
efficency and comprehensively study the integration of all the subsystems. Hence, in
this study a proposed model of a biomass integrated gasification combined cycle
(BIGCC) with post combustion carbon capture using potassium carbonate is analysed
and optimised thermodynamically in terms of energy and exergy efficiencies. The first
step of this study consisted of modeling and simulating a baseline scenario of the
integrated system. Then, a sensitivity analysis was conducted to see the effect of
varying operating parameters on the efficiencies. The most impactful operating
parameters were then selected and inputted as decision variables to the optimisation
model. The objective of the optimisation was to maximise the energy and exergy
efficiencies subject to some constraints defined by the allowable ranges of the operating
parameters set in the sensitivity analysis. Results show that the maximum energy and
exergy efficiencies achieved by this optimisation are 54% and 61% respectively.
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Abstract 
Rabat, the capital of Morocco, a green and sustainable city, a radiant city on a regional 
and national scale, faces a serious problem of air pollution caused by the daily flow of 
vehicles. Faced with the inaccessibility of the data on this issue, the study focuses on the 
quantification of the CO2 emission rate by vehicles and their contributions to air pollution 
and the choice of station for monitoring CO2 by a sensor. Once the database is completed, 
it will be shared through an application/website accessible to the population in order to 
make them aware of this problem. 
 
Keywords: Pollution, treatment, modeling 

Located in the extreme northwest of the African continent, Morocco is a country bordered 
by the Mediterranean Sea to the north and the Atlantic Ocean to the west. Inland, the 
Atlas mountain range runs through the center of the country, between which lie vast 
plateaus of grassland. The natural border in the south is the Sahara Desert. It covers an 
area of 446,550 km2 with a population of 34 million inhabitants, this population is spread 
over 12 regions according to the new administrative division of 2015. 

The prefecture of Rabat, the object of our study is the administrative capital of the 
Kingdom, it belongs to the region of Rabat Salé Kénitra and is the capital of its region. It 
covers an area of 118 km2. The prefecture is bounded to the north by the prefecture of 
Salé, to the south by the prefecture of Skhirat-Témara, to the east by the two prefectures 
Salé and Skhirat-Témara, to the west by the Atlantic Ocean. Rabat is made up of two 
municipalities, the urban municipality of Rabat which includes five districts (Agdal-Riad, 
El Youssoufia, Hassan, Souissi, Yacoub El Mansour), and the urban municipality of 
Touarga where the royal palace is located. It benefits from a crossroads location 
(accessible to all the provinces in the region), as it represents an attractive hub on a 
regional and national scale given its administrative weight. 

We produced a situation map of the prefecture of Rabat at the national, regional, and 
provincial levels using ArcGIS software on the basis of the new administrative division 
of 2015 (Figure 1).  
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Figure 1: Situation map of the prefecture of Rabat 

 
Demographically, Rabat is home to a population of 572,717 inhabitants, or 12.6% of its 
region and 1.7% of the whole country. 
since 2004 the city of Rabat has been losing its population. This regression is due to 
several factors, including (Figure 2) 
- The logic of social filtration following slum relocation operations (departure of a large 
demographic mass); 
- Geographic constraints (the prefecture is bounded by the Bouregreg wadi, the Atlantic 
Ocean, and the green belt) which slow down urban sprawl; 
- Land constraints that do not allow planned urbanization; 
- A political will to keep the city of Rabat a lower town, less dense and elitist; 
- A mismatch between supply and housing needs in terms of stock, price, and quantity 
offered; 
- Lower and lower birth rate; 
- High standard of living compared to neighboring municipalities; 
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Figure 2: Evolution of the population of the prefecture of Rabat 
 
Regarding the economic aspect, precisely the branches of activity, Rabat knows a 
dominance of the tertiary sector with a percentage of 38%, this dominance is justified by 
the concentration of all the administrations and public and private services, this 
concentration is not other than the result of the centralization adopted previously in 
Morocco, followed by services (19%), trade occupies third place (14%) and lastly 
agriculture (1%) and the water branch, d electricity, and energy (1%). (figure 3) 

 

Figure 3: The branches of activity at the prefecture of Rabat 

1960 1971 1982 1994 2004 2014
Population Rabat 227445 367623 518616 614820 620996 572717
Taux d'accroissement 62% 41% 19% 1% -8%
Taux d'accroissement

National 2.58% 2.61% 2.06% 1.38% 1.25%
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As for the industrial component which represents 11%, according to the Chamber of 
Commerce, Industry, and Service, Rabat has 3 industrial zones, 
- The Takkadoum industrial zone with 37 companies in the field of Textile, IMM, 
Automotive, and Construction. 
- The Al Fadila industrial zone with 24 companies in the field of Agri-food, Textile, 
IMME, Pharmaceuticals, and Construction. 
- The Vita industrial zone with 4 companies in the chemicals sector, IMM and a 
Showroom (76% of units), and car dealerships. 
Although Rabat is labeled a green city, thanks to the doubling of the global average of 
green spaces for each individual,) its industrial zones which do not really impact the 
quality of the air, its delegated management of solid and efficient waste with a collection 
is around 99%, a liquid waste management system by a WWTP which has been in 
operation since 2011. 
The major problem that the capital faces on a daily basis and which has a direct impact 
on air quality is transportation. Being an elitist city, attractive and radiant at the national 
level, Rabat really suffers from this phenomenon in environmental and urban terms, this 
problem is strongly linked to the phenomenon of commuting between Rabat and the 
neighboring municipalities. 
To respond to this problem, Rabat has opted for various solutions, such as the tramway, 
which is still not sufficient to speak of Rabat as a city free from air pollution. 
In order to better understand the consequences of commuting, fieldwork was carried out 
(interrupted several times by COVID 19) at the level of the entrances and exits of the city 
of Rabat aiming at the quantification by category of vehicles in rush hour in order to show 
the contribution rate of vehicles to daily CO2 emissions. 
To do this, we opted for the quantification of vehicles on all the entrances and exits of 
Rabat on the side of the Salé prefecture to the north-east and on the side of the Skhirate 
Témara prefecture to the south-east which are the two prefectures that delimit Rabat. 
the fieldwork was spread over 12 peak hour quantification stations from 7:30 am to 9:30 
am and 3:30 pm to 5:30 pm. After the database was developed, it was processed using 
ArcGIS software in order to find the station with the most traffic (Figure 4). 
We made the map at ArcGIS, to locate the 12 stations with the number of vehicles at peak 
hours. 
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Figure 4: Location map of vehicle census stations 

 
Based on the number of cars passing through each station and the quantity of CO2 in           
g / km released by types of the car according to their technical datasheet, it was found 
that the maximum quantity is observed at station 1 and the minimum is at station level 6  
(Table 1)

Station 1 2 3 4 5 6 7 8 9 10 11 12 

CO2 g/km 1307 560 1167 1069 1279.5 321 548 634.5 960 681 1432 609 

 
Station 1 (Hassan II Bridge) representing the north side of the prefecture and station 
number 11 on the south side representing Avenue Hassan II are the stations most marked 
on the one hand by the greatest flow of cars and other the CO2 emission quite high. 
This is why we chose the two stations which will be monitored by gas sensors of the 
quantities of CO2 released by the means of transport into the air. In our case study, it is 
station 1 (Pont Hassan II) on the Salé side and station 11 (Avenue Hassan II) on the 
Témara side with the largest number of vehicles. (Figure 5) 
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Figure 5: Incoming and outgoing vehicles at the two stations understudy 
 
The quantification of vehicles at the entrances and exits of Rabat was accompanied in 
parallel with a study on the CO2 emission rate of each brand of vehicle, to highlight the 
contribution rate of vehicles to pollution of air daily. 
The graph below groups together all the vehicle brands with increasing order of CO2 

emissions. According to the figure, the least polluting brand is Citroën and the most 
polluting brand is Toyota. As for Morocco, the best-selling brand of vehicles is the Dacia, 
which is ranked 5th in terms of CO2 emissions in the air. (Figure 6) 

Figure 6: CO2 emissions by vehicle brand 
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The data collected from the two sensors will be the subject of typical modeling and pilot 
for future sensors. As they will serve as a roadmap for the realization of an effective, real 
and achievable project. 
It is in this logic that the present proposal relating to the creation of an application / 
Website accessible to the population and to the local authority of the city of Rabat is 
important and useful in the fight against pollution of the air caused by vehicles in a 
participatory approach. 
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Abstract
Estimating energy consumption in cement mills is critical for the cement industry.
Following data science practices and adopting machine learning (ML) technologies, we
developed energy consumption prediction models for a cement mill of TITAN SA plant
in Kamari Viotia. The models exploit historical sensor measurements and operational
data and give predictions for energy consumption with accuracy better than almost one
order of magnitude compared to existing baseline methods.

Keywords: machine learning, energy consumption, prediction, cement industry

1. Introduction
Cement grinding is a key process in the cement industry. During this phase, gypsum and
mineral or artificial raw materials (e.g., pozzolan, ash, limestone) are added to the
clinker (basic raw material for cement production) and, then grinded in special mills
until a very small grain size is achieved. During the grinding process, corrective actions
are constantly taken, in both the quota of the ingredients of the recipe and the operating
parameters of the mill in order to achieve the appropriate fineness of the mixture. Large
amount of electrical energy is consumed for mill operation. Therefore, it is essential for
a cement industry to estimate its energy consumption in its cement mills. Estimation of
the energy consumption can be used in a number of processes, such as assisting in the
process of compliance with the requirements of ISO 50001 for energy efficiency,
detecting changes in the operating parameters of the mill to save energy and executing
scenarios for the energy consumption footprint of new mixtures.
To this end, we propose a model that estimates the energy consumption of a cement
mill. We followed a data-driven approach, utilizing historical data recorded during the
grinding process, and we designed and implemented machine learning models for
energy prediction. Our models have been applied in TITAN SA plant in Kamari Viotia.
Results show that we achieved an improvement of accuracy for energy consumption
prediction by one order of magnitude, based on baseline method.
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2. Background
TITAN uses a proprietary methodology for creating a model for estimating energy
consumption in the company’s cement mills. This methodology takes into consideration
a number of variables, such as the cement mix composition and the product’s blaine. At
the core of this modelling approach is a linear function with weighted fractions of
clinker, gypsum, slag, fly ash, pozzolan, limestone and other components in the product.
The weights assigned to each component of the mix are estimated for each of TITAN’s
cement mills using linear regression on past data. The methodology also adds to the
model corrections for over-grinding of the softer components, and also takes into
consideration the operational parameters for each type of cement mill (e.g., mill type,
separator type etc). The model created by this methodology, calculates the estimation of
power consumption for a standard blaine value, and then, using an adjustment formula,
corrects it to the final estimation based on the product’s blaine.
In our approach we were granted full access to the proprietary methodology adopted by
TITAN (not to be disclosed in this paper), in order to use it as a baseline method and
compare the results of our methodology.

3. Dataset
3.1. Description
We collected hourly operations data from TITAN Kamari cement plant, near Athens,
from January 2018 to August 2019. The processing of the data resulted in a dataset with
15,592 records and 43 features. Data is comprised of features for cement mix
composition (e.g., the percentage of, clinker, gypsum, fly ash, etc), and operational
parameters (e.g, like separator speed, fan speed, etc). Furthermore, measurements from
sensors (temperature in various stages of the mill process, etc), quantities of additives
and qualitative characteristics of the mix (blaine, etc) are some extra sets of features that
were included in the data.
3.2. Data Exploration and Feature Correlation
Using statistical methods and data visualization, we got a better understanding of the
data. Specifically, the correlation table indicated that attributes did not have high
correlation, so there was no need of dimensionality reduction. Regarding data
preprocessing, we deleted records with zero running time of the mill, as well as zero
production and real blaine. Records that were associated with incorrect measurements or
outliers were also deleted. Further preprocessing involved One-Hot Encoding for
categorical attribute cement type. The final dataset consisted of 5,010 records and 39
features.

4. Methodology
Our methodology consisted of the following three steps.

● We designated which prediction methods we will apply in our experiments and
we came up with 7 models.

● We examined which methods will boost our predictions and we concluded that
cross-validation and feature selection was those that we are going to study.

● We considered various metrics, which are used in the existing bibliography, in
order to compute the performance of our regression models.

4.1. Prediction Methods
We implemented a group of models using 7 prediction methods, grouped in 3 major
categories, (a) Multiple Linear Regression, (b) Ensemble Methods, and (c) Hyperplanes.
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Multiple Linear Regression includes the classic form of linear regression that calculates
the coefficients of a linear function by minimizing the mean square error between the
predicted and the actual values. Furthermore, Ridge and Lasso regressions both are a
convention of the linear regression which minimize the mean square error plus one
regularization term to keep the coefficients at a low range. However, these
regularization terms are different as the Lasso regularizer leads to more aggressive
reduction of the range of coefficients. This often generates zero coefficients
corresponding to characteristics that have a small effect on the target value. Practically,
it performs a feature selection.
In the Ensemble Methods, AdaBoost Regression (Freund and Schapire, 1995) (Drucker,
1997) and XGBoost Regression (T. Hastie and Friedman, 2009) the estimation of the
target is done by combining estimates of many individual prediction models based on
decision trees. On the contrary, in the Random Forest Regression (Breiman, 2001) the
estimation of the target value is done by combining average estimation values of several
individual prediction models based on classifying decision trees for a number of subsets
of the data set. The difference between AdaBoost Regression and XGBoost Regression
is how the combination of the estimations is done. In AdaBoost Regression the
combination of estimations is done serially, so each new model corrects the previous
one and is trained giving more weight to the training data for which the previous model
showed underfitting behaviors. On the other hand, in XGBoost Regression every new
model is trained to estimate the prediction errors of the previous model, so that the
prediction of the previous model is corrected based on the new one.
Finally, Hyperplanes included Support Vector Regression-SVR which is based on the
support vector machine classification model, which has been modified to predict
continuous values. The main difference between SVR and linear regression is that the
latter aims to minimize the mean square error between the predicted values and the
actual values of the target value, while the SVR aims to limit the error to a range of
values.
4.2. Feature Selection and Cross-Validation
Feature selection serves three basic purposes. To start with, it makes model training
faster, since the size of training set is reduced. Also, since it performs dimensionality
reduction, the risk of overfitting is being overcome Lastly, it increases the accuracy of
the prediction since features that add noise are not taken into account. We followed the
feature selection method implemented in Guyon et al. (2002). This approach ends up
with a feature ranking through recursive feature elimination and cross-validated
selection of the best number of features. More particularly, starting with a list of all
features, the method recursively deletes one feature in every repetition. Finally, we
came up with a list of features that returned the best results during the evaluation of the
model based on the validation set. Table 1 shows the number of features recommended
in every prediction model.

Prediction methods Number of features selected
Linear Regression 30
Ridge Regression 28
Lasso Regression 25

AdaBoost Regression 22
XGBoost Regression 16

Random Forest Regressor 23
Support Vector Regression 22
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Table 1. Number of features selected in each prediction method

Dataset records Training set Validation set Folds Testing set
5,010 4,008 1,002 4 1,002

Table 2. Dataset splits

A training set is a set of data with records that give us the target value along with the
values of other attributes that affect it. Usually, such a set results from data files in
which each record relates to the same reference period. Conventionally, for the
implementation of machine learning projects the 70-80% of the whole dataset is used as
the training set and the rest as testing set which is used for the evaluation of the model.
This method often leads to overfitting, with the model performing extremely well in
predicting values when the input belongs to the testing set, but it fails if the input is
foreign to the testing set.
In our case, model implementation was performed with the method of cross-validation
(T. Hastie and Friedman, 2009). Specifically, we applied K-Fold cross-validation. This
method uses different parts of data to fit and test the model. In particular, the method
consists of the following steps:

1. Data is splitted into K equal-sized folds.
2. For the k-th fold, the model is fitted to the other K-1 folds.
3. Prediction error of the fitted model is calculated when predicting the k-th fold.
4. The second and third step are repeated for all folds and the K estimates of

prediction error are combined.
For the k-fold cross-validation, we have split the training set into 4 folds with suffling.
Table 2 shows how we split the whole dataset in training, validation and testing sets.
4.3. Evaluation Metrics
For every dataset that we used in our methodology (training, validation and testing), we
calculate evaluation metrics to understand the model’s behavior and its’ predictive
ability.

Prediction methods Datasets R-squared MAE MSE RMSE
Training set -0.1497 4.0933 43.3750 6.5859

Baseline Validation set - - - -
Testing set set -0.1497 4.2088 48.6345 6.9738
Training set 0.6847 1.7114 11.9253 3.4533

AdaBoost Regression Validation set 0.6645 1.7218 12.997 3.6052
Testing set 0.5775 1.7777 17.963 4.2383
Training set 0.9429 0.4854 2.1615 1.4702

Random Forest Regression Validation set 0.7251 0.8029 10.5898 3.2541
Testing set 0.6282 0.8349 15.8105 3.9762
Training set 0.9999 0.005 0.0001 0.0128

XGBoost Regression Validation set 0.7370 0.671 10.1639 3.188
Testing set 0.6564 0.6613 14.608 3.822

Table 3. Results in training, validation and testing sets for baseline and 3 best predictions methods

A simple metric is Mean Absolute Error (MAE) which is the sum of the average of the
absolute difference between the predicted and actual values. Another metric used is the
Mean Squared Error (MSE), which is the same as the MAE, but the difference is that it
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squares the difference between actual and predicted values before summing them all.
Root Mean Squared Error (RMSE) is taking the square root of MSE. Also, we used R2
which quantifies the quality of fit of a set of predicted output values to the actual output
values.

5. Results
We performed our experiment on a Dell PowerEdge R430 Intel(R) Xeon(R) CPU
E5-2609 v4 @ 1.70GHz with 14 cores and 16G RAM running Ubuntu 18.04 LTS,
kernel 4.15.0-99. For model training, we used two open-source Python libraries,
scikit-learn (Buitinck et al., 2013) which provides tools for model fitting, data
preprocessing, model selection and evaluation, and XGBoost (Chen and Guestrin, 2016)
which is an optimized distributed implementation of Gradient Boosting.
As mentioned above, in our experiment the K-Fold cross-validation we have split the
training set into 4 folds with suffling. Initially, we examined the evaluation metrics in a
validation set. For Multiple Linear Regression methods, the R-squared and MSE in
every fold of the validation set had high standard deviation, indicating poor
performance of these methods. Hence, it was not worthwhile to check their evaluation
metrics in the testing set. The same behavior was observed for Support Vector
Regression. In contrast, Ensemble methods performed very well, so we continued by
exploring the evaluation metrics, for those methods, in the testing set. Table 3 shows the
results in training, validation and testing sets for Ensemble methods.
The baseline method had a poor performance, indicated by the negative R-squared, and
high values of MAE, MSE and RMSE. Among Ensemble methods, AdaBoost
Regression had the worst performance with an R-squared in the testing set not
exceeding 0.6, and MAE almost 1.8. Concerning Random Forest Regression, even
though the results of the method in the training set seemed promising, its performance
in the validation and the testing sets wasn’t as good as expected. However, we detected
a significant improvement in the MAE which was reduced in half. Finally, XGBoost
Regression delivered the best results among all methods, regarding all evaluation
metrics, since the R-squared in the testing set fluctuated near 0.65, the MAE was
reduced even more and the MSE was the lowest observed among all three methods.
Comparing the results from the XG-Boost Regression to those from the baseline
method, we observe a decrease both in MAE and MSE. In general, Ensemble methods
delivered improved results according to the R-squared. To this end, as results
demonstrate, the machine learning methods used in this study, outperformed the
baseline method.

6. Conclusions and Future Work
Using data science practices and adopting machine learning (ML) technologies, we have
developed energy consumption prediction models for a cement mill of TITAN SA plant
featuring superior performance over conventional models used in the past. The models
exploit historical sensor measurements and operational data and give predictions for
energy consumption achieving an improvement of accuracy for energy consumption
prediction by one order of magnitude, based on baseline method.
Specifically, the top three models reached MAE less than 1.77 (the existing baseline
method has a MAE >4.00) and R2 more than 0.57 (the existing baseline method has a
R2 <0.2). The models produced have so far exploited data streams, not first principles.
Future work will exploit such principles to improve the performance towards the
development of hybrid process engineering models, to generalize the approach, and to

Machine learning applications and process intelligence for cement industries 715



C. Chatzilenas et al.

enable the analysis with a potential to extract knowledge from the data and support
decisions.
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Abstract
Volatile Organic Compounds (VOCs) are a class of solvents extensively used for the
production of Active Pharmaceutical Ingredients (APIs) in the pharmaceutical industry.
To ensure adherence to environmental regulations, adsorption is widely implemented as
an effective VOC emission abatement method. The present work relies on an adsorption
model which accounts for mass transfer by advection-dispersion in the gas phase and
pore diffusion in the solid phase. Kinetics are described via the Linear Driving Force
(LDF) model with a lumped mass transfer coefficient; the adsorption equilibrium
concentration is expressed via the Langmuir isotherm (single-component adsorption)
and the Extended Langmuir Isotherm (binary mixture adsorption). Dynamic simulation
results highlight the breakthrough behaviour of key VOCs and mixtures towards
improved process efficiency.

Keywords: Process simulation, Volatile Organic Compound/VOC, emissions,
adsorption

1. Introduction
Primary (upstream) pharmaceutical manufacturing is characterized by the consumption
of large solvent volumes, key in reactions and separations: Volatile Organic Compounds
(VOCs) are prominent but also problematic, as their high volatility at standard
conditions has catastrophic effects on both human health and environment (Perez-Vega
et al., 2013). Adsorption is an effective abatement method, exploiting the potential of
porous materials for selective VOC capture (Yang et al., 2019); others (membranes,
cryo-condensation, thermal/catalytic oxidation) can be costlier (Belaissaoui et al., 2016;
Chung et al., 2019). Widely employed for high volumetric flows at low VOC
concentrations (Das et al., 2004), adsorption offers high efficiency, low energy demand
and easy installation/maintenance. However, adsorbent purchase and VOC-saturated
bed regeneration costs pose challenges.
The present paper describes the use of a published fixed bed adsorption model to
analyse the operation of an activated carbon bed for adsorption of VOCs from pharma
emissions. The first-principles dynamic model is used to simulate adsorption of solvents
and binary mixtures (methanol, ethanol, acetone, dichloromethane, chloroform,
benzene, toluene). Specifically, the adsorbate mass balance describes the VOC
concentration distribution between gas and solid phase in the fixed bed, the Linear
Driving Force (LDF) kinetic model approximates VOC adsorption rate onto particles,
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and the Langmuir isotherm is employed to quantify the adsorbate equilibrium
distribution onto the solid carbon phase. Breakthrough curves for single-component and
binary VOC system adsorption on various adsorbents can critically assist towards
informed operational decisions in regard to raw feed handling (e.g. mixing, sequencing,
conditions) to achieve OpEx cost minimization.

2. Dynamic Process Modelling: Assumptions and Structure
The mathematical model used in the present study relies on the following assumptions:
1. Isothermal conditions are ensured throughout the bed, with negligible pressure drop
and constant fluid velocity due to low VOC concentrations considered (Das et al.,
2004).
2. Radial concentration gradients and carrier gas adsorption are considered negligible.
3. The gas behaviour can be considered to obey the ideal gas law (Tefera et al., 2013).
4. The VOC mass transfer in the activated carbon bed considered for pharma emission
treatment occurs by advection-dispersion in gas phase and by diffusion in solid phase.
5. The mass transfer rate in the solid phase is approximated by the LDF model which is
characterized as “simple, analytical and physically consistent” (Sircar and Hufton,
2000).
6. Equilibrium obeys the Langmuir model for pure substances (Tefera et al., 2013) and
the Extended Langmuir model (Jain & Snoeyink) for binary mixtures (Tefera et al.,
2014).

∂𝐶
𝑖

∂𝑡 = 𝐷
𝑖

∂2𝐶
𝑖

∂𝑧2
− 𝑢

∂𝐶
𝑖

∂𝑧 −
(1−ε

𝑏
)

ε
𝑏

∂𝑞
𝑖

∂𝑡 (1) (13)

(2) (14)

(3) (15)

(4) (16)

(5) Ci (z = 0, t) = C0,i (17)

(6) (18)

(7) qi (z, t = 0) = 0 (19)
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(9) qo,i = ρp qe,i (21)

(10) (22)

𝐷
𝑘,𝑖
= 97𝑟

𝑝
𝑇
𝑀

𝐴 (11) (23)

(12) (24)

A short description follows: on Eq. (1) C, Dax,i, u, εb, q are the gas phase VOC
concentration (kg m–3), axial dispersion coefficient (m2 s–1), interstitial velocity (m s–1),
bulk bed porosity and adsorbed phase VOC concentration (kg m–3 ), respectively. Eq. (2)
of Dantas et al. (2011) and Eq. (3) further introduce Sci , Rep , DAB,i , α0 , Db and dp as the
Schmidt number of component i, the Reynolds number (adsorbent particle), the
molecular diffusivity (m2 s–1), the empirical mass diffusion correction factor (20), the
internal bed diameter (m) and the (considered) unidisperse particle diameter (0.00075
m) respectively.
In Eq. (4), Σν is the atomic diffusion volume (A: VOC, B: air), T is temperature (K), P
is pressure (atm) and M is molecular weight (g mol–1). Eq. (5) features kLDF,i as LDF
mass transfer coefficient (s–1) and qe,i is the inlet PT adsorbent equilibrium capacity (kg
kg–1). Ιn Eq. (6), εp , Co,i , Deff,i , qo,i and τp are the particle porosity, inlet concentration (kg
m–3) and effective diffusion coefficient of component i (m2 s–1), the concentration at the
solid phase which is in equilibrium with Co (kg m–3), and the particle tortuosity,
respectively. Eqs. (7)-(11) present ρp, ρb, Vpore, Dk,i and rp as particle/bed density (kg
m–3), pore volume (m3 kg–1), Knudsen diffusivity coefficient (m2 s–1) and particle radius
(m) respectively.

Beyond the Eqs. addressing macroscopic phenomena, we need microscopic
descriptions. Thus, Eqs. (12)-(15) introduce qe,i, qm,i, bi, bo,i, and ΔHad,i as the equilibrium
and maximum adsorption capacity of component i (kg kg–1), the Langmuir affinity
coefficient (m3 kg–1), the pre-exponential constant (m3 kg–1) and the heat of adsorption
(kJ mol–1), respectively. Eq. (16) presents αi, ΔHvap,i, IPi, γi and wmic as polarizability
(10–24 cm3), heat of vaporization (kJ mol–1), ionization potential (eV), VOC surface
tension (mN m–1) and average micropore width (nm) respectively. Finally, Eqs.
(22)-(24) provide dimensionless number definitions with Vs, ρm, μm and Q denoting the
superficial velocity (m s–1), system density (kg m–3), system viscosity (Pa s) and
volumetric flowrate (m3 s–1), respectively.

3. Dynamic Model Parameters for Adsorption Systems
The dynamic model is used to simulate VOC adsorption on activated carbon, as organic
emissions from distillation and pressure filtration units occur during API manufacturing.
The original set of PDEs is reduced to a set of ODEs using the Method of Lines for
space (central finite difference) discretisation and subsequent solution in MATLAB v.
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2020a. The adsorption of acetone, benzene and ethanol with air, as well as toluene with
either air or N2 as the carrier gas (Tefera et al., 2013; Delage et al., 2000) has been
examined; we also explore adsorption of two binary mixtures (acetone-ethanol,
toluene-ethanol) at the same (P = 1 atm, T = 300 K) conditions, on another (BAC)
adsorbent (Tefera et al., 2014). Benzene and air are used for model validation purposes,
not due to industrial relevance.

The system viscosities are determined through Wilke’s equation (Dantas et al., 2011) for
binary mixtures (air: T = 293 K, 300 K, VOCs: T = 293 K, 298 K, 300 K); moreover,
system densities are computed from pure component data via mixing rules (NIST,
2020).
Air as a carrier is a binary mixture (N2:O2=79:21% v/v); xvoc is the VOC molar fraction.
Tables 1 and 2 summarise all essential parameter values for the determination of the
axial dispersion coefficient (Dax,i) for all single components and binary mixtures,
respectively.

Table 1: Parameters for axial dispersion coefficient calculation (single-component adsorption).
System ρm (kg m–3) μm (Pa s) Re Sc DAB,i (m2 s–1) xVOC

Acetone–Air 1.95 2.15 ∙10–5 62.17 1 1.10∙10–5 0.001
Benzene–Air 2.04 2.25∙10–5 62.15 1.19 9.28∙10–6 0.001
Ethanol–Air 1.99 7.62∙10–5 2.72 3.11 1.23∙10–5 0.021
Toluene–Air 2.03 2.25∙10–5 61.93 1.33 8.35∙10–6 0.001
Toluene–N2 2.00 1.98∙10–5 69.14 0.27 3.73∙10–5 0.001
Table 2: Parameter values for axial dispersion coefficient calculation (binary mixture adsorption).

System ρ (kg m–3) μ (Pa s) Re Sc DAB (m2 s–1) xVOC

Acetone– 1.94 2.24∙10–5 59.45 1.05 1.10∙10–5 0.0005
0.0005Ethanol 59.45 0.90 1.28∙10–5

Toluene– 1.98 2.33∙10–5 58.33 1.41 8.35∙10–6 0.0005
0.0005Ethanol 58.33 0.92 1.28∙10–5

Table 3 summarizes the model parameter values of each system. The adsorbents
modelled are beaded activated carbon (Tefera et al., 2013) and Picactif NC 60 granular
carbon (ρb = 430 kg m–3) (Delage et al., 2000). For ethanol, we have computed ΔHad =
–28700 J/mol.

Table 3: Parameter values for single-component and binary mixtures used in VOC adsorption.

System Dax,i (m2 s–1) L (m) u (m s–1) qm (kgkg–1) b (m3kg–1) ε C0 (kg m–3) kLDF (s–1)
Acetone-Air 0.0015 0.12 2.405 0.41 267.02 0.38 0.00236 6.7∙10–5

Benzene-Air 0.0014 0.12 2.405 0.42 814.64 0.38 0.00317 4.0∙10–5

Ethanol-Air 0.0007 0.20 0.348 0.39 170.07 0.40 0.04700 3.2∙10–4

Toluene-Air 0.0013 0.12 2.405 0.42 3412.18 0.38 0.00374 3.4∙10–5

Toluene-N2 0.0009 0.12 2.405 0.42 3412.18 0.38 0.00374 3.5∙10–5

Acetone- 0.0015 1 2.405 0.41 267.02 0.38 0.00118 5.87∙10–5

Ethanol 0.0016 1 2.405 0.39 129.19 0.38 0.00094 1.43∙10–4

Toluene- 0.0013 1 2.405 0.42 3412.18 0.38 0.00187 1.87∙10–5

Ethanol 0.0016 1 2.405 0.39 129.19 0.38 0.00094 7.49∙10–4
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4. Results and Discussion
Breakthrough curves of VOC components in all examined systems have been
normalised by adsorbate inlet concentration and illustrated in Fig. 1, for acetone,
benzene, ethanol, toluene (two carriers) and two binary mixtures (acetone-ethanol,
toluene-ethanol). Dynamic model results have been validated vs. published
experimental single-component breakthrough curves which dictated our inputs (Tefera
et al., 2013; Delage et al., 2000). For all pure component adsorbates (air or N2 carrier)
and operating conditions considered, our computed breakthrough are found to be in
great agreement with experimental data.

Benzene and toluene demonstrate similar adsorption (breakthrough onset and duration)
behaviour, despite the differing LDF mass transfer coefficient values shown on Table 3;
these observations are in excellent agreement with previous findings (Tefera et al.
2013).
Acetone, on the other hand, shows markedly earlier (and somewhat faster) adsorption.
Ethanol also demonstrates fast adsorption (the fastest of all substances studied here),
due to its high LDF mass transfer coefficient. The lower operating temperature (T = 293
K) used for comparison vs. experimental data (Delage et al., 2000) also affects
breakthrough curve features, as adsorption is exothermic. Further investigating the
magnitude of radial dispersion contributions but also the effect of non-isothermal
operation for either pure or mixture feeds will provide significant benefits towards
ensuring high VOC model fidelity. The carrier gas effect is examined by simulating
toluene adsorption with N2 vs. air: the axial dispersion coefficient is computed as 31%
lower for the pure N2 carrier gas case (Dax/N2 = 0.0009 vs. Dax/air = 0.0013 m2 s–1),
resulting in a steeper breakthrough curve.
Binary mixtures adsorbing on BAC appear very similar: ethanol breakthrough starts
much faster than the other (acetone, toluene) component, as per its pure-component
behaviour and due to favourable adsorption kinetics, and a likely weaker affinity for the
adsorbent.

(a) (b)
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(c) (d)

(e) (f)

(g) (h)

Figure 1. Breakthrough curves vs. published experiments (Tefera et al., 2013; Delage et al.,
2000).

5. Conclusions
Upstream pharmaceutical manufacturing inevitably relies on significant solvent
volumes for many (especially reaction/separation) uses, with great environmental
repercussions. Efficiently capturing Volatile Organic Compounds (VOC) from pharma
emission streams is a strategic priority for advanced manufacturing striving to embrace
greener practices, hence inducing the research challenge of ensuring plant longevity and
cost-effectiveness.
Adsorption of VOC pollutants on activated carbon beds is an industrially implemented
solution for lowering emissions, so overcoming its efficiency limitations is a necessity.
Modelling pharma solvent adsorption systems is tackled by many literature studies, yet
without a concerted effort for a unified platform encompassing both technical (feed
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variability, adsorption kinetics) and economic (maintenance, scheduling) problem
vistas. This paper relies on an adsorption model for pharma VOC recovery, which
considers axial dispersion and Linear Driving Force mass transport under isothermal
conditions. Dynamic simulations of the adsorption behaviour of several VOC-air
systems show clear differences between polar (acetone, ethanol) and non-polar
(benzene, toluene) solvents. The binary systems examined demonstrated no competitive
adsorption, which however may occur if multi-component raw organic streams are fed
to the same adsorption bed. The vastly different breakthrough timescales (in the order of
hours) vary by mixture composition but also by adsorbent (e.g. activated carbon vs.
Picaktif vs. BAC) indicate that high-fidelity PDE models are critical for economically
relevant process optimization.
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Abstract
Detailed process understanding of powder systems is important for ensuring regulation
compliant manufacturing of pharmaceutical solid-based drug products. However, this
can get challenging due to the current limitations in experimental and computational
approaches, constraining the available knowledge of critical quality attributes. To
address this drawback, we propose the use of computationally efficient and
mechanistically informed surrogate models developed using multi-zonal
compartmentalization methodology. In this work, the proposed modelling strategy is
demonstrated for continuous powder blenders, wherein, first principle-based discrete
element simulation is used to obtain an inter-connected network of zones for detailed
evaluation of mixing within the system. The obtained surrogate models are further
validated using the original simulation, illustrating the accuracy of the proposed
methodology.

Keywords: multi-zonal compartmentalization, continuous pharmaceutical
manufacturing, surrogate modelling, continuous powder blender, radial mixing.

1. Introduction
Given the significance of ensuring product quality of pharmaceutical solid-based drug
products, the regulatory agencies like U.S. Food and Drug Administration have
proposed several initiatives to guide and regulate drug product manufacturing.
Quality-by-Design (QbD) (Yu et al. 2014) is one such initiative focusing on designing
the process such that end product quality is maintained. However, to successfully
implement this initiative, it is important to obtain detailed mechanistic information of
the overall process. Several research efforts (Ierapetritou et al. 2016) over the past years
have contributed towards this goal of improving process understanding of
pharmaceutical unit operations through use of experimental and simulation techniques.
However, for some unit operations like continuous powder blender, the experimental
techniques like particle tracking (Portillo et al. 2010) can get very expensive to capture
powder mixing within the blender. Furthermore, researchers (Muzzio et al. 1997) have
observed difficulties like disruption of powder bed and identification of adequate
number of samples while using experimental technique for measurement of powder
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mixing through use of sampling probes. These challenges hinder the accurate
assessment of radial mixing and blend uniformity which is a critical quality attribute.
On the other hand, first principle-based simulation techniques like discrete element
modelling (Cundall and Strack 1980) can get computationally intensive as it involves
evaluation of particle contacts and contact forces for all particles at each time step. To
address the above challenges for acquiring assessment of powder mixing within these
systems in reasonable computation time, we propose the use of surrogate model using
multi-zonal compartmentalization methodology for modelling pharmaceutical unit
operations. In this work, the proposed methodology is demonstrated for continuous
powder blender. The following sections highlight the details of the different techniques
utilized in this work, followed by results of the compartmentalization methodology and
model validation. Lastly, section 6 focuses on the conclusions of the proposed work.

2. Discrete element modelling
Discrete element modelling (DEM) is a first principle-based technique to simulate
particle dynamics in powder systems using Newton’s laws of motion and contact laws
based on discrete particle physics. Details of the equations involved in DEM are
described in literature (Dubey et al. 2011; Bhalode and Ierapetritou 2020b) and has been
widely applied for powder systems (Ketterhagen et al. 2009). Following the
construction of the desired geometry and addition of particles within DEM, this method
involves detection of particle contacts, evaluation of contact forces and corresponding
particle trajectories for all particles at each time step, thus making it computationally
intensive. In this work, we implement DEM for simulation of continuous powder
blender using Hertz-Mindlin contact model, wherein, we simulate a periodic section
(Gao, Yijie et al. 2012; Bhalode and Ierapetritou 2020a) of the blender. Here, a central
section of the blender is used with periodic boundaries to replicate the powder
behaviour as observed in the blender. In this work, two types of spherical, cohesionless
particles are added to the periodic section at the start of the simulation, with a total of
3000 particles for each particle type, and the periodic section is simulated for 20
seconds with a blade speed of 100 RPM.

3. Multi-zonal compartmentalization methodology for surrogate
modelling
Multi-zonal compartmentalization methodology is a hybrid technique to model complex
systems. This method captures multi-scale information using computationally efficient
and mechanistically informed surrogate models, while combining systemic or global
and local process information (Jourdan et al. 2019). It is widely used in literature for
different applications like bioreactors, fluidized columns and crystallizers. Multi-zonal
compartmentalization transforms a high-fidelity simulation like DEM model of a
process unit into an inter-connected network of compartments, where individual DEM
grids are classified into compartments, such that the process variables of interest of each
compartment are maintained within user-defined tolerance limits. This inter-connected
network acts as a computationally efficient surrogate, while replicating the observed
process behaviour. In this work, we implement this methodology for the continuous
powder blender to develop surrogate representation of the DEM model, which can later
be incorporated within process flowsheets. The proposed methodology is illustrated in
Figure 1, where we simulate a periodic section of the blender in DEM. This section is

726



Multi-zonal compartmentalization methodology for surrogate modeling in

divided into 10 slices along the axial direction, and each slice is further divided into
20x20 grids along Y and Z directions. The averaged particle velocities are extracted for
all grids in these slices and compartmentalized into multiple zones. These zones include
the empty zone where no particles are present, and filled zone where particles are
present. The filled zone is further divided into compartments corresponding to particle
velocities being greater than 0, equal to 0, less than 0 and the dead zone. This zoning
strategy when applied to Y and Z directions is termed as radial compartmentalization
and when applied to the X direction, is termed as axial compartmentalization.

Figure 1: Modelling strategy for multi-zonal compartment modeling of periodic section of the
continuous powder blender, illustrating axial and radial compartmentalization

4. Results
4.1. Radial compartmentalization

Based on the averaged velocities of individual grids extracted from DEM, the radial
compartmentalization is developed for each slice along Y and Z directions. The
individual grids are categorized into ‘+1’, ‘0’ and ‘-1’ zones based on their averaged
velocities and radial compartments are obtained as shown in Figure 2A.

Figure 2: Radial compartment maps for slice x = 0. (A) the radial compartment maps for Y and Z
directions, (B) corresponding distinct compartments for Y and Z directions, (C) the overlaid

compartment map for radial direction.

Each compartment in the compartment maps is labelled separately to create distinct
compartments as shown in Figure 2B. This is important for development of flowrates

continuous pharmaceutical manufacturing
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(Delafosse et al. 2014) between the proposed inter-connected network of zones. The
distinct compartments along Y and Z directions are combined to develop an overlaid
compartment map (Tajsoleiman et al. 2019) for radial direction as shown in Figure 2,
for slice corresponding to x = 0. Following the evaluation of overlaid compartment map,
the inter-connection flowrates between compartments ( ) are evaluated using the𝐹

𝑖𝑗
interfacial area between compartments ( ) and averaged velocities of grids𝐴

𝑖𝑗
(𝑣

𝑖
,  𝑣

𝑗
) 

along specific direction , as shown in Eq. (1) (Delafosse et al. 2014) where ( ) and (𝑘( ) 𝑖 𝑗
) correspond to different compartments. The flowrates are evaluated separately for Y
and Z directions to convert the compartment map into an inter-connected network of
zones.

 𝐹
𝑖𝑗

𝑘( ) = 𝐴
𝑖𝑗

* 𝑣
𝑖

𝑘( ) − 𝑣
𝑗

𝑘( )( ) (1)

4.2. Axial compartmentalization

A similar strategy is implemented for axial compartmentalization of all slices along X
direction in the periodic section. Here, the compartments are developed for each slice
based on averaged velocities of grids along the X axis and categorized into
compartments marked by ‘+1’, ‘0’, and ‘-1’, as defined in section 3. The empty grids
with no particles are classified into a separate section marked by ‘-2’. The axial
compartment maps thus developed, are shown in Figure 3 for slices corresponding to x
= 0 and x = 1. Following the axial compartmentalization, the inter-connection flowrates
between these compartments are evaluated using Eq. (1), with interfacial area equal to
the total area occupied by each compartment. The flowrates thus evaluated, provide
forward and backward flows for each slice, resulting in a net forward flow of particles
for the periodic section.

Figure 3: Axial compartments developed for slices x = 0 and x = 1 in the periodic section

Thus, combining the axial and radial compartmentalization strategies, we can obtain a
surrogate model based on developing inter-connected network of zones, to simulate the
powder flow as observed in original DEM model.

5. Validation of multi-zonal compartment model
5.1. Validation of radial compartmentalization

The proposed radial compartmentalization is validated based on the evaluation of
powder mixing within the periodic section. In this study, a variance-based index,
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relative standard deviation (RSD) (Gao, Yijie et al. 2012), is used to compare the
surrogate model based on compartments with the original DEM model and evaluated
using Eq. (2). For compartment model, corresponds to the concentration of individual𝐶

𝑖
compartments, with being the averaged concentration, and equal to the total𝐶

𝑎𝑣
𝑁

number of compartments. This equation is also applied to evaluate the RSD for DEM
model where, is the concentration of individual grids, with being the total number𝐶

𝑖
𝑁

of grids. Following the evaluation of RSD, mixing time (Bhalode and Ierapetritou𝑇
95

2020a) is evaluated to obtain a quantitative comparison of the two models. This
corresponds to the time it takes for the system to reach 95% of total mixing in the
system, shown in Eq. (2).

 𝑅𝑆𝐷 = 1
𝐶

𝑎𝑣
* 𝑖=1

𝑁

∑ 𝐶
𝑖
−𝐶

𝑎𝑣( )2 

𝑁−1
⎛
⎜

⎝

⎞
⎟

⎠

,   𝑇
95

= − 1
γ( ) * ln 𝑙𝑛 1−0.95

𝐴( ) (2)

Here, the mixing index profile is normalized, and the parameter estimation is performed
to obtain and . Following this, the mixing time is calculated, as shown in Table𝐴 γ 𝑇

95
1, evaluated for different blade speeds. The low error margins validate the proposed
strategy for radial compartmentalization.

Table 1: mixing times for DEM and CM model𝑇
95

Blade speed T_95 from DEM T_95 from CM Absolute relative error
50 RPM 14.812 14.5485 0.0178
75 RPM 12.366 12.129 0.0191
100 RPM 8.911 9.2684 0.0401

5.2. Validation of axial compartmentalization

The axial compartmentalization is validated based on residence time distribution (RTD)
profiles (Gao, Yijie et al. 2012). The residence time profiles obtained from DEM
correspond to the time it takes for all particles to travel from one end of the periodic
section to another, calculated separately for both particle types (P1_DEM, P2_DEM),
whereas the residence time for the surrogate model (RT_CM) corresponds to the time it
takes for the particles to travel the length of the section based on averaged velocities
extracted from the developed compartments. The obtained profiles shown in Figure 4
illustrate that the residence time of the surrogate model is fairly close to that obtained
from DEM models, thus, validating the proposed axial compartmentalization strategy
for surrogate models.

Multi-zonal compartmentalization methodology for surrogate modeling in
continuous pharmaceutical manufacturing
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Figure 4: Residence time distribution profiles for validation of axial compartmentalization.

6. Conclusions
We propose the use of multi-zonal compartmentalization methodology for surrogate
modelling of pharmaceutical continuous powder blender using periodic sections. A
computationally efficient surrogate model consisting of inter-connected network of
zones is developed for the DEM simulation, to quantify powder mixing within the
system and validated with the original DEM using radial mixing time and axial
residence time profiles. Thus, the proposed methodology is shown to capture axial and
radial mixing of powder blender in a computationally efficient manner. For future work,
we aim to integrate the proposed surrogate model within process flowsheets for
integration of overall manufacturing lines.
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Abstract
The description of materials in the context of thermodynamics is an essential part of
the chemical engineer’s models. The representation of thermodynamic relations is the
objective of this study. By making use of ProMo variable/equation builder, we construct
all the thermodynamics quantities based on the configuration space of contact geometry.
The configuration space builds on the quantities internal energy (U), entropy (S), Volume
(V ) and mass species (n) adding the equations of state being the derivatives yielding the
temperature, the negative pressure and the chemical potential.

ProMo expert domain provides the facilities to construct variable/equation sets from the
conserved basic physical quantities, namely the ones defined above. It follows the strict
rule of defining new variables as a function of existing variables. This ProMo building
regulation is an excellent match to the contact geometry’s fundamental approach to define
thermodynamics. It generates a consistent set of variables and equations and provides a
formal description that builds on pure mathematical terms. This mathematical represen-
tation also facilitates and simplifies automatic multiscale simulation modelling.

The use of well-defined variables and equations for the base ontologies system domain,
facilitate an integrating factor for the application domain both for chemical engineers as
well as the material multidisciplinary modelling community.

Keywords: Multidisciplinary and multi-scale simulations, Ontology-based framework,
ProMovariable/equation builder

1. Introduction

Nowadays, having a generic stand-alone software for modelling and simulation (digital
twin), data-driven reasoning, and knowledge-guided decision making are considered a
significant success which will bring a digital revolution into industrial science and tech-
nology. Such platform optimises the dependence on trial and error based experimentation
cycles for implementation in products and for manufacturing chemical processes devel-
opment. Besides, it will accelerate and facilitate the integration of process and material
design which is leading to plant and product design. However, the automation and indus-
trialisation of this approach have many challenges to master.

Models are usually used to mimic and map the behaviours of a system into objects. It also
gives freedom to the mind, allows tampering and testing, playing with what could become

modelling
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real before it has real-world consequences beyond the use of modelling and simulation
time. Models are thus central to any exploratory work that has the objective to exploit the
object’s behaviour.

However, the modelling term is highly knowledge-intensive activities (nearly all engi-
neering and science activities) which covers a wide range of contexts from chemical en-
gineering and more specifically, process systems engineering to manufacturing materials
engineering. Models are multi-scale, and multi-dimensional capturing a variety of phys-
ical phenomena from classical mechanics and thermodynamics to quantum mechanics.
Therefore for the integration of process and material design, selecting the right physical
domain, scale, dimension, and parameter, besides, to guarantee the interoperability proper
linking across the multi-scale models is not an easy task. Latter raises also the question
of interoperability when realising the computational code.

There also exists a gap in modelling and simulation, which demands the representation
and coupling of knowledge. Recently digitalisation of the industries increases the need for
multidisciplinary simulation, thereby generating a demand for an extension towards the
integration of different disciplines. Ontologies provide a perfect vehicle for the represen-
tation and coupling of knowledge. So the first important step is to introduce ontologies on
all levels of the broader domain of simulation software systems, and to construct a generic
simulation ontology-based framework. Because the used models and relations are math-
ematical descriptions of reality, the theoretical concepts of such frameworks are captured
in the discipline-specific ontologies. In this respect, the use of well-defined variables and
equations for the base ontologies system domain, facilitate an integrating factor for the
application domain both for chemical engineers as well as the material multidisciplinary
modelling community [6, 3].

ProMo, which is overarching the above concepts, is the focus of this paper. It is a software
suite that realises an ontology-based computational engineering environment. It has a
capability to provides the modelling and simulation of large and complex, multi-scale,
multidisciplinary, and dynamic processes.

In this letter, the representation of thermodynamic relations by making use of ProMo is
studied in detail. We also will see the correlation between the ProMo expert domain and
the ProMo building domain.

• Section. 2 introduces a general review on ProMo and its objective. Moreover, an
overview of the different parts of ProMo is provided.

• Section. 3 provides a brief explanation of the ProMo base ontology editor.

• Section. 4 illustrates how we construct all the thermodynamics quantities based on
the configuration space of contact geometry by making use of the ProMo vari-
able/equation builder.

• Section. 5 wraps up this manuscript with some concluding remarks.

2. The ProMo process modelling suite – an overview

ProMo is constructed on a series of modules, each of which considers as separate tasks
(executable program, App, or application). Its design enforces a context-free approach,
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which means, there is no loop in the definition space, but knowledge is built in a strict
sequence: "Things" are put strictly on top of each other requiring a tiny set of fundamental
"things". Besides, ProMo consists of three sets of tools, expert, translator, and user,
which stay in contact with each other due to the transformation of information via directed
graph structure.

ProMo consists of three sections, namely a section for generating the ProMo ontology, a
section dedicated to generating process models, and a section that aims at the simulation
and its utilisation [7, 8, 9]. ProMo not only create simulation code, but it also provides
the base models as an extension to the EMMO (European Materials Modelling Ontology)
in Ontology Web Language OWL form. It, in turn, can be fed into the Semantic Network
providing the information to construct the software components automatically realising
inter-task interoperability.

The expert’s section first constructs the ProMo base ontology. Then, in the second stage,
adds the variable/equation system to the ontology-defined domain spaces to capture the
mathematical behaviour of the disciplines’ base entities. The third module links the now-
defined entity models to graphical elements, which the translator uses with the graph-
based visual editor of ProMo’s second section.

The second section aims at the translator assists with the assembly of a process/material
model given the set of base building blocks. Any composed model can be made part of
the model library thereby extending the library of basic entity behaviours with composite
models, and the task-building process generating the application simulating the modelled
process. The instantiation tool adds the numerical information specifying a case, thereby
defining a mathematical/numerical problem.

The third is for the user who will finally map the model into an executable code by
ProMo’s task factory producing the digital twin. The user can then change the simulation
conditions, but not the process structure.

3. ProMo’s ontology builder

It is essential to structure the ontology hierarchically so that the knowledge is inherited
down into the branches. In this way, domain ontology act as a vehicle to capture the
knowledge of the interested domain. This is only possible when the ontology structure has
the right form in a specific domain. The right design here means domain tree structure, as
discussed above. Figure. 1 shows a hierarchical domain structure generated by the ProMo
ontology editor. With this design, we make sure that integration and exchanging of the
information is controlled [9].

It is the domain experts producing who produce the entity blocks for the different dis-
ciplines. It starts with the definition of the taxonometry and the structure captured in the
ProMo base-ontology (see fig. 1) thus defines the syntax for the ProMo suite.

ProMo two global types of variable classes: (i) one of the type port variables, (ii) one that
derives from port variables. The set of port variables is the base set of the fundamental
variables, including constants, in the specific area of physics, which allows the expert to
build all of the physics equations as a function of these variables. We build our entity-
behaviour ontology for physical process based on classical mechanics, thermodynamics,
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Figure 1: A graphical representation of the domain tree

particle physics, and quantum mechanics.

ProMo’s ontology editor also generates all the containers for the variable/equation multi-
bipartite graph and the indices. Indices play a main role in the ProMo. We define indices
for nodes and arcs as well as for the tokens, which in the case of physics, are the conserved
quantities. Further, indices capture the existing conversions and species. Product sets are
used where variable-length index sets appear, like for species in nodes or arcs, etc [5].

From this perspective, by making use of ProMo variable/equation builder, we can now
take a look at the construction of all the thermodynamics quantities based on the configu-
ration space of contact geometry.

4. ProMo’s equation editor

ProMo’s expert section provides the facilities to construct variable/equation sets from
the conserved basic physical quantities. The equation editor implements the strict rule
of defining new variables as a function of existing variables based on a (minimal) set
of defined port variables. The result is a consistent set of variables and equations that
provide a formal description that builds on pure mathematical terms. The ProMo building
regulations are an excellent match to the contact geometry’s fundamental approach to
define thermodynamics.

To construct the variables and equations, one first has to choose the domain in the ProMo
domain tree. The ProMo ontology implements an inheriting policy: each variable defined
on the selected level is inherited into the branch below. The process starts with the defi-
nition of the port variables. For each of them, the physical units and the dimensionality
inform of index sets are defined. The expert defines a new variable as a function of ex-
isting variables. The editor disables the use of not-existing variables. Each operator is
designed to compute the units and the dimensionalities following a rule defined for each
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operator. This construction rules impose a lower-triagonal variable/equation structure
with consistent variable dimensions and units. Some mathematical entity models require
the solution of implicit equations. ProMo sets the rule that the expert has to define first
an explicit expression for the new variable. Only in a second stage, a second equation
can be added for this variable, which is a solution to a root computation. This approach
resolves the problem of keeping consistency for both the units and the dimensionality of
the variable.

4.1. Thermodynamics configuration space

There exist an analogy between classical mechanics and thermodynamics. Such that the
equations of state are first-order partial differential equations, which are defining the ther-
modynamics mathematical models of the system and they are pretty similar to Hamil-
ton’s equations. Therefore classical mechanics and thermodynamics have both symplectic
structures. With this resemblance in mind, we can construct the thermodynamics config-
uration space on the quantities internal energy (U), entropy (S), Volume (V ) and mass
species (n) adding the equations of state being the derivatives yielding the temperature,
the negative pressure and the chemical potential [4, 2, 1]. By making use of the contact
geometry concept, one can write the configuration space as:

U = (S,V,n,T,−p,µ) (1)

where T = ∂U
∂S , p = − ∂U

∂V , and µ = ∂U
∂n indicate temperature, pressure, and chemical

potential respectively. With this in mind, we can define the thermodynamics potentials as
follows.

Enthalpy is obtained as:

H =U + pV (2)

Helmholtz free energy is written as:

F =U −T S (3)

Gibbs free energy is defined as:

G = H −T S (4)

Grand potential is obtained as:

φ = F −µn (5)

Maxwell relations are given by:(
∂T
∂V

)
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(7)

In this way, we can describe the thermodynamics behaviour of materials and processes
in details by generating the variable/relation (equation) system based on the port. In this
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letter, the thermodynamics port variables are (U,S,V,n), which we declare as of class
”state variables”. Next we generate the equations for (T,−p,µ) as a function of the just-
defined state variables and port variables and declare them belonging to the class effort
variables1. Once we defined state variables and their units and indices, we cannot change
them as the whole equation system will build on them. Once we have defined the right-
hand-side expression defining the declared variable, it will be compiled. The compiler
computes the units and indices. If compilation fails, the expression is rejected and the
user is informed about the detected problem. With this sophisticated method, we can
build all thermodynamics equations based on the minimum set of port variables.

ProMo compiler can compile all variables and equations into Matlab, python, C++, as
well as generating OWL file for variables and relations. Besides, it compiles a Latex file
to show the documented results.

5. Concluding remarks

In this letter, we have studied how to build and modify the thermodynamics variable/equation
system based on configuration space methodology. In the physics domain, the port vari-
ables are the base variables for defining the configuration spaces of the mechanical and
thermodynamic systems. The former is governed by the Hamiltonians and the latter by
Contact Geometry. The construct will provide a solid fundamental framework of variables
and equations. The approach guarantees proper propagation of physical units and dimen-
sionality of the mathematical object. It also defines for each variable an input/output rep-
resentation, which we allow to be substituted by any alternative model, thereby enabling
surrogate models.
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Abstract 
Using nonlinear models to represent multi-scenario design optimization problems can 
lead to very large NLPs that can become intractable to be solved centrally due to the 
available memory in the computing device used. In this paper, we consider a simple but 
general approach for partitioning the large problem into smaller NLPs by adding 
consensus constraints. A distributed algorithm is then developed by applying the 
Alternating Direction Method of Multipliers (ADMM) to solve the partition problems 
separately and overcome this memory limitations. The approach is demonstrated using a 
simple case study and compared against the solution obtained by solving the problem 
centrally.      

Keywords: ADMM, thermal energy storage, optimal design. 

1. Introduction 
Thermal energy storage (TES) systems help manage the asynchronous behaviour between 
supply and demand of thermal energy that occur in many industrial processes. They store 
excess energy during off-peak periods and discharge it during peak demand, thus 
reducing reliance on external utilities and decrease operating costs. During the design 
stage, the profiles for the supply and demand for energy under which the system is 
expected to operate in are uncertain and needs to be accounted for. This uncertainty can 

be represented by a set of discrete scenarios  with cost weights  to 
represent the likelihood of scenario s being realized. Stochastic programming approaches 
can be used to cast the optimal design problem as a two-stage optimization problem where 

the design variables  are first-stage (here and now) decisions while the operations 

variables  are second stage (wait and see) decisions for each scenario (Thombre et 
al., 2020). 
The dynamics of the system in each scenario can be discretized into N equally spaced 

sampling intervals represented by the set  and the optimal design 
problem cast as an NLP in the centralized form as ().  
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   (b) 

   (c) 

   (d) 

The vectors x, u and  represent the differential states, control inputs applied to the plant 

during operations, and time-varying parameters respectively. The subscript  is used 

to represent the sth scenario at timestep k while the initial condition for all scenarios is 
. We define the operations variable for scenario s built by stacking the vectors in each 

timestep k as,  . Functions  

and  represent the capital costs and operating costs. The function  represents 

inequality constraints and function  is used to represent the dynamics of the system. 
When considering many scenarios and longer time horizons, solving the optimal design 
problem in the central form as in () can become computationally intractable due to the 
limited memory available in the computing device used. In this paper, we explore the 
option of dividing this problem into smaller partition problems which can be solved 
separately by multiple smaller machines to overcome the memory limitations. The 
partition problems are then solved iteratively with a coordination step in between to reach 
a solution to the central problem. 

2. Methodology 
2.1. Reformulating the design problem as a general form consensus optimization 
problem   

We can divide the two-stage dynamic optimization problem into P partitions denoted by 

the set  in a very flexible manner. For example, besides considering each 
scenario as a partition, we could also form partitions within the prediction horizon of a 
particular scenario, or bundle together similar parts from multiple scenarios into a 
partition. Each partition p then is a separate optimization problem with its own local 

variables for design ( ) and operations ( ) and can be solved separately. An 
illustration of a problem with 2 scenarios divided into 6 partitions is shown in Figure 1.  
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Figure 1: Illustration of dividing the optimal design problem with 2 scenarios into 6 partitions. 

The solutions from the individual partitions put together is a solution to the centralized 
problem () when,  

- All the partitions achieve consensus between their local design variables 
- Adjacent partitions achieve consensus of the differential state variables shared 

between them (at the edge of the partitions)  

We introduce a global copy of all the variables that must reach consensus into a vector 
and the consensus requirements can then be imposed as a constraint in each partition p. 
We can thus write the optimal design problem as a sum of smaller partition problems that 
are linked with consensus constraints as,  

  
 (a) 

   
(b) 

 
  

(c) 

 
  

(d) 

 
  

(e) 

 
  

(f) 

Ap and Bp are selection matrices used to link a subset of the local variables of partition p 

to the corresponding sections in the global copy . The objective function terms in the 
partition problems are chosen appropriately to add up to the original objective in ().  

2.2. Applying ADMM to get a distributed algorithm   

The individual partition problems in () are not trivially separable due to the presence of 
constraints that enforce the consensus condition. We can solve this problem in a 
distributed approach using ADMM as described below. The  primal residual of the 

constraints (d) and (e) can be denoted using the vector  as, 
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The partial augmented Lagrangian (AL) function of () can be formed by relaxing these 
constraints and adding it to the objective as,  

 
() 

The vector  is built by stacking lagrange multipliers 
associated with the consensus constraints and R is a symmetric positive definite matrix. 
The AL function is additively separable except for the quadratic penalty terms. The 

ADMM algorithm involves solving the partition problems while keeping  and  fixed 

and then updating them by keeping the local variables  fixed in an alternating fashion 
until convergence. The ith iteration of the ADMM algorithm thus takes the form 

   
(a) 

  
 (b) 

   
(c) 

Step (a) involves solving an optimization problem for each partition while the global 
variable is kept constant. This is the computationally expensive step in the approach but 
can be solved using separate machines and in parallel to speed up convergence. Step (b) 
is the minimization of the AL function while the local variables in partitions are kept 
constant. This step for consensus problems reduces to finding the minimum of a quadratic 
function and can be shown to be the averaging operator (Rodriguez et al., 2018) as,  

 
 

where  denotes the set of partitions connected to the jth element of the global 
variable. Step (c) is the update to the lagrange multipliers of consensus constraints and 
can be carried out in each partition separately. The termination criteria for ADMM 

iterations are that primal residual ( ) and the dual residuals ( ) be 
reasonably close to zero as explained in Boyd et al. (2010). 

3. The TES Design problem 
We use flowsheet in Figure 2 to represent the heating section of a district heating network, 
where water is used in a closed-loop to satisfy the heating requirement in an area.  
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Figure 2: Simplified flowsheet of a district heating system. 

The volumetric flow rate of water in the loop is  which is determined by the number 
of consumers and their heating demands at any time. The temperature of water returned 
is  and determined by the heat losses in the system and is assumed to be correlated 
to ambient weather conditions. The operational objective of the heating system is to heat 
this water to a temperature  that must be above a contractually specified temperature 

. A cheap source of heat is available from a process stream in an industrial 
process that needs to be cooled. It transfers heat to the district heating system using the 
heat exchanger WHB. Any additional heating required in the district heating side is met 
by using the peak heat boiler PHB. There is a temporal mismatch in the supply of heat 
from the process stream and the demand for heating from the consumers. To better 
manage this mismatch and decrease the reliance on external utilities, a thermal energy 
storage system in the form of a simple buffer tank is being considered. This simple TES 
system can charge/ discharge by raising/ lowering the temperature of the tank by 

manipulating the flow split .  

Mass and energy balance equations can be written out to model the dynamics of the 
system, details of which and the parameters used can be found in Prakash (2020). The 

differential states are  and the control inputs   

and the uncertain parameters at each time step k are . The design 

problem is then to find the optimal volume of the TES tank ( ) that must be installed, 
given the uncertain profiles of future supply and demand of thermal energy.  

4. Results and Discussions 
We present a simulation study to demonstrate the distributed approach and compare it 
against solving the design problem as a single NLP centrally. Two equally likely 

scenarios are used to represent future operations (with N = 60). The profiles for  has 
a step change at timesteps k = 20 and k = 40, while all other parameters are held constant. 
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Quadratic functions are used to represent capital cost  and the 

operating cost . The design variables and operations variables were all scaled 
to be within zero and one while formulating the optimization problem. Scaling facilitated 
selecting the AL penalty parameters in R to tune the convergence in our distributed 
approach more easily. The penalty parameter influences the convergence speed of 
ADMM when applied to convex problems. In the case of nonconvex problems, poorly 
chosen values of this penalty parameter can make convergence harder or can even prevent 
convergence altogether. We use a diagonal matrix for R (with values 0.001 and 0.1 
corresponding to the design and operation variables respectively) to roughly balance the 
magnitudes of the original objective and the added penalization term at the initial guess.  

 
Figure 3: Results from solving the design problem centrally vs distributed approach. 

In Figure 3, we can see that the primal and dual residuals become sufficiently small in the 
ADMM algorithm, indicating the convergence in our distributed approach. The optimal 
design variables can be seen to converge to the same solution as found by solving the 
problem centrally. An important point to note is that this behavior is not guaranteed by 
ADMM in the case of nonconvex problems. When applied to nonconvex problems, 
ADMM need not converge and even when it does converge, it need not converge to an 
optimal point and must be hence considered just as another local optimization method 
(Boyd et al., 2010). Although the convergence guarantees for ADMM in the case of 
complex nonconvex NLPs are poorly understood, it has been shown to perform 
satisfactorily in practice (Rodriguez et al., 2018). Three snapshots of the optimal 
differential state trajectory Ttes in the partitions of scenario 1 are shown in Figure 4. 

 
Figure 4: Snapshots at ADMM iterations (i = 1,10, 100) in the partition problems. 

An interesting observation in our approach is that all partitions apart from the leftmost 
partition has the initial condition of the dynamic optimization problem as a variable. Thus 
in Figure 4, we can see that during the initial iterations (left subplot), the optimal solution 
is to initialize the TES tank at a high temperature. The penalization terms added are then 

( )20.001capex tesVf =
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updated to close the gap between the partitions and achieve consensus (middle and right 
subplots). In this aspect our approach shares similarities to the multiple shooting (MS) 
approach in dynamic optimization. The key difference is that MS is solved centrally and 
the state continuity (consensus constraint) is enforced explicitly as an equality constraint 
by the solver. We solve it in a distributed way where the consensus constraint is relaxed 
by forming the AL. The ADMM iterations are then able to enforce this constraint 
implicitly by minimizing the AL.     

5. Conclusion 
In this paper, we presented the optimal design of a simple TES system under uncertainty 
as a two-stage nonlinear dynamic optimization problem. Due to limitations in memory of 
solving the problem centrally in a single machine, an approach for forming smaller 
partition problems in a general fashion was shown. The ADMM algorithm was applied 
to coordinate between the subproblems which could be solved separately and in parallel. 
A simple simulation exercise was used to demonstrate the approach.  
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Abstract
Calibration of the wastewater treatment plant (WWTP) models is a challenging task,
because reliable collection of measured data and good process knowledge are required
in each particular case. This research presents the case study of a Romanian municipal
WWTP with the Anaerobic-Anoxic-Oxic (A2O) configuration. Activated Sludge Model
No. 3 (ASM3) is the core of the developed WWTP model. The proposed WWTP model
calibration methodology assumes the selection and computation of a set of influent
variables, associated to a group of process and settler parameters, such as they fit the
model predictions to the plant measurements. The objective function used for
calibration consists in the absolute difference between the measured and model
predicted effluent data and its constrained minimization finds the decision variables as
calibration targets. Three optimization approaches were selected and investigated:
genetic, genetic-hybrid and multiobjective Pareto algorithms. The calibration
performance of the different optimization methods was evaluated and compared. The
genetic-hybrid optimization method showed the best performance as the model
predicted data approximates well the effluent measured data both in steady and dynamic
state. The properly calibrated WWTP model was complemented with nitrification and
denitrification control loops, aimed to improve the municipal WWTP operation by
enhancing the effluent quality and reducing the aeration and pumping energy.

Keywords: wastewater treatment, ASM3 modelling, calibration, optimization
algorithms, control.

1. Introduction
Activated sludge technology is one of the most reliable and efficient purification
methods used at the municipal wastewater treatment plants. This technology requires
the presence of heterotrophic and autotrophic microorganisms for achieving the removal
of carbon, nitrogen and phosphorus pollutants emerged from the household and
industrial activities. The demands of the continuously stricter effluent regulation limits
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and the need of reducing the operation costs ask for the development of efficient
operating solutions. They are effectively investigated by complex modelling tools and
new solutions are implemented by efficient control systems (Hauduc et al., 2013).
Mathematical models support the understanding of the complex processes occurring at
the wastewater treatment plants, the operators training and the elaboration of the control
strategies (Ostace et al., 2011). Activated Sludge Models (ASMs) describe the
bio-chemical process, while the Benchmark Simulation Models (BSMs) complement
the physical separation processes taking place at the municipal WWTPs (Rieger et al.,
2013). Activated Sludge Model No. 3 (ASM3) describes the organic carbon removal,
the nitrification and denitrification processes, rectifying some weak points of the
Activated Sludge Model No. 1 (ASM1). According to the ASM3, the growth of
heterotrophic biomass is achieved in two steps: in the first step biodegradable substrate
is stored as internal storage products and in the second step these internal cellular
storage products are consumed for the growth of heterotrophic microorganisms (Gujer
et al. 1999). The WWTP models need to be calibrated, because the influent wastewater
concentration and flow rate profiles, associated to the geometrical characteristics of the
purification units, vary from one WWTP to another (Mannina et al., 2011).
Various nitrification and denitrification control configurations are investigated and
applied at the municipal WWTPs (Várhelyi et al., 2019). Two main control loops are
considered to control the dissolved oxygen (DO) concentration in the biodegradation
tanks, by manipulating the air flow rate, and to control the nitrates-nitrites concentration
in the anoxic basin, by acting on the flow rate of nitrate recirculation from the aeration
tanks (Gernaey et al., 2014). This paper presents the calibration of the
Anaerobic-Anoxic-Oxic (A2O) ASM3-based WWTP model by comparing the
performance of three optimization methods: genetic, genetic-hybrid and Pareto
multiobjective algorithms. They are followed by the implementation of the nitrification
and denitrification the control system.

2. Municipal WWTP model
The developed municipal WWTP model comprises a nonreactive primary settler relying
on Otterpohl primary clarifier model equations, five bioreactors (anaerobic, anoxic and
three aerobic units) incorporating the biological equations of ASM3 and a nonreactive
secondary settler described by the double-exponential velocity function settling model
of Takács. The A2O layout of the municipal WWTP, with its anaerobic and anoxic
reactors, is considered with the particular position of nitrate recirculation flow rate for
transporting nitrates and nitrites from the aerobic zone into the anoxic bioreactor. The
WWTP model was built in Matlab software and the Simulink graphical extension. For
reducing the simulation time, the process equations were written in C programming
language and were incorporated as compiled C files in Simulink S-function blocks.

3. Methods
3.1. Proposed calibration approach

The proposed calibration approach consists in five main steps: i) defining the calibration
goals, targeted model variables and parameters, ii) collecting and analysing the
construction and process measured data, iii) developing and software implementing the
ASM3-based WWTP model, iv) calibrating the model in steady state, using different
optimization methods, v) evaluating the calibration performance in steady and dynamic

748



state. The main calibration goal was to fit the model predicted effluent data to the
effluent data measured at the municipal WWTP. The main pollutant components
concentration in the influent and effluent streams, associated to the influent stream,
recirculation and air flow rates, were measured with online sensors and were reconciled
with laboratory measurements. The measured data was collected during May 2016 and
the data set of the first 22 days of the month was considered for the WWTP model
calibration (Simon-Várhelyi et al., 2020). In the calibration step the optimization
problem was formulated and 10 decision variables containing four influent variables
concentration (denoted as x1 to x4), three process parameters (x5 to x7) and three settler
parameters (x8 to x10) were chosen in order to be calibrated. They were: readily
biodegradable organic substrates (SS, x1), inert particulate organic material (XI, x2),
heterotrophic biomass (XH, x3), nitrifying biomass (XA, x4), storage rate constant (kSTO,
x5), dissolved oxygen saturation constant (KO2, x6), autotrophic maximum growth of the
nitrifying organisms (μA, x7), hindered zone settling parameter (rh, x8), flocculent zone
settling parameter (rp, x9) and non-settleable fraction (fns, x10). As objective function
(objfunctotal) it was considered the weighted sum of the absolute differences between the
effluent measured data and effluent model predicted data for: soluble part of the
chemical oxygen demand (CODsol), nitrates and nitrites (SNOX), free and saline ammonia
(SNH4) and total suspended solids (XSS) concentrations. The lower (LB) and upper
bounds (UB) of the decision variables were defined based on literature-scrutinized
values. Equations (1-8) describe the proposed optimization problem, as they were
formulated for the WWTP model calibration.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The calibration was performed using three different optimization algorithms. The
genetic algorithm optimization approach was the first tested method. It was based on the
ga Matlab function. The second considered method was the genetic-hybrid algorithm, as
it combines two optimization methods, i.e. the genetic algorithm and the classical
algorithm. The hybrid Matlab function was used for its implementation. The third
investigated optimization method was the multiobjective optimization, which finds the
Pareto solutions using the genetic algorithm. The gamultiobj function of Matlab was
implemented. For each of the three optimization methods, the calibration was performed
in steady state using the same objective function and constraints. The best calibration
results were selected, implemented in the model and further tested by performing
dynamic simulations. The WWTP dynamic model behaviour was compared with
process measured data, based on a 10 minutes sampling time evaluation approach.

Performance comparison of different optimization methods used for activated
sludge model no. 3-based wastewater treatment plant model calibration
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3.2. Proposed control approach

The calibrated ASM3-based WWTP model was complemented with two feedback
control loops having Proportional-Integral controllers, as presented in Figure 1. The first
one is intended for the nitrification (aeration) control, while the second one is
implemented for the denitrification control. This control design also achieves the
removal of carbon and phosphorous pollutants. Control of the aeration is based on the
DO concentration control in the last aerated bioreactor. The manipulated variable is the
air flow rate introduced in the aerobic bioreactors. The second control loop aims the
control of nitrates and nitrites concentration (SNOx) in the anoxic bioreactor by
manipulating the nitrate recirculation flow rate.

Figure 1. The proposed and investigated control loops.

Different setpoint values for the DO concentration in the last aerobic bioreactor and for
the nitrates and nitrites concentration in the anoxic bioreactor were proposed and tested.
The aeration energy (AE), pumping energy (PE) and effluent quality (EQ) were
calculated based on the Eqs. (9-11) and compared to the actual performance of the
municipal WWTP. The investigated control cases are presented in Table 1.

(9)

(10)

(11)

Table 1. Investigated cases of the control loops with different setpoint values.
Case Description
Case 0 WWTP actual operation (predominant manual control)
Case 1 DO setpoint value: 3 g O2/m3, SNOX setpoint value: 0.1 g N/m3

Case 2 DO setpoint value: 3 g O2/m3, SNOX setpoint value: 0.05 g N/m3

Case 3 DO setpoint value: 3 g O2/m3, SNOX setpoint value: 0.01 g N/m3

Case 4 DO setpoint value: 2 g O2/m3, SNOX setpoint value: 0.1 g N/m3

Case 5 DO setpoint value: 2 g O2/m3, SNOX setpoint value: 0.05 g N/m3

Case 6 DO setpoint value: 2 g O2/m3, SNOX setpoint value: 0.01 g N/m3
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4. Results and discussion
4.1. Steady state calibration results

The steady state calibration results are presented in Tables 2-4, for all three considered
optimization algorithms. Table 2 presents the calibrated decision variables, Table 3
comparatively shows the measured effluent data associated to the calibrated model
predictions and Table 4 reveals the values of the optimization index. The calibrated
decision variables show a good agreement with the values reported in the literature. The
effluent simulated data approximates well the effluent measured data in steady state.
The best results were achieved by the hybrid optimization method, as the overall
objective function demonstrated the minimum value of 0.025. The calibrated decision
variables obtained using hybrid optimization were used in the subsequent dynamic
simulations.
Table 2. Calibrated values of the influent variables, process and settler parameters obtained with the different
optimization methods.

Decision variable Nota
- tion

Genetic
algorithm

Hybrid
method

Multiobjective
method

Unit

Readily biodeg. organic substrates SS 49.02 15.37 74.2 g COD/m3

Inert particulate organic material XI 36.21 62.86 32.81 g COD/m3

Heterotrophic organisms XH 3.61 0.463 2.54 g COD/m3

Nitrifying organisms XA 3.42 2.84 8.97 g COD/m3

Storage rate constant kSTO 2.24 3.35 0.91 g CODXS /
(g CODXH day)

Saturation constant for DO KO2 0.46 0.492 1.09 g O2/m3

Autotrophic maximum growth of
the nitrifying organisms μA 8.93 4.74 6.69 1/day

Hindered zone settling parameter rh 0.000799 0.00113 0.000687 m3/g SS
Flocculant zone settling parameter rp 0.00794 0.0125 0.0114 m3/g SS

Non-settleable fraction fns 0.00449 0.006 0.00329 -

Table 3. Comparison between the average measured effluent data and the average simulated effluent data
obtained by the calibration with different optimization methods.

Effluent variable Notatio
n

Measure
d data

Genetic
algorithm

Hybrid
method

Multiobjectiv
e method

Unit

Soluble chem. oxig. demand CODsol 4.84 4.84 4.84 4.84 g COD/m3

Nitrates and nitrites SNOX 3.76 3.554 3.782 3.686 g N/m3

Free and saline
ammonia

SNH4 0.17 0.1699 0.1698 0.0151 g N/m3

Suspended solids XSS 12.00 12.00 12.00 11.83 g SS/m3

Table 4. Comparison between the overall objective function values of the calibration results obtained by the
different optimization methods.

Genetic algorithm Hybrid method Multiobjective method
Overall objective function 0.211 0.025 1.797

The calibration based on the genetic algorithm optimization method also shows very
good calibration performance, as only the reduced difference of 5 % for the effluent
nitrates and nitrites concentration was observed. Results of the multiobjective
optimization method show dissimilarities at the free and saline ammonia effluent
concentration, but the simulated effluent soluble COD, nitrates and nitrites, suspended
solids concentrations also fit to the measured effluent data.

4.2. Calibrated model results for the dynamic state
Dynamic simulations were performed using the fitted values obtained by the hybrid
optimization method. Figures 2 and 3 show the comparison between the measured

Performance comparison of different optimization methods used for activated
sludge model no. 3-based wastewater treatment plant model calibration
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effluent WWTP data and model predicted effluent data, for the concentration of the
soluble COD and nitrates and nitrites (SNOX) main variables.

Figure 2. Measured vs model predicted effluent
data for soluble COD.

Figure 3. Measured vs model predicted effluent
data for nitrates and nitrites concentrations.

Predictions of the calibrated model for the WWTP effluent approximates well the
measured effluent data, both in steady and dynamic state.
4.3. Results of the WWTP control

Table 5 shows the values of the performance indices obtained by dynamic simulations
using the calibrated model for the proposed control cases.
Table 5. Performance indices of the calibrated WWTP model with the control strategies.

Case Aeration energy
[kWh/day]

Pumping energy [kWh/day] Effluent Quality [kg. P.U./day]

Case 0 13,720.03 8,793.29 20,440.06
Case 1 11,904.58 10,248.65 18,474.86
Case 2 11,680.42 7,942.05 18,768.56
Case 3 11,441.55 5,799.24 19,068.96
Case 4 10,357.93 14,138.25 16,694.57
Case 5 10,165.38 9,984.21 16,900.63
Case 6 9,940.05 6,260.02 17,138.97

As revealed by Table 5, the implementation of the proposed control improves the actual
municipal WWTP operation when aeration energy and effluent quality are considered.
However, depending on the case, pumping energy may be affected. The overall best
performance among the investigated control cases was obtained for Case 6, i.e. by
setting the DO setpoint value to 2 g O2/m3 and the SNOX setpoint value to 0.01 g N/m3.
For this favourable control case, the aeration energy was reduced by 27.5 %, the
pumping energy was diminished by 28.8 % and the effluent quality was improved by
16.1 %, when comparison was made to the actual WWTP operation.

5. Conclusions
The calibration of the municipal WWTP model based on the Activated Sludge Model
No. 3 was accomplished using different optimization algorithms and their performance
was comparatively presented. The hybrid optimization method demonstrated the best
calibration performance. The calibrated model was used to implement control loops
with different setpoint values, aimed to WWTP performance improvement. The most
favourable case was presented and proposed for WWTP implementation as it showed
energy reduction of about 28 % and effluent quality improvement of about 16 %.
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Abstract 
This study demonstrates the development of three modeling approaches for predicting 
thermophysical property with the ability to quantify the uncertainty in the prediction. The 
modeling approaches consist of a classical non-linear group-contribution (GC) model 
(GCM), Gaussian-Process regression (GPR), and a deep neural network (DNN) all 
applied to the first-order groups defined by Marrero and Gani as the molecular descriptor. 
The uncertainty was quantified using different methods: linear error propagation using 
the parameter covariance matrix for the GCM, the inherent uncertainty quantification of 
GPR models, and using a probabilistic layer able to learn the distribution of model outputs 
in DNN. The models have been applied to the lower flammability limit (LFL) at 298K. 
The model performance was evaluated using 5 folds cross-validation to ensure the models 
were exposed to all data and to detect potential overfitting,—a procedure frequently used 
within machine learning. The models obtained produce a good fit to the experimental data 
when applied to all available data with a coefficient of determination (R2) above 0.9 for 
all models, a maximum mean absolute error of 0.39 [%-vol], and a maximum mean 
squared error of 0.51. 
 
Keywords: QSPR, Deep-Learning, Property Prediction, Uncertainty Analysis 

1. Introduction 
Thermophysical properties such as critical constants, enthalpic, and flammability 
properties play a vital role in many chemical engineering applications, e.g., phase 
equilibria calculations, process simulation, and risk assessment (Frutiger et al., 2016a). 
Predicting these properties in a fast yet computationally efficient way is therefore of 
paramount importance for many applications, especially in the absence or scarcity of 
experimental data and since it is impractical to perform measurements whenever the need 
arises. Traditionally, quantitative structure-property relationships (QSPRs) type models 
are employed to predict such properties from structural information of the chemical 
compounds (Austin et al., 2016). Recently, efforts have also been invested in applying 
emerging machine learning techniques as the new predictive tool in QSPRs (Zhang et al., 
2018). Among them, deep neural networks (DNN) have drawn the utmost attention due 
to their ability to extract hidden features in large datasets and approximate the behavior 
of any function. This allows such models to compare, if not outperform, traditional QSPR 
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models. Some of the recent applications are the prediction of the perceived odor of 
molecules (Zhang et al., 2018) and critical properties of halogenated olefins (Mondejar et 
al., 2017). Few have however addressed the uncertainty of the predictions made by the 
models. This could potentially hinder the broader use of these models, especially in 
applications involving engineering decision-making. In this work, we develop and 
compare property prediction models with uncertainty quantification based on three 
modeling approaches: a GC-based non-linear regression (GCM), a machine learning-
based Gaussian process regression (GPR), and a deep learning-based neural network 
(DNN) applied to the lower flammability limit property (LFL) of organic compounds.  

2. Methodology 
In developing QSPR models, two key modeling decisions must be addressed: how to 
describe the structural information of the chemical and how to relate the structure to the 
property of interest. The selection of these is discussed in the following. 
2.1. Molecular Descriptor 

The structural information of the molecule is transformed into a machine-readable 
molecular descriptor to be used as input to a mathematical model. One example of such 
expert-crafted descriptors is the segmentation in GC, where the molecule is described 
through the occurrence of specific predetermined atomic arrangements. The groups are 
defined to reflect a series of feature subsets of the molecule that are frequently occurring 
in the chemical design space (Marrero and Gani, 2001). Hukkerikar et al. (2012) 
developed a widely used GCM, where the molecule is described through three levels of 
increasing complexity to capture larger atomic arrangements. In this study, only the first-
order groups defined by Marrero and Gani (2001) were used as input to all models. The 
exclusion of higher-order groups is to reduce the model complexity and because they do 
not always result in a reduction in the prediction error  (Frutiger et al., 2016b).  
2.2. Property data 

The Lower Flammability Limit (LFL) was chosen to benchmark the models. The LFL is 
used in quantitative risk assessment and is defined as the lowest concentration of a 
chemical for which a flammable mixture with air is formed. The LFL is measured at 298K 
and 1 atm and is expressed in [%-vol]. The LFL was obtained from the AIChE DIPPR 
801® database considering only experimental and accepted data (Rowley et al., 2019). A 

 
Figure 1: Histogram of the LFL 
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2.3. Non-linear regression 

A GCM for predicting the LFL of organic molecules has previously been developed in 
(Frutiger et al., 2016a) and can be seen in Eq. (1). 

 ( ) log
const

LFLf LFL T
LFL


 

  
 

 (1) 

Where T is the group occurrence matrix and θ are the group contributions. The 
contributions and the model constant are determined by minimizing the sum of squared 
error (SSE) between the prediction and the experimental value. The model uncertainty is 
determined by linear error propagation using the parameter covariance matrix as 
described in (Frutiger et al., 2016b). 
2.4. Machine-learning model: Gaussian Process Regression (GPR) 

Gaussian process regression (GPR) is a probabilistic machine learning (ML) algorithm 
that, unlike many other ML models, allows prediction of the underlying uncertainties in 
its predictions. It does so by using kernels to explain a given model response as a 
realization of a random function of the following shape: 

 2( ) ( , )GPRy f x x wz    (2) 
where the first term models the mean, 𝜎  the variance and 𝑍(𝑥) is a zero-mean, unit-
variance stochastic Gaussian process. β denotes regressed coefficients and 𝑓(𝑥) a set of 
basis functions. The stochastic part 𝑍(𝑤, 𝑥) introduces latent variables 𝑤 to correlate 
observations x and new points x' in the input space using kernel functions, for which a 
variety of alternatives exist in both literature and available software packages. The most 
commonly used kernel types include squared exponential kernel, exponential kernel, 
“matern 3/2”, “matern 5/2” and rational quadratic kernel. In this work, we use 
MATLAB’s GPR fitter (fitrgp), which additionally provides model prediction error 
uncertainty and confidence intervals.  
2.5. Deep-learning model 

Deep neural networks (DNN) is a class of machine learning algorithms similar to the 
artificial neural network and aims to mimic the information processing of the brain. DNNs 
have more than one hidden layer (l) situated between the input and output layers 
(Goodfellow et al., 2016). Each layer contains a given number of units (neurons) that 
apply a certain functional transformation to the input. These types of models can 
approximate the behavior of any function (universal approximation theorem). The output 
(y) of a unit (i) in layer (l) is related to the output (x) of the earlier layer (k) with J outputs 
through a set of weights (𝑤 , ), a bias (b) and a non-linear activation function f. 

  ,
1

J
l
i i k k i

j
y f w x b




 

 
 
  (3) 

To fairly compare the various models in this work, only feed-forward layers were used. 
Despite the considerable interest, DNNs have gained in regression applications, few have 
dealt with the uncertainty in the prediction. This could be due to the complexity required 
to perform such an analysis. In this work, we use a probabilistic machine learning 
technique by introducing a probabilistic layer after the dense layers that can learn the 
distribution over the weights in the network. This layer learns the probability distribution 
of the outputs (y) related to the inputs (x) through weights (w). This makes it possible to 
model the loss function as the negative log-likelihood. The DNN was implemented using 
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the TensorFlow framework along with the TensorFlow distributions to model the 
probabilistic layer (Dillon et al., 2017). Grid-search was used to optimize the DNN 
hyperparameter systematically by varying the number of neurons, and dropout rate 
between [8,16,32,64], and [0.2-0.6] respectively. This resulted in a DNN comprised of: 
three dense layers (64) separated by three dropout layers (0.5) with a learning rate of 1e- 4

 and using the “Adam” optimizer and the “ReLu” activation function. The architecture 
was determined using an 80:10:10 training, validation, and testing split. 
2.6. Training, validation, and model uncertainty 

To validate the model performance and its ability to generalize to unseen data, 5-fold 
cross-validation was performed. The mean-squared-error (MSE), mean absolute error 
(MAE), and coefficient of determination (R2) are reported as an average with a standard 
deviation across all folds. The uncertainty quantification of GCM and GPR is done using 
all data fr the fitting following the approach in (Frutiger et al., 2016b; Hukkerikar et al., 
2012), while for the DNN the average across folds was used. 

3. Results 
The model predictions and the 95% confidence intervals (CI) have been determined for 
the best performing model for each approach and are visualized in Figure 1. The average 
performance metrics across all folds and using all data can be seen in Table 1. 

Table 1: Average statistical performance across all folds using all data  

 
Model 

MSE MAE R2 
train test total train test total train test total 

GCM 0.33 1.60 0.51 0.33 0.70 0.39 0.95 0.74 0.90 
GPR 0.00 1.23 0.25 0.01 0.57 0.12 0.99 0.73 0.94 
DNN 0.10 1.10 0.26 0.12 0.59 0.20 0.98 0.78 0.94 

 
All obtained models conform well to the experimental data when considering all available 
data for the evaluation (test and training data). Depending on the metric chosen, the 
models show different ability to generalize to unseen data. The DNN shows the highest 
R2 and the highest MSE for the test data, however, it shows a higher MAE compared to 
GPR. And while the GCM shows a better R2 score for the test data than GPR, it produces 
the highest MAE and MSE among all models. To produce a common ground for 
comparison and to evaluate the models' ability to characterize the chemical design space, 
the metrics have also been evaluated using all available data. Based on this, the GPR had 
the highest R2, alongside the DNN and the lowest MAE, and MSE. Although none of the 
models presented match the performance of the model produced in (Frutiger et al., 2016a) 
(R2=0.99), it is important to note that the previous work used all Marrero Gani group 
orders and performed outlier treatment. Besides, all data were used for the training of the 
model resulting in the high R2 value (Frutiger et al., 2016a). In this study we are applying 
an established cross-validation methodology for testing models and therefore assess the 
ability of the models to predict the property of interest, this is quite different from earlier 
approaches where all the data is used for GCM building. Using the k-fold cross validation 
also ensures that the model has been exposed to all available groups at least once. This is 
an effort to overcome the fact that not all groups appear with the same frequency. The 
alternative would be to select a training set that has all available groups at least once. 
However, this approach might produce a model that is biased towards one class of 
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compounds. In general, it seems the machine-learning and deep-learning approaches 
generalize better to unseen data. 

 
Figure 2: LFL model predictions and the 95% lower and upper CI interval  
 
While the GCM underpredicts the LFL values in the lower end (lower than 0.5%), the 
DNN model is overpredicting these values. The GPR model does not show any of these 
tendencies. The uncertainty bounds resulting from the GPR model are very smooth in 
comparison to the ones produced by the GCM and the DNN model. The uncertainty 
bounds produced by the covariance matrix for the GCM provides more noisy confidence 
bounds compared to the two other models. The DNN model seems to struggle for 
predicting the uncertainty bounds for the data points at the higher end of the LFL spectrum 
(above  4%) and the confidence bounds are larger for these values and noisier. This could 
be due to the amount of data in these regions being much lower than for LFL values below 
4%. The skewness of the data at the larger values of  LFL could be the reason some of 
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the models struggle in predicting values in this region. From practical applications, the 
GCM approach with an asymptotic approximation of prediction uncertainty as well as the 
GPR approach seems in agreement with each other and could be used in process safety 
analysis, while further refinement of the DNN approach is needed. Moreover, assessing 
further the quality of the uncertainty predictions from different approaches would require 
the availability of a comprehensive measurement of the uncertainty of experimental data 
points. While qualitative information is provided in the DIPPR database, a quantitative 
analysis of the measured data uncertainty is particularly needed. 

4. Conclusions 
The uncertainty quantification has been illustrated for a thermo-physical property 
prediction model to predict the LFL through three different modeling approaches. All 
approaches are not only capable of providing the point prediction of the property but can 
also provide meaningful information about the models' confidence in its prediction. The 
uncertainty quantification using the covariance matrix for the GCM provides more noisy 
confidence bounds compared to the smooth prediction for the GPR model. The 
confidence of the DNN in the prediction suffers greatly for higher LFL values. 
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Abstract
Developing Industrial Symbiosis (IS) networks is a knowledge-intensive practice, where
information is of crucial importance in order to discover the potential of IS connections
between facilities engaging in exchange of materials and/or energy. In this work, we
provide methods and tools that assist modelling and systemic use of existing IS
knowledge to analyse potential IS networks and synergies.

Keywords: industrial symbiosis, knowledge graphs, graph databases.

1. Introduction
Industrial Symbiosis (IS) is an innovative approach to create industrial networks
(Isenmann and Chernykh, 2009) for economic, environmental and social benefits. IS
brings together companies from all business sectors through material trading and
sharing assets to add value, reduce costs and benefit the environment (Lehtoranta et al.,
2011). Developing IS networks is a knowledge-intensive practice, where information is
necessary to discover potential IS connections between flows of materials, waste and/or
other resources related to industrial facilities. Therefore, the efficiency of ICT solutions
for facilitating IS depends heavily on collecting, analysing and integrating
highly-diverse quantitative and qualitative data (Grant et al., 2010). The key objective
of our work in the SYMBIOICT project (co-financed by the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH-CREATE-INNOVATE) is to overcome two major barriers for detecting
large-scale IS networks such as: (a) focus on “1-1” connections, (b) lack of modelling
and systemic use of existing knowledge. By applying data analytics technologies we
produced a knowledge graph of existing and potential IS connections, matching
input/output flows of industrial facilities. Each connection can be weighted using
parameters such as the distance of the facilities (transport cost), the facility size and the
cost savings from the proposed waste prevention. We demonstrate how knowledge
graphs can be effectively used for matching (a) material to process, (b) material to
company, (c) company to company. Using the knowledge graph we accomplished an
effective analysis of potential IS networks and synergies that would otherwise be
extremely difficult to identify. These results were also visualized on a map, displaying
“hot spots” of existing IS synergies as well as cases with high potential of forming new
IS connections.
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2. Background
2.1. Knowledge Graphs
A knowledge graph captures the semantics of a domain using a set of definitions of
concepts, their properties, and the relations between them. Knowledge graph has
become a term that is recently ubiquitously used yet does not have a well-established
definition. Typically, a knowledge graph: (i) mainly describes real world entities and
their interrelations, organized in a graph, (ii) defines possible classes and relations of
entities in a schema, (iii) allows for potentially interrelating arbitrary entities with each
other, and (iv) covers various topical domains (Paulheim, 2017).
Since its inception by Google in 2012 (powered in part by the Freebase knowledge
base) and until today knowledge graphs have been an intrinsic part of organizing
knowledge in a distributed way for web applications, especially after the “second wave”
of the Semantic Web with the introduction of Linked Data and the adoption of Resource
Description Framework for information modelling on the web (Ji et al., 2020).
2.2. Industrial Symbiosis facilitation
In EU countries, the promotion of IS is usually supported by teams of experts or
practitioners that engage in networking sessions with industries and other stakeholders
for the purpose of the development of IS projects (Artola et al., 2018). In these sessions,
brokers usually apply straightforward techniques (without the use of ICT tools) to detect
the possibility of resource (raw materials, waste, energy) exchange among the
participating stakeholders. This approach can be restrictive, leading to serendipitous
discovery of cooperation opportunities and IS networks of limited scale and complexity.
The success of such efforts relies heavily on the skills and experience of each mediator
and not on a systemic use of information and knowledge. Other efforts, such as the
SMILE Resource Exchange platform launched in 2010 in Ireland as a waste trading
system to promote IS, have later transitioned towards a more hands-on facilitated
approach focusing on “1 on 1” solutions before utterly coming to a close in 2018.
In recent years, a few digital services have been developed focusing on supporting
decision making for waste valorisation and reduction. For example, International
Synergies (www.international-synergies.com) has developed SYNERGie, a proprietary
ICT resource management database and platform, enabling organizations to identify
resource reuse opportunities. Even though these digital solutions incorporate knowledge
of best practices for waste valorisation, they often follow the same approach of
searching for “1 on 1” connections. In this way they fail to take into consideration data
on raw materials, waste and industrial processes, the analysis of which can highlight
new possibilities for establishing more complex and less obvious IS networks.

3. Dataset and Model
3.1. Description
We adopt a data-driven approach for the facilitation of IS, proposing knowledge graphs
as the tool for incorporating IS related data, such as industrial processes combined with
flows of materials, waste and other resources related to industrial facilities. With this
representation, the user can model large and complex IS networks involving
heterogeneous industries and a wide range of by-products exchanged. Logic built into
knowledge graphs allows us to reason about the information contained within, and to
make implicit information in the graph explicitly accessible.
The challenge of creating a knowledge graph for waste valorization solutions lies in the
fact that the necessary information is usually fragmented and located in many
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heterogeneous sources. Therefore our first step was the extraction of the data related to
IS from various sources, and then we moved on to the transformation and
interconnection of them. In this way we managed to construct a knowledge graph and
perform further analysis on the data.
In particular, the knowledge graph can be used for matching waste to process, waste to
company, company to company or querying using only desired properties. We can
demonstrate examples in agricultural activities, rural and municipal communities and
ports, with reliable results. The graph can be enriched as more technologies are
developed. Connections can be either implemented or potential, depending on the
development stage. Furthermore quantitative data can be used for evaluating possible
synergies with mathematical optimization techniques.
3.2. Data Collection
Data used for the development of the graph database were mainly mined from official
repositories of IS best practices as well as research papers and news items. In particular,
our main sources were best practices implemented in Sweden: (industrialsymbiosis.se),
Finland: (www.industrialsymbiosis.fi/home-en-gb/) and Denmark (Kalundborg
Eco-industrial Park). The Nordic countries have a long tradition in sustainable
development and thus they offer a breadth of available data and best practises, which
could be replicated in other less circular countries. Other novel examples we took into
consideration include Guitang group in China as well as IS networks established in
Greece (symbiosisproject.eu), which proves that even in countries where circular
economy initiatives are still at an early stage, IS networks can be developed, given that
the necessary knowledge is available.

4. Methodology
4.1. Knowledge Graph Model
Nodes and edges (or relationships) were used in order to represent entities involved and
their in between connections. In the proposed model nodes can have one of three
different labels: Company, Material or Process which connect to each other with
relationships (edges) having one of the following three labels: Is_Input, Has_Output or
Has_Process. The nodes, the edges and the attributes are presented below in more detail.
Regarding nodes, three different labels were used.

● Set of Companies C: {c|c company} Nodes with label: “Company” represent
the geographic location where the various processes take place.

● Set of Materials M : {m| m material} Nodes with label: “Material” represent
materials in any state (solid, gaseous, liquid) and can be waste materials, raw
materials, byproducts etc.

● Set of Processes P : {p|p process} Nodes with label: “Process” describes actual
industrial processes that transform raw materials into useful products, but also
activities such as farming etc.

Regarding edges, three different labels were used.
● Set of Is_Input : {i| i Is_Input} Relationships with type: “Is_Input” relate

Material nodes with Process nodes.
● Set of Has_Output: Ο : {ο|ο Has_Output} Relationships with type:

“Has_Output” relate Process nodes with Material nodes.
● Set of Has_Process H: {h|h Has_Process} Relationships with type:

“Has_Process” relate Company nodes with Process nodes.

and Industrial Symbiosis
763



T. Chatzidimitriou et al.

Figure 1. Sample graph with the three different types of nodes and three different types of edges

The node labeled Company is connected with the node labeled Process through the edge
labeled Has_Process, whereas the node Process and Material can connect with edged
labeled Is_Input or Has_Output depending on the direction. Both edges and nodes have
attributes which vary depending on the label. Properties regarding materials can be
physical, chemical, biological etc. whereas properties regarding processes can be
CAPEX, OPEX etc. In the next section we demonstrate how the knowledge graph is
used to suggest connections between companies, waste and processing technologies.

5. Results
5.1. Implementation
In our approach we utilize the neo4j platform (neo4j.com), a native graph database built
from the ground up to leverage data and also data relationships. Using neo4j we created
a graph database for storage, automation and visualization of IS networks. Using the
data collected we created a Knowledge Graph containing: 49 industrial facilities, 99
industrial processes, and 154 different materials. The resulting Knowledge Graph can
suggest connections between companies, waste and processing technologies.
5.2. Query Example
Using our graph we can perform a variety of queries for facilitating IS planning and
networking, offering matches between (a) materials to process, (b) materials to
company, (c) company to company. E.g., a question such as: "My facility produces
Ethanol by Fermentation of Molasses. Which other materials can be used instead of
Molasses in my Fermentation process to produce Ethanol?" is expressed as follows in
neo4j:

match p=(n:Material)-[*]->(a:Material)
where any(node_on_p in NODES(p)

where node_on_p.ProcessName='Fermentation' ) and n.MaterialName <>
'Molasses' and a.MaterialName='Ethanol' and n.MaterialRole
in['final','exchange']
return p

By executing the above query, neo4j presents a result set with materials that can lead to
the production of Ethanol by Fermentation, based on the data of the Knowledge Graph.
We also get the corresponding paths for the chain of processes in order to achieve it. In
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this example we get: Bread Residues (through Hydrolysis), Sugar Beet (directly), Wheat
Waste (directly), Starch (directly), and Municipal Solid Waste (through Gasification).

Figure 2. Result set of query on Knowledge Graph.

5.3. Visualization of IS potential
Combining information extracted from the knowledge graph with data regarding
location and activity of industrial facilities in Greece (e.g., location, magnitude,
industrial NACE codes), we were able to detect cases with high potential of forming
successful new IS connections. We visualized these proposed IS connections on a digital
platform (snf-252687.vm.okeanos.grnet.gr), where industrial facilities are connected
based on the potential exchange of materials and/or other resources. Each IS connection
is weighted based on the distance between the industrial facilities involved combined
with the facility magnitude. Results are visualised on an interactive map, indicating
proposed IS connections as well as “hot spots” with high potential of IS regional
synergies.

Figure 3. Map of proposed IS connections and “hot-spots” using the Knowledge Graph.

6. Conclusions
In conclusion, the developed model allows real time analysis about potential IS
networks which include several different partners and synergies that would otherwise be

Intelligent Management Platform for Material Exchange Optimization
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extremely difficult to identify. In this way, a user of the knowledge graph can use even
limited information as parameters in order to obtain suggestions on relative applied
industrial symbiosis practices, proposed technologies that can process their waste, and
generally identify possible IS opportunities. Finally, we demonstrate a digital platform
that exploits IS knowledge graphs present IS hotspots and potential new connections.
Limitations of this methodology, which actually will be taken into consideration in our
future work plans to improve our methods, include the data collection process, which is
not automated, as well as the lack of data regarding the economic value of the
exchanges. Also, the graph cannot prioritize potential matches or compare them with
regard to their economic or environmental performance. Finally, at this stage, we do not
provide narrow searches involving constaints in equipment and processes, or even
involving company location information, but such type of data has already been
collected (see also Figure 3) and will be soon exploited to provide such type of searches.
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Abstract
In this work, we present a software prototype for the generation of Process
Intensification (PI) systems integrated with safety, flexibility, and control analysis. The
prototype comprises three major suites: (i) Synthesis Suite - which systematically
generates promising PI configurations based on a phenomenological process synthesis
approach (i.e. Generalized Modular Representative Framework), (ii) Simulation Suite -
which is integrated with a PI model library to translate the PI synthesis results into
corresponding equipment-based process alternatives, and (iii) Operability Suite - which
performs model-based safety, flexibility, and controllability analysis to ensure the actual
operational performance of the resulting PI systems under varying conditions. A user
interface has been built to coordinate the functionalities of the suites, allowing them to
work in tandem to create an environment that generates safe and operable PI flowsheets
without pre-postulation of potential process schemes. A case study on the metathesis
reaction of pentene is presented to demonstrate the potential of the prototype in deriving
safe and operable PI systems.

Keywords: Process Intensification, Process Synthesis & Optimization, Process Control,
Software Prototype.

1. Introduction
Process Intensification (PI) has attracted an emerging interest in the chemical
engineering research community and the chemical process industry owing to its
potential ability to drastically increase process profitability and efficiency (Moulijn et
al., 2008; Tian et al., 2018). The past few decades have witnessed significant advances
in the field of PI (Keil, 2018; Segovia-Hernández and Bonilla-Petriciolet, 2016).
However, a widely used process intensification commercial software is still lacking
(Tula et al., 2019; Skiborowski, 2018). Driven by several recent national initiatives such
as the RAPID Institute (Bielenberg and Palou-Rivera, 2019), the academic community
has initiated attempts to develop software prototypes for computer-aided process design,
synthesis, and intensification leveraging state-of-the-art process systems engineering
approaches (Tula et al., 2017; Demirel et al., 2017; Chen et al., 2018; Miller et al.,
2018).

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-88506-5.50120-0



In this paper, we present the development towards a software prototype based on our
recently proposed framework for the synthesis of operable process intensification
systems (Tian et al., 2020). The prototype systematically generates intensified process
systems by utilizing a novel phenomenological synthesis approach with embedded
process operability, safety, and explicit model predictive control analysis criterion.
Section 2 of the paper elucidates the prototype architecture and the function of
embedded suites. In section 3, a case study of a reactive separation system is presented
to demonstrate the working of the prototype. The remaining section covers conclusions
and future directions.

2. Software Prototype
The prototype platform consists of three suites, namely: (i) Synthesis Suite, (ii)
Simulation Suite, and (iii) Operability & Control Suite. As illustrated in Figure 1, the
user interface (UI) built on Python brings these suites together in a seamless manner to
provide a consolidated environment while allowing user input and interaction. The
different functional suites take advantage of various commercially available software
packages, such as GAMS® for process synthesis and optimization, ASPEN PLUS® for
steady-state process simulation, and gPROMS® for dynamic modeling and control
analysis. These suites work in tandem to provide key insights to the user and are
coordinated through the UI as detailed below.

Figure 1: Information flow chart for the software prototype platform

2.1. User Interface
The interface is programmed to facilitate communication and the transfer of data
between the suites of the software prototype. Through the UI, users can select individual
suites for targeted equipment/flowsheet intensification, design, or analysis. However,
the UI can also guide users to navigate between different suites in a step-by-step manner

S. Vedant et al.768



for integrated design with operability, safety, and/or control. To this end, the UI acts as a
central node for information flow as shown in Figure 1 and provides key input and
output information to the user at every stage.

2.2. Synthesis Suite
The synthesis suite provides the tools required for the systematic generation of optimal
and intensified process solutions. The technical foundation of the suite is laid by the
Generalized Modular Representative Framework (GMF) (Papalexandri and
Pistikopoulos, 1996). To characterize various chemical processes, GMF employs two
phenomenological modules, namely, the pure heat exchange module and the
multi-functional mass/heat exchange module. Interlinked configurations of these
modules, generated as a result of solving an optimization problem, can form the basis
for the creation of conventional and/or novel unit operations. The optimization problem
is formulated as a mixed-integer nonlinear programming problem (MINLP) and solved
using the Generalized Benders Decomposition algorithm in GAMS®. The parameters of
the model are assumed to be deterministic and provided by the user through the UI. To
exchange information between the UI and the synthesis suite, Python Application
Programming Interface (API) is used. More detail on GMF modular representation and
model formulation can be found in Tian and Pistikopoulos (2020).

2.3. Simulation Suite
To validate the resulting configuration, the GMF module based flowsheet is converted
to the corresponding equipment based flowsheet. This translation is achieved through a
model library which comprises of information pertaining to various process equipment,
and a set of rules governing the assignment of equipment to a module or a group of
modules. The user can avail from a library of models and suggestions provided by the
database to choose the equipment. This allows the prototype to account for equipment
constraints and lends the flexibility to generate alternative flowsheets. It is imperative
to note that the accuracy of translation will depend on the extensiveness of the library
database. Novel equipment will have to be appended to the library in prior to achieve
the desired translation. Subsequently, the equipment based flowsheet is simulated using
ASPEN PLUS® to perform steady-state validation. Furthermore, high fidelity models
are developed to fully capture and analyze the process dynamics.

2.4. Operability Suite
Model-based analyses are currently enabled for the following PI operational
considerations: (i) flexibility analysis to ensure feasible operation under process
uncertainty, (ii) risk analysis to evaluate the inherent safety performance of the resulting
process configuration at the conceptual design stage, and (iii) explicit/multi-parametric
model predictive control to deliver optimal dynamic operation strategies under
disturbances following the PAROC (PARametric Optimisation and Control) framework
(Pistikopoulos et al., 2015). These operability analysis approaches can also be integrated
with the above Synthesis Suite and Simulation Suite to simultaneously generate optimal
and intensified process designs with guaranteed operability, safety, and control
performance (Tian et al., 2020).
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3.1. Problem Statement
In this section, we revisit the problem of 2-Pentene (C5H10) metathesis to form 2-Butene
(C4H8) and 2-Hexene (C6H12) which is an equilibrium limited reaction adapted from
Tian and Pistikopoulos (2020). At atmospheric pressure, the reaction takes place in the
liquid phase and can be described by ideal vapor-liquid equilibrium (VLE). The
production target is to obtain 50 kmol/h of 98% butene and 50 kmol/h of 98% hexene
from a saturated liquid feed stream of 100 kmol/h pure pentene at atmospheric pressure.
The objective is to design a process with the minimum utility cost.

3.2. User Input
The UI window is built on Python with the help of the Tkinter package. It allows the
creation and management of window attributes like panels, buttons, and entry fields.
The UI window comprises of dedicated panels for showing input/output data, run time
data, superstructure layout, and comparison between alternatives of the generated
flowsheet. To allow for the dynamic updates of UI panels, they are created as objects of
python defined classes. Users can access all functionalities of the prototype with the
help of the button attribute. For the case study, the required input information includes
physical properties like molecular weight and molar mass, thermodynamic information
such as Antoine and heat capacity coefficients, reaction information such as
stoichiometry and standard Gibbs energy of formation, utility costs, and input feed
conditions.

3.3. Process Synthesis
To generate the module based flowsheet, the maximum number of modules was set to5.
This number can be increased to acquire more information about the identified unit
operations or decreased to reduce the computational time. The optimal MINLP solution
includes values for the number of pure heat and mass/heat exchanger modules (integer
variables), the presence of connections between stream and modules (binary variables),
and the operating conditions (continuous variables). The results are exported to a
database file (.db) to create modular structures using Python scripts. To visualize the
solution, conditional statements are used to read the binary values and create their
corresponding module or stream. For example, a module exists if the associated binary
variable is assigned the value of 1, or 0 otherwise.

The resulting graphical module based flowsheet with the information on the constituent
phenomena is shown in Figure 2. The modules and text in the flowsheet are sized
according to the number of modules, and the size of the allocated window.
Additionally, the python scripts account for the optimal layout to display process
streams without over-lapping with the modules. The red and blue lines show hot and
cold stream conditions respectively. The pure heat exchange module represented by
white blocks, at the top and bottom can be translated into condenser and reboiler
respectively. The mass/heat exchange modules can be translated into trays of a reactive
distillation column.

S. Vedant et al.770

3. Case Study: Pentene Metathesis Reaction 



Figure 2: Module flowsheet for the pentene metathesis reaction

3.4. Remarks
The resulting GMF modular solutions are then identified and translated to
equipment-based process alternatives with the help of a specialized PI model library
developed as part of the SYNOPSIS Project (Pistikopoulos et al., 2020). The model
library consists of validated rigorous and short-cut models for various intensified
reaction and/or separation systems, including but not limited to, advanced distillation
columns and reactive distillation columns. Moreover, the model library integrates
different commercial software platforms (e.g., Aspen, gPROMS, Python) to leverage
the existing unit operation models as well as to enable the flexible use of models for
different computational purposes (e.g., simulation, optimization, control) in a
platform-independent manner.

The safety, operability, and control performance of the PI systems can be further
analyzed using the model-based metrics introduced in Section 2.4. This can be
achieved either via posterior operational analysis for a given intensified process design,
or via integrated process design optimization with operability, safety, and control
considerations to systematically generate optimal process structures with desired
operational performances.

4. Conclusion and Future Work
In this paper, we have presented our work towards the development of a software
prototype to integrate process synthesis and process simulation with process operability,
safety, and control analysis of the PI design to deliver validated operable PI system
flowsheets. The connection of different parts of the prototype is explained and
demonstrated using a pentene metathesis reaction example. Ongoing work addresses
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the creation of the model library and establishing a connection of the UI with the
simulation and operability suites.
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Abstract 
Maintenance of subsea operating equipment is a significant part of the operational costs 
of running an oil production system. For instance, on the Norwegian continental shelf, it 
amounts to 60 billion NOK in operational expenses. One of the principal mechanisms of 
degradation in subsea process equipment is erosion by sand, which is a very complex 
process and, thus, difficult to model using physical domain knowledge. Because of this 
difficulty, we propose in this paper the use of data-driven approaches for modelling 
erosion in critical equipment of a subsea oil production rig. In such systems, a multitude 
of available process measurements such as flowrates, gas lift injection rates, pressures 
etc. can be combined to a soft sensor for component degradation. This approach could 
save significant amounts of resources by allowing fewer cost intensive inspections and 
monitoring schemes. A soft-sensor approach was tested with simulated data of the sand 
degradation of a choke valve in a gas lifted oil production system with three wells. In this 
paper, we present results from soft-sensor methods like multiple linear regression, 
regression trees, ensembles methods and kernel methods. The approaches were tested and 
compared in two case studies, the first with constant sand outflow from the reservoir for 
initial exploration of the data driven approaches, and the second with a more realistic 
profile in which the sand rate is increasing. In both cases, we compare the soft sensor 
modelling techniques in terms of their basic requirements of accuracy as well as 
transparency and interpretability. 
 
Keywords: equipment degradation, data-driven modelling, machine learning 

1. Main Text 
Failure to detect faults in large scale, expensive or critical equipment can have immense 
consequences. Both financial and in the most extreme cases, loss of life. One of the main 
mechanisms in equipment degradation in subsea oil extraction, is sand erosion. 
Accurately modelling this process is vital for monitoring of equipment health (Si et al. 
(2012)). Erosion by sand is a very complex process and, thus, difficult to model using 
physical domain knowledge. Because of this difficulty, we propose in this paper the use 
of data driven approaches for modelling erosion in critical equipment of a subsea oil 
production rig. In such systems, a multitude of available process measurements, such as 
flowrates and pressures, can be combined to a soft sensor for component degradation. 
This approach could save significant amounts of resources by allowing fewer cost 
intensive inspections and monitoring schemes as well as improving safety. To investigate 
the usability of such a data-driven modelling approach models will be tested on simulated 
data using the subsea gas lifted oil well network model proposed by Krishnamoorthy et 
al. (2016) and adapted by Verheyleweghen and Jäschke (2018).  
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2. Gas lifted oil well network 
In some cases, oil wells do not have sufficient reservoir pressure to lift fluids to the topside 
facility. Gas lift, the injection of compressed gas through the annulus, can be used to 
overcome this. The annulus is the void between the well piping and the casing. This leads 
to a reduction in the fluid mixture density. That, in turn reduces the hydrostatic pressure 
loss in the well. Consequently, the pressure at the well bottom decreases, compensating 
for the low reservoir pressure.  

 
Figure 1: Illustration of a gas lifted oil production system with three wells showing how 
production goes from reservoir to topside facility (Verheyleweghen and Jäschke (2018)).  
 
In Figure 1 the different parts of a gas lifted oil well network is shown. The oil flows, 
from a single reservoir into three wells, then, into a manifold before the riser takes the 
fluid mixture to the surface. Maturing fields experience a significant increase over time 
in sand production, which can be approximated by an exponential function (Hettema et 
al. (2006)). 
 

3. Method 
3.1. Simulations 
A small additional adaption to the model was made to incorporate a varying sand 
production rate (SPR). For each case study datasets of 200 time series of 500 days were 
simulated containing the total erosion length of the wells choke valves. The gas lift rate 
was varied randomly every 50 days within a given range: 
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Figure 2: Illustrative plot of cumulative erosion [mm] (right axis) and flowrate [kg/s] 
(leftaxis) from one 500 day time series. 
 
Constant sand production rate yielding a greatly simplified model, but a good starting 
point for initial exploration of the data-driven methods. This is equivalent to: msand(t) = 
msand(0). 
 
Exponential sand production rate yielding a more realistic model of a field increasing 
sand production as it matures. An exponential function, msand(t) = msand(0)e005t, was 
chosen to emulate a qualitative description of the sand production rate in a field over time 
(Hettema et al. (2006)). Figure 2 shows the cumulative erosion of the choke valve for one 
simulated time series in addition to the total well production flowrate. Note that the choke 
valve erosion is a function of the well production flowrate, as expected, but the 
dominating force is the sand production flowrate. The more sand produced by the well, 
the faster the choke valves erode.  
 
Process variables were measured every time step (day), with added noise to process 
measurements. Erosion, gas lift injection rate and sand production rate were recorded 
directly without noise. The pressure is measured in the annulus, well head (top of each 
well), riser head (top of the riser) and in the manifold connecting the wells. The 
production rates of gas and oil in the top of the riser as well as the top of each individual 
well are also measured. In addition to the process measurements, the sand production rate 
of the reservoir and the gas lift injection rate (control input of the optimisation) are used 
to simulate the erosion in the choke valves atop each well. The simulated data is then split 
in two parts of equal size, a training set and an independent test set. Due to the large 
availability of data for validation, since simulated data is used, we choose to use holdout 
validation, holding out 30% of the training set for model selection and validation. The 
final data sets contained 100 time series for training and validation and 100 time series 
for an independent test set. 
3.2. Pre-processing 
 
The gradient of the simulated cumulative erosion is used as response variable (i.e., the 
erosion rate), this is chosen as the response variable as the cumulative erosion has 
significant autocorrelation and is a time series, while the erosion rate at any given point 
only depends on the process variables at that point in time. Sand production rate is usually. 

775



 J. Jahren et al. 

not a constantly monitored variable, as such it was supplied to the models with a realistic 
sampling interval of 50 days, but the impact of lowering this to 30 days is also studied. 
Models were tested on normalized data with unit variance and mean zero. Tests were also 
done using principal component (PC) scores as predictors, in this case PC’s explaining > 
95% variance. 
3.3. Data-driven models 
 
For obtaining the soft sensor for erosion degradation, multiple traditional statistical 
learning methods are implemented and compared for the use cases, a brief introduction is 
given below but the interested reader is referred to Friedman et al. (2017). All models 
were implemented in MATLAB using the Statistics and Machine Learning toolbox (The 
MathWorks (2020)).  
 
Multiple linear regressions (MLR) are the simplest of all statistical models, where we 
assume a linear relationship between predictors (or combinations of predictors when 
including interactions). When such a relationship exists, these models yield good 
interpretability and room for extrapolation. For the linear regression models, least squares 
loss is used, and a stepwise approach (Stepwise MLR) is applied for model selection, with 
iterative addition of predictors (linear terms and interaction terms) to a null model until 
additional predictors no longer lead to significant reduction in loss.  
 
Ensemble methods essentially aggregate several simple models, in this case regression 
trees to yield a better prediction than individual models can. In this work bootstrap 
aggregation (Bagged trees) and gradient boosting (Boosted trees) were used. Ensemble 
methods can provide very good models of linear and non-linear phenomena, but this 
comes at a significant cost in transparency as interpreting relationships from these 
methods is very difficult.  
 
Support vector regression (SVR), which is a kernel method adapted from the famous 
classification algorithm support vector machines, was used. This method uses the support 
vector machine (SVM) algorithm to create a separating hyperplane in the data space 
which will allow prediction on new data samples. SVM’s are particularly suited for high 
dimensional data and are robust against outliers (Drucker et al. (2003)). The reported 
results are from Cubic kernel SVR, which had the strongest overall performance.  
 
In this work the loss function for parameter optimisation, model selection and model 
validation is always the mean square error of prediction (MSE). Hyperparameters of the 
ensemble and kernel methods were tuned using Bayesian optimization, using the expected 
improvement as acquisition function. 

4. Results and discussion 
Learning methods were tested on both the data simulated from constant sand production 
rate and exponential sand production rate. The performance of the methods is measured 
by independent test set mean squared error of prediction (MSE). The performance results 
are given in Table 1, where the first two columns give results for the first case study and 
the last for the second case study. There are some considerations outside of model 
performance to be taken into account when selecting a model for actual applications. 
There are significant differences in model training time, with the outlier being cubic 
kernel SVR, requiring significantly more training than bagged trees, boosted trees and 
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stepwise MLR. When dealing with safety critical equipment and infrastructure we are not 
only interested in a high accuracy, but also a high level of trust in the model predictions 
which in turn means that transparent and interpretable models are preferred. None of the 
models considered here are completely black box, in general models with transparent 
coefficients showing how a prediction is made are easier to interpret. Linear regressions 
are a class of such methods, allowing easy analysis of coefficients and, consequently its 
predictions. As such, when performance is close the preferred methods will be MLR 
models due to fast training times and superior interpretability. 
 
 

Method Const. SPR Const. w/ 
PCA 

Exp. SPR Exp. w/ 
PCA 

Stepwise MLR 0.0096 0.0166 0.0182 0.0191 
Bagged trees 0.0091 0.0162 0.0184 0.0192 
Boosted trees 0.0125 0.0320 0.0184 0.0239 
Cubic kernel SVR 0.0120 0.0129 0.0164 0.0169 

30 Day Sampling Rate

Stepwise MLR 𝑁/𝐴 𝑁/𝐴 0.00740 0.00946 
Bagged trees 𝑁/𝐴 𝑁/𝐴 0.00537 0.0134 
SVR 𝑁/𝐴 𝑁/𝐴 0.00687 0.00879 

 
4.1. Constant sand production rate 
 
All the methods show a small MSE value when tested on unseen data. Since the 
underlying phenomenon of erosion behaves linearly when sand production rate is held 
constant as in this test case. Very good fit is, thus, expected. The usefulness of this test 
case was primarily for initial exploration on a very simplified system. Additionally, we 
note that the performance of all models is degraded when principal components analysis 
(PCA) pre-processing is applied. This could be because the overall degrees of freedom 
afforded to the model is lowered. If multiple variables are mainly represented in one 
principal component, the interactions between them cannot be properly modelled by the 
interaction terms in a linear regression model, similar arguments hold for the other 
methods. 
4.2. Exponential sand production rate 
 
For the data simulated with exponential sand production rate, a significant decrease in the 
performance was observed for all methods, as expected with a more complex 
phenomenon being emulated. Similarly, to the initial test case, there is a drop in 
performance when PCA is applied, but this effect is relatively weaker for the exponential 
data. In this case cubic kernel SVR proved to have the strongest performance, but in 
general bagged trees, boosted trees and Stepwise MLR all provided accurate predictions 
of the erosion rate. The sampling rate of the sand production rate measurement as 
expected has a very significant impact on the model accuracy with exponential 
distribution, increasing sampling to once every 30 days instead of 50 for example reduces 
the MSE of an optimised bagged ensemble from 0.0066 to 0.0184. Similar trends are seen 
in the other methods as well, with model performance improving significantly when 
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sampling rate is increased. Such an effect is expected, as the models are working with 
more accurate data. 

5. Conclusion 
It is observed that for constant sand production rate, very accurate predictions of the 
erosion rates are made. Additionally, a significant degradation of accuracy is seen for all 
the constant sand production rate models except for the kernel methods when PCA is 
used. This could be due to a lower reliance on variable interactions which to some extent 
is hidden when PCA is applied. This provided a useful initial exploration and foundation 
for the second case study. On the data simulated from an exponential sand production rate 
the performance is overall worse, which is expected since the phenomenon that the 
models are attempting to reproduce is more complex. The methods are still relatively 
accurate with under 0.02 MSE on normalised unseen test data. However, when the slope 
of the sand production rate profile gets very steep (i.e time increases) the models suffer 
quite significantly from the sampling rate. With current model performance there is a 
strong case to be made for selecting linear regression-based methods as they provide 
superior model transparency and interpretability. Having observed that simulated data can 
be predicted well using statistical models, further investigation on real world data is 
merited to ascertain applicability to real industrial facilities. 
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Abstract 
The fast and accurate identification of air pollutant release effectively improved the 
emergency management for fine chemical industrial parks. The pollutant emission 
parameters could be estimated with the observed pollutant and meteorology data using an 
air dispersion model. Most of the fast response source term estimation methods are based 
on the Gaussian plume model for the low computation complexity. The concentration 
profile estimated by the Gaussian plume model can hardly represent the observation result 
affected by the complicated terrain with buildings in dense industrial area. Besides, the 
dispersion models with well characterized building profile like computation fluid 
dynamic (CFD) are time consuming. 
In this paper, a metamodelling method with downwash effect of buildings in the domain 
to estimate the air pollutant emission is proposed. The dispersion model (Aermod) with 
combined plume rise and building downwash (PRIME) model preferred by U.S. 
Environmental Protection Agency is used to establish an emission inventory which covers 
most possible release scenarios in a dedicated area such as a chemical industrial park. The 
initial emission inventory is then fed to a neural network. The emission inventory will be 
updated as well as the neural network with an increasing number of scenarios until the 
trained neural network meets the pre-set criteria. The well-trained neural network is then 
used to predict the source emissions with observed data collected in a fine chemical 
industrial park.  
A case study is performed with a localized Aermod model with geometry and surface 
character data collected from an industrial park.  The results show that the building down 
wash effect in the industrial parks is responsible for some source estimating error 
produced by the inverse Gaussian dispersion model. It shows the advance of time 
consumption and competitive prediction accuracy compared to typical least square 
inversion methods. 
Keywords: Source Term Estimation, Metamodelling, Aermod, Air Pollution, Emergency 
Management 

1. Introduction 
Chemical industrial parks gather a large number of industrial enterprises in limited space, 
challenging daily and emergency management for air pollution control. The development 
of emission determining has attracted great attention recently.  
There are two major types of source tracing methods for chemical industrial parks: (1) 
the receptor-based model source tracing such as chemical mass balance (CBM) and 
molecular markers (MM) and (2) the source-based model source tracing such as least 
square (LS) technique and Bayesian inference-based methods e.g. Markov chain Monte 
Carlo (MCMC). CMB and MM have been proved with a better performance for source 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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tracing via studies implemented in a number of locations in USA(Schauer and Cass, 2000) 
, while the prior knowledge of the source profile required by CBM and MM is hardly to 
be satisfied due to the complexity of pollutant composition and confidentiality (Jaeckels 
et al., 2007). The source-based model source tracing method such as LS has an important 
role in various of scenarios. Concentration measurements from sensors can be used for 
source terms estimation (STE). With the application of sensors measuring the 
concentration of relative pollutant the source term in the dispersion model can be 
estimated with the measured data from sensors with regard to source term estimation 
(STE) (Xu and Xu, 2017). Issartel (2003) used an inverse dispersion model to address the 
reconstruction of space-time geometry without statistical frame. An experiment data with 
released tracing gas measured with 14 stations in a characteristic spacing of 500 km was 
used for evaluation purposes. Lushi and Stockie (2010) developed a STE method based 
on the inverse Gaussian plume dispersion model. With the meteorology and deposition 
data from a lead-zinc smelting operation they estimated the total emission and produced 
a reasonable result. Other than optimization based methods, the Bayesian inference based 
methods of STE provide the probabilistic considerations for uncertainty analysis with not 
only one solution but a probability density function (Xu and Xu, 2017). 

Apart from the algorithms used for STE problems, the performance of dispersion model 
is critical for source tracing. Yee et al.(2014) addressed the STE problems with Bayesian 
inference framework using different dispersion models indicating the significance of 
model errors caused by the difference between the dispersion model and the fact in real 
situation (Yee et al., 2014). A limitation of the Gaussian dispersion model (Wawrzynczak 
et al., 2014) is that Gaussian dispersion model can hardly estimate the source strength 
simulated by a Gaussian puff model (SCIPUGG).  

American Meteorological Society (AMS) and U.S. Environmental Protection Agency 
(EPA) Regulatory Model (Aermod) enhanced the performance of Gaussian model not 
only by characterizing the vertical structure of wind profile but also describing the effect 
of building downwash with incorporated plume rise enhancement (PRIME) algorithms 
(Perry et al., 2005; Schulman et al., 2000). Although the model performance has been 
evaluated by many researchers, there are rare applications to STE problems due to the 
relative high computation load compared with Gaussian dispersion model.  

Artificial neural network (ANN) based metamodel has been widely used for nonlinear 
mapping for the ability to quickly learn from data while limited applications in air 
pollution source tracing are proposed. In this paper, to overcome the problem of Aermod 
to be used for STE, an ANN based metamodel is adopted to allow the STE problems to 
be solved with less computation time but maintaining a reasonable degree of accuracy. 
The rest of the paper is organized as follows, Section 2 describes the problems and 
methods used in this paper in detail, Section 3 introduces the numerical experiment setup 
followed by Section 4 and 5 with result discussions and conclusions respectively. 

2. Methodology 
2.1. Problem description 
Based on the advection-diffusion equation, a point source in location  with 
releasing rate q  produces concentrations measurement c  at receptors with coefficient 

( , )x yx
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. Considering n sources with unknown emission rates , the concentration 
measurements at 𝑚 receptors  are dependent on emission rate linearly as follows: 

 

  (1) 
 

 

 

 
Where matrix  is a sensitive matrix and its value is related to . The vector

 represents noise and model errors. The	 problem	 is	 now	 to	
estimate and to	minimize	Euclidean	norm:	

	

 
(2) 

For source locations , with fixed unit emission rate , coefficient matrix  can be 
calculated with an atmospheric dispersion model. Source strength  and  can be 
estimated with calculated  and concentration measurement . 

  (3) 

To minimize , a necessary condition is satisfied for a stationary point: 

 
 (4) 

The location at stationary point indicates the locations of the unknown sources.  

After the estimation of source location, the sensitive matrix  is available and the source 
strength  for unknown source can be estimated according to Eq. (3). 

There are a number of optimization algorithms in the literature to estimate the variable  
and  such as Levenberg-Marquardt (Marquardt, 1963) and Newton-Raphson (Loke and 
Barker, 1996). These methods are diverse with iterative techniques and initial values of 
target parameters. 

The iterative techniques may be time consuming. One of reasons that the Gaussian model 
is widely used for STE problems is the balanced performance and computation cost.  
Different from Gaussian model based least square method, the iteration of Aermod model 
is extraordinarily time consuming that hardly to be used for STE problems, particularly 
for emergency emission source tracing. To overcome this deficit, an Aermod model-
based ANN metamodelling (ANN-Aermod) approach is proposed.  

2.2. Source terms estimation using ANN 
This metamodeling approach is not simply to replace Aermod to make the computation 
fast, but actually to solve it as an inverse model, hence to replace the LS optimization as 
well. 
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The methodology is essentially realized in three steps. In the first step, a dedicated 
industrial area, the Aermod model localized with parameters like albedo, Bowen ratio, 
surface roughness and terrain elevation, is used to generate emission scenario inventory. 
The inventory contains full cross design samples to cover the entire domain dimension 
by dimension.  
In the second step, the samples in the inventory are passed to a typical neural network. 
In terms of the input and output of the ANN, the input includes:  

(1) a set of concentration  simulated to represent the values recorded by the 
measurement system which dimension is depends on the number of sensors in the 
industrial park (2) wind speed and wind direction  (3) sources emission rate  (4) 
ambient temperature . Other than these variables, the Aermod model requires more to 
process the data, namely, location of measurement system, albedo, Bowen ratio and 
surface roughness. These variables are typically unchanged, therefore, we do not need to 
consider these parameters in the ANN model. The output of the ANN is three-dimensional 
set corresponding to the source locations in  and -axis coordinate and 
source emission rate q%. The input dataset and output dataset are described as: 

  (5) 

Where  is number of concentration measurements and  is number of source 
locations.  

The third step is to estimate the source locations and emission rate with ANN. The 
sampled measurements dataset is the input of the ANN and the 

output is source locations and emission rate: . 

 

 Table 1 Range of variation of variables considered in source emission inventory 

     

2 sources 
min: 0[g/s] min: 1[m/s] min: 10° min: 0°C 
max: 1[g/s] max: 3[m/s] max: 360° max: 30°C 

 

3. Experimental study 
A numerical experiment is undertaken to evaluate the performance of features of the 
proposed method. The Aermod model is localized with building geometry, measurement 
locations, terrain elevation and surface roughness data collected from a chemical 
industrial park in Shangyu, China whose layout is demonstrated in Figure 1. 

There are 11 receptors around the industrial park denoted by triangles in Figure 1. The 
circles are potential two source locations corresponding to the highly risk area. Other 
variables used to generate the inventory and their value are shown in . 
 
 Table 1. In this work, a scenario inventory with the total 1.3 × 10+ records is processed 
for training. A back propagation neural network with three hidden layers is used to 
correlate the input and output.   For performance evaluation purposes, a numerical 
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simulation is undertaken using the least square 
method with either Gaussian model (LS-
Gaussian) or Aermod model (LS-Aermod). 
Addition to the test data for three methods, 
initial guess is required for LS-Gaussian and 
LS-Aermod method. 

4. Results and discussion 
The numerical simulation is implemented 
using Aermod (version 19191) running on a 
computer with Intel Core i5 (3.00GHz), 
24.0GB RAM. The emission scenario data 
collection used for performance evaluation is 
not included in the training data. The 
prediction results are shown in Table 2. The 
test data simulated an emission in location (-
175.00, 640.00), denoted by the circle in the south of the industrial park in Figure 1, is 
implemented. In Table 2, the computation time 0.402s indicating the advance of 
metamodelling method compared to 29.157s (LS-Gaussian) and 4123.617s(LS-Aermod). 
The location error of LS-Gaussian is 801.22 m, 3.50 m for LS-Aermod and 9.48 m for 
the ANN-Aermod method. The details of true and estimated source locations are shown 
in fourth and fifth column in Table 2. The results of LS-Gaussian and LS-Aermod 
indicated the Aermod model provided a different concentration profile in building 
complexity area compared to the Gaussian model. The building downwash effect plays 
an important role in chemical industrial parks. 

Although the LS-Aermod method demonstrated less retrieval error, the relatively high 
time consumption is hardly to be accepted for emergency emission estimation. The LS-
Gaussian method costs a ratio of 0.7% computation time of LS-Aermod, while the high 
estimation error of location is away of the region of high-risk area shown as circles in 
Figure 1. The ANN-Aermod model comparing with others methods, cost a ratio of 
0.001% computation time of LS-Aermod method, with an estimation error ratio of 1.18% 
of LS-Gaussian method, could process a valuable result with the least time consumption. 

 
Table 2 Numerical experiment using test data simulated with Aermod model. The first column 
shows the source tracing method.  The second column is total computation time for all trials. The 
third column is Euclidian distance corresponding to location estimation error. The fourth and 
fifth column show the true release location and retrieved location respectively. 

Method Computation Time(s) (m) Release Location Retrieval Location 

LS-Gaussian 29.157 801.22 (-175.00, 640.00) (-157.12, -161.02) 

LS-Aermod 4123.617 3.50 (-175.00, 640.00) (-171.50, 640.00) 
ANN-Aermod 0.402 9.48 (-175.00, 640.00) (-175.00, 647.32) 

 

LE

LE

Figure 1 The geometry of an industrial park 
in Shangyu 
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5. Conclusion 
This paper proposed an efficient and accurate source term estimation technique for    
chemical industrial parks. The prediction error ratio is 1.18%    to Gaussian model based 
least square method and the computation time ratio is 0.7% of Aermod model-based 
method. The accurate prediction of source location shows the competitive performance 
of source tracing in industrial parks with complex constructions. Thus, accurate 
predictions can be made in a limited time, providing plenty of valuable time for 
emergency responses. 

This source tracing method runs free of initial guess of source locations and therefore 
provides a more practical solution for source tracing in emergencies. 
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Abstract 
This paper presents a methodology for combining foreground and background uncertainty 
in the life-cycle assessment (LCA) of processes and products at a low technology-
readiness level. We compare the LCA of two ionic liquids, 1-butyl-3-methyl-imidazolium 
tetrafluoroborate [bmim][BF4] and 1-butyl-3-methyl-imidazolium hexafluorophosphate 
[bmim][PF6]. The nominal scenario predicts that [bmim][BF4] generates lower end-point 
environmental impacts than [bmim][PF6]. However, the uncertainty ranges around these 
nominal predictions overlap significantly, with [bmim][BF4] causing higher impacts than 
those of [bmim][PF6] in up to 30% of the uncertainty scenarios. On top of this, accounting 
for uncertainty in the foreground data more than doubles the estimated impact ranges in 
several damage categories.  This case study, therefore, demonstrates the need for 
combining foreground and background data uncertainty for more reliable life-cycle 
assessments. 
Keywords: uncertainty analysis, life cycle assessment, ionic liquids, process simulation 

1. Introduction 
Life-cycle assessment (LCA) is a popular methodology to quantify the environmental 
impacts of products and processes throughout their life cycle (Guinée and Heijungs, 
2017). It entails the collection of so-called inventory data on mass and energy flows, from 
raw material extraction to process emissions and wastes. In many applications, however, 
these data may be lacking because of confidentiality or low technology readiness 
(Skoronski et al., 2020). 
Various approaches have been proposed to bridge the gap in inventory data.  One such 
approach entails the development of detailed process models in order to predict the 
performance at scale of processes at a low technology-readiness level (TRL), for which 
industrial process data are yet unavailable (Hetherington et al., 2014). However, these 
process models can themselves be subject to large uncertainty (Van der Spek et al., 2017). 
It is important, therefore, to quantify these uncertainties and propagate them into the 
predicted inventories, and ultimately the predicted impacts.  Despite this, most LCA 
studies based on process simulation simply omit the effect of uncertainty, or consider 
only the uncertainty in the background data which comprise energy and material flows 
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delivered to the foreground system as aggregated data sets whereby individual plants and 
operations are not identified (Baaqel et al., 2020; Llantoy et al., 2020). A more rigorous 
uncertainty analysis calls for including uncertainty on the foreground data alongside 
background uncertainty, that is, uncertainty from the system of primary concern to the 
analysis including process operating conditions and thermophysical properties. This is 
especially important when comparing processes with similar performance indicators 
where the corresponding uncertainty ranges could indeed overlap significantly.  
This paper presents a methodology for combining foreground and background uncertainty 
in the LCA of such processes and products at a low TRL.  The approach is illustrated with 
the case study of two dialkylimidazolium ionic liquids (ILs), 1-butyl-3-
methylimidazolium tetrafluoroborate [bmim][BF4] and 1-butyl-3-methylimidazolium-
hexafluorophosphate [bmim][PF6]. Both ILs find many applications, for instance as 
physical separation media (Riisagera et al., 2006; Shiflett and Yokozeki, 2010) where 
their separation solvating capacity and negligible vapor pressure are advantageous.  The 
current low TRL of ILs justifies the use of process flowsheeting to simulate their 
production at scale and, therefore, the consideration of foreground data uncertainty.  The 
methodology is described next (Section 2), before introducing the case study (Section 3) 
and presenting some results (Section 4) and conclusions (Section 5). 

 

2. Methodology 
The proposed methodological framework (Figure 1) combines uncertainty modeling, 
Monte Carlo sampling, process simulation, and environmental assessment. For each 
uncertainty realization, the uncertainty is propagated through both the background and 

786



Uncertainty analysis in life-cycle assessment of early-stage processes and products

 

foreground inventories, and ultimately to the environmental damages. These activities are 
conducted with the state-of-the-art tools Aspen-HYSYS and SimaPro and coordinated 
using Matlab. They are further detailed below. 

2.1. Environmental assessment 
The LCA follows the four phases defined in the ISO 14040 standards: (i) goal and scope, 
(ii) inventory analysis, (iii) impact assessment, and (iv) interpretation. Choices about the 
system, including the scope, the boundaries of the foreground system and the functional 
unit, are made in the first phase. Environmental flows corresponding to the system inputs 
and outputs are collected during the inventory phase, including raw materials, energy 
streams, emissions and wastes. Inventories for the background processes can rely on 
databases, such as ecoinvent or GaBi. In contrast, the foreground processes may not be 
found in such databases due to confidentiality or low technology readiness, but they may 
instead be predicted using detailed process flowsheeting, such as Aspen-HYSYS or 
gPROMS. Both the foreground and background inventories are finally translated into 
environmental impacts during the impact assessment phase through a characterization 
method. 
2.2. Background and foreground uncertainty modeling 
A common approach to quantifying the uncertainty in background inventories involves 
the so-called Pedigree matrix (Weidema and Wesnæs, 1996).   Scores between 1–5 are 
assigned to the inventory data based on five criteria:  reliability, completeness, temporal, 
geographical and technological differences.  These scores are combined with a basic 
uncertainty factor to determine the standard deviation of a log-normal distribution for 
each environmental flow. In contrast, the foreground uncertainty corresponds to uncertain 
process parameters, including operating conditions such as pressures and temperatures, 
reaction rates and conversions, and thermophysical properties such as boiling point and 
density. These uncertain process parameters can be propagated to the mass and energy 
flows using the process flowsheet model. 
Unlike the background uncertainty which can be retrieved from LCA databases, the main 
sources of uncertainty in the foreground processes need to be characterized. These may 
be related to experimental errors in lab-scale procedures, or else inferred from expert 
opinions when process scale-up is involved.  Such uncertainty may furthermore be 
expressed as parameter ranges or probability distributions. 
2.3. Uncertainty propagation 
Monte Carlo sampling is used to construct a set of scenarios from the combined 
foreground and background uncertainty. The number of scenarios is determined 
automatically based on a user-defined error tolerance between the sample mean and the 
actual uncertainty mean value (Law and Kelton, 2000). The foreground and background 
inventory flows for each uncertainty realization are computed using the process model 
and the inventory database, respectively.  In turn, the inventory flows for each scenario 
are converted to environmental impacts, after normalization by the functional unit and 
application of a characterization method: 𝐶 = 𝑓𝑏  

where Cj is the predicted endpoint impact j of the scenario in units of environmental 
damage; fi is the foreground output in the form of mass and energy flow 𝑖 under a given 
uncertainty scenario in units of mass or energy; and bij is the characterized normalized 
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background output under a given uncertainty scenario in units of environmental damage 
of endpoint impact j per unit of mass or energy of flow i with N the number of flows into 
and out of the process. The scenario generation and evaluation, and the final aggregation 
into impact uncertainty ranges, are orchestrated in Matlab. 

3. Case Study Definition 
3.1. Synthesis of Ionic Liquids 
Our case study compares the performance of two dialkyl-imidazolium ionic liquids: 1-
butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and 1-butyl-3-
methylimidazolium hexafluorophosphate [bmim][PF6].  Both ILs are produced using the 
same process, for which we developed process models using Aspen-HYSYS to scale-up 
experimental synthesis procedures. 
The synthesis proceeds via the exchange of ions between 1-butyl-3-
methylimidazoliumchloride [bmim][Cl] and the corresponding salt. The salt used for 
[bmim][BF4] is sodium tetrafluoroborate and for [bmim][PF6], lithium 
hexafluorophosphate. The products are the ionic liquid and the chloride salt.  The scaled-
up process starts by reacting a solution of [bmim][Cl] with excess salt under atmospheric 
conditions. The mixture is then separated into (i) an upper phase containing the separated 
IL with some impurities and (ii) a lower phase containing solid chloride salt. The upper 
phase is washed using the corresponding fluorinated salt to remove impurities before 
removing excess water from the IL in a vacuum distillation column. 
3.2. Life-Cycle Assessment and Uncertainty Analysis 
We adopt a cradle-to-gate scope that encompasses all stages from raw material extraction 
to the final product synthesis. The geographic location for the assessment is Europe. Since 
chemicals are commonly sold by weight and because the scope of our work is limited to the 
production phase only, the functional unit is set to “1 kg of ionic liquid”.  Background 
inventory data are collected from the ecoinvent v3.5 database (Wernet et al., 2016) 
interfaced through SimaPro v9.0. The foreground production processes for both ILs and 
their precursors are unavailable in ecoinvent and thus modeled using Aspen-HYSYS v9. 
Thermophysical properties such as density and critical properties are obtained from 
experiments or from the literature.  Other properties such as heat of formation are estimated 
using group contribution methods (Valderrama and Rojas, 2009).   The rest of the properties 
are estimated from the molecular structure using the Property Constant Estimation System 
(PCES) in Aspen-HYSYS. The predicted background and foreground inventories in each 
uncertainty scenario are converted into 17 mid-point impacts using the ReCiPe 2016 
characterization method (Huijbregts et al., 2016).  Then, they are further combined into 3 
damage categories (end-points): human health, ecosystems quality and resources. 
We consider a total of 9 uncertain parameters in the (foreground) process model, 5 of 
which correspond to unit operating conditions (e.g., temperature, pressure) and the other 
4 are thermophysical properties (e.g., density, heat of formation). All of these parameters 
are assumed to follow a normal distribution, with standard deviations estimated based on 
literature data or from experience.  The number of foreground uncertainty scenarios was 
in the range between 3,000–5,000 for the various runs. 

4. Results and Discussions 
Figure 2 shows the box plots for each end-point indicator, where [bmim][BF4] and 
[bmim][PF6] are compared under the following scenarios: (A) combined foreground and 
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background uncertainty, (B) foreground uncertainty only, and (C) background 
uncertainty only. The central line inside each box represents the median scenario; the 
upper and lower ends of the box represent the 75% and 25% quartiles, respectively; and 
the lower and upper extended lines represent the minimum and maximum values, 
respectively. 
Comparing both ILs in terms of their median scenarios only, one could conclude that the 
production of [bmim][BF4] presents lower environmental impacts than [bmim][PF6] in 
all damage areas. But the box plots show a different reality, whereby the range of impacts 
of both ILs overlap significantly.  All uncertainty considered (scenario A), the damages 
caused by [bmim][BF4] on human health (left plot), ecosystems quality (middle plot), and 
resources (right plot) are higher than those caused by [bmim][PF6] in 20%, 15% and 30% 
of the uncertainty scenarios, respectively.  This overlap is significantly larger than under 
the traditional approach of considering solely the background uncertainty (scenario C), 
where the damages caused by [bmim][BF4] on human health, ecosystems quality and 
resources are higher than those of [bmim][PF6] in 8%, 5% and 20% of the scenarios. 
Therefore, adding the foreground uncertainty to the background uncertainty (scenario A) 
is necessary for a more reliable comparative assessment of these two ionic liquids. 
Notice that [bmim][BF4] presents lower impacts on human health, ecosystems quality and 
resources in nearly all of the scenarios when considering the foreground uncertainty alone 
(scenario B). But even though these contributions could appear low in comparison to their 
background uncertainty counterparts, they result in 2 to 3-times larger interquartile ranges 
for the environmental impacts under combined foreground/background uncertainty 
propagation. This is mainly due to the multiplicative effect of the foreground and 
background uncertainty which are linked via the mass and energy flow inventories. 

 

5. Conclusions 
A methodology was proposed for the environmental assessment of emerging technologies 
that combines process flowsheeting with LCA and propagates the uncertainty in both 
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background and foreground processes to the predicted environmental impacts. This 
methodology was illustrated with the case study of two dialkyl-imidazolium ILs, 
[bmim][BF4] and [bmim][PF6]. Accounting for the foreground uncertainty was found to 
increase the uncertainty ranges around all three end-point impact indicators significantly, 
in comparison with a classical assessment that would only consider the background un-
certainty.  Future research should, therefore, consider the potential effect of foreground 
uncertainty more carefully, especially in the comparative LCA of early-stage processes 
and products, in order to enable more robust decision making. 
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Abstract 
Modeling of energy recovery systems, Heat Exchanger Networks (HEN) as an example, 
are complex processes due to many parameters involved and the lack of knowledge on 
the impact of operational variables on the response. These variables are often affected by 
different types of uncertainty as to measurement errors, computation errors, or 
imprecision related to the underlying method. The uncertainty in the data may be treated 
by considering, rather than a single value for each variable, the interval of values in which 
it may fall, histograms, or other multivalued data: symbolic data. This work aims to use, 
when possible, the symbolic data analysis to adapt the classical mathematical HEN 
models. It deals with the study of continuous interval data through suitable Principal 
Component Analyses and Regression for two purposes: clustering exchanges (i) 
classification of exchangers to detect those impacted by uncertainty factors and (ii) 
evaluation of the relationship between the different process parameters (inlet temperature, 
heat transfer coefficient, etc.) on interval data. The new method has been tested on a real 
data set and the numerical results are reported. The symbolic approach provides a simple 
way to study a great number of scenarios. 

Keywords: Machine Learning for Symbolic Data, Interval-valued data, Flexibility and 
Robustness, Heat Exchanger Networks (HEN) 

1. Introduction 
Energy saving is an important issue for both industries and society. In the industrial 
chemical process, Heat Exchanger Networks (HEN) are widely used techniques for 
reducing external heating and cooling utilities. Data generated by those complex systems 
has increased drastically over the past few years. Suppose we have 20 Heat Exchangers 
(Hx) on which 4 variables are measured (2 input and 2 output hot and cold input streams). 
If we assume that we have hourly values of these variables for 1 year, then each exchanger 
is described by 35040 values. If, on the other hand, certain characteristics of the 
exchangers (let’s say 3) vary over time, then the 3D array representation conventionally 
used in data analysis is then 8760(hours)×20(Hx) ×7 (parameters). This is not very large 
compared to what could be provided by the industry in real-time. 
Even such data is ubiquitous for a larger scale of HEN systems, data-oriented based 
approaches are often analyzed with simplified models by aggregating data. During this 
operation, some information on the variability aspects is lost. The robustness assessment 
of HEN is therefore affected since its flexibility is conditioned by the variability of the 
uncertain parameters. When the size 𝑛 of entries (exchangers) and 𝑝 number of variables 
(features) are very large, classical analysis can be problematic. 
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To address this problem, we use a more complex object description to capture the 
variability of measured parameters on each exchanger. When dealing with quantitative 
variables, complete information can be achieved by describing a set of statistical units in 
terms of interval data, histogram, rather than a single-valued variable. Mathematically, 
interval-valued data with measurements on 𝑝 random variables, are 𝑝 -dimensional 
hyperrectangles in 𝑅  . Such data need to be visualized, synthesized, and compared on 
factor spaces. 
This paper is in a complementary perspective to Floquet et al's work (Floquet et al., 2016). 
They have initiated the robustness analysis of a simple exchange networks using interval 
arithmetic. They pointed out the "butterfly effect" of the alteration of characteristics of 
some Hx on the operation of the HEN. Indeed, a maintenance operation of an exchanger, 
alter the variability of the other parameters of the network. Reducing fouling would imply 
variations in pressure and shift flows between parallel branches, all changing over time 
in a way that is difficult to predict (Macchietto et al., 2018). The purpose of this paper is 
to check whether there are groups of exchangers characterized by the same properties in 
terms of their responses to external fluctuations. Following the same idea (interval-valued 
data), the Symbolic Data Analysis (SDA) (Billard & Diday, 2006; Bock & Diday, 2012) 
is used to study how uncertainty in the output of a model can be apportioned to different 
sources of uncertainty. 

2. Machine Learning for symbolic data 
Figure 1 outlines the design 
and methodological scheme of 
the proposed method. This 
methodology draws on two 
main components: (B) 
Symbolic data through 
interval arithmetic, and (C) 
machine learning for symbolic 
data. Part A corresponds to the 
HEN model to be studied or 
simulated. The interval-valued 
data is then constructed in part 
(B). The core function of the 
proposed method included in this paper is part (C). The originality of this research lies in 
the combination of a traditional robustness analysis of HEN with SDA. 
2.1. Symbolic Data and statistics of interval-valued variables 
In classical statistics, 𝑛 × 𝑝 data matrix 𝑋 = 𝑋  is defined between 𝑛 individuals and 𝑝 
variables, where each 
cell (𝑖, 𝑗) contains a unique value 𝑥 . The symbolic objects are more complex than a 
simple valued variable description, symbolic data can contain internal variation of the 
features representing imprecise knowledge and can be structured. The symbolic analysis 
generalizes the classical data analysis, e.g. 𝑥 = 𝑐, 𝑐 ∈ 𝑅 is equivalent to the symbolic 
interval 𝜉 = [𝑐, 𝑐]. A full conceptualization of symbolic objects can be found in (Bock & 
Diday, 2012). Let 𝛺 be a set of individuals, 𝐷 containing the descriptions of individuals 
and the descriptions of classes of individuals, 𝑎, a mapping defined from 𝛺 into 𝐷 which 
associates to each 𝜔 ∈ 𝛺 a description 𝑑 ∈ 𝐷 by using intervals, histograms, etc. More 
formally, symbolic object is a triplet 𝑠 = (𝑎, 𝑅, 𝑑) where 𝑅 is a relation between 
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descriptions, 𝑑 is a description, and 𝑎 is a mapping defined from 𝛺 in 𝐿 depending on 𝑅 
and 𝑑. For instance 𝐿 = 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 or 𝐿 = [0,1] and 𝑅 may be one of the relations in =, ≡, ⇒, ≤, ⊆, ∈. To illustrate this point with a simple HEN example, if the outlet 
temperature of two exchangers 𝜔 , 𝜔  is given by 𝑇 (𝜔 ) = 90°𝐶, 𝑇 (𝜔 ) = 120°𝐶 
the description of the class 𝐷 = (𝜔 , 𝜔 ) obtained by a generalization process can be [90,120]. The symbolic object 𝑠 is defined by a triple 𝑠 = (𝑎, 𝑅, 𝑑) where 𝑑 = [90,120], 𝑅 = ′ ∈ ′ and 𝑎 is the mapping: 𝛺 ⟶ 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 such that 𝑎 is the true value of 𝑇 (𝜔)𝑅𝑑 written 𝑎(𝜔) = 𝑇 (𝜔) ∈ [90,120].  An individual 𝜔 is in the extent of 𝑠 if 
and only if 𝑎(𝜔) = 𝑡𝑟𝑢𝑒. Simple statistical descriptions (mean, variance, ...) for interval-
valued variables have been defined in (Bertrand & Goupil, 2000). Let consider 𝑌 ≡ 𝑍 be 
the 𝑗  interval-valued random variable, and 𝑍(𝜔 ) = [𝑎 , 𝑏 ] is a realization of 𝑍 for the 
observation 𝜔  over the observed interval [𝑎 , 𝑏 ]. The empirical distribution function, 𝐹 (𝜉), is the distribution function of a mixture of 𝑚 distributions 𝑍(𝜔 ), 𝑢 = 1,2, . . , 𝑚. 
The central and dispersion parameters of a variable all derived from a strong assumption: 
the inherent fluctuation within random intervals and rectangles is uniformly distributed: 𝑓(𝜉) = ∑ : ∈ ( ) (( )). The symbolic sample mean for interval-valued data is 
given by:  𝑍 = 1𝑚 1(𝑏 − 𝑎 ) (1) 

and the sample variance is given by 𝑆 = 13𝑚 (𝑏 + 𝑎 + 𝑏 𝑎 ) 14𝑚 (𝑏 + 𝑎 )  (2) 

2.2. PCA for interval-valued data 
A principal component analysis is designed to reduce 𝑝-dimensional observations into 𝑠-
dimensional components (where 𝑠 ≪ 𝑝) in an interpretable way, such that most of the 
information in the data is preserved. Let 𝑖 = 1,2, … , 𝑚 denote 𝑛 objects (exchangers) 
described by 𝑝 features (or variable) 𝑌 , 𝑌 , … , 𝑌 (temperatures, ...). The symbolic data 
matrix used for interval PCA is given by 𝑋 = 𝜉  ⋯ 𝜉  ⋮ ⋱ ⋮  𝜉  ⋯ 𝜉   where 𝜉 =𝑥 , 𝑥  is the interval of possible values of variable 𝑗 for the exchager 𝑖, and the symbolic 

data vector can be denoted by 𝑥 = 𝜉 , . . . , 𝜉 = 𝑥 , 𝑥 , … , 𝑥 , 𝑥 . The data 
point is represented in 𝑅  space by hyperrectangles 𝑅  with 2  vertices. There are mainly 
two methods to solve the algebraic mapping to lower dimension: Vertices and Centers 
methods.  To find the factorial axes for Centers method, a classical PCA is applied to the 
centers 𝑐 ∈ 𝑅  of the 𝑛 hyperrectangles 𝑅 . The coordinates of 𝑖  center 𝑐  is denoted 
by 𝑥 , where 𝑥  is computed for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝. From that case, the centers 
of hyperrectangles in its rows is an 𝑛 × 𝑝 data matrix, denoted by �̆� and the 𝑗  column 
of �̆� is denoted by the feature 𝑌 . The interval principal components values are obtained 
by computing first the 𝜐  principal component of the center 𝑐  is given by:  

𝜓 = 𝑥 − 𝑥 . 𝜂 (3) 
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where 𝜂 = 𝜂  , … , 𝜂  is the 𝜐  of 𝑆 (sample covariance matrix associated with the 
dataset). It is possible to find an 𝜓 , 𝜓  of the possible values of 𝜐  principal 
component 𝜓  of 𝑐  (Cazes et al., 1997). 
 
For the object 𝑖 𝜓 = ∑ 𝑚𝑎𝑥  𝑥 − 𝑥 . 𝜂          for 𝑥 ≤ 𝑥 ≤ 𝑥 (4) 𝜓 = ∑ 𝑚𝑎𝑥  𝑥 − 𝑥 . 𝜂           for  𝑥 ≤ 𝑥 ≤ 𝑥 (5) 

3. Application to HEN data 
3.1. Data simulation design and preliminary analysis 
The starting point for this application is the data table from step B in Figure 1, which is 
the result of HEN model analysis by interval arithmetic. In order to evaluate the behavior 
of the exchanges on a more complex network, simulated data on the initial table were 
undertaken and the simulation procedure is as follows: 

●  For each variable (𝑇 𝑚𝑖𝑛 , 𝑚𝑎𝑥 , 𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ],  𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ],  𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ], and for all exchangers, we look 
for the minimum and the maximum. 

●  Simulate 40 points (exchanges) using random variable from the uniform 
distribution. For example, for the exchanger No. 30 (E30), the minimum input 
temperature for the cold stream is obtained by the following probabilistic 
simulation scheme: 𝑇 (𝐸30)~𝑈 𝑚𝑖𝑛 𝑚𝑖𝑛  , 𝑚𝑎𝑥 𝑚𝑎𝑥  . Retrieve the 
interval matrix of the 4 variables: 𝑇 , 𝑇 ,  𝑇 , and  𝑇 .  

Statistical description for the interval-valued data of the initial matrix and the simulated 
one, using equations 1 and 2, is presented in the following Table: 

Tableau 1Descriptive statistics (mean and standard deviation s:d) for the interval-valued 

  𝑇 𝑇 𝑇 𝑇  
Initial data 

Mean [124.20:131.42] [46.32:61.30] [70.32:84.30] [84.68:94.95] 

sd [44.47:45.42] [38.25:23.67] [20.81:12.03] [47.34:38.20] 

Simulation 
Mean [112.14:134.02] [45.34:42.93] [68.95:81.42] [76.98:97.71] 

sd [20.77:28.33] [22.91:23.85] [11.38:9.02] [33.34:25.32] 

3.2. Principal Component Analysis for interval-valued data 
The interpretation of the position of the interval-valued data in the principal plane is the 
same as in the classical principal component analysis situation. In Figure 2, we show the 
results with respect to the first three axes, achieved by the Symbolic PCA using 4 and 5 
(centers method). Notice that the 61% of the total inertia is explained by the first two axes 
in the case of simulation (40 exchangers), and 98.5\% of in the case of initial data (4 
exchangers). In Figure 2, closeness among clusters exchanger mainly influenced by the  
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Figure 2 Principal 3D-space with data of interval type of HEN. Factorial for 4 Exchangers (left) 
and for 40 Exchangers (right). 

same descriptors. Only one group consisting of exchangers 1 and 3 can be identified. The 
constituent elements of this cluster are influenced by the same main factors. Exchangers 
2 and 4 are detached from the cluster from a 3D perspective. This observation is in line 
with the conclusions of the initial study (Floquet et al., 2016). For simulated data, the 
same analysis can be achieved using additional information, and at this stage, it is also 
difficult to give an interpretation of the similarity 
in size and shape among exchangers. In order to shed new light on the variability of outlet 
temperatures as a function of input streams, we propose a linear regression on interval 
values. 
 
3.3. Regression and prediction for interval-valued data 
 

Tableau 2 Results of interval-valued data regression 

 

 Dependent variable 

 𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ] 𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ]𝛽  63.22 37.46 𝛽  0.0046 0.17 𝛽  0.244 0.6 
 

The model proposed here is based on the classical formation of HEN models. However, 
a notable difference lies in the integration of symbolic objects in the model. To understand 
how the input (cold and hot) temperature stream affects the output temperature, we 
propose a regression model for interval-valued temperature. For a hot stream:   𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ]= 𝛽 + 𝛽 . 𝑇 𝑚𝑖𝑛 , 𝑚𝑎𝑥 + 𝛽 𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ] + 𝜖 (6) 
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The following results are obtained using the simulated data in the Table 
To evaluate this approach, two datasets were used: (i) training dataset, which is a set of 
the first 35 exchangers used to fit the parameters of the model 6 and (ii) test dataset, 
which is a set of the rest 5 exchangers used to provide an unbiased evaluation of the  

Table 3 The prediction results 

 Predictions Test

Hx 𝑇𝑜𝑢𝑡ℎ  [𝑇𝑜𝑢𝑡𝑐 ] [𝑇𝑜𝑢𝑡ℎ ] [𝑇𝑜𝑢𝑡𝑐 ]
E36 [64.21:75.01] [61.41:80.81] [73.61:67.64] [39.89:119.97]

E37 [73.25:82.21] [76.12:104.68] [69.72:89.61] [115.31:89.80]

E38 [68.06:76.77] [63.75:87.63] [57.47:91.65] [46.96:104.48]

E39 [64.73:77.73] [69.71:80.77] [88.25:85.72] [113.54:66.64]

E40 [60.93:72.54] [52.76:75.85] [52.70:88.04] [83.85:100.02]

estimated model. The Table 3 shows the results of the predictions using the fitted model 
and corresponding data test. The size of the coefficient for each independent variable 𝑇 𝑚𝑖𝑛 , 𝑚𝑎𝑥  and 𝑇 [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ] 
gives the size of the effect that variable is having on the dependent variable 𝑇  and 𝑇 . 
The estimated coefficients tell how much the output stream is expected to increase when 
that inputs streams (hot and cold) increases by one. For example the coefficients for the 
model 6, 𝑇  differed by 1°C (and 𝑇  did not differ) 𝑇  will differ by 0.17°C units, on 
average. The estimated intercept 𝛽 , is the expected mean value of 𝑇  and 𝑇   when 
all inputs are 0. In our experiments, the 𝑇   and 𝑇   never comes close to 0, then 
intercept has no meaningful interpretation. 

4. Conclusion 
Symbolic Data Analysis (SDA) extends statistics and multivariate data analysis to deal 
with data structured in a distributional form with complex internal variations. In this 
paper, comprehensive modeling via SDA has been presented that moves substantially 
beyond the traditional modeling in HEN robustness analysis. It proposed some new 
approaches which intended to redefine the robustness of HEN based on interval data. 
First, the detection of Exchangers cluster which would be affected by common factors 
has been modeled by Symbolic Principal Component Analysis. Second, the relation 
between inherent variation, expressed by intervals, of input and output temperature has 
been modeled using the linear regression method for interval-valued variables. Future 
research should include histogram valued-data.  
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Abstract
Applying simultaneous process optimization and heat integration (SIM) on a process
can lead to an increased Net Present Value (NPV) compared to applying a sequential
approach (SEQ) to the same process. These benefits do not always arise, but the
computational effort is significantly higher. In this paper, three heuristic rules are
proposed that predict whether applying SIM will improve a specific process over
applying SEQ. These rules are to be applied once the results of SEQ are available and
can be used to decide if SIM should be applied or not. The proposed rules are
subsequently verified with two test cases.

Keywords: Simultaneous Heat Integration, Sequential Heat Integration, Process
Optimization, Non-Linear Programs (NLPs), Trade-Off-Section (TOS)

1. Introduction
Multiple optimization strategies can be applied to ensure that a newly developed
chemical process is energy efficient. The traditional way to perform energy optimization
is sequential process design and heat integration (SEQ), which consists of two steps. In
the first step, the operating conditions of the background process are optimized,
assuming that all heating and cooling demands are satisfied by external utilities. In the
second step, the heat integration scheme is optimized to derive the lowest possible
external utility demand for this process. It follows that the sequential approach leads to
a process where the operating conditions are determined without considering the scope
for improved heat recovery. An alternative to SEQ is simultaneous process optimization
and heat integration (SIM), where the process and the heat integration are optimized in
one step. Duran and Grossmann (1986) proposed an NLP formulation for applying SIM
to a process. This formulation was used in several publications as a basis for further
research. Examples are Dowling and Biegler (2015), who modified the formulation for
large scale flowsheet optimization, and Kamath et al. (2012), who proposed a
modification that allows for taking phase changes into account. An alternative MINLP
formulation was proposed by Kong and Maravelias (2018). However, to avoid the
higher computational costs with MINLP problems, this paper focuses on the NLP
formulation by Duran and Grossmann (1986).

The benefit of applying SIM instead of SEQ is that the external utility costs can be
decreased. In addition, better process parameters can be found than the ones obtained by
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applying SEQ. One potential downside of SIM is that the computational costs are
significantly higher, because the size of the resulting NLP is larger with increased
degree of non-linearity. It follows that the complexity of the optimization model
increases, which can lead to reduced robustness, i.e. the optimizer may fail to find the
global optimum or even a feasible solution. Hence, the resulting higher effort is
justifiable only if applying SIM leads to significant improvements compared to applying
SEQ. However, these benefits do not occur for every process; a counter example can be
found in Pötting (2020).

In this paper, three heuristic rules are proposed. These heuristics allow for predicting
whether applying SIM instead of SEQ can lead to benefits for a specific process. As the
rules are to be applied after performing SEQ, they allow the engineer to decide whether
SIM should be applied or if an application of SIM would lead to similar results as
already obtained from the SEQ approach. The proposed rules are applied to two test
cases and optimization with both SEQ and SIM are performed to verify the predictions
made.

2. Methodology
The proposed heuristics are derived based on the following reasoning: The process
optimization performed by applying SEQ leads to the highest possible net present value
(NPV) for the background process. By definition of optimality, any change in operating
conditions for applying SIM from the optimum given by applying SEQ would lead to
the same or a lower NPV for the background process. Thus, the lower NPV has to be
compensated for by providing more heating capacity. The rules proposed in this paper
are explained for the case of an increase in the utilized heating capacities. An analogous
set of rules can be derived for the case of increasing utilized cooling capacities. The
utilized heating capacity of a process can be increased if three different conditions are
met:

● Heuristic 1: There needs to exist a Trade-Off-Section in the process which is
described in more detail in Section 2.1.

● Heuristic 2: The process needs to be able to utilize the additional heat. This can
be done by either reducing the usage of external heating utilities or by using
the heat to produce additional products, such as steam or electricity. The use of
additional heat to reduce the feedstock consumption is beyond the scope of this
paper. Heuristic 2 is explained in Section 2.2.

● Heuristic 3: The creation and utilization of additional heating capacity needs to
be cost efficient. Heuristic 3 is discussed in Section 2.3.

2.1. Heuristic 1: Existence of a Trade-Off-Section
To be able to increase the amount of provided heating capacity by applying SIM, a
process needs to have at least one Trade-Off-Section (TOS). A Trade-Off-Section can
be defined as a section of the process which allows for adjusting the operating
conditions such that the profitability of the background process is lowered in order to
generate additional heating capacity. A section is a TOS if it satisfies the following two
conditions:

● At least one of the section’s operating parameters has to influence both the heat
exchange with the rest of the process and at least one outlet flow of the section.
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This influenced effluent heat or material flow is denoted and the𝑓
𝐼𝑛𝑓𝑙
𝑇𝑂𝑆, 𝑜𝑢𝑡

operating parameter is referred to as decision variable x. The identified section
can have several additional effluent flows that may be influenced by the
independent variable as well. If the considered process section has several
independent variables or influenced flows, each combination of process
section, independent variable and influenced flow has to be evaluated
separately. For the process section to be a TOS, only one of these combinations
needs to meet the second condition.

● The second condition is that perturbing the decision variable x from its optimal
value determined after applying SEQ has an opposite effect on the NPV of the
background process compared to the quantity of additional heating capacity
generated. This opposite effect allows for compensating the lower NPV of the
background process by additional heating capacity. However, the NPV is
determined by the entire background process and not only the particular TOS
studied. To relate the local behavior of the TOS to the plantwide performance
that determines NPV, it is assumed that the influenced effluent flow 𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡

correlates positively with the plant wide NPV.

Heuristic 1 is formalized in Equation (1). denotes the heating capacity that is𝑄𝑇𝑂𝑆,𝑜𝑢𝑡

provided by the TOS, and is the optimal value of x after applying SEQ.𝑥
𝑆𝐸𝑄

 
∂ 𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆, 𝑜𝑢𝑡

∂ 𝑥 |
𝑥=𝑥

𝑆𝐸𝑄

  *    ∂ 𝑄𝑇𝑂𝑆, 𝑜𝑢𝑡

∂ 𝑥 |
𝑥=𝑥

𝑆𝐸𝑄

  ≤  0 (1)

2.2. Heuristic 2: Existence of a Suitable Heat Sink
To improve a process by applying SIM instead of SEQ, the additional heating capacity
provided by the TOS needs to be utilized by a Heat Sink. Here, it is essential to define
two types of Heat Sinks: Natural and Created Heat Sinks. A Natural Heat Sink is a
process section that still has a demand for external heating utilities after applying SEQ.
It follows that the use of the additional heating capacity to satisfy Natural Heat Sinks
leads to a decrease in the cost of external utilities. A Created Heat Sink arises if certain
background process parameters change compared to the sequentially optimized process,
with two consequences: First, the heating demand of the process increases and second,
this additional heat results in an increase in the yield of a product. The process section
with the increased heating demand is denoted as Created Heat Sink. An example is a
steam turbine that can be increased in size compared to the results of SEQ to use the
additional heat for increased power production.

A Heat Sink is denoted as a Suitable Heat Sink if the additional heat can be transferred
to the Heat Sink with respect to the minimum temperature difference. To determine
whether heat transfer to a Natural Heat Sink is possible, the additional heat source
(obtained from changing the operating parameters of the TOS) can be included in the
Grand Composite Curve (GCC) of the process. The Natural Heat Sink is suitable if the
additional heat can be used in the process. To evaluate if a Created Heat Sink is suitable,
only the hot and cold streams forming the Created Heat Sink are of interest. Using these
streams only, a reduced GCC diagram can be derived. The Created Heat Sink is suitable
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if an increase in the heating demand of the section allows more heat to be transferred
from the TOS.

2.3. Heuristic 3: Economic Profitability
The availability of both a TOS and a Suitable Heat Sink is a requirement for potential
benefits from applying SIM instead of SEQ. In addition, it must be profitable to accept a
sub-optimal operating point of the background process to improve the heat integration.
The evaluation of this profitability needs to be done separately for processes with a
Natural Heat Sink and those with a Created Heat Sink as they have different types of
revenues: Created Heat Sinks are only used if there are no suitable Natural Heat Sinks.
The reason is that in the sequentially optimized process, external utilities would have
been used to produce the additional product, if that would have been more profitable. As
this is not the case, it follows that the earnings from selling the additional product are
lower than the costs for the additional external utilities. Accordingly, it is more cost
efficient to reduce the amount of external heating utilities than to increase the amount of
a product.

For a process with a Suitable Natural Heat Sink, the reduced use of external utilities has
to lead to larger savings than the losses from sub-optimal operation of the background
process. The rules are meant to exclude processes from being subject to SIM. Therefore,
a sufficient but not necessary assumption is that all costs that are not related to revenues
or utility costs do not decrease when applying SIM instead of SEQ. In addition, the
earnings from products whose flow rates are independent of are assumed not to𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡

decrease. With these assumptions, there needs to be at least one for which the𝑥 = 𝑥
𝑆𝐼𝑀

process satisfies the condition stated in Equation 2.

 𝑄𝑇𝑂𝑆,𝑜𝑢𝑡|
𝑥=𝑥

𝑆𝐼𝑀

− 𝑄𝑇𝑂𝑆,𝑜𝑢𝑡|
𝑥=𝑥

𝑆𝐸𝑄
( ) * 𝑐

ℎ𝑒𝑎𝑡𝑖𝑛𝑔
+ 𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡|

𝑥=𝑥
𝑆𝐼𝑀

− 𝑓
𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡|

𝑥=𝑥
𝑆𝐸𝑄

( ) *
𝑝

(2)

Equation 2 consists of two terms: The first term stands for the reduced costs for external
heating utilities due to the satisfaction of heating demand with the additional heat. The
second term denotes the losses in the production due to the changes in the background
process. Pr is the set of all sold products. The fraction stands for the ratio𝑓

𝑝
/𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡

between the flow rate of the product and the flow rate of the influenced effluent𝑓
𝑝

material or heat flow of the TOS, , which is assumed to be constant. This𝑓
𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡

assumption holds if the downstream process units always operate in the same optimal
operating point and a change in just leads to a linear rescaling of the𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡 

downstream process units. As this paper deals with grassroots design, it is justifiable to
assume that rescaling would be preferred over a non-optimal operating point. The unit
cost for the heating utility is denoted as and the specific earnings of a product𝑐

ℎ𝑒𝑎𝑡𝑖𝑛𝑔
𝑝

is .𝑐
𝑝

802



The condition stated in Equation (2) is also a conservative estimate for the profitability
of a process with a Created Heat Sink. The reason is that satisfying a Created Heat Sink
is always less cost-efficient than satisfying a Natural Heat Sink, as explained in Section
2.2. As a consequence, if the condition for a Natural Heat Sink to be cost-efficient does
not hold, a process with only Created Heat Sinks is not cost-efficient either.

3. Case Studies
The application of the proposed rules is illustrated with two case studies. The first case
study is the example process discussed by Duran and Grossmann (1986). The flowsheet
is shown in Figure 1. Following the proposed rules, the first step is to identify a process
section that can be a TOS. This process section is chosen to be the steam generation part
of the reactor and the following heat exchanger, excluding the reactor itself. The
effluent steam flow is both the decision variable x and the influenced outlet𝑓

𝑆𝑡𝑒𝑎𝑚
𝑇𝑂𝑆,𝑜𝑢𝑡

flow A decrease in the steam production leads to a higher temperature of the𝑓
𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡.

stream entering heat exchanger H1 and therefore to more available heat. As this satisfies
the condition stated in Equation 1, the steam generation part is confirmed to be a TOS.

Figure 1: Flowsheet and GCC with additional heating capacity of the example process by Duran
and Grossmann (1986). The red box marks the TOS.

The availability of a Suitable Heat Sink is evaluated with the GCC of the process, which
is shown in Figure 1 as the blue solid line. The additional heating capacity provided by
the TOS is shown as the red dashed line. As heat transfer from the TOS to the process is
thermodynamically feasible, it follows that the process has a Suitable Natural Heat Sink.
Next, the profitability of applying SIM has to be evaluated. With steam as the sold
product, the technical and economic parameters used by Duran and Grossmann (1986)
lead to . As it is assumed that applying SEQ always lead to maximum𝑐

𝑝
< 𝑐

ℎ𝑒𝑎𝑡𝑖𝑛𝑔
production, it follows that . Also, the steam flow𝑄

𝑆𝑡𝑒𝑎𝑚,𝑆𝐼𝑀
< 𝑄

𝑆𝑡𝑒𝑎𝑚,𝑆𝐸𝑄

does not pass any downstream unit after the TOS. It follows that𝑓
𝑆𝑡𝑒𝑎𝑚
𝑇𝑂𝑆,𝑜𝑢𝑡 =   𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡

and therefore is constant. Accordingly, Equation 2 holds and𝑓
𝑃
 =  𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡 𝑓

𝑃
 / 𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡

the application of SIM is therefore recommended. This recommendation is confirmed
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by the results of Duran and Grossmann (1986) as they achieve a 90 % higher annual
profit by applying SIM instead of SEQ.

Figure 2: Flowsheet and Reformer behavior of the example process by Pötting (2020). The red
box marks the TOS.

The second case study is the process studied by Pötting (2020), which is a simplification
of the process proposed by Subramanian et al. (2021). The flowsheet of this process is
shown in Figure 2. The reformer and the heat exchanger after the reformer are identified
as a TOS candidate. The decision variable x is the oxygen-to-natural-gas ratio ONGR at
the reformer inlet. The influenced outlet flow is the molar flow of H2 .𝑓

𝐼𝑛𝑓𝑙
𝑇𝑂𝑆,𝑜𝑢𝑡 𝑛

𝐻
2

𝑇𝑂𝑆,𝑜𝑢𝑡

The right part of Figure 2 shows the temperature and the molar flow of H2 at the
reformer outlet, which are modeled to be linear functions of the ONGR. With

at and the assumption of constant specific heat𝑛
𝐻

2

𝑇𝑂𝑆,𝑜𝑢𝑡 = 𝑛
𝐻

2

𝑇𝑂𝑆,𝑜𝑢𝑡,𝑚𝑎𝑥 𝑥 = 𝑥
𝑆𝐸𝑄

capacities, the condition stated in Equation 1 holds. Accordingly, this section is proven
to be a TOS.

As the SEQ approach to process optimization results in a threshold problem, there is no
Natural Heat Sink in the process. It follows that a Heat Sink needs to be created. This
can be done by increasing the size of the steam turbines, which leads to an increased
power production. Figure 3 shows the streams of the steam turbine section after
applying SEQ as the blue solid line. The red dashed line indicates the additional heating
capacity. This dashed line starts to the right of the solid line because it is not replacing
already available heat sources, but it can be used as a heat source for the additional
Created Heat Sink. An increase of the steam mass flow leads to a horizontal stretch of
the solid line. The result is shown by the grey dotted line. As this dotted line allows
more heat transfer from the dashed line than to the solid line, the Heat Sink is Suitable.

To evaluate the profitability, it is assumed
that the blended syngas flow always
contains enough CO to run a
stochiometric methanization and that the
specific heat capacity of the effluent
stream of the TOS is constant. As

, it follows that𝑂𝑁𝐺𝑅
𝑆𝐸𝑄

 𝑖𝑠 𝑂𝑁𝐺𝑅
𝑚𝑖𝑛

. Using the𝑂𝑁𝐺𝑅
𝑆𝐼𝑀

  >  𝑂𝑁𝐺𝑅
𝑆𝐸𝑄

 
parameters of Pötting (2020), Equation 2 can be shown not to hold. Accordingly,
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applying SIM will not lead to an improvement compared to SEQ. Pötting (2020) also
obtained this result.

4. Conclusion and future work
This paper proposes three heuristic rules for evaluating the benefits of applying
simultaneous over sequential process optimization and heat integration. The first rule
determines if the background process contains a Trade-Off-Section that can provide
additional heating capacity by sacrificing product flow rate. The second rule evaluates if
this additional heat capacity can be feasibly transferred and used by the rest of the
process. The third rule focuses on the economics of generating this additional heating
capacity at the expense of profitability of the background process. Two example
processes verified these rules. In future work, it is possible to derive a similar set of
rules for benefits due to a reduced feedstock consumption.
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Abstract
The resilience of a system is defined as the system’s capability of recovering from
failures. Traditionally, only predictable aspects are considered when designing
processing systems. Evaluation of these aspects is performed via assessment of exact
indicators and enumeration of all cause-effect options. However, such evaluation is not
appropriate for determining the resilience of processing systems, since resilience is
based on unexpected events in addition to the expected ones. Consequently, the cause
part of the cause-effect relation is not known or not effective. In the current work, the
general formula for determining resilience of a system is embedded into a P-graph based
process synthesis algorithm. Thus, the resilience can be considered when selecting the
most preferred process during its synthesis. The result is illustrated by synthesizing a
process of adipic acid production by nitric acid oxidation of KA oil.

Keywords: Resilience, Process design, P-graph.

1. Introduction
A system is generally evaluated considering several aspects, e.g., profitability,
reliability, and sustainability. In addition, since there are a lot of interconnections
between the operating units that comprise engineering systems, structural indicators are
also important. Agility, resilience, and supportability are just three examples for such
indicators (Bernus et al., 2020), they are all highly dependent of the system’s structure.
The current work focuses on resilience, which expresses the persistence of the system,
and also its capability to absorb change, and recover from it (Holling, 1973).
In most cases, resilience is derived from other metrics of the system, more than 20
alternatives for such derivation were listed by Trimintzios (2011). For engineering
systems, the main considerations for resilience are controllability (Morari, 1983) and
flexibility (Grossmann et al, 2014). Another possible metric for resilience is the system
performance level after a disturbance (Bhamra et al., 2011). The repair or replacement
times of the system’s components can also be taken into account (Gong and You, 2018).
Since systems resilience has no general definition, there are a large number of different
specific definitions for the different areas of application. A thorough review of these
was given by Hosseini et al. (2016), whereas a general overview of resilience theory has
been provided by Linkov and Trump (2019).
In a processing system, the disturbances or changes, referred by resilience definitions,
mostly involve failures of equipment units. The failures in a processing system can be
predictable or unpredictable/unexpected, as well as internal or external. Traditionally, in
designing processing systems, the predictable, known aspects are taken into account. On
the basis of that, exact indicators, such as cost or systems reliability, can be determined.
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PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.



Á. Orosz et al.

However, resilience also needs to contemplate unexpected events. The prediction of
these events is either impossible, or would require enumerating an enormous amount of
possibilities, requiring a significant computational effort. To overcome this
philosophical issue, one solution is to enumerate all possible “effects”. Since the
enumeration can conveniently be based on the P-graph framework, it is a firm
foundation of a new formulation of resilience.
Formally, a processing system is considered resilient if after any failures it is

● able to perform its designated job in full or on a pre-specified partial level;
● able to return to its original state.

Designing a resilient processing system requires either, or both of these goals to be
considered. The first goal, i.e., maintaining operation after failures, can be achieved via
redundancies in the system. Two different types of redundancies can be distinguished.
Unit-level redundancy incorporates identical or similar equipment units (or simply:
units) to be built in parallel to critical units in the system. When a unit fails, one of its
redundant counterparts can immediately, or with some delay take over the operation. On
the other hand, process-level redundancy contains multiple separate production paths for
one of more materials in the process. In case of a failure, a part of the process
(containing multiple units) is turned off and a different production path is utilized. This
redundant path may even contain different technologies which are more convenient for
the short time interval while the main production path is repaired. Naturally, the two
redundancy strategies can be combined in a processing system for the best result. The
second goal when designing resilient systems, i.e., returning to the original state, is
related to maintenance and repair. Units with shorter repair time can be preferred to
reduce the off-time of the system.
The current work proposes a method to perform synthesis of processing systems with
redundancies, considering resilience based on the above-mentioned enumeration of
“effects”. The resilience indicator incorporates both the redundancies in the system, and
the repair times of the failed units. The goal is to generate all processing systems that
satisfy the requirement on resilience, and rank them according to their cost of operation
(i.e. annualized capital cost and operating cost of units). Generating a ranked list is more
practical than generating just one option, as it provides the opportunity for selecting a
more convenient solution, in light of additional constraints.
The generation of multiple solutions, and the enumeration of the effects are both
combinatorial in nature, and cannot be properly incorporated into standard mathematical
optimization; i.e. an appropriate tool is required. For this reason, the proposed method is
based on the P-graph framework (Friedler et. al., 1992a), which is an axiom-based
combinatorial tool for process network synthesis (PNS). The framework represents a
PNS problem as a bipartite graph of materials and operating units, and provides several
algorithms, such as algorithm MSG (Friedler et. al., 1993) for generating the maximal
structure (superstructure), and algorithm SSG (Friedler et. al., 1992b) for generating all
potential solution structures. In addition, any mathematical model can be integrated to
ensure that only feasible processing systems are generated.

2. Synthesis of processing systems considering resilience
The method described here is a combination of two algorithms: generating processing
systems for process synthesis and determining the resilience of the generated processing
systems. The generation of the processing systems is performed by the combinatorial
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algorithms provided by the P-graph framework. To determine the resilience of a
processing system based on the enumeration of the effects, a proper formula is needed.

The number of products of a processing system is not limited, however, first, systems of
single product will be examined. This product has a minimum accepted production
flowrate ( ), which is specified in the problem definition. This is the flowrate that theγ
production must reach to be considered as fully operational, anything less is considered
as partial operation. It is common in processing systems to halt the operation if the
production goes below a certain level (because of technical and/or economic reasons),
this minimum production flowrate ( ) is also defined.δ

In a processing system with redundancies, it is important to distinguish the normal
operation, i.e., the operating units that are active when the system functions as planned.
The remaining operating units are the backup units; these are employed if some failures
happen in the normal operation.

Let denote the number of units in the normal operation, it is assumed that these units𝐾
are subject to failures. Let denote the set of all combinations of at most failures𝑆

𝑛
𝑓

among the units of the normal operation. Let be the cardinality of set . To𝑁
𝑛
𝑓 𝑆

𝑛
𝑓

uniformly measure the capability of recovering through repairs, time horizon is
introduced as a constant value throughout the synthesis.

Let be and element of . The production flowrate over time of the system as a𝑠 𝑆
𝑛
𝑓

consequence of failures in is denoted by function , where . To plot the𝑠 𝐹(𝑠, 𝑡) 𝑡∈[0, ℎ]
resilience uniformly on the [0,1] scale, this production flow rate is normalized to 𝑝(𝑠, 𝑡)
as given in Eq. (1).

𝑝 𝑠, 𝑡( ) = {1,   γ < 𝐹(𝑠, 𝑡) 𝐹 𝑠,𝑡( )
γ ,   δ ≤ 𝐹(𝑠 (1)

Eq. (2) defines the relative production of the system during time horizon after theℎ
failures defined by occur (at time 0).𝑠

𝑞 𝑠( ) = 0

ℎ

∫𝑝 𝑠,𝑡( )𝑑𝑡

ℎ
(2)

The resilience of the system to at most simultaneous failures is given by enumerating𝑛
over all possible sets of failures in , and taking the average of the relative production𝑆

𝑛
𝑓

rates, see Eq. (3). If the number of failures is not limited (or limited to the number of
units in the normal operation, i.e. ), the result given by the formula is the resilience of𝐾
the system to any set of failures (Eq. (4)).

𝑅
𝑛

=
𝑠∈𝑆

𝑛
𝑓

∑ 𝑞 𝑠( )

𝑁
𝑛
𝑓

(3)

𝑅 = 𝑅
𝐾 (4)
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By combining the described resilience analysis method with the synthesis tools of the
P-graph framework, the following algorithm is proposed to perform PNS with resilience
consideration.

Input of the algorithm:
● Information needed for the PNS problem
● and flowratesγ δ
● The repair times of the units
● time horizonℎ
● Lower bound for resilience (0 if not specified)

Main steps:
● Algorithm SSG of the P-graph framework generates all potentially useful

processing systems
o Only feasible processing systems are generated, as described by the

mathematical model given in the problem formulation
● For each generated processing system

o Normal operation of the process is determined so that the operating
cost is minimal

o Resilience analysis is performed with the proposed formulas
o If the resilience of the processing system is below the lower bound, it

is discarded
● The list of potential processing systems is ranked based on their cost of

operation , it is the output of the algorithm
Selecting the desired processing system from the ranked list is up to the designer or
decision maker. A simple choice is to select the one with the lowest cost of operation.
Another option is to plot the processing systems on a chart showing the cost of
operation against the resilience, i.e., to determine the Pareto front, and make a decision
based on that.

3. Case study
This work contemplates process synthesis for a continuous process for adipic acid from
KA oil (mixture cyclohexanol/cyclohexanone) and HNO3. The problem structure is
depicted in Figure 1. Low temperature oxidation of KA oil can be performed in two
different reactors. Reactor A handles heat with recirculation, whereas reactor B employs
a coolant. Oxidation is enhanced in a second reactor at high temperature. Nitrogen
oxides can be recovered as nitric acid by means of a bleacher, where they are oxidized.
Alternatively, they can be to recover in a membrane process and oxidized in a separated
reactor. Oxidized gases are absorbed in water and returned into the process. Separation
of water is performed by evaporation in one or more stages. Adipic acid is recovered by
crystallization followed by a solid separation stage. Different sequences of these
operations are considered for the synthesis problem. Crystals of adipic acid are
recrystallized to improve purity of the product. The liquid effluents from the separation
stages are recycled into the process, nonetheless a fraction is purged out from the system
to avoid accumulation of by-products. These byproducts are employed in another
process in the plant; therefore, catalyst is recovered from the purged stream, and sent to
a treatment process previous its final destiny.

The case study was solved to generate all possible designs for the processing system
providing that the cost of operation of the system does not exceed 2,560,000 USD/y, and
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the resilience is at least 0.4. All 4068 generated processing systems are represented in
Figure 2 as cost against resilience. The Pareto front of the solutions is indicated by the
red dots. .

One of the processing systems in Pareto front is selected as an example (indicated with a
larger green circle on Figure 2) and is presented on Figure 4. Its cost of operation is
1,728,408 USD/y, and its resilience is 0.57. The designed or normal operation is shown
with bold lines on Figure 4, the redundant units are shown with gray lines.

Figure 1. P-graph representation of the superstructure of the case study

Figure 2. Generated processing systems for the case study, red dots indicate the Pareto front,
green circle identifies the process shown on Figure

4. Conclusions
A process synthesis method has been proposed that considers resilience to unpredictable
events by combinatorial enumeration of the effects. The method generates all, or n-best
potential processes that satisfy the requirement for the resilience, and rank them
according to their cost of operation. The capabilities of the method were illustrated
through a case study of adipic acid production, where the algorithm generated 4068
potential solutions; 25 of them formed the Pareto front.
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Figure
3. One of the generated processing systems of the Pareto front
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Abstract 
Smart equipment as a cyber-physical system can be envisioned to support 
owner/operators with model-based assistance systems. In fluctuating process scenarios, 
which are expected within modular plants, frequent adaptation of the required simulation 
models to changing conditions will be necessary. Therefore, automated functional quality 
assessment for simulation models would provide a significant added value for the 
owner/operator. Currently, quality assessment of simulation models is dominated by the 
verification and validation methods developed by Sargent and co-authors (Sargent and 
Balci, 2017). Although these methods provide a wide spectrum of assessment methods, 
they base on a rather narrow view on quality of simulation models. In addition, quality 
and quality advancement are typically not measured continuously. To overcome these 
obstacles, the authors discuss the applicability of central quality assurance methods from 
the field of software development to simulation model assessment. These are the principle 
of test-driven development and the application of quality models to measure quality and 
quality advancement. A framework and a workflow for test-driven development of 
simulation models are proposed and evaluated in a case study on a soft sensor for a 
fermentation process. It was found, that in principle, the framework provides transparent 
and continuous quality assessment in a semi-automated manner and lays the foundation 
for guidance strategies during model development. 
 
Keywords: smart equipment, quality assessment, validation, soft sensor 

1. Introduction 
As a cyber-physical system, smart equipment can be envisioned to support 
owner/operators with model-based assistance systems. The importance of concepts and 
technologies like design space, soft sensors or model predictive controllers in plant 
operation is rapidly growing. Unfortunately, the setup of these systems is highly 
dependent on the concrete process running within the plant. This is especially a challenge 
for modular plants (c.f. VDI, 2020), which are to be used within fluctuating process 
scenarios for various chemical or biochemical applications. Therefore, simulation models 
require frequent adaptation to the changing conditions. Since these simulation models 
become core part of the functionality of smart equipment and the modelling process will 
become an important part of the user experience, an automated quality assessment 
methodology must capture a broad view on functional quality and quality attributes. 
Quality assessment should promote a transparent and continuous view on functional 
quality and quality advancement during the modelling process. To optimally support the 
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owner/operator, the quality assessment must be as efficient as possible and run automated. 
Since several model-based assistance systems applying different modelling approaches 
should be supported, the methodology has to be flexibly applicable to different model 
classes and allow the simple integration of additional requirements. 
In this paper, the authors discuss the applicability of quality assurance concepts from 
software development to simulation models. A framework for automated functional 
quality assessment for simulation models is presented. This lays the foundation for further 
development of a fully guided assessment framework for smart equipment. The remainder 
of this paper is organized as follows: section 2 introduces and discusses standard methods 
for quality assessment of simulation models and highlights the gap in research. Following, 
in section 3 the authors discuss quality models and methodologies from the area of 
software development and present a concept to apply these methodologies to the area of 
simulation models. In section 4 a case study is conducted to evaluate the suggested 
methodology. Lastly, section 5 provides a conclusion and suggests further research. 

2. State of the art in quality assessment of simulation models 
Today’s quality assessment of simulation models is dominated by the verification and 
validation (V&V) methods (Sargent and Balci, 2017). Sargent (2013) describes four 
distinct steps in the model development process. Firstly, in the center of the modelling 
process is the data validation, which represents the process of ensuring the correctness 
and appropriateness of the data for model building, evaluation, testing and simulation 
experiments. Conceptual model validation is utilized in determining the correctness of 
the underlying assumptions of the conceptual model and the applicability of the model 
for the intended purpose. Computerized model verification describes the process of 
assuring the correctness of the implementation of the conceptual model and the computer 
programming. Lastly and most importantly, Sargent (2013) defines the operational 
validation as the assurance of model accuracy over a domain of validity. Even though a 
substantial number of V&V methods exists in literature, the most commonly used ones 
rely on graphical inspection (Roungas et al., 2018), which is not suitable for automated 
model quality assessment. Roungas et al. (2018) propose a framework that classifies 
existing methods according to their suitability for certain simulation models and their 
characteristics. One example is the use of face validation during operational validation 
for simulation models without access to the source code but available data from the real 
system. Sargent and Balci (2017) find that many studies do not apply V&V consequently 
or even neglect it. 
In conclusion, the recent methods are not able to meet the requirements for functional 
quality assessment of simulation models in smart equipment according to the 
introduction. These cyber-physical systems will rely heavily on continuous integration 
and continuous deployment strategies (CI/CD) (c.f. Bruckner et al., 2020). Although the 
V&V methods provide a wide spectrum of assessment methods, they mainly focus on 
model accuracy as quality property. Other quality attributes like reliability or efficiency 
are considered as boundary conditions only. This approach reduces the overall 
transparency of simulation model quality. Another important drawback of the current 
approach is that usually quality specification and testing is exclusively addressed at the 
end of each model development phase like conceptual modelling or implementation. This 
limits the transparency of quality advancement within the modelling process. In addition, 
many V&V methods rely on expert evaluation of graphical representations. This is not 
appropriate for automated quality assessment. 

814



Applying quality assurance concepts from software development to simulation  
model asessment in smart equipment  

 

Therefore, for this paper the authors aim to resolve the issues with the state of the art in 
quality assessment for simulation models by transferring quality assurance concepts from 
software development to simulation models. The next section outlines the concepts of 
test-driven development and quality models and presents a new framework for quality 
assessment of simulation models.  

3. State of the art in quality assessment of simulation models 
3.1. Test-driven software development 
According to the test-driven development concept (c.f. Beck, 2003), requirements for 
software parts have to be translated into tests. Developers are forced to formulate the 
requirements and implement the tests before starting the actual development of the 
software. Afterwards, these tests are used to check the progress of software development 
and the advancement of software quality continuously. This approach increases the 
transparency of the overall quality of software. 
3.2. Quality models in software development 
For an assessment of software quality, attributes that characterize good software quality 
must be determined (Wagner, 2013). The abstract term of quality needs to be made 
tangible. To accurately assess the quality of software, one needs to differentiate between 
structural and functional quality (Balci, 1998). Structural quality relates to the source 
code and architecture of software. Functional quality describes the execution of software 
(Balci, 1998). Quality models are an approach to defining requirements for perceived 
quality. A widespread approach for structuring quality models in software development 
are so-called FCM models (Cavano and McCall, 1978). Factors (F) describe the desired 
attributes of the software. Criteria (C) are allocated to those factors and are tested by 
metrics (M). Figure 1 depicts the hierarchal structure of FCM models. The metrics 
provide a quantitative measure that weighs attributes against requirements 
(Cavano and McCall, 1978). Quality models exist for different types of software 
applications and aspects. The QUAMOCO framework or the ISO/IEC 9126 are used to 
assess software product quality (Wagner, 2013). A widely used quality model for 
software product quality is the ISO/IEC 25010. This standard is derived from the software 
quality model of McCall and Cavano, which was one of the first approaches to assess 
software quality (Cavano and McCall, 1978, ISO/IEC, 2011). The quality model of 
ISO/IEC 25010 for product quality consists of eight quality factors: functional suitability, 
reliability, performance efficiency, operability, security, compatibility, portability and 
maintainability.  
3.3. A test-driven approach to quality assurance for simulation models  
In summary, some important lessons can be learned from software quality assurance. 
Firstly, the concept of test-driven development provides an approach to increasing the 
transparency of quality advancement. Secondly, quality models define what good quality 

 
Figure 1: Taxonomy of FCM (Factor-Criteria-Metrics) models 
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attributes are. Those can be represented by quality factors and criteria and become 
measurable by metrics. The definition of quality needs to be expandable because quality 
expectations evolve with time. 
Based on these lessons and the requirements in the introduction, a new framework for the 
assessment of functional quality in smart equipment is developed. Figure 2 presents the 
suggested workflow. The specification of the purpose of the simulation model should 
always be the first step within model development. Afterwards, a generic FCM model 
must be adapted based on the specified purpose. The factors and criteria within 
ISO/IEC 25010 provide the frame for a set of metrics to achieve transparent quality 
assessment. The user decides which factors, criteria and metrics will be included. The 
next step is to determine the target range or target value for each metric that can be used 
to calculate a quality rating. Afterwards, a standard modelling approach applying first 
principles modelling, data driven modelling or a combination of both can be taken. The 
advancement is then tested using the specified FCM model continuously. If the simulation 
model sufficiently fulfills the target, the user can exit model development successfully. If 
this is not the case, the smart equipment can provide recommendations of action to the 
user for further development based on the various criteria analyzed applying the FCM 
model. 

4. Case Study  
4.1. Study design 
The authors conduct an initial evaluation of the proposed new framework for functional 
quality assessment using a case study. The use case for the quality assessment is a soft 
sensor for process monitoring. A simulated first principles model for yeast fermentation 
provides the raw data (Nagy, 2007). The soft sensor is used for online estimation of 
biomass concentration during the fermentation. The data-driven soft sensor is a feed 
forward neural network (FFNN) and is trained through Levenberg-Marquardt 
backpropagation. Inputs for the soft sensor are reactor temperature, dissolved oxygen 
concentration, yeast concentration and ethanol concentration. A quality model based on 
ISO/IEC 25010 was adapted to the use case. The quality factors functional suitability, 
reliability, performance efficiency and maintainability were considered. The quality 
factors performance efficiency and maintainability were not separately examined in the 
evaluation due to the study design without a real process plant. Metrics were matched to 
the quality factors functional suitability and reliability for the quality assessment. The 
equations for those metrics are shown in Table 1. Important metrics for soft sensors are 
the difference between estimated and measured values, which covers the criterion 
functional appropriateness, and the coverage of the targeted area of validity of the soft 

  
Figure 2: Workflow for functional quality assessment for simulation models in smart equipment 
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sensor with model fitting data, which relates to the quality criterion of functional 
completeness. The case study consists of seven cases and is designed to emulate quality 
differences in the soft sensor model to evaluate the method. The cases differentiate 
between model fitting data (Case 1 – 3), model structure (Case 4) and input data for online 
estimation (Case 5 – 7). Soft sensors for online prediction use measured online data for 
the estimation of the output. 
4.2. Study results 
The quality assessment is able to distinguish between the designed quality differences in 
the case study. For some cases, like Case 7, almost every metric requires an action to 
further develop the simulation model, while in other cases, like Case 1, only certain 
metrics require an action because the targets are not met. For example, if the target range 
for the outlier frequency is not met, the quality assessment recommends adding a pre-
processing layer into the soft sensor to filter out incorrect data points. In case of output 
violations of the process limits, the quality assessment recommends different actions 
depending on the severity of the error. Actions range from simple retraining of the model 
to replacing the entire modelling approach. The high coverage for Case 3 shows that the 

Table 2: Results for the different quality metrics 

Factor Functional Suitability Reliability 
Criteria Correct-

ness 
Appro-
priateness 

Complete-
ness 

Fault tolerance (Robustness) 

Metric R2 RMSEtest Coverage ViolationOutput Outlierfrequency 
Case 1 0.82 0.0893 0.3904 0.0488 0.0 
Case 2 0.77 0.0891 0.3451 0.0487 0.0 
Case 3 0.37 0.0888 0.9347 0.0488 0.0
Case 4 0.85 0.0896 0.3904 0.0491 0.0 
Case 5 0.55 0.0893 0.3904 0.0976 0.0741 
Case 6 0.53 0.0826 0.3904 0.1707 0.0667 
Case 7 0.53 0.1343 0.3904 0.5366 0.0167 

Table 1: Metrics overview for quality assessment 

Metric Equation Source 

Coverage 
FittingDataNumberOfInputs

Specified

V
V

 
(Marquardt, 2007) 
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 with process limit violation (Marquardt, 2007) 

Outlierfrequency 
Output

Output
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Data




with MAD filter (Liu et al., 2004, 
Roungas et al.,2008) 
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coverage metric cannot be regarded in isolation, as the high coverage is due to noise 
increase in the model fitting data.  Simply comparing the volumes of the convex hulls 
does not entirely capture the correctness of the data. One future approach will be to also 
assess the position of the volumes in space. 

5. Conclusion 
In this paper, a new approach to quality assessment of simulation models based on the 
test-driven development concept and FCM models from software development was 
presented. The framework allows transparent and continuous quality assessment of 
simulation models within the modelling process. The determination of requirements 
before the start of model building allows an early linkage of requirements and tests during 
the planning phase of the tests. This framework lays the foundation for guidance strategies 
during model development. The structure of the quality model enables only a semi-
automated quality assessment because the generic quality model must be adapted 
manually beforehand but, therefore, allows easy adjustment and extension of the quality 
model. Future work will explore the applicability of the method to other types of soft 
sensors and use cases of simulation models like design space models. Additional factors, 
criteria and metrics should be introduced into the framework. Furthermore, new metrics 
must be developed if no universally accepted ones are available. Finally, the method 
should be tested in real world applications. 
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Abstract 
Detection of abnormal behaviors (faults) in chemical process systems is a challenging 
task due to the high amount of data collected through measurements associated with dis-
tributed sensor networks. In these multivariate systems, gaining insight into the inner 
structure of collected high-dimensional data is essential for exploring and discovering 
paths to assist big data technologies. This exploration is facilitated by the use of many 
tools, such as dimension reduction techniques and clustering methods. In the present 
paper, the synergy between dimension reduction techniques and clustering methods has 
been studied to help discovering methods which complement each other in the field of 
fault detection and to demonstrate the performance of a fault detection strategy which is 
tested on the data from the well-known Tennessee Eastman Process simulator. The 
outcomes can be substantially improved by judiciously pairing the dimension reduction 
approach with a method from the appropriate group of clustering methods. 
 
Keywords: Data mining, Dimension reduction, Data clustering, Fault detection, High-
dimensional data 

1. Introduction 
Control systems of chemical processes require constant monitoring of different variables 
throughout the system. The historical data obtained from different plant sections and 
system variables are high-dimensional and complex, yet they are an extremely useful 
resource for discovering patterns and behaviors, thereby facilitating the detection of faults 
and other anomalies. Many fault detection methods utilizing high-dimensional historical 
data have been developed throughout the years and benefit from the use of data science 
tools such as dimension reduction techniques and clustering methods, or both. Each of 
these tools have separately been studied in the context of various applications and 
evaluated based on their success in class representation. Applying a dimension reduction 
technique helps to extract the most important features of a high-dimensional dataset and 
represent them using lower dimensions, and a clustering method is used to identify groups 
and classes containing those features. It should be pointed out that the attributes of 
dimension reduction and clustering methods have a direct effect on the outcomes. 
Therefore, a study on such attributes will help discovering how dimension reduction 
techniques and a common unsupervised learning tool, clustering, can complement each 
other in the field of fault detection. Utilizing combinations which complement each other  
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improves information extraction from the data and the fault detection process. There have 
been previous studies such as the work done by Thomas et al. (2018) demonstrating some 
methods are more compatible with each other. The reason of such observations is 
explored and discussed in the current paper by studying a wider range of methods.  
The dimension reduction techniques in this work are classified as correlation-preserving 
methods, distance-preserving methods and neighborhood-preserving methods while the 
clustering methods are categorized as connectivity-based, centroid-based, distribution-
based, density-based and grid-based techniques. As shown in Figure 1, the proposed 
approach consists of a first step where the data containing different states are normalized, 
followed by a dimension reduction step then a clustering step, ending with the evaluation 
of the results. Different combinations of categories are tested and characteristics of each 
group of methods is taken into account to match each class of dimension reduction 
technique with one or more groups of clustering methods to achieve the best overall 
functionality of the fault detection process. Each of the methods are briefly explained in 
Sections 2 and 3 with a focus on their definitive attributes. Evaluation criteria is explained 
in Section 3. The proposed approach is tested on a dataset containing three different types 
of faults from the Tennessee Eastman Process simulator mentioned in Section 4. The 
discussion of the results is available in Section 5. 

2. Dimension reduction techniques 
The techniques utilized in this study for dimension reduction and visualization purposes 
are categorized into three groups based on their approach to map the original high-
dimensional data onto the low-dimensional space. The considered attributes leading to 
choose these categories are the input type of the methods, meaning whether they use a 
distance matrix or the data points for projection, and their examined neighborhood, 
meaning whether local points are taken into account or they are examined globally 
(Espadoto et al., 2019). 
In the first category, correlation-preserving methods include the ones that consider and 
preserve the correlation between the samples, whether in a global scale or a local scale. 
Examples of this category are Principal Component Analysis (PCA) and its variants. PCA 
is a linear transformation for dimension reduction with the objective of preserving the 
maximum variance within the data which is performed on a global scale. 
Techniques in the second category, distance-preserving methods, preserve distances 
between samples in a global scale to map the data onto a lower number of dimensions. 
The methods chosen for this category are Multidimensional Scaling (MDS) and Isometric 
mapping (Isomap). MDS is a nonlinear method which represents the distances of the data 
points as similarities between them and Isomap is a nonlinear embedding method which 

Figure 1: A step-wise summary of the presented approach 
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constructs a neighborhood graph of the samples to find the shortest path between two 
nodes. 
Third category of dimension reduction techniques is neighborhood-preserving methods. 
Dimension reduction techniques such as t-Stochastic Neighborhood Embedding (t-SNE) 
and Uniform Manifold Approximation and Projection (UMAP) preserve the distance 
between data at a local scale. t-SNE is a nonlinear technique which represents local 
structures of a dataset by considering the affinities of its data points as probabilities. 
UMAP is also a nonlinear method similar to t-SNE with assumption of uniformly 
distributed data. 

3. Clustering methods 
Clustering methods differ in defining the similarity criteria for identifying classes 
(clusters). Therefore, considered methods in this study fall into one of the five 
aforementioned categories. The approach towards clustering in each category along with 
a representative example is briefly explained in this section (Han et al., 2012). 
3.1. Clustering categories 
The methods in the connectivity-based category take the distance between data points 
into account to assign cluster memberships.  Closer data points are assumed to be in 
similar clusters as opposed to further data points. The most well-known method in this 
category is agglomerative hierarchical clustering, using a number of possible closeness 
measures (linkages). 
Methods in the centroid-based category find centroids in order to partition the data into a 
specific number of clusters. This is done by minimizing the distance of points from their 
closest centroid. The examples chosen for this category are k-Means and k-Medoids. The 
main difference between these two methods is their selection of the centroid. 
The main idea exploited in the third category, distribution-based clustering, is the 
assumption that members of a cluster most likely belong to the same distribution.  Points 
are assigned to clusters based on their probability of belonging to a distribution; Gaussian 
mixture models (GMM) is an example that assumes that the data is constructed of 
multiple Gaussian distributions (Reynolds, 2015). 
In the fourth category, which includes density-based methods, clusters are defined as 
areas of high density separated by areas of low density. Higher density is defined as 
smaller regions with higher number of samples. Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) and Ordering Points To Identify the Clustering 
Structure (OPTICS) are two examples in this category. Both methods assign points to 
clusters based on a density criterion, while their difference can be simply expressed that 
OPTICS orders the points to prioritize the memberships. 
Methods in the last category divide the space into grids and calculate the density of each 
grid to find the clusters. These methods are called grid-based clustering methods. An 
example is CLustering In QUEst (CLIQUE). This method partitions high-dimensional 
data into non-overlapping subspaces and uses these subspaces to identify clusters. 
3.2. Cluster evaluation criteria 
Multiple metrics have been defined to assess the performance of a clustering algorithm. 
Metrics used in this study utilize the ground truth class assignments of the data points for 
evaluation. Adjusted Rand Index (ARI) (Rand, 1971) and Adjusted Mutual Information 
(AMI) (Vinh et al., 2009) measure the similarity of the true labelling and the clustering 
labelling, while ignoring the permutations and with chance normalization, meaning 
random assignments will have a score close to zero. ARI is bounded between -1 and 1, 
and AMI has an upper bound of 1, while 1 being the perfect score for both. Homogeneity 
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is a measure of clusters being pure, and Completeness measures if all members of a class 
have been assigned to the same cluster. V-measure is their harmonic mean, and all three 
scores are bounded between 0 and 1, 1 being the perfect score (Rosenberg and Hirschberg, 
2007). 

4. Case study 
In order to study the synergy between categories of  dimension reduction techniques and 
clustering methods, all the methods mentioned above were tested on a dataset generated 
using the Tennessee Eastman Process (TEP) simulator in MATLAB (Bathelt et al., 2015). 
This benchmark chemical plant consists of five major units (a reactor, a product 
condenser, a recycle compressor, a vapor-liquid separator, and a product stripper) and 
eight components in total and has been the reference for testing many data-driven fault 
detection methods in chemical engineering. The simulation has 41 measured variables 
and 12 manipulated variables. The original simulation has 20 predefined faults of 
different types that can be introduced to the system. For this study, three different faults 
of varying types were selected; Fault 2 which is a step change in a component's 
composition, Fault 13 which is a slow drift in the reaction kinetics, and Fault 14 which is 
the sticking of reactor cooling water valve. Each of these faults were separately active for 
a constant 20 minutes, and then turned off right before the next period started. 
The generated dataset consisting of these three faults and 20 minutes of normal operation 
(without any faults) was first preprocessed by removing the constant variables and 
normalizing to a zero mean and unit variance. A dimension reduction technique was 
applied to the dataset followed by a clustering method. All the dimension reduction 
techniques were used to obtain two-dimensional data, and the parameters for each 
clustering method were searched for based on the scores described in Section 3.2. They 
were selected such that the clustering would result in the highest possible scores for 
maximum number of metrics; In other words, the clustering assignments would match 
the true labels of the four different states as much as possible. Hence, better scores (closer 
to 1) do not necessarily correspond to correct number of clusters, but they may contain 
some extra clusters or some combined clusters. Every combination of mentioned 
dimension reduction techniques and clustering methods were tested as mentioned to find 
the categories that complement each other more successfully in isolating the different 
faults. 

5. Results and discussion 
The ability of a clustering method to accurately detect different states and faults as 
separate clusters in this case is highly dependent on the ability of the dimension reduction 
technique to extract the inner structure and information from the original high-
dimensional data. Therefore, if some states are not distinguished from each other after the 
first step of dimension reduction, complete fault isolation in clustering is almost 
impossible. For example, in the visualization of the two-dimensional data, it was observed 
that data points of Fault 14 were close to those of the normal state or even were 
indistinguishable in most of the cases. 
The results of the case study are summarized in Table 1. For ease of comprehension and 
to satisfy the space restrictions, only the AMI scores for different cluster assignments are 
shown for each dimension reduction technique. The best score for each dimensional 
reduction technique is highlighted. 
As presented in Table 1, for the correlation-preserving category (e.g., PCA), a density-
based clustering had the best performance, and the distribution-based clustering was the  
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method with the second-best performance. For the distance-preserving category (e.g., 
MDS and Isomap), DBSCAN achieved the highest AMI score for both techniques. The 
best clustering result for the neighborhood-preserving category was also DBSCAN. For 
both methods in this category, hierarchical clustering also produced results which were 
relatively close to the highest scores. Other evaluation scores demonstrated same results, 
confirming the most compatible clustering methods and dimension reduction techniques 
represented in Table 1 for each category. Also, it can be seen the lowest performance for 
PCA, Isomap and UMAP was obtained with the grid-based clustering method (e.g., 
CLIQUE), and the lowest performance for MDS and t-SNE were from the centroid-based 
clustering methods. These two categories of clustering methods do not work well with 
elongated clusters and tend to separate a long cluster into several smaller ones and as 
demonstrated later in this section, Fault 13 has such a feature. This fault is a slow drift in 
the reaction kinetics, and this is well-reflected in the elongated shape of its cluster in the 
low-dimensional space. 
In total, for all five dimension reduction techniques, a density-based clustering method 
achieved the best performance in accurately isolating the faults, and distance-based 
clustering was amongst one of the methods with a relatively high score for two of the 
three categories of dimension reduction techniques. Overall consideration of the results 
demonstrates that density-based clustering methods lead to higher AMI scores in general, 
therefore more accurate cluster assignments. Most of the tested dimension reduction 
techniques represent similarity of data points in terms of their closeness in the lower 
dimensions, therefore the clusters can be found using a method which searches for areas 
with high density or clusters them based on the relative distance of data points more 
easily. An additional observation can be made by comparison of dimension reduction 
techniques, stating that the clustering results obtained after t-SNE demonstrate better 
performance compared to all other techniques for the dataset at hand. 

Table 1: AMI Scores for Cluster Assignments After Dimension Reduction 

 Hierarchical k-Means k-Medoids GMM DBSCAN OPTICS CLIQUE 
PCA 0.511 0.513 0.455 0.630 0.645 0.683 0.373 
MDS 0.539 0.510 0.427 0.553 0.600 0.501 0.433 
ISO 0.655 0.589 0.573 0.440 0.707 0.700 0.426 

t-SNE 0.766 0.610 0.716 0.642 0.785 0.668 0.766 
UMAP 0.685 0.595 0.575 0.628 0.704 0.673 0.433 

(a) Isomap Dimension Reduction (b) t-SNE Dimension Reduction 

Figure 2: DBSCAN clustering applied on (a) Isomap and (b) t-SNE results 
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Highest AMI scores were achieved using t-SNE followed by DBSCAN clustering and 
using Isomap followed by DBSCAN. These results are presented in Figure 2. Different 
colors represent different clusters found through the mentioned steps and the arrows 
pointing to each cluster show the true categories of the present states on the figures. Three 
obtained clusters can be seen in Figure 2(a). Two faults (2 and 13) were detected 
successfully and two of the states (Fault 14 and no fault) were almost overlapping and 
combined into a single cluster in color blue. Figure 2(b) shows five different clusters in 
addition to outliers (in black) found by DBSCAN. All four different states were detected 
almost perfectly, with the exception of the yellow and gray clusters which are labeled 
separately but both are Fault 14. It can be seen that Fault 14 is mapped very closely to the 
normal state with no faults. 

6. Conclusions 
This presented work focused on studying the performance of categories of clustering 
methods when used in conjunction with categories of dimension reduction techniques to 
enhance the fault detection process. The tests were carried out on a case study from the 
TEP simulator to find the dimension reduction techniques and clustering methods that 
complement each other. Different combinations of dimension reduction techniques 
followed by clustering methods were applied to the dataset to obtain the highest similarity 
in cluster assignments to true data labels. The study shows that different categories of 
dimension reduction tend to produce results with specific characteristics leading to their 
higher compatibility with some categories of clustering methods. More specifically, the 
results show that the density-based and distance-based clustering categories have a 
promising performance in identifying isolated states and possible faults used along with 
all dimension reduction categories. 
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Abstract
Catalytic wet-air oxidation is an attractive solution to treating refractory wastewater.
The process has been demonstrated at laboratory scale over a low-cost pillared clay
catalyst in a trickle-bed reactor. However, complex interaction of fluid dynamics and
reaction kinetics makes scaling up of laboratory reactors to industrial reactors very
difficult. Changes in hydrodynamic parameters are significant when laboratory reactors
are scaled up to commercial reactors. To understand the behaviour of fluids inside a
trickle-bed reactor, a computational fluid dynamics model was developed from
experimental data using an Euler–Euler model. A commercial software Fluent was used
to study hydrodynamic behaviour, temperature distribution and oxidation process. The
model indicated that a hot spot was formed near the centre of the reactor due to liquid
mal-distribution. Moreover, incorporating monolithic structure in a reactor packing
material helped to lower pressure drop due to low velocities inside monolith channels.
Furthermore, when the reactor was modelled at 160 °C and 10 bar, phenol was
completely oxidized to CO2.

Keywords: Advanced Oxidation Processes, CFD modeling, Reactor Scale-Up, Eulerian
Model.

1. Introduction
Phenolic wastewaters originate from several industrial processes making them a model
pollutant for bio-toxic and non-biodegradable organic pollutants. Moreover, phenol is an
intermediate product found in the oxidation of aromatic hydrocarbons (Makatsa et al,
2020). It is also listed as a priority pollutant by the United States Environmental
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Protection Agency (Lal and Garg, 2014). The use of phenol in petroleum,
petrochemical, pharmaceutical, paint, pulp and paper, plastic and refinery industries is
common (Zhang et al, 2019). There are different wastewater treatment methods
available and catalytic wet-air oxidation (CWAO) is gaining a lot of interest due to
developments in heterogeneous catalysis (Baloyi et al, 2019). The reactor choice is very
important in this process (CWAO) since it can affect the reaction mechanism, which
might result in the formation of undesired products like polymers. These by-products
are known to be responsible for catalyst deactivation by blocking access to active sites
(Pintar and Levec, 1992).

Trickle-bed reactor (TBR) is widely used in many industrial processes. However, there
are few challenges associated with this type of reactors such as measuring the
interaction between gas, liquid, and solid flows including high-pressure losses. The
reactor flow regime is dependent on superficial mass velocity, fluid properties (density,
viscosity, etc.), and design parameters. In most instances, the reactor is operated
between a low interaction regime (trickle flow regime) and a high interaction regime
(pulse, spray, and bubble regime).
Ranade et al (2011) suggested that the scale of the reactor affects the performance of a
TBR. Also, these authors listed several factors that are directly affected during reactor
scale-up as follows; reactor to particle diameter ratio, reactor volume, bed porosity,
wetting, channeling, liquid mal-distribution, dispersion and reactor operating mode
(isothermal/adiabatic). After thorough investigation, these researchers concluded that
the wall effect is predominant in laboratory TBR whereas flow mal-distribution is
common in industrial TBR due to large bed diameter. On the other hand, when CFD
model is developed correctly, the scale of the reactor can be taken into consideration.
CFD models are based on conservation of mass, energy and momentum; and provide a
time saving and cost-effective approach in the reactor design (Kapfunde et al, 2018).
The purpose of this study is to validate the results obtained in our previous work
(Makatsa et al, 2019) using a 3D multiphase Eulerian model of phenol oxidation in a
trickle bed reactor. To the best of our knowledge, this is the first study to simulate
CWAO of phenol using a novel Al/Zr-PILC catalyst supported on a cordierite monolith.

2. Governing equations
A multiphase Eulerian CFD model of phenol oxidation in a TBR was developed using
commercial software ANSYS Fluent 2019R2 and 2020R2. The following sets of
mathematical equations are incorporated into a CFD code solver.

Mass conservation equation:

(1)
Momentum conservation equation:

∂(ε
𝑘
ρ

𝑘
𝑈

𝑘
)

∂𝑡 +  ∇. ε
𝑘
ρ

𝑘
𝑈

𝑘
𝑈

𝑘( ) =− ε
𝑘
∇𝑃

𝑘
+ ∇. ε

𝑘
µ∇𝑈( ) +  ε

𝑘
ρ

𝑘
𝑔 +  𝐹

𝐾,𝑅
(𝑈

𝑘
− 𝑈

𝑟
)

826

(2)



Computational fluid dynamics modelling of phenol oxidation in a trickle
bed reactor using 3D Eulerian model

Where is volume fraction for each phase, is the density of the k-th phase, is theε
𝑘

ρ
𝑘

𝑈
𝑘

cell velocity of the k-th phase and is an interphase momentum exchange ( Ranade𝐹
𝐾,𝑅

et al, 2011). The interface coupling term can be expressed as follow𝐹
𝐾,𝑅

(3)

(4)

(5)

Where FGL, FGS, FLS are gas-liquid, gas-solid and liquid-solid momentum exchange
terms. To understand turbulence inside the reactor, a standard k-ɛ model was chosen and
the software solved the following mathematical equations (Lopes and Quinta-Ferreira,
2010);

(6)

The liquid viscosity turbulence is calculated from the transport equations byµ
𝑡,𝐿

determining kinetic ( ) and dissipation energy ( ) from the following equations𝑘
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(Lopes and Quinta-Ferreira, 2007)
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(7)

(8)

The following parameters were taken as constants , , , , and assigned the𝐶
µ

𝐶
1ε

𝐶
2ε

σ
𝑘

σ
ε

following values 0.09, 1.44, 1.92, 1.0 and 1.3, respectively. Enthalpy was calculated
from the conservation of energy in a multiphase Eulerian model as follows (Manoharan
and Buwa, 2019; Lopes and Quinta-Ferreira, 2007).

(9)

The specific enthalpy of phase q is represented by and is a heat flux. The heatℎ
𝑞

𝑞
→

𝑞

exchange intensity between the q and p phases is represented by whereas interphase𝑄
→

𝑝𝑞
enthalpy is represented by and is the source term. By activating species transportℎ

𝑝𝑞
𝑆

𝑞
the solver modeled volumetric reaction using the following equation (Lopes and
Quinta-Ferreira, 2010):

The kinetic parameters for Al/Zr-PILC catalyst were derived from our previous work
(Makatsa et al, 2019). The term in eq. (10) includes the reaction rate as;

(11)
And Kob can be expressed as follow,

(12)

By assuming ideal plug flow and first order with respect to phenol, Kob can be expressed
as follow,

(13)
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3. Results
A mixture of phenol (C6H5OH) and oxygen (O2) was fed to the isothermal-isobaric
reactor operated at 160 °C and 10 bar. The gas and liquid inlet velocities were kept
constant at 0.012 and 0.00007 m/s, respectively. As shown in Figure 1, the
concentration profile of phenol inside the reactor is close to zero along the reactor bed.
This is due to increased residence time and improved kinetics. These results are
supported by Figure 2(a), which shows the contours of phenol mass fraction inside the
reactor. The results show that the pollutant is highly concentrated at the top half of the
reactor. However, the concentration is sharply decreased as the stream moves through
the reactor, and phenol is completely oxidized to form carbon dioxide (CO2) as shown
in Figure 2(b). From these findings, it can be concluded that C6H5OH was completely
mineralized to CO2 and water. Our results are consistent with the findings of (Lopes
and Quinta-Ferreira, 2010), in their study phenolic acid was oxidized in a TBR and
simulated using the Euler-Euler method at 160 and 200 °C. They concluded that 82% of
total organic carbon (TOC) was converted at 160 °C whereas only 84.8% was converted
at 200 °C.

Figure 1: Mass fraction of phenol inside the reactor bed.

Computational fluid dynamics modelling of phenol oxidation in a trickle
bed reactor using 3D Eulerian model
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Figure 2: Contours of phenol mass fraction (a) and CO2 profile inside the reactor (b).

4. Conclusions
A computational fluid dynamics model of a trickle-bed reactor was developed to
simulate catalytic wet air oxidation of phenol and experimental results were used to
validate the model. A multiphase Eulerian model coupled with energy and species
transport equations was used to model the phases. The reactor model was simulated at
160 °C, 10 bar and CFD results showed that phenol was completely removed leaving a
significant amount of CO2.

References
J. Baloyi, T. Ntho, J. Moma, 2019. Synthesis of highly active and stable Al/Zr pillared
clay as catalyst for catalytic wet oxidation of phenol. Journal of Porous Materials, 26,
583–597. doi.org/10.1007/s10934-018-0667-3.
N. Kapfunde, C.M. Masuku, D. Hildebrandt, 2018. Optimization of the thermal
efficiency of a fixed-bed gasifier using computational fluid dynamics. Computer Aided
Chemical Engineering, 44, 1747–1752. doi.org/10.1016/B978-0-444-64241-7.50286-X.
K. Lal, A. Garg, 2014. Catalytic wet oxidation of phenol under mild operating
conditions : development of reaction pathway and sludge characterization. Clean
Technologies and Environmental Policy, 17, 199–210.
doi.org/10.1007/s10098-014-0777-9.
R.J.G. Lopes , R.M. Quinta-Ferreira, 2007. Trickle-bed CFD studies in the catalytic wet
oxidation of phenolic acids. Chemical Engineering Science, 62, 24, 7045–7052.
doi.org/10.1016/j.ces.2007.08.085.
R.J.G. Lopes, R.M.Quinta-Ferreira, 2010. Assessment of CFD Euler-Euler method for
trickle-bed reactor modelling in the catalytic wet oxidation of phenolic wastewaters.

830



Chemical Engineering Journal, 160, 1, 293–301. doi.org/10.1016/j.cej.2010.03.024.
T.J. Makatsa,  S.J. Baloyi,  T.A. Ntho, C.M. Masuku, 2019. Kinetic study of phenol
oxidation in a trickle bed reactor over Al/Zr-pillared clay catalyst. IOP Conference
Series: Materials Science and Engineering, 655, 012050.
doi.org/10.1088/1757-899x/655/1/012050.
T.J. Makatsa, J. Baloyi, T. Ntho, C.M. Masuku, 2020. Catalytic wet air oxidation of
phenol: Review of the reaction mechanism, kinetics, and CFD modeling. Critical
Reviews in Environmental Science and Technology.
doi.org/10.1080/10643389.2020.1771886.
K.G. Manoharan, V.V. Buwa, 2019. Structure-resolved CFD simulations of different
catalytic structures in a packed bed. Industrial & Engineering Chemistry Research, 58,
49, 22363–22375. doi.org/10.1021/acs.iecr.9b03537.
A. Pintar and J. Levec, 1992. Catalytic Oxidation of Organics in Aqueous Solutions: I.
Kinetics of phenol oxidation. Journal of Catalysis, 135, 2, 345–357.
doi.org/10.1016/0021-9517(92)90038-J.
V.V. Ranade, R.V. Chaudhari, P.R.Gunjal, 2011. Trickle bed reactors. 1st Ed., Elsevier
eBook.
Y. Zhang, C.M. Masuku, L.T. Biegler, 2019. An MPCC reactive distillation
optimization model for multi-objective Fischer–Tropsch synthesis. Computer Aided
Chemical Engineering, 46, 451–456. doi.org/10.1016/B978-0-12-818634-3.50076-X.

Computational fluid dynamics modelling of phenol oxidation in a trickle
bed reactor using 3D Eulerian model

831





PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

Enhanced deterministic approach for heat 
exchanger network synthesis 
Zekun Yang,a  Nan Zhang,a* and Robin Smitha 

a Centre for Process Integration, Department of Chemical Engineering and Analytical 
Science, The University of Manchester, Manchester M13 9PL, UK  
*nan.zhang@manchester.ac.uk 

Abstract 
Stage-wise superstructure (SWS) is one of the most widely used methods for Heat 
Exchanger Network (HEN) synthesis. Approaches to obtain optimal HEN solution can 
be based on the deterministic algorithm, but it is difficult for solving a large-scale problem 
since the complexities arisen from nonlinearities of SWS. Several methods which 
employed stochastic algorithms and meta-heuristic approaches have been proposed to 
tackle the problem. However, it determines a near-optimal HEN configuration from a 
series of stochastic solutions which are obtained by the execution of many computational 
operations, thus it is time consuming and a global optimum will not be achieved from 
only randomly generated results. In this study, an enhanced SWS is presented, in which 
new constraints and variables are added to avoid conflicted calculation of non-isothermal 
mixing energy balance and reduce the redundant combinations. Moreover, the present 
model is extended to allow a flexible requirement of stream splitting for practical 
application. Then, a deterministic-based global solver (GAMS/BARON) is applied in 
solving three case studies, operated on computer: I7-8565U. The results showed that the 
proposed approach can provide a cost-efficient HEN solution with a lower TAC than that 
obtained from existing stochastic and deterministic algorithms. 

Keywords: Heat exchanger network synthesis, Deterministic approach, Optimization, 
Process synthesis, Mathematical programming 

1. Introduction 
Heat exchanger networks are important for the process industries, since it can reduce 
energy consumption and pollutant emissions by heat integration of process streams. The 
benefit can be attributed into HENs for achieving energy saving, but heat exchangers 
bring significant capital investment at the same time. To increase economic benefits, HEN 
optimization has been widely studied. The approaches used in HEN synthesis can be 
divided into pinch method and automated method. Pinch Technology has been widely 
applied and can provide a cost-efficient solution, but it requires experienced designers 
and may lead to missing promising solutions. 

Mathematical programming has been developed to achieve automated HEN synthesis. It 
generally formulates the design problem through a superstructure. One of the widely used 
superstructures has been proposed by Yee and Grossmann (1990) . Based on the use of 
stage-wise superstructure (SWS), the HEN synthesis is formulated as an MINLP problem, 
as targeting the minimum total cost. Due to non-linearity, non-convexity and raised 
problem sizes for large-scale HEN optimization problems, it is a challenge to find an 
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optimal HEN solution at accepted time. Several approaches have been reported to solve 
the HEN synthesis problem by using different algorithms. 

Stochastic algorithms treat the HEN design with randomization, not limited by model 
non-convexity and discontinuity. Some papers have applied these methods in solving 
HEN synthesis, such as: Genetic Algorithms (GA) (Holland, 1992), Simulated Annealing 
(SA) (Kirkpatrick, 1983), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 
1995). Based on these, a number of papers have been published to use hybrid-approach 
with developed stochastic algorithms. Recently, GA-PSO and SA-RFO methods have 
been applied to solve the models (Pavão et al., 2016; Pavão et al., 2018)  respectively, in 
which parallel processing techniques and streams with phase change were considered. 

However, for employing stochastic algorithms, extensive computational efforts are 
required to determine near-optimal solutions. Deterministic approaches have been widely 
employed to solve HEN synthesis problems, such as Branch and Bound (BB) and Outer 
Approximation (OA) (Zamora and Grossmann, 1997). In recent years, study (Huang et 
al., 2012) reported a modified superstructure to consider non-isothermal mixing, and 
solved by commercial solver BARON/GAMS. Faria et al. (2015) developed the Bound 
Contraction method to solve the HEN synthesis problem, in which variables are 
partitioned to construct a linear or convex lower bound. Kim et al. (2017)  presented a 
deterministic-based global optimization, which extended the works (Faria et al., 2015). 
However, large time-resource is necessary according to their approach, and industrial-
scale problems have not been investigated by the use their method. 

In this work, based on the SWS developed by Huang et al. (2012) and Pavão et al. (2017), 
an enhanced non-isothermal mixing superstructure is proposed. A global solver, 
BARON/GAMS is employed as the deterministic approach. Additional variables and 
constraints are defined to improve the model performance and achieve flexible splitting 
requirement.  

2. Mathematical Model 
The mathematical formulation is based on the well-known stage-wise superstructure 
(SWS) proposed by Yee and Grossmann (1990), and stages are introduced in which all 
possible matches between hot streams and cold streams are optimized. In this formulation, 
the iso-thermal mixing assumed in the original SWS method is removed, and some logical 
constraints are adopted to improve the non-isothermal mixing model. Basically, the set 
of hot process streams (𝑖;  𝑖 ∈ 𝐻𝑃), cold process streams (𝑗;  𝑗 ∈ 𝐶𝑃), and stages (𝑘;  𝑘 ∈𝑆𝑇) are considered. The number of stages is assumed as 𝑆𝑇 = 𝑚𝑎𝑥 𝑖, 𝑗 . Some following 
assumptions are described below: 

a. Constant stream flow rate, heat transfer coefficients and thermodynamic properties.  
b. Split stream pass exchangers in series and by-pass are not considered. 
c. Utility inlet and outlet temperatures are given. 
2.1. Objective function, stage and overall energy balances 
The objective function, stage and overall heat balances can be founded in the literature 
(Yee and Grossmann, 1990). The objective function is to minimize the total annual cost 
(TAC), which consists of the total capital cost related to the heat exchangers and utility 
cost. Stage and overall energy balances are required to achieve feasible heat transfer in 
each stage and each stream with heaters or coolers. 
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2.2. Non-isothermal mixing (NIM)  
Different from the iso-thermal mixing, exchanger energy balance is applied to express 
the NIM heat transfer. For a hot stream (cold stream), the inlet temperature of a split 
stream enters the heat exchanger is the same as the stage inlet temperature 𝑇ℎ ,  (𝑇𝑐 , ). 
The outlet temperature for each split stream can be different according to the varying heat 
capacities and heat duties. Continue variables 𝑓ℎ , ,  and 𝑓𝑐 , ,  (0 ≤ 𝑓ℎ , , ≤ 1; 0 ≤𝑓𝑐 , , ≤ 1) are defined as split fractions of hot stream 𝑖 and cold stream 𝑗. The true outlet 
temperatures of exchangers can be calculated by exchanger energy balance, as 
formulated:  𝑇ℎ , − 𝑇ℎ𝑜𝑢𝑡 , , 𝐶𝑝ℎ 𝑓ℎ , , ≥ 𝑞 , , 𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (1

) 𝑇𝑐𝑜𝑢𝑡 , , − 𝑇𝑐 , 𝐶𝑝𝑐 𝑓𝑐 , , ≥ 𝑞 , , 𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (2
) 

Where 𝑇ℎ𝑜𝑢𝑡 , ,  and 𝑇𝑐𝑜𝑢𝑡 , ,  are the actual outlet temperatures of exchangers. In 
addition, the model allows the stream to fully bypass a stage if no exchangers are required. 
Two continuous variables are defined as: 

𝑦ℎ , {1  0 if hot stream 𝑖 bypass the stage 𝑘 𝑖 ∈ 𝐻𝑃, 𝑘 ∈ 𝑆𝑇 (3) 
Otherwise 𝑦𝑐 , {1  0 If cold stream bypass the stage 𝑘 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (4) 
Otherwise 

Based on Eq. (3) and Eq. (4), the constraints to direct feasible stream split fraction have 
been reported by Huang et al. (2012). 

2.3. Feasibility constraints 
To conduct a feasible HEN configuration, some process constraints reported by Yee and 
Grossmann (1990), and Huang et al. (2012) are used in this model, which targets the basic 
feasibilities of temperatures, assessments of temperatures, and feasible minimum 
approach temperature difference (MATD). Furthermore, the stage inlet temperature of 
hot stream 𝑖 must be no less than the split stream temperature that enters the next stage 𝑘 + 1. Similarly, the split stream temperatures of cold stream 𝑗 as it leaves the stage 𝑘 
must be equal to or larger than the stage inlet temperature. Hence, some new assessments 
and constraints of temperatures are presented as follows: 𝑇ℎ𝑖𝑛 = 𝑇ℎ𝑜𝑢𝑡 , , 𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (5) 𝑇𝑐𝑖𝑛 = 𝑇𝑐𝑜𝑢𝑡 , , 𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (6) 𝑇ℎ , ≥  𝑇ℎ𝑜𝑢𝑡 , , 𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (7) 𝑇𝑐 , ≤  𝑇𝑐𝑜𝑢𝑡 , , 𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (8) 

For heat transfer in split streams, the temperature change must be 0 if the match does not 
exist. Upper bound of temperature change is required to formulate these constraints. The 
relevant correlation has been proposed by Huang et al. (2012).  
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3. Optimization 
In this study, the proposed model is formulated as a non-convex MINLP problem, as 
applying global solver BARON to target a near global optimal solution under specified 
iteration or time-resource. Figure 1 illustrates the optimization procedures. If a feasible 
upper bound solution cannot be found within acceptable time, the required stage number 
k is can be reduced gradually to decrease the number of binary variables. Additionally, 
LMTD equation is employed at the last step to avoid overestimated exchanger area 
obtained by using LMTD approximation. 

 
Figure 1.  Block diagram of optimization approach 

4. Case study 
In this section, this case is a crude oil fractionation process originally studied by Kim et 
al. (2017) by a deterministic-based bounded method. In order to satisfy the practicality 
with industrial crude oil units, the total split numbers for crude oil stream, C1 and C2 
should not exceed four respectively. Pavão et al. (2018) applied the SA-RFO method to 
solve this problem, and they noted that the solution obtained by the SA-RFO method is 
better than that reported by Kim et al. (2017). Nevertheless, in their work (Pavão et al., 
2018), they ignored the split limitation and the split streams of C2 are larger than four, 
which becomes impractical for industrial crude oil systems. Hence, in order to evaluate 
the performance of the proposed method, two cases are conducted and compared with the 
results of Kim et al. (2017) and Pavão et al. (2018), respectively. The first case is based 
on limited splitting streams while introducing new constraints. The second case is 
obtained through the present method directly. To conduct HEN with limited branch 
number, Eqs (9) and (10) are formulated to achieve required splitting number (splitting 
number ≤ 4 for C1 and C2 respectively): 

∈ 𝑧 , , ≤ 4 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇 (9) 

∈ ∈ 𝑧 , , − 𝑠𝑡𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 − ∈ 𝑦 ,+ 1 ≤ 4 𝑗 ∈ 𝐶𝑃 (10) 

This problem is then solved with 11 stages and the MATD is set to 10 °C to be consistent 
with the literature (Kim et al., 2017). To find a high-quality solution at accepted 
computational time, maximum computation time is set (4 h in the case study). 
Furthermore, iteration numbers are recorded with the maximum value of 2500. For 
computational operations, GAMS 24.6 with BARON is used as the global MINLP solver. 
The computer model is a Dell Intel ® Core™, I7-8565U CPU, 1.99 GHz with 8 GB RAM. 
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Figure 2 and Table 1 show the optimal HEN configuration and results comparison with 
limited branch number, respectively. From the results, a better HEN solution is obtained 
as a lower TAC (3,455,358 $/yr) and time-resource (98 % time-resource saving) than 
previous paper (Kim et al., 2017). Next, Figure 3 presents the optimal HEN solution 
without split limitation. According to Table1, the total 3,379,651 $/y TAC is obtained, 
which is lower than the best solution so far (3,391,066 $/y), with 79 % computation time 
reduction.  

 
Figure 2.  Optimal HEN solution while limiting split streams 

 
Figure 3.   Optimal HEN solution without limiting split streams 
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Table 1: Results comparison 
Reference TAC  

($/y) 
CPU 
(s) 

Units QH 
(kW) 

QC 
(kW) 

Total 
Area (m2) 

Kim et al.   3,456,649 47,783 17 23,566 11,783 10131.1 
This work 3,455,358 534 17 21,997 10,216 13245.2 
Pavao et al.  3,391,066 22,630  18 20,891 9108 13835.1 
This work 3,379,651 4564  18 20,858 9077 13690.9 

5. Conclusions 
Consequently, the proposed method shows better performance than the previous 
approaches. A cost-efficient HEN solution can be obtained by the enhanced deterministic 
approach with acceptable time. Different from the existing stochastic algorithms that may 
have inconsistent solutions in different executions, the deterministic approach applied in 
proposed method can give better solutions, shown with cost-efficient HEN solutions with 
a lower TAC and computation time than that obtained from the existing stochastic (0.34 
% TAC saving, 79 % computation time reduction) and deterministic algorithms (0.04 % 
TAC saving, 98 % computation time reduction).  
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Abstract 
Green Economy is the key word of the last two decades. In this context, an important role 
is covered by anaerobic digestion (AD), treating organic waste fractions to recover both 
fertilizing elements and energy. Countless biochemical reactions lead to substrate 
degradation and biogas development. Despite AD has been used for many years, its study 
from an engineering point of view is quite recent. The reference model ADM1 (Anaerobic 
Digestion Model No.1), proposed in the late 90’s by IWA (Batstone et al., 2002) to 
describe and simulate the steady-state digestion of sewage sludges from Wastewater 
Treatment (WWT) plants, has gone through several adjustments during time. The aim of 
this work is to improve and extend ADM1 by means of coefficients and equations 
optimization to better fit various contexts such co-digestion processes. Moreover, provide 
a description of the complete biokinetic of H2S, main biogas impurity, through the 
homologation of Fedorovich and Kalyuzhnyi studies (1998), which perfectly address its 
production from the organic feedstock reduction by means of Sulphur Reducing Bacteria 
(SRB) bacteria. Introducing the novelty of H2S biological abatement process, whose 
mechanism spontaneously occurs under microareation condition, also requires the 
implementation of an inhibition function since O2 will affect methane production. 
Python™ is the coding language chosen in order to solve a highly stiff ODE system and 
earlier literatures are the roots of this new model, that has been validated on real data 
resulting in 0.2%vol. H2S and 2%vol. unreacted O2 release. 
 
Keywords: AD Process, H2S Biokinetics, PythonTM, Mathematical Modelling. 

1. Introduction 
Anaerobic digestion consists in the molecular cleavage of organic matter, carried out by 
many different families of microorganisms, living in an oxygen free environment defined 
as anaerobic condition. The final products of this biological transformations are biogas, a 
gaseous mixture mainly composed by CH4 (50-60 %vol.), CO2 (25-50 %vol.), H2 (0-1 
%vol.) and digestate, the semi-solid residue that can be converted into fertilizer and used 
for rural applications. The feedstock, characterized in terms of carbohydrates, lipids, 
proteins, and inert materials, undergoes four reaction stages in which the substrate is 
exploited by bacteria as source of nutrients. The hydrolysis reaction converts 
carbohydrates, lipids and proteins into their respective monomers i.e. sugars, fatty acids 
and amino acids by adding a molecule of water to break their polymeric chains. This 
reaction represents the Rate Determining Step of the entire process. Then, Acidogenesis 
follows. This is responsible for the production of several short acid molecules (e.g. 
valeric, butyric and propionic acid and CO2) accompanied by high pH reduction to around 
4.5~5.5. These acids are converted into CH3COOH and H2 during Acetogenesis, but 
however the latter has a strong inhibition effect over some microorganisms, it’s quickly 
consumed during the last step of Methanogenesis. In this way they can grow, duplicate, 
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and generate other chemicals as their intake wastes. Hydrogenotrophic bacteria convert 
CO2 into CH4 consuming H2 (Eq. 1) while Acetoclastic bacteria produce CH4 from 
CH3COOH (Eq. 2). So, the overall reactive step stabilizes the final pH level inside the 
digester at a value about 6~8 (this strictly relies upon feedstock characteristics). 
 

CO2+4H2→CH4+2H2O (1) 
CH3COOH→CH4+CO2 (2) 

In order to simply represent the trends of these elements, the used kinetic model is a non-
structured and non-segregated one, meaning that all the bacterial cells are equivalent in 
terms of age, size and metabolism abilities, so the reactions are not influenced by the 
intracellular structure itself but only depends on operative conditions. All these concepts 
were applied for the construction of Anaerobic Digestion Model No.1 (ADM1), that is a 
complex Monod-type kinetic created by IWA in 1997. The process described is a wet AD 
(total solid content < 10 %wt.) performed in a CSTR constant volume in mesophilic 
conditions (i.e., 35 °C). It consists in an ensemble of 35 differential equations representing 
the mass balances for all the substrates and bacteria families involved into the process 
(Batstone et al., 2002). Then, eight additional algebraic equations are needed for pH 
computation, balance closure and biogas partial pressure evaluations. General equations 
are functions of ρ,	 the	 production	 term	 summarizing the reaction rates expressed 
through 1st order or Monod kinetics, accounting also for different inhibition functions 
(e.g., low pH value, H2, NH3), moreover acid-base ions dissolution equilibrium and 
liquid-gas mass transfer expressions 𝜌𝑇6 appear in ADM1 equations. 

2. Model improvements 
As reported in the previous paragraph, ADM1 was firstly developed for digestion 
processes which treat principally wastewater. In the last decades, different authors 
proposed extensions and modifications to the model in order to adapt it to the digestion 
of different substrates. In H. Li et. al (2019) a mathematical model is proposed to simulate 
manure mono-digestion in order to get the dynamics of carbon, phosphorus and nitrogen 
components in wet condition and high total-solid content and it was found valid to 
describe a high total-solid inhibition. Rivas-Garcia et al. (2020), in their studies, have 
tried to extend ADM1 to co-digestion proposing different values for kinetic parameters 
through regression of experimental data. In summary, to properly run a real-case 
simulation, ADM1 has to be adapted to the anaerobic digestion of various feedstocks, 
other than sewage sludges. Being the model based on default parameters, these have been 
investigated to better fit meaningful different dynamics behavior of all the species through 
iterative approximations starting from previous studies (Rivas-Garcia et al., 2020; Heng 
Li et al., 2019; F. Blumensaat et al., 2003). New values for parameters are reported in 
Table 1 as optimized parameters. This allows the adaptation of ADM1 to process different 
types of substrates, becoming more suitable in industrial applications where not only 
wastewater AD is performed. So, the ADM1 extension proposed in this paper makes it 
more suitable for a wider range of substrates than the previous thanks to the new found 
kinetic constant values, which open the doors to the possibility to describe different 
feedstock AD with great results. This aspect is further confirmed directly with real data 
comparison (section 3) and by reproducing the results of the works aforementioned, 
meaning that the new model is so capable to describe also specific situation with good 
approximation. A second contribution addresses equations, CSTR mass balances become 
different for macromolecules and intermediate molecules. For the former, the normal 
shape of the equation is used, for the latter the inlet term 𝑆68,6 has to be removed since 
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only macromolecules, such as carbohydrates, lipids, proteins, and inert materials, are 
directly introduced with feed stream (Eq. 3-4). Then, a clear distinction between influent 
initial conditions and starter initial conditions is required: the former is defined by the 
inlet concentration of the macromolecules derived by their influent flowrate value, the 
latter is referred to the bacteria amount initially present inside the reactor necessary to 
start the digestion process (Eq. 5). To further specify, the starter composition can be 
defined as inoculum, if only bacteria are present, or as fresh digestate if it consists in an 
already treated digestate recirculated to the feed stream or taken from another reactor. 
Another novelty brought by this work addresses hydrogen sulfide release and its 
biological abatement together inside the digestion chamber. Developed from sulfur rich 
substrate by means of sulfur reducing bacteria (SRB), H2S, a toxic acid responsible for 
serious units’ corrosion, has to be reduced to few ppm to be harmless. Its typical value 
ranges between 0.2~2 %vol. of the final biogas amount. This small percentage makes the 
acid treatment suitable with Sulfur Oxidizing Bacteria (SOB), that being aerobic bacteria, 
have to be activated by low amount of oxygen. As normal industrial practice, the oxygen 
is injected in the headspace, in order to directly encounter the SOB and reducing the 
inhibition effect on methanogens. 

Table 1. Optimized kinetic constants and misc. coefficients. 
Constant type Reference compound Default value Optimized value 
Hydrolysis 
𝑘:;<,6 [d-1] 
 

Carbohydrates 
Proteins 
Lipids 

10 

10 

10 

1.25 
0.525 
0.8 

Semi-Saturation  
𝐾>,6 [kgCOD m-3] 
 

Sugar 
Fats 
Propionate 
Acetic Acid 
Hydrogen 

0.5  
0.4  
0.1 
0.15 
0.000007 

0.3 
0.8 
0.2 
0.2 
0.0000099 

Michealis-Menten 
𝑘?,6 [kgCOD kgCOD-1 d-1] 
 

Sugar 
Amino Acids 
Propionate 
Hydrogen 

30 
50 
13 
35 

20 
45 
15 
55 

Degradation 
𝑘<@A,6 [kgCOD kgCOD-1 d-1] 
 

Sugar 
Fats 
Acetic Acid 
Hydrogen 

0.02 
0.02 
0.02 
0.02 

0.05 
0.05 
0.05 
0.09 

Inhibition 
𝐾B,6 [kmol m-3] 

Ammonia Inhibition 0.0018 0.003 

In order to treat sulfur compounds in the reactive mixture the model proposed by Flores-
Alsina (2016) properly works but requires several input information concerning feedstock 
characterization that is quite impossible to have without expensive and time-consuming 
laboratory analysis, because its aim concerns modelling also phosphorous and iron ions 
interaction in AD processes. Treating claimed micronutrients such as P, Fe and Ca makes 
the model too complex for industrial purposes, so the homologation of Kalyuzhnyi and 
Fedorovich (1998), a simpler but complete work about these topics, allows to 
mathematically account for H2S development during digestion. Reaction rates for SOEFG 
and HFS  (Eq. 6) follow Monod kinetics and three more bacteria families are added (i.e., 
Acetogenic SRB, Acetoclastic SRB and Hydrogenotrophic SRB). On the other hand, the 
chemical oxidation of the acid to solid elemental Sx (that typically accumulates in the 
reactor ceil) is described trough the incorporation of Sharma et al. (2014) kinetic 
expression adapted to anaerobic conditions. 
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𝑑𝑆6/𝑑𝑡 = 𝐻𝑅𝑇O𝑆668 − 𝑆6Q +S 𝜌6𝜈6,U
VW
U 	 (3)  

𝑑𝑆6/𝑑𝑡 = 𝐻𝑅𝑇(−𝑆6) +S 𝜌6𝜈6,U
VW
U 	 (4)  

𝑑𝑋6/𝑑𝑡 = 𝐻𝑅𝑇(−𝑋6) +S 𝜌6𝜈6,U
VW
U − 𝑘<@A𝑋6	 (5)  

𝜌6	 = 	
𝑘?^	_𝑆6	𝑆>`abcd(1 − 𝐻F𝑆<6f/𝐾B^	)	

O𝐾>^ + 𝑆6Q_𝐾8 + 𝑆>`abcd
𝑋6	 (6) 

Where for the symbology of Eq. 3-5 refer to Batstone et al. (2002), and for Eq. 6 refer to 
Kalyuzhnyi and Fedorovich (1998). As introduced, this new model for AD process 
description, brings dissolved oxygen reactant SO2 (since methanogenesis happens in liquid 
phase) and its mass balance (Eq. 7) for the first time, whose principal task is the biological 
abatement of H2S. However, it is also responsible for the inhibition of the Methanogenic 
bacteria (MPB). Because these latter work in liquid phase, it is crucial to evaluate the 
right amount of oxygen to insert, since it will penetrate in the substrate by natural 
diffusion. To reduce inhibition, SOBs are often placed on wood frameworks installed in 
the headspace, so all the O2 injected will be captured from them as nutrient. To be 
complete and reliable, the model has to account also for these phenomena introducing a 
new function that relates the content of oxygen dissolved SO2 into liquid phase to the 
methane production balance, actually, multiplying it in dissolved methane mass balance. 
The inhibition function (Eq. 8) is then tuned properly by a constant whose value was set 
be 𝐾B,`b = 0.00035 kgCOD/m3, in order to fit a case study, later presented. The shape of the 
function is kept similar to the other inhibition functions, already present in the original 
ADM1 model, not to impact on the stiffness of the model itself.	𝐼 b, then, is present as 
multiplication factor in liquid phase methane mass balance (Eq.9). Again, for the 
symbology of Eq. 9 refer to Batstone et al. (2002). 

𝑑𝑆`b/𝑑𝑡 = 𝐻𝑅𝑇O𝑆`b
68 − 𝑆`bQ − 𝜌𝑇 b − 𝑘?ib

𝑆`b
𝐾>ib + 𝑆`b

𝑆jb>
k 	 (7) 

𝐼 b =
1

1 + 𝑆`b ⁄ 𝐾B,`b	
	 (8) 

𝑑𝑆oja/𝑑𝑡 = 𝐻𝑅𝑇O−𝑆ojaQ + (1 + 𝑌qA)𝜌rr𝐼 b + O1 − 𝑌jbQ𝜌rF𝐼 b − 𝜌𝑇ojE	 (9) 

Another improvement concerns the characterization of the feedstock. Specifically, the 
introduction of a pseudo-component covering all the charged substrates. This is defined 
as a weight average of the bio-composition of all the inlets and result as percentages of 
the macromolecules in the feedstock. These values are then converted in kgCOD/m3 in 
order to fit the model’s unit of measures. Specific analysis for compounds such as 
phosphorus, calcium or metals are not necessary. Finally, the model so defined can be 
easily supported by the generation of a detailed database collecting all the aforementioned 
values of a huge variety of possible substrates, simplifying the usability of the model itself 
and spreading its simulation range to different industrial applications. 

3. Case Study 
To validate the developed model, the simulation of a local CSTR, with a Hydraulic 
Retention Time (HRT) of 35 days, is employed to test the new mathematical model. The 
plant is designed to discharge around 28 m3/d of digestate and produces 3 m3/d of biogas 
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from the co-digestion of different origins feedstock (Table 2). The amount of air used for 
microareation treatment corresponds to the 5 %vol. of the headspace volume (i.e. 0.0315 
m3/d of O2 injected). The code implementation in Python™ requires a time span of 35 
days divided into 10,000 subintervals and an absolute and relative tolerance of 10-10 and 
10-11 respectively. The effluent biogas is not only composed of methane, carbon dioxide 
and hydrogen, but contains also small amounts of hydrogen sulfide that has been 
previously developed from sulfur containing compounds and in part biologically 
oxidized. Table 3 shows the final composition of the model simulation in terms of 
volumetric percentages of biogas main components and allows to quickly compare them 
with the real plant outlet biogas composition (Unit effluent) provided. Oxygen is 
responsible for H2S abatement and its excess leaves the headspace unreacted. From the 
trends reported below it is possible to see the reaching of a stationary phase within the 
canonical 30 days for AD processes. Picks in the biogas production (Fig. 1a) refer to 
different degradation times for the hydrolysis products from the substrate. It is also 
possible to notice as the trend showed by the original ADM1 does not depict properly the 
biogas trend. This due to the lack of evaluation of H2S and other aforesaid compounds 
present in the feedstock and especially the methanogenesis oxygen induced inhibition in 
liquid phase. However, both the trends seem to be really similar at the steady-states. It’s 
necessary to say that these trends represent the instantaneous value of biogas produced, 
so at the end the total biogas production refers to the area under these curves. Finally, it 
is clear from the Figure 1a that this kind of substrate, in this condition, is not suitable to 
be simulated from the original model. Furthermore, the dynamic trend of the sulfur 
compounds is analyzed (Fig 1b) from the new balances added, showing the sulfur present 
in the feed quickly reduced to H2S before undergoing to degradation due to SOBs. 

 
Figure 1. Trends of exiting biogas (a-left) and of dissolved H2S and SOEFG (b-right). 
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4. Conclusions 
The presented model accounts for 43 differential equations, 35 original ones completed 
with the mass balances for  SOEFG , H2S and O2 for both the liquid and gas phase and three 
new bacterial mass balances dedicated to SRBs. SOBs balances, instead, are not 
considered having a negligible contribution in the microbial environment. New kinetic 
constants have been proposed. Moreover, the new model greatly simplifies the simulation 
itself. In Flores-Alsina et al. studies (2016) the possibility to compute sulfur dynamics 
was presented with a mathematical model which needed several input information 
concerning feedstock characterization, which increases both the difficult availability of 
those data and the model complexity. The model here presented, requires a reduced 
number of input data that are summarized in the definition of a pseudo-component, which 
characteristics are defined by its percentages of macromolecules (carbohydrates, lipids, 
proteins), the amount of sulfur and inert materials coming from the feedstock charged to 
the digestion chamber and the air/oxygen feed to the headspace for biological H2S 
abatement. A data base of biomasses and their characteristics has been also built for the 
pseudo-component definition. Original ADM1 has also other gaps that the presented 
model tries to fill with easy co-digestion simulation and complete H2S dynamics. Case 
study results not only show realistic outlet values, provided in range percentages by the 
company, but also correct time depending on trends. Although this is a new work, it seems 
promising given the first results, and further studies, experiments and optimization 
processes will make the model complete and more effective. 
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Abstract 
Machine learning algorithms are drawing attention for modelling processes in the 
chemical and biochemical industries. Due to a lack of fundamental understanding of 
complex processes and a lack of reliable real-time measurement methods in bio-based 
manufacturing, machine learning approaches have become more important. Hybrid 
modelling approaches that combine detailed process understanding with machine 
learning can provide an opportunity to integrate prior process knowledge with various 
measurement data for efficient modelling of the (bio)chemical processes. In this study, 
the application of a hybrid modelling framework that combines various first-principles 
models with machine learning algorithms is demonstrated through a laboratory-scale case 
of flocculation of silica particles in water. Since flocculation is a process that occurs 
across length- and time scales, an integrated hybrid multi-scale modelling framework can 
improve the phenomenological understanding of the process. The first-principles models 
utilized in this study are molecular scale particle surface interaction models such as 
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and interfacial tension predictions 
combined with a larger-scale population balance model.  

Keywords: Hybrid modelling, Flocculation, Surface interactions, Interfacial tension 
energy 

1. Introduction 
The integration of machine learning and first-principles model in hybrid form can be 
achieved in different ways. For instance, a general hybrid model is proposed by Oliveira 
(2004)  to model a stirred tank bioreactor. Another way of applying hybrid modelling 
approaches is represented in Psichogios and Ungar (1992), which provides interaction 
between a machine learning algorithm and a first-principles model of a fed-batch 
bioreactor. Based on the availability of first-principles models and prior process 
knowledge, one can apply a variety of different hybrid models. The hybrid modeling 
approach implemented in this study is represented in Figure 1. The model inputs are the 
data collected from experiments, which includes the pH measurements throughout each 
batch operation and the particle size distribution. According to the availability of first-
principle models for the flocculation process, such hybrid modelling scheme (see Figure 
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1) is used, since a first-principles model does not exist to fully describe the process. 
Hence, a machine learning model (here artificial neural network) can be trained based on 
the model inputs and the first-principles models use the output of the machine learning 
algorithm and model inputs all together to predict a future particle size distribution.  

Figure 1: Hybrid modelling schemes according to the availability of first-principles models 

Various approaches have been used to model particle processes, including flocculation, 
by using a population balance model (PBM). In this study, a discretized PBM is 
implemented using the work of Nazemzadeh et al. (2019) to model the particle size 
distribution over time. The discretized PBM is represented in Eq. (1). 𝑑𝑁𝑑𝑡 = 1 12 𝛿 , 𝜂 𝛼 , 𝛽 , 𝑁 𝑁, 𝑁 𝛼 , 𝛽 , 𝑁 𝛾 , 𝑆 𝑁 𝑆 𝑁 (1) 

Where 𝑁  is the number of particles in a size bin of the discretization scheme, 𝛿 ,  is the 
Dirac delta function, 𝜂  is the proportionality coefficient related to the discretization 
scheme, 𝛼 ,  is the collision efficiency of two colliding particles, 𝛽 ,  denotes the collision 
frequency of particles, 𝛾 is the breakage distribution function, and 𝑆 denotes the breakage 
rate of a particle. Collision efficiency of the two colliding particles is calculated by using 
DLVO theory (Yotsumoto and Yoon, 1993) as a first-principles model. This theory in 
combination with Fuch’s stability ratio (𝑊) (Ahmad et al. 2008) allows us to determine 
the collision efficiency from the interaction energies between two particles in the system 
(see Eq. (2)). The remaining parameters of the PBM are defined by the semi-empirical 
equations found in the literature (Li et al. 2019).  1𝛼 , = 𝑊 , =  exp 𝑉 𝐾 𝑇⁄𝑠 𝑑𝑠 (2) 

Where 𝑉  is the total interaction energy between two particles with a surface-surface 
separation distance and radii 𝑟  and 𝑟 , 𝐾  is the Boltzmann constant and 𝑇 is temperature. 

Moreover, a solid-liquid interfacial tension (IFT) prediction model by Andersson et al. 
(2020) is implemented to determine the surface interaction energy of two particles in 
contact with each other. In future studies, we plan to use the predicted IFT values as an 
additional soft sensor to the hybrid model to evaluate the unknown parameters in the first-
principles model. 

2. Modelling framework 
In this study, the hybrid model uses the population balance model as the main first-
principles model to represent the particle size evolution as a function of time. The prior 
knowledge of flocculation kinetic parameters alongside with DLVO theory is used as 
additional first-principles models on top of the PBM. The kinetic model contains 
parameters such as a velocity gradient, which is not measured during the process 
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operation. Moreover, the breakage term in the PBM contains parameters that cannot be 
correlated with the process variables. A modelling workflow related to the selected 
modelling approach is represented in Figure 2. This workflow is structured by extending 
the modelling framework developed by Nielsen et al. (2020). The difference between the 
framework in the present study and the one developed in Nielsen et al. (2020) is the 
utilization of first-principles models for the kinetic parameters in a PBM (i.e. DLVO 
theory and semi-empirical equations of other kinetic parameters). The machine learning 
algorithm (black box in Figure 1) is an artificial neural network consisting of three hidden 
layers with 34, 40, and 50 neurons respectively. The output of the neural network is the 
unknown/unmeasured parameters of the population balance model.  

Figure 2: Overview of the hybrid multi-scale modelling workflow 

3. Application example 
The application of the proposed modelling framework is demonstrated through a 
laboratory-scale silica particle flocculation. To this end, an experimental setup is prepared 
that uses a dynamic image analysis sensor (Nielsen et al. 2019) to monitor the particle 
size distribution. The flocculation is stirred by an impeller to increase the chance of 
occurrence of particle collisions in the system. Moreover, an in-line pH probe is installed 
in the tank to measure the pH continuously. Several batches of experiments are carried 
out at different pH values. Variation of pH imposes a different surface charge density on 
the particles by protonation/deprotonation of the surface silanol groups on the silica. The 
experiments show that for the batches, in which pH is in the range of 2 to 3, agglomeration 
of particles takes place as shown in Figure 3 (a). However, at a higher pH value, the 
process is dominated by breakage phenomena and successful collisions of particles are 
less likely to happen (see Figure 3 (b)). 
 
Silica nanoparticles have a point of zero charge (PZC) in the range of pH 2 to 3 (Cloarec 
et al. 2016). For a pH in the vicinity of the PZC, silica nanoparticles are neutral. Therefore, 
when two particles approach each other the attraction forces can overcome the repulsion 
forces and the particles collision will be more likely successful. However, for a pH 
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higher/lower than the PZC, the particles become deprotonated/protonated and 
negatively/positively charged. Hence, the repulsion forces of surfaces with the same 
charge can easily overcome the attraction forces and no agglomeration takes place.  

 

Figure 3: End-of-batch representation of particles: (a) at 𝑝𝐻 = 2.45, (b) at 𝑝𝐻 = 7.61 

To determine the interfacial tension energies of silica particles, a structure of a silica 
nanoparticle containing 54 Hydrogen, 121 Oxygen, and 47 Silicon atoms was constructed 
and then optimized by using density functional theory (DFT) calculations. The geometry 
optimization was carried out for a neutral and singly deprotonated molecular structure by 
using the BP functional (Becke 1988), the TZVP basis set (Schäfer et al. 1992) and the 
COSMO implicit solvent model (Klamt and Schüürmann, 1993) with infinite dielectric 
constant using TURBOMOLE, v 7.4 (Ahlrichs  et al. 1989). The IFT calculations were 
carried out using a solid-liquid interfacial tension model in COSMO-RS (Klamt et al., 
2010) by using the BP_TZVP_C30_1601 parameterization in COSMOtherm  (Eckert and 
Klamt 2010). The IFT of singly deprotonated silica nanoparticle and water  was 
approximately 16 𝑚𝑁 𝑚⁄ . The negative value of IFT means that a deprotonated silica 
nanoparticle has a favorable interaction with water. In this study, the IFT energies are 
only used to characterize the process. However, in future studies these interaction 
energies are planned to be utilized directly in the hybrid model. 

The hybrid multi-scale framework in §2 is applied to the experimental data collected from 
the laboratory-scale flocculation of silica particles in water. Figure 4  represents the end-
of-batch predictions for two batches of experiments: (a,c) dominated by breakage and 
(b,d) dominated by agglomeration. In both cases, the hybrid multi-scale model quite 
accurately predicts the particle size distribution of the end time-point. The predictions are 
improved compared to the similar case study in Nielsen et al. (2020). In that study,  PBM 
was the only first-principles model and all the kinetic parameters of the model were 
estimated by means of a neural network. The agglomeration end-of-batch predictions in 
that study showed that the relative volume density of large particles were not predicted 
quite accurately due to either lack of data for training, or the fact that a pH sensor was not 
sufficient to describe the process. However, for the agglomeration batch in the present 
study, the model predicted the relative volume density of particles more accurately even 
for larger size-bins. A pure machine learning approach is also utilized to model the 
flocculation process to compare the performance of a black-box model and the hybrid 
model. The black-box model uses Eq. (3) to predict the particle number concentration for 
each size-bin in a future time-point with the rate that is determined by the machine 
learning algorithm. Hence, no phenomenon is defined for the process and the future 
particle number concentration is predicted by a single rate at each time-point for each 
size-bin. The rest of the modelling components are chosen to be the same as the ones in 
§2 (see Figure 2). The end-of-batch predictions for the black-box model are represented 
in Figure 4 (c,d). The predictions show that for the breakage batch, the performance of 

(a) (b) 
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the hybrid and black-box models are reasonably comparable. We believe that the reason 
is the fact that the variations of relative volume densities in that experimental batch were 
not very high and both models can predict the end-of-batch distribution in a similar way. 
However, in the agglomeration batch, the hybrid model outperformed the machine 
learning model in end-of-batch predictions.  𝑑𝑁𝑑𝑡 = 𝑟𝑎𝑡𝑒 ,  (3) 

 

  

  

4. Conclusion and future developments 
In this study, the application of a hybrid multi-scale framework was demonstrated on a 
laboratory-scale case of silica particles flocculation by using a population balance model, 
DLVO theory, and semi-empirical equations of flocculation kinetics to model the process. 
The main reason that we used machine learning for modelling the flocculation process is 
that a prior process knowledge does not exist to fully describe the process. The end-of-
batch predictions of two experimental batches have shown that such modelling approach 
can accurately estimate the evolution of particle sizes in the system in a future time 
horizon for both phenomena (agglomeration and breakage) involved in the flocculation 
process. Moreover, a pure black-box model was also used to perform the same end-of-
batch predictions. Both modelling approaches showed similar predictions for the batch 
dominated by breakage due to the very small variations of the particle size distributions 
in the breakage batch. Nonetheless, the hybrid model outperformed the black-box model 
by accurately predicting the end-of-batch particle size distribution. We believe that the 
integration of machine learning algorithms and first-principles models helps us to model 
complex processes such as flocculation more accurately and predict the dynamics of the 
system in a future unknown time-horizon. 
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(c) (d) 

Figure 4: End-of-batch predictions of (a) agglomeration batch, (b) breakage batch for the hybrid model 
and (c) breakage batch, (d) agglomeration batch for the black-box model

(a) (b) 
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Abstract
Simulations of chemical processes require accurate physical properties, which are
usually
estimated from experiments. Experimental effort can be minimised by optimal
experimental design (OED). OED tailors experimental measurements to minimise the
expected uncertainty of the fitted parameters. However, in process design and
optimisation, the primary purpose of an experiment is usually not to determine property
parameters as accurately as possible but to enable most accurate process simulations.
Therefore, in this work, we present OED of physical property measurements leading to
optimal predictions of process simulations by the so-called c-optimal experimental
design. A c-optimal design minimises the uncertainty of the simulation results by
weighting parameters by their influence on the process model. The c-optimal OED is
employed to design liquid-liquid equilibrium measurements as a basis for simulations of
an extraction and a hybrid extraction-distillation process. For the same simulation
accuracy, the c-optimal design can almost half the number of experiments compared to
state-of-the-art OED that neglects the process. Our work shows that c-optimal design
can reduce experimental effort in chemical engineering successfully by tailoring
experiments to their process application.

Keywords: model-based experimental design, parameter precision, c-optimal design,
liquid-liquid-equilibrium, non-random two-liquid model, extraction-distillation.

1. Introduction
Accurate estimation of property parameters is crucial for the simulation of chemical
processes (Mitsos et al., 2018). The basis for accurate parameter estimation is
experimental data. If such data is not available, new experiments are required, usually
consuming time and large volumes of material samples, leading to high costs.
Therefore, experimental effort should be minimised by careful design of experiments.
Optimal experiments minimise the uncertainty in the experimentally determined
parameters. The systematic selection of optimal experiments is enabled by model-based
optimal experimental design (OED) (Atkinson et al., 2006). OED analyses the
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propagation of uncertainty from inaccuracies in experimental measures to estimated
parameters. The propagation is used to optimise the experimental design, i.e., the
settings and inputs of the experiments (Franceschini and Macchietto, 2008). However,
for process systems engineering, the primary purpose of experiments is rarely the
knowledge of parameters itself, but the use of these parameters in process simulation.
An optimal experimental design minimising parameter variances does not necessarily
lead to the most accurate process simulations. OED for process simulations needs to
consider the use of the fitted parameters within the process models.
Recently, OED was applied to design plant experiments using a flowsheet simulator
(Asprion et al., 2019). The authors designed experiments at the plant to measure
property data capturing the parameter use in the process simulation. However, for this
approach, challenging plant experiments need to be performed instead of lab-scale
experiments. Recker et al. (2013) presented a pioneering approach considering the
process model within OED of lab-scale experiments. In their work, state-of-the-art OED
was extended by scaling the well-known A-criterion heuristically by process
sensitivities to parameters. A similar OED objective was proposed by Lucia and Paulen
(2014) for robust model predictive control. The authors tailored the modified E-criterion
by the sensitivities of the optimal robust economic objective value with respect to the
range of parametric uncertainty.
Although these approaches successfully integrated process sensitivities into OED, the
OED objectives rely on heuristic scaling. However, full consideration of process
information by systematic uncertainty propagation is enabled by established theory:
c-optimal experimental design. In c-optimal design, the objective is to minimise the
variance of a linear combination of the parameters (Atkinson et al., 2006). By linear
approximation of the variance propagation from the parameters through the process
model, c-optimal design can be employed to minimise the uncertainty of process
simulations.
So far, c-optimal OED has not been applied to chemical engineering problems.
Therefore,
we adapt c-optimal design to experiments for the measurement of
liquid-liquid-equilibria
to simulate extraction and extraction-distillation processes. We compare the c-optimal
objective to state-of-the-art OED methods using the D-optimality criterion and an
A-optimality criterion that is heuristically scaled by process sensitivities.

2. Method: Calculation of c-optimal experimental designs
To design optimal experiments, OED needs to link the uncertainties of experimental
measures to the uncertainties of the model parameters. Mathematically, the uncertainties
of the model parameters are expressed in the parameter variance-covariance matrix .𝑉

θ
The parameter variance-covariance matrix is approximated by the product of the Fisher
information matrix and the number of experiments .𝐹(θ

^
, ξ) 𝑁

𝑒𝑥𝑝

(1)𝑉
θ
≈ 𝑁
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design and an initial parameter guess . As the parameter variance-covariance matrixξ θ
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is proportional to the inverse of , OED mainly focuses on designing an optimal𝐹(θ
^

, ξ)
Fisher information matrix by selecting an optimal design . The Fisher informationξ*

matrix is obtained from the model . The model describes the𝐹(θ
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experiments by linking the uncertainties of experimental measurements to the𝑉
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parameters . The Fisher information matrix is calculated for an experimentalθ 𝐹(θ
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State-of-the-art OED objective functions are based on the Fisher information matrix and
aim to optimise a scalar measure of the Fisher information matrix. The c-optimal design
additionally considers the use of the estimated parameters in the process model.
Variance
propagation through the process model weights the parameter variances by the
sensitivities of the process model result to the parameters in the c-optimalℎ(θ) θ
design.

(3) 𝑐 θ
^( )

𝑇
 𝐹 θ

^
, ξ( )

−1
 𝑐 θ

^( )      𝑤𝑖𝑡ℎ    𝑐 θ
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∂θ |
θ
^

 

We compare the c-optimal design with state-of-the-art OED objectives. The most
popular
objective is D-optimal design. D-optimal design maximises the determinant of 𝐹(θ

^
, ξ)

to minimise the volume of the confidence ellipsoid spanned by all parameters.

(4) 𝑙𝑜𝑔 det 𝑑𝑒𝑡 𝐹 θ
^

, ξ( ) ( ) 

Inspired by Recker et al. (2013) and Lucia and Paulen (2014), we also investigate a
heuristically scaled Fisher information matrix together with A-optimal experimental
design. The A-optimal design maximises the trace of the Fisher information matrix. We
scale the Fisher information matrix with a diagonal weighting matrix . The weighting𝑊
matrix includes the sensitivities of the process model output to the parameters𝑊 ℎ(θ) θ
.

(5) 𝑡𝑟 𝐹
ℎ𝑒𝑢𝑟

θ
^

, ξ( )( ) = 𝑡𝑟 𝑊 𝐹 θ
^

, ξ( ) 𝑊( )    𝑤𝑖𝑡ℎ    𝑊 = 𝑑𝑖𝑎𝑔 ∂ℎ
∂θ |

θ
^

 ( )  

All experimental designs are computed by a solution algorithm with monotonic global
convergence from literature (Yu, 2010). Derivatives are obtained by numerical
differentiation. The algorithm provides experimental designs with a continuous
distribution of experimental effort, i.e., which share of the total experimental effort
should be spent on which measurements. The results serve as targets for experiments in
the laboratory. The identified experiments are optimal for the initial parameter set; thus,
an iterative procedure might be required in practice. For comparison of the OED
objectives, each experimental design can be assessed by OED-efficiencies, e.g.,ξ
c-efficiency . The c-efficiency is the ratio of the objective values (Eq. (3)) of aζ

𝐶
(ξ)
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c-optimal design and of the design under consideration. The inverse of shows howζ
𝐶
(ξ)

many more experiments are needed for the same accuracy of the process simulation
compared to a c-optimal design.

3. Case Study and Results
For two solvent-based processes, we apply c-optimal experimental design to tailor
liquid-liquid-equilibrium (LLE) measurements: (1) the extraction of acetone from
aqueous solution with toluene and (2) the extraction-distillation process for the same
mixture including a distillation column to separate the extract. The extraction and
distillation column are modelled using pinch-based process models (Bausa et al., 1998;
Redepenning et al., 2017) employing the non-random two liquid (NRTL) model as an
activity coefficient model. The liquid-liquid-equilibrium experiments are designed to
estimate isothermal NRTL-t-parameters for the extraction and linearly
temperature-dependent NRTL-t-parameters for the extraction-distillation process. We
challenge the results of the c-optimal design by the D-optimal design and the
heuristically scaled A-optimal design.
3.1. OED for the simulation of a pinch-based extraction column
For the extraction process, we determine at which concentrations which share of
experimental effort should be invested in LLE-experiments for minimum uncertainty in
the solvent demand of the process. For simplicity, we assume that LLE-experiments are
performed with the overall composition of the components that corresponds to the
centre of the tie lines. Therefore, an experiment is fully characterised by a scalar
measure α which runs from 0 at the binary subsystem to 1 at the critical point of the
two-phase region.
For each optimality criterion used, three distinct locations for measurements are
sufficient
for an optimal design (Figure 1). As commonly found in OED, the optimal design
suggests repeating measurements at these locations rather than to explore other
locations. The locations and, in particular, the share of the total experimental effort
differ for the three objectives: The c-optimal design shifts 80% of the experimental
effort towards the operating range of the extraction column resulting in a c-efficiency ζ

𝐶
about 3 times higher than the D-optimal design (Table 1). Consequently, 3 times more
D-optimal experiments would be required to obtain the same accuracy as the c-optimal
experiments. Interestingly, the c-optimal design does not place any experiments in the
operating range of the extraction column and still places about 20% of the experimental
effort in the high-curvature region of the binodal curve.
The D-optimal design places 75% of the experiments in the high-curvature region of the
binodal curve, as already found by Dechambre et al. (2014). In the high-curvature
region of the binodal curve, the phase equilibrium model is susceptible to the property
parameters leading to low uncertainty in the parameter estimation.
The c-optimal design balances the parameter requirements: Experiments need to be
linked
to the operating range of the process, but the exclusive focus on the process neglects
that
accuracy can be increased by including experiments for high parameter precision. The
heuristic A-optimal design achieves a c-efficiency of only 0.28. The experimentalζ

𝐶
design from the heuristic A-optimal design is closer to the c-optimal design. However,
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the c-efficiency is lower than the c-efficiency of the D-optimal design, which shows that
the similarity of designs is not necessarily correlated to the efficiency.

(a) Location of LLE experiment (b) Share of experimental effort

Figure 1: Optimal designs for LLE experiments for the extraction process.

Table 1: c-efficiency for the c- and D-optimal experimental designs and and theζ
𝐶
 ξ

𝑐
* ξ

𝐷
*

heuristically scaled A-optimal design for the extraction and theξ
𝐴,ℎ𝑒𝑢𝑟
*

extraction-distillation process

Experimental design 𝜉
c-efficiency ζ

𝐶

Extraction Extraction-Distillation

c-optimal ξ
𝐶
*

1 1

D-optimal ξ
𝐷
*

0.36 0.61

heuristically scaled A-optimal ξ
𝐴,ℎ𝑒𝑢𝑟
*

0.28 0.57
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3.2. OED for the simulation of an extraction-distillation process
For the extraction-distillation process, we design the location of the LLE-experiments
within the miscibility gap as before and additionally, the temperature for each
LLE-experiment to minimise the uncertainty of the reboiler energy demand. Other key
performance indicators of the process could serve as targets as well by computing the
corresponding sensitivities For each design objective, the design mainly focuses𝑐 θ( ).
on the boundaries of the design space (Figure 2). On the boundaries, the parameter
sensitivity is highest leading to low parameter uncertainty. For the extraction-distillation
process, parameter precision is more important for accurate process simulation than for
the extraction only: The D-optimal design yields a c-efficiency of about 0.6 (Table 1).ζ

𝐶
Still, the c-optimal design increases accuracy by 64%. The heuristic A-optimal design is
comparable to the D-optimal design. However, the heuristic A-optimal design does not
improve in c-efficiency compared to the D-optimal design, despite the considerationζ

𝐶
of process sensitivities. In this case study, the heuristics are not only exceeded by the
c-optimal design, but also by the conventional design that does not consider the process.
Therefore, the selection of the right optimality criterion is crucial for process
engineering problems. For the extraction and extraction-distillation process, only
c-optimal design tailors experiments for the process simulations.

4. Conclusion
In this work, we investigate a method for optimal experimental design (OED) of
lab-scale experiments that consider the use of the estimated parameters in a subsequent
process simulation: c-optimal experimental design. The c-optimal design includes the
propagation of uncertainties from measurements to the outputs of the process model. We
compare
c-optimal design with state-of-the-art OED, i.e., D-optimal design and a heuristically
scaled A-optimal design. The c-optimal design yields non-trivial experimental designs
that outperform state-of-the-art OED by providing more accurate results of process
simulation. The c-optimal design does not simply perform experiments in the operating
region of the process but balances parameter precision with uncertainty propagation to
the process model. Thereby, the experimental effort can be significantly reduced while
maintaining the same accuracy.
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Figure 2: Optimal designs for LLE experiments for the extraction-distillation process.
The size of the circles corresponds to the share of the experimental effort. The grey box
indicates the design space.
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Abstract 
Hydroxymethylfurfural (HMF) is an organic compound that occurs in numerous foods 
and is used as feedstock in a variety of chemical processes. HMF can be hydrogenated to 
form 2,5-Dimethylfuran (DMF), which is an important component in biofuel production. 
Several kinetic models have been proposed in literature for this hydrogenation reaction, 
including power law and Langmuir-Hinshelwood-Hougen-Watson (LHHW) models 
based on reaction species. A critical aspect to address is the parametric identifiability in 
these models, i.e. the correct estimation of model parameters from experimental data.  In 
this paper, a two-step identifiability approach is proposed exploiting model-based design 
of experiments (MBDoE) techniques to assess the identifiability of candidate kinetic 
models of HMF hydrogenation at variable experimental conditions in a batch reaction 
system. Information maps indicate the most informative regions of the experimental 
design space to be used to precisely estimate the kinetic model parameters. 

Keywords: identifiability analysis, model-based design of experiments, kinetics of HMF 
hydrogenation 

1. Introduction 
HMF is an organic compound that can be found naturally in many foods and is used 
industrially as a platform chemical in plastics, pharmaceuticals and agrochemicals. It can 
be hydrogenated to DMF - an alternative biofuel and additive for diesel or jet fuel. It 
significantly lowers pollution versus its fossil equivalents (van Putten et al., 2013). 
Proposed mechanisms for this hydrogenation reaction include power-laws (Grilic et al., 
2014, Luo et al., 2015, Gyngazova et al., 2015), single-site LHHW (Jain and Vaidya, 
2016) and dual-site LHHW (Gawade et al., 2016) kinetics. However, these models lack 
an explicit temperature dependence. Thus, an expansion of the power-law model to 
include temperature dependency is proposed and the estimability of the new set of kinetic 
parameters from experimental data (practical identifiability) assessed (Chis et al., 2016).  

MBDoE techniques (Franceschini and Macchietto, 2008) have been proposed in literature 
to design sets of experiments yielding the most informative data to be used for model 
identification. Experiments can be designed for discriminating between candidate kinetic 
models or, given a suitable model structure, to improve precision in parameter estimation 
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(Galvanin et al., 2016). A two-step identifiability approach is proposed in this paper using 
MBDoE techniques to assess the identifiability of three new candidate kinetic models of 
HMF hydrogenation in a batch reactor. Temperature, duration and initial concentrations 
of reagents are the decision variables defining the design space of the models. First, the 
design space is screened using Latin Hypercube Sampling (LHS) to generate conditions 
for running in-silico experiments under variable modelling/noise assumptions. Second, 
experiments are mapped using the Fisher information matrix (FIM) as information metric 
(Galvanin et al., 2016). Combined with a-posteriori statistics from parameter estimations 
using in-silico data, the analysis indicates the most informative regions for precise 
estimations of model parameters for experimentation without numerical optimisation. 

2. Methodology 
The proposed kinetic model (1) is written in terms of control variables, w, state variables 
x(t) and parameters ϑ to be determined. The function h(x(t)) (2) relates state variables 
and measured responses ŷ(t). The vector for the design of experiments φ (3) lies in the 
design space, ϕ, and contains w, initial conditions y0, duration τ and sampling times tsp. 𝐟 𝐱 𝑡 , �̇� 𝑡 , 𝐰, 𝛝, 𝜏 = 0 (1) �̂� 𝑡 = 𝐡 𝐱 𝑡  (2) 𝛗 = 𝐲𝟎, 𝜏, 𝐰, 𝐭𝐬𝐩  (3) 

In any experiment (1, …, nexp) the sensitivities of the measurable outputs ŷi (1, …, nm) to 
perturbations of the parameters ϑ (1, …, nϑ) are expressed in the sensitivity matrix Q (4) 
and computed at sampling points tsp. The nϑ × nϑ -dimensional variance-covariance matrix 
Vϑ (5) is obtained from the standard deviation of measurement errors (σ) and Q. Each kl-
th element in the parameter correlation matrix C (6) can be computed from Vϑ elements. 
Correlations scale from -1 (total anticorrelation), to 0 (no correlation) to 1 (total 
correlation). Critical correlation begins at 0.95. The Fisher information matrix (FIM) (7) 
approximates the Hessian matrix of the log-likelihood function of parameters ϑ using the 
predicted outputs ŷi (Franceschini and Macchietto, 2008).  

𝐐 =
⎣⎢⎢
⎢⎢⎡ 𝜕�̂�𝜕𝜗 . . . 𝜕�̂�𝜕𝜗. . . . . . . . .𝜕�̂�𝜕𝜗 . . . 𝜕�̂�𝜕𝜗 ⎦⎥⎥

⎥⎥⎤ 
 
 
 

(4) 

𝐕𝛝 = 𝐐𝐓𝜎 𝐐  (5) 𝐶 = 𝑉𝑉 𝑉  
 

(6) 

𝐇 = 1𝜎 𝑞 𝑞  
 

(7) 

Organic systems are often sloppy. Sloppiness (Chis et al., 2016) is identified if the 
eigenvalues of the FIMs of different parameters vary by three orders of magnitude or 
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more and is described by the ratio of the axes of the confidence area. Sloppiness occurs 
when under specific experimental conditions some parameters have very low impacts on 
the outputs (i.e. negligible sensitivity), but a set of experimental conditions to identify the 
full set of model parameters in ϕ does exist. 

A two-step procedure is proposed to test the identifiability of selected models in ϕ: 

Step 1: The sensitivity and information metrics rely on φ and ϑ and are thus only locally 
valid. Since local optima are undesirable, the design space is screened by LHS. LHS is 
more efficient than randomly selecting points as the position of already generated points 
is considered before generating subsequent ones, avoiding local clusters (Montgomery, 
2012). In-silico experiments are run using these points and the correlation matrix (6) is 
computed. Models are checked for sloppiness by testing whether critical correlations 
persist throughout ϕ even when a large number of samples is taken. If correlations persist, 
these models are practically unidentifiable and must be rejected or reparametrised. 

• Step 2: A parameter estimation is carried out using a Student t-test to assess the precision 
of the estimates and a χ2 test to assess the adequacy of model predictions. The model 
passes when the parameter t-values (8) are larger than the 95% confidence (α = 0.05) 
reference t-value and the sum of weighted residuals (9) is less than a reference χ2 value. 𝑡 = ^,             𝑖 = 1, . . . , 𝑛  

(8) 

𝜒 = 𝑦 − �̂�𝜎  
 

(9) 

The trace of the FIM (7) of the experiments is used as a scalar measure of information in 
ϕ. If plotted on a graph against conditions of φ it allows to identify the most informative 
regions of the design space to provide a ranking of experiments (Galvanin et al., 2016).  

3. Case Study 

3.1. Definition of experimental design space 

The model by Gyngazova et al. (2017) (10-15) was developed for HMF hydrogenation in 
a lab-scale batch reactor (Figure 1) and was used as a basis for candidate kinetic models. 

dCHMF/dt = - k1CHMF (10) 

dCBHMF/dt = k1CHMF - k2CBHMF - k5CBHMF (11) 

dCMFA/dt = k2CBHMF - k3CMFA (12) 

dCDMF/dt = k3CMFA - k4CDMF (13) 

dCDMTHF/dt = k4CDMF (14) 

dCDHMTHF/dt = k5CBHMF (15) 

φ = [CHMF(0), CDMF(0), T, τ] (16) 
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Figure 1 – Proposed HMF hydrogenation mechanism in THF solvent using Ni/C catalyst 

The design vector φ (16) is defined in the design space ϕ (Table 1). The experimental 
setup bounds temperature and duration. Ranges for reagents were obtained from literature 
(Gyngazova et al., 2017). In ϕ, 30 in-silico experiments were run assuming an even tsp 
[min] distribution. Gaussian noise with σ = 0.03 M was used to perturb simulated 
concentrations; this value reflects the expected error in actual experiments (Bindwal and 
Vaidya, 2014). Matlab v.9.5 was used to generate in-silico measurements and LHS points 
(Khaled, 2020). gPROMS ProcessBuilder v.1.4.0 was used for MBDoE (supporting A-, 
E- and D- optimality) and nonlinear parameter estimation using maximum likelihood. 

Table 1 – Definition of design space ϕ 

 Lower Upper Unit
CHMF(0) 0.01 0.2 M 
CDMF(0) 0.01 0.2 M 
T 300 600 K 
τ 60 360 min 

3.2. Candidate kinetic models 

• M1: A temperature dependency is introduced into the original model (10-16) using  
Arrhenius equation (17). Ai [min-1] and EAi [J mol-1] are estimated instead of ki [min-1]. 
The new parameters are computed using experimental data from Gyngazova et al. (2017), 
which fit the reformulation in (18) with R2 > 0.91. 𝑘 = 𝐴  𝑒  (17) ln 𝑘 = − 𝐸𝑅𝑇 + ln 𝐴  (18) 

• M2: Buzzi-Ferraris and Manenti (2009) outline a reparametrisation (19) to reduce 
correlation. Bi [min-1] and Ci [K] are new, re-balanced parameters to be estimated. Initial 
guesses are obtained by rearranging equations (20 & 21). The mean temperature, Tm [K], 
is fixed at a suitable average of experimental temperatures (Schwaab et al., 2008). 𝑘 = 𝐵  𝑒  

(19) 𝐵 = exp ln 𝐴 + 𝐶 𝑇  (20) 𝐶 = − 𝐸 R (21) 

• M3: this is a reduced model based on M1 that estimates parameters EAi and keeps Ai 
constant at the values obtained from fitting experimental data in (18); these are the values 
that would otherwise be used as an initial guess in the parameter estimation.
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Table 2 - Correlation matrix for M1 obtained from 30 experiments generated using LHS 

ϑ A1 A2 A3 A4 A5 EA1 EA2 EA3 EA4 EA5 
A1 1.00          
A2 -0.18 1.00         
A3 -0.23 -0.35 1.00        
A4 -0.03 0.00 -0.06 1.00       
A5 -0.17 0.95* -0.34 0.04 1.00      
EA1 1.00* -0.18 -0.22 -0.03 -0.17 1.00     
EA2 -0.19 1.00* -0.35 0.00 0.95* -0.19 1.00    
EA3 -0.22 -0.35 1.00* -0.06 -0.34 -0.22 -0.35 1.00   
EA4 -0.03 0.00 -0.05 1.00* 0.04 -0.03 0.00 -0.05 1.00  
EA5 -0.17 0.94 -0.33 0.04 1.00* -0.18 0.94 -0.33 0.04 1.00 

3.3. Simulation results for candidate kinetic models 

• M1: Critical correlations (Table 2) exist between parameters EAi and Ai. The model 
passes the χ2 test despite large residuals affecting individual experiments. The t-test was 
passed, however, the t-values for Ai were orders of magnitude higher than the ones for 
EAi. This was due to unrealistically large estimated values for Ai, passing the t-test only 
because, according to (8), the corresponding standard deviation σ was small in 
comparison. This makes the t-test untrustworthy and explains the good results obtained 
despite high correlations. The contribution to the overall information content (FIM) is 
also much higher for EAi than for Ai, underlining a low sensitivity to Ai in ϕ for M1.   

• M2: First, the value of Tm was fixed at 450K (centre of the temperature design range). 
Then, using this value of Tm, the new parameters Bi and Ci were calculated from data 
points generated using M1, which reliably describes the original system at these 
conditions. The conditions suggested by the LHS were then used with these estimates for 
Bi and Ci. Correlations were significantly reduced and critical correlations appeared only 
between C2 and C5. However, the deviation between M1 and M2 was so large that M2 no 
longer accurately represented the original system. The above estimation procedure was 
repeated fixing Tm at different values clustered around the centre of the design space to 
see if the choice of  Tm affected the lack of fit. Parameter correlations were reduced but 
still the model was not adequate to represent the system in a large set of conditions in ϕ. 

• M3: Using 30 experiments generated using LHS, there were no critical correlations 
between the estimated parameters for this reduced model. All parameters were estimated 
satisfactorily except EA3 (Table 3), which depends heavily on the MFA concentration (12-
13). The χ2 test was passed overall, but some experiments with low MFA concentrations 
deviated more in their predictions. MFA concentration may practically be too low to be 
detected at some experimental conditions, and this affects parameter estimation. 

A FIM-based information analysis was then conducted on M3 to determine the most 
informative regions of the design space to explore in future experiments for a precise 
estimation of model parameters (Figure 2). The analysis identified two potential regions: 
1) CDMF(0) = 0.19 M and CHMF(0) = 0.10 M in a τ = 230 min long batch experiment at T 
= 510 K; 2) CDMF(0) = 0.09 M and CHMF(0) = 0.17 M in a τ = 280 min long batch 
experiment at T = 530 K. The temperature in the reactor could thus be bounded between 
450-550 K to improve parameter estimability.  
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(a) Initial HMF and DMF concentrations (b) Temperature and experiment duration 
Figure 2 – Information maps in terms of design variables obtained by plotting the trace 
of the FIM of all experiments using an information surface in model M3.  

Table 3 – M3: confidence intervals after parameter estimation using LHS conditions 

ϑ [kJ mol-1] Final Value Initial Guess 95% t-value (reference value = 1.65) 
EA1 66.99 58.79 1939.57
EA2 66.49 64.48 676.13
EA3** 6.57** 42.00** 0.001**
EA4 76.36 83.61 3772.45
EA5 63.86 62.17 492.01

4. Conclusions 
A two-step identifiability study was applied to three candidate kinetic models for HMF 
hydrogenation. M1 and M2 have been found unsatisfactory due to high correlation and 
low fidelity, respectively. The reduced model M3 showed satisfactory fitting performance 
but limitations on representing EA3 resulting from low and potentially undetectable MFA 
concentrations. Applying a FIM-based information analysis allowed to define the most 
informative regions of the experimental design space for a precise estimation of kinetic 
parameters. The most informative was at high DMF and lower HMF concentrations in a 
batch experiment lasting 230 min at 510 K. Future work will aim to confirm these results 
using robust MBDoE techniques to precisely estimate the full set of model parameters. 
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Abstract
Model-based design of experiments is a technique for accelerating the development of
mathematical models. Through maximally informative experiments, time and resources
for estimating uncertain model parameters are minimized. This article presents a method
for computing effort-based experimental designs, whereby designs are akin to
experimental recipes. As well as identifying which experiments are the most
informative, the optimal experimental effort to dedicate to each experiment is also
optimized. Upon discretizing the experimental design space and treating the efforts as
continuous decision variables, this method leads to convex optimization problems
regardless of the model structure, which is ideal for large, parallel experimental
campaigns. The case study of a batch reactor model with four parameters is presented to
illustrate the methodology.
Keywords: optimal experiment design, model-based design of experiments,
experimental effort, information, parametric uncertainty

1. Introduction
Optimal experiment design (OED) has shown great success in accelerating the
development of mathematical models through providing maximally informative
experimental campaigns. The seminal example is its application to construct statistical
models such as response surface models (RSM), where OED led to the discovery of the
celebrated factorial designs and their derivatives (Box and Wilson, 1951; Box and
Hunter, 1961). Although highly effective, this approach can still require significant
resources and time to develop for problems with many experimental degrees of
freedom. In addition, its applicability to dynamic systems remains limited (Georgakis,
2013).
When applied to a mechanistic modelling framework, this approach leads to a
systematic, optimization-based methodology, for which the name model-based design of
experiments (MBDoE) was coined (Franceschini and Macchietto, 2008). MBDoE is
often applied to expedite the development of knowledge-driven or hybrid (static or
dynamic) models, which have superior extrapolation capability compared to statistical
models and may be transferable to other similar systems. Such system-tailored strategies
can significantly reduce the experimental effort for large-scale design problems, but
come at the price of a much higher complexity and computational burden.

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Consequently, MBDoE has become almost synonymous with sequential design and
experimentation, that is, one experiment designed and conducted at a time with
parameter update in between each experiment. This seems to have caused the concept of
effort-based experimental designs, which is widely used in classical OED for the
simultaneous design of experiments (Nguyen and Miller, 1992; Fedorov and Leonov,
2014), to be somewhat forgotten in MBDoE.
This paper aims to reintroduce the concept of effort within MBDoE. The focus is on
methods that (i) discretize the continuous experimental spaces into a finite set of
experimental candidates then (ii) seek to determine optimal effort to dedicate to each
candidate. Section 2 states the problem of interest, reviews some background material
on OED, and presents the methodology. Then, Section 3 illustrates the methodology
with the case study of a batch reactor with two experimental degrees-of-freedom and
four model parameters.

2. Methodology
2.1. Experimental Designs

Consider an experimental system, whereby denotes the vector of experimental𝑥∈𝑋⊂𝑅
𝑛

𝑥

variables or controls. An experimental campaign design, or simply experiment design, Ξ
is often made up of repeated combinations of unique candidate experiments. It𝑁

𝑐
> 0

may be formally defined as

Ξ≔ 𝑥
1
 ...  𝑥

𝑁
𝑐

 𝑝
1
 ...  𝑝

𝑁
𝑐

 
⎰
⎱

⎱
⎰ 1( )

where and refer to the experimental variables and effort associated with𝑥
𝑖
∈𝑋 𝑝

𝑖
∈ 0, 1[ ]

the th candidate experiment, respectively. If is the number of times the experiment𝑖 𝑟
𝑖

𝑥
𝑖

is repeated, and is the total number of experiments, then .𝑁
𝑡

≥ 𝑁
𝑐

𝑝
𝑖

= 𝑟
𝑖
/𝑁

𝑡

Designs where are only allowed to be multiples of the fraction are called𝑝
𝑖

1/𝑁
𝑡

discrete (effort) designs and require for the to be specified a priori. In contrast,𝑁
𝑡

continuous (effort) designs allow to vary continuously, subject to the convex𝑝
𝑖

combination constraints

𝑖=1

𝑁
𝑐

∑ 𝑝
𝑖

= 1    𝑎𝑛𝑑    𝑝
𝑖
≥0 ∀𝑖 2( )

thereby making them independent of . For theoretical considerations, continuous𝑁
𝑡

designs may be regarded as discrete designs with , justifying that the distinction𝑁
𝑡

= ∞
between continuous and discrete designs become less relevant as gets larger.𝑁

𝑡

2.2. Optimal Experimental Design Formulations
Classical OED formulations are concerned with linear response models of the form
𝑦 = 𝐹 𝑥( ) θ 3( )

where denotes the vector of responses, and the vector of model𝑦 ∈ 𝑅
𝑛

𝑦 θ∈𝑅
𝑛

θ

parameters. The matrix is called the regressor matrix. It is comprised of𝑛
𝑦

× 𝑛
θ

𝐹
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vertically stacked regression vectors , which are user-chosen functions of that𝑓
𝑗
𝑇 𝑥

should differ between responses.

Such mathematical models can be built using a data set 𝑥
1
, …, 𝑦

1( ), …, 𝑥
𝑁

𝑡

, …, 𝑦
𝑁

𝑡
( )

collected during an experimental campaign. The root problem of OED, therefore, is to
determine an experiment design that is maximally informative. One way of measuring
such information content is by means of the (normalized) Fisher Information Matrix
(FIM) which, for the experimental campaign and the linear model , can be(1) (3)
written as

Optimality ϕ

Criterion Standard Eigen-form

Determinant log 𝑙𝑜𝑔 det 𝑑𝑒𝑡 𝑀( ) ( ) log 𝑙𝑜𝑔 Π
𝑘
λ

𝑘
 ( ) 

Average of trAce − 𝑀−1( ) − Σ
𝑘
λ

𝑘
−1

Extreme λ
𝑚𝑖𝑛

𝑀( ) λ
𝑘
 

Table 1: standard information criteria for parameter precision.

𝑀 Ξ( ) =
𝑖=1

𝑁
𝑐

∑ 𝑝
𝑖
𝐴

𝑖
,   𝑤𝑖𝑡ℎ  𝐴

𝑖
= 𝐹 𝑥

𝑖( )𝑇𝐹 𝑥
𝑖( ), 4( )

where is the atomic information matrix associated to the th candidate𝐴
𝑖

∈ 𝑅
𝑛

θ
×𝑛

θ 𝑖
experiment. This expression clearly shows the FIM's dependence on , and takesΞ
advantage of the FIM's additivity property for independent experiments.

An optimal experiment design is a design that maximizes some scalar criterion ofΞ* ϕ
the FIM 𝑀

Ξ* ∈ arg 𝑎𝑟𝑔 ϕ 𝑀 Ξ( )( )  5( )
Notice that this formulation is applicable to both discrete and continuous (effort)
designs. Three classical scalar criteria of the FIM are reported in Table 1 – the focus in
the remainder of this short paper is on D-optimal designs.
Now turning to generic nonlinear process models of the form
𝑦 = 𝑓 𝑥, θ( ) 6( )
Where the mapping needs not be available in closed form, e.g. could be defined𝑓
implicitly via the solution of algebraic and/or differential equations. The main challenge
for computing optimal designs for nonlinear models is that the FIM for a nonlinear
model becomes a function of the model parameters , making the optimal designs also aθ
function of . A popular approach in MBDoE entails linearizing the model around aθ 6( )
nominal model parameter value ,θ𝑛

𝑦 ≈ 𝑓 𝑥, θ𝑛( ) + ∂η
∂θ 𝑥,  θ𝑛( ) θ − θ𝑛[ ] 7( )

After rearrangement, the linearized model may be recast into the form of , with a7( ) 3( )
linearized response , model parameter , and regressor matrix𝑦

~
≔𝑦 − 𝑓 ⋅, θ𝑛( ) θ

~
≔θ − θ𝑛
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. In turn, the latter can be substituted in Equation to compute a𝐹
~

≔ ∂𝑓
∂θ ·,  θ𝑛( ) 4( )

linearized FIM, so standard methods can then be applied to compute an optimal design
for the linearized model. Such a design is said to be locally-optimal around for theθ𝑛

original nonlinear model .6( )
2.3. Continuous-Effort Approach to MBDoE
Searching over in Problem is particularly challenging as it entails determining theΞ 5( )

optimal number of candidates , the optimal experimental variables ,𝑁
𝑐

∈ 𝑍+ 𝑥
𝑖

∈ 𝑅
𝑛

𝑥
×𝑁

𝑐

and the optimal experimental efforts , all together (see, e.g., De Castro et𝑝 ∈ 0,  1[ ]
𝑁

𝑐

al., 2019). Consequently, existing MBDoE techniques rely on approximations.
In the traditional MBDoE setting (Franceschini and Macchietto, 2008), the number of
experiments and associated efforts are usually fixed so the search proceeds over the
experimental variables only. Yet a limitation is that these problems are typically riddled
with local optima. In contrast, we propose to discretize the continuous experimental
variable space into a sampling set comprising experimental candidates.𝑋 𝑋

𝑠
𝑁

𝑠
≫ 𝑁

𝑐
This reduces the problem to searching over the experimental efforts for the5( ) 𝑁

𝑠
candidates,

𝑝
1
* , …, 𝑝

𝑁
𝑠

*( ) ∈ arg 𝑎𝑟𝑔 ϕ
𝑖=1

𝑁
𝑠

∑ 𝑝
𝑖
𝐴

𝑖( ):  
𝑖=1

𝑁
𝑠

∑ 𝑝
𝑖

= 1,  𝑝
𝑖
≥0 ∀𝑖

⎰
⎱

⎱
⎰  8( )

When computing continuous-effort designs, , the problem formulation is𝑝
𝑖

∈ 0, 1[ ] 8( )
convex insofar as the function is concave. And all three standard criteria listed inϕ
Table 1 are indeed concave functions. In addition to precluding locally suboptimal
designs, this property thereby enables the use of powerful convex optimization solvers
to solve large-scale experimental design problems efficiently–the size of the problem
being directly proportional to the number of sample design candidates but𝑁

𝑠
independent of the total number of experiments to be designed. Notice also that the𝑁

𝑡
complexity associated with the chosen model structure is moved away to a prior step,
which involves precomputing the atomic information matrices of each𝐴

𝑖
,  𝑖 = 1…𝑁

𝑠
design candidate. Although costly, these atomic information matrices are independent of
the experimental efforts and could thus be precomputed in parallel to save time.
Lastly, it is worth mentioning that the methodology is by no means restricted to a
specific discretization strategy. Though without an effective discretization scheme,
computation of the atomic matrices could quickly become intractable as the number of
experimental variables increases. We thus see much potential in developing smart𝑛

𝑥
discretization strategies tailored to continuous-effort MBDoE approaches, as part of
future work.

3. Case Study

Consider an experimenter developing a model of a batch reactor running the reaction
. The proposed model is given by𝐴                → ν𝐵

𝑑𝑐
𝐴

𝑑𝑡 =− 𝑟,   
𝑑𝑐

𝐵

𝑑𝑡 = ν𝑟,   𝑟 = 𝑘𝑐
𝐴
α,   𝑘 = exp 𝑒𝑥𝑝 θ

0
+ θ

1

𝑇−𝑇
𝑟𝑒𝑓

𝑇( )( ) 9( )
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where the order of the reaction , the stoichiometric ratio , the (transformed)α ν
pre-exponential constant , and the (transformed) activation energy of the reactionθ

0
θ

1
are the unknown model parameters to be estimated from experimental data. The
reaction rate is modelled to be temperature-dependent, with a reaction constant that𝑟 𝑘
follows Arrhenius-type kinetics. The experimental variables of the system are the
sampling times in minutes, the initial A concentration in𝑡

𝑠𝑝
∈ 0,  200[ ] 𝑐

𝐴
0 ∈ 1,  5[ ]

moles/L, and temperature in K. The nominal model parameter𝑇∈ 273. 15, 323. 15[ ]
values are , , , and . The setup measures andθ

0
=− 4. 50 θ

1
= 2. 20 α = 1 ν = 0. 5 𝑐

𝐴
at a unique sampling time during each batch. It is decided to compute a D-optimal𝑐

𝐵
𝑡

𝑠𝑝
experimental design, and all the results are obtained using the open-source python
library Pydex (https://github.com/KennedyPutraKusumo/pydex/).

Figure 1: D-optimal continuous-effort experimental design. The effort of each candidate equals
the sum of efforts allocated to each sampling time variant.

Using the discretization approach, 25 candidate experiments are enumerated from a
mesh-centered grid of and . For each candidate, 11 sampling times are5×5 𝑐

𝐴
0 𝑇

enumerated from an equally-spaced time grid. The atomic information matrices are
computed, with the linearization via finite differences using numdifftools (Brodtkorb
and D’Errico, 2015) taking a total of 2.40 CPU-sec, followed by solution of , taking8( )
0.25 CPU-sec using MOSEK (MOSEK ApS, 2020) through CVXPY (Diamond and
Boyd, 2016).
The computed optimal non-zero efforts are presented in Figure 1. Out of the 25
candidate experiments, only two are part of the optimal design: Candidates 21 and 25.
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They correspond to experiments with of and ,𝑐
𝐴
0, 𝑇⎡⎢⎣

⎤⎥⎦ [5. 00,  273. 15] [5. 00,  323. 15]
respectively. The optimal effort for Candidate 21 is 49.85%, with three sampling time
variants. 9.71% samples at , 14.67% samples at , and the remaining𝑡

𝑠𝑝
= 60 𝑡

𝑠𝑝
= 80

25.48% samples at . Notice that and are adjacent sampling𝑡
𝑠𝑝

= 200 𝑡
𝑠𝑝

= 60 𝑡
𝑠𝑝

= 80
times, which suggests that the "true" optimal sampling time could lie between and60

minutes, with an optimal effort of 9.71 + 14.67 = 24.38%. Furthermore, one may80
reasonably guess that the true sampling time is closer to minutes as the effort80
allocated there is larger, although this is difficult to ascertain. Candidate 25 is allocated
50.15%, a near equal split with Candidate 21. There are two different sampling time
variants, 26.40% samples at , whilst the other 23.75% will sample later at𝑡

𝑠𝑝
= 60

. Candidates 21 and 25 tell us that an informative experimental campaign𝑡
𝑠𝑝

= 160

involves running experiments with as high as possible, and alternating between the𝑐
𝐴
0

highest and lowest temperatures. The pattern followed by the optimal sampling times
comprises a measurement early during the batch and a second measurement near the
end of the batch.
In practice, using a continuous design requires a rounding procedure in order to convert
the optimal fractional efforts to integers. Out of existing rounding procedures, Adam's
method of apportionment is probably superior (Pukelsheim and Rieder, 1992). A
multiplier is set equal to initially. Each effort is multiplied by , and rounded upν 𝑁

𝑡
𝑝

𝑖
ν

to the nearest integer; the result is called the apportionment of each candidate . If𝑎
𝑖

, is reduced using a heuristic, e.g. multiplied by 0.90. If , is∑𝑎
𝑖

> 𝑁
𝑡

ν ∑𝑎
𝑖

< 𝑁
𝑡

ν
increased, again by a heuristic. This is done iteratively until . The final∑𝑎

𝑖
= 𝑁

𝑡
apportionment 's are the desired rounding.𝑎

𝑖

4. Conclusion
The success of model-based experimental design in process systems engineering is
accompanied by challenges that still needs to be addressed. We introduced a
methodology that brings the concept of continuous efforts into model-based
experimental designs, ideal for designing parallel experimental campaigns. The
methodology involves discretizing the continuous experimental variables into a set of
experimental candidates. This approximation brings advantages over a standard
model-based experimental design, including a guaranteed convex optimization, and a
problem size that does not scale with the number of experiments. Although effective,
efficiency of the methodology hinges upon effective discretization procedures. Even
without an effective discretization procedure (gridding), we demonstrated the
tractability and efficiency of the method in designing an experiment for a batch reactor.
There is a wealth of unexplored areas that follow up from this work. Studies into the
different attitudes an experimenter can have towards sampling times, various
robustification strategies against model-parametric uncertainties, and constrained
experimental designs are amongst the most promising directions.
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Abstract
The design space (DS) is defined as the combination of materials and process conditions
which provides assurance of quality for a pharmaceutical. A model-based approach to
identify a probability-based DS requires costly simulations across the entire process
parameter space (certain) and the uncertain model parameter space (e.g. material
properties). We demonstrate that application of metamodel-based filters and global
sensitivity analysis (GSA) can significantly reduce model complexity and reduce
computational time for identifying and quantifying DS. Once DS is identified it is
necessary to present it graphically. The output of identification of DS is a
multi-dimensional probability map. The projection of the multi-dimensional DS to a 2D
representation is still unavoidable irrespectively of the method used to reach such
probability mapping. We showed that application of constraint GSA can dramatically
reduce the number of required for visualization 2D projections.

Keywords: Design Space, probability map, Sobol’ sensitivity indices, global sensitivity
analysis

1. Problem Setting
Pharmaceutical products should be approved by a regulatory body to be manufactured
on the condition that there is enough evidence to demonstrate the safety and efficacy of
the drug product, and that the manufacturing process has “controls” to assure the quality
of it. These “controls” represent a set of “admissible operating conditions” that provide
an assurance of quality, accounting for variations in the materials and manufacturing
processes. They are commonly referred to as the Design Space (DS) (U.S. Department
of Health and Human Services, 2006).

Identification of probabilistic DS is a demanding task and for a typical practical
problem the traditional approach based on exhausting sampling requires costly
computations (García-Muñoz et al, 2015). A novel theoretical and numerical framework
for determining probabilistic DS using metamodelling and adaptive sampling was
proposed in Kucherenko et al, 2020. It was based on the multi-step adaptive technique
using a metamodel for a probability map as an acceptance-rejection criterion to optimize
sampling to identify the DS.

http://dx.doi.org/10.1016/B978-0-323-88506-5.50136-4
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Consider a model , and the vector of constraint functions , where is a𝑓 𝑥
→

; θ
→( ) 𝑔

→
𝑥
→

; θ
→( ) 𝑥

→

vector of process parameters defined in the box domain , is a vector of uncertain𝐻𝑑 θ
→

model parameters defined in m-dimensional real space with a given pdf .𝑅𝑚 φ(θ
→

)
Define probability of occurrence of an undesirable (reliability estimation analysis)𝑝(𝑥

→
)

or desirable (pharmaceutical/chemical engineering) event as

𝑝(𝑥
→

) = 𝑃 𝑔
→

𝑥
→

; θ
→( ) ≥ 𝑔

→*( ) =
Ω(𝑥

→
)

∫ φ(θ
→

)𝑑θ
→

(1)

Here is a vector of given thresholds, domain is defined as𝑔
→*

Ω(𝑥
→

)

. Probability (1) can be presented in a convenient form as:Ω(𝑥
→

) = θ
→

: 𝑔
→

𝑥
→

; θ
→( ) ≥ 𝑔

→*( )
,𝑝(𝑥

→
) =

𝑅𝑚
∫ 𝐼(𝑔

→
𝑥
→

; θ
→( ) ≥ 𝑔

→*
)φ(θ)𝑑θ = 𝐸

θ
𝐼 𝑔

→
𝑥
→

; θ
→( ) ≥ 𝑔

→*( )⎡
⎢
⎣

⎤
⎥
⎦

(2)

where is an indicator function. Define design space (DS) as , where𝐼 𝐷𝑆(𝑥
→

; 𝑝(𝑥
→

) ≥ 𝑝*)
is a critical (acceptable) value of probability of meeting constraints. A brute force𝑝*

numerical estimation of requires model runs, where is the number of𝑝(𝑥
→

) 𝑁
𝑥

× 𝑁
θ

𝑁
𝑥

points in the space of the process parameters , is the number of sampled points in𝑥
→

𝑁
θ

the - space. For a typical practical problem this number can be very large whichθ
→

results in costly computations. For such models, global sensitivity analysis (GSA) is an
efficient practical tool which can dramatically reduce computational costs and provide
useful additional information about importance of parameters and model structure.

GSA is a widely used tool for identification of key parameters whose uncertainty most
affects model output. In the context of DS identification GSA can be applied to identify
uncertain parameters contributing to the acceptance of imposed constraints with
potential further model reduction. This problem is linked to the problem of
identification of critical regions of inputs responsible for “extreme” values (values forθ

→

which constraints are satisfied) of model response. It is known as a factor mapping
setting of GSA. It typically requires rather complex techniques such as Monte Carlo
Filtering. We propose an efficient GSA formulation using an indicator function

as a “model output” which allows the application of a well-developed𝐼(𝑔
→

𝑥
→

; θ
→( ) ≥ 𝑔

→*
)

GSA method of Sobol’ indices.

In order to illustrate the developed approach a single-stage batch reactor problem was
considered, with two "bounded" variables. This system was introduced in Samsatli et al.
1999 and used in Kucherenko et al., 2020. It is assumed that the following reactions
take place in a fixed volume vessel with a given initial charge of solution A (1 m3 of
solution A with a concentration 2000mol/m3): . The processing2𝐴   𝑘

1
  → 𝐵   𝑘

2
  → 𝐶

time and temperature profiles may be adjusted to maintain the purity and production
rate of the desired product B above certain levels (representing constraints of the form
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). The kinetic parameters of this model (two activation energies E and𝑔
→

𝑥
→

; θ
→( ) ≥ 𝑔

→*
θ
→

two pre-exponential factors k) are considered to be uncertain.

2. Machine Learning and Global Sensitivity Analysis
As a first step we applied a framework for determining probabilistic DS using
metamodelling and adaptive sampling developed in Kucherenko et al, 2020. The
(Q)RS-HDMR method developed in Zuniga et al., 2013 was used to build metamodels.
Consider the ANOVA-HDMR decomposition of an integrable function

defined in the unit hypercube𝑓 𝑥( )≡𝑓 𝑥
1
,  𝑥

2
,  ..., 𝑥

𝑛( ) 𝐻𝑛

Figure 1. Contour plots of the probability map. DS results with 3 non important
uncertainty parameters fixed. Broken line is DS corresponding to p*=0.68.

𝑓 𝑥( ) = 𝑓
0

+
𝑖

∑ 𝑓
𝑖

𝑥
𝑖( ) +

𝑖
∑

𝑗>𝑖
∑ 𝑓

𝑖𝑗
𝑥

𝑖
, 𝑥

𝑗( ) +...+ 𝑓
12…𝑘

𝑥
1
, ..., 𝑥

𝑛( ) (3)

It is known that this decomposition is unique if the mean value of each term with
respect to integration from the set of any variable it depends on is equal to zero, in
which case pairs of component terms are orthogonal with respect to integration.
(Q)RS-HDMR method exploits the fact that for many practical problems only low order
interactions of the input variables are important. This assumption can dramatically
reduce the computational effort for building metamodels.

Assuming that component functions in (3) are piecewise smooth and continuous, they
can be decomposed using a complete basis set of orthonormal polynomials:

,𝑓
𝑖

𝑥
𝑖( ) =

𝑟=1

∞

∑ α
𝑟
𝑖 φ

𝑟
𝑥

𝑖( ) 𝑓
𝑖𝑗

𝑥
𝑖
, 𝑥

𝑗( ) =
𝑝=1

∞

∑
𝑞=1

∞

∑ β
𝑝𝑞
𝑖𝑗 φ

𝑝𝑞
𝑥

𝑖
, 𝑥

𝑗( ),  … (4)

Here are sets of one- and two-dimensional basis functions andφ
𝑟

𝑥
𝑖( ),  φ

𝑝𝑞
𝑥

𝑖
, 𝑥

𝑗( ) α
𝑟
𝑖

and are the coefficients of decomposition. From the orthogonality of the basisβ
𝑝𝑞
𝑖𝑗

functions it follows that:
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α
𝑟
𝑖 =

0

1

∫ 𝑓
𝑖

𝑥
𝑖( )φ

𝑟
𝑥

𝑖( )𝑑𝑥
𝑖
,   𝑟 = 1, ... 𝑘,

.β
𝑝𝑞
𝑖𝑗 =

0

1

∫
0

1

∫ 𝑓
𝑖

𝑥
𝑖( )φ

𝑝
𝑥

𝑖( )φ
𝑞

𝑥
𝑗( )𝑑𝑥

𝑖
𝑑𝑥

𝑗
,    𝑝 = 1, …, 𝑙,  𝑞 = 1, …, 𝑙'

(5)

The choice of the basis functions depends on the probability distributions of the inputs.

For practical purposes the summation in (4) and (5) is limited to some maximum orders
k, l, l’

,𝑓
𝑖

𝑥
𝑖( ) ≈

𝑟=1

𝑘

∑ α
𝑟
𝑖 φ

𝑟
𝑥

𝑖( ) 𝑓
𝑖𝑗

𝑥
𝑖
, 𝑥

𝑗( ) ≈
𝑝=1

𝑙

∑
𝑞=1

𝑙'

∑ β
𝑝𝑞
𝑖𝑗 φ

𝑝
𝑥

𝑖( )φ
𝑞

𝑥
𝑗( ) (6)

Hence, the HDMR approximation function up to the second order interaction can be
constructed as

𝑓
~

𝑥( ) = 𝑓
𝑜

+
𝑟=1

𝑘

∑ α
𝑟
𝑖 φ

𝑟
𝑥

𝑖( ) +
𝑝=1

𝑙

∑
𝑞=1

𝑙'

∑ β
𝑝𝑞
𝑖𝑗 φ

𝑝
𝑥

𝑖( )φ
𝑞

𝑥
𝑗( ) (7)

There is a similarity between this method and the surrogate-based feasibility analysis
(Bhosekar. and Ierapetritou, 2018). However, feasibility analysis relates to the ability of
a process to satisfy all relevant constraints and it is formulated in deterministic setting,
while we are dealing with a probabilistic problem setting (1). In our approach
metamodels were built to approximate a probability map and then use them as an
acceptance-rejection criterion to optimize sampling to identify the DS, while the
surrogate-based feasibility analysis aims at finding a surface defining the boundary of
the feasible space within the box bounded design space as accurately as possible using
only built surrogate.

At the second step we applied GSA which revealed that only one parameter out of four,
namely is important. These results were used for complexity reduction, namely by𝑘

𝑗2
fixing parameters to their nominal values and computing the DS. In this(𝐸

𝑗1
,  𝐸

𝑗2
,  𝑘

𝑗1
)

case results identical to the benchmark results were obtained with a much lower number
of points in the process parameters space (Figure 1). Complexity reduction after
application of GSA resulted in a 16 times speed-up. The SobolGSA software
(Kucherenko et al., 2019) was used for building metamodels and computing Sobol’
sensitivity indices.

3. Visualization of Design Space
A challenge remains in the visualization of DS needed to communicate higher
dimensionality probability maps and the inclusion of this information into the formal
documentation required for the approval of DS by a government agency. For more than
three parameters process parameters visualization of DS is a challenging task. Guidance
for Industry, Q8(R2) Pharmaceutical Development (2009) has the following
recommendations: “When multiple parameters are involved, the design space can be
presented for two parameters, at different values (e.g., high, middle, low) within the
range of the third parameter, the fourth parameter, and so on.” Considering DS in 𝑑
-dimensional process parameters space, a graphical presentation of DS via 2D plots
prescribed in [3] would result in 2D plots.𝑁

𝑃
 = 𝑑 𝑑−1( )

2   3𝑑−2
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GSA can be applied for visualization of DS. This problem belongs to a class of models
with constraints. Most existing GSA techniques were designed under the hypothesis that
model inputs are independent. However, in many cases there are dependencies among
inputs, which may have significant impact on the results. A constraint GSA (cGSA) as
an extension of variance based Sobol’ sensitivity indices that was developed in
Kucherenko et al, 2017.

Consider DS in -dimensional process parameters space and assume that GSA revealed𝑑
that parameter is unimportant. It means that any 2D projections corresponding to𝑥

𝑖
different values of will be the same. Hence instead of three values (“high”, “middle”,𝑥

𝑖
“low” ) for this parameter only one is sufficient for the graphical presentation, which
would result in the reduction of to 2D plots. In the case of𝑁

𝑃
𝑑+4( ) 𝑑−1( )

2   3𝑑−3 𝑠
non-important parameters will be reduced to𝑁

𝑃

. For illustration we consider a 3D[(𝑑 − 𝑠)(𝑑 + 5𝑠 − 1) + 9𝑠(𝑠 − 1)]3𝑑−𝑠−2/2 
Sobol’ “g-function”:

𝑓(𝑥) =
𝑖=1

3

∏
4𝑥

𝑖
−2| |+𝑎

𝑖

1+𝑎
𝑖

(8)

with three different sets of parameters and uniformly distributed in the unit𝑎
𝑖

𝑥
𝑖

hypercube .𝐻3

(a) (b)
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(c)
Figure 2. 3D DS shape. (a) a ={0; 1; 2} ; SI ={ 0.706; 0.0818; 0.0234}, SIT ={ 0.856;
0.229; 0.104}; (b) a ={0; 1; 99}; SI ={0.761; 0.0957; 0.002}, SIT ={0. 887; 0.238;
0.003}; (c) a ={0; 49; 99}; SI ={0.996; 0.0004; 0.0005}, SIT ={0.996; 0.0005; 0.0006}.
SI and SIT are the values of the main effect and total Sobol’ sensitivity indices
respectively.

A synthetic DS is defined as where acts as “probability ”. Its𝐷𝑆(𝑥
→

; 𝑓(𝑥
→

) ≥ 1) 𝑓 𝑝(𝑥
→

)
shape for different sets of parameters is shown in Figure. 1. In the first case (Figure 2,𝑎

𝑖
a) all three 2D projections are important and the prescription given above requires
plotting 2D projections. GSA reveals that in this case all three𝑁

𝑃
 = 𝑑 𝑑−1( )

2   3𝑑−2 = 9
input parameters are important. In the second case (Figure 2, b) although all 2D
projections onto the plains ( ), ( ) and ( ) are important, 2D projections on𝑥

1
, 𝑥

2
𝑥

1
, 𝑥

3
𝑥

2
, 𝑥

3
the plane ( ) are independent of parameter . Hence only𝑥

1
, 𝑥

2
𝑥

3

2D projections are required for the visualization of DS.𝑁
𝑃
 = 𝑑+4( ) 𝑑−1( )

2 3𝑑−3 =  7
GSA shows that in this case parameter is not important. In the third case (Figure 2, c)𝑥

3
only 1D projection to the axis is important while for two other parameters DS shape𝑥

1
is defined in the whole domain of their change [0,1] hence no 2D projections are of any
interest. GSA shows that in this case only parameter is important.𝑥

1

4. Conclusions
We showed on a typical problem from the chemical industry that application of
metamodel-based filters can significantly reduce model complexity and computational
costs for identification of DS. GSA provides important information about the
importance of uncertain parameters and can further reduce computational costs. We
propose formulations via indicator functions which allow transformation of constrained
problem into a class of problems with independent variables and enabled application of
a well-developed variance-based method of Sobol’ indices. Our approach is applicable
to a wide range of process designs where the operational aspects are treated in terms of
ranges rather than fixed points and where system models include uncertain parameters.
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Graphical presentation of multidimensional DS is challenging task. The projection of
the multi-dimensional DS to a 2D representation is required by the industry regulatory
bodies. We showed that constraint GSA can be applied to dramatically reduce the
number of required for visualization 2D projections.
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Abstract 
The combined use of Advanced Oxidation Processes (AOP) and conventional bio-
processes has been suggested for the efficient treatment of wastewaters with a 
significant presence of recalcitrant contaminants. However, no models have been 
proposed to describe such combined processes, which prevents further design and 
operational optimization. Thus, by combining models previously reported this work 
contributes a first model integrating AOPs and bio-processes. Mass balances were 
reformulated by consistently linking the variables used in each model. The model was 
implemented using Simulink® and it was tested and analyzed using several process 
configurations (photo-Fenton processes followed by a biological treatment as well as a 
biological treatment followed by a photo-Fenton process). The outlet concentrations of 
total organic carbon (TOC) and substrate (S) were monitored for various wastewater 
compositions, which allowed analyzing the performance of the integrated system and 
suggesting suitable treatment arrangements. Different treatment options were discussed 
and the capability of the integrated bio/AOP and AOP/bio models was shown to allow a 
systematic approach to design, operation, and control of integrated wastewater treatment 
plants in the future. Further research will be oriented to improve the understanding of 
the potential key parameters as well as their inclusion in the model. 
 
Keywords: Hybrid Model, AOP, Biological process, Wastewater treatment. 

1. Introduction 
Wastewaters contain an increasing number of persistent contaminants. Pollutants with 
high chemical stability and/or low biodegradability (e.g. emerging contaminants: 
pharmaceuticals, cosmetics, and personal care products) cannot be efficiently addressed 
by common wastewater treatment processes (WWTP). Conversely, Advanced Oxidation 
Processes (AOPs), in particular, the photo-Fenton process, can oxidize a broad range of 
non-biodegradable from wastewaters by means of a catalytic reaction of ferrous iron 
and hydrogen peroxide ( 2O2H ) in an acidic or circumneutral pH under UV–VIS 
radiation yields highly oxidant hydroxyl radicals. However, such chemical oxidation for 
complete mineralization is much more expensive, which limits large-scale applications.  
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Hence, combining AOPs with biological treatments has been reported as an opportunity 
to reduce design and operating costs (Huang et al., 2017; Oller et al., 2011). Several 
configurations of hybrid AOPs as pretreatment or post-treatment with bioremediation 
for wastewater treatment have been experimentally studied (Nidheesh et al., 2021).  
However, the design and operation of such a hybrid process require suitable models. A 
great deal of mathematical models for WWTP have been developed and reported, while 
not many works have addressed the modeling of AOPs. Models combining AOPs and 
bio-processes have hardly been discussed. The modeling needs, and perspectives of 
AOPs and WWTP are different, as well as it is the nomenclature and the lumped 
parameters selected to characterize the system. This may explain the divergence of the 
research efforts of both areas, as well as the problems that converging them to a unique 
hybrid model entail. Therefore, a first and key step is consistently linking the variables 
used in both modeling approaches (biological and chemical) in a pilot coupled model. 
Consequently, this study consisted on selecting kinetic models for WWTP and AOP, 
standardizing nomenclature, mapping lumped parameters, and finally extending the 
models to incorporate those essential aspects considered by only one model. This has 
been applied to the combination of photo-Fenton processes followed by a biological 
treatment as well as a biological treatment followed by a photo-Fenton process. 
Particularly, new equations for non-biodegradable contents in the WWTP needed to be 
introduced, as well as equations discriminating biodegradable and non-biodegradable 
matter in the AOP model. Hence, simulation examples are discussed in regard of the 
expected results, achievements, and limitations of the model.  

2. Methodology  
The main problem to be addressed is the identification of the significant parameters and 
reactions in each subsystem and appropriately linking kinetic expressions and material 
balances in a consistent model of the resulting hybrid system. The integration strategy 
consists on preparing two configurations: AOPs as a pre-treatment followed by 
biological treatment (plan AB), also in the opposite direction, considering the post-
treatment of AOPs (plan BA). Three case studies will be used to test the model: 
wastewater with only non-biodegradable contaminants (W1), partially biodegradable 
wastewater (W2), and completely biodegradable wastewater (W3). The schematic 
diagram of the proposed approach is illustrated in Figure 1.  

Figure 1. Schematic diagram of the proposed integrated modeling 

The mathematical models already proposed for the photo-Fenton process and the 
activated sludge biodegradation (ASM1) were first selected and adapted, and later, the 
models were coupled by linking of the associated variables. The coupled ordinary 
differential equations (ODEs) were solved simultaneously concerning the conceptual 
consistency of the related parameters using Simulink®. 
2.1. Biological treatment kinetic model 
There is abundant literature developing reliable models for WWTPs with formulations 
fully elaborated and complicated. However, reduced versions are still required for 
quickly analyzing design trade-offs and layouts, which is the purpose at this stage. 
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Furthermore, in the preliminary steps of developing a model, using simplified models 
may speed up the model evolution with consistent results and later, the model can be 
enriched with more complex concepts. Thus, the biological wastewater treatment model 
selected was the Activated Sludge Model No.1, ASM1, consisting of four non-linear 
differential equations (Vlad et al., 2011). The mass balance equations were adopted for 
modeling of the active sludge biomass (X) at the level of the aeration tank, the mass 
balance of the substrate (S), the mass balance of the oxygen in the water mass (DO), and 
the balance of the recycled biomass ( rX ) at the level of the settling tank. The biomass 
growth rate (µ), was modeled by the Monod law. 
2.2. Modeling of the AOP (photo-Fenton process) 
Cabrera Reina et al. (2012) proposed and validated a photo-Fenton process model for 
batch operation and then the model was re-written by Audino et al. (2019) to describe 
the continuous operation. The model did not consider biodegradability, although it 
should be taken into account to apply integrated treatment processes including Fenton-
based processes and biological treatment (Huang et al., 2017).  
Thus, the model by Audino et al. (2019) was adapted by separating the biodegradable 
(subscripted by b) and non-biodegradable (subscripted by nb) parts of the organic matter 
to enable biodegradability footprint tracking in the combined model. To do that, the 
equations and subsequently related mass balances were replicated for non-
biodegradable contents. The proposed model includes the two ferric species, hydrogen 
peroxide, the radicals formed from peroxide (R), the dissolved oxygen, three states 
accounting for the biodegradable organic matter (two kinds of partially oxidized 
organics ( b1MX , b2MX ) plus the parent compound ( bM ) present at the beginning of 
the reaction) which are responsible for the lumped parameter measured as bTOC .  
Three complementary states for the non-biodegradable organic matter were introduced 
to the model including two kinds of partially non-bio oxidized organics ( nb1MX , 

nb2MX ) plus the parent non-bio compound ( nbM ) present at the beginning of the 
reaction, aggregated as nbTOC  (i.e. nbTOCbTOCTOC  ). The values of the kinetic 
constants of the new reactions were also replicated at this stage. 

3. Development of the integrated models 
The two simulation schemes are next presented. The AOP pre-treatment followed by 
WWTP is designated as AB, while using AOP as a post-treatment is designated as BA. 
3.1. Combined modeling: configuration AB 
The biodegradability of wastewaters can be improved in a combined AOPs system, 
which is favorable to WWTPs, while WWTPs in the same combined system may 
stabilize the waste and reduce the use of chemical reagents (Huang et al., 2017). A 
partial oxidation treatment may produce intermediates even more recalcitrant, but 
chemically-oxidized intermediates are often less recalcitrant than the parent compound. 
Many studies have proved that prior chemical oxidation may cause the biodegradability 
changes of a waste stream (Mantzavinos and Psillakis, 2004). Therefore, the main role 
of the chemical pre-treatment may be explained as partial oxidation of the biologically 
persistent part to produce biodegradable reaction intermediates which remove the 
pointless expense of chemicals and energy (Oller et al., 2011). 
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the AOPs on the performance of the WWTP needs to be modeled. In this first step, 
these intermediates are considered to have no adverse impact (toxicity or inhibitory 
effect). In this regard, for the integration of the processes using the set of reported 
reactions, the outlet biodegradable TOC and the oxygen concentration in the AOP were 
introduced equally as the inlet substrate content and the dissolved oxygen in the bio-
treatment, respectively. The following linking conditions were associated to couple the 
photo-Fenton and the WWTP models as continuous stirred tanks reactor (CSTR): 
• The outlet flowrate from the AOP reactor was directly entered to the WWTP; 
• The biodegradable bTOC  from the AOP was fed as the inlet substrate to the 

WWTP; 
• The oxygen flow from the AOP was connected to dissolved oxygen in the bioreactor; 
• The non-biodegradable compounds were assumed to be inert through the WWTP 
Figure 2 illustrates the configuration AB.   

 
Figure 2. AB scheme presenting the photo-Fenton process (A) followed by the bio-treatment(B) 

3.2. Combined modeling: configuration BA 
The alternative post-treatment of AOPs are often suggested for WW containing the 
recalcitrant organic pollutants with low toxicity concentrations. The transformation 
products generated during biodegradation would be recalcitrant and even hazardous 
(Zimbron and Reardon, 2011; Sánchez Peréz et al., 2014). In this study, the combined 
model represents the biological treatment followed by the photo-Fenton reactor as 
CSTR using first-order kinetics and mass balances. The same conceptual integration 
process was applied correspondingly through linking the outlet substrate and the 
dissolved oxygen in WWTP to inlet biodegradable TOC and the oxygen content in the 
AOP model as presented in Figure 3.  

A conceptual challenge for developing a mathematical model for the AB is to find 
which variables in the AOP model require to be properly linked to which variables in 
the WWTP model. Moreover, the effect of the chemically-oxidized intermediates from 
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Figure 3. BA schematic presenting the bio-treatment(B) followed by the photo-Fenton process(A) 

4. Simulation results 
The preliminary simulations of the outlet organic matter concentration (TOC and/or 
substrate) in the single-reactor design (A or B) as well as the combined system for both 
AB and BA configurations were performed according to the data of the kinetic 
constants provided by Cabrera Reina et al. (2012) and Vlad et al. (2011). The simulation 
of the hybrid processes indicated promising results compared to each individual 
process. The integrated model was able to predict and track the biodegradability 
evolution, which is crucial for the WWTPs. Figure 4 shows the results obtained for the 
three case studies (non-biodegradable wastewater, W1; partially biodegradable 
wastewater, W2; and biodegradable wastewater, W3) and the four arrangements (A, B, 
AB, and BA). In general, the simulations produced the expected profiles as for the 
higher biodegradability, the lower outlet organic matter concentration was predicted. 
The outcomes of the integrated models produced similar trends and all of them confirm 
decreasing outlet organic matter concentrations as the inlet biodegradability increases 
(W1<W2<W3). This is not the case for a single AOP (Figure 4a), for which all profiles 
overlap according to the non-selective oxidizing capacity of the hydroxyl radicals. 
Figure 4a also shows a conversion limit given by an insufficient supply of hydrogen 
peroxide. Conversely, the single WWTP (Figure 4b) presents the most disparate 
outcomes: the total organic matter removal for a complete biodegradable input (W3) 
and no change at all for a totally non-biodegradable feed (W1).  

 
Figure 4. Simulated profiles of the single and integrated models for a) A, b) B, c) AB, and d) BA. 

a) b) 

c) d) 
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On the other hand, the combined processes AB (Figure 4c) and BA (Figure 4d) resulted 
in different behavior in the transition period but, they showed the expected higher 
steady-state performance compared to the single processes A and B. Again, a total 
conversion for is not attained, this time only for the partially and non-biodegradable 
cases (W2 and W1) due to the lack of reagents (hydrogen peroxide), which hints at the 
need to adjust this variable. The different kinetics produce different transient periods in 
the combined models but show the same long term behavior given by the 
biodegradability ratio.  
These preliminary simulations of the combined model meet the expectations, but reveal 
the limitations and next steps, mainly the incorporation of new features allowing to 
discriminate the behavior of processes as a function of the biodegradability and the 
chemical nature of the contaminants, so that toxicity and inhibitory effects of 
recalcitrant species in the bio-treatment can be considered and the true system trade-offs 
could be addressed for decision-making support. 

5. Conclusions 
This contribution proposes a combined model coupling the photo-Fenton process and 
WWTP for the removal of recalcitrant contaminants in wastewaters. The lumped 
parameter TOC in the photo-Fenton process is considered equivalent to the substrate 
content in WWTP for the model integration of the processes. Additionally, dissolved 
oxygen is directly linked to the oxygen content in the photo-Fenton process. The 
simulations were consistent through all case studies designed including biodegradable, 
partial biodegradable, and non-biodegradable influent. The simulation results from 
different configurations led to the variation curves of the outlet organic matter in the 
effluent that may be useful to design and control the integrated wastewater treatment 
systems. The analysis of the model arose some limitations to be addressed, such as the 
need, to include the inhibitory effect of recalcitrant species in the bio-treatment. Further 
research needs to be carried out through the proposed model to validate and improve the 
understanding of the potential key parameters as well as their inclusion in the model. 
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Abstract
This paper deals with the modelling and simulation of the dissolution of phosphate ore
particles in a dilute phosphoric acid solution in a batch stirred tank reactor. A shrinking
core model with elimination of the products is used to describe the reaction and mass
transfer phenomena involved in the three phases considered, i.e., liquid bulk, liquid film
surrounding the particles and solid phase. The model is based on mass balance
equations in the three phases and consist of algebraic equations in the liquid bulk, an
ODE in the solid phase, and PDEs in the liquid film. An estimability analysis method
based on global sensitivities is used to determine the most estimable unknown
parameters involved in the model equations from the available experimental data. The
values of the least estimable parameters are fixed from the literature, while gProms
environment is used to implement and solve the equations and to identify the most
estimable parameters. The results obtained exhibit a good agreement between the model
predictions and the measurements with coherent values of the identified parameters.
Furthermore, the model is tested on the measurements carried out by van der Sluis et al.
(1987) and showed that the dissolution process is mainly controlled by the diffusion
step.

Keywords: Phosphate ore, Phosphoric acid, dissolution mechanism, shrinking core
model, parameter identification.

1. Introduction
Phosphoric acid is the key element in the phosphate industry, particularly in the
fertilizer industry, and even in the pharmaceutical and food industries (Becker, 1983). It
is mainly produced by the wet process which consists of reacting the phosphate ore with
concentrated sulfuric acid solutions in a digestion tank. Two main phenomena therefore
take place in the tank, i.e., the dissolution of the ore and the crystallization of the
gypsum. In this work, only phosphoric acid is used in the attack of the phosphate ore in
order to decouple the two phenomena and deal only with the dissolution. The latter is
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one of the most complex phenomena involved in the wet process of industrial
manufacture of phosphoric acid. Its understanding is one of the key issues for the
optimal design and operation of the phosphoric acid processes.
The objective of the present paper is to investigate the mechanism of the attack of the
phosphate ore by a phosphoric acid solution in the digestion tank. More specifically, the
shrinking core model (SCM) with elimination of the products will be used to describe
the chemical reactions and mass transfer phenomena that take place in the tank. The
resulting model will inevitably involve several unknown parameters that are often
deduced from experimental measurements by means of a parameter optimization
method. However, it is recognized that the available experimental measurements do not
always contain the necessary information to accurately identify all the unknown
parameters. A global estimability analysis will therefore be carried out to determine
which parameters are estimable from the available measurements. The most estimable
parameters will then be identified, and the values of the least estimable parameters will
be fixed from the literature or from previous studies. gProms environment will be used
to implement and solve the model equations and for parameter identification as well.

2. Model formulation
Tri-calcium phosphate (TCP) is one of the most interesting elements to be recovered
from the phosphate ore. The objective of the digestion is to dissolve the TCP in a dilute
phosphoric acid solution before its attack with a concentrated sulfuric acid solution to
produce concentrated phosphoric acid and gypsum. Two main reactions take place in
the digestion tank during the dissolution process (Elmore and Farr, 1940), but in this
work we will focus on the most important one which transforms TCP into
mono-calcium phosphate (MCP) as:

(1)

The conversion rate of this reaction depends on different operating parameters,
including temperature, phosphoric acid concentration, porosity and size distribution of
phosphate ore particles, residence time, solid rate, and hydrodynamics.
2.1. Dissolution mechanism
The attack of the phosphate ore particles by a phosphoric acid solution is a non-catalytic
liquid/solid reaction with a complex kinetic mechanism. We assume that three phases
are involved in the mechanism, i.e., liquid bulk, liquid film surrounding the particles,
and solid phase (Figure 1).
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Analysis of the dissolution mechanism in the phosphoric acid

Figure 1: Schematic illustration of the SCM in the dissolution mechanism

The dissolution mechanism considered assumes that the phosphoric acid diffuses
through the film towards the solid, adsorbs to the phosphate ore particles, and finally
reacts with the TCP reagent at the solid surface. The MCP product takes the opposite
path where it first desorbs from the solid surface, then diffuses through the liquid film
towards the liquid bulk. It is noteworthy that the chemical reaction and all the mass
transport phenomena take place simultaneously in the digestion tank.

3. Phosphate ore dissolution modelling
The dissolution model developed is based on the following assumptions: (i) the particles
are well dispersed in the liquid phase, are spherical with the same diameter, and shrink
uniformly during the dissolution process, (ii) the digestion tank is perfectly mixed, (iii)
the reaction is irreversible and only takes place at the surface of the particles, (iv) the
adsorption and desorption steps are assumed to be very fast and are not considered.
Moreover, the shrinking core model (SCM) with elimination of the products used is
adapted from the model developed by Salmi et al. (2017) with two main major
differences. The first one assumes that the solid reagent is not soluble in the liquid,
which is the case of the Moroccan phosphate ore, and the second one considers that the
surface of the particles is not saturated with the solid reagent. The model equations are
based on the transient mass balances in the solid phase, in the liquid film, and in the
liquid bulk. They are presented below.
- In the solid phase, the mass balance can be written as:

(2)

where is the mass of the solid (i.e., phosphate ore particles) and its radius.

is the mass composition of TCP in the particles, is the molecular weight of

TCP, and and are the concentrations of MCP at the solid surface and

manufacturing process: modelling and simulation
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in the liquid bulk, respectively. is the liquid/solid mass transfer coefficient of

MCP, it is expressed by using the film theory, where is the thickness of theδ

liquid film surrounding the particles and the diffusion coefficient of MCP.
Eq. (2) can be developed in terms of TCP conversion rate X and particle radius R as:

(3)

where and are the density and the initial radius of the particles respectively, and𝑅
0

.
- In the liquid film, the mass balance is expressed by the second law of Fick as:

(4)

with the following boundary conditions:

●at the solid interface:
(5)

where the kinetic rate equation is assumed to be of first order with respect to phosphoric

acid at the particle surface, and is defined as: . is the rate

constant, is the diffusion coefficient of component i and ʋi is the stoichiometric

coefficient of component in the reaction (1).

●at the liquid film/liquid bulk interface: (6)

- The mass balance in the liquid bulk provides the MCP and acid concentrations as:

and

(7)

where is the initial number of moles of TCP in the solid and is the liquid

volume in the tank. The initial conditions used are : =0.0322 mole,

=4760 mol/m3, =0, = = 0, and = 0. The liquid film
thickness is calculated using the mass transfer correlation of Rakoczy and Masiuk
(2011) as:
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where
(8)

is a parameter which considers the hydrodynamics through the energy dissipation

per unit mass ( ) of reaction mixture in the tank. is the kinematic viscosity of the
mixture.
The dynamic model is described by a set of partial differential equations (PDEs) in the
liquid film and an ordinary differential equation (ODE) in the solid phase and algebraic
equations in the liquid bulk. The model equations are implemented and solved within
gProms software which provides an environment for modeling, simulation, and
parameter identification of dynamic systems (Process Systems Enterprise, 1997-2020).

4. Simulation and parameter identification

As can be noticed, the model involves several unknown parameters, i.e., ,

and , that should be identified from the available experimental measurements by
means of a parameter optimization method. To test the model, we used the
measurements of the conversion rate of TCP over time and for different temperatures in
a stirred batch reactor where the digestion of the phosphate ore particles by a phosphoric
acid solution takes place (van der Sluis et al, 1987). In their study, the authors assumed
that the dissolution process is controlled by the diffusion of MCP and determined the
corresponding values of the mass transfer coefficient of TCP. In this work, the
developed model is adapted to fulfill the same conditions assuming that the diffusion of

acid is not the rate-limiting step. The influence of the diffusion coefficient on
the model is therefore neglected. However, the reaction at the solid surface as well as
the diffusion of MCP in the film are considered. The competition between these steps

will be analyzed by means of Damköhler number However, the
question is to know whether these experiments contain the necessary information to
identify all the unknown parameters of the model. To answer this question, we used our
recently developed estimability analysis method based on global sensitivities
(Bouchkira et al, 2021) to rank the unknown parameters from the most to the least
estimable.
Table 1 presents the data used in the simulations. The measured values of the kinematic
viscosity at different temperatures can be found in (van der Sluis et al., 1987).

Analysis of the dissolution mechanism in the phosphoric acid
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895



Parameter

Value 7.2x103 5.0x103 51 3.1x10-1 5.45x10-4 2x10-2 4x10-4

Unit kg.m-3 W.kg-1 % wt kg.mol-1 m kg m3

5. Results and discussion

The estimability analysis method showed that is the only estimable parameter. It is

then identified using a gradient-based optimization method, while is deduced
from the measurements of van der Sluis et al. (1987) by means of the mass transfer
correlation of Rakoczy and Masiuk (2011). Table 2 presents the computed results which

consist of the values of the hydrodynamic parameter , the diffusion coefficient ,

and the constant rate along with its corresponding 95% confidence intervals, for three

different values of temperature. The tight confidence intervals show that is
accurately determined. Moreover, the use of an Arrhenius-type of equation allows us to
determine the pre-exponential factor (1.18 x10-4 m/s) and the activation energy (8641
J/mol). The low value of the activation energy confirms that the diffusion of the MCP
product is indeed the limiting step in the dissolution of the particles.

Figure 2: Comparison of simulated and
measured values of MCP concentrations

Figure 3: Profiles of Damköhler number for
three different values of temperature

Figure 2 exhibits a very good agreement between the model predictions of the MCP
concentrations and the measurements carried out at three values of temperature, thus
highlighting the quality of the model.
On the other hand, as the dissolution proceeds, the radius of the particles as well as the
thickness of the film decrease over time. The resulting Damköhler number also
decreases over time and with increasing temperature (Figure 3).
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T(K) (m2/s) (m/s)

333 0.27 3.1x10-11 5.24x10-6 ± 3.40x10-7

348 0.29 4.7x10-11 5.86x10-6 ± 4.29x10-7

363 0.31 6.3x10-11 6.78x10-6 ± 3.89x10-7

In the beginning of the digestion, the dissolution is controlled by the diffusion of MCP
in the liquid film for the three values of temperature. This control is reduced over time
in favor of the reaction of TCP at the surface of the particles which takes over at the end
of the dissolution. The control is actually shared by diffusion and reaction throughout
the process. The diffusion prevails at the beginning and the reaction at the very end of
dissolution. This phenomenon is very likely to occur in such transient processes.

6. Conclusions
It is interesting to notice that the model developed in this work leads to the same
conclusions as in van der Sluis et al. (1987) on the phenomenon that controls the
dissolution using the same set of experimental measurements and assuming that the
diffusion of the acid in the liquid film is not limiting. Furthermore, the model developed
here is more accurate since it is based on more realistic assumptions and predicts a
diffusion control which decreases with time. Indeed, we did not assume that the
concentration of MCP at the surface of the solid is given by its saturation concentration,
it is determined by solving the second Fourier law in transient regime in the liquid film.
We also considered the thickness of the liquid film which decreases over time as the
radius of the particles. However, the model can be further improved by investigating
the phenomena taking place at the surface of the particles and by carrying out additional
experiments to better calibrate and validate the model prior to its use in subsequent
optimization of the reactor performances.
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Abstract
Accurate process models which are the key to a reliable model-based process design
usually need to be identified on the basis of expensive laboratory experiments. In this
work, we present an integrated methodology which enables to focus these experiments
on the most relevant model parameters by combining a global sensitivity analysis and
optimal design of experiments. We apply the methodology to the homogeneous
catalyzed hydroformylation of 1-dodecene as an example process. The comparison to an
ordinary optimal experimental design and a factorial design show that by this approach
the experimental effort could be reduced. Furthermore, we compare the use of a local
and a global sensitivity analysis; the global sensitivity analysis can indeed enhance the
process design.
Keywords: early phase process design, global sensitivity analysis, optimal design of
experiments.

1. Introduction
In the early design phase of new chemical processes, the most cost influencing decisions
are taken, so this is the key phase of process development. As nowadays product cycles
in the chemical industry become shorter, the pressure to reduce the development time is
increasing. Sequential steps of laboratory experiments, identification of model
parameters and physical properties and process simulation and optimization lead to long
development cycles, thus a new methodology that integrates these steps and helps to
focus the work is required. Optimal design of experiments (ODoE) is used to reduce the
effort of experimental work. An overview of ODoE can be found in Franceschini &
Macchietto (2008). Chen & Grossmann (2017) describe the recent developments in
optimization-based process synthesis, including the handling of uncertainty in the
process parameters. Asprion et al. (2019) developed an interface that enables to
integrate optimal experimental design in a flowsheet simulator. The framework can be
used for focused model improvement and parameter estimation but does not include a
method for process design. Recker et al. (2013) integrated process optimization and
optimal design of experiments. In order to focus the experiments on the relevant
parameters, they weight the Fischer information matrix in the optimal experimental
design. However, in their approach uncertainties in the process optimization are
neglected which can lead to suboptimal processes. Commonly, local sensitivity analysis
is used for the identification of the cost driving parameters, but this has the drawback
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that it is only valid at one point and not for the complete operating rage. This issue can
be overcome by replacing the local sensitivity analysis with a global sensitivity analysis.
In this work, we present a methodology that integrates superstructure optimization
under uncertainties, a global sensitivity analysis and optimal design of experiments.
For the best design identified by the superstructure optimization the sensitivities of the
cost function with respect to the uncertain parameters are computed and used as weights
in the optimal design of experiments. The proposed method is applied to a case study of
the homogeneously catalyzed hydroformylation of 1-dodecene. The results are
compared with the non-weighted optimal experimental design and a factorial design in
order to see the effect of applying the weighting on the number of experiments that is
required to get a sufficiently good process model.

Figure 1:Schematic representation of the proposed methodology for integrated process.

2. Methodology
It is proposed here to use model-based tools already in the early design phase although
only little knowledge is available during this phase. It is assumed that first experiments
have been performed and the key elements of the process, in particular the chemical
reaction system have been identified. The general procedure of the proposed
methodology has been described in Kaiser & Engell (2020) and it is depicted in Figure 1.
Based on the first screening experiments, kinetic and thermodynamic models with still
significant parametric uncertainties are assumed to be available and are used in a
subsequent step for superstructure optimization under uncertainties as introduced by
Steimel & Engell (2015). For the best design, a sensitivity analysis - either local or
global - is performed followed by a subsequent optimal design of experiments (ODoE)
which is weighted with the computed sensitivities. The focus of this paper is on the
weighted optimal design of experiments using the previously computed sensitivities.
2.1. Sensitivity analysis
Sensitivity analysis is performed in order to obtain information about the influence of
each uncertain parameter on the cost function. The local sensitivities are
computationally less expensive but are valid only in a small region around the nominal
values of the parameters. The global sensitivities are valid in average over the complete
region of the uncertain parameters and they give information about nonlinear effects.
However, the global sensitivity analysis is computationally more expensive. It is
assumed that the operating conditions of a process can be adjusted depending on the
realization of the uncertain parameters. Therefore, the cost function is optimized at each
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sampling point in the computation of the local and the global sensitivities with respect
to the operating conditions ( ) for given design parameters.𝑢

𝑜𝑝𝑡

2.1.1. Local sensitivity analysis
The local sensitivities are computed as described by Kaiser & Engell (2020). The
uncertain parameters are sampled using 1 % deviation from their nominal values and a
linear regression is used to correlate the uncertain parameters to the regressed𝑛 𝑥
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2.1.2. Global Sensitivity Analysis
The global sensitivities are computed using the Sobol' indices (Sobol, 2001). The effect
of a single parameter can be computed by

𝑆
𝑖

=
𝑣𝑎𝑟(𝑦|𝑥

𝑖
)

𝑣𝑎𝑟(𝑦)
(5)

where describes the conditional variance of the output with respect to the𝑣𝑎𝑟(𝑦|𝑥
𝑖
) 𝑦

parameter and describes the general variance of y. The total effect also𝑖 𝑣𝑎𝑟(𝑦) 𝑆
𝑇

takes non-linearity and interaction effects into account. It can be computed as
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where is the conditional variance of the output with respect to all the𝑣𝑎𝑟(𝑦|𝑥
~𝑖

) 𝑦
parameter except parameter Using a latin-hypercube sampling, different scenarios𝑖. 𝑁
of the realization of the uncertain parameters within the 95 % confidence intervals are
generated.
2.2. Modified optimal design of experiments
In order to design new experiments to gain information about the parameters that were
identified as cost driving, a modified ODoE is used. As in the ordinary experimental
design, a metric of the Fisher information matrix ( ) is minimized. The is𝐹𝐼𝑀 𝐹𝐼𝑀
defined as

𝐹𝐼𝑀 =
τ=τ
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with containing the derivatives of the model outputs with respect to the𝑄(𝑢
τ
)

parameters of the experiment with the input . To drive the designed experiments𝑢
τ

towards gaining information about the relevant parameters, an intuitive way is
weighting the with the previously computed sensitivities (Recker et al., 2013).𝐹𝐼𝑀
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where the matrix contains the sensitivities of the process costs with respect to the𝑊
model parameters at the current estimated value of the parameters .Θ

𝑖
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Figure 2: Simplified process flowsheet. Figure 3: Reaction network of the
hydroformulation.
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In this work we use an A-optimal DoE which aims at minimizing the trace of the .𝐹𝐼𝑀

3. Case study
The proposed methodology is applied to the case study of the homogeneously catalyzed
hydroformylation of 1-dodecene using a thermomorphic solvent system. The process is
described in Hernandez et al. (2018). A thermomorphic solvent system consisting of the
polar solvent dimethylformamide and a non-polar solvent decane that separates into two
phases at low temperatures is used to recycle the expensive rhodium catalyst. The
catalyst dissolves in the polar phase and can be recycled into the reactor, while the
product tridecanal dissolves in the non-polar phase which can be purified in a further
thermal separation step. A simplified process flowsheet is shown in Figure 2. A detailed
description of the process model can be found in Hernandez et al. (2018). The kinetic
model depicted in Figure 3 was developed by Hentschel et al. (2015). The
pre-exponential factors and the activation energies of the hydroformylation of
n-dodecene ( ) and of the isomerization of n-dodecene ( ) in the kinetic model are𝑟

1
𝑟

2
considered as uncertain parameters.
The other kinetic parameters have been observed as less influencing and are hence fixed
to their pre-defined values. We use the standardized regression coefficients (eq. 2-4) as
local sensitivities and the total effects (eq. 6) as global sensitivities. The planned
experiments are isothermal batch experiments where the evolution of the concentration
is measured over the batch time. The degrees of freedom in the ODoE are the reaction
temperature, the initial concentration of n-dodecene, the initial concentration of
iso-dodecene, the ratio of H2 to CO and the catalyst concentration. Furthermore, the
sampling times of the concentration measurements are included as degrees of freedom.
The number of measurements is fixed to 6. The measurements are generated using a
simulation model with the true parameters, corrupted by white noise with a standard
deviation of 5 %.
The yield of n-undecanal in the product stream with respect to the n-dodecene in the
feed is used as the cost function.
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3.1. Comparison of different design strategies
In this section we compare the results of different strategies for model refinement: (i) A
standard ODeE without weighting the FIM. (ii) A modified ODoE weighting the FIM
with local sensitivities. (iii) A modified ODoE weighing the FIM with global
sensitivities.
In all cases, the same two experiments performed at two different temperatures are used
as the basis for the first parameter estimation and then 25 new experiments are planned
in iterative steps of parameter estimation and ODoE according to the applied method.
The number of process optimizations that are used for the computation of the weighting
matrix is 10 in case of the local sensitivity analysis and 1200 in case of the global 𝑊
sensitivity analysis. For the standard ODoE, no process optimization is required.
The progress over the number of experiments is compared to the results of a static
factorial design, in which experiments are performed at the lower and upper bounds of
the five degrees of freedom, leading to 32 experiments. After the parameter estimation,
the 95 % confidence intervals are computed. For different scenarios within these
confidence intervals the minimal and the maximal yields are computed. As the predicted
parameters and hence the predicted yields depend on the random process noise, the
procedure is repeated ten times for each case and the mean values are considered. The
evolution of the maximum and minimum computed process cost is shown in Figure 4.
The figure shows the change of the maximum and minimum predicted yield for all three
cases as well as the true yield and the yield predicted using the factorial sampling. It can
be seen that for all cases a better prediction of the yield in comparison to a factorial
design can be reached after only 9 iterations for the weighting obtained from the global
sensitivity analysis and after 15 iterations using the local sensitivity analysis. The
absolute differences in the minimum expected yield between the two approaches is
small after 6 iterations. Standard ODoE performs somewhat erratically in comparison.

Figure 4: Evolution of the predicted intervals of the yield for the different methods.
The true yield is represented by the solid line and the interval of the predicted yield
using a factorial design is represented by the dashed line.
Since in the ordinary ODoE equal weights are put on determining the uncertain
parameters, it can occur that experiments are planned that improve one parameter that
has a small influence on the process yield. By using specific weights on the parameters
that have the highest impact on the cost function, more efficient experiments can be
planned. The advantage of using global sensitivities can be explained by the fact that the

Focusing experiments in the early phase process design by process
optimization and global sensitivity analysis

903



S. Kaiser et al.

model is highly nonlinear with respect to the uncertain parameters. By taking these
effects into account, the ODoE can further reduce the predicted interval of the cost
function.

4. Conclusion and outlook
We presented an integrated methodology that can accelerate early phase process design.
Optimal design of experiments can be used to efficiently design experiments to
determine model parameters that are needed for a model-based process design. The
most relevant parameters that should be determined more precisely by experimental
work can be identified reliably by a sensitivity analysis. A modified optimal design of
experiments weighted with these sensitivities enables to focus the experimental work on
the most relevant model parameters and can hence be a promising tool for process
design. In a case study it was shown that in case of nonlinear and interaction effect a
global sensitivity analysis is superior compared to a local sensitivity analysis. It is
expected that the global sensitivity analysis is even more beneficial in cases with
structural uncertainties, because these cannot be quantified using local sensitivities. This
will be the subject of further investigations.
This work presented here focused on the experimental design. It will be embedded into
a complete process design procedure, including superstructure optimization under
uncertainty and the presented modified ODoE.
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Abstract
The design and operation of process systems are required to meet multiple constraints
related to production schedules, product quality, safety, economic performance and
environmental footprint. These constraints define the set of feasible design and/or
operational parameters which is called process Design Space (DS). In most instances,
process constraints are defined as functions of state variables of the system in which
case the full-scale process model must be solved for their verification which can be a
computationally demanding task for large-scale nonlinear models. This a challenge for
online applications such as model-predictive control or real-time optimisation.
In this study we present a computationally efficient method of evaluating the feasibility
of a set of model parameters using a surrogate indicator function of the DS through
Gaussian Process approximation of deterministic inequality model constraints. The
method allows finding a compromise between the computational effort required and the
level of confidence reflecting the accuracy of DS approximation.

Keywords: design space, constraints, Gaussian process, uncertainty.

1. Introduction
Mathematical models developed for the design and control of manufacturing processes
are subject to multiple constraints imposed on a wide range of process parameters
(equipment sizes, mass and energy flowrates, controllability, reliability, etc.), product
characteristics (quality and yield) as well as economic performance measures and other
Key Performance Indicators (KPIs) of the process. Many of these models are highly
nonlinear and/or large in scale which makes them computationally expensive to run.
This can be problematic, especially when the model needs to be solved repeatedly either
in the context of model-predictive control/real-time optimisation or simply to verify the
feasibility of a state of the system.

The latter is particularly important in assuring the quality of a product in fine chemicals
industries such as (bio)pharmaceuticals where deviations of product characteristics from
those approved by a regulator can have drastic safety and financial repercussions. In
such cases, the Design Space (DS) defined as “the multidimensional combination and
interaction of input variables (e.g., material attributes) and process parameters that have
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been demonstrated to provide assurance of quality” (Pharmaceutical Development
Q8(R2), 2009) plays a crucial role in process design in accordance with the
Quality-by-Design paradigm, control and product approval.

Considering a generalised process model that maps an -dimensional input𝑓: 𝑅𝑛 → 𝑅𝑚 𝑛
space into an -dimensional space of the outputs of interest, let us define a set of𝑚 𝐶
inequality constraints delineating combinations of model inputs leading to feasible
outputs (i.e., the DS) as , . In the following, we will refer to𝑔 𝑥, 𝑓(𝑥)( )≥0 𝑔: 𝑅𝑛+𝑚 → 𝑅𝑐

such constraints, which depend on model function , as ‘implicit’. Generally, the𝑓(𝑥)
whole process model must be solved to evaluate implicit constraints and establish
whether lies in the DS. In most cases, this also precludes any possibility of finding an𝑥
explicit expression or procedure for determining the feasibility of a given set of model
inputs.
This fact and the computational complexity of ‘discovering’ the true DS have led to a
situation when only DS descriptions in the form of hyperrectangles (i.e., Cartesian
products of ranges of model inputs) can be approved by regulators while these are
generally only subsets of much larger feasible subspaces. There have been relatively
few attempts in the literature to systematically approach the problem of model-based
non-convex DS identification (Bano et al., 2019; García-Muñoz et al., 2015; Kotidis et
al., 2019; Kucherenko et al., 2020), including finding a hyperrectangle of maximum
volume inscribed into the DS (Ochoa et al., 2019). While the cited approaches also
considered that the model constraints depend on uncertain parameters, they stress that a
high number of process model evaluations is required to obtain a reasonable description
of the DS.
Emerging research in DS modelling investigates the construction of a feasibility
probability map to obtain an easy-to-evaluate feasibility indicator for each constraint
using regression and classification methods (Knudde et al., 2019; Kusumo et al., 2020).
To address the computational inefficiencies of DS identification, we adopt the
application of Gaussian Processes (GPs) exploiting their intrinsic measures of
uncertainty in the feasibility estimates. Our method introduces a confidence threshold to
the estimated feasibility measures to control the quality of approximation thus balancing
the computational effort of training the GP with the accuracy of DS representation. The
proposed framework accelerates the identification of the whole non-convex DS, rather
than its orthogonal subspace, tailoring space filling designs to enable extended
flexibility of process operation while preserving the feasibility of model constraints.

2. Theory
In the following for simplicity we will assume that the maximum ranges of model input
variations have been mapped onto a unit hypercube denoted as .𝐻𝑛 = 0,  1[ ]𝑛

The joint distribution of model inputs is assumed to be represented by a probability𝑥
density function . Model constraints will be denoted as regardless of whether𝑝(𝑥) 𝑔(𝑥)
they are explicit (i.e., do not depend on model outputs ) or implicit (i.e., dependent𝑓(𝑥)
on as in ).𝑓 𝑥( ) 𝑔 𝑥, 𝑓(𝑥)( )

The Design Space denoted as is a subspace of such that all of its points areΩ𝑛 𝐻𝑛

feasible with respect to the constraints. The DS can be defined through its indicator
function as
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, whereΩ𝑛 = 𝑥: 𝐼 𝑥( ) = 1{ } ⊂ 𝐻𝑛 𝐼 𝑥( ) = {1,  𝑔 𝑥( )≥0 0,  𝑔 𝑥( ) < 0 (1)

A single constraint will be considered to develop the methodology below. When
multiple inequality constraints determine the feasibility of a point in the input space the
indicator function, , can be formulated as the product of indicators corresponding𝐼 𝑥( ) 𝐶

to individual constraint functions such that .𝑔
𝑖

𝑥( ) 𝐼 𝑥( ) =
𝑖=1

𝐶

∏ 𝐼
𝑖

𝑥( )

2.1. Gaussian process interpolation of model constraints

The unit hypercube containing the feasible DS is sampled from distribution𝐻𝑛 Ω𝑛 𝑝 𝑥( )
and the values of model constraint are computed at the sample points. A Gaussian𝑔(𝑥)
Process interpolant is then fitted on the set of sample points, and additional samples can
be generated as required by the convergence criteria.

A Gaussian Process (GP) over the constraint function is a stochastic process𝑔
comprised by an infinite collection of random variables any finite subset of which,

, is normally distributed as shown in (Rasmussen, 2004)𝑌 = 𝑔 𝑥 1( )( ), …, 𝑔 𝑥 𝑁( )( ){ }
𝑝 𝑌( ) = 𝑁 𝑚 𝑥( ), 𝐾 𝑥, 𝑥'( )( ) (2)

where is the mean function, and𝑚 𝑥( ) = 𝐸[𝑥] 𝑘 𝑥, 𝑥'( ) = 𝐸 𝑥' − 𝑚 𝑥'( )( ) 𝑥 − 𝑚 𝑥( )( )[ ]
denotes a positive-definite covariance function corresponding to two points .(𝑥, 𝑥')∈𝐻𝑛

Bayesian inference of GPs allows using a prior distribution in Eq. 4 to derive a posterior
conditional distribution based on a set of model evaluations. The latter is used as a
predictive distribution over at any testing point . Considering a training set𝑔(⋅) 𝑥

*
∈ 𝐻𝑛

and a test sample distributed according to ,𝑋 = 𝑥 1( ), …, 𝑥 𝑁( ){ } 𝑋
*

= 𝑥
*
1( ), …, 𝑥

*

𝑁
*( )

 { } 𝑝(𝑥)

the joint distribution of the corresponding random variables based on a GP is given by

𝑝 𝑌, 𝑌
*( ) = 𝑁 𝑚 𝑋( ) 𝑚 𝑋

*( ) [ ], 𝐾
𝑋𝑋

 𝐾
𝑋𝑋

*

 𝐾
𝑋

*
𝑋

 𝐾
𝑋

*
𝑋

*

 ⎡
⎢
⎣

⎤
⎥
⎦( ) (3)

where . GP interpolation is based on conditioning the probability𝐾
𝑋𝑋

*

= 𝑘(𝑋, 𝑋
*
)

density function (Eq. 3) for non-parametric estimation of . Assuming , it𝑌
*

𝑚 𝑥( ) = 0
follows that

𝑝 𝑌, 𝑋, 𝑋
*( ) = 𝑁 𝑀

*
, Σ

*( ) (4)

where and𝑀
*

= 𝐾
𝑋

*
𝑋

𝐾
𝑋𝑋
−1𝑌 Σ

*
= 𝐾

𝑋
*
𝑋

*

− 𝐾
𝑋

*
𝑋

𝐾
𝑋𝑋
−1𝐾

𝑋𝑋
*

2.2. Confidence level of indicator approximation

Conditioning the GP on a training sample and a test point , the posterior density𝑋 𝑥∈𝐻𝑛

function of is , where are given by Eq. 4.𝐺𝑃(𝑥) 𝑝 𝑌, 𝑋, 𝑥( ) = 𝑁 µ
𝑥
, Σ

𝑥
 ( ) µ

𝑥
, Σ

𝑥
Considering , the conditional posterior distribution is used to𝑔(𝑥) ≥0⟺𝐼 𝑥( ) = 1
express the probability that test point is feasible according to the approximation of the𝑥
constraint by the GP:
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𝑃 𝐼 𝑥( ) = 1( ) ≈ 𝑃
𝐼

𝑥( ) = 𝑃 𝐺𝑃 𝑥( )≥0( ) = 1 − 𝑃 𝐺𝑃 𝑥( ) < 0( ) (5)

where is computed using the normal cumulative distribution𝑃
𝐼

𝑥( ) = 𝑃 𝐺𝑃 𝑥( )≥0( )
function of the GP-based approximation:𝐹

𝐺𝑃(𝑥)
(0)

𝑃
𝐼

𝑥( ) = 1 − 𝐹
𝐺𝑃 𝑥( )

0( ) = 1 −
−∞

0

∫ 𝑝 𝑌, 𝑋, 𝑥( )𝑑𝑢 = 1
2 1 −

−µ
𝑥

Σ
𝑥

2( ) ⎡
⎢
⎣

⎤
⎥
⎦

(6)

Using the measure of uncertainty around the approximation of the exact in Eq. 6, a𝐼 𝑥( )
GP-based indicator is computed by introducing a threshold in theΙ

~
ε

𝑥( ) ε∈ 0, 1( )
estimated . Hence, an approximate DS is described as𝑃

𝐼
𝑥( )

Ω
~𝑛

= 𝑥: Ι
~

ε
𝑥( ) = 1{ } = 𝑥: 𝑃

𝐼
𝑥( ) ≥ ε{ } (7)

The uncertainty threshold represents the lowest level of confidence which can beε
tolerated in the approximation of by the GP. Therefore, serves as a quality metric𝐼 𝑥( ) ε
when evaluating at the design point and as a classifier parameter which isΙ

~
ε

𝑥( ) 𝑥
applied on the intrinsic uncertainty of the GP-based estimates rather than their mean
values. The method can be extended for multiple inequality constraints, when GPs𝐶
must be trained for the identification of the corresponding DS such that

.Ω
~𝑛

= 𝑥:
𝑖=1

𝐶

∏ Ι
~

ε

𝑖
𝑥( ) = 1

⎰
⎱

⎱
⎰

Convergence of the approximate indicator of to the true one can beΙ
~

ε
𝑥( ) Ω

~𝑛
𝐼 𝑥( )

assessed using the volume of the approximate DS . The latter can be computed using𝑉
Ω
~

ε

𝑛

a large but computationally inexpensive Monte Carlo (MC) sample of the GP of size
:𝑁

*
≫𝑁

𝑉
Ω𝑛 = ∫ 𝐼(𝑥)𝑑𝑥 ≈ 𝑁

*
−1

𝑖=1

𝑁
*

∑ Ι
~

ε
𝑥

𝑖( ) = 𝑉
Ω
~

ε

𝑛 (8)

Convergence of to depends on the size of training sample , size of and the𝑉
Ω
~

ε

𝑛 𝑉
Ω𝑛 𝑁 𝑁

*

value of . With increasing , in Eq. 6 decreases for all leading toε 𝑁 Σ
𝑥

𝑥 ∈ 𝐻𝑛

convergence of to . It can be shown that for any there existsΙ
~

ε
·( ) 𝐼 ·( ) ε ∈ 0, 1( ) Σ

0
ε( )

corresponding to a finite number of training samples such that for each𝑁
ε

𝑥∈𝐻𝑛

and . Thus, the convergence of is uniform in overΣ
𝑥

≤ Σ
0

ε( ) 𝑉
Ω
~

ε

𝑛 − 𝑉
Ω𝑛

|
|
|
|

|
|
|
|

< δ
ε

𝑉
Ω
~

ε

𝑛 ε

for training sample of size and for all except or 1. The0, 1( ) 𝑁 > 𝑁
ε

𝑑
𝑑ε 𝑉

Ω
~

ε

𝑛→0 ε ε = 0

latter can be used as a convergence criterion for the approximation of .𝑉
Ω𝑛

908



Design Space Approximation with Gaussian Processes

3. Results
The proposed framework was tested with an inequality constraint based on Sobol’
product function (Eq. 9) because of its properties including nonlinearity,
non-smoothness, symmetry and scalability in higher dimensions.

ℎ 𝑥
1
, ⋯, 𝑥

𝑛( ) = 1 −
𝑖=1

𝑛

∏
4𝑥

𝑖
−2| |+𝑎

𝑖
 

1+𝑎
𝑖 

≥0,   𝑎
𝑖

= 𝑖 − 1 (9)

Considering that inputs are uniform iid variables, sampling is performed in using the𝐻𝑛

space-filling Sobol’ pseudo-random sequence (Sobol et al., 2011), which accelerates
convergence in higher dimensions compared to conventional random number
generators.

Without implying any knowledge of , the GP is defined by zero mean and squaredℎ(⋅)
exponential covariance function as commonly suggested in most applications. Based on
a confidence threshold for the definition of the feasible DS, and training95% 𝑁 = 211

samples for the GP, Figure 1 shows the 2-dimensional boundary of Eq. 9. Herein, ℎ(⋅)
represents a non-smooth example of how DS identification based on integration of the
Gaussian uncertainty around the interpolant can achieve a robust DS approximation
without significant loss of feasible volume. However, in higher dimensions and for
highly non-smooth constraint functions the performance of a GP-based surrogate
indicator it is expected to deteriorate.

Figure 1: Exact DS boundary and its approximation based on 95% confidence

Figure 2(a) demonstrates how increasing the number of training samples, , reduces the𝑁
uncertainty in a 6-dimensional DS volume approximation, by showing that the effect of

on becomes less significant as sampling size grows. Based on this, isε 𝑉
Ω
~

ε

𝑛
𝑑

𝑑ε 𝑉
Ω
~

ε

𝑛

suggested as a measure of convergence of and hence of the approximate indicator𝑉
Ω
~

ε

𝑛

. Indeed, only if around any discrimination between feasibleΙ
~

ε
𝑥( ) 𝑑

𝑑ε 𝑉
Ω
~

ε

𝑛

|
|
|
|

|
|
|
|

< 1 ε≈0. 5

and infeasible subspaces of is possible. In applications where a conservative value of𝐻𝑛

909



P. Demis et al.

(close to one) is required, because no violation of the constraints can be afforded, theε
approximated is smaller, thus there is a tradeoff between the level of confidence in𝑉

Ω
~

ε

𝑛

the approximation and feasible DS volume for any fixed training sample of size .𝑁

The problem of approximating the DS is magnified in higher dimensions due to the
curse of dimensionality. As dimensionality increases, the volume of a subspace with a𝑛
characteristic linear dimension decreases exponentially. Thus, the size of the𝐿 < 1
training sample required to achieve a good approximation of increases𝑁 Ω𝑛

significantly. Figure 2(b) illustrates the effects of the curse of dimensionality when
using a fixed sample size ( ) and indicates that the convergence of to its true𝑁 = 210 𝑉

Ω
~

ε

𝑛

value may be slow in higher dimensions.

Figure 2: The effect of confidence threshold on DS volume approximation whenε
increasing size of training sample (a) and dimensionality (b)

4. Conclusions
A computational framework for efficient approximation of the process Design Space is
introduced, based on the use of Gaussian Processes as surrogate models of inequality
constraint functions describing process safety, reliability and product quality. Gaussian
Processes play a dual role as a flexible and inexpensive interpolation method for a wide
class of constraint functions, accelerating sampling-based exploration of the process DS
and measuring the uncertainty in the estimated constraints feasibility. In our approach,
the quality and robustness of DS approximation can be controlled through the size of a
training sample and desired confidence level. However, the method is not immune to the
curse of dimensionality with a large number of training points and full model
evaluations required in higher dimensions for reliable DS identification.
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Abstract 

Online learning methods, such as moving window (MW) and just in time learning (JITL), 

have been proposed in the literature to remedy concept drift problem deteriorating soft-

sensor performance. While these methods are effective against different types of drifts, a 

single method may not be sufficient in combating against heterogeneous concept drifts. 

In the current study, we propose combining MW and JITL methods within a transfer 

learning frame coupled with a relevant instance selection method to improve the 

prediction accuracy offered by either method. The proposed method involves i) forming 

a relevant sample of historical observations via backward elimination of the clusters 

composed of the extended nearest neighbors of the query point, ii) constructing a task 

transferred JITL model via kernel ridge regression, and iii) using a transductive MW 

learner. Employing the proposed method on two publicly available real benchmark 

datasets yields highly accurate predictions, showing convenience for industrial 

applications. 

 

Keywords: Concept drift, K-means clustering, Kernel regression, Online learning, 

Relevant sample. 

1. Introduction 

Soft-sensors are predictive models used to exploit information extracted from the 

secondary process variable measurements for online prediction of the quality variables in 

chemical processes [1]. Rise of the machine learning in the last ~20 years has rendered a 

shift in the design methodology of soft sensors from mechanistic to data-based paradigm. 

While state-of-the-art learners make it possible to obtain sufficiently accurate predictions 

for future operations similar to those used in the training set, changes in process 

conditions, i.e. concept drifts, may easily deteriorate the prediction accuracy of any 

leaner. In “virtual” concept drifts, only the distribution of the secondary variables 

(features) is perturbed, while the functional relation between the secondary and quality 

variables changes under “real” concept drifts [2]. Various online learning methods are 

proposed to reduce the harmful effects of concept drifts, such as moving window (MW) 

and just-in-time-learning (JITL) models. The former method involves using a sliding 

window, consisting of the most recent observations for the training set, while the latter 

involves choosing the most relevant observations, usually obtained by a variation of 

nearest neighbor (NN) criterion. It is known that MW is affective against real and gradual 

concept drifts while JITL is affective against abrupt recurrent virtual drifts [3]. Industrial 

processes, however, encounter heterogeneous concept drifts, hence it is not reasonable to 
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expect a single MW or JITL model to maintain its prediction accuracy during the whole 

operation.  

 

Transfer learning offers a new perspective for predicting a target task, for which a small 

number of labeled observations exist, via utilizing information from a source domain with 

a larger number of labeled samples [4]. We have recently proposed transductive MW 

(MWtr) [5], and task transferred JITL coupled MWtr (JITLTT-MWtr) learners [6] for 

combining MW and JITL models in a transfer learning perspective, and shown that high 

predictive accuracy can be reached against heterogeneous concept drifts. In these studies, 

however, i) we did not check the relevance of the NN points with the current task, and ii) 

we used linear learners for the JITL model. In the current study, we improve these issues 

using an adaptive task transferred JITL coupled transductive MW (AdJITLTT-MWtr) 

learner. Application of AdJITLTT-MWtr on three cases from two publicly available 

industrial real datasets shows that the proposed online learner has significantly high 

predictive accuracy, and is robust with respect to learning parameters.  

2. Online Learning Methods 

In supervised machine learning, a historical dataset of N points {(𝒙𝑛 , 𝑦𝑛)}𝑛=1
𝑁  with 𝒙𝑛 ∈

ℝ𝑝 and 𝑦𝑛 ∈ ℝ is used to predict the response (or quality) variable (�̂�𝑁+1) of the test 

(query) point 𝒙𝑁+1. When the mapping function from the features to the quality variables, 

𝑓(𝒙𝑛), changes with respect to the domain of the features and/or time, online learning is 

more convenient in adapting the predictive function to the current task, contrary to batch 

learning, which offers a constant predictive function. 

2.1. Moving Window (MW) and Just-in-Time-Learning (JITL) 

Most of the online learning schemes in soft-sensor design for chemical processes involve 

choosing relevant training samples. The most recent samples are selected in MW 

modeling, while JITL is commonly based on the selection of the most similar samples to 

the test point in the feature space. The rationale behind sample selection methods lies in 

combating real and virtual concept drifts; the current task is assumed to be more 

accurately represented by the recent samples, and samples collected in the current domain 

of the query point. To improve the prediction performance of single MW or JITL models, 

novel methods using ensemble techniques [7], and combinations of MW and JITL [8] are 

proposed in the literature. Prediction accuracy of MW and JITL models depends on the 

window size (W) and the size of NN set (K). While a small W usually yields a more 

accurate representation of the current task, the resulting training set would only span a 

limited subspace of the whole domain of operation. In JITL, sample selection based on 

feature similarity usually leads to a larger training set, comprising samples from various 

time segments, and spanning a wider subspace. Since linear learners are less prone to 

overfitting for small multicollinear datasets, we use a linear learner (Lasso) for MW, and 

a nonlinear learner (Kernel Ridge Regression) for JITL in the current study. 

2.2. Least Absolute Shrinkage and Selection Operator (Lasso) 

Sum of squares of fitting errors is regularized using the L1 norm of coefficient estimates 

and parameter λ in Lasso, also yielding an embedded feature selection mechanism [9]: 

min
𝛃

{λ ∑|β𝑗|

𝑝

𝑗=1

+ ∑(𝑦𝑛 − 𝒙𝑛
𝑇𝛃)2

𝑁

𝑛=1

}    (1) 
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2.3. Kernel Ridge Regression (KRR) 

In KRR, regression in feature space is regularized via L2 norm of regression coefficients:   

min
𝛃

{λ𝛃𝑇𝛃 + ∑(𝑦𝑛 − Φ(𝒙𝑛)𝑇𝛃)2

𝑁

𝑛=1

}    (2) 

Here, Φ(∙) corresponds to the nonlinear mapping of the input variables to the feature 

space. Using the “kernel trick”, which makes it possible to determine the inner product in 

Hilbert feature space using a kernel k(𝐱𝑖 , 𝐱𝑗) computed in the input space, the prediction 

for y𝑁+1 can be determined as follows: 

�̂�𝑁+1 = ∑ 𝑐𝑛

𝑁

𝑛=1

k(𝒙𝑁+1, 𝒙𝑛)    (3) 

In the above formulation, 𝒄 = (𝐈λ + 𝐆)−1𝒚, in which 𝐆 is the gram matrix with G𝑖𝑗 =

k(𝒙𝑖 , 𝒙𝑗), 𝑖, 𝑗 = 1, 2, . . 𝑁 and 𝒚 = [𝑦1 𝑦2 ⋯ 𝑦𝑁]𝑻 [10]. Simply put, using a positive semi 

definite kernel, representing the similarity between samples in the training set, the query 

point may be predicted using the similarity of the query point to the training samples. We 

use exponential kernel in the current study, i.e. k(𝒙𝑖 , 𝒙𝑗) = 𝑒𝑥𝑝 (−‖𝒙𝑖 − 𝒙𝑗‖
𝟐

𝟐
/2𝜎2).  

3. Transfer Learning 

In transfer learning, information in a source domain is used in predicting the task defined 

in the target domain. It is assumed that either i) the source domain (DS) and target domain 

(DT) differ, or ii) the source task (𝑓S(𝒙)) and target task (𝑓T(𝒙)) are different. The former 

and the latter scenarios are named transductive and inductive transfer learning, 

respectively. While there are various information transfer mechanisms, we have 

employed instance transfer in the current study. In industrial processes under 

heterogeneous drifts, we assume that the tasks governing the query point and small sized 

MW samples are identical, but the domains from which these two sets of points are 

sampled may be different. To solve this issue, we have recently proposed transductive 

MW learner (see Section 4.3) [5]. We also assume that the query point and JITL samples 

belong to identical domains, but possibly are governed via different task functions. To 

solve this problem, we have recently proposed task transferred JITL (JITLTT) learner (see 

Section 4.2) [6]. In JITLTT, we transfer a single sample from MW to NN set in order to 

adapt the JITL model to the current task. It should, however, be pointed out that even this 

mode of information transfer may not be sufficient for realizing a feasible task transfer of 

the JITL model, since there already may exist samples in the NN set detrimental for query 

point prediction.  

4.  The Proposed Method 

4.1. Adaptation of the NN Set to the Current Task 

The novelty of the current study lies in integrating a relevant data selection method to our 

recently proposed transfer learning methods. The fundamental motivation here is to select 

a subset of samples from an extended NN observations set, that “better” represents the 

current operation conditions. To this aim, first an initial NN set of the query point, based 

on Euclidean distance similarity of the feature values, is formed; then, this set is extended 

via including samples in time-proximity. Finally, a subset of the extended NN set that 

yields the smallest validation error for the MW samples is determined via backward 

elimination. The algorithm is described in detail as follows: 
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i. Determine the time-ordered NN samples set: Obtain NN={(𝒙𝑛𝑘
, 𝑦𝑛𝑘

)}
𝑘=1

𝐾
 from the 

samples in the historical dataset excluding the MW samples, with the ranked 

Euclidean distances {𝑑𝐸(1), 𝑑𝐸(2), … 𝑑𝐸(𝑁)}, such that 𝑑𝐸(𝑘) = ‖𝒙𝑛𝑘
− 𝒙𝑁+1‖

2
. 

ii. Identify different time segments, possibly corresponding to different operating 

regions in the NN set: Determine successive samples in NN set with L time lags 

separated, i.e. 𝑛𝑘+1 − 𝑛𝑘 > 𝐿, for 𝑘 = 1, 2, … 𝑁 − 1. Let total number of different 

time segments, from which NN samples are collected, be equal to T, e.g. if there are 

no two consecutive samples separated with L samples, then T = 1.  

iii. Extend each time segment to include the neighboring samples: For each time segment 

of samples, denoted by 𝐧𝑡 , 𝑡 = 1,2, … 𝑇, all time indices between the minimum and 

maximum indices, after extending by L/2, are included in 𝐧𝑡, e.g. taking L = 10, for 

a time segment 𝐧1 initially consisting of samples with indices {28,29,34,36,38}, 𝐧1 

is extended so as to include the time indices {23,24,… 43}. 

iv. Define the extended NNE set via concatenating the sample indices from each time 

segment: NNE ={(𝒙𝑛𝑘
, 𝑦𝑛𝑘

)}
𝑘=1

𝐾∗

,where 𝐾∗ = ∑ |𝐧𝑡|𝑇
𝑡=1 .  

v. Determine the principal component scores of the extended NN set: Perform principal 

components analysis on NNE, and obtain the first A scores vectors (𝐭) with 

eigenvalues greater than the average eigenvalue value. 

vi. Divide NNE into a predetermined number of clusters (C) using K-means on 𝐭 vectors. 

vii. Use backward elimination (BE) to determine the clusters with the smallest validation 

errors: Remove each cluster one by one, and predict the MW samples using KRR. 

Stop, when the validation set error starts to increase. Pool all the observations in the 

remaining clusters into a final “adapted” NN set (NNAd). Note that the elements and 

the size of the resulting NNAd set, which is to be used in JITL in the next section, are 

likely to be different from those of the initial NN set. 

4.2. Adaptive Task Transferred JITL (AdJITLTT ) model 

JITLTT was proposed in a very recent study [6], in which we transferred the nearest single 

point from MW samples to adapt the JITL model to the current task using a Lasso 

estimator. We, here, make two modifications to this method to meet the demands of the 

current study. First, we use all of the MW samples for regularization, and second, we use 

a KRR estimator for obtaining a task transferred predictive function 𝑓𝑆→𝑇(∙). We name 

this method Adaptive Task Transferred JITL learner (AdJITLTT): 

min
𝛃

{λ1𝛃𝑇𝛃 + ∑ (𝑦𝑘 − Φ(𝒙𝑘)𝑇𝛃)2

𝑘∈NN𝐴𝑑

+ 𝑤1
2 ∑ (𝑦𝑚 − Φ(𝒙𝑚)𝑇𝛃)2

𝑚∈𝑀𝑊

} 
   (4) 

The solution to Eq. 4 can also be easily determined in kernelized formulation shown in 

Eq. 3 to determine the pseudo-label (𝑦𝑁+1
∗ ) for the (N+1)th query point. 

4.3. Transductive MW Learner (MWtr)   

In MWtr model, deviations of the fitted value of the query point from its pseudo-label 

(𝑦𝑁+1
∗ ) is used as an additional penalty in a weighted Lasso formulation [5]: 

min
𝛃

{λ2 ∑|β𝑗|

𝑝

𝑗=1

+ ∑ (𝑦𝑛 − 𝒙𝑛
𝑇𝛃)2

𝑛∈𝑀𝑊

+ 𝑤2
2(𝑦𝑁+1

∗ − 𝒙𝑁+1
𝑻 𝛃)2} 

   (5) 

In this way, a model consistent with both MW samples and the JITL prediction is 

obtained, completing the formulation of the proposed AdJITLTT-MWtr method. The final 

prediction of the query point is obtained via �̂�𝑁+1 = 𝐱𝑁+1
𝑇 �̂�, in which �̂� is obtained from 

Eq. 5. 
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5. Results and Discussion 

5.1. Datasets Studied 

The proposed method was employed on two publicly available industrial benchmark 

datasets, a debutanizer column (DC) and a sulfur-recovery unit (SRU) [11]. DC is located 

in a desulfuring and naphtha splitter plant, and a soft sensor is to be designed using seven 

online measured secondary process variables for predicting the butane content in the 

bottom product. We divided DC dataset into 1000/1382 samples for training/testing via 

rolling-origin-recalibration (RORC) evaluation [5,6], respectively. A SRU is used for 

removing polluting agents from acid gas, and a soft sensor is to be designed using five 

online measured secondary process variables for predicting H2S and SO2 content in the 

tail gas of Maxisulfur plant. We divided the SRU dataset into 5000/5076 samples for 

training/testing, respectively. We used feature vectors of lagged measurement for JITL 

calculations, while we used only the current variable measurements for MW predictions 

[5,6]. For AdJITLTT-MWtr, RORC evaluation was conducted over a multidimensional 

grid of parameter values assigned to 𝜆1, 𝜆2,w1,w2 and 𝜎2 at fixed values of W, K and C 

for the training set. The parameter values, which yield the smallest RMSE for the training 

set, were used for testing. Additionally, we report a posteriori best-case results for MW, 

JITL and MWtr learners on the same test set data; hence, the current results reflect a 

conservative prediction performance of AdJITLTT-MWtr  compared to other methods. 

5.2. Metrics Used for Assessing Predictive Performance 

Root mean squared error (RMSE) and 𝑅𝑝𝑟𝑒𝑑
2  of test samples are used to assess the 

prediction accuracy of the learning methods: 

RMSE = √
1

𝑁𝑡𝑒𝑠𝑡

∑ (y
𝑛

− �̂�𝑛)
2

𝑁𝑡𝑒𝑠𝑡

n=1

 
(6) 

𝑅𝑝𝑟𝑒𝑑
2 = 1 −

∑ (y
𝑛

− �̂�𝑛)
2𝑁𝑡𝑒𝑠𝑡

n=1

∑ (y
𝑛

− �̅�)
2𝑁𝑡𝑒𝑠𝑡

n=1

 
(7) 

Above, �̅� refers to average of the quality variable measurements. 

5.3. Comparisons of Prediction Accuracy of AdJITLTT-MWtr  with Other Methods 

Table 1 shows that AdJITLTT-MWtr  is superior in prediction accuracy compared to other 

methods for all three quality variables. Low RMSE values obtained from predictions of 

AdJITLTT-MWtr over a range of K (size of the initial NN) and C (number of clusters) 

values demonstrate the robustness of the proposed method with respect to its parameters 

(Fig. 1). Skipping the adaptation step (Section 4.1) is shown to increase the RMSE values 

significantly, indicating that adapting the NN set to the current task is indeed helpful in 

decreasing prediction errors. It is also seen that using four clusters yields marginally more 

accurate predictions compared to other cluster sizes. 

6. Conclusion 

The current study aims to improve the recently suggested methods on reconciling MW 

and JITL models in an inductive/transductive transfer learning setting via including an 

adaptation of nearest neighbors in a kernelized regression frame. The merit of the current 

method lies in coupling a small size MW learner, aiming to focus only on the most recent 

task function, with a JITL leaner, constructed from a larger number of historical samples, 

that are consistent both with the current domain and the task. The proposed AdJITLTT-

MWtr method is shown to yield significantly high predictive accuracy on benchmark 

917 Employee adaptive just-in-time-learning in a transfer learning frame for 
Soft-Sensor design



 B. Alakent 

industrial datasets, and is robust with respect to its learning parameters. Overall, 

AdJITLTT-MWtr offers a promising soft-sensing methodology for chemical processes. 

Table 1. Comparison of prediction accuracy of various learners on all datasets. 

Datatset studied/ 

Online Learning Method  

DC SRU-H2S  SRU-SO2 

RMSE 𝑹𝒑𝒓𝒆𝒅
𝟐  RMSE 𝑹𝒑𝒓𝒆𝒅

𝟐  RMSE 𝑹𝒑𝒓𝒆𝒅
𝟐  

MW(i) 0.0288 0.978 0.0205 0.839 0.0164 0.900 

JITL 0.0537 0.923 0.0201 0.845 0.0245 0.776 

MWtr 0.0149 0.994 0.0153 0.910 0.0135 0.931 

AdJITLTT
-MWtr 0.0116 0.996 0.0138 0.926 0.0120 0.946 

i: Test results for MW, JITL and MWtr are taken from a previous study [5]. 

 
Figure 1. RMSE values for the test set obtained using AdJITLTT

-MWtr with K = {10, 

20,…50} and C = {3,4,5} for (A) DC (W=3), (B) H2S in SRU (W=2), and (C) SO2 in 

SRU (W=2) datasets. No adaptation refers to using the NN samples directly, i.e. skipping 

the adaptation step (Section 4.1), in JITLTT-MWtr. 
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Abstract
In power grid operation, optimal power flow (OPF) problems are solved several

times per day to find economically optimal generator setpoints that balance given load
demands. Ideally, we seek an optimal solution that is also “N-1 secure”, meaning the
system can absorb contingency events such as transmission line or generator failure
without loss of service. Current practice is to solve the OPF problem and then check a
subset of contingencies against heuristic values, resulting in, at best, suboptimal
solutions. Unfortunately, online solution of the OPF problem including the full N-1
contingencies (i.e., two-stage stochastic programming formulation) is intractable for
even modest sized electrical grids. To address this challenge, this work presents an
efficient method to embed N-1 security constraints into the solution of the OPF by using
Neural Network (NN) models to represent the security boundary. Our approach
introduces a novel sampling technique, as well as a tuneable parameter to allow
operators to balance the conservativeness of the security model within the OPF
problem. Our results show that we are able to solve contingency formulations of larger
size grids than reported in literature using non-linear programming (NLP) formulations
with embedded NN models to local optimality. Solutions found with the NN constraint
have marginally increased computational time but are more secure to contingency
events.
Keywords: Optimization, Machine Learning, Neural Networks, Power Grid Modeling

1. Introduction
1.1 Background
Power grids are very large, complex systems that require operation that is both
financially optimal and secure to unforeseen outage events. The US Federal Energy
Commission estimates that effective optimization of power grids can save tens of
billions of dollars annually (Cain et al. 2012). Furthermore, the need for powerful
optimization tools will only increase as more renewables and non-conventional energy
sources are added to the grid. This is largely done via optimal power flow (OPF)
programs which balance real-time load demands with generator outputs in the most
economically optimal way. Some approaches to solving OPF include rigorous
formulations with non-linear and non-convex functions (AC-OPF), convex relaxations

http://dx.doi.org/10.1016/B978-0-323-88506-5.50142-X

PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.



Z. Kilwein et al.

of this problem (e.g. Second Order Cone OPF), and linear approximations (e.g.
DC-OPF) that are standardly used in industrial applications. In the case of AC-OPF,
further distinction can be made between local and global solution algorithms due to
non-convexities. This work focuses on the optimization of the rigorous AC-OPF
formulation with local solvers, since it can handle large problems without
approximating underlying power flow physics and very often achieves solutions close to
global optimality (O’Neill et al 2012).
As grids are operated close to their optimal points (i.e., less conservatively), security
must be considered as they are more prone to system component failure that may result
in serious financial and safety consequences. Operating at suboptimal set points will
yield significant cost increases, whereas economically-optimal though insecure set
points have potentially catastrophic consequences under a contingency event, as
cascading failures can cause blackouts for millions of people. Therefore it is incumbent
upon system operators to balance these interests effectively. One way to check system
security is to simulate system failures and enforce the resulting security of the system as
constraints. If this is done for every component in the system, it is said to be N-1 secure.
While the scalability and accuracy of AC-OPF algorithms have seen major
improvements for both local and global techniques, ensuring N-1 security remains
challenging. The current practice is to solve the OPF problem without consideration of
contingencies, and then check the solution for N-1 feasibility. If the solution is not
feasible, heuristics are used to add constraints to the OPF problem, and the process is
repeated. This approach yields suboptimal results, and since only a subset of the
contingencies is typically checked, this may also yield insecure results. While it is
possible to formulate a two-stage stochastic programming problem that considers all
contingencies, this large scale problem is not tractable for realistic networks. This work
aims at solving security constrained (SC) AC-OPF problems with the aid of deep Neural
Networks (NN) that can be trained offline to learn the input space of the original
optimization problem that is N-1 secure. The trained NN model can then be used as a
single constraint to enforce N-1 security of any resultant AC-OPF solution across the
input space and contingency events.
1.2 Literature Review and Contribution
Capitanescu et al. (2011) provide a thorough review of previous research in the area of
SC OPF and future methods that may address some of the challenges detailed above.
Heuristic methods are frequently used in practice, but more robust relationships can be
derived as algebraic constraints. However, due to the problem size and complexity, fully
detailed formulations remain intractable and often reduced or simplified techniques are
required. Gutierrez-Martinez et al. (2011) trained non-linear regression models and
single layer NN models to find the security boundary of a given load profile for the
worst case contingency. Our work builds on this by using deep NN models as a map of
the secure and insecure space of all contingencies of interest, variable generation
patterns, and higher dimensional representations of the security boundary. Velloso et al.
2020 replace the full SC AC-OPF with a NN model that includes physics-based
constraints via a Lagrangian-dual. Venzke et al. (2020) trained a NN security classifier
with ReLU activation functions and added the constraints to the AC-OPF problem as a
set of linear constraints with binary variables that results in a mixed-integer non-linear
program (MINLP). They linearize the power equations to convert this to a MILP.
This work instead maintains the non-linearity of the NN based security-constraints and
formulates the overall problem instead as a nonlinear program (NLP) that can be solved
efficiently via interior-point methods. Some key advantages of our approach include: (a)
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computationally challenging security simulations are performed offline, (b) security is
represented by a single NN constraint without integer variables, (c) the fully detailed
AC-OPF formulation is used, (d) the security constraint scales linearly with grid size,
and (e) our method is implemented within the Pyomo platform that enables easy
integration with Python-based algorithms for training ML models.

2. Overview of Methods
2.1. AC Optimal Power Flow Problem Formulation

Below, the AC-OPF formulation used in this work is given. Real power, reactive power,
voltage magnitude and voltage angle are denoted by p, q, v and θ respectively. N and K
denote the sets of all nodes and branches in the system.

(1)𝑀𝑖𝑛 𝐶 𝑝𝑔( )
(2)𝑠. 𝑡.  
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(13)        (𝑝
𝑘
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Eq 1 minimizes the cost of real power at generator buses. Eqs 2-3 represent the nodal
power balance derived from Kirchoff’s Law. Power flow through each branch is given
in Eqs 4-7. Finally, Eqs 8-14 ensure the AC-OPF solution is secure with no
contingencies (N-0). To check static N-1 security of an AC-OPF solution, (vn, pg) are set
for all generators, (pd, qd) for all loads, and (vn, θ) at the reference bus. Then under each
contingency in a given set, the specific element is taken out of the system (e.g., broken
line) and Eqs 2-7 are re-solved, without the objective function. If a solution is found that
satisfies Eqs 8-14, the solution is secure to that contingency. If this is true for all
contingencies, the system is said to be N-1 secure. An extensive formulation
guaranteeing N-1 security requires a scenario for each contingency, leading to a very
large non-linear two-step stochastic programming problem. In this work, we train a NN

921



   

to capture the N-1 security boundary and then embed this NN into the AC-OPF
formulation.

2.2. Sampling and Data Set Construction

While one major advantage of this approach is to shift computational costs to offline
contingency simulations, it is still necessary to have a methodology that samples data
points in an intelligent manner. The input space for the problem is very large with a
majority of points far from the security boundary. In order to train a NN model that
effectively distinguishes these regions, many points must be generated on the security
boundary itself in addition to secure/insecure points. Our sampling algorithm presented
below.

Sampling Algorithm for Boundary Points

Load_Factors=[LFmin,…,LFmax], Load_Dirs=[ ]𝐿𝐷⃑0, … , 𝐿𝐷⃑𝑗

for LF in Load_Factors:

sol=Solve_ACOPF(𝑝𝑑 * 𝐿𝐹, 𝑃𝑜𝑤𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑝𝑑/(𝑞
𝑑

+ 𝑝𝑑)2)
ysec=check_Nmin1(sol)  (check N-1 compliance of baseline sol’n)
for j in Load_Dirs:

while ysec=True:  (continue until no longer N-1 secure)
sol=solve_acopf( )𝑝𝑑 * 𝐿𝐷⃑𝑗 * 1. 1
ysec=check_Nmin1(sol)

A set of load factors is constructed between maximum and minimal values that give N-0
security. For each of these load factors, an AC-OPF problem is solved given this load
profile, and the resulting model is used to check N-1 contingencies via the method
described in Section 2.1. If the system is N-1 secure, the load vector is ramped up by
10% increases until the security check fails. The points directly before and after failure
are saved to enhance boundary classification. This is done for all LF’s, several load
ramping directions (normalized vectors generated via Latin Hypercube sampling), and
variable generation patterns (i.e.. variable generator costing parameters) resulting in an
increased set of boundary data points. Intermediate solutions that satisfy N-1
contingency are saved as secure and points that are infeasible for AC-OPF are saved as
insecure to complement the boundary data. This approach provides a set of points that
straddle the security boundary, producing a more balanced and targeted training set.

2.3. Neural Network Model Training

Using the constructed data-set, the next stage is to train a NN model that can predict
whether a given AC-OPF solution is N-1 secure. An important decision is the selection
of input variables. The real power setpoints at generators (pg) are included as they are
the ultimate variables in the objective function of AC-OPF, allowing for a direct
mapping. Power load (pd) at all buses are also included since they have a strong
correlation with grid security and improve NN accuracy. Thus, the input space of the
NN model scales linearly with the number of buses and generators. More input variables
may augment NN accuracy in future cases but didn’t show strong independent
correlation with system security. The Sequential model from Tensorflow’s Keras is used
as the basis for the feed-forward NN model. It is composed of two hidden layers of 20
nodes each and hyperbolic tangent activation function plus a softmax output layer.
Output variable ysec was set to 1 for insecure points and 0 for secure points. ADAM
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optimizer was used with a standard cross-entropy loss function. Training continued until
validation error plateaued or 4000 epochs were reached.

2.4. Constrained Optimization Formulation
The trained NN can now be thought of as a large non-linear constraint that must be
satisfied in order to return an AC-OPF solution that is secure under all contingencies.
The NN constraint can be added to the original optimization problem (Eqs 1-14) to
encode N-1 security.

(15)𝑦
𝑠𝑒𝑐

= 𝑁𝑁( 𝑝𝑑{ }, 𝑝𝑔{ })
(16)𝑦

𝑠𝑒𝑐
≤α

Using the trained weights and biases of the NN, Eqs 15-16 are embedded within the
AC-OPF model from Egret using Pyomo symbolic equation construction (Knuevan et al
2019). The resulting constraint is fully differentiable and able to be solved with IPOPT.
Parameter α is a scalar that controls the constraint conservativeness.

3. Results
Two case studies are used to demonstrate the method: the first (Case 30) contains 30
buses, 6 generators, 21 loads, and 41 branches. The contingency set includes branches
{1, 2, 3, 6, and 10}. The next (Case 118) contains 118 buses, 54 generators, 99 loads,
and 186 branches. The contingency set includes branches
{55,168,169,171,172,173,175}. The contingency set is selected during the sampling
process by eliminating contingency events that always make the system insecure or
never pose an issue to security. The unconstrained AC-OPF returns a solution that is not
N-1 secure for 45% of the sampled points for Case 30 and 64% for Case 118. This
proves that standard AC-OPF is inadequate for considering grid security. With the NN
constraint, the vast majority of insecure operating conditions can be identified and
avoided. The control of conservativeness by α can be illustrated through a receiver
operator curve (ROC) which shows the false positive and true positive rate of the NN
classifier. Figure 1 shows the ROC results for the NN classifier with the full training set
and for a model with half the training data.

Figure 1. Receiver Operator Curve (ROC) Results (Case 118)
Again, there is an expected trade-off between conservativeness and accuracy. While a
high true positive rate allows us the most confidence in grid security, the accuracy
trade-off would be important to tailor to the specific grid application. For an α value of
0.5, model accuracy is 89%, much better than base case AC-OPF. The results for Case
30 show nearly identical behavior on the ROC. Another important factor to consider is

AC  Optimal  Power  Flow  Solutions  with  Security  Constraints from  Deep
Neural Networks

923



computational time of the proposed approach, where it distinguishes itself from the
extensive formulation. Literature values for Case 118 take ~400 sec to run SC AC-OPF
(Kang et al 2015) on a single processor of Sandia’s Red Mesa supercomputer. Our
NNSC AC-OPF approach never exceeds 15 sec for all points, with an average of 7
sec.
One more important thing to consider is the effect of the security constraint on the
objective function. We can quantify the cost of incorporating the NNSC constraint by
considering the change in objective function value compared to the base case AC-OPF.
In order to distinguish meaningful cost increases (to preserve security) from an overly
conservative NNSC, models are tested with points that are base case secure and
insecure. Increases in the objective function are negligible for over 70% of secure test
points and the majority of remaining points constitute increases of less than 5%. This
shows that α of 0.5 does a good job of not being overly conservative with respect to
security. For insecure inputs, the objective function increases up to 50% in order to meet
the NNSC constraint. These solutions come with far greater confidence about security
under contingency but also come at an economic cost. Further comparisons with the
extensive formulation and cost/risk strategies would be needed to definitively set α in
real-world applications.

4. Conclusions
Power grid optimization and security is a vital area of research that can help save
money, avoid black-outs, and promote the integration of non-traditional energy sources
onto the grid. Using detailed simulations, it is possible to optimize very accurate models
of power grids using non-convex/non-linear formulations such as AC-OPF. Adding
security constraints for all N-1 contingencies to this problem is computationally
challenging and extensive formulations are intractable in large-scale grids. This work
addresses this challenge by approximating security constraints with a NN model that
can be trained offline and then embedded within a Pyomo-based model as a single
non-linear constraint. Results show that this approach can accurately estimate the
security boundary and provide a framework to balance optimality and security of system
set points. The NLP formulation allows for computationally tractable solutions even for
large grids.

Disclaimer: Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA0003525.
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Abstract 
Environmental and resilience are currently vital concerns when managing Supply Chains 
(SC). Doing so in a competitive setting, with diverse stakeholders' perspectives and dealing 
with unforeseen disruptive events is challenging. Today, this is a reality where, with the 
actual COVID-19 pandemic, supply chains face reduced demand and stoppages at different 
levels, calling for the urgent need to invest in designing and planning resilient SC. But 
resilience must not leave apart other vital goals as is the environmental goal, which 
nowadays requires special attention. This is especially critical in the process industries 
where environmental concerns are often at stake. We address this challenge in the current 
work by representing the cost associated with CO2 emissions, considering the EU 
emissions trading system (EU ETS). This system makes the cost associated with 
emissions a variable value attributed by the market. A Mixed Integer Linear Programming 
model (MILP) is here presented which allows to understand the supply chain resilience 
of different supply chain structures. This is done with the objective of maximising the 
Expected Net Present Value (ENPV) while facing disruptions, and the presence of 
uncertainty in demand is considered. The results show that our model can help decision-
makers to create resilient SC with good environmental behaviour and without 
compromising financial results. 

Keywords: Supply Chain Resilience, CO2 Emissions, Modelling 

1. Introduction 

Supply chain (SC) Resilience comes as a recent offspring of Supply Chain Management 
(SCM), with most of the attention only being given in recent years. Even with a multitude 
of definitions, one can define such behaviour as follows: "a resilient supply chain should 
be able to prepare, respond and recover from disturbances and afterwards maintain a 
positive steady-state operation in an acceptable cost and time" (Ribeiro and Barbosa- 
Póvoa, 2018). It is a field of study with research gaps to explore (Kamalahmadi and 
Parast, 2016), thus adding knowledge and simultaneously know-how on SCM. One of 
these research gaps is related to the inclusion of green concerns with economic goals 
(Fahimnia and Jabbarzadeh, 2016). 

The European Union (EU) has set an objective to reduce 80% of CO2 emissions by 2050 
(having 1990 levels as a reference value). To achieve this goal, one of the policy 
frameworks underway is the European Union Emissions Trading System (EU ETS). 

http://dx.doi.org/10.1016/B978-0-323-88506-5.50143-1
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Through this framework, also known as the "cap-and-trade" system, a maximum limit is 
imposed on the amount of greenhouse gases emitted. This limit is reduced over time so 
that total emissions are continuously decreasing. Within this set, organisations can buy 
emission allowances, which, as the name indicates, allow for a certain amount of CO2 
emissions. If the organisation is able to stay under the estimated emissions level, it can 
sell and trade these allowances or keep them for future needs. Allowances have become 
commodities, and auctioning is the default method for allocating them. Its value has been 
rising over the last year, currently reaching +153% of the reference value that existed until 
mid-2018, showing the upmost importance of considering CO2 costs in the supply chain 
decision-making process. 

It is then very relevant to explore the coexistence of environmental and resilience concerns 
when designing and planning a SC (Jabbarzadeh et al., 2018), even more in process supply 
chains where the environmental impacts are often a considerable concern (Barbosa-Póvoa 
et al., 2018). This study comes in a time of great pertinence to practitioners that are now 
making long-standing decisions in their SC, with the changes that arrive from new trends 
that complement the sustainability as is adaptability to new markets trends at a very fast 
pace. This type of decisions tends to be complex, with significant investments and 
implemented in the long term, adding special necessity for decision aiding tools regarding 
strategic and tactical decisions. 

This paper addresses this need and develops a strategic optimisation model that explores 
the relationship between Resilience and Green goals when designing and planning SC. A 
relationship that has failed to reach a consensus on its merits and benefits for companies. 
If on the one hand,w sustainability tends to reduce flexibility and redundancy, crucial for 
SC Resilience, on the other circular economy principles can add responsiveness to the SC. 
Here we aim at exploring the relationship between the two concepts and test if 
sustainability and resilience are compatible in SC. 

A European SC case study is studied, applying the new model where resilience and 
environmental concerns are considered, apart from the common SC profit. The strategic 
decisions regarding SC's design and planning are modelled in three periods of five years, 
leading the model to a 15-year time-span. Useful managerial insights are obtained to help 
in the process of acknowledging the full impacts of disruptive events in the fitness of 
operations under different scenarios and consequently, how much can proactive 
management contribute to a competitiveness advantage. 

 
2. Problem Characteristics and Model description 

The SC to be modelled is generic and involves five different echelons: Raw Materials 
Suppliers, Plants, Warehouses and Markets and with the possibility to outsource the 
production of final products and provide direct shipment to warehouses (see Figure 2). It 
allows for direct flows, transhipment in plants and warehouses, direct flows between 
warehouses and markets, and it also includes the possibility of reverse flows. Three types 
of reverse flows are considered: Non-conforming products that go from the markets to 
warehouses to be repacked and introduced in the forward SC; End-of-life products that 
are collected, when the expected lifetime of the product is reached, and are refurbished to 
be introduced in the forward SC; The products that fail to be refurbished are sent for 
disposal. Two different cases are considered: Case A, with only forward flows (in grey),  
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and Case E a Closed-Loop SC, with forward and reverse flows (in grey and orange). 

When studying resilience, there is the need to define disruptions on which to test the model, 
an activity that can prove itself challenging. One must define disruptions that represent a 
broad set of possible disruptions without falling into the error of defining disruptions that 
are too specific. Disruptive events are associated with some kind of unknowns in terms 
of risks. By choosing a type of disruptive events, it is possible to generate a representative 
set of disruptions that meet the objective of providing generic, but useful, results. These 
disruptions are then studied on each run of the model, as will be detailed below. 

The environmental impacts are assessed using the Life Cycle Assessment (LCA) 
approach. The system boundary defined is cradle to gate and the functional units 
considered are one kilogram of product and one kilometre travelled. The SimaPro 
software was used to determine the climate change impact (in CO2 equivalent) from: truck 
transportation in forward flows (per kg.km); truck transportation in reverse flows (per 
kg.km); final product production (per kg of product). 

In combination with the cost of 1 Kg of CO2, these parameters are used in the model to 
quantify the SC's environmental impact. 

 

Figure 1: A schematic characterisation of the SC, with its echelons and allowed flows. 

 Taking as point of origin the work published by Cardoso et al. (2015), the model here 
presented adapts to create a new model to fulfil the research objectives, described in the 
introduction, while maintaining the possibility of comparing and discussing the current 
results with previous results. The model possesses relevant characteristics. It includes a 
closed-loop SC, with forward logistics and reverse logistics and entails uncertainty, 
relevant when considering the time span needed for tactical and strategic decisions. 
Uncertainty is considered in the SC demand and on disruptions. A scenario tree is 
constructed, combining these two sources of uncertainty. Demand variability is introduced 
by generating a scenario on each period from a set of three possibilities (Pessimistic, 
Realistic or Optimistic). The probabilistic nodes are then combined with the variability from 
the disruption that can only assume two options, or it occurs, or it does not occur in a 
specific time period to consider. With this, each scenario probability is given by the path's 
probabilities, with all stages, between the root node and each final leaf node. The proposed 
model relies on maximising Expected Net Present Value (ENPV), also considering 
environmental costs, under a set of disruptions and uncertainty. 
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max ENPV = ∑ pbs × NPVs  (1) 

Expected Net Present Value (ENPV) is calculated considering each scenario probability 
(pbs), in the scenario tree, using cash flows and an interest rate. The net earnings come 
from the difference between the income (Sales revenue) and the costs (the refunds from 
non-conforming products, purchases, operational, inventory, transportation, depreciation 
of invested capital considering taxes, and the environmental costs defined in Equations 2 
and 3. Two environmental cost equations are considered, one to account for transportation, 
Equation 2, and another to account for the production of final products, Equation 3. The 
costs of the environmental impact of transport are given by the summation of emissions 
(Kg.km CO2 eq) associated with forward (envfactorforward) and reverse flows (env 
factorreverse) multiplied by the quantities shipped in forward (QPL) and reverse flows 
(QNC for non conform products and QEL for end-of-life products) multiplied by the cost 
of emitting one kg of CO2 (CO2Costt ) and the distance between the two locations 
(FIPLv,w), that is given by Equation 2: 

 

 

TranspCO2 = ∑(CO2Costt · ( ∑ 

 The cost of production emissions is given by the summation of emissions when a specific 
product p is produced multiplied by the cost of emitting one kg of CO2, which is given 
by Equation 3. Emissions for reverse product flows are expected to be lower than those 
that are produced directly from raw materials: 

CO2prodtot = ∑(costCO2t · ∑CO2eachpp) (3) 
t p 

The opinions diverge on the behaviour of the price of CO2 emission in the long term 
since there are two sets of factors that are plausible to happen, and that affects the price of 
CO2 in different directions. If in one hand, it is expected a continuous effort to reduce CO2 
emissions and therefore the public efforts to force companies to reduce CO2 emissions. 
On the other hand, these efforts can lead to the decarbonisation of the economy that 
drastically reduces demand for CO2 allowances. Considering these effects, three 
scenarios were generated: 

Stable scenario - The CO2 prices are kept constant at 27,1e/ton 
Up and Up scenario - The CO2 prices are expected to rise in each time period. 

t1=27.1e/ton t2=40e/ton t3=50e/ton 
Up and Down scenario - The CO2 prices increase in the shorter term but go down 

again in the longer term. t1=27.1e/ton t2=40e/ton t3=27.1e/ton 

Apart from the above objectives function the model involves a set of constraints (entity 
capacity constraints, transportation constraints, technology constraints) so as to correctly 
and thoroughly model the SC. This formulation can be explored in further detail in 
(Cardoso et al., 2013). 
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 3. Case Study 

The model is applied to a European SC that is interested in the improvement of its network 
design. The initial network relies on one plant in Hamburg with the possibility of opening 
new plants in Bilbao and/or in Milan. Each one of the new plants has a set of suppliers 
associated. There is also the possibility to open new warehouses or to upgrade the already 
existing ones. The activities performed by each entity are categorised as production 
technologies, that result in intermediate products; and assembling technologies, that 
combine products and result in the final products. Reverse logistics is implemented by 
disassembling technologies that can use final products (as defined in the Model 
description) to generate intermediate products. 

In this work, the SC will be tested under a reference scenario, where no disruption occurs, 
and three types of disruptions frequently used and as defined by Rice and Caniato (2003): 

Disruption 1: Supply - 100% decrease in the production capacity of the most 
important plant in time period 2, located in Milan. 

Disruption 2: Production - The most important raw material suppliers have their 
supply suspended in time period 2. These suppliers are located in Birmingham, Badajoz, 
Marseille, Ljubljana and Lausanne. 

Disruption 3: Transportation - The flows that carry the highest quantity of 
products are stopped in time period 2. In this case study that represents the flows from the 
factory in Milan to warehouses in Munich, Portsmouth and Bologna. 

The disruptions are implemented in the model by not allowing flows between the 
identified entities, as described above. 

 4. Results and Discussion 

The results of our model related to the ENPV are present in Table 1. Disruption 2 is the 
one that most affects the SC, as it has the lowest ENPV results (around 0,30E+07e) for 
both chain configurations as well as for the three cost evolution scenarios of CO2. On the 
other hand, disruption 3 is the one that least affects the system, with results very similar to 
the scenario without disruption in the case of forward SC, Case A. In the closed-loop SC, 
Case E, there is a decrease in ENPV. However, it ends up having economic results always 
greater than Case A. 

 Table 1: Expected Net Present Value (ENPV) for all scenarios and disruptions 
Case A - Forward Supply Chain Case E - Closed-Loop Supply Chain 

CO2 emissions cost scenarios CO2 emissions cost scenarios 
ENPV (e)  Stable Up & Up     Up & Down  ENPV (e)  Stable Up & Up Up & Down 

No disruption     1,74E+07     1,32E+07  1,42E+07 No disruption     1,86E+07     1,51E+07  1,61E+07 
Disruption 1 1,49E+07     0,99E+07 1,12E+07 Disruption 1 1,74E+07     1,33E+07 1,42E+07 
Disruption 2 1,40E+07     0,89E+07 1,03E+07 Disruption 2 1,72E+07     1,35E+07 1,41E+07 
Disruption 3 1,74E+07     1,32E+07 1,42E+07 Disruption 3 1,77E+07     1,43E+07 1,52E+07 

 From Table 2, a clear conclusion is that Forward SC (Case A) have a higher CO2 cost than 
SC with circularity principles (Case E). In cases where there is an increase in cost, this 
difference is about 1E06e when there is no disruption and greater than 2E06e in disruptive 
scenarios. 
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 Table 2: Total CO2 cost for all scenarios and disruptions 
Case A - Forward Supply Chain Case E - Closed-Loop Supply Chain 

CO2 emissions cost scenarios    CO2 emissions cost  scenarios 
CO2 Prod (e)  Stable Up & Up     Up & Down     CO2 Prod (e)  Stable Up & Up Up & Down 
No disruption     1,86E+06    6,15E+06  5,13E+06 No disruption     1,46E+06    5,38E+06  4,50E+06 
Disruption 1 1,91E+06    8,07E+06 6,54E+06 Disruption 1 1,54E+06    5,51E+06 4,66E+06 
Disruption 2 1,90E+06    8,03E+06  6,51+06 Disruption 2 1,50E+06    5,53E+06 4,86E+06 
Disruption 3 1,86E+06    6,16E+06 5,13E+06 Disruption 3 1,41E+06    5,21E+06 4,26E+06 

 
From the interpretation of our results, it can be said that the environmental concern 
approach compensates, even more, when the price of CO2 is expected to continue to rise. 
That is seen for Case E, not only is the return greater (ENPV), but the difference with the 
scenario without disruption is less. Thus, the variability introduced by disruptions is also 
reduced. 

The best result of Case E is mostly due to the fact that the environmental concern 
translates into a reduction in long-distance transport and a greater investment in facilities 
close to each other. This measure will increase resilience in the sense that it increases 
redundancy and flexibility, with more production facilities and more possible flows. The 
circular economy principles are also crucial, the production of final products from the reuse 
of end-of-life products leads to less dependence of factories on raw materials suppliers 
while reducing the total CO2 associated with a given product. 

Case E brings not only a higher return on ENPV but also a lower CO2 cost, which 
provides a fantastic opportunity for companies to take advantage of environmental 
concerns/obligations to build a more resilient SC. 
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Abstract 
Organic solvent nanofiltration (OSN) is one of the most anticipated separation 
technologies that provides wide-ranged industrial applications such as solvent recovery, 
solute concentration, and diluent separation. Despite of technical merits of the OSN 
technology, the numerous characteristics and perplexing nonlinearity on the OSN system 
have been a critical obstacle for understanding the governing principles, thereby 
prohibiting practical deployments. Recently, machine learning (ML) based approaches 
have been widely used for the modelling, discovery and optimization of complex design 
problems in chemical engineering area such as catalysis, electrochemistry and 
physicochemical systems. Therefore, this study aims to develop a new ML-based 
approach for modelling and optimizing the design scheme and operating condition of the 
OSN system. By collecting commercial OSN data through literatures reviews, the major 
descriptors for the prediction of the OSN membrane, such as MWCO, solute mole weight, 
solute concentration, solvent parameter, temperature, pressure, flux, were defined. We 
then screened noises and outliers of the collected data to ensure a high and consistent 
density and uniqueness. Support vector machine (SVM) was implemented as a prediction 
models to simulate the OSN performance and identify the optimal conditions as well as 
the process scheme. As a result, the optimal operation strategies (i.e., pressure, 
temperature and solvent and solvent types) were analyzed to meet the targeted 
specification of the OSN system (mass flux and rejection rate). The proposed ML-based 
approach can promote a real-world OSN application by reducing a number of time-
consuming and expensive experiments for establishing OSN design and operation 
strategy. 

Keywords: Organic Solvent Nanofiltration, Machine learning, Separation, Optimization  

1. Introduction 
Organic solvent nanofiltration (OSN) is one of promising separation technologies that 
provide economic and technical benefits compared to existing technologies (e.g., 
distillation) in petrochemical industries. To accelerate the practical deployment of the 
OSN technology, A number of studies have been reported in literature from a new 
material discovery to operation research in real industries.  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50144-3
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To facilitate the industrial acceptance and real deployment of novel OSN membrane, 
precise modeling methodologies should be accompanied, such as conventional the 
principles of thermodynamics and transposrt phenomenon. However, due to a huge 
number of design combinations with different solvents, solutes and membrane materials, 
predicting performance using first principles of thermodynamics and transport 
phenomenon requires a number of time-consuming and expensive experiments.  

Machine learning (ML) is one of artificial intelligence methods, which have widely used 
for modeling and predicting multi-dimensional and quite complex systems. Screening out 
possible metal-organic frameworks (MOF) structure and predicting lifespan of Li-ion 
battery are salient examples of ML technique employment. Likewise, the emergence of 
ML techniques on the OSN performance prediction problems has brought about 
advancements and has become relatively accessible by other disciplines.  

In this study, a new machine learning-based approach is developed to identify the optimal 
design strategy and operation condition of the OSN membrane. 884 OSN membrane 
datasets are collected and curated to define main descriptors of OSN membrane. Support 
vector machine (SVM) is then employed to predict the performance of OSN membrane 
using key descriptors affecting the membrane permeance and rejection, which were 
obtained through principal component analysis (PCA). 

2. Method 
2.1. Overview 

• Descriptor definition
 OSN design descriptors (e.g. MWCO, solute M.W. & conc., solvent parameter)
 Operating condition descriptors (e.g. temperature, pressure, process configuration)
 OSN performance (e.g. flux and rejection rate)

• Literature survey
 Commercial available OSN membrane datasets.
 Data extraction for database construction.
 Data transformation and loading

Data
Base

literature

Data collection

Data curation

• Model assessment  Model training set
 Model test set
 Model validation set

• Accuracy metrics
 Statistical estimators

(e.g.R2, MSE, RMSE)

ML-Prediction model development

• OSN performance prediction
 Flux and rejection rate prediction at different conditions.
 Finding the optimal operating condition and OSN design. (T1,P1). (T2,P2).

Prediction and optimization

70% 15% 15%

Figure 1: Overview of machine learning-based approaches on the OSN membrane 
performance prediction and optimization. 
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The main steps of this study are illustrated in Figure 1. The commercial OSN membrane 
data is collected from literatures. Datasets include OSN membrane characteristics such 
as material properties, operating condition, and OSN membrane performances. Among 
many OSN characteristics, critical OSN descriptors (e.g. molecular weight cut-off, solute 
mole weight, solute concentration, characteristic solvent parameter, temperature, 
pressure, process configuration, flux, and rejection) are defined from data curation step. 
Then, datasets are separated into training sets, validation sets, and test sets in order to 
verify the capability of prediction model. In this research, prediction model is developed 
by using the SVM. For prediction capability evaluation, three statistical estimators such 
as R2, MSE, RMSE are used. Finally, from predicting OSN performances (flux and 
rejection) at different conditions, the optimal operating condition and OSN design are 
qualitatively analysed by using the PCA. 

2.2. Data description  

CF
61%

DE
39%

MWCO (g mol-1) Solute M.W. (g mol-1) Solute Conc. (g L-1) Solvent parameter (Pa0.5 m-3)

Pressure (bar) Process configuration Flux (L m-2 h-1 ) Rejection (%)
Figure 2: Distribution of OSN descriptors. 

The distribution of OSN descriptors is illustrated in Figure 2. Descriptors are varied as 
followed: MWCO (150-1000 g mol-1), solute mole weight (0-1900 g mol-1), solute 
concentration (0-1.2 g L-1), characteristic solvent parameter (5-160 Pa0.5 m-3), pressure 
(20-60 bar), process configuration (dead-end, cross-flow), flux (1-416 L m-2 h-1), rejection 
(0-100 %). For temperature, most test were experimented at 25℃. 

2.3. Support vector machine (SVM) 
The SVM is a prominent ML technique for regression and classification analysis. By 
representing datasets in multidimensional descriptor space, the regression hyperplane is 
created. The mathematical model and constraint are described in Eqns. 1 and 2, 
respectively. 

* * * *1
min ( ) ( ) ( ) ( )
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l l
T

i i i i i

i i
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1
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                                                                    (2) 
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To ensure a high accuracy of the prediction model, the hyperparameter is optimized by 
using a grid-search algorithm.  Tables 1-3 compare the accuracy of major metrics by the 
SVM and the HO-SVM (Hyperparameter-optimized SVM). 

Table 1: Accuracy comparison between SVM and HO-SVM on training set 
Training set R2 MSE RMSE 
SVM (Flux) 0.939 155.120 12.454 

HO-SVM (Flux) 0.985 69.135 8.314 
SVM (Rejection rate) 0.959 77.001 8.775 

HO-SVM (Rejection rate) 0.966 58.577 4.671 

Table 2: Accuracy comparison between SVM and HO-SVM on validation set 
Validation set R2 MSE RMSE 
SVM (Flux) 0.934 388.648 19.714 

HO-SVM (Flux) 0.928 310.088 17.609 
SVM (Rejection rate) 0.903 176.58 13.288 

HO-SVM (Rejection rate) 0.940 107.286 10.357 

Table 3: Accuracy comparison between SVM and HO-SVM on test set 
Test set R2 MSE RMSE 

SVM (Flux) 0.914 397.255 19.931 
HO-SVM (Flux) 0.923 305.099 17.467 

SVM (Rejection rate) 0.906 175.139 13.234 
HO-SVM (Rejection rate) 0.960 66.534 8.156 

2.4. Principal component analysis (PCA) 
PCA is a dimension reduction technique that represents and visualizes multi-dimensional 
data. From simplifying multi-dimensional descriptor space, the most important 
information could be extracted by PCA. In this work, the predicted performances of OSN 
membrane is visualized and the effect of descriptors is analysed by PCA technique. 

3. Result 
Flux and rejection of the OSN membrane are predicted at conditions of MWCO (150-300 
g mol-1), solute mole weight (300 g mol-1), solute concentration (0.1-1.0 g L-1), 
characteristic solvent parameter (0-100 Pa0.5 m-3), pressure (10-40 bar), temperature 
(25℃), and process configuration (cross-flow). In the PCA of both flux and rejection, 
four dimensions that cover 96% and 87 % data variance are obtained.  

Table 4: PCA variance (dimension coverage) of each principal component on flux. 
Flux PC1 (%) PC2 (%) PC3 (%) PC4 (%) 

PCA variance 0.3695 0.2 0.2 0.2 

Table 5: PCA variance (dimension coverage) of each principal component on rejection. 
Rejection rate PC1 (%) PC2 (%) PC3 (%) PC4 (%) 
PCA variance 0.2723 0.2 0.2 0.2 
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Figure 3: PCA results on OSN membrane descriptors; (a-d) and (f-i) for MWCO, solute 
concentration, solvent parameter, and pressure, respectively; (e) and (j) for flux and 
rejection, respectively. (a-d) representing (e) and (f-i) representing (j). 

The effect of descriptors on OSN membrane performance is illustrated in Figure 3. In 
Figure 3 e and j, the flux and rejection rate are described and clustered. The level of OSN 
membrane descriptors is described in Figure 3 a-d and f-i, which are represented in flux 
and rejection rate dimension, respectively. 

The flux and rejection rate are described in three different levels, which are divided by 
distribution of datasets. For flux, levels are high (more than 200 L m-2 h-1), middle (100-
200 L m-2 h-1), and low (less than 100 L m-2 h-1). As well as in rejection rate, levels are 
high (more than 90%), middle (80-90%), and low (less than 80%).  

As shown in Figure 3 e, the clusters representing the flux level show that high flux 
datasets could be distinguishable from middle to low flux datasets. In case of the high-
flux level, OSN membrane tended to have high MWCO (Figure 3 a), high solute 
concentration (Figure 3 b), and high pressure (Figure 3 d). 

For the rejection rate in Figure 3 j, three different clusters are represented to analyse the 
effect of the major descriptors on the rejection rate. In particular, the high-rejection cluster 
was highlighted to distinguish the core OSN characteristics leading to the high rejection 
rate over the middle-and low-rejection rate clusters. On the other hand, it is also found 
that the OSN system with a low-concentration solute needs to be operated at low pressure 
to avoid low rejection rate. 

4. Conclusions 
The performances (flux and rejection rate) of the OSN membrane were predicted with the 
HO-SVM to investigate and understand the behaviour of the OSN system. In this study, 
using 9 main descriptors, including material properties and operation conditions, HO-
SVM model predicted the OSN performance at different design specifications and 
operation conditions. As a result, it was found that i) a high-flux OSN could be 
accomplished by applying high MWCO, high solute concentration, and high pressure and, 
ii) the operation strategies to ensure high rejection rate in the OSN membrane (e.g., low-
pressure operation for low-concentration solute) was analysed. Based on this study, the 
fundamental knowledge and understanding to design and operate the OSN membrane was 
preliminary discussed. As a future work, more detailed and practical ML-based guideline 
for the OSN membrane design and operation will be investigated by pointing out the 
optimal operation strategies as well as design solutions. 
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Abstract
Indian transport sector is the second largest greenhouse gas (GHG) emitter after power
sector. For climate change mitigation, transition to more sustainable transport options
such as ethanol blended petrol (E-85) and electric vehicle (EV) is necessary. However,
to understand how their adoptions evolve among privately owned vehicles, we have
developed a system dynamic model. System dynamics captures the underlaying causal
relation among the variables of the system and hence helps in understanding its
behaviour. Causal interactions, feedback loops and delays have been identified in the
system. Negative feedback loops connecting fuel supply to its demand, predict their
apparent prices. Fuel price adds to the ownership cost of respective vehicle, which is
used in logit model to determine respective annual purchase demand. Effect of
inconveniences associated with adoption of EV and fluctuation in ethanol supply have
been incorporated. Model predicts the penetration of E-85 and EV up-to 32.5 % of total
private vehicle stock by 2050. As a consequence, 5.2 billion tons of carbon dioxide
emissions can be saved. Market dynamics seems to be insufficient in encouraging high
penetration of renewable options. Stronger incentives and development of better
infrastructure could improve the situation.
Keywords: System dynamics, logit model, causal-loop diagram

1. Introduction

India is world's third-largest GHG emitter and second most populous country. India's
total GHG emission in 2019 were 132 million tons of CO2e (Joshi& Chen, 2020). Indian
government has pledged to reduce emission intensity by 33-35% by 2030 compared to
its 2005 level according to the Paris agreement target. Transition to renewable energy
sources for transport sector has been recognized as an essential move to meet this
pledge. In this regard, government has set a target of achieving 20% blending of ethanol
in gasoline and 30% penetration of electric vehicles in new sale by 2030. However,
penetration of new transport options among existing once seems difficult owing to large
size and complex nature of transport sector. In order to understand how adoption of
these options will develop in future, it is necessary to explore the cause-and-effect
interaction among variables, which thus defines the dynamics of the transport sector.
System dynamics (SD) modelling is a promising approach to perform such studies. This

http://dx.doi.org/10.1016/B978-0-323-88506-5.50145-5
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methodology has been used previously to understand transition from ICE to
EV(Pasaoglu et al., 2016; Vilchez et al., 2013) Also it has been used to test the
effectiveness of various energy policies on transport sector(Menon & Mahanty,
2015).This has motivated the use of SD modelling in present research work. This
research aimed at understanding the adoption of renewable transport options, i.e., E-85
and EV among private vehicles. Model could be used to study the implication of
penetration of these options on GHG emissions and fuel prices. Also, this study could
help in designing policies in order to meet desirable sustainable development goals.

2. Model development

System dynamics helps in analysing the behaviour of complex socio-economic systems
due to underlaying interactions which governs the dynamics (Forrester, 1994). To
develop a SD model, first step is to develop a causal loop diagram (CLD). It depicts
causal relation that exist between variables of the system. This requires a good
understanding of how two variables interact. The next step is to formulate mathematical
equations which go as input to the model. The specific functional form of equation is
decided based on either causal relation or historical trend. Equation parameters are
estimated through fitting historical data to the proposed function. SD model developed
in this work focuses on private transport vehicles in India. Important assumptions of the
model are: -

1. Ownership cost is the only decisive factor in determining the purchase demand
for various vehicle options

2. The number of vehicles and distance travelled per vehicle are always related to
per capita GDP

3. Fuel price is always related to fuel supply-demand dynamics
4. Electricity price is considered as independent of electricity demand coming

from transport sector
The CLD of the model is shown in Fig.1. Population and GDP per capita positively
influence the demand for car and two-wheeler, which is divided among various
available options. Annual demand of vehicle adds to vehicle stock, which increases the
fuel demand. Dynamics of fuel demand and supply impacts the fuel price. Annual fuel
expense of vehicle adds to the ownership cost of vehicle, which is used in logit model to
determine the annual demand for the vehicle for next time step.

1. Model inputs
Car and two-wheelers ownership and annual distance travelled are the inputs to the
model. From annual car and two-wheeler ownership, annual demand for cars and
two-wheelers are calculated. Correlation of vehicle ownership and annual distance
travelled with per capita income is represented by Gompertz function. S-shape of the
function gives more realistic growth of these variables than other logistic functions.
Parameter values were estimated by fitting historical data.

2. Gasoline and diesel prices
Gasoline and diesel prices are positively influenced by their respective demand and
brent crude oil price (Fig. 1). Differential equations are formulated to capture the impact
of the annual change in fuel demand and brent crude oil price on annual change in
respective fuel prices. Annual change in fuel price for ith time step is added to respective
fuel price in i-1th time step to get the fuel price at ith. The equation coefficients are
estimated by minimizing the sum of square of error between actual and predicted
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Figure. 1: Causal loop diagram

gasoline and diesel prices between 2001-2018. Calculation of fuel prices are shown in
Eq. 1and 2:

(1)

(2)

Where, and are gasoline and diesel prices, , and, are
annual change in brent crude oil price, gasoline and, diesel demand respectively.

3. Ethanol supply, demand and pricing

Biorefineries producing ethanol from molasses and lignocellulosic biomass have been
considered. If biorefinery generates profit, it encourages more investment in the sector,
thereby resulting in greater production. Impact is inverse in case sector incur a loss.
Since biorefineries require high capital investment and multiple years for erection and
commissioning, the model has captured the time-lag in the impact of profit/loss on the
actual increase/decrease in the ethanol production using ARX time series model. The
equation parameters are estimated by fitting historical data. The ethanol production
equations are given by Eq. 3 and 4:

Adoption in Indian Transport Sector
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(3)

(4)

Where, , , and, are ethanol production capacity in million litres
and profit earned in INR by molasses and biomass based biorefineries respectively.

Literature have reported reduction in production cost of biomass-based ethanol

falls within range of 15-25% as capacity doubles (van den Wall Bake et al.,

2009). Based on this it is assumed that production cost will reduce by 15% for

lignocellulosic ethanol. Production process of ethanol from molasses is fairly

matured hence production cost is assumed constant. Ethanol demand comes

from E-85 vehicle stock and mandatory blending in gasoline. Refinery gate

price of ethanol is the price at which biorefineries sell their ethanol to oil

manufacturing companies. If ethanol demand is higher/lower than supply then

refinery gate ethanol price will have proportionate influence, as shown by

negative causal relation in Fig.1.

4. Electric vehicles and associated inconveniences

Adoption of EVs is associated with many challenges from consumers’ side. The model
considers two basic inconveniences, i.e., insufficient charging stations and long
charging time. Insufficient charging stations lead to limited options for charging.
Additionally, slow charging may further affect the desirability of an EV for a consumer.
Among these, inconvenience due to lack of charging stations is considered as common
for both electric car and two-wheeler as shown in CLD. This is because the charging
stations would be shared by both. Inconvenience due to long charging time would be a
function of their battery capacity. Hence, this would be vehicle specific. The model
converts these inconveniences into monetary values and adds that to the total cost of
ownership of the vehicle. Higher inconvenience results in higher ownership cost thereby
reducing the demand for EVs. The inconvenience due to lack of charging stations is
calculated by comparing existing number of stations with the number of stations ideally
required based on electric vehicle stock. Calculation of inconvenience cost due to
insufficient charging stations and long charging time is shown in Eq. 5 and 6:

(5)
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(6)

where, ICS, ICT are inconvenience costs due to insufficient charging stations and long
charging time, CSi, CSa are ideal and actual number of charging stations, CS, CSC and,
CFC are the setup cost of station, slow and fast charger, EVstock and Ecar

stock are combined
EV stock and electric car stock respectively. Inconvenience due to insufficient charging
stations is the additional funds required to setup charging stations to meet the ideal
requirement. The inconvenience due to long charging time is the fund required to pay in
order to save the additional time required to charge electric car by a slow charger.

5. Ownership cost and logit model

Ownership cost of vehicle is the sum of annualised purchase price, fuel expense and,
maintenance cost of vehicle. Vehicle purchase price and maintenance cost are inputs to
the model. Fuel expense is determined from feedback loops of the model. Ownership
cost of vehicle is negatively related to vehicle demand. Literature have used logit model
to calculate purchase probability of various vehicle models in competition(Lin &
Greene, 2015). Based on this the purchase probabilities nth vehicle option having OCn as
ownership cost is calculated using logit model as shown in Eq. 7.

(7)
The parameter μ in the Eq.7 is called scale parameter. It gives the statistical dispersion
of probability distribution. Estimation of coefficient μ for car and two-wheelers is
performed by comparing the historical sales of petrol and diesel driven vehicles.

3. Results
Based on model formulation and assumptions we have modelled two scenarios:
business-as-usual (BAU) and new technology adoption (NTA). BAU scenario assumes
no penetration of any renewable transport options. Hence available options in BAU
scenario are gasoline and diesel driven cars and gasoline driven two-wheelers. NTA
scenario assumes penetration of E-85 and electric cars and two-wheelers. Fig. 2 shows
composition of private vehicle stock which includes car and two-wheeler stocks in 2050
for both scenarios. It shows 87% of private vehicle stock will be gasoline and rest will
be diesel driven in BAU scenario. There is a reduction in gasoline and diesel driven
vehicles in NTA scenario, as it is taken over by E-85 and electric vehicles. As diesel
cars only forms the diesel vehicle stock, the reduction is not as significant as gasoline
vehicle stock. E-85 vehicles have slightly higher penetration than EV due to associated
inconveniences. The overall penetration of E-85 and electric vehicles will be 32% in
total private vehicle stock. Due to lower gasoline and diesel vehicle stock, there is a
reduction in their respective demands in NTA compared to BAU scenario. Implication
of lower demand can be seen in the fuel price plot shown in Fig.3. It can be noticed that
gasoline and diesel prices for BAU scenario is higher than NTA scenario due to lower
gasoline and diesel vehicle stocks in NTA. Car and two-wheeler ownership saturate
towards 2050, therefore new demand for vehicles is very low during this period.

Development of System Dynamic Model for Sustainability driven Technology
Adoption in Indian Transport Sector
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Demand for gasoline vehicles also reduces, thereby stabilizing the gasoline demand. As
demand doesn’t change much, gasoline price tends to saturate. Diesel demand comes
from diesel driven cars, heavy vehicle and other industrial machineries. As the demand
for diesel car reduces in NTA scenario, diesel demand coming from heavy vehicles and
other industries continues to grow. Therefore, profile of diesel price is increasing
throughout the simulation horizon. NTA scenario saves 5.2 billion tons of carbon
dioxide than BAU scenario.

Figure 2: Different vehicle stocks in BAU and NTA scenario

Figure 3: Fuel prices in $/gallon

4. Conclusion
This work has tried to understand the adoption of renewable travel options, i.e., E-85
and EVs among privately owned vehicles by developing a system dynamics model.
Penetration of these options have shown a significant reduction in fuel demand and
GHG emissions. However, market dynamics is insufficient to ensure high penetration
rate. Favourable scenarios of sufficient charging stations combined with carbon tax and
incentives need to be investigated.
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Abstract 
The design of fixed-bed reactors has gained interest in the light of load-flexible operation. 
This is due to the expectation that some process feeds will be more volatile in the near 
future, for example, within the framework of the power-to-methane concept. In this re-
gard, the application of an inert shell onto the catalyst particles has proven advantageous. 
In this work, a multi-period design optimization of a fixed-bed methanation reactor is 
performed by employing a heterogeneous reactor model, in which the catalyst particle is 
divided into an active core and an inert shell. Due to the model's computational demand, 
it is reduced by using stoichiometric relations at the reactor and catalyst particle scale. 
Subsequently, dynamic transition simulations between the optimized steady states com-
ing from the multi-period design optimization as well as a reactor start-up and shut-down 
simulation are carried out, and the results of the full model are compared to those of the 
reduced model. Our results show that the model size can be reduced significantly by using 
the stoichiometric relations without loss of accuracy in steady state and negligible accu-
racy loss in transient scenarios. The optimized fixed-bed methanation reactor can be op-
erated over a wide load range by optimally adjusting the operating variables and the dy-
namic simulations show smooth transitions between the steady states. 
 
Keywords: Multi-Period Design Optimization, Heterogeneous Reactor Model, Stoichio-
metric Relations, Load-Flexible Reactor, Dynamic Reactor Operation 

1. Introduction 
Fixed-bed reactors are commonly used in the chemical industry to carry out heterogene-
ously catalyzed gas-phase reactions. A key design aspect in the presence of exothermic 
reactions is heat management to avoid temperatures that might damage catalyst and reac-
tor material. For this reason, the fixed-bed is often located in several tubes, which are 
externally surrounded by a coolant. Despite intensive cooling, critical reactor conditions 
may arise, which lead to pronounced temperature hot-spots in the reactor, which is known 
as thermal runaway. The understanding and technical handling of this aspect have been 
intensively researched for steady-state reactor operation. 
 
However, due to the expectation that certain process feeds will be more volatile in the 
near future, it must be ensured that the reactors do not only operate safe and economical 
in a single steady state but in multiple steady states as well as in transitions between them. 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50146-7



 R.T. Zimmermann et al. 

It was shown that reactor runaway conditions could be prevented by applying an inert 
shell on the active catalyst particles. If designed correctly, the effective reaction rate is 
significantly slowed down at high temperatures, where the mass transport through the 
inert shell becomes rate-determining. On the other hand, if the shell is sufficiently thin, it 
does not influence the effective reaction rate at low temperatures. In this way, a safe and 
economical reactor operation can be ensured, as shown by Zimmermann et al. (2020). 
 
A possible application of such catalyst particles is within the power-to-methane concept 
(Rönsch et al. (2016)). In this context, hydrogen is produced via water electrolysis in the 
first part of the process chain. In regions that lack hydrogen infrastructure, hydrogen is 
subsequently converted with carbon dioxide into methane, which can be fed into the nat-
ural gas grid. It is assumed that the employed water electrolyzer operates in a flexible 
manner, according to the availability of surplus energy. Consequently, to avoid expensive 
intermediate hydrogen storage, the employed methanation reactor must also be operated 
flexibly (Bremer and Sundmacher (2019)).   
 
The design of a multi-tubular fixed-bed methanation reactor, which is able to operate with 
a fluctuating feed by using the described core-shell catalyst particles, is the aim of this 
work. For this purpose, a multi-period design optimization is performed by employing a 
heterogeneous reactor model. Since this is a numerically challenging task, the model is 
reduced by introducing stoichiometric relations on the reactor and particle scale. As the 
use of the stoichiometric relations is strictly valid only in steady state, dynamic simula-
tions are performed to investigate whether the reduced model can also reflect the behavior 
of the more complex model in transient scenarios. 

2. Heterogeneous Reactor Model 
A 1D-1D heterogeneous fixed-bed reactor model is used, which distinguishes mass bal-
ance equations for the components 𝑖  ϵ CO2, H2, CH4, H2O  and heat balance equations 
for the gas phase (index G), the inert catalyst particle shell (index S) and the catalytically 
active catalyst particle core (index C). The balance equations on reactor scale with initial 
and boundary conditions read as 
 

 
 
and on the catalyst particle scale as 
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In addition to the radially averaged temperature TG, the fixed-bed's center temperature TG 
is approximated by the correlation of Dixon (1996). The reaction kinetic model of Kos-
chany et al. (2016), which considers no side reactions, is employed to describe the 
methanation reaction. Details about the remaining constitutive equations are given by 
Zimmermann et al. (2021). 
 
It is known that the ni-nr mass balance equations in Eq. 1 can be expressed by nr mass 
balance equations of key components, where ni is the number of components and nr is 
the number of linearly independent reactions. The same can be done on the catalyst pellet 
scale by introducing the stoichiometric relations Ni/νi = Nj/ νj as discussed in detail by 
Burghardt (1986) and Jackson (1977). In the case of piecewise constant diffusion coeffi-
cients or Knudsen diffusion, these equations can be integrated analytically. Thus, ni-nr 
concentration profiles can be expressed as 
 

 
 
In the dependence of the system, the number of mass balance equations and thus the com-
putational demand can be reduced significantly. However, it has to be kept in mind that 
the stoichiometric relations are valid only in steady state. Thus, ni-nr concentration pro-
files are assumed as quasi-stationary. Therefore, the degree of approximation in dynamic 
simulations depends on the choice of the chosen key component. 

3. Multi-Period Design Optimization Problem 
The discussed model is reduced via the stoichiometric relations. Carbon dioxide is taken 
as the key component, as it exhibits the highest molar mass of all reactants and, as a result, 
it exhibits the slowest dynamics at the catalyst particle scale. Consequently, the quasi-
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steady-state assumption of the other components should lead to an accurate approxima-
tion of the system dynamics, at 40 % of the full model size. 
 
A multi-period design optimization, as discussed by Grossmann and Sargent (1979), is 
performed by employing the reduced reactor model. Eleven periods of equal temporal 
length and equally spaced carbon dioxide loads from 500 kg/h to 1500 kg/h are used. As 
objective function, the mean methane space-time yield is maximized. The operating var-
iables consist of the inlet pressure, velocity, and temperature as well as the coolant tem-
perature and wall heat transfer coefficient. The inlet feed is always a stoichiometric mix-
ture of pure carbon dioxide and hydrogen. The design variables are the reactor's tube 
length, diameter, and number, together with the catalyst particle diameter, shell porosity, 
pore diameter, and thickness. In each state, the temperature in the center of the fixed-bed 
must never exceed 750 K, and the conversion at the outlet of the reactor must be at least 
95 %.  
 
The given balance equations are spatially discretized via the Finite Volume Method. In 
total, 150 logarithmically spaced finite volumes are used at the reactor scale. On the cat-
alyst particle scale, 15 finite volumes with equal volume size are used within the catalyst 
particle core and five within the catalyst particle shell. Details on the employed software 
for solving the optimization problem and for performing subsequent dynamic simulations 
are given by Zimmermann et al. (2021). 

4. Results 
4.1. Multi-Period Design Optimization 
 

 
 
The multi-period design optimization with the reduced model is solved within 75 itera-
tions in 118 seconds. Solving the optimization problem of the full model on the employed 
desktop PC with 32 GB ram is not possible. The optimal temperature and conversion 
profiles, together with the respective operating variables, are shown in Fig 1. The optimal 
catalyst particles consist of a shell, where porosity and pore diameter are at their lower 
bounds of 10 % and 5 nm, respectively. As discussed in the introduction, this allows for 
a thin shell, which on the one hand, inhibits the effective reaction rate at high temperatures 
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and, on the other hand, does not significantly influence the effective reaction at low tem-
peratures.  
 
The optimal reactor is then designed such that the maximum heat transfer to the coolant 
is realized, as the tube diameter is at the lower bound of 2 cm and the coolant wall heat 
transfer coefficient is at the maximum of 2 kW/m2K for all loads. One hundred eighty 
tubes are needed to handle the maximum load of 1.5 tCO2/h at the given operating condi-
tions with inlet velocity and pressure at the upper bound. The reactor length of 3.9 m is 
determined by the residence time of the reactant mixture required to achieve the lower 
limit of the conversion of 95 % at the outlet at the highest load. To decrease the reactor 
load, the simultaneous variation of reactor inlet pressure and velocity is optimal, as long 
as none of the values is at its upper bound. Since lower reactor pressures tend to shift the 
hot-spot towards the reactor outlet, but lower inlet velocities shift the hot-spot towards 
the inlet, both effects almost cancel out. Thus, the hot-spot is almost in the same position 
for each load. Since the decrease of inlet velocity and pressure also decreases the heat 
transfer to the coolant, inlet and coolant temperature also decrease, such that the hot-spot 
does not exceed the limit of 750 K. As the reaction is equilibrium-limited, this also allows 
for outlet conversions of higher than 95 %. Overall, a mean methane space-time yield of 
0.44 kg/m3s is achieved. 
 
4.2. Dynamic Transitions 
 

 
 
As the multi-period design optimization neglects the system dynamics, transitions be-
tween selected optimal steady states are simulated with both models. For this purpose, 
the reactor load is changed stepwise, and the operating variables are changed instantane-
ously according to the results of the multi-period design optimization. Additionally, a 
reactor start-up and shut-down are investigated. The initial conditions for the start-up are 
given as X0,CO2 = 0 % and T0 = 300 K. For the shut-down, Tin and Tcool are reduced to 
300 K. 
 
The results, shown in Fig. 2, indicate quick transitions in all periods of about one to two 
minutes. Despite drastic load changes, only slight oscillations in the temperature profile 
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can be observed during the transitions. Additionally, on positive load changes, a slight 
undershooting of the conversion is present. It is further evident that the reduced model is 
suitable to describe the dynamics of the full model. The models predict only a small dif-
ference in the outlet conversion in a period of about two seconds after a load change and 
a maximum hot-spot temperature difference of 0.05 K is observed in the displayed sce-
nario. The total integration times of both models are comparable for the performed simu-
lations (109 s for the reduced model vs. 122 s for the full model). 

5. Conclusion 
The presented results indicate that a fixed-bed reactor filled with catalyst particles that 
consist of an active core surrounded by an inert shell can be operated safely and econom-
ically within a wide load range. The simultaneous variation of reactor inlet velocity and 
pressure is favorable in this context, as shown by multi-period design optimization. Sub-
sequent dynamic simulations between the optimal steady states as well as a start-up and 
shut-down indicate smooth transitions, even at drastic stepwise load changes. It is further 
concluded that applying stoichiometric relations at the catalyst particle scale gives accu-
rate an approximation of the considered system dynamics. 
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Abstract 
Chemical process simulations rely on the accurate representation of thermodynamic 
phenomena. Complex models like the Perturbed-Chain Statistical Associating Fluid 
Theory (PC-SAFT) provide such accurate descriptions but due to their implicit 
formulation, process optimization based on such models is computationally very 
demanding. This issue can be avoided by surrogate modeling, where a data-based model 
approximates the costly computation. When setting up a surrogate model, the question of 
which data to collect to fit the surrogate arises. In previous work, methods have been 
developed to combine sampling with optimization to only collect data in regions of 
interest for the optimization. These methods however mostly assume that the surrogate 
model describes the objective function. In this work, an extension to gray-box models is 
proposed. 
 
Keywords: surrogate modeling, adaptive sampling, Bayesian optimization, chemical 
processes, gray-box modeling 

1. Introduction 
Surrogate and gray-box modeling rely on data. When the original relationship that the 
surrogate should approximate is a simulation or a computer code, the process of acquiring 
this data is commonly known as sampling. An intuitive sampling method is to sample the 
space as uniformly as possible with respect to the input variables. This is denoted as 
space-filling sampling, thoroughly reviewed in Garud et al. (2017). Adaptive sampling 
methods sample the space non-uniformly in order to cover regions of more complex 
behavior of the approximated function better. Cozad et al. (2014) use derivative free 
optimization methods to find points of high deviation of the surrogate from the original 
function. A similar technique is applied by Garud et al. (2016) who maximize a so-called 
departure function which describes the sensitivity of the surrogate prediction to samples 
that are part of the training set. 
Kleijnen and Van Beers (2004) do not use optimization of a criterion to find new samples 
but instead select candidate inputs at which the jackknife variance is maximized. This 
approach was extended by Eason and Cremaschi (2014) by using a criterion that 
incorporates both the jackknife variance and a nearest-neighbor distance to address the 
exploration vs. exploitation trade-off. This has been further refined by Nentwich and 
Engell (2019) who used surrogate modeling to describe phase-equilibria. Because of the 
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simultaneous description of phase composition and miscibility gap, both a regression and 
classification surrogate were combined resulting in a modified sampling criterion.  
The goal of these approaches is to obtain a surrogate model that possesses high accuracy 
over the whole range of input values. This does not reflect the later use of the model 
which often is an optimization where the surrogate model is incorporated as a submodel.  
The field of Bayesian optimization deals with combining surrogate modeling, sampling 
and optimization. Jones et al. (1998) used Kriging surrogates and their description of the 
prediction uncertainty to statistically describe the expected improvement.  
This was extended by Gardner et al. (2014) to deal with constraints for a black-box model 
for the objective function and by Astudillo and Frazier (2019) to incorporate simple gray-
box models with Monte Carlo simulation. 
To overcome these assumptions we propose an optimization based sampling algorithm 
for embedded gray-box models. 

2. A novel optimization based sampling approach 
The novel approach is based on the upper confidence bound (UCB) acquisition function, 
which was developed in the field of Bayesian optimization by Cox and John (1992). The 
idea of UCB-sampling is to evaluate the uncertainty that results from the surrogate 
prediction in an optimistic manner. This approach is similar to the expected improvement 
(EI) acquisition function by complementing the surrogate prediction with its standard 
deviation. The main difference is that using EI the probability distribution is integrated 
analytically, while using UCB explicit confidence intervals are used. The proposed UCB 
acquisition function ( )UCB GBf x  is optimized for determining a new sample that is added 
to the training set. 

 2ˆ ˆ( ) ( , ( )) ( ) ( )UCB GB GB Tf x f x y x g x x      (1) 

Here, the modified acquisition function UCB GBf   is estimated based on a gray-box model 
GBf , which in turn depends on a surrogate model prediction ŷ  and decision variables x

. The surrogate prediction variance 2̂  is multiplied with the gray-box model sensitivity 
to the deviation in the surrogate model g  and a weighting factor  .   is used for 
parallelization as described below.  
To determine g , the optimization problem can be modified by including additional 
decision variables z , which are constrained to equal the surrogate prediction, as shown 
in Eq. (2) for the original (left side) and the UCB objective function (right side). 
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From the theory of constrained optimization, at the optimum (denoted by * ) the 
sensitivity of the objective function value with respect to surrogate prediction is given by 
the corresponding Lagrange multiplier ,*GB . The problem on the right hand side is dealt 
with iteratively, g  is assumed to be constant during optimization and in the next iteration 
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updated to ,*GB . This is calculated from ,*UCB GB   with a factor ( )k x  correcting the 
difference in the gradients of GBf  and UCB GBf  , shown in Eq. (3). 
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Parallelization here means techniques to reduce the number of times the surrogate model 
has to be trained. Common approaches optimize the acquisition function that describes 
for example the expected improvement for several input combinations at once as in 
Ginsbourger et al. (2008). New sampling points are computed several times before the 
surrogate model is retrained. To avoid adding identical samples, penaltyh  is added to   
for penalizing sampling near new samples so that different new sampling locations are 
computed. penaltyh  is given by  
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 (4) 

The parameter that determines the broadness of the penalty is  . x  is the normalized 
value of x  to overcome problems with different ranges of the variables. The total amount 

of penalty is set to the assumed added value in cost function: 2ˆ| | ( )Tg x  . The 
exploration vs. exploitation trade-off is addressed because in the early stage of sampling 
the larger estimated variance 2̂  leads to a higher penalty and more exploration of the 
whole input space.  
 

Data: Initial training input and output sets X  and Y  
while | | maxsamplesX n do 
      Initialize ( ) 0x  , iterX  , iterY   
      Train surrogate model ŷ  using inputs X  and outputs Y  
      Calculate jackknife variance 2̂  using inputs X  and outputs Y  
      while | |iter iterX n do 
            Initialize 0x , 0z , g  

            while: 0 *
2

x x   do 

                  Solve Eq. (2), right hand side with initial guesses 0x , 0z  to *x , *z , ,*UCB GB   
                  Update 0 *x x , 0 *z z , * ,*( ) UCB GBg k x     
            end 
            Update Sets * *( , ), ( , ( ))iter iter iter iterX X x Y Y y x    
            *( ) ( ) ( , , )penaltyx x h x x g    
      end 
      Update Sets ( , ), ( , )iter iterX X X Y Y Y    
end 
Algorithm 1: Sampling method based on the upper confidence bound acquisition function (UCB) 
with parallelization 

955



 J. Winz et al. 

With a growing training set exploitation of already explored optima is performed. Based 
on these definitions Algorithm 1is proposed, which is the main contribution of this work. 
| |A  denotes the cardinality of a set A . In Algorithm 1 three loops are iterated. The 
innermost loop adapts the value of g  with direct substitution until the change in the 
optimum regarding the decision variables x  is below a threshold  , which leads to 

* ,*( ) UCB GBg k x   . The second loop incorporates the parallelization by filling 
intermediate sets of samples iterX  and iterY , adjusting the penalty   in each step. In the 
outermost loop iterX , iterY  and   are reset after merging the intermediate sets iterX  and 

iterY  with the training sets X  andY . The surrogate model is retrained and the prediction 
variance 2̂  is calculated by using the jackknife. 

3. Case study 
The proposed method is applied to the model of the chemical process of the 
hydroformylation of 1-dodecene in a thermomorphic solvent system, taken from 
Nentwich et al. (2019). The considered flowsheet can be seen in Figure 1. 

 
Figure 1: Flowsheet of hydroformylation process 

This process consists of three unit operations: reactor, heat exchanger and decanter. In 
the reactor the catalyzed reaction of n-dodecene with synthesis gas (CO and 2H ) to n-
tridecanal takes place in a homogeneous liquid phase. The following two unit operations 
of cooling down the liquid stream coming from the reactor and using a decanter to recycle 
the catalyst cost efficiently are introduced because a thermomorphic solvent system is 
used that leads to a temperature dependent miscibility gap. This way, the catalyst can be 
recycled with the polar phase while the product is removed with the organic phase. 
To accurately describe the liquid-liquid equilibrium in the decanter, the equation of state 
PC-SAFT is used, because it has been shown to provide accurate predictions for the 
system at hand by Schäfer et al. (2012). Surrogate modeling of the compositions of the 
two phases from the decanter feed composition and temperature is applied to overcome 
the issue of computational cost resulting from the implicit formulation. A simplified 
quarternary system consisting of n-decane, dimethylformamid, n-dodecene and n-
tridecanal is used.  
The objective function is chosen to be the theoretical cost in $ per ton of product (CPT) 
assuming a production of 10,000 tons of n-tridecanal per year. The results of applying the 
algorithm presented in section 2 to this case study are shown in the next section. 

4. Results 
To evaluate the performance of Algorithm 1, denoted as UCB, it is compared to the 
mixed-adaptive approach as developed by Nentwich and Engell (2019). Parameters 
specific to the UCB-method are   and , which are set to 510  and 0.05, respectively. 
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confidence bound acquisition function  

The parameters max samplesn , itern  and the number of jackknifing groups are used in both 
algorithms. The values are 1000, 20 % of | |X  and 5. Additionally, the surrogate structure 
is the same for all methods.  
Artificial neural networks (ANN) with two fully-connected hidden layers of 10 nodes 
each using the tanh-activation function are used as surrogates as even complex functional 
relationships can be modeled accurately by this structure. 
Additionally, a set of 570 basis functions consisting of polynomial and exponential terms 
that were determined by using LASSO regression with regularization to minimize 
Akaike's information criterion (AIC) is applied as a surrogate model. It is expected that 
the set of considered basis functions and the regularization leads to a response surface 
which is more convenient for optimization. 
The results of the optimization (Eq. (2), left) are shown over the iterations of the 
sequential sampling. For reference, also results using Latin hypercube sampling (LHS) 
designs with the same number of samples for each iteration are shown. 
 

 
Figure 2: Predicted molar fraction of n-decane at the reactor outlet at the optimum for ANN (left 
hand side) and LASSO (right hand side) surrogates for different sampling methods; blue: Latin 
Hypercube sampling (LHS), orange: mixed adaptive sampling, black: upper confidence bound 
sampling as proposed 

In Figure 2 the molar fraction of n-decane at the reactor outlet is shown at the optimum 
for different stages of sampling, evaluated from six randomly distributed initial points for 
five runs of each of the methods, because this quantity is sensitive to the surrogate 
prediction. The number of samples increases by 20 % in each iteration and ranges from 
initially 60 to more than 1000 samples. It can be seen from the figure that in later iterations 
the optimum regarding p converges to about 18 % for all considered sampling methods 
for the ANN surrogates. In the early stages, varying predictions of the optima occur. For 
LHS and mixed adaptive sampling molar fractions below the final value of convergence 
can be observed, while using UCB sampling an accurate description of the optimum is 
obtained already at low numbers of samples.  
For LASSO surrogates, convergence to the optimal value is only observed for the UCB 
sampling. Both mixed adaptive and Latin hypercube sampling lead to an average 
prediction of around 14 % with a high variance even for large numbers of samples. This 
can be explained by a too small flexibility of the surrogate model caused by strong 
regularization, where sampling with the goal to decrease the overall deviation leads to a 
surrogate with a still mediocre accuracy. When focusing on the region around the 
optimum with UCB sampling, the accuracy can be increased where it is needed, 
neglecting deviations elsewhere. 

5. Conclusion and outlook 
In this work a sampling method for surrogate models is proposed with the goal to focus 
the improvement in model accuracy on regions that are of interest regarding the 
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optimization of a nested gray-box model. The main idea is to make use of the upper 
confidence bound acquisition function developed in the field of Bayesian optimization. 
Its performance is investigated for the case study of the hydroformylation of 1-dodecene 
in a thermomorphic solvent system. Using the proposed algorithm, convergence to the 
optimum is reached with significantly fewer samples compared to conventional methods. 
In future work, an optimal weighting of prediction and uncertainty will be investigated. 
Additionally, the combination of the proposed method with other parallelization methods 
can give further insights into the capability of this method. 
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Abstract 
Industrial systems are complex in terms of types of material exchanged (water, electricity, 
vapour…), types of industries involved, and size of companies, temporality and many 
others. Regarding this complexity, this paper aims at developing a generic methodology 
able to design exchanges between companies in an eco-industrial park in terms of 
electricity, water and several pressures of vapour. The number of companies and their 
types of processes can also be various. In this sense, a generic model would be able to be 
adapted to a great diversity of case studies. This multi-objective optimization method can 
deal with the minimization of total cost, environmental impacts (through a life cycle 
analysis indicators) or complexity of the network designed (technical aspects linked to 
interconnections between companies). Four time-periods are studied and the objective 
functions to minimize are the total cost of the network, its complexity (related to the 
interdependence between companies) and the energy consumed linked to environmental 
impact. The procedure developed reaches to design all the pipes constituting the 
exchanges between companies while minimizing the cost through a multi-objective 
optimization approach. Additionally, the design of the network takes into account a better 
dependency of companies what makes the EIP more attractive for them. 

Keywords: optimization, industrial ecology, networks, energies, flexibility. 

1. Introduction 
Regarding the economic, environmental and political challenges, the development of 
sustainable industrial zones becomes urgent. The competitive advantages offered by the 
business of industrial clusters need also to be eco-efficient to reduce the environmental 
impact of economic growth (Kastner et al., 2015). Eco-industrial parks (EIP) constitute a 
typical illustration of industrial symbiosis and cooperation between different stakeholders 
in the same area needs to be optimally designed (Boix et al., 2015). Industrial systems are 
complex in terms of types of material exchanged (water, electricity, vapour…), types of 
industries involved, size of companies, temporality and many others. Regarding this 
complexity, this paper aims at developing a generic methodology able to design 
exchanges between different companies in an EIP. On the other hand, Tian et al. (2014) 
noted that for different EIPs in China a key measure to support the sustainability of EIPs 
is the development of the network. Another important factor is the ability of a network to 
be resilient. In order to reduce the impact of disruptions, resilient network design is a 
branch of scientific research that aims to develop networks that have a greater propensity 
to support change. Most particularly, Leo and Engell (2020) took into account 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50148-0



 M. Boix et al. 

  

uncertainties where the decisions at one point in time have an impact on the probability 
of the uncertainty. The general principle of resilience is to maximize the number of 
interconnections in order to increase the possibilities for distributing flows in the event of 
a disturbance (Valenzuela-Venegas et al., 2019). As a result, this approach has the bias 
of seeking to systematically interconnect industries and therefore create dependencies, 
increase the risk taken, which is a source of reluctance for manufacturers. 

In addition, in previous studies, interconnections have been widely studied from the point 
of view of the complexity of the network but there is an absence of studies regarding 
resilience. The optimal design of a network by integrating the interdependence generated 
by the interconnections could be interesting to analyse. Indeed, a powerful obstacle to the 
development of eco-industrial networks is the trust that companies must have among 
themselves to accept losing their independence. The work presented in this study provides 
a new vision since it takes into account the behaviour of industries, wishing to maintain 
their independence while taking advantage of the advantages they have in coming 
together on the same site to maximize their benefits (economic, environmental, social). 
Thus, based on the model developed in a previous study (Mousqué et al., 2020) the 
methodology proposed may advise industries to integrate the EIP network or to remain 
autonomous. 

The scientific issue here is therefore the development of approaches to design a flexible 
network that remains optimal in view of the design criteria in a changing operational 
context. To achieve this, the first objective of this study is to propose an optimal solution 
for designing a network of exchanges. 

2. Methodology 
The main novelty of the approach is its ability to consider the great majority of possible 
exchanges in an EIP:  

- Electricity:  it can be produced from renewable sources (wind turbines, solar 
panels) or taken from the external grid network, 

- Water: water can be exchanged throughout the network 

- Vapour: different levels of pressure are considered through the design of a utility 
system for each company of the EIP (low, medium and high pressures). 

The number of companies and the types of processes can also be various. In this sense, 
this generic model is able to be adapted to a great diversity of case studies. The multi-
objective optimization method can deal with the minimization of total cost, environmental 
impacts (through a life cycle analysis indicators) or complexity of the network designed 
(technical aspects linked to interconnections between companies). The aim is to propose 
simultaneously the optimal design of the Hybrid Renewable Energy System (HRES) 
feeding the EIP and the exchanges between and within companies while minimizing the 
objectives previously enounced.  

The methodology consists in several steps described in Figure 1:  

- Building the superstructure regarding the case study chosen and evaluating the 
granularity of the model to be developed. It is important to notice that even of a 
so-called “black box” approach is used; a detailed modelling has to be performed 
in order to obtain the characteristics of each box of the superstructure. 
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- Formulation of the problem through a MILP optimization 

- Application of the procedure developed to design the network of resources 
exchanges and evaluation of its flexibility through a multicriteria decision 
making tool. 

 
Figure 1. Generic methodology developped 

3. Problem statement 
Given is a set of industries represented by sinks and demands in terms of vapour, water 
and electricity throughout four time periods represented by a superstructure previously 
detailed in Mousqué et al. (2020). The aim is to design the optimal network for making a 
cooperative symbiosis and to evaluate its flexibility and resilience. 

The variables of the optimization model are both continuous and binary: flow-rates 
(water, energies) exchanged, flow-rates between each box of the superstructure, 
production of boilers, electricity consumed, existence of each connection and of each 
component (boilers, turbines). The constraints are represented by all the mass balances, 
the conservation of materials and minimum and maximum capacity production of each 
boiler. The MILP model formulation is taken from Mousqué et al. (2020) and solved with 
ILOG CPLEX solver.  

The present paper brings a specific procedure developed and implemented in order to take 
into account and to evaluate flexibility of the obtained solution (Figure 2). The procedure 
developed reaches to design all the pipes constituting the exchanges between companies 
while minimizing the cost through a multi-objective optimization approach. Additionally, 
the design of the network takes into account a better dependency of companies what 
makes the EIP more attractive for them. 

The objective function to minimize is the total cost of the network calculated through the 
Net Present Cost (Turkay and Telli, 2011). 
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Figure 2. Optimization procedure to consider flexibility of the network 

4. Case study 
The case study chosen contains 15 different industries grouped in the Yeosou industrial 
zone in China, this park was previously introduced by Kim et al. (2010). For more details 
about this particular case study and the mathematical model associated, the reader can 
refer to Mousqué et al. (2020 b). In this utility network model coupled with a hybrid 
renewable energy system, steam demand is the key parameter to study the flexibility of 
the network. Indeed, the capacity to supply the demand of companies with steam is 
directly linked to the sizing of the production, conversion and transport facilities (boilers, 
turbines and pipes respectively). On the other hand, the electricity network is connected 
to the external grid which is considered as an unlimited source, its supply capacity would 
be unlimited. The flexibility of the connected electricity network being infinite, the study 
of its flexibility is therefore not relevant.  

To detail this case study, nominal demand is discretized over four periods representing 
the 4 seasons. Each scenario (nominal and disturbances) therefore comprises four periods. 
In addition, the study parameter taken into account is an industry's vapor demands. This 
encompasses the demand for very high pressure (VHP), high pressure (HP), medium 
pressure (MP) and low pressure (LP) steam in an industry. There are therefore 15 input 
parameters studied given that there are 15 industries. The evaluated parameter therefore 
corresponds to the smallest maximum deviation among the demands of an industry. To 
achieve this, the demands of the evaluated industry are variable and the smallest variation 
in demands is maximized. In fact, during this assessment step, the demands of other 
industries and all the infrastructures are fixed. 

5. Results and analysis 
5.1. Flexibility of the nominal solution 
 
The flexibility of the nominal solution has been first evaluated by taking into account the 
minimal flexibility of each company. Eleven companies among fifteen have a flexibility 
equal to zero for the nominal solution; that is to say its global flexibility is null. Figure 3 
shows the repartition of flexibility for each company of the EIP over the four time periods 
considered. These results show us that the optimal design in terms of costs leads to a 
solution that has very little flexibility. This is because the minimization of the cost also 
entails a minimization of installations which are sized just to the capacity necessary to 
meet the demand under nominal conditions. 

Integrated design of the 
network 

Mono-objective optimization: minimize cost 
 structure of the network 

Minimize cost constrained by: 
- Nominal demand + flexibility threshold 

- Structure of the network fixed 
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A little flexibility is nevertheless observed in a few industries. This flexibility comes from 
the turbines installed. In fact, during a disturbance it is possible to stop the condensing 
turbines, the steam then directly supplies the processes. The additional quantity of steam 
is then equal to the quantity which would have been lost by condensation in the turbines. 
More generally, certain elements make it possible to increase the flexibility of a network, 
such as storage elements or controllable elements that can be stopped. Note that as a 
function of time, it is over the first period that the model presents the least flexibility, in 
fact, the flexibility of industries is zero for a large number of industries, nevertheless for 
industry 2, 4, 12 and 13, this flexibility is respectively 8.6%, 0.7%, 9.3% and 37.7%. The 
first time step is the period when we observe the least flexibility, this is explained, because 
it is also the period when the demand is the most important for each process. 

 

Figure 3. Flexibility of the nominal solution over time periods 

5.2. Analyses of the impact of flexibility on the cost 
 
As a reminder, the deviation is then the smallest deviation calculated of the various 
processes in an industry. The threshold on the flexibility of the optimal solution increases 
while the cost is minimized. It is important to note that improving flexibility in a whole 
network can be possible at the design stage by adding some equipment, what leads to 
additional cost (Figure 4). Regarding the trend of increasing cost versus flexibility, design 
solutions get results for 20% and 30% flexibility with relatively linear evolution.Indeed, 
when a flexibility of 30% is taken into account, 7.25% of additional cost is considered to 
overcome these fluctuations. It implies that, for this solution, all companies will have 
more than 30% of flexibility over the four time periods. 

This overall approach can help to design sustainable industrial systems that can overcome 
fluctuations in their demands over the time by integrating some additional costs during 
the conception stage. 
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Figure 4. Flexibility of the network regarding cost evaluation 

6. Conclusion 
A generic procedure to design optimal networks of EIPs has been developed in order to 
evaluate cooperative exchange network. A generic superstructure that allows to take into 
account several types of exchanges in an EIP has been developed and the associated MILP 
model has been adapted to solve large-scale problems. The procedure was validated on a 
case study involving fifteen industries. Starting from a nominal solution with zero 
flexibility, one can increase it by adding some cost to overcome potential fluctuations in 
the network. In addition, in the interest of developing a generic method, this indicator 
does not require knowing the probabilities of the appearance of the various disturbances. 
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Abstract 
Pan granulation is a particle formation process with widespread practical applications 
such as fertilizer and pharmaceutical manufacturing. The continuous operation mode is 
especially promising with respect to industrial demands. For process automation and 
intensification, a suitable dynamical process model is required. Therefore, the focus of 
this contribution is on identification of agglomeration kernel parameters in a population 
balance model based on empirical data. To this end, an objective functional, representing 
the error between model and measurement data, is minimized. It is shown that the steady 
state particle size distribution of a lab-scale process can be reproduced accurately using 
the population balance with the identified parameters. 
Keywords: Population balance modeling, Pan granulation modeling and simulation, 
Agglomeration. 

1. Introduction 
Agglomeration is a particle formation process in which at least two primary particles are 
combined to form a new one. This principle is often used in many industries, e.g. 
pharmaceutical manufacturing, food processing and fertilizer production. The properties 
of the formed agglomerates, e.g. size, shape and porosity, significantly affect certain end-
use properties, e.g. dissolubility, processability and storability (Bück and Tsotsas, 2016). 
In particular for fertilizer production and mineral processing, agglomerates are often 
formed in drums or pans (Ouchiyama and Tanaka, 1981; Litster and Ennis, 2004) in 
continuous operation which may provide constant throughput with constant product 
quality (in terms of specific agglomerate properties) during steady-state operation. 
Besides sophisticated experiments, modeling those processes in view of emerging 
agglomerate property distributions supports understanding of the underlying dynamic 
mechanisms on multiple scales and application of model-based process control and 
intensification. In this contribution, focus is on modelling of pan granulation, which is 
also known under the term dish or disc granulation. 
 
The process scheme is shown in Fig 1: a powder is fed constantly to an inclined rotating 
dish and liquid binder is sprayed on the powder. The wet particles are sticking together, 
forming larger agglomerates. The flux from the pan represents the product particles. Feed 
powder as well as product particles vary with respect to individual particle properties. It 
has been shown that variations of process operation parameters, such as inclination angle, 
rotational velocity, binder spray rate and composition, significantly affect the product 
particle properties (Kapur et al., 1993; Kapur and Runkana, 2003; Obraniak and Gluba, 
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2012). Furthermore, zone formation of different sized agglomerates in the pan is 
commonly observed (Litster and Ennis, 2004).  
 
It is well-known that for size-enlargement processes, like pan granulation, individual 
properties, like characteristic volume and porosity, differ from particle to particle. As an 
alternative to Monte-Carlo modeling approaches (Zhao et al., 2007; Rieck et al., 2018) 
population balance modeling (PBM) (Ramkrishna, 2000; Ramkrishna and Singh, 2014) 
represents an established framework to model such processes (Kapur and Runkana, 
2003). For standard monovariate PBEs, accounting mostly for characteristic particle size 
or volume, efficient and accurate numerical solution algorithms have been developed, see 
e.g. Kumar et al. (2008); Bück et al. (2012) and the references therein. 
 
This contribution aims at modeling of a lab-scale pan granulation setup and model 
adaption to experimental data in terms of minimization of the error between experimental 
samples of the particle-volume distribution and the corresponding model predictions in 
steady state, i.e. for constant feed powder flux and constant product flow. 

2. Materials and Methods 
2.1. Experimental and Analytical Setup 
 
The experiment was realized in a pilot scale pan granulator shown in Fig. 1 (left). The 
pan has an inner diameter of 400 mm, and depth of 100 mm, schematically shown in Fig. 
1 (right). The primary particles are stored in a tank and then transported into the pan using 
a vibratory conveyor. The binder is distributed through a nozzle, which is installed in a 
top-spray configuration at distance of 350 mm above the pan. An external pump and an 
air compressor ensure the supply of sprayed binder solution. The rotation of the pan is 
obtained by a motor (Model AR304, ERWEKA GmbH), which allows to adjust the 
rotational speed in the range of 2 rpm - 80 rpm and the inclination angle of the pan in the 
range of 0° – 70°. The control of binder flow, primary particle flow and air flow is 
obtained using the main control panel (Model CE255, G.U.N.T. Gerätebau GmbH). All 
components of experimental setup are made of stainless steel and assembled on a metal  
table. 

 
The particle material is powdered dolomite. It is a grey powder, typically used in the 
construction industry and as a fertilizer to increase the pH-value of soil. The binder 
solution contains 1 wt% sucrose and 99 wt% of water. The duration of the experiment 

Figure 1: (Left) Experimental pan granulation setup. (Right) Schematic representation of
pan granulation process 
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was 75 min with a 50 g/min feed flow rate, and 8,5 g/min binder flow rate. The initial bed 
mass for the experiment was 400 g. The nozzle air flow pressure was 2 bar. An overview 
of the process parameters is shown in Table 1. For the offline analysis, 5 particle samples 
of the pan and 5 samples of the product were taken every 15 minutes after the beginning 
of the experiment. The particle size distribution (PSD) of each sample was measured 
offline with a Mastersizer (Malvern Instruments, Malvern, Worcestershire, United 
Kingdom), which infers particle size via dynamic light scattering. The output data from 
the analyzer is the normalized volume distribution for each sample and thereby over the 
process time.   
 
Table 1: Experimental process operation parameters 

Parameter Unit Value 
Initial powder mass [kg]  0.4 
Rotational speed [rpm] 25
Inclination angle [°] 35 
Binder flow rate [kg/h] 0.51 
Binder composition [wt%] 1
Primary particle feed rate [kg/h] 0.3 
Average density of initial 
particles 

[kg/m3] 1300 

 
2.2. Process Modeling 
 
Population balance modeling has proven to be an established concept to describe size 
enlargement processes like granulation Ramkrishna (2000). Assuming that particle 
volume is the sole significant particle property, the particle ensemble can be represented 
by its number density distribution function (NDF) 𝑛(𝑡, 𝑣) providing information of the 
number of particles within an infinitesimal volume range. If it is furthermore assumed 
that size enlargement is dominated by agglomeration, the NDF’s dynamics are given by 
the population balance equation (PBE)  
          ∂𝑛(𝑡, 𝑣)∂𝑡 = n ( , ) − n ( , )          + 𝛽(𝑡, 𝑢, 𝑣 − 𝑢)𝑛(𝑡, 𝑢)𝑛(𝑡, 𝑣 − 𝑢)d𝑢 − 𝛽(𝑡, 𝑢, 𝑣)𝑛(𝑡, 𝑣)𝑛(𝑡, 𝑢)d𝑢        (1) 
 
The corresponding initial NDF is n(0, v). While the left-hand side of Equation 1 describes 
the dynamics, the first two elements of the right-hand side describe the influx of feed 
powder and the outflux of product particles from the pan. The feed is further resolved 
 

        𝑛 (t, v) = 𝑁 (t)𝑛 (𝑣)       (2) 
 
with 𝑁 (𝑡) = 𝑐𝑜𝑛𝑠𝑡. denoting the constant feed rate and 𝑛 ( ) the normalized feed 
powder NDF. The outflux of product particles 𝑛 (𝑡, 𝑣)is computed from the measured 
product mass flow m (𝑡) and product volume distribution 𝑞 ,prod(𝑥). The last two 
elements of the right-hand side of Equation (2) denote generation and formation of new 
particles of volume 𝑣 by agglomeration of two particles with volumes 𝑢 and 𝑣 − 𝑢. Here, 

967



 E. Otto et al.  

the agglomeration kernel β(𝑡, 𝑢, 𝑣) contains information about the probability of forming 
a new agglomerate and is often separated into a volume and time-dependent part 
 β(𝑡, 𝑢, 𝑣) = β (𝑡)β (𝑢, 𝑣).       (3) 
 
In general, the volume-dependent part β (𝑢, 𝑣) is a non-negative symmetric function 
which can be derived either from micro-scale mechanistics, heuristic assumptions or 
abstract data-driven approaches (see Golovin et al. (2018) and the references therein). 
The time-dependent coalescence efficiency β (𝑡) mirrors the effects of the process 
conditions and operating parameters. In this work, focus is on the steady state operation, 
thus we assume dβ / d𝑡 = 0 holds. 
 

3. Model adaption 
 
In the following section the estimation of model parameters is presented. Parameter 
estimation for (multi-dimensional) population balances has been investigated in great 
detail in Ramachandran and Barton (2010). For further information regarding techniques 
and frequently occurring problems the reader is referred to this source. 
 
The unknown kernel parameters 𝒑 have to be estimated from experimental data via 
minimization of a suitable objective function 
 

      𝐽(𝒑𝒆𝒔𝒕) = ‖𝑒 (𝑥, 𝒑 )‖ ,          (4) 
 
where 𝑒  is the error in the weighted particle size distribution (Golovin et al., 2018) 
 𝑒 (𝑥, 𝑝 ) = 𝑢 (𝑥) − 𝑢 (𝑥, 𝑝 ),     𝑢(𝑥) = 𝑥 n(𝑥),       (5) 
 
and 𝑥 represents the characteristic size of the particles. Using local conservation of the 
particle number, 𝑢 (𝑥, 𝒑𝒆𝒔𝒕) is computed from the simulated particle volume 
distribution. For the simulation the PBE was discretized using the cell-average technique 
(Kumar et al., 2008). Note that the particles are assumed to be of spherical shape, which 
is a valid assumption for many particle formation processes. However, for the experiment 
considered here it has to be checked in future investigations. The experimental 
distribution 𝑢 (𝑥) is computed from the normalized particle size distribution 𝑞 , (𝑥) 
provided by the Mastersizer measurements and the measured mass in the pan 𝑚 ,  under 
the assumption of spherical particle shape and particle material density 𝜌. In this 
contribution, only the steady state distribution of the continuous process is considered in 
the objective function. It is represented by the measurements at 𝑡 =  75 min. 
 
Minimizing the objective function (Eq. 4) using local optimization techniques proved to 
be difficult for one of the kernel functions since different local minima were found for 
different initial parameter guesses. Therefore, the optimization was conducted by using a 
genetic algorithm which is able to provide non-local results (Goldberg, 1989). However, 
it has to be mentioned that there is no guarantee of finding global minima. The algorithm 
was implemented in Matlab R2018b using the build-in function ga. The parameter search 
space was restricted to 0 ≤ 𝑎, 𝑏 ≤ 2 and −20 ≤ 𝑙𝑜𝑔 (𝛽 ≤ −4, based on the author’s 
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experience. The initial population for the genetic algorithm was created randomly within 
the search space. 

4. Results 
 
At first, the proposed model adaption method is used to fit the model with volume 
independent coalescence kernel 𝛽 (𝑢, 𝑣) = 1. Therefore, only 𝛽  has to be estimated. The 
optimal steady state distribution 𝑞 (𝑥) is obtained with 𝛽 = 2.56 ⋅ 10  and depicted on 
the left-hand side of Fig. 2. The corresponding objective function value amounts to 𝐽 =1.56 ⋅ 10 . It is seen, that the distribution’s mode and the density of large particles are 
captured, yet significant errors are observed for particles up to 1.5 mm characteristic size. 
Since this result is unsatisfactory the two-parametric Kapur kernel (Kapur, 1972) 
 β (𝑢, 𝑣) = ( )( )                                     (6) 
 
is chosen as coalescence kernel. Due to the free parameters 𝑎 and 𝑏, the kernel possesses 
the necessary versatility to fit a wide range of agglomeration processes. The optimal 
steady state volume distribution with the Kapur kernel is presented on the right-hand side 
of Fig. 2. The objective function value 𝐽 = 3.3 ⋅ 10  is obtained with the optimal 
parameters 𝛽 = 3.76 ⋅ 10 , 𝑎 = 0.92 and 𝑏 = 0.6. The supremacy of the Kapur-kernel 
approach, which provides an accurate reproduction of the experimental results, compared 
to the volume-independent kernel is obvious. In future publications the identified 
parameters have to be validated with further experiments and thorough analysis of 
identifiability has to be conducted. 

5. Conclusion 
 
This contribution was concerned with identifying a process model for a continuous pan 
granulation process. Therefore, agglomeration kernel parameters were identified by fit-
ting a population balance model to lab-scale experimental measurements of particle size 
distributions by minimizing an error functional. The optimization was implemented as a 
genetic algorithm. It has been shown that a population balance with a Kapur coalescence 

Figure 2: Measured (black) and simulated (red) normalized volume density distributions for the 
volume-independent kernel (left) and the Kapur kernel (right). 
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kernel is able to provide very good agreement between model and measurements with 
respect to the steady state volume distribution of particles. Future work will be concerned 
with investigating the influence of process conditions on the agglomeration process which 
is represented by the kernel parameters by adapting the model to additional experiments 
using the presented methodology (Otto et al., 2020). It is expected, that the Kapur kernel 
will provide accurate fits. Furthermore, research will include identification of models that 
also capture the process dynamics. Finally, the identified process models can be used for 
model-based control and process intensification. 
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Abstract 
Crude distillation unit (CDU) is the most energy-consuming and energy deficient process 
in a refinery, hence saving energy consumption in its operation is the main target. The 
CDU separates crude oils into light gas streams, naphtha, kerosene, diesel, atmospheric 
gasoil and residue. The cutpoint temperature management dictates the quantity and 
quality of the products, therefore a proper model for determination of its causes and 
effects is fundamental. The cutpoint temperature heavily depends on the composition of 
crude-oil and process conditions. In this study, the effect of uncertainty in process 
conditions, such as temperature, pressure, flow rates, etc., and feed composition on 
cutpoint temperature is researched. A hybrid approach based on Taguchi method and 
genetic algorithm is used to derive optimum cutpoint temperature for different variants 
of feed composition and process conditions. Then, an artificial neural networks (ANN) 
model is developed to predict the optimum cutpoint temperature by eliminating the need 
for the hybrid approach. The method is validated with two Pakistani crudes oils from the 
Zamzama field, where the ANN predicted the cutpoint temperature with enough accuracy 
for industrial application.  
 
Keywords: Deep learning, ANN, Cutpoint temperature optimisation, CDU. 

1. Introduction 
The efficient design and operation of petroleum refining processes have always been 
researched due to their energy-intensive nature. The most important refinery process is 
found in crude distillation units (CDU) that separate the petroleum in its distillates. CDU 
is one of the most complex process in the refinery, hence there is a huge opportunity for 
saving energy consumption in its operation (Brueske et al., 2015). It may count on 
optimisation of scheduling, reduced giveaways in properties of intermediate products, as 
well as real-time optimisation of the cutpoint temperature of the CDU (Luyben et al., 
2013). The cutpoint temperature heavily depends on composition of crude-oils and 
process conditions. Several methods like categorisation approach, swing-cut modeling, 
fractionation index model, Taguchi method, weight transfer ratio (WTR) approach, 
Taguchi and genetic algorithm (GA) hybridization, and monotonic interpolation have 
been devised for the cutpoint temperature optimisation (Brooks et al., 2018; Trierwiler et 
al., 2001; Zhang et al., 2001; Li et al., 2007; Alattas et al., 2011; Ali et al., 2012; Menezes 
et al., 2013; Kelly et al., 2014; Durrani et al., 2018; Franzoi et al., 2020).  

In Durrani et al. (2018a), an artificial neural networks (ANN) model capable of multi-
outputs is developed from optimised data sets which are generated by the hybrid 
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framework of the Taguchi method and genetic algorithm (GA) to deal with uncertain feed 
composition. The current work is an extension of this previous approach, whereby the 
effect of uncertainty in all process conditions, i.e., temperature, pressure, flow rates, etc., 
are considered in addition to the uncertainty in feed composition adopted in Durrani et al. 
(2018b). The application domain is extended to crude-oil assays of the Pakistani oil fields 
known as Zamzama. Several hundred variations of the Zamzama assay are generated by 
incorporating artificial uncertainty in the actual crude-oil composition and process 
conditions. The sample components having variations in crude-oil composition with 
different cutpoint temperatures and process conditions are derived from the hybrid 
approach, i.e., Taguchi and GA. The sample components comprised of the crude-oil 
variants and their cutpoints are being used to train an ANN model. The ANN model has 
a 0.98 correlation coefficient and required lesser computational power compared to the 
hybrid method in the prediction of the desired cutpoint temperatures.  

In this study, variations will be introduced in 10 process conditions. They are: the standard 
ideal liquid volumetric flow, temperature and pressure of the Zamzama crude-oil feed to 
the pre-flashing stage, the pressure of the diesel steam fed to the crude distillation column, 
the mass flow rate, temperature and pressure of the atmospheric gas oil steam fed to the 
crude distillation column, the mass flow rate, temperature and pressure of the main steam 
fed to the crude distillation column, and the operating pressure of the condensing stage in 
the distillation column, along with the feed compositions. The different sets of data 
generated by varying the process conditions and feed compositions will be fed to the 
hybrid model developed in ASPEN HYSYS. The data sets of these uncertain process 
conditions will be used to generate cutpoints at those different variants. The new sets of 
optimised cutpoints are used to train and develop an ANN-model.  

The process description and process flow along with details of the crude distillation are 
shown in section 2. The methodology used for generating data from the CDU by the 
hybrid framework to train and developing the ANN-based model is discussed in section 
3. Results for this study are presented in section 4. Section 5 shows the findings from this 
research.  

2. Process description 
A representation of the CDU and the process flow can be seen in Figure 1. The selected 
crude-oils are from Pakistan, from the Zamzama fields, which are sweet, light, and have 
a specific gravity varying from 0.75 to 0.76. The sulphur and water content are less than 
0.05% by weight (for sulphur) and volume (for water). The crude-oil is fed at the 
temperature of 232.22℃ and pressure of 517.107 kPa into the pre-flash column. The pre-
flashing stage separates the gases from the liquid phase, reducing the overall duty required 
in the furnace to promote the separation in the CDU. The furnace pre-heats the crude-oil 
for the desired fractionation in the distillation tower. The gas stream, which are separated 
in the pre-flash stage, are mixed with the hot crude-oil stream in a mixer before reaching 
the  a fractionation column. The column has a total of 29 theoretical trays with three 
strippers to the side and pre-flash condensers along the cutpoint stages and for internal 
reflux three pumps around installed. The feed is fed at the tray 28 of the column.  
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Figure 1. Crude distillation unit. 

3. Methodology 
The hybrid framework is developed from Taguchi and genetic algorithm in Durrani et al. 
(2018). The method now is extended to other process conditions of the crude feed and 
column streams Variations of Zamzama assay are generated by incorporating artificial 
uncertainty in the actual crude-oil composition and ten process conditions. The process 
conditions, which are artificially varied, are listed below: 

• Standard ideal liquid volumetric flow, temperature, and pressure of the 
Zamzama crude-oil feed at the pre-flashing stage. 

• The pressure of the diesel steam. 
• The mass flow rate, temperature and pressure of the atmospheric gas oil 

steam. 
• The mass flow rate, temperature, and pressure of the main steam. 
• The operating pressure of the condensing stage in the CDU. 

The main steps for developing and testing are shown in Figure 2 are as follows: 

Phase I: Several process data sets are generated at different feed and process conditions 
by inserting artificial variations which would deviate these feed and operating conditions 
by a factor of ± 1%, ± 2% and ± 3%.  

Phase II: Cutpoint temperatures are now calculated for these variants through the hybrid 
framework of Taguchi and GA. 

Phase III: ANN model is developed using 75% of the data sets with their associated 
cutpoints. 

Phase IV: The model developed has to be validated now by predicting the cutpoints of 
the remaining 25% of the data sets with varied feed and process conditions. 

Estimation of cutpoint temperature under uncertain feed composition and process 
conditions using artificial intelligence methods
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Figure 2. Schematic representation of how the hybrid framework and ANN model are integrated. 

4. Result and discussions 
In Table 1 is showed the ten different operational variables from 6 different datesets that 
are varied from their given standard values. 

Table 1. Process condition data sets for distillation of Zamzama crude-oils. 
Process 
Condition      

Data 
set 1 

Data 
set 2 

Data 
set 3 

Data 
set 4 

Data 
set 5 

Data 
set 6 

Zamzama Mass 
Flow (KBPD) 97.000 95.060 94.109 95.051 96.952 99.860 

Zamzama 
Temperature (℃) 225.234 220.729 218.522 220.707 225.121 231.875 

Zamzama Pressure 
(kPa) 554.064 542.983 537.553 542.928 553.787 570.401 

Condenser Pressure 
(kPa) 131.752 129.117 127.826 129.104 131.686 135.637 

Steam Mass Flow 
(kg/h) 3299.940 3233.941 3201.602 3233.618 3298.290 3397.239 

Steam Temperature 
(℃) 184.882 181.184 179.373 181.166 184.790 190.333 

Steam pressure 
(kPa) 1002.980 982.920 973.091 982.822 1002.479 1032.553 

AGO Steam Mass 
Flow (kg/h) 1099.980 1077.980 1067.201 1077.873 1099.430 1132.413 

AGO steam 
Temperature (℃) 144.433 141.544 140.129 141.530 144.361 148.692 

AGO steam 
Pressure (kPa) 334.359 327.672 324.395 327.639 334.192 344.218 

Variations in the data set 1 are generated by addition of variation of -3%. In data set 2, a 
change of -2% is introduced.Similarly, for data set 3 until 6, a change of -1%, 1%, 2%, 
and 3% is applied, respectively. An ANN model is developed using data generated for 
feed compositions and 10 process conditions for the CDU. From the 198 data sets 
generated, 148 are used for training the ANN-based model, while 50 data sets are used to 
validate the model. The ANN model has three hidden layers, where neurons in hidden 
layers 1, 2, and 3 are 13, 17, and 16, respectively. The correlation coefficient between the 
target cutpoint and the predicted cutpoint is 0.98. 
The reported average value for diesel production in KBPD (kilo barrels per day) in Figure 
3 and the individual productions capacity of the sample components are calculated for a 
set of 50 sample components. The trend for straight runs model shows that production for 
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33 sample components are reported to be above average, among the sample components 
for straight runs a maximum of 36.79 KBPD and a minimum of 35.29 KBPD is achieved. 
For the hybrid model, a maximum of 42.77 KBPD and a minimum of 37.37 KBPD is 
obtained. For the ANN-based model, the diesel production for 50 sample components 
reaches an average of 39.38 KBPD for an average energy/volume (E/V) value of 779.67 
kW/KBPD from Figure 4 for the ANN-based model. The ANN-based model shows that 
production for 29 sample components are above average, among the sample components 
for the ANN-based model a maximum of 41.06 KBPD and a minimum of 36.35 KBPD 
is achieved. Figure 5 shows the energy to volume ratio of diesel for different sample 
components. The hybrid model obviously requires a longer time to update the cut points 
while the ANN-based model is aimed to reduce the time required for updating cutpoints. 

       
   Figure 3: Average diesel production in E/V.                       Figure 4: Average E/V values.  

 
Figure 5: E/V ratio for diesel achieved using the three models. 

5. Conclusion 
In this study an ANN-based approach for cutpoint optimisation of CDU is proposed. The 
ANN-based model is trained on data of sets of feed compositions, process conditions, and 
their corresponding optimised cutpoints derived through hybrid model of Taguchi method 
and GA. The proposed mechanism is demonstrated via integration of MATLAB and 
Aspen HYSYS and is applied to a CDU model for Pakistani crude-oils. The ANN model 
and the hybrid framework are found more reliable and consistent for the diesel production 
in comparison to the straight-run model, which showed lower production rates of diesel 
and an overall lower total production. It is found that using the hybrid model, a decrease 
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of 17.69% in the energy to volume ratio for an increased diesel production of 7.98% is 
achieved, compared to the straight runs. On the other hand, using the ANN-based model 
a decrease of 19.44% in the energy to volume ratio for an increased diesel production of 
8.39% is achieved compared to the straight-run model.  
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Abstract 
The performance of the reconstruction of the states of the controlled system is a key factor 
for the performance of nonlinear model-based control. In this work, the design and 
experimental evaluation of a Constrained Extended Kalman Filter (CEKF) for a 
continuous copolymerization process is presented. The experimental set-up and the model 
are introduced. The performance of the CEKF scheme with a systematic tuning, 
sampling-based constraint handling approach is tested in simulation studies, and the 
performance of the CEKF formulation is validated for experimental data. 
 
Keywords: Copolymerization, State Estimation, Constrained EKF, Coiled Flow Inverter 

1. Introduction 
The production of polymers by free radical solution polymerization is a major branch of 
the process industry. In most cases, free radical polymerization is carried out in batch or 
semi-batch reactors. However, these modes of operation have several disadvantages, such 
as cleaning and transfer times, variations in product quality between different batches, 
and limited heat removal. Therefore, the transfer to continuous processes has been 
investigated intensely in recent years as presented by Goerke et al. (2016); Durand and 
Engell (2016). 
 
The challenge of radical solution polymerization in continuous reactors is to handle the 
increasing viscosity and to avoid runaway and a resulting blockage of the reactor. This 
necessitates fast and precise control of the reactor, which is difficult because of the lack 
of measurements inside the reactor. Therefore, reliable and fast state estimation is a must. 
 
The Extended Kalman Filter (EKF) is the most often used state estimator for nonlinear 
systems in the field of chemical engineering. The popularity of the EKF results from the 
simplicity of the implementation and the low computational effort. On the other hand, it 
is known that the EKF may fail for strongly nonlinear processes, especially in the vicinity 
validity limits, e.g. negative concentrations. Therefore, a significant amount of research 
regarding the handling of inequality constraints in EKF based state estimation has been 
done as presented by Simon (2010). Possible approaches range from simple clipping to 
sampling-based approaches as presented by Prakash et al. (2014). 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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2. Experimental Setup 
A sketch of the experimental setup is 
shown in Figure 1. The feed streams are 
aqueous solutions of the monomers 
acrylamide (AM) and 2-acrylamido-2-
methyl-propane sulfonic acid (AMPS) 
and the redox initiator system potassium 
persulfate and sodium formaldehyde 
sulfoxylate. The different streams are 
mixed and subsequently fed to a Coiled 
Flow Inverter reactor (CFI). The CFI 
provides a homogeneous radial profile 
due to good radial mixing and low axial 
mixing even at laminar flow conditions as 
described by Klutz et al. (2015). The 
throughput of the reactor ranges from 
0.5 kg/h to 1.5 kg/h. The reactor has an 
inner diameter of di=3 mm and a total 
length of 8 m. The reactor is placed inside 
an oven, which is operated at 343 K. 
Within the reactor, the cold inlet stream is 
heated and thereby the polymerization 
initiated. Additionally, the exothermic 
polymerization reaction leads to a 
temperature rise. 

The reaction temperature is monitored by tube temperature measurements. These 
measurements are located at axial reactor positions of 1 m, 3 m, 5 m and 7 m. The 
monomer concentration at the outlet is measured using an online Raman spectrometer. 
With increasing conversion, the viscosity of the reaction mixture increases drastically. 
The viscosity is inferred from pressure difference measurements. Therefore, the pressure 
drop over the whole reactor and at the outlet, over a measuring section, are measured. 

3. Model 
The copolymerization reaction is described by the method of moments and the model 
accounts for the initiation, propagation, oxygen inhibition, and termination with first and 
second-order reactions. The energy balances of the reaction fluid and the reactor material 
are considered including convection, reaction, and heat transfer. 

The viscosity dependency on the polymer moments is modeled with a Mark-Houwink 
approach and the shear dependency with a power law fluid. Back-mixing in the CFI is 
described with the axial dispersion model. The spatial derivatives of the highly convective 
dominated mass transport equation and the energy transport equations are approximated 
using the WENO-3-5 scheme, on 18 grid points. The resulting ode model with 324 states 
poses a highly nonlinear and stiff problem.  
  

Figure 1: Schematic of the CFI Copolymerization 
process including measurement set-up 
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4. Constrained Recursive State Estimation 
The Extended Kalman Filter is used as a state estimator. In order to process the available 
measurement information, the recursive state estimation needs a smaller computation 
time than the measurement interval, which is 1 s. This cannot be realized with 
computationally more expensive techniques such as Moving Horizon Estimation or 
Particle Filtering. Therefore, the EKF is used due to the comparably low computational 
effort. The performance of the EKF is enhanced by several extensions, such as effective 
constraint handling and systematic tuning, as described in the following. 

4.1. The Extended Kalman Filter 
The continuous-discrete EKF employed here consists of a prediction and a correction 
step. In the prediction, problem (1) is solved to compute the a-priori estimates of the states 𝑥 |  and the covariance 𝑃 | . 

  𝑥 = 𝑓(𝑥, 𝑢)  (1a) 

  𝑃 = 𝑃 + 𝑃 + 𝑄  (1b) 

In the correction step, the a-priori estimates are corrected with the measurement 
information yk using the formula (2) to compute the a-posteriori estimates 𝑥 |  , 𝑃 | . 

  𝐾 = 𝑃 | | | 𝑃 | | + 𝑅  (2a) 

  𝑥 | = 𝑥 | +  𝐾 (𝑦 − ℎ(𝑥 | , 𝑢))  (2b) 

  𝑃 | = 𝐼 − 𝐾 | 𝑃 | 𝐼 − 𝐾 | + 𝐾 𝑅 𝐾  (2c) 

4.2. Systematic tuning approach 
The tuning of an Extended Kalman Filter is not trivial. Especially for large complex 
models an inappropriate choice of the tuning parameters leads to suboptimal performance 
and trial-and-error tuning is tedious. A systematic tuning approach that was introduced 
by Valappil and Georgakis (2000) is used here, as shown in equation (3). The parameter 
covariance matrix 𝐶  results from a parameter fitting of the model to experimental data. (𝑥, 𝑢) is evaluated at every time point in the covariance prediction. 

   𝑄(𝑥, 𝑢) = 𝐶  (3) 

4.3. Inequality constraint handling 
In the case considered here, the state estimates are strongly dependent on the pressure 
drop near the constraints. Therefore, an effective constraint handling stabilizes the EKF 
and creates the basis a suitable filtering of the pressure drop measurements.In contrast to 
other approaches that correct only the estimated states, in the sampling-based approach 
also the state covariance is adapted. In this approach, referred to as MEKF-1 and 
introduced by Prakash et al. (2014), the constraints are handled in the following way. 
First, random sample points 𝑥 | ,  from a multivariate normal distribution 𝒩 𝑥 | , 𝑃 |  
with the mean 𝑥 |  and covariance of 𝑃 |  are drawn. Then, the sample points that violate 
the constraints are clipped to the constraints. Based on this corrected ensemble 𝑥 | ,  the 
state 𝑥 |  and the covariance matrix 𝑃 |  are calculated using the equations (4). The 
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approach is applied after the prediction and after the correction step, accordingly 𝑥 |  is 
the constraint a-priori state estimate 𝑥 |  or the a-posteriori state estimate 𝑥 | . 

  𝑥 | = ∑ 𝑥 | ,    (4a) 

  𝑃 | = ∑ (𝑥 | , − 𝑥 | , )(𝑥 | , − 𝑥 | , )    (4b) 

4.4. Computational aspects 
The CEKF is implemented in the do-mpc framework, introduced by Lucia et al. (2017), 
which uses the CasADi 3.5.1 implementation by Andersson et al. (2018). The continuous-
time state covariance update is computed using the approach by Mazzoni (2007). To 
enable the real-time computation, the covariance prediction is performed on a regular 
grid, with a time step of 0.1 s. The number of sampling points for MEKF-1 was chosen 
as 3240. The performance was also tested with 32400 sampling points, which did not lead 
to a different solution. All computations are performed on an AMD Ryzen 9 3950. 

5. Results 
First, the estimation is tested against a simulation of the plant without model mismatch. 
The estimator is initialized at the steady state for a throughput of 0.8 kg/h. The plant is 
initialized at a steady state for a throughput of 0.7 kg/h. At the begin of the simulation, 
the throughput is increased to 0.8 kg/h. The measurements, which are used in the 
estimation, are the tube temperatures along the reactor, the mass fraction of the residual 
monomers at the end of the reactor, the pressure drop over the reactor, and the pressure 
drop at the reactor outlet. The behavior of the plant and the EKF is shown in Figure 2. 
The black line displays the mean and the blue line the mean of the a-priori predicted 
measurements / states over 25 runs with different random measurement noise. The shaded 
areas indicate the 2𝜎 confidence intervals. In the upper and mid plots, the different 
measurements are displayed, while in the lower plot the weight average chain length 
(WACL) and the acrylamide polymer mass fraction at the reactor outlet are shown. In all 
of the plots, the convergence of the estimator can be seen. However, while the temperature 
and pressure measurements are predicted accurately within 200 s, the convergence of the 
residual acrylamide mass fraction and the WACL and the polymer mass fraction takes 
400 s. The overall convergence of the estimator takes also about 400 s. The correct 
prediction of the pressure drop, at the beginning is caused by the fact that the estimator 
corrects the first and second moment of the polymer chains such that the prediction of the 
pressure is correct, but the estimates of the states are differing from the true states. The 
convergence time of the estimator cannot be accelerated by a different tuning, it is an 
internal limit of the system, which is caused by the convective information transport. 
Before residence time (316  s) has passed, the system is not completely observable, due 
to the convective information transport to the pressure and concentration measurements 
and the limited observability from temperature information. However, while converging, 
the estimator is able to provide accurate predictions of the pressure drop and consequently 
the viscosity, which is the main indicator for product quality and safety of the plant. The 
estimator is fast in comparison to the plant behavior, which does not reach a steady state 
within 1000 s. The computational time of the estimator is 0.84±0.084 s, therefore, the 
estimation scheme is real-time feasible.  
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Figure 2: Simulated plant measurements and predicted measurements of the CEKF state estimation 

The estimation scheme was also tested with real plant measurements as shown in Figure 
3. The results show a fast convergence of the temperatures to the measured values of the 
tube temperature measurements within 30 s, as can be seen in the upper left plot. The 
pressure at the end of the reactor also shows similar performance with fast convergence 

 
Figure 3: Plant measurements and predicted measurements of the CEKF state estimation 
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of the estimate. The monomer mass fraction is initialized close to the measured value and 
the estimates stay close to the measured value. Although there are only minor variations 
in the monomer mass fractions, the pressure drop shows quite large variations. The reason 
for this behavior is the high sensitivity of the pressure drop at the outlet to process 
variations. The total pressure drop over the reactor displays an offset and obviously, the 
measurement is not reliable. This calls for improvements in the instrumentation. In 
conclusion, the estimator works reliably with the plant data. In future work, it will be 
explored whether the performance of the estimator can be improved by a reduced plant 
model mismatch achievable e.g. through parameter estimation and by using 
computationally more demanding methods as moving horizon estimation can improve the 
estimator performance. Nonetheless, the convection dominated behavior of the reactor 
poses limits to the speed of convergence of the estimation, as also observed in Hashemi 
et al. (2016). 

6. Conclusion 
In this work, a CEKF based state estimation scheme for a tubular reactor for a 
polymerization that leads to a sharp rise of the viscosity was developed and tested in 
simulation studies and against plant data. The CEKF scheme was applied with a 
systematic tuning and constraint handling approach and an accurate covariance matrix 
prediction. Its performance was investigated in simulation studies and with real plant 
measurements. The speed of convergence is limited by the convection-dominated 
behavior of the plant.  Further extensions of this work include efforts in reducing the plant 
model mismatch by including parameter estimation and using the estimator in output 
feedback model-based control of the plant. 
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Abstract
Process modeling requires both data (chemical reaction yields, kinetic constants, cost
estimates, environmental indicators, etc.) and knowledge (operation models and
formulations, alternative processes and technologies, etc.). Searching in databases and
published research may provide such information, but there is a lack of systematic
methods and tools guiding this procedure. The present work describes and assesses an
information retrieval methodology that is part of a proposed retrieval and extraction
cycle addressing this problem. Two query construction methods for sampling academic
databases are proposed assessed and compared. Departing from a seed corpus of a
limited number of papers, Scopus® is used as an academic database to retrieve literature
containing information associated with pyrolysis processes of waste plastic. It is found
that, with minimal human intervention, the methodology is able to return a ranked list of
candidate documents that have a considerable (linguistic) relevance.

Keywords: Information Retrieval, Big Data, Text Mining, Academic Databases,
Waste-to-Resource

1. Introduction
Due to new communication technologies the world becomes increasingly
interconnected.
This enables researchers from all around the globe to publish their work and access
publications from their peers. In recent years this has led to a yearly growth of about 9%
in academic publications (Landhuis, 2016). The abundance of available information
raises the need for strategies to handle this Big Data in order to pinpoint the truly
relevant information. In this work we present a methodology to semi-automatically
screen academic databases to obtain a set of promising documents related to a given
research question.
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In Process Systems Engineering (PSE), the modeling of technical systems is a
fundamental task. Model parameters and knowledge can be obtained from publications
in academic databases but with the ever increasing volume of data this becomes an
increasingly difficult task. Text mining and Natural Language Processing are tools that
emerged to handle and make use of Big Data. In the field of Systematic Reviews they
are being applied to find and classify relevant contributions within a (sub-) field of a
discipline in order to include them in a review paper (Usai et al., 2018). A related
example where this concept is applied in a natural science field is shown in the work by
(Kottmann et al., 2010). They present an IRE system that retrieves, classifies and
extracts papers related to metagenomics marine science from the PubMed database.

This work is motivated by the waste-to-resource route assessment work presented by
(Pacheco-López et al., 2020). The authors compare the potential of transformation
routes of plastic waste to valuable raw materials. By applying an IRE process it is
expected to populate a process database for comparison and go beyond what a manual
retrieval procedure could achieve, both in terms of retrieved volume and identification
of non-intuitive relations. In order to facilitate the search process in a systematic way
we propose an Information Retrieval and Extraction (IRE) cycle that departs from an
initial set of relevant documents. The main novelty of this contribution is the proposal
and validation of a retrieval method to screen access-limited academic databases with
the goal of retrieving specific parameters (in this case the ones that characterize
chemical transformation processes as part of waste-to-resource routes). Here, we
demonstrate our progress in the first step of the cycle, the information retrieval.

2. Problem Statement
To address this objective the problem can be stated as follows:

Given (1) a research question, (2) a set of relevant documents (seed corpus) and (3) an
academic database, find an extended corpus (new relevant documents).

The extended corpus must be similarly relevant to the research question and a design
objective is to postpone and so to reduce human interaction as much as possible.

3. Methodology
The proposed IRE cycle is presented in Figure 1. First, an academic database is queried
using a sampling method that is conditioned to the initial set of documents (seed
corpus). Second, the retrieved documents are analyzed in order of decreasing estimated
relevance to find the text passages that contain the desired information. So far, all parts
of the information retrieval part are implemented in Python 3.8. The database used in
this study is Scopus® and is accessed via the Elsevier API. The following subsections
describe the hypotheses and individual steps within the information retrieval part of the
cycle.

3.1. Hypotheses

1. Linguistically similar texts contain semantically similar information.
2. A seed corpus composed of documents fitting a domain represents that domain.
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3. Using relevant keywords extracted from that corpus for constructing queries to
structured sets of documents, organized as databases, allows for finding
documents having semantically similar information

Figure 1. Proposed information retrieval and extraction cycle.

3.2. Extraction of Domain Keywords from Seed Corpus
First, a set of relevant domain keywords must be extracted from the seed corpus to

characterize the domain. The Term Frequency-Inverse Document Frequency (TF-IDF)
metric (Qaiser and Ali, 2018) determines the relative importance of a word in a set of
documents, considering the words with high number of appearances in few documents
as relevant while frequent words in all documents and non-frequent words as
non-relevant.

3.3. Query Construction Methods for Sampling Academic Databases
In this work we assess and compare two methods:

• Sequential Sampling (SEQ): Add keywords to the query in decreasing
relevance order until the number of search results is below a user-defined
threshold.

• Monte-Carlo Sampling (MC): Build multiple queries by randomly adding
keywords according to their relevance until the number of results is below a
user defined threshold. An inherent ranking metric is the appearance frequency
(the number of queries a given document appears in, divided by the total
amount of queries).

3.4. Ranking of Retrieved Documents
The BM25 ranking function (Robertson and Zaragoza, 2009) is a popular approach in
information retrieval to determine the relevance of a document to a query compared to

from Academic Databases
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the other documents in the retrieved corpus. It yields a metric that can be considered as
relative (linguistic) relevance.

3.5. Validation and Limitations
In order to validate the retrieval method, the normalized BM25 relevance of the
retrieved full text documents are compared with each other and with the seed
documents. The full text information is chosen because (1) a test on using the abstracts
of the documents to determine the relevance of the full documents showed an
unreasonable classification and (2) the desired knowledge is contained within the full
text.

4. Case Study
The methodology is applied to a set of eight seed documents that contain quantitative
information about processes for the pyrolysis of plastic waste. The information
extracted from these documents was used by (Somoza-Tornos et al., 2021) to assess a
process screening framework for the synthesis of process networks from a circular
economy perspective. The retrieved documents departing from this seed corpus are
expected to help extending the study by identifying additional candidate process
conditions and pathways.

4.1. Targeted Information
One example of textual information is taken from a seed document (Onwudili et al.,
2009) and the keywords are highlighted by general concepts that are searched:

“The compositions of the process (pyrolysis) products of pure low-density waste
product (polyethylene), waste product (LDPE) and waste product (polystyrene) and
their mixtures have been investigated over a condition (temperature) range from 300 to
500 condition (°C).”

5. Results and Discussion
Table 1 shows the top 16 keywords extracted from the seed abstracts. The sequential
method was applied with a threshold of 1,000 documents leading to 376 abstracts and
full text documents that could be retrieved with the available licensing options. The
Monte-Carlo method was performed with 1,000 iterations using 10, 20 and 30 keywords
to identify three lists of candidate documents. From the top 2,500 documents of each list
a total of 553, 568 and 1,110 abstracts and corresponding full documents could be
retrieved respectively. Additionally, from the 30 keywords list (63,186 entries) a
randomly selected subset of 2,500 papers was chosen from which a total of 972 could be
retrieved and is treated as reference set. The BM25 ranking function was applied to the
complete set of retrieved full text documents, as these contain the relevant information.
From Figure 2 it can be seen that the documents from the 10 and 20 keywords list have
a very similar distribution and a generally higher relevance compared to the 30
keywords list and the sequential method. This trend holds true when using different
amounts of keywords for relevance determination. The documents from the randomly
selected subset have a considerably lower relevance proving that the methods perform
as expected. The number of keywords when sampling the database is a key parameter
and the results show that using more “relevant” keywords does not lead to improved
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retrieval results. Moreover, it is evident that the Monte-Carlo method retrieved generally
more relevant documents than the sequential method.

Table 1. Top 20 keywords and TF-IDF values extracted from the seed corpus abstracts.

Keyword TF-
IDF Keyword TF-I

DF Keyword TF-I
DF Keyword TF-I

DF
pyrolysis 1.23 gas 0.85 bed 0.64 fluidise 0.55

waste 1.12 temperature 0.76 increase 0.64 time 0.50
product 1.01 plastic 0.76 feedstock 0.60 residence 0.50

oil 0.86 yield 0.73 wt 0.60 recycling 0.46
process 0.85 catalyst 0.68 polyethylene 0.58 flash 0.44

Figure 2. Cumulative distribution of normalized BM25 relevance values.

Figure 3 illustrates that the inherent ranking metric of the Monte-Carlo method
correlates to some extent with the document relevance. The point clouds represent the
relevance and document frequency of all retrieved documents within the 30 keywords
list. It can be identified that, when only choosing documents with a normalized
frequency higher than 0.1, a significant amount of irrelevant papers can be discarded
(here: 80.3% of set size). Moreover, a large number of newly identified documents has
an even higher relevance (22.9%) than the average relevance of the seed corpus, which
is a promising starting point for the information extraction step. The sequential method,
on the other hand, does not directly have an inherent ranking. Figure 3 (right) shows a
derived metric that is the number of keywords contained in the downloaded papers. It
appears that there is no clear correlation between the number of keywords included and
the BM25 relevance.

The general impression is that the documents are indeed fitting the domain and
potentially contain the desired information. A selected truly relevant document
appearing in all three MC lists within the upper ranks is titled “Hydrocarbons obtained
by waste plastic pyrolysis: Comparative analysis of decomposition described by
different kinetic models” (Miskolczi and Nagy, 2012). A relevant passage reads as
follows:
“... the parameter (yields) of volatile products were 15.0% [410 condition (°C)], 24.1%
[430 condition (°C)] and 55.3% [450 condition (°C)] in case of W-2 marked sample
process (pyrolysis), while ...”

Towards Automated Information Retrieval of Process Data and Knowledge 
from Academic Databases
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Figure 3. BM25 values plotted against model inherent ranking for Monte-Carlo (left) and
sequential (right) method. Shown is the data obtained from the 30 keywords list.

6. Conclusions
Lists of (linguistically) relevant documents were identified with minimal human
intervention. These lists have the characteristic of being populated by highly relevant
documents in the upper ranks which allows to limit the selection of documents to
download for the subsequent information extraction step. The candidate documents
proved to have similar or even higher relevance to the domain than the documents in the
seed corpus. A first qualitative assessment of the titles and abstracts indicates that these
documents are truly relevant to the posed question. Our investigations showed that the
proposed information retrieval methodology performs appropriately using the selected
database and seed corpus taken from a chemical engineering field. This implies the
potential of establishing a systematic machine-assisted search procedure for model
parameters and knowledge, effectively reducing the workload of engineers in the PSE
community and going beyond what a completely manual procedure could achieve. As
of now, the methodology assesses document relevance by means of the BM25 metric.
This metric allows for a pre-selection of documents but the next necessary step in the
development of the whole information retrieval and extraction cycle is to systematically
classify the true relevance of the documents by a machine-assisted information
extraction methodology. Moreover, the methodology has been tested using only one
database. Further work is in progress to extend the search and improve its efficiency
(speed and accuracy).
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Abstract
This paper presents a Graph Neural Network (GNN) approach for the prediction of
bioconcentration factors (BCF). We show that GNNs are able to exploit structural
information of molecules to regress BCF values that are comparable to commonly used
quantitative structure-activity relationship (QSAR) models in terms of the coefficient of
determination . However, the main advantage of GNNs is that molecular descriptors𝑅2

do not need to be determined and pre-selected by the user. Instead, they are learned
directly by the GNN using backpropagation. A database of 473 molecules was used to
train and test the present model. The results obtained suggest that GNNs might be useful
for the prediction of other types of sustainable indicators of molecules, which is subject
of our further research.

Keywords: Bioconcentration Factor (BCF), Graph Neural Network (GNN), green
chemistry, machine learning

1. Introduction
When moving towards a sustainable chemical industry, commonly used toxic solvents
have to be replaced with more environmentally responsible options. For this, two main
objectives have to be met: the replacements have to be comparable to certain degree in
terms of their thermodynamic behavior; and their environmental, health and safety
properties (EHS) have to qualify them as safe and sustainable replacements. While great
effort has been set to find thermodynamically beneficial solvents, analyzing the EHS
properties of the proposed molecules experimentally is quite expensive and
time-consuming. To overcome this problem, quantitative structure-activity relationship
(QSAR) models are commonly used as prediction methods (Benfenati et al., 2013).
One of the EHS of interest is the accumulation of chemical substances in body tissues
(normally measured in fish tissue). This property is usually expressed as a
bioconcentration factor (BCF), which measures the difference between the
concentration of the substance in the organism’s tissue to that in the environment. The
QSAR models currently employed to predict BCF are based on several molecular
descriptors and regression models such as multiple linear regression (MLR), support
vector machines (SVM) and radial basis function neural networks (RBFNN) (Miller et
al., 2019). However, all these methods require that the user pre-selects and calculates
the appropriate molecular descriptors to serve as inputs to the model, which is a difficult
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task given the large number of possible descriptors, e.g. Zhao et al. (2008) analyzed
1022 descriptors. This paper presents a Graph Neural Network (GNN) approach for the
prediction of BCF. The advantage of the GNN compared to traditional QSAR methods
is that molecular fingerprints are automatically generated. These fingerprints are later
used to train a regression model (e.g. a multi-layer perceptron (MLP)). In this way, the
complete set-up can be trained using backpropagation and an end-to-end model is
obtained that relates the molecular structure (e.g. represented as SMILES strings) to the
BCF value. The concept of GNNs is introduced next, before describing the
methodology used, and the results obtained in terms of the coefficient of determination

, the mean absolute error MAE and the standard deviation on the error of prediction𝑅2

SDEP. A comparison with traditional QSAR models is then provided.

2. Background
Graphs: A graph can be defined as a tuple of features corresponding to nodes and𝐺 𝑉
edges , i.e., . It is also necessary for a graph to specify the connectivity of𝐸 𝐺 = (𝑉, 𝐸)
its nodes, e.g. via an adjacency matrix. In this scheme, some nodes act as receivers and
some as senders depending on the direction of connectivity. For undirected graphs, both
connected nodes act as sender and receiver for each other.
Graph Neural Networks: Similarly, to artificial neural networks that operate over
vectors, Graph Neural Networks (GNNs) operate on graph-structured data. This means
that a GNN performs mathematical transformations on a graph as input and returns an
updated graph as output (graph-to-graph). The transformations on can be divided into𝐺
three operations within a layer :𝑙

(i) Message passing: Given a node with features , for each node𝑣 ℎ
𝑣

(𝑙−1) 𝑤
connected to , there is a differentiable function that sends the information𝑣 ϕ

𝑀
of to .𝑤 𝑣

𝑚
𝑣,𝑤
(𝑙) = ϕ

𝑀
ℎ

𝑣
(𝑙−1), ℎ

𝑤
(𝑙−1( ) (1)

(ii) Message aggregation: Given the messages for all nodes in the𝑚
𝑣,𝑤
𝑙( )

neighborhood of , there is a differentiable and permutation invariant𝑁 𝑣
function that aggregates all messages across all neighbors of in anϕ

𝐴
𝑣

aggregated vector .𝑎
𝑣
(𝑙)

𝑎
𝑣
(𝑙) = ϕ

𝐴
𝑚

𝑣,𝑤
(𝑙)  : 𝑤∈ 𝑁(𝑣) { }( ) (2)

(iii) Features updating: Given the aggregated features of all neighboring nodes ,𝑎
𝑣
(𝑙)

there is a differentiable function that combines the features withϕ
𝑈

ℎ
𝑣

(𝑙−1) 𝑎
𝑣
(𝑙)

to update the features .ℎ
𝑣
(𝑙)

ℎ
𝑣
(𝑙) =  ϕ

𝑈
ℎ

𝑣
(𝑙−1),  𝑎

𝑣
(𝑙) ( ) (3)

This process of message passing, aggregation and updating can be repeated for many
layers, similarly to the convolutional layers used for image processing. Edge features
might be also included as part of the inputs of the function . This allows for the edgeϕ

𝑀
information to also be part of the message passing scheme. After multiple graph
convolutions , an updated graph is obtained whose nodes contain combined𝐿
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information of their local neighborhood within an -node radius. In this way, each node𝐿
and edge in the final graph possesses information about itself in the context of the whole
graph structure. Then, the final graph information can be transformed using a
permutation invariant pooling layer to obtain a vectorial representation of the final
graph. Finally, this vector might then be used as an input for a regression or
classification model depending on the task at hand. Since all the functions involved in
this scheme are differentiable, the whole model can be trained using backpropagation.
GNNs have been the focus of research since the past decade (Gori et al., 2005), but their
popularity has increased rapidly in recent years, especially in the context of molecular
structure to property prediction (Coley et al., 2017; Gilmer et al., 2017;
Sanchez-Lengeling et al., 2019; Schweidtmann et al., 2020).

3. Methodology
3.1. Database
Several publicly available datasets containing BCF values for different molecules can
be found in the literature (Arnot and Gobas, 2006; EURAS, 2007). However, their
values depend on many experimental factors, such as the fish species utilized during the
experiments. For this reason, a reliability score is sometimes available along with the
BCF values. Previous efforts have been made to carefully select high quality data which
is suitable for regulatory purposes, such as the REACH legislation. The database
reported by Zhao et al. (2008), which was used to construct QSAR models available in
the VEGA toolbox (Benfenati et al., 2013), is one of these carefully selected collections
of data. This database contains 473 compounds and covers a log-(BCF) range from
-1.00 to 4.85, for molecular weights ranging from 68 to 943 g/mol. This same database
was used in the present work. The molecule classes proportion in the dataset are shown
in Figure 1.

Figure 1: Percentage distribution of molecular classes in the complete dataset and test set.
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3.2. Molecule to graph
First, the molecular information has to be integrated into a graph. Starting from
Simplified Molecular Input Line Entry System (SMILES) strings, a graph is created for
each molecule in the dataset. This is performed using the open-source package for
cheminformatics RDKit (http://www.rdkit.org) in Python 3.7. In each graph the nodes
represent the atoms, and the edges represent the chemical bonds. For simplicity
hydrogens were not considered as part of the graphs. Tables 1 and 2 show the type of
features used for nodes and edges, respectively. Given the small size of the dataset, a
generalized atom type “Other" was included. This accounts for the few instances of
rarely appearing atoms in the database while conserving the other features information
of the involved molecules.

Table 1: Node features used to define molecular graphs.

Node feature Description Dimensions
Type * Type of atom (C, O, Cl, N, F, Br, S, Other) 8
Ring Whether the atom is part of a ring 1
Aromaticity Whether the atom is part of an aromatic ring 1
Hybridization * Hybridization of the atom (sp, sp2, sp3, sp3 d, sp3

d2)
5

Bonds * Number of bonds to the atom 6
* Implemented using one-hot-encoding (vector of binary values for each unique integer value).

Table 2: Edge features used to define molecular graphs.

Edge feature Description Dimensions
Type * Type of bond (single, double, triple, aromatic) 4
Conjugated Whether the bond is in a ring 1
Ring Whether the bond is in a ring 1
*Implemented using one-hot-encoding (vector of binary values for each unique integer value).

3.3 GNN architecture
The GNN model was implemented using Pytorch Geometric (Fey and Lenssen, 2019)
and follows a similar architecture to the one presented by Gilmer et al. (2017). In this
structure, the message passing function is denoted by , 𝑚

𝑣,𝑤
(𝑙) = ℎ

𝑤
(𝑙−1) • 𝑀𝑃𝐿 𝑒

𝑣,𝑤( )
where stands for a multi-layer perceptron and , for the edge features vector𝑀𝐿𝑃 𝑒

𝑣,𝑤
between the nodes and . For this MLP, the rectified linear unit (ReLU) activation𝑣 𝑤
function was used with a single hidden layer of 128 neurons. This MLP serves to
combine edge information to the node. The aggregation function is just the sum over the

messages in the neighborhood . And the update function is𝑣, 𝑎
𝑣
(𝑙) =

𝑤∈𝑁(𝑣)
∑ 𝑚

𝑣,𝑤
(𝑙)

where is a layer-specific trainable weight matrix.ℎ
𝑣
(𝑙) = 𝐺𝑅𝑈 Θ 𝑙( )ℎ

𝑣
𝑙−1( ) + 𝑎

𝑣
(𝑙)( ) Θ 𝑙( )

GRU stands for Gated Recurrent Unit, which allows the sharing of parameters among
layers. The use of GRU in GNNs was studied by Li et al. (2016) and was also applied
by Schweidtmann et al. (2020) for the prediction of molecular properties. Regarding the
method used, it is worth mentioning that, while the node features are being updated
from one convolutional layer to the next one, the edge features remain the same.
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A set2set (Vinyals et al., 2015) pooling layer was used to obtain the vectorial
representation of the final graph. Gilmer et al. (2017) suggested that this type of graph
embedding should produce a more expressive molecular fingerprint compared to the
sum embedding. The number of processing steps was tunned between . A0 ≤𝑇 ≤10
final value of was selected. Then, a multi-layer perceptron (MLP) was used to𝑇 = 3
predict the BCF from the molecular fingerprint. This MLP uses the exponential linear
unit (ELU) activation function. The model hyperparameters where extensively explored
considering the following ranges: initial learning rate ,∈ 0. 0001,  0. 001,  0. 01{ }
number of convolutional layers , hidden size of convolutional layers∈ 1,  2,  3{ }

, final MLP layers’ size . An initial learning rate of∈ 21,  32,  59{ } ∈ 64,  32,  16{ }
0.001, 2 convolutional layers with size 21and a three-layer MLP with 64, 32 and 16
neurons were finally selected based on the models’ mean absolute error (MAE). The
data splits used during the hyperparameter selection are discussed in the following.

3.4 Training, validation and testing
In order to compare our model with the one reported by Zhao et al. (2008), the same
train/validation/test split proportions were used (80% of the whole dataset, 20% of the
training set and 20% of the whole dataset respectively). Following the work by
Schweidtmann et al. (2020), ensemble learning was used to improve the quality of the
predictions given the small dataset in this work. A total of 10 models where trained
using randomly selected splits for the validation set. The test predictions of each model
were averaged to produce the final prediction. The model was trained for 300 epochs
using the optimizer Adam with batches of 30 graphs. A dropout of 50% was used both
for the convolutional layers and the final MLP to avoid overfitting. The training data
was also normalized to have a zero mean and unit variance. The loss function was
selected to be the same one used by Zhao et al. (2008), i.e., mean squared error (MSE).
And the reported metrics used were the mean absolute error (MAE) and the score. A𝑅2 
scheduler was specified to reduce the learning rate by 70% whenever the validation
error reaches a plateau on 5 consecutive epochs with a threshold of 10-4.

4. Results and discussion
The GNN model presented in this work was compared with the best QSAR model
presented by Zhao et al. (2008) (in their original paper referred to as “Model 7” or
“Hybrid model”). The results for the test and validation sets can be seen in Table 3.
Compared to the QSAR model, our GNN-based model shows similar results. However,
the main difference between both modeling approaches is that the GNN is able to map
the structural information of the molecule to its property without the need to externally
computing any molecular descriptor. As opposed to the 1022 descriptors analyzed by
the Zhao et al. (2008), the GNN computes a molecular fingerprint from just 8 relatively
intuitive structural parameters for molecules (see Tables 1 and 2). Despite this notable
difference in descriptors, QSAR models might provide a physical insight that might be
lacking when using GNNs. It is important to mention that both models were constructed
using 2D information only. However, including stereochemistry information to a GNN
would be relatively straightforward to do (e.g. by adding torsion angles as extra edge
features). This is an important advantage given that spatial configuration plays a big role
in the EHS properties of molecules. The parity plot for the test set is shown in Figure 2.
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Figure 2: Parity plot for the final GNN model predictions on the test set.

Table 3: Comparison of models for predicting BCF (bold numbers indicate preferred value).

Model Test set Validation set Training set
𝑅2 MAE SDEP 𝑅2 MAE SDEP 𝑅2 MAE SDEP

GNN 0.82 0.49 0.34 0.83 0.44 0.32 0.82 0.44 0.35
Zhao 0.79 0.45 0.59 0.79 - 0.66 0.83 - 0.56

5. Conclusion
In this work a GNN-based model to predict BCF is presented. The main advantage of
the proposed method is that molecular descriptors do not need to be chosen and
calculated externally. Instead, molecular structure patterns are learned by the GNN to
map them to the property of interest (e.g. BCF). First, the structure information is
exploited by using graph convolutional layers. Then, a pooling method, herein set2set,
is applied to obtain a molecular fingerprint that would play the role of the commonly
used molecular descriptors. Finally, a multi-layer perceptron maps the fingerprint to the
property. The investigation of the viability of GNNs with more EHS indicators is
subject of future research. Also, the determination of confidence intervals on the GNNs
predictions is still missing and an important aspect that needs to be investigated in the
future.
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Abstract 
In this paper, a five-step approach coupling data science and life-cycle assessment is 
detailed. The main purposes of the study are to collect and analyse the process data from 
scientific literature, to characterize clusters, and to help the decision support in the 
preliminary choice of biomass or valorisation process according to the environmental 
indicators. The approach is tested on the comparison of rice straw and corn stover 
pretreatment processes for glucose production. Following the goal and scope, data 
architecture, life-cycle inventory, and environmental assessment steps, an impact-process 
matrix is analyzed in the last step using the multidimensional scaling method (MDS). The 
visualization of the results shows clusters that allow making a first analysis of the 
processes.  

Keywords: Circular economy, biorefinery, machine learning, life cycle assessment, 
biomass pretreatments 

1. Introduction 
In the agriculture field, which is a major source of waste production, the circular economy 
has become a major study subject over recent years. In France, the waste from the agri-
food industries is estimated at 2.6 million tons per year. Globally, this rate will increase 
with the expected increase in the population. Much of this waste is lignocellulosic 
byproducts that can be transformed into bioenergy, biomolecules, or biomaterials. A lot 
of researches are being done to transform these byproducts through sustainable processes, 
i.e. environmentally responsible, economically viable, and socially accepted (Sammons 
et al., 2009). Many transformation processes have been studied and published over the 
last thirty years (Davis et al., 2017). However, there is a lack of criteria to guide the choice 
between all these processes. The use of environmental, economic, and social assessment 
in a CE context is a good way to guide this choice. These assessments require a large 
amount of data, in particular data on processes potentially available in the scientific or 
technical literature or feeding by off-line simulation (Morales-Mendoza et al., 2012). The 
huge amount of scientific articles describing the valorization processes of agricultural 
byproducts constitutes a great and largely under-exploited source of data. This amount 
can be difficult to process. However, many tools and methods are now available for this 
purpose thanks to Big Data technics. Environmental evaluation tools such as Life Cycle 
Assessment (LCA) would benefit from these technologies to analyze process data and 
results from these evaluations. Some studies utilize massive data to complement LCA. J. 
Cooper et al. applied massive data to supplement background data (Cooper et al., 2013). 
The DILCA (Data-Intensive Life Cycle Assessment) method exploites knowledge 
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engineering (KE) and integrates technological developments that can change the LCA 
outcome for a given product over time (Bhinge et al., 2015). Divers studies combined 
Data Envelope Analysis (DEA) and LCA (Kouchaki-Penchah et al., 2017). 

The main purposes of our study are (1) to collect and analyze the process data from 
scientific literature, (2) to characterize trend or clusters, (3) minimize experiments that 
are costly and energy-consuming, and (4) support the decision in the preliminary choice 
of  biomass or a valorization process according to environmental indicators.  
The approach is discussed in section 2 and section 3 deals with a study case: rice straw 
and corn stover pretreatment processes for glucose production.  

2. General approach 
The approach is based on multidisciplinary field: data management, sustainability 
engineering, and life cycle thinking. It supports the analysis of environmental impacts in 
an automatic way in grouping processes. Following the goal of their study, the researcher 
or the R&D engineering can compare or choose processes based on our approach’s 
results. It is defined by five steps: (1) goal and scope, (2) data architecture, (3) life cycle 
inventory (LCI), (4) sustainability assessment, and (5) visualization and analysis of 
results.  

In the first step, the goal and scope of the study must be clearly defined. Life cycle 
thinking is recommended. This thinking encourages a "cradle-to-grave" or "cradle-to-
gate" approach if the logistics of a value chain are difficult to get. System boundaries and 
functional unit significantly influence evaluations. For example, it needs to be clarified 
whether the upstream biomass supply chain is considered. Once the goal and scope have 
been properly defined, the supply chain, technologies, and transformation processes 
should also be described. 

The data architecture is directly inspired by the construction of big data architecture 
and consists of five sub-steps: (i) data collection and extraction, (ii) data enrichment and 
storage, (iii) data processing, (iv) (raw) data analysis, and (v) (raw) data visualization. 
This step can be automatic, semi-automatic, or manual and it uses data technics e.g. 
machine-learning methods for the (raw) data analysis. These substeps are detailed in 
(Belaud et al., 2019). 

 The Life Cycle Inventory (LCI) is completed using the process data (also called 
foreground data) from the previous step. The background data come from free or 
commercial LCI databases such as EcoInvent Database. 

For the fourth step, one or more impact calculation methods must be determined in 
accordance with the first step that integrates the nature of the study and the system. Then, 
the environmental impacts are calculated using these methods. At the end of this stage, 
the main result is a structure [processes: biomasses: impacts] which is difficult to analyze.  

The visualization and analysis of the results step include methods derived from 
artificial intelligence and more precisely from "machine learning" to help in the analysis 
of environmental impacts. Starting from the statistical literature, traditional dimension 
reduction (DR) and unsupervised clustering techniques are combined to extract 
information from environmental impacts. More precisely, this hybrid approach is based 
on the Multi-Dimensional Scaling (MDS) using the Canberra distance and k-means. The 
objective is to search for "hidden" structures in multi-dimensional data and to help 
interpret the matrix. The advantage of this approach is that data-based methods require 
very little knowledge of processes to perform. Figure 1 summarizes the treatment for a 
[processes: impacts] matrix. First, DR techniques project the raw process data into a 
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lower-dimensional space (2 or 3). After a projection of the data by a DR technique, the 
clustering approach is then applied to consider similar impacts and processes within the 
lower-dimensional space. Finally, the user (expert) analyzes the points grouped in clusters 
to link them to significant processes/impacts. The visualization of the data clusters will 
help the researcher or R&D engineers in the final decision following the goal of their 
study. 

 
Figure 1: Schematic of data driven processing 

3. Case study  

In this section, the first results of our approach are presented with an intention to compare 
different pre-treatment processes for two biomasses: corn stover and rice straw. This 
study examines twenty processes extracted from twenty scientific articles. The study aims 
to help the researchers or R&D engineers to analyse processes for glucose production. 
Life cycle thinking is from “cradle to grave” i.e. the study’s boundaries are from biomass 
to the enzymatic hydrolysis stage. Biomass is considered as agricultural waste (destined 
to become a co-product): it has a zero impact - the impacts of the agricultural phase are 
attributed to the end product of agriculture (corn and rice). The biorefinery is considered 
to be relatively close to the site. Therefore the transport stage impact is minor. The main 
function of the system is the production of glucose. The functional unit is “production of 
1 kg of glucose” and results are expressed in a functional unit. 

Twenty scientific articles have been selected thanks to specific keywords in Science 
Direct and Web of Science. Process data from articles are extracted semi-automatically 
using an ontology. The ontology structures the process data and ensures an export in CSV 
files and supplying internal software. This software developed on Microsoft Excel carries 
out a first "cleaning" of the data by simulating the processes to calculate and checking the 
mass balance. The data from three articles are removed from our study because they 
contain inconsistencies or many missing data that can not be verified by our simulation. 
The study, therefore, analyses 17 processes of two biomasses. The (attributional) LCA 
method applied is ReCiPe 2016, the background database is from EcoInvent v2.2 and the 
foreground data are "cleaned" process data.  The environmental assessment evaluates 17 
"midpoint" impacts. The Excel tool has been validated using the commercial simulator 
ProSim+ for process simulation and SimaPro® for the simulation of the environmental 
impacts. The matrix of results [impacts: processes] is then analyzed by multi-dimensional 
scaling using R software. Figure 2 shows the global architecture of our application. 
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Figure 2: Architecture of the application 

Classical Multidimensional Scaling (MDS) is a method for visualizing (dis)similarities 
between objects in a space of a reduced dimension. It is designed to help understand the 
structures of proximity and opposition. Starting from information about the mutual 
similarities of 𝑛 objects, often with the similarity matrix ∆  𝛿 𝑖, 𝑗 ;  , we look 
for a configuration of 𝑛 points (in 𝑅 in general) which would be like that if the object 𝑖 
resembles to 𝑗 more than the object 𝑙 to 𝑘, we have 𝛿 𝑖, 𝑗   𝛿 𝑙, 𝑘 . For any distance 
matrix of size 𝑛 𝑛, the MDS allows us to find a set of 𝑛 points marked by their 
coordinates whose similarity matrix is equal or very close to the distance matrix according 
to the data. In our approach, we use the Canberra distance (Lance & Williams, 1966), a 
weighted version of the Manhattan distance. 

Let 𝑥  𝑟  1, . . . , 𝑛  be the coordinates of n points in a 𝑝 dimensional Euclidean space 
where 𝑥   𝑥 , 𝑥 , . . . , 𝑥  and 𝐵 𝑏 𝑥 𝑥 . For an Euclidean distance ∆  𝛿 , from a matrix 𝐴 of elements 𝐴 𝑎 𝛿 , deduced from the decomposition 𝑥 𝑥 , the matrix 𝐵 is obtained using the following relation : 

B HAH  (1) 

where 𝐻 is the centering matrix: 𝐻  𝐼  𝑛 𝐼 𝐼  with 𝐼  1,1, . . . , 𝑛 . Elements 
of 𝐴 are defined as 𝑎 • 𝑛 ∑ 𝑎  , 𝑎• 𝑛 ∑ 𝑎  𝑎𝑛𝑑 𝑎•• 𝑛 ∑ ∑ 𝑎 . 
The following steps can summarize the algorithmic procedure of multi-dimensional 
scaling, as illustrated in (Cox & Cox, 2001): 

1. Obtain the proximity matrix ∆  𝛿  
2. Find the matrix 𝐴 𝛿  
3. Find the matrix 𝐵  𝑎 𝑎 • 𝑎•   𝑎••  
4. Find the eigenvalues 𝜆 , 𝜆 , . . . , 𝜆  and the eigenvectors 𝑣 , 𝑣 , . . . , 𝑣  

if 𝐵 is semi-defined positive (some eigenvalues are negative), either 𝑖  ignore 
the negative values and continue, or 𝑖𝑖  add an appropriate constant 𝑐 to the 
(dis)similarities 

5. Choose an appropriate size number 𝑙, possibly using ∑∑  .  

6. The coordinates of the n points in Euclidean dimension space 𝑙 are given by 𝑥   𝑣  𝑟  1, . . . , 𝑛;  𝑖  1, . . . , 𝑝 .  
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The interpretation of an MDS result is the same as for any other dimension reduction 
method: objects that are closer on the scatterplot are more similar than those that are 
further away. That is, the projected points are arranged in such a way that the grouped 
points (small distance between them) reflect the original relationships in the data. 
However, additional information is needed to make the projection more informative. As 
shown in Figure 1, a clustering algorithm (k-means) was applied to the MDS projection 
to highlight the most similar objects (Impacts - Processes). Two-dimensional maps of 
aggregated impacts and processes are shown in Figure 3. For the scatter plot of the impact 
points (Figure 3 left), we can distinguish three groups using k-means: 

- Group 1: This group includes almost all impacts related to the chemical pollution 
of soils and water bodies. 

- Group 2: This group forms three subgroups with superimposed points (in a 2-D 
perspective).  This suggests that these points are very similar based on the 
Canberra distance. Here, we find a group quite heterogeneous in terms of impact 
with some not present in groups 1 and 3. 

- Group 3: This group mainly includes impacts related to land use and land 
transformation.  

To clarify the discussion, the names of the impacts within groups 1, 2, and 3 are not 
detailed. The clustering results of projected Process items are similar to those obtained 
for impacts. Indeed, three distinct clusters have been identified. However, tight and highly 
separated clusters occur within process data, this may suggest that each cluster is a domain 
or subdomain which should be analyzed individually. The acronyms captioning the dots 
represent each type of process which will not be explained here. In group 3, for example, 
there are two purely mechanical pre-treatments. Going back to the impacts, we find that 
these two pre-treatments have a very significant impact on the depletion of fossil fuels 
compared to the others. For Group 1, the three pre-treatments have relatively similar 
impacts and fossil fuels depletion impact costs around $10, whereas group 2 pre-
treatments have an impact cost of around $1. However, these results are partial. Indeed, 
only a representation of dimension 1 is used instead of dimension 2, which gives a low 
percentage of representativeness and therefore a loss of information. It is planned to 
extend this study to represent dimensions 3 and 4 and complete the analysis. 
 

 
Figure 3: Scatter plot of (MDS) projection (two dimensions) and k-means clustering based on 

Impacts distance matrix (left) and Process distance matrix (right) 
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4. Conclusion and perspectives  
A five steps approach coupling data science and environmental assessment is proposed 
and presented as an aid for researchers or R&D engineers during a preliminary study. 
This approach is being tested by studying the valorization of agricultural waste to promote 
a circular local economy. It compares different pretreatment of two lignocellulosic 
biomasses corn stalk and rice straw for glucose production. Following the goal and scope, 
data architecture, LCI, and environmental assessment steps, an impact-process matrix is 
analyzed in the last step using the multidimensional scaling method. The approach 
provides an initial insight to sort by groups and to establish a way to pre-select 
technologies or biomasses rigorously. The case study application reveals various 
limitations. Data from the scientific literature are by nature data from experiments in the 
laboratory and the LCA is therefore carried out for a low level of technological maturity 
(TRL 1/2). The approach does not incorporate the change in scale required to implement 
a semi-industrial pilot. Another limitation is the abundance and the quality of the data, 
which may not be sufficient for new technological pathways. 
Different perspectives can be detailed for the approach. We can reconsider the functional 
unit and the global environmental assessment strategy by integrating the upstream 
agricultural phase and taking into account the global supply chain according to dynamic 
analysis, i.e. spatial or temporal. In this study, all the impacts are attributed to the final 
product (glucose), the policy of impacts relating to effluents can be modified by taking 
into account the fate of these effluents and their valorization in the circular economy 
context.  
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Abstract
In bio-based chemical processes, stable and efficient process control is challenging
because the feedstock composition made by microbial fermentation is uncontrollable.
Many researchers have developed data-driven models that predict the operating
condition using a correlation between the process data. Since the performance of a
data-driven model depends on the quality of the data, data preprocessing techniques
such as noise removal and outlier detection are generally considered to enhance the
model performance. Thus, research to establish an appropriate data preprocessing
method and range is required to increase the performance of the model. In this study, we
developed a data-based prediction model for the bio-based 2,3-butanediol distillation
column. We prepared sixty train datasets by applying noise removal and outlier
detection with different methods and ranges on the raw data and confirmed the
correlation between the data using Pearson's correlation coefficient. We considered two
kinds of feature selection depending on data preprocessing and compared the
performance (R2 and normalized RMSE (NRMSE)) and reproducibility. The case in
which the features were selected by only noise removal showed a similar coefficient
value to that of the raw data; therefore, it had a higher performance than the case which
applied outlier detection. The best performance provided R2 and NRMSE values of
0.962 and 0.045, respectively, and it could be enhanced by hyperparameter tuning.
Based on this result, we plan to develop a robust predictive model that features
adaptable real-time prediction and control throughout the entire process time and period.

Keywords: 2,3-butanediol, 2,3-BDO, data-based prediction model, data preprocessing,
feature selection
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1. Introduction
Based on the rapid development of computer-related technologies and industries, new
technologies integrating artificial intelligence are being established in various fields.
The petrochemical industry is based on large equipment and processes, where the
connection between unit processes and various sensors is complicated. However, too
many unintended internal and external variables hinder efficient operation. Many
machine learning-based studies have been conducted to improve prediction and control.
Because a machine learning-based model predicts the output based on correlations
between input and output data, the performance and stability of the model strongly
depend on the data quality. Therefore, it is important to appropriately preprocess the raw
data and select correct variables (sometimes called features) to increase the accuracy of
the model. In addition, the performance of the predictive model may be inconsistent
despite using the same data because the initial weights of the predictive model are
randomly determined, and under- and over-fitting can occur during model training.
Thus, the reproducibility must be considered to develop a robust predictive model.

2,3-butanediol (BDO) is the only isomer of butanediol that is widely found in nature. It
is produced during a bioprocess, i.e. the fermentation of microorganisms, and not by a
petrochemical process. GS Caltex is currently developing and operating a demo plant of
a microbial-based 2,3-BDO production process (D. Tinôco et al., 2020). However, the
raw 2,3-BDO product has a low purity of 10–15 % and includes dozens of minor
substances that cannot be detected during the analysis. This causes unstable operating

conditions, leading to noise and outliers in the raw data. To solve this problem, a
prediction model that delivers a robust performance regardless of the early stopping
option or initial weight factor must be established.

In this study, we developed a robust prediction model for the distillation column of
bio-based 2,3-BDO by data preprocessing, such as noise removal and outlier detection,
and selected features based on the correlation coefficient. The raw data were
preprocessed by applying a low-pass filter (LPF) for noise removal and the interquartile
range (IQR) and z-score for outlier detection. Subsequently, the features of the
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predictive model were selected using the Pearson’s correlation coefficient. To evaluate
the performance, the coefficient of determination (R2) and the standard deviation-based
normalized root-mean-square error (NRMSE) were used. Each model run was repeated
ten times to evaluate the reproducibility of the model. The overall model-development
methodology in this study can be divided into three stages, as shown in Figure 1. The
methods are detailed in the following section.

2. Methodology
2.1. Data collection
The bio-2,3-BDO plant data used in this study were collected by GS Caltex. The data
were collected at one-minute intervals from July 10, 2020, to July 13, 2020 including
the process start-up period. As shown in Figure 2, each dataset consists of 20 variables
(features) including the control valves and instruments for temperature, pressure, and
water-level measurements. The target variable is the temperature of the main product
stream (the effluent at the bottom of the distillation column).

2.2. Data preprocessing
The data used in this study did not contain missing values. Therefore, only noise
removal and outlier detection were performed. A first order low-pass filter was used for
the noise removal. To compare the changes in correlation coefficient depending on the
weight and performance of the prediction model, the weights were divided into the
following categories: 0.3, 0.6, and 0.9 (labeled L1, L2, and L3, respectively).

The IQR and z-score, which are the most commonly used statistical methods, were used
to remove the outliers (Ivanushkin et al., 2019). Four ranges corresponding to each
outlier detection method were used: 2.5, 3.0, 3.5, and 4.0 (labeled I1, I2, I3, and I4,
respectively, for IQR, and Z1, Z2, Z3, and Z4, respectively, for z-score). A total of 60
preprocessed datasets, including raw data, were obtained based on the application of
individual methods and their combinations. The data were used for the model feature
selection.
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2.3. Feature selection
The Pearson correlation coefficient was used in this study for feature selection. In
general, the coefficients between variables are considered to correlate if the absolute
value of the coefficient is greater than 0.3, and this criterion was applied in this study.
2.4. Long short-term memory (LSTM) Model
The LSTM model, a recurrent neural network (RNN)-based algorithm, was used as the
machine-learning algorithm (Hochreiter and Schmidhuber, 1997). The LSTM model can
be used to solve the vanishing gradient problem; the weight update of the activation
function converges to zero when long-term data are learned in an RNN algorithm,
which is useful for data with a long learning period.

The predictive model is composed of an input layer containing selected features, a
hidden LSTM layer consisting of four hidden units, and an output layer that outputs the
temperature of the 2,3-BDO production stage. Seventy percent of the total data were
randomly selected and used for training and validation, and 100 % of the data, including
the training data, were used to determine the model performance.

The hyperparameters of the model were set based on a previous study (Kwon et al.,
2021). The numbers of batches, the number of epochs, the learning rate, and the
activation function were set to 10, 1000, 0.01, and Elu, respectively. To prevent under-
and/or over-fitting of the predictive model, the “patience” option was used as the early
stopping option; it is defined as the number of epochs without an improvement after
which the training will be stopped. The number of epochs was set at five for this study.

2.5. Evaluation factors for performance and reproducibility
Because the prediction performance is affected by the initial weight setting of the
prediction model and the number of epochs, the reproducibility of the model was
confirmed by running the model ten times using the preprocessed data. The R2 value
was used as the accuracy index because the RMSE, which generally represents the
precision, significantly differs depending on the scale of the subject. Therefore, the
NRMSE—RMSE divided by the standard deviation ( )—was used in this study.σ
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3. Results and discussion
3.1. Feature selection through data preprocessing
Table 1 lists the correlation coefficients between the raw data and those after applying
the preprocessing methods. The coefficient values with different ranges corresponding
to each preprocessing method showed similar values; the correlation coefficient applied
with an LPF of 0.6 and a z-score of 3.5 is listed in Table 1. This result shows that the
correlation coefficient obtained after noise removal is similar to that of the raw data. In
contrast, the correlation coefficient corresponding to the outlier detection significantly
differs from that of the raw data because outlier detection removes anomalous data and
retains the data that follow the theoretical law.
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We established two feature-selection cases for the predictive model and compared their
performances and reproducibility based on different datasets. As described in Section
2.3, features with an absolute value above 0.3 were selected. The 13 features were
selected from the raw data and the data obtained after noise removal, and 11 features
were selected from the data obtained after outlier detection. The feature-selection cases
are called scenario R3 and O3 hereafter.

Table 1. Pearson’s correlation coefficients for raw and preprocessed data

Variables
(Features)

Raw data Noise removal
(Applied LPF 0.6)

Outlier detection
(Applied z-score 3.5)

Corre r difference r difference
Input FCV1 0.19 0.19 0.00 -0.05 -0.24

FCV2 0.59 0.59 0.00 0.79 0.20
FCV3 0.24 0.24 0.00 0.76 0.52
LCV4 0.52 0.52 0.00 -0.23 -0.75
PCV1 0.03 0.04 0.01 0.06 0.03
LT1 0.11 0.11 0.00 -0.04 -0.15
FT1 0.16 0.17 0.01 0.10 -0.06
FT2 0.77 0.80 0.03 0.69 -0.08
FT3 0.59 0.60 0.01 0.79 0.20
FT4 0.54 0.55 0.01 -0.05 -0.59
PT1 -0.61 -0.61 0.00 -0.07 0.54
PT2 -0.47 -0.47 0.00 0.96 1.43
PT3 -0.61 -0.61 0.00 -0.13 0.48
TT1 0.55 0.56 0.01 -0.43 -0.98
TT2 0.18 0.18 0.00 0.34 0.16
TT3 0.54 0.54 0.00 0.62 0.08
TT4 0.90 0.90 0.00 0.68 -0.22
TT5 1.00 1.00 0.00 0.99 -0.01
TT6 0.69 0.69 0.00 -0.56 -1.25

Output TT1 1.00 1.00 0.00 1.00 0.00

3.2. Prediction performance based on the feature selection
Figure 3 shows the ten datasets with the best performances according to each
feature-selection case. The line and bar show the minimal, average, and maximum
values for permeance and epoch. As shown in Figure 3, the scenario R3 showed a
higher and more stable performance than the scenario O3. Although the best
performance exhibited R2 and NRMSE values of 0.962 and 0.045, respectively, we
expect that this result can be enhanced by hyperparameter tuning and algorithm change.
This study shows that the process characteristics in the feature selection step affect the
performance of data-driven predictive models. It is also possible to develop a prediction
model that reflects the characteristics of the actual process through appropriate data
preprocessing.

Although the outlier detection method with high performance was applied in both cases,
it could not predict the start-up period, which is a limitation of this study. The case using
raw data and the L1-L3 dataset could predict the whole process period, including the
start-up period, but it showed a low performance, with R2 and NRMSE as 0.936 and
0.254, respectively, because of the inclusion of the outlier data. Therefore, to improve
the overall model performance, it is necessary to tune the hyper parameters or to
consider other preprocessing methods that efficiently process outlier data for dynamic systems.
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4. Conclusions
In this study, a data-based model was developed for the bio 2,3-BDO distillation
process, and an appropriate data preprocessing method and range were established
considering the process characteristics. A total of 60 datasets, among which 1 comprised
raw data and 59 comprised data preprocessed with noise removal and outlier detection,
were prepared. To examine whether the feature selection affects the model performance
and reproducibility, Pearson's correlation coefficients of the datasets were compared.
Two kinds of feature selection scenarios, scenarios R3 and O3, were established as the
case studies. Scenario R3 showed a higher performance than that of scenario O3
because it included the process characteristics. We concluded that feature selection
based on correlation of the raw data improves the performance of the data-based
predictive model. However, it has a limitation, wherein it shows low performance when
using L1–L3 data because the start-up period data is recognized as an outlier. Therefore,
future studies should focus on developing a data preprocessing method which can
classify outlier data efficiently under dynamic conditions in the whole process.
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Abstract 
Process design based on physical models often faces computational problems with respect 
to convergence, especially if the underlying flowsheets are complex. The use of data-
driven surrogate models promises to overcome these challenges. This contribution 
presents the development of surrogate models and their use for flowsheet simulation. A 
new sampling strategy consisting of a combination of adaptive and sequential sampling 
enables the selective placement of new sample points. It is shown, however, that this 
hybrid strategy does not necessarily lead to higher accuracies than a pure sequential 
sampling. Surrogates are built for selected key units of the steam methane reforming 
process, and their individual accuracies are analyzed. When the surrogates are combined 
to form flowsheets, the prediction errors show a tendency to damp from unit to unit. This 
proves the suitability of surrogate models for flowsheet simulations. The promising 
results of this paper pave the way for future work, such as the optimization of flowsheets 
or superstructure optimization. 

Keywords: surrogate modeling, adaptive sampling, artificial neural networks, error 
propagation, hydrogen production. 

1. Introduction 
Surrogates replacing flowsheet models have attracted broad attention in process 
engineering due to their potential to accelerate rigorous simulations for purposes such as 
exploring the allowed operating window (Heese et al., 2019) and global optimization 
(Schweidtmann et al., 2019). Their training data is generated with the original simulation 
according to some sampling strategy. A recent review on the topic can be found in 
(McBride and Sundmacher, 2019). When dealing with such surrogate models, it is 
important to distinguish between two different applications: on the one hand, it can be 
sufficient for the surrogate model to map only subsets of the input space, for example in 
case of process optimization it is only necessary to be accurate along the trajectory to the 
optimal solution. Accordingly, the training data does not need to cover the entire input 
space. On the other hand, the purpose of the surrogate can require to map large parts of 
the input space. This is for example the case when it is coupled to other sub-models like 
a unit operation in a flowsheet, as done in this work. Hence, techniques tailored to this 
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situation are required. A survey on such sampling strategies for global surrogate modeling 
can be found in (Liu et al., 2018). 

 
Figure 1: Schematic illustration of the pre-reformer and flue gas waste heat recovery section of an 
SMR process. The flowsheet is based on Genkin et al. (2010). 

This paper continues Air Liquide’s recent activities in the field of surrogate modeling 
(Soroush et al., 2020; Schmidt et al., 2020). Using the example of the Steam Methane 
Reforming (SMR) process, the relevant steps for generating a process model for 
individual surrogate units as well as their combination to a flowsheet are presented. SMR 
is the state-of-the-art method of producing hydrogen, where a natural gas feedstock (NG) 
is mixed with steam to produce syngas, and finally hydrogen and CO2. The focus of this 
contribution is on the heat recovery from the flue gas (FG) of the SMR process comprising 
five heat exchangers (HX1-HX5) and one pre-reformer (PR) as illustrated in Figure 1.  

2. Methods 
2.1. Determination of technically relevant operating conditions of process units 

In order to develop a data-driven surrogate model for a specific unit operation, a feasible 
input region, from which points are sampled for data generation, has to be found. In this 
work, the definition of these input regions is based on a design simulation of the entire 
SMR process in Aspen PlusⓇ with the following adjustable parameters: (i) The type of 
natural gas feedstock; (ii) the steam-to-carbon ratio (S/C) in the reformer feed; (iii) the 
ratio of hydrogen recycle; (iv) the temperature in the pre-reformer feed; (v) the 
temperature in the reformer feed. Varying these parameters directly influences the 
composition and/or flow rate of the natural gas and steam streams, and indirectly the 
properties of the flue gas and air streams in the sub-process in Figure 1. Thus, by varying 
the adjustable parameters and evaluating the rigorous process simulation accordingly, a 
set of input points can be recorded at each unit, which is used to define a feasible input 
region. Here, this is achieved by defining a box domain around the input values and 
adding a 25 % margin in each dimension to ensure that the boundary regions of the 
domain are well represented.  

For units occurring multiple times within a flowsheet, such as the heat exchanger in the 
sub-process from Figure 1, there are two modeling options: either to assign an input 
region and train a surrogate model for each unit (‘one-for-each’), or to define an input 
region around the combined input domains of all units and use the same surrogate model 
for each of them (‘one-for-all’). The latter approach will likely result in a more complex 
surrogate, since a larger input space has to be covered. However, the ‘one-for-all’ model 
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could also be used more generally, for example in superstructure optimization problems. 
In this work, the two approaches will be compared with respect to their accuracy in a 
simulation setting. 

2.2. Sampling 

In a preceding contribution (Schmidt et al., 2020), the focus was on a Latin Hypercube 
design (a space-filling strategy) for global metamodeling of the pre-reformer reactor as a 
sub-model of the overall SMR process. In the current work, this sub-model is used to 
evaluate an adaptive sampling strategy. Adaptive sampling methods can be based on cross 
validation, such as the one suggested by Aute et al. (2013). This type of strategy is 
applicable to any type of model. However, it is prone to rather long computation times 
because it requires the model to be trained very often. Instead, the variance-based method 
by Lam and Notz (2008) is adjusted. I.e., the merit function 𝑓(𝜑) = 𝑦(𝜑) − 𝑦∗(𝜑) 𝛥𝜑𝛥𝑦 + 𝑑 (𝜑) (1) 

is iteratively maximized, the resulting point 𝜑 is added to the training data and the model 
is retrained. Here, 𝜑 ∈ 𝑅  is the input vector of the pre-reformer simulation. 𝑦(𝜑) is the 
model prediction for the response, chosen as the temperature of the product stream, and 
y*(φ) is the corresponding response value at the training point closest to φ. ∆φ is the 
Euclidean norm of the ranges spanned by the input variables and ∆y is the response range. 
d(φ) is the average Euclidean distance between φ and its k nearest neighbors, where k = 5 
is chosen. Thus, the first term in f(φ) is responsible for local exploitation of strong 
variations in the response, and the second term ensures a global exploration of the input 
space. This adaptive sampling method is turned into a hybrid strategy by combining it 
with a space-filling Sobol sequence. I.e., an adaptive percentage z* is defined, and in each 
iteration a random number z is drawn from a uniform distribution. Then f is maximized 
for z ≤ z*, whereas φ is taken to be the next Sobol point for z > z*. 

2.3. Development of surrogate unit models 

The data used to train the heat exchanger surrogate is generated using the Aspen PlusⓇ 
‘HEX’ shortcut model, with the added consideration of heat loss. Thus, the following 
variables are chosen as model input: temperature T, pressure p, molar flow rate F and the 
composition vector x for both inlet streams (denoted with c,in and h,in), UA (the 
exchanger area multiplied by its heat transfer coefficient) and the percentage heat loss 
fQ,loss, as well as the pressure drop dp. The surrogate model predicts the temperatures of 
both outlet streams (denoted with c,out and h,out). The functional relationships learned 
from data are given by Fsur in Eqs. (2)-(3). Depending on the type of surrogate model 
used, Fsur will have different mathematical forms. In this work, only artificial neural 
networks (ANNs) are considered: Th,out = F1sur({T, p, F, x}h,in, {T, p, F, x}c,in, dpc,in, dph,in, UA, fQ,loss), (2)Tc,out = F2sur({T, p, F, x}h,in, {T, p, F, x}c,in, dpc,in, dph,in, UA, fQ,loss). (3)

As mentioned in Sec. 2.2, the model for the pre-reformer reactor is adopted from a 
previous contribution by Schmidt et al. (2020).  
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2.4. Connection of surrogate models to form a flowsheet 

After the trained ANNs are embedded into the surrogate unit models, it is straightforward 
to construct a surrogate flowsheet for the entire sub-process in Figure 1. To this end, 
terminal conditions are introduced that connect the output of one unit with the input of 
another to represent the process streams. The resulting nonlinear system of equations can 
be solved either in a sequential-modular or equation-oriented manner. Pyomo (Hart et 
al., 2017) was used to implement the individual units and generate functional 
representations for the trained ANNs. The pyomo.network package allows for the 
definition of the flowsheet as a connection of units, and it offers sequential decomposition 
and solution routines. Process optimization is also possible directly in Pyomo and will 
be a future step. 

3. Results 
3.1. Comparison of sampling strategies 

A fully connected feed-forward ANN with a single hidden layer consisting of 100 nodes 
is used to test the hybrid sampling strategy described in Sec. 2.2. The ANN is 
implemented in PyTorch with a learning rate of 0.002 and with 4000 training epochs. The 
Python package sobol_seq is used to draw the Sobol points, and 
scipy.optimize.differential_evolution is used to maximize the merit function from Eq. (1). 
The strategy is run with different adaptive percentages z*, and the root-mean-squared error 
(RMSE) as well as the maximum deviation of the model predictions with respect to an 
independent test data set of size N = 104 (generated with Latin Hypercube) are recorded 
for each iteration. Since PyTorch initializes its net weights randomly, the results are 
averaged over 10 repetitions of the procedure.  

 
Figure 2: Quality of the ANNs for the pre-reformer reactor trained with the hybrid sampling 
strategy at different adaptive percentages. a) RMSE, b) maximum deviation with respect to the 
independent test data set. Curves are averaged over 10 repetitions and then smoothed with a 
moving average over 20 preceding points. 

Figure 2a shows the averaged RMSE of the ANNs for the pre-reformer reactor as a 
function of the number of training points. The main observation is that a non-zero 
adaptive percentage does not improve the model accuracy compared to the 100 % Sobol 
design (solid red curve) for this example. Therefore, purely space-filling sampling 
methods are used in the subsequent sections. Figure 2b displays the corresponding 
maximum deviations between prediction and test data at the least accurately predicted 
test point. Interestingly, this quantity actually slightly increases for most added points. It 
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only decreases overall due to large steps which occur when a point finally corrects the 
worst prediction. 

3.2. Accuracy of  HEX surrogate models 

For the ‘one-for-each’ (OFE) approach, a data set of 100,000 points is generated with 
Aspen PlusⓇ for each of the heat exchangers in the sub-process, according to the input-
output relationship established in Sec. 2.3. Alternatively, the input data of all heat 
exchangers are combined to train a single model in the ‘one-for-all’ (OFA) approach. In 
both cases, the data is then split randomly into training and test sets at a ratio of 85:15. 
TensorFlow is used to train ANNs with one hidden layer on the training set, with their 
performance being evaluated on the test set. The results are given in Table 1.  

It is evident that an increased model complexity (i.e. higher no. of neurons) leads to a 
better performance for both approaches. However, the mean (‘avg’) and maximum error 
(‘max’) of the temperature in Kelvin for the OFA method is generally at least three times 
higher than for the worst performing OFE model. This was also expected, since OFA 
approximates the HEX model over a larger domain, and will thus be less refined locally, 
given the same model complexity. 
Table 1: Test set accuracy metrics for ANNs of increasing size using one hidden layer. The ‘avg’ 
and ‘max’ operations are applied across the test set and the two outputs of the surrogate models. 

unit HX1 HX2 HX3 HX4 HX5 OFA 

abs. error  
(K)  

avg max avg max avg max avg max avg max avg max 

 
no. of  

neurons 

20 0.05 1.01 0.06 0.74 0.03 0.25 0.03 0.38 0.03 0.39 0.28 2.82 

50 0.02 0.32 0.02 0.24 0.01 0.08 0.01 0.15 0.01 0.11 0.09 1.22 

100 0.01 0.21 0.02 0.24 0.01 0.07 0.01 0.11 0.00 0.06 0.05 1.04 

3.3. Error propagation in the flowsheet 

To evaluate the performance of the surrogate flowsheet, an equivalent process model in 
Aspen PlusⓇ is used to generate a test data set of 5,000 points by space-filling sampling. 
The surrogate flowsheet is evaluated at the same input points and the error in the different 
streams is recorded. The error within the flue gas (‘FG’) stream is of particular importance 
since it allows the investigation of the error propagation between the surrogate units. An 
‘error propagation factor’ ε is introduced, which describes the ratio of the prediction error 
in the flue gas stream temperature 𝑒 ,  to the maximum error in the input temperature 
for each unit 𝑒 : 𝜀 =  |𝑒 , ||𝑒 | (4) 

Table 2: Performance metrics of the surrogate models during evaluation of the connected surrogate 
flowsheet on a test set of 5,000 points. 

unit HX1 HX2 HX3 HX4 HX5 

metric ɛ max 
(K) ɛ max 

(K) ɛ max 
(K) ɛ max 

(K) ɛ max 
(K) 

‘One for each’          
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no. 
neurons 

20 0.54 0.90 1.72 0.46 0.91 0.45 0.78 0.36 - 0.10 

50 0.27 0.44 1.98 0.29 0.98 0.32 1.07 0.25 - 0.08 

100 0.25 0.43 1.51 0.28 0.89 0.31 1.14 0.24 - 0.08 

‘One for all’          

 
no. 
neurons 

20 1.73 1.93 1.49 1.87 1.12 1.83 0.86 1.77 - 1.17 

50 1.34 0.62 1.37 0.69 1.06 0.66 0.71 0.57 - 0.27 

100 1.00 0.60 1.42 0.61 0.97 0.53 0.69 0.43 - 0.17 

Hence, a unit amplifies the error in its input if 𝜀 > 1. In Table 2, the maximum absolute 
error and the median error propagation factor at each heat exchanger across the test set 
are listed for both the ‘OFE’ and ‘OFA’ approach. Again, a better performance of the 
OFE models compared to the more general OFA method is observed. Interestingly, the 
majority of the OFE models achieve propagation factors of less than one, meaning that 
the prediction error is actually damped along the FG stream. 

4. Conclusions 
In this work, the development of surrogate unit models for flowsheet simulation was 
presented. It was shown that an adaptive sampling strategy for the case study under 
consideration is not advantageous compared to a purely space-filling sampling. 
Consequently, space-filling designs were used in the following parts of this paper. In 
general, the “one-for-each” modeling approach leads to a higher accuracy than the “one-
for-all” approach. Finally, it was shown that the connection of individual surrogate 
models to a flowsheet leads to high-quality results in terms of accuracy and error 
propagation, paving the way for real-time or superstructure optimization. Nevertheless, it 
has to be verified whether the promising results are applicable to larger processes with 
more process units. Future work will also focus on the minimum number of training points 
required to achieve a desired model accuracy as well as on investigating the distribution 
of the “worst” predicted points of the test set. 
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Abstract
Pressure-flow networks are inherently multivariable, coupled and nonlinear systems that
are not straightforward handled by conventional PID controllers. In this work, we
analyze the control problem for a steam distribution network in the framework of a
recent proposed method, that gives linearization and decoupling, together with a
systematic design for nonlinear feedforward control for perfect disturbance rejection.

Keywords: steam networks, linearization, decentralized control, feedforward.

1. Introduction
Steam networks are used to produce and transfer steam as utility for downstream
processes such as distillation columns, paper machines, reactors etc. Pressure-flow
networks are inherently highly coupled systems where large and fast disturbances such
as shut-downs or start-ups become large disturbances both on the generation and the
demand side. In addition, the dynamics of steam generators are much slower compared
to the dynamics of the steam network. Therefore, to be able to respond fast to load
changes, control of the network pressure is commonly implemented in industry
(Majanne, 2005).

Both decentralized and centralized control strategies for steam networks are presented
in the literature. The work by Bertrand and McAvoy (1986) presents a solution based on
PI-controllers that has good performance for disturbance rejection. The work by
Kristoffersen et al. (2014) implements model predictive control (MPC) combined with
real time optimization to increase the energy efficiency. The work by Majanne (2005)
compares the performance of PI-controllers and MPC, and the latter outperforms due to
its ability of handling coupled systems.

In this work, we apply the method by Zotică et al. (2020), which transforms a nonlinear
system into a first-order linear decoupled system with no effect from disturbances. In
addition, we extend the method by explaining how to select the new introduced tuning
parameter. Similar methods have been proposed. Feedback linearization linearizes the
input-state map of a nonlinear system (Isidori et al.,1981, Khalil, 1992). Input-output
linearization linearizes only the input-output map of nonlinear system, while the rest of
the system remains nonlinear (Henson and Seborg, 1997). Active disturbance rejection
control introduces an observer to estimate unmeasured states and disturbances for
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linearization and feedforward disturbance rejection (Huang and Xue, 2014). The work
by Lee et al. (2016) combines an extended high-gain observer for unmeasured states and
uncertainty together with dynamic inversion that inverts the model using a fast inner
loop I-controller. All these methods give a chain of integrators, which brings additional
limitations for control, and it is not very robust as in some cases the input might move in
the opposite direction initially.

2. New method for input transformation
Figure 1 shows the block
diagram for the new
proposed method. The key
assumptions are that we
have the same number of
inputs (u) and outputs (y),
and that we can measure the
disturbances (d). In the
example, we will also allow for some measured states (w = [TT TL]) to be treated as
measurements. We define a new input (v) from the model equations as a function of the
physical input (u), disturbances (d), extra states (w) and output (y) with the objective of
transforming the original nonlinear system into a linear first-order system. The resulted
system is also decoupled, and therefore, we use SISO-controllers to control y by using v.
We find the physical input u by solving as set of nonlinear algebraic equations that give
u as a function of v, y, w, d.

Consider a general nonlinear system given by Eq. 1.

(1)

We define the transformed input v as given in Eq. 2.

(2)

where, A is a new tuning parameter, which we discuss in Section 2.1.

By introducing the new input v, the new system becomes first-order, linear, decoupled
and with no effect from disturbances, as shown in Eq. 3.

(3)

2.1. New tuning parameter A
One way to select A is such that nominally the positive feedback from y to v is small.
Therefore, for each output yi, we may select Ai as the diagonal elements of the Jacobian
of fi(y,u,w,d) with respect to the output yi evaluated at the nominal operating conditions,
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. We may also select a larger A to speed-up the
response, or smaller to slow it down. Note that selecting A = 0 gives an integrating
process similarly to feedback linearization for a model as given in Eq. 1.

2.2. Input calculation block
The input calculation solves Eq. 2 with respect to the inputs u given controller outputs v,
extra states w, outputs y and disturbances d. If there is no explicit solution of inverting
Eq. 2, we may use a numerical algebraic solver, or an I-controller in a fast inner loop.
The second method can be applied to systems with singularities in the transformation.

2.3. Controller tuning
We tune the SISO-controllers based on the SIMC tuning rules in Eq. 4 (Skogestad,
2003).

(4a)

(4b)

where, KC is the proportional gain, is the integral time, k is the process gain, is

the open-loop time constant, is the delay and is the desired closed-loop time

constant. Note that from Eq. (3), .

3. Case study: steam network
Figure 2 shows the system we analyze within the
new proposed method. It is composed of a
high-pressure header (i.e. pipelines that physically
connect the steam generators and consumers), a
turbine and a low-pressure header. High-pressure
steam is produced at a pressure p0 by burning fuel in
a boiler. Note that we do not include the boiler in our
analysis. The high-pressure steam is supplied as
utility to one high pressure consumer with receiving
pressure pHC. The remaining steam is expanded to
lower pressure steam, either through a fixed-speed
back pressure turbine connected to the electric grid
to produce electricity, or through a valve that
bypasses the turbine (zTB). Note that the fixed-speed turbine is not a degree of freedom
available for operation. The low-pressure steam is supplied as utility to two consumers,
with receiving pressures pLC1 and pLC2 respectively.

rejection with application to steam networks
1023

Figure 2. Process flowsheet of the 

steam network with two pressure 

headers (high and low) considered 

in this work. 



The manipulated variables are u = [zH zTB] (the supply of high pressure steam and the
turbine bypass). The controlled variables are y = [pH pL] (pressure in the high and low
pressure headers). The main disturbances are d = [p0 zHC zLC1 zLC2 pHC pLC1 pLC2] (the high
pressure steam supply (p0), and the consumers demand of high and low pressure steam,
given by changes at the receivers pressure or of the valve positions (zHC, zLC1 and zLC2)).
The additional states are w = [TT TL] (the temperature at the turbine outlet and in the
lower pressure header.)

3.1. Nominal operating conditions
Table 1 shows the nominal operating conditions, typical for a steam network found in a
chemical plant. Here, V is the volume of the two headers.

Table 1. Nominal operating conditions

Variable p0 pH pHC pL pLC1 pLC2 zi TH TL VH VL

Value 42 40 38 7 6 5 0.5 380 200 1 5
Unit bar bar bar bar bar bar - °C °C m3 m3

3.2. Model
We assume ideal gas, constant specific heat capacity, no pressure losses and perfect
mixing in both pressure headers. Assuming isothermal conditions in the high pressure
header (TH constant), the dynamic mass balance in pressure form becomes Eq. 5.

(5)

where qi is the molar flow through a valve.

The low pressure header is not isothermal because work is extracted in the turbine, and
therefore the mass and energy balance become coupled. The energy balance in
temperature form is given in Eq. 6.

(6)

The mass balance in pressure form is given in Eq. 7.

(7)

We assume isentropic expansion in the turbine and that there are no constraints for the
power supplied to the electric grid. Therefore, the temperature at the turbine outlet (TT)
is computed from Eq. 8.

(8)
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where is the heat capacity ratio of steam.

To model the molar flows through valves, we use a valve equation with a linear valve
characteristic (Eq. 9).

(9)

where Cv,i is the valve coefficient, zi is the valve opening, pin and pout are the pressures
before and after the valve respectively.

To model the molar flow through the turbine, we assume a constant mass flow

coefficient ( ), equivalent to a chocked turbine (Eq. 10).

(10)

3.3. Input transformation
The new input v = [vH vL] is defined by applying Eq. 2 resulting in Eq. 11. We assume
that the measurements for TH, TL and TT are available.

(11)

where, at the nominal conditions from Table 1.
The new system in Eq. 12 is linear, decoupled and has perfect disturbance rejection.

(12)

3.4. Input calculation
We find the unknown variable u = [zH zTB] by solving the system of linear equations
(Eq. 13) resulted from rewriting Eq. 11.

(13)

with .
Note that from Eq. 6 and 8, TL and TT depend on u, therefore it is not a true disturbance.
However, the use of a measured TL and TT in the input transformation is not a problem in

Input transformation for lienarization, decoupling and perfect disturbance
rejection with application to steam networks
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this case because the dynamics from the inputs u to the outputs y have a stable inverse
(have no RHP-zeros), hence the inverse generated by the input transformation is stable.

3.5. Simulation results
Figure 3 shows the responses for disturbance rejection and setpoint changes for y = [pH
pL] (Figure 3a), u = [zH, zTB] (Figure 3b) and v = [vH vL] (Figure 3c) to p0 = 42 bar at time
t = 10 s, pHC = 39 bar at time t = 20 s, pLC1 = 5.5 bar at time t = 30 s, pLC2 =1 bar at time t
= 40 s, pH

s = 39 bar at time t = 50 s and pL
s = 6 bar at time t = 60 s. We tune the

PI-controllers with , which are only used for setpoint changes. The
results in Figure 3 show a decoupled process with perfect disturbance rejection.

4. Discussion
The calculation block is inherently a nonlinear feedforward controller, and therefore we
do not need the feedback control in Figure 1 (typically a PI-controller) as long as we
have a perfect model and measurements. Setpoint changes can be handled by directly
changing the setpoint for v. However, in a real plant we will always have unmeasured
disturbances and unmodelled dynamics, and we need the outer PI-controller loop.

Figure 3. Simulation results for disturbance rejection and setpoint changes.

5. Conclusions
Steam networks are interactive systems, where the main task of the control system is to
reject disturbances either on the steam generation or demand side. We design the control
structure by using a new method for input transformation that gives linearization,
decoupling and perfect disturbance rejection both dynamically and at steady-state
(Eq.12), which makes it a good fit for the control structure of a steam network, as seen
in Figure 3. The method also transforms a nonlinear system into a first-order linear by
introducing a new tuning parameter A.
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Abstract 
Along with the increase in the production, distribution, and consumption of chemicals, 
the risk of chemical accidents is increasing, and damage by chemicals exposure accidents 
can be greatly expanded if initial response is inappropriate. Since early determination of 
chemical substances in the event of a leakage accident is essential for minimizing 
accidental loss, this study proposes an AI-based system that supports chemical 
determination by field personnel based on exposure symptoms, in addition to detection 
using sensors, and provides predictive information on symptoms that may be lacking for 
new chemicals. In order to analyze and document the symptoms expressed when 
contacting chemical substances, the knowledge of domestic and foreign symptoms is 
established as a knowledge base using a knowledge graph. Afterwards, the symptom-
based chemical estimation knowledge service is completed by estimating exposed 
chemicals through reasoning methods such as SPARQL and providing response 
information that can be immediately taken on site. In order to expand the knowledge of 
new chemicals, machine learning is used to predict useful symptom information from 
molecular structure information of chemicals, so that pre-emptive risk management for 
new materials could be carried out using the proposed system. 

Keywords: chemical accident, exposure symptom knowledge, chemical identification, 
machine learning, intelligent decision support 

1. Introduction 
Increasing the use of chemicals and improving the quality of human life are inseparable. 
According to international statistics, 103M chemical substances were developed as of 
2015, and about 120,000 chemical substances are actually distributed (Ministry of 
Environment's Chemical Policy Division, 2016). In addition, about 2,000 new chemical 
substances are entering the market every year after safety evaluation. In Korea, the 
distribution volume also increased by 12.4% compared to 2014 as of 2016 (Ministry of 
Environment press release, 2018), and the risk of various chemical accidents is increasing 
as the distribution volume increases. The number of domestic chemical accidents is 
increasing from 233 in 2014 to 277 in 2018.  

Chemicals give many benefits to people, but hazardous materials such as hazardous 
chemicals and chemical accidents have a dual nature that threatens people's lives. In 
addition, safety awareness and countermeasures for hazardous materials are not keeping 
up with the growth rate of the chemical industry. In order to solve these problems, various 
systems and studies are being conducted to respond to chemical accidents. The National 
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Institutes of Health (NIH) has developed the Wireless Information System for Emergency 
Responders (WISER) to assist in emergency rescue in case of chemical accidents. In 
addition, Bhavnani et al. (2007) analyzed the design of a response system to quickly 
identify chemicals in emergency situations (Bhavnani et al. 2007).  

 
If the initial response to a chemical exposure accident is inappropriate, there is a risk of 
spreading to enormous damage including personal injury and property damage. Existing 
chemical detection technologies are focused on the development of countermeasure 
technologies for leaks at known sites, analysis of candidates for leaks, and detection 
studies in dynamic changing environments. If a sensor is not installed at the accident site, 
an initial estimation can only be made based on qualitative exposure symptoms. However, 
the knowledge service on hazardous materials considering human bio sensing information 
(symptoms) is relatively insufficient in development. Therefore, in this study, we propose 
a real-time intelligent support system for hazardous chemical detection and diagnosis that 
quickly detects exposed chemicals, responds to dangerous situations early, and protects 
workers and exposed people from unexpected chemical accidents in the field (see Fig. 1). 

2. Example SEARCH Platform: Chemical substance identification 
knowledge service based on symptom knowledge reasoning  
When unexpected symptoms are found in industrial sites, laboratories, etc. or in multi-
use facilities, the SEARCH system, which enables the detection and determination of 
exposed chemicals, is operated as in Fig. 2. The proposed platform supports speech 
recognition and output of diagnostic results, but in this paper, we will only focus on the 

Figure 1. An overall framework of the proposed symptom-based knowledge reasoning. 

 
Figure 2. Flowchart of knowledge service on chemical identification and emergency response to 
exposed chemicals using SEARCH. 
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collection and storage of chemical substances and symptom information, which are key 
items in the operation of SEARCH, and reasoning based on the knowledge base. 

3. Collection and Preprocessing of Chemical Substance and Symptom 
Information Data 
3.1. Collection of symptom knowledge 
The knowledge of symptoms of exposure to chemicals was designed based on the NIH's 
WISER (Hochstein, C., 2008). The WISER database contains 499 chemical substances 
and 79 symptom information divided into 10 categories such as temperature, nervous 
system, oral cavity, etc. We further expanded symptom knowledge by converting 502 
data provided by PubChem. 
3.2. Chemical data and information preprocessing  
In order to transform the collected chemical’s structure information into a molecular 
fingerprint, it was converted into MACCS keys and PubChem keys (see Fig. 3). MACCS 
keys are the most commonly used structural keys. Among the structure keys of 960 bits 
and 166 bits, we used a structure key of 166 bits, and a Python package RDKit was used 
to convert SMILES to MACCS keys. The SMILES structure of 984 chemicals was 
converted into MACCS keys through RDKit. PubChem keys are a molecular fingerprint 
used by NIH's PubChem to explore similarities, consisting of 881 bits of structural keys 
and encompassing a variety of substructure and features. PaDEL-Descriptor was used to 
convert SMILES into PubChem keys. SMILES of 984 chemical substances were 
converted into PubChem keys through PaDEL-Descriptor. In addition, each symptom 
information was transformed into a binary matrix to be applied to the classification model. 
The binary matrix is expressed as 1 if it has a specific symptom and 0 if it does not and 
was applied to 1,001 chemical substances and 79 symptoms stored in the knowledge base. 

4. Knowledge Base Generation and Reasoning 
4.1. Knowledge base generation 
Since various knowledge services such as determination of exposed chemical substances 
require effective expression of knowledge, the knowledge base was established using a 
knowledge graph. Structural and physicochemical information on 449 chemicals of 
WISER and 502 chemicals of PubChem were extracted through Chemspider, a Python 
package, and 79 information extracted from WISER were used as symptom information. 

 
Figure 3. Transform of chemical structure to molecular fingerprints. 

 
Figure 4. An example of triple in knowledge base. 

7704-34-9

headachesulfur
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The extracted chemical information was saved in various input triple forms using 
AllegroGraph API (see Fig. 4). The chemical information stored in the knowledge base 
includes CAS No., symptoms, synonyms, structural information, and molecular formula etc. 

4.2. Knowledge base reasoning 
Using SPARQL provided by AllegroGraph, reasoning on exposed chemical substance(s) 
is performed by inputting a set of symptom information. As a case study, Case 1’s inputs 
are 6 symptom information (headache, runny nose, sweating, arrhythmia, chills), and 
Case 2’s inputs are 7 symptom information by adding throat irritation to Case 1’s 
symptom information. Cases 1 and 2 are like “There is chemical substance B if symptom 
A is presented”, reasoning chemical substances from existing generalized symptom 
information. If you do not have certain specific symptoms, in the reasoning process, you 
may increase the speed and accuracy of the reasoning by excluding them. Case 3 is an 
example: adding information on the no bloody nose to the symptom set in Case 2, in other 
words, the bloody nose is the excluded symptom. 

As a result of the reasoning, it can be showed that 18 chemicals were printed in Case 1, 
11 chemicals in Case 2, and 2 chemicals in Case 3: Cases 1 and 2 are the same as the 
results provided by WISER. It has been shown that if specific symptoms are clearly 
excluded as in Case 3, which is an unprecedented types of reasoning, less reasoning 
process may be required, and the speed and accuracy of reasoning for the inferred 
chemicals can be improved (see Fig. 5). 

5. Symptom Knowledge Expansion Using Machine Learning 
5.1. Problem transformation 
Since the extracted chemical substances may have more than one symptom, prediction of 
symptom information based on chemical’s structure information is a multi-label 
classification problem (Tsoumakas, G., 2009). To solve this problem, we apply Label 
Powerset (LP), Binary Relevance (BR), and Chain Classifier (CC), which are methods of 
solving the problem of multi-label data with a single label. LP is a method of classifying 
multiple labels by converting them into one class, and BR is a method of converting into 
a single label by determining by assigning each classifier to each label. CC is a method 

 
Figure 5. Reasoning results: (a) Case 1; (b) Case 2; (c) Case 3. 
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that creates a learner for each classification and sequentially reflects the guess result to 
the next input when guessing the label (see Fig. 6). 

 
5.2. Adaptation of ML algorithm 
In this study, k-Nearest Neighbor (k-NN), Decision Tree (DT) and Random Forest (RF) 
were used as ML methods for knowledge expansion. In order to compare and analyze the 
effective fingerprinting method, it was divided into MACCS keys and PubChem keys. In 
addition, LP, BR, and CC were applied to each machine learning method in order to 
compare and analyze which method is more effective among solving the problem of 
multi-label data with a single label. In case of Case 1, MACCS keys are input as input 
values, and PubChem keys are input as input values in Case 2, and symptom information 
transformed into binary matrix form as output value is displayed. 

5.3. Model training method 
For accurate training of the model, training data and test data were divided into 8:2 ratio. 
Since there were little data in the training process, k-fold cross-validation was applied. In 
this study, k=5 was set. 

5.4. Assessment of model performance 
The performance evaluation method for a multi-label classification can be divided into 
example-based and label-based. Example-based is to calculate the average of the 
difference between the predicted label and the actual label for each case. And the label-
based is to calculate the average by calculating the predicted performance individually 
for each label (Tsoumakas, G., 2009). 

Hamming loss was used among the example-based methods because the labels of the data 
in this study are unbalanced. Hamming loss is the ratio of misclassified labels among all 
labels (Kim, S., 2017), and the Hamming loss equation is as follows: 

, ,
1 1

1 ( , )
N L

i j i j
i i

XOR y y
N L    

                                                                                    (1) 

where N  is number of data instances, L  cardinality of class space, 𝑦 ,  actual bit of 
class label j  in data instance i , �̑� ,  and  predicted bit class label j  in data instance i . 

5.5. Result of model performance assessment 
When looking at Cases 1 and 2, it was found that the MACCS keys showed good 
performance when applying the DT model, and the PubChem keys were effective when 
the k-NN and DT models were applied. In addition, the method of applying multi-label 
multiple classification is effective in the order of BR > CC > LP for k-NN and RF models, 
and LP > BR > CC for DT models regardless of cases. The model that shows the best 

 
Figure 6. Multi-label classification: Problem transformation method. 
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performance is the BR(RF) model, which shows the Hamming loss value of 0.2391 in 
Case 1 and 0.2447 in Case 2 (see Fig. 7). 

 

6. Conclusion 
Based on the input of real-time symptom information, a knowledge reasoning-based 
chemical estimation system (SEARCH) was designed to predict exposure chemical 
substance(s) candidates, and its effectiveness was verified through case studies. For 
chemical substances with high risk at industrial or chemical incident sites, a total of 1,001 
expanded symptom information was obtained by adding the existing symptoms by NIH 
WISER and chemical substances provided by PubChem. This was built into a KB as 
knowledge graph, and through reasoning knowledge graph using SPARQL, various 
knowledge services such as discrimination of exposed chemical substances and 
recommendation of field response are provided. The case study showed the same 
estimation results as the existing standard system, WISER, and showed that the speed and 
accuracy of discrimination can be improved through the reasoning method that is not 
available in WISER. 

For the scalability of the system in the future, a function that predicts and provides 
symptom knowledge that can be used to detect symptoms even for new chemical 
substances with relatively insufficient information was prosed and implemented. Based 
on chemical substance information such as structure information, it was confirmed that 
BR(RF) is the most effective model through the development and performance 
comparison of a multi-label multi-class ML model that estimates symptoms of new 
chemical substances. Deep learning models are being developed by further expanding the 
data, and the developed SEARCH platform is being applied to the Gyeonggi-do Disaster 
and Safety Headquarters, which is responsible for the safety and accident response of the 
largest population in Korea. 
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1034



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

A Cloud Computing Application for the Supercriti- 
cal Carbon Dioxide Extraction Using Coffee Grounds 
Silverskin 
Andrea Galeazzia, Rita Nastib, Giulia L. Bozzanoa, Luisella Verottab, Stefania 
Marzoratib and Flavio Manentia,* 
aPolitecnico di Milano, Piazza Leonardo Da Vinci 32, Milan 20133, Italy 
bUniversità degli Studi di Milano, Via Golgi 19, Milan 20133, Italy 
flavio.manenti@polimi.it 

 
Abstract 
This work presents a case study for the application of physical systems modelling tech- 
niques on cloud computing infrastructures. The described physical system is the mi- 
cronized silverskin lipids extraction using supercritical carbon dioxide on laboratory scale 
equipment. The experimental data of the extractions are modeled using a simplified dual 
phase kinetic model. The model parameters are further developed until their constituent 
and constant terms in order to transform the purely regressive kinetic model to a predictive 
one. The model parameters have been refitted through a non-linear regression using the 
cloud computing infrastructure purposely created for this case study. The core numerical 
library used to construct the cloud computing approach is the object-oriented BzzMath 
library for C++. Cloud computing is a very promising research field and its application to 
traditional solutions may provide a numerical revolution in the chemical industry as well 
as academic researches. 

Keywords: cloud computing, supercritical fluid extraction, silverskin 

 
1. Introduction 

 
Cloud computing is a very promising technology that moves away from the end-user the 
burden of performing critical and time-consuming calculations while still retaining its 
results. This approach is not new and several applications have been developed through- 
out the years but they are mainly industrial or related to large-scale calculations. More 
recently, driven by the industrial focus on this topic, an increasing interest in cloud com- 
puting applications has spread also in the academy. Several academic fields can benefit 
from a cloud computing approach to typical problems, one of them is the chemical engi- 
neering field, especially in chemical process engineering and modelling. In this work, a 
cloud computing approach has been applied to the modelling of the supercritical carbon 
dioxide extraction of lipids from organic matrices, with a focus on coffee grounds silver- 
skin. At first,  a custom online platform accessible through a website has been created  
in order to accommodate the models and calculations required for this case study. This 
process is a viable candidate to demonstrate an online cloud solution since the mathemat- 
ical model implemented is useful for the researcher who can analyse the data of different 
experimental campaigns with different conditions. In facts, with a versatile model for the 
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supercritical fluid extraction using CO2, it is possible to interpret different operating con- 
ditions, different organic matrices, or different experimental equipment. Thus, the online 
tool remains the same but the solution can be applied to a plethora of different problems 
of the supercritical fluid extraction of lipids with carbon dioxide. 

 
2. Cloud Process Engineering Approach 

The approach adopted with this implementation makes cloud computing the core that sus- 
tains the online interface which, in turn, enables the user to upload the experimental data 
and perform the desired calculations in order to gain insights and relevant information on 
the process. The same cloud computing solution could have been deployed with dedi- 
cated software that the user should install on their machine. In this scenario, the cloud 
computing approach would still exist since only the user interface would not be present. 
However, a website interface bears several advantages with regards to a specifically in- 
stalled software (Boillat and Legner, 2013; Chen et al., 2017). Some of these benefits are 
the ease of upgrading the core routines of calculation, the non-necessity of installing any 
new software other than a web browser, and the cross-compatibility between devices and 
operating systems. 

The first step of the interaction between the user and the online platform is regulated by 
the upload of the experimental data through preformatted JSON files containing the exper- 
imental data of the extraction process and several other data about the system geometry 
or physical properties of the organic matrix. Now, the online system is able to read the 
uploaded files and pass all the relevant information to the binary executables which are 
launched on the calculating server. The executables return the results of the calculations, 
e.g. non-linear regression of the experimental data, in various additional JSON files struc- 
tured in such a way that the system will then be able to process them and make them 
readable by the final user. Additionally, several graphics accompany numerical results. 
Finally, the resulting materials are shown on the interfacing platform where the user can 
download them. A schematization of the whole process is shown in Figure 1. 

Every single link in this chain may be replaced and relocated elsewhere on the net since 
a full cloud implementation grants it (Lehrig et al., 2015). If needed, it is possible to 
directly act on the critical aspects of the infrastructure and fix them. Additionally, if the 
workload is too heavy it is still possible to serve multiple users at once by instancing 
several additional workers on the network. This creates an elastic system able to self 
adapt to computation demand (Al-Dhuraibi et al., 2018). A relevant additional advantage 
of a cloud implementation, which is useful especially for industrial applications, is the 
possibility to scale the whole system on-demand thus reducing the overall cost of unused 
computing power since it will be redirected in real-time to the user calculations who need 
it the most. 

 
3. Materials and Methods 

3.1. Materials 

Micronized silverskin has been provided by an Italian roasting company. All HPLC-grade 
and analytical grade organic solvents were purchased. HPLC-grade water was obtained 
via a purification system. Carbon dioxide was purchased with a purity of 99.999 %. 
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Figure 1: Simplified schematization of the user-cloud interconnection. 
 
 

3.2. Supercritical CO2 extraction 

The extraction equipment used for the supercritical carbon dioxide extraction consists of 
a pump connected to the CO2 cylinder and the extraction vessel mounted vertically inside 
a thermoregulatory oven. The CO2 is compressed up to the desired pressure and flows at a 
constant rate inside the column packed with approximately 40 g of micronized silverskin. 
Once the CO2 reaches the extraction vessel it is heated by the oven that contains the col- 
umn itself. The system is operated continuously for a certain amount of time of maximum 
2 h. The coffee silverskin lipid thus extracted has been collected and weighted at several 
time intervals in order to assess the kinetics of the extraction. As shown in Figure 2, five 
different extractions have been conducted. 
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4. Model 

The mass transfer model applied to characterize the two-phase system was originally de- 
veloped by Sovová (1994) with a kinetic simplification introduced by Patel et al. (2011). 
The choice of such a model is due to the existence of an analytical solution and its ver- 
satility in interpreting experimental data (Andrade et al., 2012; Martínez et al., 2003; 
Mezzomo et al., 2009). These features are needed in order to construct a cloud comput- 
ing solution that will be able to process different experimental data fast and in a repetitive 
way without the need for any additional intervention to the modeling aspects. With this 
model, two different extraction phases are assumed which differ from each other for the 
mass transfer mechanism. In the first phase, the external mass transfer controls the rate 
of extraction while in the final phase it is controlled by the internal mass transfer. For this 
reason, the extraction is faster at the beginning and declines rapidly after the first stage. 
The two phases’ existence is due to the presence of lipids on the surface of the organic 
matrix that are depleted during the rapid extraction of the first stage (Brunner, 1984; del 
Valle et al., 2000). 

 
4.1. Simplified dual phase model 

The model adopted introduces several assumptions to describe the extraction process, 
such as: no radial dispersion, pure solvent at extractor entrance, etc. (Patel et al., 2011). 
The analytical solution to the differential system comprised of the mass transfer equations 
for the fluid and solid phase results as: 

e = qyr [1 − exp(−A)] for q < qm (1) 

e = x0 − exp[−BA(q−qm)][x0 −qmyr(1 − exp(−A))] for q ≥ qm (2) 
where several dimensionless variables are introduced, most importantly the variables e 
and q which are, respectively, the dimensionless extracted mass of lipid and the dimen- 
sionless time related to the amount of solvent flowed in the system. Moreover, the param- 
eter A depends mainly on the fluid dynamics of the system since it is a function of k f , the 
fluid mass transfer coefficient, a0 which is the superficial area coefficient, the superficial 
velocity U and H, the column height. B is the ratio between the solid mass transfer coeffi- 
cient (ks), with the solid density (ρs) and the fluid mass transfer (k f ) with the fluid density 
(ρs). x0 and yr represent, respectively, the initial solid mass fraction of solute in the solid 
matrix and the solubility of lipids in the supercritical fluid. Both terms are constituent el- 
ements of the variable qm which represents the dimensionless time of the phase inversion. 
For a more in-depth analysis of the variables presented, please refer to Patel et al. (2011). 

 
4.2. Fundamental Parameters 

In order to allow the model to predict the extraction curve at different operating condi- 
tions, it is needed to develop accurate correlations for all the fundamentals parameters that 
have a significant dependence on the operating conditions. A fine-tuning of parameter A 
has been performed by using a corrective correlation on the flow rate in a power-law-like 
form. In fact, a single additional regressive parameter has been added in order to better 
predict different volumetric flow rates with an empirical approach. For all the parameters 
that are either constant or with a negligible variation at different operating conditions and 
whose value is not known experimentally the value is finally evaluated with a non-linear 
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regression. The fundamental parameters that need an accurate correlation are the solvent 
density and viscosity and the fluid phase mass transfer coefficient. The density of the 
supercritical carbon dioxide has been described with the well-known Peng-Robinson’s 
equation of state (Peng and Robinson, 1976) while the viscosity has been calculated with 
a Jossi-Stiel-Thodos correlation (Jossi et al., 1962). The fluid mass transfer coefficient 
has been evaluated with the Kunii and Suzuki (1967) mass transfer theory which is valid 
for finely packed beds characterized by very low Re and Pe numbers. This theory de- 
scribes the flow of the fluid phase with a channeling effect where the solid phase tends to 
aggregate to form clumps that are reducing the mass transfer. 

 
5. Results 

The cloud computing approach has been successfully applied to solve the non-linear re- 
gression problem of the experimental data with the simplified dual-phase extraction model 
for the supercritical extraction of lipids from micronized coffee grounds silverskin. The 
non-linear regression has been performed by using a custom implementation of the nu- 
merical library BzzMath (Buzzi-Ferraris and Manenti, 2010, 2012) using Visual C++. 
The global sum of squared errors of the whole experimental set has been minimized with 
a modified Simplex search algorithm. The modification of the original algorithm imple- 
mented in the BzzMath library is aimed at incrementing the robustness of the minima 
search. The global minima found for the five experimental sets resulted in an average ab- 
solute relative deviation of 7.11 % and a standard error of the estimate of 0.00120 (both 
calculated on the dimensionless extracted mass parameter).  These results are reasonably 
low values as it can be seen from Figure 3. Moreover, the model has a good predictive 
capability since one of the model parameters is the total solute concentration in the solid 
phase. This parameter is evaluated experimentally and it acts as a physical limit on the 
model itself since no more than the total initial concentration can be extracted. Thus, with 
few experimental points, it is possible to evaluate the extraction dynamic quite accurately 
(as shown in Figure 3) and with a physical boundary. 

 
 

 

Figure 3: Non-linear regression results of the dual phase simplified model for the first 
(circles) and fourth (crosses) experimental sets. 
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6. Conclusions 
This case study shows how typical process engineering problems may be solved using a 
full cloud implementation while retaining the high accuracy results of a local offline solu- 
tion platform but with all the benefits of a cloud computing approach. Moreover, for the 
specific case study of the supercritical carbon dioxide extraction process of lipids from 
micronized silverskin, the implemented model has shown a good versatility in analysing 
and interpreting experimental data. In addition, the possibility to develop the fundamental 
parameters transforms the described model from a purely regressive to a predictive one. 
The ability to predict the behavior of the extraction process at different operating condi- 
tions is valuable for the researcher who wants to analyze the system. This numerical tool 
could be further developed with CAPE-OPEN and OPC protocols to enable it to manage 
and unify different, already established, process systems engineering tools. 
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Abstract 
In the present paper, a multi-objective shape optimization approach based on the adjoint 
system method has been developed and tested on a two-dimensional fixed-bed reactor. 
The optimization problem considered involves two performance indices (i.e. conversion 
rate and dissipated energy in the reactor) and three constraints consisting of an iso-volume 
constraint and two manufacturing constraints. The process model, solved using 
OpenFOAM software, is described by the mass balance and Navier-Stokes equations in 
laminar flow regime. The multi-objective optimization problem is converted into a single-
objective problem using weighting factors and then solved several times to determine the 
set of optimal solutions, i.e. Pareto front. The best optimal solution is then determined by 
means of the multi-attribute utility theory (MAUT) method. Finally, the resulting optimal 
shape which reduces the energy dissipation by 46.7% and improves the conversion rate 
by 2.7% is manufactured using a 3D printing technique. 
 
Keywords: Multi-objective shape optimization, Multi-attribute utility theory (MAUT), 
Adjoint system method, Computational fluid dynamics (CFD), Fixed-bed reactor. 

1. Introduction 
In process optimization, the problems that are very often studied generally aim to 
determine a solution of a constrained minimization/maximization of a single objective. 
However, in many cases, multiple conflicting objectives are involved and need to be 
optimized simultaneously. In this case, the solution is no longer a single solution but a set 
of optimal solutions, called Pareto front. These solutions are then ranked by means of a 
decision-aid making method to choose the best one. 
 In one of our recent works (Courtais et al., 2020), a geometry optimization approach was 
developed to determine the optimal shape of a two-dimensional fixed-bed reactor. The 
objective was to maximize the conversion rate while satisfying four constraints: (i) an 
iso-volume constraint ensuring that the reactor operates at the same residence time, (ii) 
an inequality constraint which defines a maximum value for the energy dissipated by the 
fluid, (iii) and two manufacturing inequality constraints that impose minimum values on 
the pores width and the packing thickness. However, the performance index, i.e. the 
conversion rate, and the constraint on the dissipated energy are conflicting which means 
that the solution of the optimization problem is a Pareto set. 
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In the present paper, a constrained multi-objective optimization of the shape of a fixed-
bed reactor where a single-phase liquid flows in laminar regime, is developed. The multi-
objective problem is transformed into a single-objective problem using weighting factors, 
and solved many times to determine the Pareto front of the optimization problem. The 
multi-attribute utility theory (MAUT) method (Keeney et al., 1979) is then used as a 
decision-aid making method in order to select the “best” optimal shape of the reactor. 

2. Description of the fixed-bed reactor and its modeling 
The developed optimization method is used to determine the optimal packing shape of a 
fixed-bed reactor with a single-phase liquid flow. It is a structured packing made up of 
obstacles initially elliptical in shape (with half axes of 5mm and 2.5mm) uniformly 
distributed in the reactor. 

 
Figure 1 : Initial configuration of the fixed-bed reactor. 

The studied domain, whose initial shape is shown in Fig. Figure 1 is denoted by Ω and is 
delimited by its boundaries ∂Ω = ΓinUΓoutUΓlatUΓ. Γin and Γout represent respectively the 
fluid inlet, the fluid outlet and the side wall of the reactor. Γ is the packing whose shape 
will be modified during the optimization process and constitutes the decision variable of 
the optimization problem. The model of the fluid flow in the reactor is described by means 
of Navier-Stokes and continuity equations (1). It is based on the following main 
assumptions: laminar flow regime, incompressible fluid, and steady-state conditions. The 
model equations are expressed as: 

 (1) 

where σ(U,p) = 2νε(U) - pI with ε(U) =     (∇U + (∇U)T). ν is the fluid kinematic viscosity, 
I the identity matrix, p the kinematic pressure (i.e. the absolute pressure divided by the 
density), and ε(U) the strain tensor. 
Reagent transport is modeled by the system of PDEs (2). It is assumed that a first order 
reaction takes place in the bulk of the reactor and no reaction occurs on the walls. 

 (2) 
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D denotes the diffusion coefficient of the reagent in the solvent (i.e. water), C the 
reagent concentration and k the kinetic constant. 

3. Multi-objective optimization problem statement 
The multi-objective optimization problem is defined as follows: 
• Two performance indices are defined by the energy dissipated by the fluid in the 

reactor and the average reagent concentration at the outlet of the reactor. They are 
respectively expressed as: 

 (3) 

• The decision variable is the shape and the position of the packing Γ. 
• The constraints are defined by the following equality and inequality constraints: 

- The process model described in Section 2 and solved using OpenFOAM software. 
- An iso-volume constraint is considered in order to operate at the same residence 

time in the initial and optimal shapes of the reactor. It is expressed as follows: 

 (4) 

where v(Ω) denotes the volume of Ω. 
- Two inequality constraints related to the reactor manufacturing step. Indeed, the 

3D printing technique used to manufacture the reactor imposes minimal values on 
the local width of the pores and on the local thickness of the packing (Courtais et 
al., 2021) 

To solve the resulting multi-objective optimization problem, it is converted into a single-
objective problem by aggregating the two objectives using the linear scalarization method 
as: 

 (5) 

Kcrit is a constant used to ensure the same unit of measure and the same order of magnitude 
of both objectives J1 and J2. 

4. Adjoint system method for the shape gradient computation 
The approach used is an iterative method which builds from the initial form a series of 
shapes that improve the performance of the reactor at each iteration by adapting the 
position of its boundaries. This approach relies on the concept of shape derivative also 
called derivative in the sense of Hadamard (Henrot and Pierre, 2005). The method 
consists in determining at each iteration the sensitivity of the Lagrangian functional (6) 
with respect to a small perturbation of the domain boundaries. 

 (6) 

This perturbation is given by the following equation: 

 (7) 
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where Id is the identity operator, t is the step of the iterative method, and V is the vector 
field representing the displacement of the mesh. Thus, the product tV stands for the small 
perturbation applied to the mesh. 
 
Hadamard's derivative is a gradient method which involves adjoint states to compute the 
shape gradient G(Ω) This new functional is defined on the free boundary Γ and depends 
on the solutions (U,  p and C) and (Ua,  pa and Ca) of the process model equations and 
their associated adjoint state equations introduced by the method. Finally, the mesh 
displacement V leading to a decrease of the Lagrangian (6) depends on the shape gradient 
and is computed by solving the following system of equations: 

 (8) 

5. Implementation of the optimization algorithm 
The algorithm used to solve the multi-objective optimization problem consists of several 
resolutions of the single-objective problem by modifying the parameter τ. It is 
implemented within OpenFOAM CFD software which solves the PDEs using the finite 
volume method. The solution of each single-objective problem is achieved in 6 main steps 
as: 
1. The initial shape of the reactor is meshed using SNAPPYHEXMESH and CFMESH, two 

mesh generation utilities supplied by OpenFOAM. 
2. The systems of PDEs allowing to determine the state variables (U, p , C) and their 

associated adjoint states (Ua, pa , Ca) are solved. The pressure-velocity couplings in 
the Navier-Stokes equations and in the equations of its adjoint system are treated 
using the SIMPLE algorithm. 

3. The shape gradient G(Ω) and the mesh displacement V are then computed. Since the 
manufacturing constraints are dealt with during this step, the thickness of the 
obstacles is defined as the double of the distance between the skeleton and the 
obstacle. In 2D, the skeleton is defined as the set of points equidistant from the 
obstacle on each side, i.e. a thin version of the obstacle centered inside it. The local 
pore distance is computed using an OpenFOAM function named wallDist (Courtais 
et al., 2021). 

4. The Lagrange multiplier λv is updated as: 

 (9) 

where i denotes the iteration number and β > 0 is a small parameter. 
5. A test on the mesh quality is carried out by means of 3 criteria very often used in 

CFD simulation: the mesh aspect ratio, the mesh non-orthogonality and the face 
skewness (Holzinger, 2015). If the values of these criteria are respectively higher 
than 10, 65° and 3.8, a remeshing of the shape is performed. 

6. At the end of each iteration, a test on the convergence is carried out. If the ratio of 
the standard deviation to the average of the last 100 values of the Lagrangian is lower 
than 10-4, the algorithm stops. 
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Figure 2: Pareto front of the multi-objective shape optimization problem. 

6. Numerical results and discussion 
Figure 2 presents the Pareto front where each circle corresponds to the solution of a 
single-objective problem. As emphasized by Courtais et al. (2020), each single-objective 
optimization takes between 2 and 3 days to converge on a 3.7GHz Xeon Dell Computer 
5810. Consequently, the determination of this estimation of the Pareto front (Fig. 2) made 
up of 26 single-objective solution is time consuming and has required between 1.5 and 2 
months of computations.  

Figure 2 shows that the smaller the parameter τ, the greater the conversion rate and the 
better the homogeneity of the fluid flow in the reactor. Conversely, the closer τ is to one, 
the more important the energy criterion. In this case, channelings and dead zones appear 
thus causing the reduction of the energy dissipation in the fluid and the degradation of the 
conversion rate in the reactor. On Fig. 2, the black triangle of coordinates (9.56×10-2; 
1.7×10-11) has been determined by the ε-constraint method since the Pareto front is 
slightly concave near this point and consequently the linear scalarization method is unable 
to determine the concave parts of the front. The performances of the reactor configuration 
determined by Courtais et al. (2020) are also shown on the Pareto front (white triangle). 
They highlight the importance of carrying out a multi-objective optimization since it was 
possible to improve the energy dissipation criterion by 33% with an insignificant 
degradation of the conversion rate. 

Finally, all these optimal shapes of the reactor are ranked using the MAUT method 
(Fonseca et al., 2020) according to the importance given to the criteria by the decision-
maker. The solution at the top of the ranking is then chosen as the best optimal solution; 
it reduces the energy dissipation by 46.7% and improves the conversion rate by 2.7%. 
This configuration of the reactor is presented in Fig. 3 and has been manufactured 
using a 3D printing technique for experimental tests. 
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Figure 3: Comparison between the best optimal reactor chosen using MAUT method (a) and the 
corresponding reactor manufactured by a 3D printing technique (b). 

7. Conclusions 
A geometry optimization approach based on the adjoint system method has been 
developed, implemented within OpenFOAM and tested on a 2-dimensional fixed bed 
reactor where a homogeneous first order reactor occurs. The optimization problem has 
been formulated with two performance indices (energy dissipation in the fluid and 
conversion rate in the reactor) and the Pareto front has been determined. Finally, the 
configuration which offers the best compromise between the criteria has been determined 
using the MAUT method and manufactured by means of a 3D printing technique. 
This paper emphasizes the importance of performing multi-objective optimization of the 
reactor since the optimal shape determined by Courtais et al. (2020) by a single-objective 
optimization was not the best optimal configuration of the reactor for manufacturing 
issues. However, the developed method has shown several limitations. The first one is the 
method of shape optimization used to solve the optimization problem. Indeed, some dead 
zones that appear when the energy dissipation criterion is high (i.e. for τ > 0.7) would 
disappear if topology changes were allowed. Another limitation concerns the width 
constraints which do not allow their violation during the optimization iterations. These 
issues are being addressed and significant improvements are expected. 
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Abstract 
The iron melting furnaces are the most energy-consuming equipment of the iron and 
steel industry. The energy efficiency of the furnace is affected by process conditions 
such as the inlet temperature, velocity of the charge, and its composition. Hence, 
optimum values of these process conditions are vital in the efficient operation of the 
furnace. Computational methods have been very helpful in the optimum design and 
operation of process equipment. In this study, a first principle (FP) model was 
developed for an iron-making furnace to visualize its internal dynamics.  To minimize 
the large computational time required for the FP-based analysis, a data-based model, 
i.e., Artificial Neural Networks (ANN), is developed using data extracted from the FP 
model. The ANN model was developed using data sets comprised of the values of 
temperature of the charge and gasses, velocity, concentration of the oxygen, pressure, 
airflow directions, energy and exergy profiles, and overall exergy efficiency of the 
furnace along with its height. The ANN model was highly accurate in prediction and is 
suitable for real-time implementation in a steel manufacturing plant. 
Keywords: exergy analysis, second law of thermodynamics, energy analysis, artificial 
intelligence, iron, and steel industry. 
 
1. Introduction 

Iron ore melting furnaces are a core part of the iron and steel manufacturing 
sector and are consuming a significant share of the total energy used in a plant. 
To realize energy-efficient design and operation of the furnaces, exergy-based 
studies have been getting the attention of the researcher. Compared to the 
conventional energy analysis methods, exergy-based analysis is more effective 
in the identification of the location, causes as well as the magnitude of the 
energy losses in a system. Application of the computational methods in the 
exergy analysis has been helpful. Mathematical models as well as process 
simulators, i.e., Aspen, ANSYS, etc., are used for performing exergy analysis of 
various systems. Several studies based on computer aided exergy analysis of 
furnaces have also been reported. 

For instance, Zhang et al., (2017) performed exergy analysis of 
recycling oxygen in a blast furnace to determine the optimum composition of 
charge i.e. feed. In another study, an exergy-based analysis of a blast furnace, 
using natural gas as a fuel, was performed (Guo et al., 2013). They inferred that 
operating a blast furnace on natural gas increases productivity, reduces silicon 
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content in molten metal, and carbon emission but reduces its exergetic 
efficiency. In another work, high exergy efficiency of the blast furnace was 
reported through the use of pulverized coal and preheating of the charge 
material which also helped in saving coke (Ziębik and Stanek, 2006). Similarly, 
exergy analysis of a silicon furnace has revealed that volatiles and electrodes 
account for about 8-10 percent of exergy destruction (Børset et al., 2015). 
Exergy analysis of an annealing furnace helped in identifying the fact that the 
combustion chamber of the annealing furnace is about 12.9 percent exergy 
efficient while the overall exergy efficiency of the furnace was found to be 7.3 
percent (Hasanuzzaman et al., 2011).  

The use of artificial intelligence in exergy analysis is a new trend that is 
paving way for the digitalization of energy analysis systems of process 
industries (Akram et al., 2018). The present study is based on the use of 
Artificial Neural Networks (ANN) in exergy analysis of a Blast Furnace (BF) of 
a steelmaking plant. Initially, a first principle model of the BF is developed that 
calculates temperature, velocities, the concentration of oxygen, exergy, and 
energy efficiencies at 8712 points across the width and height of the furnace. 
The dataset (8712) is used then used to develop ANN models for prediction of 
charge temperature, gas temperature, the concentration of oxygen, and total 
exergy. 

Section 2 describes the process followed by the proposed methodology in 
section 3. Section 4 elaborate the results while section 5 concludes the present 
work.  
 
2. Process Description 

The process of iron production includes three continuous reduction reactions of 
iron oxides within the BF. As preheated air enters the furnace from the bottom, 
it reacts with the coal introduced from the top of the furnace, producing carbon 
monoxide (CO). These sets of reactions have a specific heat of formations 
represented below along with the reactions (Sun, 1997). 𝐶( ) + 𝑂( )  = 𝐶𝑂( )                     ∆𝐻 = −99𝐾𝐽/𝑀𝑜𝑙𝑒        (1) 
This carbon mono-oxide reacts with the feed oxide and reduces it into ferrous 
Oxide (FeO). In the final reduction of iron, this ferrous oxide is further reduced 
into iron-producing carbon dioxide (𝐶𝑂 ) as a by-product. 3𝐹𝑒 𝑂 ( ) + 𝐶𝑂( )  = 2𝐹𝑒 𝑂 ( ) + 𝐶𝑂 ( )             ∆𝐻 = −52.869 𝐾𝐽/𝑀𝑜𝑙        (2) 𝐹𝑒 𝑂 ( ) + 𝐶𝑂( )  = 3𝐹𝑒𝑂( ) + 𝐶𝑂 ( )                   ∆𝐻 = −36.250 𝐾𝐽/𝑀𝑜𝑙         (3) 𝐹𝑒𝑂( ) + 𝐶𝑂( )  = 𝐹𝑒( ) + 𝐶𝑂 ( )                         ∆𝐻 = −17.305 𝐾𝐽/𝑀𝑜𝑙        (4) 

 
3. Methodology 

The modelling framework is comprised of three steps. Initially, an FP model of 
the blast furnace was developed using data from the literature (Dartt, 2011). The 
FP model was updated to calculate physical, kinetic, and potential exergies 
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across the furnace. In the third step, data was generated from the FP model to 
develop the four ANN models. The three steps are briefly discussed below: 
 

  
Figure 1: Reaction zones of the furnace (Petrucci et al., 2017) 

 
 FP model development: For the FP model, the height and diameter of the 

furnace were kept at 0.605 and 0.36 meters respectively. The inlet 
temperature of oxides, fluxes, and the air was 298 K, while tuyere and lid 
diameter were kept 0.05 and 0.11meters respectively. The blast rate of 
oxygen was 0.224 kg/sec. The mathematical calculations involved Ergun’s 
pressure drop equation, steady-state equation, reaction rate constant 
equation, and effective heat transfer coefficient equation.  

 Addition of exergy equations in the FP model: The standard equations 
used in (Szargut, 2005) were added to the FP model to calculate physical, 
kinetic, and potential energies. The equations are summarized below:  𝐸 = 𝑅𝑇 ∑ 𝐶𝑝  (𝑇 − 𝑇 − 𝑇 ln )                      (5) 𝐶𝑝 = 𝐶𝑝  𝑑𝑇                                      (6) 𝐶𝑝 . =  𝑎 +  𝑏 𝑇 +  𝑐 𝑇 + 𝑑 𝑇                        (7) 

     where, ai, bi, ci, and di are heat capacity coefficients, R is the ideal gas          
     constant at each point of the furnace, Pi is partial pressure, and Ti is   
     temperature. 𝐸 = 𝑚                 (8) 𝐸 = 𝑚  𝑔   𝑍                (9) 
   where mO is the mass flow rate of the bulk stream, CO is bulk velocity, and ZO  
   is the altitude above the sea level. 
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ANN modeling: Data comprised of 8906 samples of 11 process 
variables/parameters from across the width and height of the furnace was 
collected for the development of the ANN models. Four ANN models 
were developed to predict charge temperature, gas temperature, the 
concentration of oxygen, and total exergy. 
 

4. Results and Discussion 

Contours of physical and total exergies of the furnace calculated through the FP 
model are shown in Fig. 2 while the regression performance of the ANN models 
is shown in Fig. 3.  

Fig. 2 (a) represents the physical exergy of the furnace calculated 
through the FP model. The physical exergy depends upon the temperature of the 
furnace. It can be observed that the furnace exergy is high at the points where 
the temperature profile of the furnace remains higher. In addition to the physical 
exergy, kinetic and potential exergies were also calculated. The kinetic exergy 
depends upon the product of the bulk velocity and the bulk flow rate and it was 
noted that kinetic exergy is much higher at the points where velocity is higher. 
Potential exergy is the product of height altitude, mass flow rate, and velocity. 
Hence, velocity is the only factor which is having a higher effect on potential 
exergy and it is much higher in the high-velocity zones. While at other levels, it 
has only the effect of height altitude and mass flow rate which is minimized by 
the lower velocity levels at that position. The sum of all types of exergy termed 
as total exergy is shown in Fig. 2 (b). 

(a) (b) 
Figure 2: Contour plot (a) physical exergy (b) total exergy along the height of furnace 
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Fig. 3 (a) represents the prediction of the charge temperature within the furnace. 
The ANN model had a correlation coefficient of 0.99849 with values obtained 
through the FP model. Similarly, Fig. 3 (b) represents the correlation between 
the predicted and the FP model value for the gas temperature. In case of 
concentration of oxygen, the correlation coefficient was 0.99958 as shown in 
Fig. 3 (c). Fig. 3 (d) represents the correlation coefficient of the total exergy of 
the furnace calculated through the FP model and predicted through ANN. The 
correlation coefficient between the FP values and ANN predicted values were 
0.99832. 
  

 
(a) (b) 

  

(c) 
 
 

(d) 

Figure 3: ANN regression plots (a) Charge temperature (b) Gas temperature (c) 
Concentration of Oxygen (d) Total Exergy 
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5. Conclusions 

A First Principle (FP) was used to calculate kinetic, potential, and physical exergy 
exergies across the width and height of a blast furnace (BF). The furnace is found to be 
most exergetic at the points where the temperature of the furnace is higher. To shorten 
the calculation time for exergy, gas temperature, charge temperature, and concentration 
of oxygen, ANN models were developed using data extracted from the FP model. ANN 
models had a correlation coefficient of 0.996, 0.995, 0.995, and 0.993 for prediction of 
the concentration of oxygen, charge temperature, total exergy, and gas temperature 
respectively. The ANN-based prediction of process conditions specifically the exergy 
efficiency provides a platform for realizing a stable and efficient operation of the BF. 
For a more realistic representation of the internal dynamics of the BF in terms of 
exergy, the second generation of machine learning methods, i.e., deep learning (DL) can 
be applied. For training the DL models, further large databases of information may be 
acquired through infrared-based cameras installed for capturing the internal conditions 
of the furnaces.  
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Abstract 
The selection and design of the appropriate reaction paths has a significant impact on the 
economics and productivity of the chemical process, enhanced by milder operating 
conditions, use of cheaper reactants and fewer reaction steps. However, exploration of 
reaction information is difficult even with reaction databases available, causing path 
explosion problem due to huge search space. In this study, we propose an AI system 
(ASICS), which supports synthetic path design at the basic stages of research and process 
design, based on the hybrid generative exploration and exploitation of reaction knowledge 
graphs encoding big data of patented reactions and machine learning-based retrosynthetic 
prediction. ASICS generates an optimal synthetic path that satisfies the given constraints 
(regulated compounds, etc.), based on A* search using synthetic accessibility and 
retrosynthetic prediction scores. The preference in searching between confirmed reaction 
spaces and unexplored reaction spaces through prediction can be selected by the user. The 
fusion of reaction knowledge base and retrosynthetic prediction model enables to 
generate optimal synthetic paths beyond the accumulated reaction information. 
 
Keywords: Chemical Reaction Big Data, Synthetic Pathway Design, Knowledge Graph, 
Inference Reasoning, Decision Support System 

1. Introduction 
Choosing appropriate reaction pathways is an important part of chemical process 
development and laboratory research to create high-added value through chemical 
reactions. Before proceeding with trial-and-error experiments, related compounds and 
reaction information is usually searched from in-house documents, literature, databases 
or web. However, it is not easy to narrow down candidate reaction paths and/or to obtain 
the information required by the target compounds even with commercial databases. 

Databases of organic synthesis, e.g., Reaxys and SciFinder, collect and provide 
information on compounds and reactions from various patents and literature from the past 
to the present. In addition to that, in order to solve the environmental and energy 
sustainability and economic issues, it is required to explore a wide range of reaction 
hyperspaces within a limited time. For example, in the network universe of organic 
chemistry, 80.2 distinct reactions can be applied to a non-trivial retron on average, 
translating into 3.5 × 10  possible 15-step pathways (Szymkuc et al. 2016).  

The methods of generating one-step reactions are divided into exploration with 
database, reaction rule matching and machine learning-based reaction prediction. As 
retrosynthesis planning methods, there is a heuristic best-first search method that 
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performs rule matching and exploration based on reaction networks and hand-coded 
reaction rules (e.g., Synthia, formerly Chematica (Szymkuc et al. 2016)). There is also a 
template-based, policy-guided tree search method using machine learning-based 
retrosynthetic prediction model (e.g., AizynthFinder (Genheden et al, 2020)). Depending 
on the prediction model used, it is divided into template-based or template free. 

Exploring and rule matching method based on the reaction network cannot generate 
result beyond the accumulated information. Retrosynthetic prediction models, however, 
always has uncertainty and do not supply detailed reaction information such as yield and 
conditions. Thus, we propose a hybrid system that combines reaction networks search 
and retrosynthetic prediction to generate synthetic paths by exploring both dimensions. 
The preference in searching between confirmed reaction spaces and unexplored reaction 
spaces through prediction can be selected by the user. Reaction information is collected 
using open data, and the proposed system is intended to be provided as open source. 

2. Design of Reaction Knowledge Base: Reaction database sources, essential 
reaction information, automatic extraction, and representation as 
knowledge graph 
The information required to generate an optimal synthetic pathway includes information 
on chemical structure, chemical reaction, physical property, and commercially available 
compounds. We selected PubChem as the main database source for chemical structures, 
eMolecule for chemical structures for commercially available compounds and the 
USPTO patents (1976-2016) by Lowe (2014) for chemical reactions. All compounds are 
stored by expressing them with identifiers, e.g., SMILES (Weininger 1988). 

Massive information of chemical structure and physical property was extracted from 
the source database through automated web crawling. USPTO patents by Lowe contain 
information such as year, reaction formula, reactant, product, reaction amount, yield, and 
synthesis procedure. By extracting reaction information and removing duplicates of the 
same reaction SMLIES, 1,674,945 reaction information out of ~3.3 million reactions was 
used as the basis for reaction knowledge. Knowledge base was constructed by expressing 
them as labeled property graphs using Neo4j, an open-source graph database. Knowledge 
graphs consisting of the knowledge base are shown in Figure 1(a) and (b).  

 
 

(a) (b)

Figure 1. Reaction knowledge graph network: (a) the whole knowledge base, (b) zoomed
for dichloromethane. Yellow nodes represent compounds and black nodes reactions.
Edges represent relations: blue for products and reactions, red for reactants and reactions,
and green catalysts or solvents and reactions.
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3. One-step Retrosynthetic Prediction Using an Open-Source Model 
With a retrosynthetic prediction model, we have the advantage of considering the reaction 
of the unreported or unexplored space beyond the definite reactions accumulated in the 
knowledge base. As the template-based one-step retrosynthetic prediction model, Chen 
et al. (2020)’s model published at GitHub was imported and used. This model uses a 
single-layer fully connected neural network of latent dimension 128, with ReLU as 
activation function. Morgan fingerprint of radius 2 with 2,048 bits is input to this model, 
and reaction templates are obtained as output. The reaction templates are converted to 
SMILES using RDKit package to obtain reactants. 

4. Generation of Optimal Synthetic Pathway via Simultaneous Exploration 
of Knowledge Graph and Retrosynthetic Prediction 
The most economical synthesis direction among similar reactions is selected based on the 
Synthetic Accessibility score (SAscore) scaled to be between 1 and 10 (Ertl et al. 2009). 
A reaction with the lowest SAscore, easier to synthesize, is favored by calculating the 
average SAscore of the participating reactants. It is assumed that the lower SAscore the 
lesser cost of reactants. 

 
A* search proceeds in the same flow as the pseudocodes in Table 1 and 2. It explores 

optimal synthetic paths having minimum scores of synthetic reaction value function V, 
which estimates the cost, certainty and readiness of a reaction and the combined value is 
adjusted by weights put on the exploration of knowledge graph and exploitation by 
retrosynthetic prediction: 𝑉 𝑤 × 𝑤 × 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃  (1) 

where weights are decided by user’s preference on exploration vs. exploitation. And the 
availabilityP predicate returns 1 only when all reactants are commercially or in-house 
available. The prediction score that represents prediction probability of reaction is 1 when 
reaction was searched from knowledge graph and likelihood value when predicted. The 
reaction consisting of commercially available reactants takes precedence in the following 

Given target compound tm and list of commercially or in-house available compounds PCL, generate list of reacta
nts from the selected reaction RL and list containing the synthetic path up to now PL. 

 

genRxn(tm, PL): 
A. Search one-step reactions in knowledge graph KG for product tm:  

Search all candidate reactions and save it as list L1. 
# Calculate value function scores. 𝑉 𝑤 × 𝑆𝐴𝑠𝑐𝑜𝑟𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑥 /10   𝑤 × 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑥 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑥  𝑓𝑜𝑟 𝑥 𝑖𝑛 𝐿   

 

B. Generate top-50 probable one-step retrosynthetic predictions for product tm: 
Run Retro* and select top-50 candidate reactions to save it as list L2. 𝑉 𝑤 × 𝑆𝐴𝑠𝑐𝑜𝑟𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑥 /10   𝑤 × 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑥 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑥  𝑓𝑜𝑟 𝑥 𝑖𝑛 𝐿   

 

Select the optimal reaction as r, out of L1 and L2, that has the lowest value of V. 
RL = reactants set of r 
PL.append(r) 
return RL, PL 

 

availabilityP(RL): 
“““ Returns 1 only when all the reactants are commercially or in-house available. ””” 
return numpy.prod([int(m in PCL) for m in RL]) 

Table 1. Pseudocode of genRxn() that selects an optimal one-step reaction and returns the 
results of applying the reaction. 
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cases: (1) laboratory studies that seeks to complete a target test by rapidly generating the 
target compound with a small number of reaction steps through active use of 
commercially available compounds, and (2) process development stage that prioritizes 
the reaction using by-products by including them in the list of available compounds. 

 

5. Results and Discussion 
5.1. System implementation of ASICS 
The proposed system was implemented as open source in Python. Selenium and 
BeautifulSoup were used for web crawling; Qt Designer and PyQt5 for GUI; Pandas for 
data pre-processing; Neo4j Python API for knowledge base construction; RDKit for 
cheminformatics. 
5.2. Case study 1: Generation of synthetic path for HENC 
The target material 2-hydroxyethyl 5-norbornene-2-carboxylate (HENC) is mainly used 
as an intermediate in the pharmaceutical and electronic polymer industries. The results of 
the synthetic paths of SciFinder retrosynthesis, ASICS, Retro* (Chen et al 2020) and 
AizynthFinder are shown as shown in Figure 2. Comparison of the results of four systems 
is shown in Table 3. 

 
Figure 2. HENC synthetic paths results of (a) SciFinder retrosynthesis, (b) ASICS, (c) 
Retro* and (d) AizynthFinder. 

ASICS intentionally generated two synthetic paths with different value function scores 
and AizynthFinder generated more number of synthetic paths. SciFinder retrosynthesis 
generated a two-step path. Retro* and ASICS generated one-step paths. AizynthFinder 

With a target compounds tm and list of commercially or in-house available compounds PCL, generate the optimal 
synthetic path PL. 
 

Set weights w1, w2 (real numbers between 0 and 1, default = 1). 
 

PL = applyGenRxn([tm], []) 
print(PL) 
 

applyGenRxn(TL, PL): 
“““ Returns the complete synthetic path for the list of target compounds TL. ””” 
for m in TL: 

RL, PL = genRxn(m, PL) 
if not RL: raise Exception(“No possible path exists.”) 
RL = RL – PCL 
PL = applyGenRxn(RL, PL)  

return PL 

Table 2. Pseudocode of generating the optimal synthetic path. 
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generated one-step and two-step paths. The SciFinder retrosynthesis result had the lowest 
total price of starting materials at $8.4/g using hydroxyethyl acrylate and cyclopentene, 
but it is a two-step path. The Retro* result and ASICS’s result #1 showed the same one-
step path, with hydroxyethyl acrylate, cyclopentadiene and THF being used, and the total 
prices were same. But the ASICS result contains more detailed additional reaction 
information and the cost of ASICS’s result #2 is low. AizynthFinder’s result #1 and 
ASICS’s result #2 are the same, but ASICS with more detailed information. Total price 
of AizynthFinder’s result #2 is slightly lower, but it requires two steps. 
Table 3. Comparison of HENC synthetic paths results. 

 Number of 
reaction steps 

Number of 
starting 
compounds 

Total price of 
starting 
compounds ($/g) 

Yield (%) Synthesis 
procedure 

Published 
year 

SciFinder 
retrosynthesis 

2 2 8.4 97 O - 

Retro* 1 3 65.8 X X X 
AizynthFinder 1, 2 2, 3 46.8, 46 X X X 
ASICS 1, 1 3, 2  65.8, 46.8 85, 72 O 2002, 2000 

5.3. Case study 2: Generation of synthetic path for merimepodib 
Results of synthetic path by ASICS and Retro* are the same in that three-step and five 
starting compounds are used. Both use [(3R)-oxolan-3-yl] carbonochloridate and 3-
(aminomethyl)aniline as starting compounds. But in the case of Retro*, it uses a regulated 
compound (phosgene) and the probability of the first step of retrosynthetic path is low at 
0.3336. However, there is no use of regulated compound in ASICS result, and the first 
step of retrosynthetic path (orange color of Figure 3(b)) is a guaranteed reaction with 
certainty = 1 since it originated from the knowledge graph. ASICS generated a better 
synthetic path by using reported reactions instead of an uncertain reaction with low
probability. 
5.4. Discussion 
When using only retrosynthetic prediction results, e.g., Retro* and AizynthFinder, there 

are disadvantages that detailed information (yield, conditions, etc.) for each reaction in 
synthetic paths cannot be known and the prediction results with low probability may be 
used. ASICS applied with hybrid generative exploration and exploitation explored 

(a) 

(b) 

Figure 3. Merimepodib synthetic path results of (a) Retro* and (b) ASICS. 
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optimal synthetic paths that compensated for these shortcomings. ASICS generated 
optimal synthetic paths, showing less number of steps or similar to the result of SciFinder 
retrosynthesis based on ~112 million reaction data, ~100 times of the ASICS data.  

6. Conclusion 
In this study, we proposed an intelligent support system for reaction path design, 
generating optimal synthetic paths out of hybrid generative exploration and exploitation 
of reaction knowledge base and machine learning-based retrosynthetic predictions. The 
knowledge base, constructed from web crawling of USPTO patents (1976-2016) and 
related chemical data consists of relationships for 1,674,945 reactions and 923,761 
compounds. ASICS generates optimal synthetic paths using lower-cost starting 
compounds by selecting optimal reactions with the lowest score of synthetic reaction 
value function. In addition, exploration and exploitation are adjusted according to the 
user's own preferences to enable optimal search for respective purpose. 

Through case studies on HENC and merimepodib, we compared the results againest 
SciFinder retrosynthesis, AizynthFinder and Retro*, the existing computer-aided 
synthesis planning systems. The ASICS results are similar or use less number of steps to 
the SciFinder retrosynthesis which works based on the reaction data of bigger size. 
Compared with the AizynthFinder and Retro* results using only prediction models, 
ASICS generated optimal synthetic paths consisting of reactions with higher likelihood 
than prediction-only results with uncertainty in reaction likelihood.  
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Abstract
Artificial intelligence has become an attractive science for companies as it allows
effective data analysis, which helps to improve the manufacturing processes. The aim of
this work is to study fluorine losses in a phosphoric acid unit by applying data science
methods to process data. Conductivity was used as an indirect measure of fluorine
losses in each recovery cycle. After a pre-processing of the data, a Gaussian Mixture
Models (GMM) clustering algorithm was applied. Two clusters were found in the data:
one with limited losses, and the other with significant losses. In addition, a ratio (R) was
created from measurement data to identify the level of fluorine loss compared to
fluorine gain during a time step. This ratio R is used in turn to determine whether the
plant generates an acceptable amount of fluorine losses.

Keywords: Clustering, Fluorine losses, Phosphoric acid unit, Data analysis

1. Introduction
In recent years, the interest in data science has risen considerably across industries
worldwide (Diez-Olivan et al., 2019; Lee and Shin, 2020). Indeed, numerous sensors
record real-time data at all stages of the process. When these data are accumulated over
time, they can be used as an input to data science algorithms to model complex,
non-linear processes. In turn, these models help process engineers to better understand
how different variables affect their plant processes.

Clustering is a data science method for analysing data that groups information into
clusters with similar properties or features. Clustering is achieved by many
unsupervised machine learning algorithms that can be used in various way in different
industries. For example, Liu et al. (2018) applied the clustering method in order to
evaluate the energy consumption in different companies. Their study allowed to position
companies according to their level (high or low) of energy consumption. Sancho et al.
(2020) used a clustering method to classify crude oils according to their
physico-chemical properties. Zhang et al. (2017) used clustering to discriminate
between operational status, i.e. the distinction between operating in a transitory regime
and in a permanent regime.

http://dx.doi.org/10.1016/B978-0-323-88506-5.50163-7
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The present article is an application of data science in the chemical industry on a
phosphate production process. More specifically, the study will focus on the fluorine
losses in a concentration unit of phosphoric acid. The goal is to qualify these losses and
to understand their relationship with the process variables. In parallel, a ratio (R) is
defined to quantify the losses and ease the readability and discussion of raw data. This
indicator will be discussed and put in relation with the clustering results. Perspectives
are a better control of the loss of a product that can be valorised and a reduction of the
use of caustic soda necessary to neutralize the acidity generated by the fluorine loss.

This paper is organized as follows. In section 2, the fluorine recovery process in the
considered phosphoric acid concentration plant is described. Then, in section 3, the
methodology is discussed. Section 4 shows the main results that were achieved, and
section 5 concludes and suggests some perspectives.

2. Background
The process of fluorine recovery (Fig.1) is divided into three main steps. First,
phosphoric acid is concentrated via a vacuum evaporation, leading to a liquid product
that is the concentrated phosphoric acid on one hand, and to the emission of a gaseous
effluent that contains fluorine on the other hand. Second, this fluorine is recovered in
liquid phase in an absorption tower. Finally, the remaining amount of fluorine from the
gas phase is transformed into liquid stream rejects by another recovery system. This
final recovery system is itself composed of two main units: the PraySep with a spray at
its entrance is used to recover the fluocilisic acid droplets contained in the gases, and a
condenser is used to condense a maximum of the remaining gas. The fluorine losses are
detected by a conductivity measurement in the condenser guard tank. Moreover, the
amount of recovered fluorine is estimated from a density measurement in the liquid
product of the absorption tower.

Figure 1: Diagram of the phosphoric acid concentration process.

3. Methods
The data used in this study contain all 2019 data, we focus on the most important
variables. Initial data visualization was conducted in JMP® software (SAS Institute)
(Yee et al., 2000). The most important signals, which are density and conductivity, are
plotted over several cycles in Figure 2. As the fluorine recovery happens in cycles of
varying duration (an average of 70 min), the trends of these variables in each cycle was
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of interest. During a typical cycle, density in the fluorine tank increases due to fluorine
recovery, while at the process exit, conductivity in the condenser guard tank increases
due to fluorine losses.

Figure 2: Evolution of the conductivity and the density in the fluorine tank as a function of time.

The figure 2 shows that the absolute values given by the conductivity sensor present a
very high variability. Beyond short-term cycles, long-term variations also appear that
may be due to incorrect calibration of the conductivity meter, or to other parameters
which may affect the conductivity of the mixture in the condensate tank but that are not
measured. For instance, the quality of the sprayed water before the PraySep, or even the
water used to clean the vapour condensation could cause this long-term variation. To get
rid of the long-term trend the conductivity signal has been normalised per cycle. For
each conductivity point of a cycle, the value of the conductivity at the start of that cycle
was subtracted. Consequently, a new standardised signal was constructed, making losses
easier to analyse.

In order to study the behaviour of this conductivity in a more systematic fashion, a
clustering method was applied. Gaussian Mixture Models (GMM) were used to
automatically classify and label the conductivity cycles according to parameters
qualifying their evolution. GMM allow to classify data coming from overlapping
normal distribution. In this case, it was assumed that cycles with few losses, with
medium losses and with many losses all follow a normal distribution and we want to
determine these distributions. Note that, at other times, the conductivity signal is noisier
or does not present a regular pattern. From these observations, we decided to fix the
number of clusters to 3 in the initialisation parameters, plus a specific cluster for
outliers. As the slopes of the conductivity characterise the fluorine losses well, we have
used parameters derived from the slopes as inputs to this algorithm. Specifically,
conductivity slopes have been calculated over 20-minute ranges at the start, the middle
and at the end of each cycle, as well as the slope of the total conductivity cycle.

For the purpose of quantifying fluorine losses, a parameter was needed through which
the losses could be described in a more concrete way according to their importance. The
variables presenting the fluorine loss and gain were identified. The definition of a ratio
R that includes these variables allows to describe the evolution of the losses during a
fluorine recovery cycle. Note that this ratio cannot be used to describe losses that may
be associated to longer term conductivity variations.

The way in which the density evolves during a cycle gives an idea of the productivity
and the efficiency of the fluorine recovery. At the same time, the conductivity behaviour
during the cycle reflects the Fluorine losses that are not recovered by the absorption
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tower and the PraySep. Therefore, to accurately assess the performance of the fluorine
recovery, the density gain and the conductivity loss must be considered in combination.
To solve this problem an indicator that measures this recovery has been constructed. It
is a ratio between the average of the normalised conductivity and the average of the
density gained during a given time. Note that the density signal measures the cumulative
density of the fluorine tank mixture which increases during the fluorine recovery cycle,
while the conductivity gives values considered as instantaneous since the condenser
guard tank is quite small, consequently the residence time of the mixture in this tank is
very low. The ratio is defined as

(1)

This ratio measures how many conductivity points are generated for density points
gained over a given period of time during the fluorine recovery cycle, we tried to
calculate the R with different time slots (10 min, 15 min, and 20 min). Theoretically,
this ratio increases as a function of time during the recovery cycle. At the beginning of
the cycle, the fluorine tank is filled with fresh water. As a result, its recovery capacity is
high. Subsequently, the density of the mixture in the fluorine tank increases over time.
Consequently, its capacity to recover fluorine decreases, which generates more fluorine
losses. As a result, the values of both the numerator and the denominator increase with
time. However, the losses (numerator) increase faster than the gains (denominator), so
that this ratio can be used as an indicator of when the cycle starts being inefficient in
terms of fluorine recovery.

4. Results and discussion
The GMM algorithm was applied with the conductivity slopes as features. The model
groups the data into 4 families, the cluster 0 contains the cycles whose probability of
belonging to the 3 other groups is negligible, therefore, they can be considered as
outliers. As a result of this clustering, the cluster 1 contains 53% of the cycles which
corresponds to stable signals with low slopes (low fluorine losses). The cluster 2
includes disturbed signals with very high slopes and large standard deviations between
the ratios, this group has over 12% of the conductivity cycles. The cluster 3 includes
33% of the cycles, it gathers signals that do not include too much noise and with high
slopes compared to those of the first cluster. In the rest of this study, we will focus on
the 1st and the 3rd clusters to quantify the losses of each of them, and to analyse the
distributions of the production parameters. The 2nd cluster has been discarded because
the signals in this group are too noisy to be interpreted.

Following this, we studied the evolution of the ratio R during the fluorine recovery
cycles. To do so, each cycle has been divided into 3 parts, Then, the R value is
calculated at the start, the middle, and the end of each cycle. The results by using 20min
as time slot appears to be more interesting because several points of the cycle are taken,
which allows a better characterization of the R. These values using periods of 20 minute

1062

Where: : Average of normalized conductivity over a period Δt; : The density of the 

first point of this Δt; : Average of density over this Δt 



Application of data science to study of fluorine losses in phosphate industry

produced the R_20_Start, R_20_Middle, and R_20_End values, respectively. The figure
3 shows the distribution of these ratios for the two clusters.

Figure 3: The histogram distribution of the fluorine loss ratios for the two clusters 1 and 3.

The figure 3 illustrates that there is a progressive shift in the histograms of these ratios
for the two clusters. In fact, the difference in R ratios between the two clusters starts at
the beginning of the cycle, although this difference is relatively small in absolute value
(0.5 on average for the first cluster and 0.94 for the third cluster). One can also observe
that the standard deviation of cluster 3 is much larger than the one of cluster 1. Over
time the difference becomes more and more important until the end of the cycle where
the two clusters become clearly separated with a small overlapping section. At the end
of the cycles, the ratio for the first cluster remains almost stable (1.08 on average), while
the ratio for the third cluster considerably increases, from 0.94 at the start to 3.75 on
average at the end. Also, we notice that 90% of the data of the first cluster have an
R_20_End less than 3. On the other hand, for cluster 3, 50% of the data are higher than
this value. So, the value R_20_End=3 can be used as a limit value which indicates high
fluorine losses.

Once these observations have been made, relationships with process variables can be
analysed. The important variables that can influence the fluorine recovery are weak
phosphoric acid (WPA) feed rate, circulator amperage, steam flow, vacuum, and flow
rate of the spray water before the PraySep. The behaviours of these variables have been
studied but they do not show a very clear difference depending on whether a data point
belongs to one cluster or to the other. This could be explained by the continuous nature
of the slopes, by the noise on the conductivity signal and by the overlapping nature of
the clusters. Therefore, this prevents a clear distinction between the two clusters in their
respective process operating conditions. Nevertheless, it has been remarked that the
flow rate of spray water did not change between the two clusters, whereas there is a
difference for the steam flow rate. It is possible that the spray water flow rate is not
adapted to the productivity of the unit.

To retrieve more information about the influence of process variables, it was decided to
work on a sample that encompasses the two extreme types of conductivity cycles.
Cycles with intermediate conductivity slope were manually removed from the data set
in order to strengthen the differences between the two clusters. The resulting sample is
composed of 253 cycles, of which 35% belong to the 1st cluster and 65% to the 3rd

cluster. The distribution of R ratios for this sample is similar to the results in Figure 3.
We notice that in this case all R_20_End values for the first cluster are lower than 3 and
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more than 70% of the cluster 3 R_20_End values are higher than 3. This further
confirms the value of R_20_End=3 as a threshold indicator of high fluorine losses.

As a second step, the process operating conditions have been studied for this sample, in
the same way as it was done for the whole database. As a result, the difference between
the two clusters appears more clearly when doing the study on this sample. The
distribution of the WPA flow, the steam flow, the vacuum pressure, and pump amperage
show that cycles belonging to the 1st cluster correspond to low values of these process
variables. In contrast, cycles belonging to the 3rd cluster have higher parameter values.
This confirms the important effect of the process load on the conductivity behavior
during a recovery cycle. Indeed, when the flow rate of phosphoric acid to be treated is
increased (WPA flow), the operating conditions are being pushed towards the process
limits (for instance, more steam is required for the evaporation), but this seems to be
insufficient to reach similar Fluor recovery performances. Nevertheless, all these
variables present a large zone where the two clusters overlap, which confirms that the
process load alone does not explain all the fluorine losses.

5. Conclusion
To conclude, this study was conducted to study fluorine recovery in a phosphoric acid
concentration plant. In order to better characterize the losses during the recovery cycles,
a ratio R has been defined which considers the gain (density increase in the recovery
vessel) and the losses (conductivity increase in the liquid effluent waste). Since
conductivity evolves in different ways, a clustering method using GMM algorithm has
been used to classify the data according to low or high fluorine recovery performance.
Following this methodology, it has been found that from a value of R=3 there are high
fluorine losses. So, this ratio can be used as an indicator of fluorine losses.

Finally, it should be mentioned that the same procedure discussed previously was
applied to another fluorine recovery unit located in the same phosphate plant. As a
result, the same conclusions were reached, which means that this method can be used
for any fluorine recovery plant in order to study the fluorine losses. To go beyond this
study, a monitoring system that triggers an alert for high fluorine losses when the ratio R
is higher than a given value (in this case when R>3) will be studied. In addition, and to
clearly identify the causes that influence the behaviour of fluorine losses, a detailed
experiment on the flow rate and quality of the spray water injected to the PraySep unit
will be carried out.
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Abstract 
The wide use of detailed simulations for complex systems has led to a growing interest 
for methods that can optimize simulation-dependent problems using data, without explicit 
equations or derivatives. Due to the lack of derivatives and the dependence on sampling, 
simulation-based optimization algorithms lack convergence guarantees and often require 
a significant number of samples to identify an optimal solution with consistency. 
Moreover, the presence of black-box constraints is an open challenge because it further 
complicates sampling and identification of unknown feasible spaces. Previously, we have 
introduced the Data-Driven Spatial Branch-and-Bound algorithm for box constrained 
problems, which employs data-driven convex underestimators, finds upper and lower 
bounds on the optimal objective value and progressively prunes suboptimal subspaces 
until convergence. In this work, we present recent advances of this framework for 
handling simulation-based and equation-based constraints. We demonstrate the 
performance of these features with respect to convergence and sampling requirements 
through benchmark constrained optimization problems.  

Keywords: black-box optimization, simulation-optimization, surrogate modelling. 

1. Introduction 
An increasing amount of optimization applications in research and industry today require 
the embedding of various forms of data from simulations of various fidelity and/or scale.   
Such problems are challenging due to the inability to directly use efficient deterministic 
optimization solvers that require equation-based formulations. As a result, optimization 
of such problems is often referred to as “black-box” because it relies on input-output data. 
Many recent contributions from the engineering literature aim to apply and improve the 
performance of black-box optimization techniques for a wide variety of applications 
(Bhosekar et al., 2018). Optimization with embedded simulations can be performed with 
purely sampling-based algorithms, such as direct-search methods, genetic algorithms, 
particle swarm optimization, and many more that are reviewed in (Rios and Sahinidis, 
2013, Boukouvala et al., 2016). Alternatively, a different class of methods employs 
approximations of data to perform optimization, and these are called model-based or 
surrogate-based techniques. Such techniques employ novel mechanisms for data 
collection, fitting of a surrogate model to represent the data, which then allows one to use 
equation-based optimization solvers. In order to avoid excessive sampling, most 
techniques in the literature use a small initial set of samples and subsequently adaptively 
“fit – optimize – resample” the space until their convergence criteria are met. This 
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adaptive scheme is always based on techniques that are designed to balance “exploration” 
(i.e., searching the feasible space just enough to minimize probability of missing the 
optimal solution), and “exploitation” (i.e., focusing sampling in promising optimal 
regions where surrogate models need to be accurate). Recent work focuses on the 
identification and comparison of different types of surrogate models and their 
performance for optimization (Garud et al., 2019).  

Despite recent advances in the simulation-based optimization literature, several open 
challenges still exist. First, many of these methods suffer from the curse-of-
dimensionality, since sampling requirements increase when decision-variables increase. 
Second, when a surrogate model is used, there are open challenges when it comes to the 
selection of a surrogate model that is accurate and has a tractable mathematical 
representation so that it can in turn be optimized (ideally globally). Specifically, some 
popular surrogate models result to equations with nonconvex terms, and the number of 
terms and variables rapidly increase with the number of dimensions, model architecture, 
and even with number of data points. Recent work on global optimization of Neural 
Networks as surrogate models are tackling this challenge (Schweidtmann and Mitsos, 
2019). Third, we have previously shown (Zhai and Boukouvala, 2020) that surrogate 
model selection and training leads to significant variation in the optimal results, because 
if a different surrogate model is used, or different training data are used, many algorithms 
provide a different result. This inconsistency in performance is highly undesirable for any 
optimization algorithm. Last, earlier work in black-box optimization led to algorithms 
that treat the problem as a pure “black-box”, often without the ability to consider 
constraints. However, it is important to treat such problems as “grey-boxes”, which  
allows one to mix known equations that are typically constraints together with an 
objective and constraints that are reliant on the simulation.  

In our previous work, we have proposed an approach that aims to tackle some of the open 
challenges mentioned above (Zhai and Boukouvala, 2020). Specifically, instead of 
relying on a known type of surrogate model, we develop convex quadratic 
underestimators of data. The data may come from high-fidelity simulations, or multiple 
low fidelity surrogate models. The reason for this approach is to avoid several of the 
disadvantages of surrogate modelling, such as: (a) variation in parameters and model type 
with slight changes in data; (b) computational expense of training and selection of best 
model out of many; and (c) intractability of complex surrogate models when it comes to 
their global optimization.  Moreover, our approach utilizes a spatial branch-and-bound 
(b&b) framework to search the space and focus sampling in promising spaces, while 
pruning spaces that are not optimal.  This strategy allows us to incorporate more rigorous 
convergence criteria, such as absolute or relative ε-optimality gap (as opposed to reaching 
a maximum sampling or CPU limit). This Data-Driven Spatial Branch-and-Bound (DD-
SBB) algorithm, also provides estimates of upper and lower bounds on the optimum at 
any intermediate stopping point. We have found that this approach is promising and 
obtains optimal solutions with few sampling points, however, it requires a large amount 
of samples to close the optimality gap.  

In this work, we propose techniques for extending the capabilities of the DD-SBB 
approach in terms of constraints handling. We consider two different forms of constraints: 
(1) simulation-based constraints (i.e., constraints that are unknown in equation format but 
are embedded within the simulation) and, (2) equation-based constraints (i.e., constraints 
that are explicitly known algebraically as a function of decision variables). The type of 
formulations we aim to solve in this work is shown in Problem 1 (P1), where the objective 
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function 𝑓  and constraints 𝑔  are embedded within a simulation and thus we do not have 
explicit equations for them. Constraints 𝑔  are available in equation format. We only 
consider continuous variables that are bounded. 

(P1) 𝑓 𝑥   𝑠. 𝑡.    𝑔 𝑥 ≤ 0, 𝑠 = 1, . . , 𝑆 𝑔 𝑥 ≤ 0,    𝑘 = 1, … , 𝐾 𝑥 ≤ 𝑥 ≤ 𝑥 , 𝑥 ∈ 𝑅  
We implement and test different branching and bounds tightening techniques and test this 
extended capability of the algorithm through a set of benchmark problems. Our approach 
does not add computational cost to the algorithm because it does not require the fitting of 
surrogate models for the simulation-based constraints. Concepts from decision-tree 
techniques are explored for branching the search space cleverly into “feasible” and 
“infeasible” nodes and the performance of different branching rules are compared with 
respect to efficiency and convergence.   

2. Methods 
2.1. Data-Driven Spatial Branch-and-Bound Framework 

The DD-SBB framework starts with initial sampling of the entire box-constrained space 
using Latin Hypercube sampling. Based on these high-fidelity samples from the 
simulation, a low-fidelity surrogate model can be fit, but this model is only used for 
ranking the importance of variables and for generation of large amounts of low-fidelity 
data, to be used to generate the convex underestimators. Convex underestimators are 
found by solving P2, where M is the total number of samples, and 𝑎, 𝑏, 𝑐 are the 
parameters of the convex quadratic function that underestimates all of the obtained data. 
In previous work we have reported results on the validity of these bounds as more data is 
included from high- and low- fidelity samples (Zhai and Boukouvala, 2020). 
   𝑃2   𝑓 𝑥 − 𝑓 𝑥   𝑠. 𝑡.   𝑓 𝑥 − 𝑓 𝑥 ≥ 0    ∀ 𝑖 = 1 𝑡𝑜 𝑀 𝑓 𝑥 = 𝑎𝑥 + 𝑏𝑥 + 𝑐   ∀ 𝑖 = 1 𝑡𝑜 M 𝑎 ≥ 0 
For each space or node of the b&b tree, a lower bound (LB) is found through minimization 
of the convex underestimator and an upper bound (UB) is the best high-fidelity sample 
collected. The algorithm then proceeds with branching the space with a selected 
branching rule, resampling within subspaces and updating the LB and UB of the problem. 
The branching heuristics originally implemented are equal bisection with respect to 
branch location.  When deciding on which variable to branch on first, the algorithm has 
options prioritizing the longest side or prioritizing the most important variable with 
respect to the objective. The presence of constraints requires several modifications to this 
framework, including novel branching and pruning rules, which will be presented in the 
next section.  
2.2. Branching rules in the presence of constraints  

Branch rules are essential to a branch-and-bound algorithm. Besides equal bisection on 
the longest edge and equal bisection with customized variable selection (Zhai and 
Boukouvala, 2018, 2020), we implemented two other branch rules targeted to handle 
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constraints. In the presence of constraints, samples are labelled as 0 (infeasible) and 1 
(feasible). The proposed branch rules are designed to separate feasible from infeasible 
regions, with the hypothesis that this will help with faster pruning of infeasible regions. 
One strategy is to use a weighted Gini impurity score commonly used in classification 
and regression trees (Kotsiantis, 2013). The Gini impurity score (Eq. (1)) is a measure of 
the tendency that a randomly chosen sample would be misclassified in a node.  𝐺 =  ∑ 𝑝 𝑙𝑎𝑏𝑒𝑙 = 𝑖 ∗ 1 − 𝑝 𝑙𝑎𝑏𝑒𝑙 = 𝑖  ∀ 𝑖 = 0, 1                                      (1) 
 
where 𝑝 𝑙𝑎𝑏𝑒𝑙 = 𝑖  represents the probability of a randomly chosen sample with label 𝑖 
in the node to be chosen. To select the best location to cut, we minimize the weighted 
Gini impurity score (Eq.  (2)), which minimizes the possibility of misclassification if a 
cut is generated at 𝑥  on edge 𝑑.  
 𝑘, 𝑑 = 𝑝 𝑥 ≤ 𝑥 , ∗ 𝐺 , + 𝑝 𝑥 ≥ 𝑥 , ∗ 𝐺 ,           (2) 
where 𝑘 denotes 𝑘  equidistant location on edge 𝑑 and 𝑝 𝑥 ≤ 𝑥 ,  is the possibility 
of a randomly chosen point lies in the potential subspace.  
The second strategy is a customized purity score (Eq. (3)) that measures the difference in 
the fraction of infeasible samples and fraction of feasible samples in each subspace.  
 𝑃𝑢𝑟𝑖𝑡𝑦 , = | , − , |                               (3) 

If one subspace contains samples with only one label, the purity score will be 1. 
Otherwise, the purity score is between 0 and 1. To select the best location, we maximize 
the purity score (Eq. (4)) to separate purely feasible and infeasible spaces.  
 𝑘, 𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥 , | , − , |                            (4) 

where 𝑘 denotes 𝑘  equidistant location on edge 𝑑. Note that if one node contains only 
samples with one label, equal bisection on longest edge will be used.   

 

Figure . Motivating example formulation, algorithm performance and results. Red 
points are infeasible, blue points are feasible.  
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1.1. Pruning in the presence of constraints  

Pruning a search node when the node appears to be less promising to find the global 
optimum helps the algorithm converge faster. Generally, a node is pruned when the local 
lower bound is higher than the global upper bound. In the presence of constraints, we 
implemented additional rules to prune nodes that are infeasible. When the constraints are 
known, we perform feasibility-based bound tightening at the root node and at each active 
node. Specifically, we solve a constraint-violation minimization problem to check the 
feasibility of each node, and if a subspace is found to be infeasible, it is pruned. When the 
constraints are unknown, node pruning is less straightforward because decisions are made 
depending on the feasibility labels on the samples instead of explicit mathematical 
constraints. To reduce the chance of pruning feasible regions, backtracking techniques 
are incorporated. When the algorithm encounters a node that contains only infeasible 
samples, it backtracks the parent and grandparent nodes. Only if both the parent and 
grandparent nodes contain purely infeasible samples, will the node be pruned. By doing 
so, we avoid pruning nodes prematurely and allow collection of extra samples in that 
node, to increase the confidence of pruning the node.  

2. Results 
2.1. Motivating Example 

Here we present results on a simple 2-d example with unknown objective function that 
enables us to highlight the algorithm performance. In Figure 1, we show the formulation 
of the problem, as well as the performance of the algorithm when the formulation is purely 
black-box (all constraints are simulation-based), grey-box (first constraint is known, 
second is unknown), to glass-box (all constraints are known). As expected, as more 
constraints become known, the algorithm converges to the global optimum with less 
samples. In addition, we observe that the additional cost of feasibility tightening does not 
significantly increase the cost of the algorithm. On the contrary, due to faster 
convergence, the algorithm converges faster with respect to run-time when constraints 
are present. In this motivating example, we keep the pruning and branching rule fixed to 
equal bisection with branching on most important variable. A comparison of different 
heuristics is performed in the next section. 
 
2.2. Algorithm benchmarking 

In order to test the performance of different branching rules, we test the algorithm on a 
larger set of benchmark problems. These are 42 problems from the MINLPlib, with 2-5 
dimensions and no limit on the number of constraints. The algorithm terminates if any of 
the following criteria are met: 1) the absolute gap between the lower and the upper bound 
is smaller than 0.05, 2) the relative gap is smaller than 0.001, 3) the longest edge in a 
search area is smaller than 0.05, 4) the number of samples reaches 200,000 and 5) CPU 
reaches 5 hr. Results are reported for the two extreme cases, namely the black-box case 
where no constraints are known and the glass-box case where all constraints are known 
(Figure 2). Results show that the algorithm can locate the global optimum for 80% of the 
problems in the black-box case, and more than 85% of the problems in the glass-box case. 
Moreover, the algorithm converges with less samples when constraints are explicitly 
known. Results show that the novel branching rules, namely purity score and Gini 
impurity score, proposed in this work expedite convergence (i.e., more problems are 
solved with less number of samples). However, overall, the equal-bisection branching 
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rule solves more problems if more samples can be collected. This implies that these 
decision-tree rules can expedite pruning, however, they are less conservative and thus 
increase the chance of removing good optimal solutions.  

3. Conclusions  
In this work we presented an extension of our algorithm for data-driven branch-and-
bound for constraints handling. We propose and test several branching and pruning rules 
in the presence of simulation-based constraints that are based on concepts proposed in the 
literature of decision-trees. In order to treat equation-based constraints, we employ 
feasibility-based bounds tightening techniques. Results show that it is important to use 
any known constraints directly, because this expedites algorithm convergence and overall 
solves more problems without adding computational cost due to reduced sampling 
requirements. Moreover, branching when using decision-tree heuristics expedites 
convergence of the algorithm, however, in certain cases prunes valuable solution spaces. 
As a result, when sampling is not a significant burden, the equal-bisection approach is a 
more conservative and reliable heuristic.  
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Abstract
During the last decade, the hydrate-based CO2 capture (HBCC) process has been
approved as a promising alternative. The HBCC offers several attractive advantages
such as the mild operating pressure and temperature, the ease of regeneration of CO2,
and its low energy consumption. The HBCC is at its infancy stage where the numerical
methods play a key role in its research and development. This is to support the
experimental research in terms of the model-based experiment design and process
analysis/optimisation. In this view, HBCC modelling and simulation have been focused
by researchers worldwide. Most of the published models are restricted to the processes
at the particle scale that are enormously beneficial for a fundamental understanding of
the process science. Nevertheless, a challenging shortfall currently exists for reactor
scale models given the process scale research, and development objectives require
models at the relevant scale. Accordingly, the reactor level models that may be used in
a comprehensive process are required. Ideally, a multi-scale model allows studying both
science and technology. This paper presents an HBCC process model at the reactor
level for batch and semi-batch operations. The scaled-up model is capable of simulating
the CO2 dissolution, and growth phases. The model evaluates the hydrate layer
boundary and estimates the total gas uptake in batch semi-batch reactors. A modified
version of the model made it possible to account. The present study establishes a
groundwork for the large-scale application of the HBCC.

Keywords: Gas hydrates, CO2 capture, reactor scale modelling, kinetic model

1. Introduction
During the last decade, there has been growing interest in deploying hydrate-based CO2
capture (HBCC) due to its moderate operating temperature and pressure, low energy
consumption and easy regeneration of the aqueous solution (Dashti and Lou, 2018,
Dashti et al., 2015). For full commercialisation, the process computation tools are
crucial. To model the HBCC at reactor level, it is essential to achieve fundamental
insights at micro and mesoscales. This is vital for computing the kinetics of
crystallisation, mass/heat transfer rates. Nucleation and growth are the two interlinked
stages involved in the hydrate formation process, making the model development at
particle level challenging. Despite a vast amount of research conducted, there is the
hydrate kinetics and routes yet to be well understood, revealing the importance of
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micro-scale studies. The commercialisation challenges, however, need reactor scale
studies and analysis tools.
In a recent study, the modelling of CO2 hydration growth and nucleation was conducted
through the utilisation of the shrinking core method (SCM) (Dashti et al., 2019; Dashti
et al., 2019). The models presented in the mentioned works were capable of capturing
the conversion trajectory and nucleation phase behaviour over the process time. The
boundary condition used in these works was assumed based on the reactor conditions
averaged. This may affect the model results due to the non-homogeneity that normally
exists in a reactor. This is, in particular, crucial to local temperature and concentration
are used as boundary conditions of single particles. Ideally, a CFD model should be
employed to capture the spatiotemporal data in a mixed reactor while the particle model
is simultaneously deployed. This will be computationally time-consuming due to the
giant particle number and the tremendous data exchange between the scales. For a
hydrate reactor with no agitator, an applied model does not necessarily need such
complexity and computation load. Traditionally, HBCC processes utilised stirred tank
reactors as it thought that the mixing provides improved mass transfer kinetics;
however, the reactor faces problems of agglomeration of hydrate crystals and the
reduced coefficients of mass transfer. It is unfavourable for significant scale-up due to
the high stirrer-driving power consumption (Mori, Y. H, 2015). These lead to the
application of unstirred reactors with gas hydrate promotors (Dashti et al., 2015,
Veluswamy et al., 2018). The packed beds of sand, silica or pulverised coal have been
used in some studies (Linga and Clarke, 2017). This paper presents a computationally,
fast and fundamentally efficient model for hydrator. This is of interest to couple the
particle scale and the reactor scale models. This paper establishes a model to describe
the HBCC process during batch and semi-batch operations at the reactor level. Initially,
three models, including transient mass transfer, transient heat transfer and CO2 hydrate
formation (Improved model) models for the batch operation, have been developed
further, the models adopted for the semi-batch operation. Finally, a scale-up reactor
model which is capable of simulating the CO2 dissolution, nucleation, and growth
phases has been developed.

2. Methodology
2.1. Basic and improved model
Gas hydrate formation consists of two main steps: gas dissolution and gas hydrate
formation. First, a basic model for CO2 dissociation has been developed and then this
model serves as a reference to the improved model. The basic model for the batch
reactor considers transfer rates of CO2 diffusion in water by first establishing the
rate-determining mechanism between the transport phenomena, mass transfer and heat
transfer of CO2 in the stationary water medium. The controlling mechanism will then be
utilised as the core of the model to describe the dissolution of CO2 (A) through the
reactor. The concentration and the temperatures are time (t) and location (x) dependent.
Only mass diffusion (D) and conductive heat transfer (k ) are considered in the∇𝑇
stationary water. This is a justifiable assumption due to the low temperature and
no-agitating system. Table 1 presents the governing equations for basic and improved
models. The models’ parameters are presented in Table 2.
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Figure 1: Reactor schematic for CO2 hydrate operation
Table 1. Model equations and initial and boundary conditions (BC and IC)
Model Equations BC and IC

Basic Model ∂𝐶
𝐴

∂𝑡 = 𝐷
∂2𝐶

𝐴

∂𝑥2

∂𝐶
𝐴

∂𝑡 = 𝐷
∂2𝐶

𝐴

∂𝑥2

CA (0, x) = 0; CA (t, 0) = CAo; dCA (t, L) = 0

,∂𝑇
∂𝑡 = α ∂2𝑇

∂𝑥2 α = 𝑘
ρ𝐶

𝑝

T(0, x) = T0; T(t, 0) = To; dT(t, L) = 0

Improved
model

∂𝐶
𝐴

∂𝑡 = 𝐷
∂2𝐶

𝐴

∂𝑥2 − 𝑘
0
𝑒

−𝐸𝑎
𝑅𝑇( ) • 𝐶

𝐴
• 𝑆

𝑉

∂𝑇
∂𝑡 = α

∂2𝐶
𝐴

∂𝑥2 + 𝑘
0
𝑒

( −𝐸𝑎
𝑅𝑇 )

• 𝐶
𝐴

• 𝑆
𝑉 • ∆𝐻

ρ𝐶
𝑝

CA (0, x) = 0; CA (t, 0) = CAo; dCA (t, L) = 0
T(0, x) = T0; T(t, 0) = To; dT(t, L) = 0

Table 2. Parameters used for the semi-batch process of CO2 hydrate formation
Parameters Value

D (m2/h) 6.912×10-6 (Cussler, E. L. ,1997)
(m2/h)α 5.24×10-4

Cp (J/mol.K) 4181
𝝆 (kg/m3) 997
k0 (m/h) 2.05×1069 (Bergeron and Servio, 2008)
Ea (J/mol) 387645.5 (Bergeron and Servio, 2008)
R (J/mol.K) 8.314 (Jensen, 2003)

(J/mol)∆𝐻 66800 (Claudia, 2013)

2.2. Batch and semi-batch operations
A reactor with a constant volume of water, V, and water surface area, S, that is initially
maintained at 25 ℃ is assumed (Figure 1). In semi-batch operation, a pure CO2 (1 bar
and 5℃) is continuously supplied to apply constant CO2 pressure at the gas-water
interface. Therefore CO2, concertation estimated based ideal gas law, has been used as a
boundary condition. For the batch operation, As CO2 diffuses through the water to be
consumed in hydration over time, its concentration in gas bulk decreases. A
time-dependent concentration must be considered at the top boundary. A mathematical
expression Eq. (1) was derived from (Raizi, 1997) and (Zarghami, 2017) to calculate the
local dynamic concentration, C(t,x). This reactor model uses a stationary non-agitated
water volume; therefore, the mathematical expression is suitable for this model. The
equation was simplified for the concentration of gas at the top boundary only, i.e.,
C(0,t).

,𝐶 0, 𝑡( ) = 𝑃
𝐻 𝑒𝑥𝑝 𝑡

η2𝐷( ) 𝑒𝑟𝑓𝑐 𝑡
η 𝐷( ),  η = 𝑉𝐻

𝐷𝐴𝑅𝑇
𝐶 0, 0( ) = 𝑃

𝐻 (1)

in which P is pressure, H is Henry’s law constant and R is the molar gas constant.
2.3. Reactor scale-up
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With a fully functional batch operation version of the improved model, the reactor
scale-up can be attempted to evaluate the profiles and the gas uptake in the hydrate layer
of the reactor. In the scaled-up reactor, the reactor length is scaled up from 0.12m to 1m.
The theoretical volume of the reactor is 1000m3 and Area is 1000m2. The term for
Molecular Mass, M of CO2 is introduced to equations for temperature profile in the CO2
hydrate formation model and Eq. (2), to indicate the change from molar concentration to
mass concentration:

,∂𝑇
∂𝑡 = α

∂2𝐶
𝐴

∂𝑥2 + 𝑘
0
𝑒

( −𝐸𝑎
𝑅𝑇 )

• 𝐶
𝐴

• 𝑆
𝑉 • ∆𝐻

ρ𝐶
𝑝
𝑀 η = 𝑉𝐻𝑀

𝐷𝐴𝑅𝑇
(2)

3. Results and Discussions
The models have been solved using MATLAB ‘pdepe’ solver. The basis model PDEs
were numerically solved individually. The improved model PDEs were solved
simultaneously to account for the coupled dependence of both concentration and
temperature. The reactor length scale and timescale were used; 0 ≤ x ≤ 0.12m and 0 ≤ t
≤ 80hr. The dynamic concentration and temperature profiles in the reactor are presented
in Figure 2a and 2b. Note that independent mass and heat transfers are assumed.

(a) (b)
Figure 2. Results of the concentration and temperature changes in the reactor versus
time for mass transfer only (2a) and heat transfer only (2b) models

The temperature graph (2b) indicates a faster rate of change over time from 0 to
approximately 7 hrs for each length and reaches a steady-state (dy/dt = 0) at an earlier
time than the concentration in figure 2a. For example, at 0.1m, the concentration has yet
to reach a steady-state (indicated by a straight line parallel to the x-axis) but only begins
to approach steady-state at around 30-40 hrs. However, at the same point, the
temperature has already reached a steady state at a temperature of about 6.7 oC. As a
result, this shows that the transient mass transfer process is much slower than the
transient heat transfer process and therefore, this mechanism can be considered the
rate-controlling mechanism for the CO2 dissolution process into the water. This is due to
higher mass transfer resistances involved with the transport process of CO2 in the water
body over the transport of heat. In a further analysis in this study, the basic model
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which uses the only the transient mass transfer compared with the improved model that
combines the effects of transient mass transfer, transient heat transfer and the hydrate
formation thermodynamics/kinetics (Figure 3a). The basic model is denoted as “M”
data line, and the improved model is denoted as the “MHR” data line. The results of this
analysis in conjunction with the temperature profile (Figure 3b) in the improved model
(MHR) can be used to predict the metastable and stable region for where the hydrate
phase can occur within the reactor profile.
It can be seen from Figure 3b that between the top boundary at 0m and 0.03m, the
temperature maintains a constant profile of 5-10℃. Therefore, 0.03m is the maximum
length under these parameters for hydrate nucleation and growth to occur. That is 25%
of the reactor length. Also, at the maximum length, the concentration is at 3.126 mol/m3,

and with the top boundary being 21.917mol/m3, this means that about 86% of the CO2
diffused into the water remains in the stable region for hydrate growth for the improved
“MHR” model. Compared to the basic model “M”, at 0.03m, the concentration is at
8.043 mol/m3. This indicates about 63% of the CO2 diffused remained in the hydrate
stable region.
Further, beyond the maximum of 0.03m for the stable region, the “M” data line
continues to maintain a steady linear correlation to approximately 0.04-0.045m. This
shows that even after passing through the stable region, there is no change in the
concentration gradient between 0 and 0.4m (meaning a constant driving force for
incremental changes in x). There is no interference for the transport of CO2 in the basic
model other than the bulk of water itself. In contrast, for the improved “MHR” model
after 0.03m, there is a sharp change in the curve. This can be explained as the remaining
14% of CO2 that diffused beyond the region for hydrate growth has less
interference/resistance in the body of the water. This shows that between 0-0.03m, there
was an increased constant transfer resistance caused by hydrate growth formation.
Figure 3 show that the improved model is indeed superior to the basic model for the
prediction hydrate even with the appropriate temperature considerations. Furthermore, it
is possible to use this type of analysis to predict the stable phase for growth and the
proportion of CO2 within the phase.
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(a) (b)
Figure 3- A comparison between the basic model (M) and improved model (MHR) in
terms of concentration (3a) and temperature profile in the improved model (MHR) (3b)

The results of the scale-up reactor model for temperature and the concentration changes
are presented in Figure 4. As can be seen in Figure 4a, the temperature profile does not
reach steady-state after 80hr. This is due to the change in the length from 0.12 to 1m, so
the temperature profile has yet to stabilise. Increasing the time for the process will
ultimately push the temperature towards a steady-state profile. Also, because of the
transience of the temperature profile in this time range, it means that at 10℃, the stable
region for hydrate growth will continue to increase over time until a steady state is
reached for that temperature. For example, at 10hr, the stable region barrier for 10℃ is
at 0.0325m. At 40hr, the barrier is at 0.065m, and at 80hr, the barrier is at 0.095m.
As can be seen in Figure 4b, the reactor model can be used to estimate the amount of
CO2 gas uptake in the hydrate layer. The maximum concentration uptake in the hydrate
layer is approximately 380 mol/m3. The volume of the reactor has been stated as
1000m3. Therefore, about 380 kmol (or 16.7 tonnes) of CO2 are consumed in the
hydrate layer after 80hr. 16.7 tonnes per 80hr is much lower than what industry wants
for CO2 capture (typically in the 100’s of tons per day). Therefore, in order to increase
the rate and capacity of CO2, considerations about increasing the pressure of the system
and the total volume of the reactor to accommodate for higher gas uptake in the hydrate
layer. However, researchers seek to find ways to reduce the operating pressure as it
entails high costs. This reactor model can be presented as a resource or guideline for
anticipating the maximum capacity of gas uptake for set parameters.

(a) (b)
Figure 4- Temperature profile in the scale-up reactor model (4a) Concentration uptake
in the hydrate layer in the scale-up reactor model at depth of 1m (4b)

1078



Reactor scale modelling of gas hydrate-based CO2 capture (HBCC) process

4. Conclusions
Two models were developed for the HBCC process at the reactors scale. First, a basic
model was derived, ignoring the reaction rate to estimate mass and heat transfer roles in
the dissolution phase. It was then improved, taking both dissolution and hydrate
formation into account. The results indicated that mass transfer was the rate-controlling
mechanism as reactor temperature reach a steady value in a shorter time. The
comparison between the two models revealed that the consumption/reaction term has a
significant influence on the reactor profiles. It was shown that the improved model is
more capable in predicting realistic HBCC reactor. The model was applied for batch
operation by using a time-dependant boundary condition for the bulk gas. Finally, the
model was scaled-up utilising all the improvements and knowledge from the previous
case analysis. With the set parameters such as volume, time and length, this model can
be utilised to evaluate the position of the hydrate layer boundary and estimate the total
gas uptake in the system.
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Abstract
This paper presents SMITH, the working prototype of a new code which significantly
improves the accuracy of thermodynamic diagrams thanks to the highly performant nu-
merical technologies including differential homotopy and automatic differentiation.

Keywords: distillation diagrams, univolatility curves, differential homotopy, automatic
differentiation

1. Introduction

Extraction of singular compounds from multi-component mixtures through the separa-
tion process is the most commonly used technology in chemical, pharmaceutical and
food-processing industries (Petlyuk, 2004). Analysis of the thermodynamic diagrams de-
scribing the fundamental physical properties of complex mixtures is a crucial step in the
conceptual design of industrial process involving separation technologies. In very many
cases the topology of these diagrams is non-trivial even for ternary mixtures. In particu-
lar, this concerns the computation of certain characteristic curves like univolatity curves,
distillation profiles, the phase separation curves, the pinch-point curves, etc. Different
types of diagrams are accessible via professional packages, but often they are incomplete
or lack in precision, as in the example shown in Fig. 1 about univolatility curves used
when designing extractive distillation process.

The insufficiency of the professional softwares creates serious obstacles for the techno-
logical transfer from academic research to industrial implementation, so the search of new
algorithmic solutions to improve computational efficiency are important for the process
engineering community.

The major part of existing algorithms to compute characteristic curves of thermodynamic
diagrams use the Newton-Raphson like procedures over the composition space. This im-
plies an important computational effort to access the acceptable precision and requires
an a-priori knowledge of the topology of the diagram in order to provide a good ini-
tial approximation. On the other hand, algorithms based on the differential homotopy
principle provide a very promising alternative to the Newton-Raphson method for path
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Figure 1: Hexane (1) - Benzene (2) - Hexafluorobenzene (3) at 1.2 atm (generalized NRTL). Univolatility
curves computed by ASPEN Plus v.8 ®, ResidueCurve®, and Mathematica 9®. Here αi j are the univolatility
curves of i and j compounds, Azi j are binary azeotropes. Both professional codes fail to identify the pair of
binary azeotropes Az23, ASPEN Plus® ignores the azeotrope-free branch of the curve α23. ResidueCurve® lacks
in precision.

following computations (Allgower and Georg, 2003; Caillau et al., 2012). In process en-
gineering, this approach was proposed by several authors to compute distillation profiles,
pinch point curves, univolatilility curves (Poellmann and Blass, 1994; Feldbab, 2012; Ski-
borowski et al., 2016) and phase separation boundaries (Deiters, 2016). Although these
codes showed excellent results in comparison with the Newton-Raphson based analogs,
still they form a marginal branch in the process engineering computing. The main reason
of this poor success is the access to the derivatives of the thermodynamic models required
by these methods. Indeed, using analytical expressions of the model and its derivatives
significantly increase precision and numerical stability of computations, but their imple-
mentation is technically difficult and may form an additional source of error.

In this paper we present SMITH (Separation of Mixtures In Thermodynamics by Homo-
topy) (SMITH, 2020), a working prototype of a new code allowing highly precise and
efficient computation of different types of curves of ternary diagrams. In contrast with
codes cited above SMITH realizes the differential homotopy algorithm in coupling with
automatic differentiation of the thermodynamic models. Such a coupling allows to easily
implement a large class of thermodynamic models, and access the high numerical per-
formance with less computational effort. The current version of SMITH is limited to
compute the univolatility curves of ternary mixtures, without an a-priory knowedge of the
topological structure of the underlying VLE diagram and independently of the precence
of azeotropes. The same computational approach can be developed for many other types
of thermodynamic diagrams.

In Section 2 we briefly recall the geometric model of the univolatility curves introduced
in Shcherbakova et al. (2017). Section 3 describes the main features of the SMITH code.
The paper is concluded with a series of illustration examples.

2. Geometrical model of univolatility curves

Univolatility curves αi j are the sets of points on the ternary residue curve map (RCM)
where the pair of compounds i and j have the same relative volatility. They are used
as the feasibility indicators in the distillation process design. In extractive distillation,
the placement and the terminal points of the univolatility curve on the composition tri-
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angle edges determine the order of the withdrawn products as well as the proper column
configuration (Gerbaud and Rodriguez-Donis, 2014).

A ternary RCM may contain up to three families of univolatility curves according by their
respective index, even in zeotropic case. The topology of univolatility curves is intrinsi-
cally related to the topology of the underlying RCM (Kiva et al., 2003; Shcherbakova
et al., 2017). Indeed, three univolatility curves of different index intersect at ternary
azeotropic points, and each binary azeotrope gives rise to a univolatility curve. Multiple
binary and ternary azeotropy can occur. Note that the presence of azeotropes is suffi-
cient but non necessary for the existence of the univolatility curves. A RCM may contain
azeotrope-free curves and multiple curves of the same index may coexist. If the topo-
logical structure of the RCM is known, the computation of univolatility curves starting
at azeotropes is straightforward, while the detection of univolatility curves not associated
with azeotropes is a more complicated and time-consuming process, especially in the case
of zeotropic mixture.

Consider an open evaporation of a ternary mixture kept at thermodynamic equilibrium at
constant pressure. Denote xi, yi, i = 1,2,3 the mole fractions in the liquid and in the vapor
phases, and T the temperature of the system. In the absence of chemical reactions a two-
phase ternary mixture has three independent state variables. By choosing x1, x2 and T ,
the complete state space of the system is M = {(x̄,T ) : T ∈ [Tmin,Tmax], x̄i ∈Ω, i = 1,2},
where Tmin and Tmax are the minimum and maximum boiling temperatures of the mixture
and Ω = {x̄ = (x1,x2) : xi ∈ [0,1] with x1 + x2 ≤ 1, i = 1,2} is the composition space
parameterized by the mole fractions of the first two compounds, while x3 = 1− x1− x2.
The distribution coefficients Ki : M→R are the functions over M that describe the vapor-
liquid equilibrium (VLE) in terms of molar fractions in the vapor and liquid phases: yi =

Ki(x̄,T )xi for i = 1,2,3. Since
3
∑

i=1
yi = 1, the following equilibrium condition holds:

Φ(x̄,T ) =
3

∑
i=1

Ki(x̄,T )xi−1 = 0. (1)

In 3D state space M, Eq.(1) defines a smooth hyper-surface referred as the boiling temper-
ature surface, namely W -surface. Along with W -surface, M contains three univolatility
hypersurfaces defined by equations

Ψi j(x̄,T ) = Ki(x̄,T )−K j(x̄,T ) = 0. (2)

Possible intersections of the W -surface with univolatility hypersurfaces are smooth curves
Γi j ∈M called the generalized univolatility curves (Shcherbakova et al., 2017). Univolatil-
ity curves αi j ∈Ω are the orthogonal projections of the curves Γi j ∈M to the composition
space Ω. Since ∇Φ and ∇Ψi j define the normal vector fields to the 2D surfaces defined
by Eqs.(1, 2), the vector field U i j = ∇Φ×∇Ψi j is tangent to the generalized univolatility
curve Γi j. In other words, the curve Γi j is a solution to the following system of ordinary
differential equations in M:

ẋ1 =U i j
1 (x1,x2,T ), ẋ2 =U i j

2 (x1,x2,T ), Ṫ =U i j
3 (x1,x2,T ). (3)

In order to compute generalized univolatility curves it is enough to detect their end-points
over the border of the composition triangle and use them as the initial points for the nu-
merical integration of Eq.(3). This can be done solving Eqs.(1, 2) on the boundary of
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the composition triangle ∂Ω in the reduced 2D space. For the sake of completeness we
remark, that in some cases αim curve starts from the binary edge i, j of the triangle where
m compound is missing (see for instance the α12 curve in Fig. 1). In this case, as it was
proposed in (Kiva et al., 2003), the distribution coefficient Km must be replaced by the
distribution coefficient at infinite dilution, which can be obtained from the ternary dis-
tribution coefficient by setting xm = 0. This generalization enables to compute complete
univolatility diagrams independently of the presence of azeotropes.

3. SMITH algorithm

3.1. Differential homotopy method

The core of SMITH code uses the differential homotopy method with arc-length param-
eterization to solve the systems of algebraic equations. This approach is based on the
following mathematical result (see in Allgower and Georg (2003) for more details).

Let F : RN+1 → RN , F(q,λ ), denote the homotopic function where λ denotes the ho-
motopy parameter. Under certain regularity assumptions, the solution to the equation
F(q,λ ) = 0 forms a one-dimensional manifold. Indeed, if F is a continuously differen-
tiable function such that

F(q0,λ0) = 0, rank
∂F
∂λ

(q0,λ0) = N

for some q0 and λ0, and if zero is a regular value of F , then a continuously differentiable
curve starting from (q0,λ0) exists and it is either diffeomorphic to a circle or to the real
line. The different branches of F−1({0}) form disjoint smooth curves.

As we showed in Section 2, the generalized univolatility curve Γi j is a "path of zeros"
of the function Fi j = (Φ(q,λ ),Ψi j(q,λ )) with q = (x1,T ) and λ = x2. SMITH uses a
predictor-corrector algorithm via the nutopy package with a high order step-size control
Runge-Kutta scheme for the prediction, and with a classical simplified Newton method for
the correction. The key point of success is the efficient computation of the Jacobian matrix
of the homotopic function Fi j, which reduces to the computation of the derivatives of the
distribution coefficients Ki, i = 1,2,3. In SMITH code these derivatives are computed via
the automatic differentiation tool tapenade (Hasco and Pascual, 2012), which drastically
simplifies numerical implementation of the homotopic method.

3.2. Initial points computation

To start the homotopy, the path-following method needs to be initialized at points (q0,λ0)
verifying F(q0,λ0) = 0. Such points can be chosen on the border of the composition
triangle Ω. In fact, according to the index i, j of the couple of compounds, each edge
of ∂Ω may contain up to three types of extremity points verifying univolatility condition,
moreover, several points of the same index may co-exist. Such points may be found by ap-
plying a standard Newton-Raphson procedure over the border of the composition triangle.
SMITH realizes a much more efficient method, based on the following observation. Any
edge I of the triangle ∂Ω can be parameterized by the mole fraction of one of the com-
pounds xi = a ∈ [0,1], i ∈ 1,2. Denote φ(a,T ) = Φ(x̄,T )|x̄∈I , ψi j(a,T ) = Φi j(x̄,T )|x̄∈I .
Then initial points for the curve αi j are zeros of the function Ei j : R2 → R2 defined by
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Figure 2: Univolatility diagrams of different Serafimov’s VLE topological classes com-
puted by SMITH: a) 0.0-1; b) 1.0-2; c) 3.1-4; d) 3.1-2.

Ei j(a,T ) = (φ(a,T ),ψi j(a,T )). Due to the uniqueness of the boiling temperature T of a
homogeneous mixture, equation φ(a,T ) = 0 defines a smooth graph in the 2D plan with
coordinates a and T . According to the Implicit Function Theorem, it can be solved in
order to express T = T (a). Then the zeros of the function Ei j can be detected by finding
zeros of the scalar function ψi j(a,T (a)).

SMITH implements the above idea as follows. In order to capture multiple solutions,
each edge of ∂Ω is divided into K sub-intervals [ak,ak+1], k = 0, . . . ,K− 1 with a0 = 0
and aK = 1. T (0) is computed by Brent’s method in the interval [Tmin,Tmax], and going
further around the edge, T (ak) is computed via a standard Newton method using T (ak−1)
as the initial guess. The sign of ψi j(ak,T (ak)) is checked at each k. The change of the sign
of ψi j at k-th step means the existence of a zero of this function in the interval [ak−1,ak],
which can be then found by a standard Newton-Raphson procedure. Realizing such a
scheme along every edge of the triangle for all three families of equations (including the
equations associated to the compound at infinite dilution) allows to build the complete set
of initial points. Observe, that binary azeotropes can be detected a-posteriori by checking
the condition Ki = K j = 1 over the computed set of points. The binary bi-azeotropy can
be easily detected.

3.3. Examples

The actual version of SMITH code allows computations using NRTL and UNIQUAC
models for activity coefficients, and Antoine’s and DPPR equations for vapor pressure
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computations at various value of process pressure. Fig. 2 shows four examples of ternary
univolatility diagrams of different topological classes (see in Kiva et al. (2003) for Ser-
afimov’s ternary VLE classes). They were computed at standard atmospheric pressure
using NRTL model for activity coefficients and Antoine’s equation for vapor pressure
calculation. The black points indicate the position of azeotropes. Diagram a) provides an
example of a purely zeotropic mixture (Serafimov class 0.0-1) which has one univolatility
curve. Diagram b) contains two univolatility curves of different indexes, one of them is
azeotrope-free. These two azeotrope-free univolatility curves cannot be detected by AS-
PEN Plus v.8®. Cases c) and d) provide examples of diagrams of three curves of different
index, the essential difference is the type of ternary azeotrope: a saddle in c) and an un-
stable node in d) cases. The intersection points of the uni-volatility curves were used to
find the ternary azeotropes.

4. Further perspectives

The current version of SMITH (SMITH, 2020) works on Unix systems. We are no work-
ing on the Windows version. Although the current version implements only the standard
NRTL model, other thermodynamical models are under development. Soon they will be
available, as well as a more efficient method of initial points localization using homotopy.
In a long term perspective, we plan to develop new applications to compute phase sep-
aration boundaries, pinch point curves, etc. The described mathematical and numerical
approach can be easily adapted to these types of computation.
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Abstract 
Global warming and climate change produced by CO2 emissions is an important issue 
today. Carbon capture represents a promising option of reducing CO2 emissions and 
allows the continuation of fossil fuels usage for at least a short to medium period of time. 
This work aims to bring to light an innovative CO2 capture system that relies on a process 
intensification technique. The system proposed is a three-phase fluidized absorber, in 
which the low density inert packing is fluidized by the flow of gas (rich in CO2) which is 
flowing in counter current with the liquid phase. A detailed dynamic mathematical model 
is developed in order to evaluate the post-combustion CO2 capture process using 
alkanolamine-based solvents in a gas-solid-liquid capture system. The phenomena which 
take place in the fluidization column is described by both mass and energy balance 
equations and includes mass transfer models, effective mass transfer area correlations and 
hydrodynamic process modeling. The simulation results show the intensification of gas-
liquid transfer through the fluidization process, the effective mass transfer area being          
8 - 10 times larger than in the case of packed beds. In addition to this the CO2 molar flow 
transferred through the gas-liquid interface is up to 8 - 12 times higher than conventional 
packed bed column. 
 
Keywords: CO2 capture, three phase fluidized bed, mathematical modelling. 

1. Introduction 
Carbon capture represents a promising option of reducing CO2 emissions and allows the 
continuation of fossil fuels usage for at least a short to medium period of time. The gas-
liquid absorption can be considered one of the most attractive, commercially mature and 
efficient methods for carbon dioxide capture in an attempt to reduce global climate 
change. Mono-ethanol-amine (MEA) is the most widely used solvent for CO2 absorption 
(Rochelle, 2009), and CO2 capture by MEA in packed bed absorption columns is one of 
the most common CO2 capture technologies. Post-combustion CO2 capture using solvents 
based on the conventional technology requires very large packed columns. An innovative 
three phase fluidized design (gas-solid-liquid) would be an interesting and potential 
promising option to treat high amount of flue gas usually coming from power plants 
(Dragan 2016). This fluidized system has many advantages, from mass transfer point of 
view: low pressure drops in the column, very high interfacial contact area per unit volume 
of the column and capacity to process a large volume of gases. Also, the solid packing is 
easily handled and can be removed from the column with pneumatic transport, it does not 
need special expertise and it can easily be made from chemical resistant plastics with low 
capital cost of equipment.  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50167-4
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 Figure 1. Mass transfer model for the gas-solid-liquid absorption system 
 

The solid phase has no chemical effect on the process, but the intensive mixing of the 
solid packing in the column determines high turbulence and therefore enhances the mass 
transfer and increases it significantly comparative to conventional fixed packed beds. The 
continuous movement of inert solid particles leads to the perpetual renewal of the liquid 
film that forms on the solid particles and gives an important increase in the effective mass 
transfer area (Figure 1). 

2. Mathematical model 
In this work, a dynamic mathematical model is developed in order to evaluate the CO2 
capture process into three phase fluidized bed column. The developed model constitutes 
in equations that describe the complex nature of the process, referring not only to the mass 
transfer between the gas and the liquid phase, but also to the hydrodynamics and kinetics 
of absorption of CO2. 

In terms of the kinetic model for the chemical reacion between MEA and CO2, the model 
uses the equations and data revised by Versteed et al (1996). The reaction between carbon 
dioxide and primary amines, according to the zwitterion mechanism, has an overall order 
of two, with a value of one with resprect to both CO2 and the amine. Hence, for the process 
described in this work, the reaction rate can be written as: 𝑟 = 𝑘 ∙ 𝐶 ∙ 𝐶   (1) 𝑘 = 4.4 ∙ 10 ∙ 𝑒   (2) 

The mass transfer between the gas phase and the liquid phase can be described using the 
two-film theory. The resistance to the transfer, concentrated in the thin films of gas and 
liquid respectively, at the interface, is quantified by the partial mass transfer coefficients 
described by Billet and Schultes, 1993: 
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𝑘 = 𝐶 ∙ ∙ ∙ 𝑤    (3) 

𝑘 = 𝐶 ∗ ∙ ∙ 𝐷 ∙ ∙ ∙   (4) 

An important parameter in the mass transfer model is the effective mass transfer area, 
which is highly different from both the wetted area and the geometric area of the packing. 
A literature review shows that there are several correlations available that calculate its 
value for regular packed bed absorption columns. However, in order to be able to 
determine the effective mass transfer area obtained in fluidized bed absorbtion columns, 
these correlations were adapted based on experimental results (Ilea et al., 2020): 𝑎 = 𝑎 ∙ 𝑒 . ∙ 𝑅𝑒 ,     . ∙ 𝑊𝑒 .   (5) 

Moreover, the mass transfer can be quantified in terms of transferred CO2 molar flow: 𝑁 = 𝑎 ∙ 𝐸 ∙ 𝑘 ∙ (𝐶 − 𝐶 )  (6) 

Due to the fluidization phenomenon, the mass transfer between the gas and the liquid 
phase takes place in the fluidized bed height, which is different from the entire height of 
the column. The model includes also includes equations that are used to determine the 
value of the fluidized bed height (Eq 7). Hence, the hydrodynamics of this process are a 
determining factor when it comes to the efficiency of the absorption. 

𝐻 = ∙ ∙∙   (7) 

where ℎ = 1 − ℎ − ℎ  (Letzel 1999, Billet&Schultes 1993). 

The overall phenomena that take place in the process presented in this work can be 
described using mass and energy balance equations: 𝐹 = 𝐹 ± 𝑣 ∙ ∙   (8) = ∙ 𝐶 − ∙ 𝐶 ± 𝑁 − 𝑟  (9) = ∙ 𝐶 − ∙ 𝐶 ∓ 𝑁 − 𝑟  (10) = ∙ 𝑇 − ∙ 𝑇 − ∆ ∙∙ ∓ ∙ ∙∙ ∙ ± ∙∆∙   (11) 

where j represents the gas/liquid phase, the reaction and vaporization terms are included only 
in the equations describing the liquid phase.

The operating parameters for fluidized/packed bed system are presented in Table 1.  

Table 1. The operating parameters 

Model Liquid flow Gas flow MEA conc. Column CO2 conc Diameter Height 
[m3/s] [m3/s] [M] [m] [m] [M] 

Fluidized bed 2.78*10-5 3.25*10-2 5 0.14 1.1 0.0014 Packed bed 4.36
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3.Results and discussions 

In order to be able to analyse the performance of the proposed system, the mathematical 
model was implemented in Matlab/Simulink and several simulations were conducted to 
best determine its behaviour. The developed model had been previously validated in terms 
of hydrodynamics (liquid holdup of fluidized bed absorption column without chemical 
reaction) and carbon dioxide capture efficiency in fluidized bed system and in packed bed 
system (for CO2 capture in MEA aqueous solution), a good correlation (R2 > 0.95) was 
observed (Gaspar and Cormos, 2011, Ilea et al., 2020). 

Figure 2. Influence of gas velocity on CO2 capture rate and expanded bed height 

Figure 3. Influence of liquid flow on liquid and solid holdups 

The hydrodynamics of the process are highly relevant when trying to achieve better 
performance. Thus, as seen in Figure 2, the carbon dioxide capture rate increases with the 
increase of the gas velocity. This dynamic behaviour takes place due to the fact that the 
increase of the gas velocity favours the fluidization regime and movements of inert solid 
particles which leads to the renewal of the liquid film and increase in the effective mass 
transfer area. Moreover, at constant gas velocity, the increase of liquid flow determines 
an increase in liquid holdup as well as a decrease in solid holdup (Figure 3). 
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The CO2 cyclic capacity (quantity of CO2 absorbed per quantity of solvent) is used to 
quantify the performance of different capture systems. A comparison between the values 
of CO2 cyclic capacity obtained in a pilot scale fluidized bed system and an industrial 
scale for packed bed absorption column is presented in Figure 4. A 15-20 % increase in 
the CO2 absorption cyclic capacity of the system is observed. 

Figure 4. Influence of MEA concentration on CO2 cyclic capacity 

Figure 5. Influence of liquid temperature on CO2 transferred molar flow 

The simulation results show that the three-phase fluidized bed system gives highly 
improved CO2 capture capacities compared to regular packed bed columns. The increase 
of CO2 absorption efficiency is due to an important increase in the effective mass transfer 
area, 8 to12 times higher than packed bed and mass transfer coefficients, kl and kg, (3 to 
4 times higher). These increased parameters intensify the mass transfer between the gas 
and the liquid phase, such that the CO2 molar flow transferred through gas-liquid interface 
is one order higher in the fluidized bed column’s case (Figure 5 and Table 2). 

Table 2. Comparison between fluidized bed and packed bed columns 

Column 
 

     Effective mass transfer area Transferred flow 

   [m2/m3] [kmol/s]
Fluidized bed       1990.70 7.9*10-3 
Packed bed (Mellapack 250Y)         123.26 4.2*10-4
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4. Conclusions 

A detailed dynamic mathematical model was developed for a three-phase fluidized bed 
in order to assess the CO2 capture capacity. The phenomenon which takes place in the 
fluidization bed was described by mass and energy balance equations and includes mass 
transfer models, effective mass transfer aria correlations and hydrodynamic behaviour 
modeling. The developed model had been previously validated based on experimental 
data from a pilot plant.  

The simulation results show that the intensification of gas-liquid mass transfer through 
fluidization process leads to an important increase in the effective mass transfer area (8 - 
10 times larger than in the case of packed beds). A three phase fluidized bed absorption 
not only increases with 8 to 12 times the CO2 transferred flow between the gas and the 
liquid, but it also helps achieve a 15-20 % increase in the CO2 absorption cyclic capacity 
of the system. This brings essential operational advantages such as larger capacities for 
CO2 capture plants. 
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Abstract 
Through electrolysis and methanation coupling, Power to Methane systems have raised as an attractive alternative for 
power generation while harnessing renewable sources' potential and reducing carbon dioxide (CO2) emissions. 
However, there is a research scarcity in their coupling within a Power to Methane context. This study simulates and 
analyzes an alkaline electrolysis cell coupled to a methanation process in a Power to Methane context to produce 
electricity by an open Brayton cycle in both steady and dynamic state. Simulation software is used to analyze the 
operating conditions and specifications' effects, the effect of the electrolysis power input in a steady-state simulation, 
and the behavior of a dynamic-simulation with fluctuating renewable energy input for the electrolysis process in two 
different plant arrangements. Results provide a preliminary glance at the Power to Methane system's behavior finding 
its contribution to the continuity issues that renewable energy sources have. However, the importance of continuing the 
research is highlighted to deeply understand the coupling of these processes in order to improve the profitability and 
performance of a PtM system. 

Keywords: Power to methane, electrolysis, alkaline electrolysis, simulation, Aspen 

1. Introduction  
Given the constant changes in a globalized world affected by climate change, energy from fossil sources and polluting 
gas emissions take on an almost antagonistic role. Hence it is imperative to find solutions to meet the energy demand 
while contributing to CO2 emissions reduction through carbon capture technologies and renewable energy sources. A 
promising alternative that fits these new challenges is the Power to Methane (PtM) technology, in which electrolysis 
and methanation are coupled for methane production (Boudellal, 2018). This technology aims to harness renewable 
sources' potential while reducing CO2 emissions since electrolysis uses renewable energy sources, and methanation 
contributes as carbon capture sequestration technology. In recent years, electrolysis has shown relevant results in 
numerous case studies and applications, having considerable investments in projects worldwide (Boudellal, 2018) using 
technologies such as proton exchange membranes, solid oxide cells, or alkaline solutions (Wang et al., 2020). Thus, it 
is necessary to study the coupling of these technologies looking to improve the profitability and performance of a PtM 
system, considering the absence of research in this area. Therefore, this study aims to simulate and analyze an alkaline 
electrolysis cell (AEC) coupled to a methanation process in a PtM context in both steady and dynamic state to produce 
electricity by an open Brayton cycle, using two different reactor types for methanation. 

2. Model formulation 
2.1. Electrolysis model 
Alkaline electrolysis (AEC) is the most mature and commercially available technology for this type of process 
(Boudellal, 2018). It is characterized by commonly using a 25-35% KOH solution and operating at temperatures 
between 70 and 140°C and pressures up to 30 bar (Sánchez et al., 2018). For its simulation, an algebraic semi-empirical 
model studied by Sánchez et al. (2018, 2020) was employed. They included the polarization curve, Faraday efficiency, 
and gas purity in their model, taking current density and operating pressure and temperature as variables. Nevertheless, 
for this simulation purposes, where higher temperatures will be considered, reversible voltage (Vrev) is included as a 
temperature function shown in Eq.(1), according to Khater et al. (2011). 
 𝑉 = 1.518 − 1.542 × 10 𝑇 + 9.523 × 10 𝑇𝑙𝑛 𝑇 + 9.84 × 10 𝑇  (1) 
 

 http://dx.doi.org/10.1016/B978-0-323-88506-5.50168-6

PROCEEDINGS OF THE 31 st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.



M. Novoa et al. 

  

2.2. Methanation reaction and kinetics 
A rigorous methanation reactor was modeled considering the Langmuir-Hinshelwood-Hougen-Watson (LHHW) 
kinetics proposed by Koschany et al. ( 2016). Simulation parameters were obtained from those implemented by Ortiz 
et al. (2020) in their analysis within a PtM context. 

3. Computational and simulation aspects 
AspenTech software was employed to simulate a PtM plant coupling electrolysis and methanation. The electrolysis 
was modeled in Aspen Custom Modeler® and exported to Aspen Plus®, where additional unit operations (including 
the methanation reactor) were used. First, a steady-state analysis was performed to find operating conditions and 
specifications for the unit operations involved in the system. The PtM plant was then exported to Aspen Plus® 
Dynamics for a dynamic state simulation. However, two different plant arrangements were simulated: ideal and 
rigorous. The ideal arrangement simulates the methanation process in a Gibbs reactor type, which uses Gibbs free 
energy minimization to calculate equilibrium and possible reaction products without specifying the reaction 
stoichiometry or temperature changes (Figure 1). An ideal CO2 feed is used in this arrangement since other inlet 
compounds would affect the methanation products. The rigorous arrangement, shown in Figure 2, simulates 
methanation in a Plug-Flow-Reactor (PFR) type using the catalytic kinetic model mentioned in section 2.2. This 
arrangement is simulated with a co-current thermal fluid taken from one of the water recirculation streams and a CO2 
feed composition reported by Arenas et al. (2014). Peng-Robinson thermodynamic model was used since its appropriate 
for methanation (Ortiz et al., 2020) and combustion (Alderetes, 2018). 
Figure 1. Ideal PtM arrangement. 

Figure 2. Rigorous PtM arrangement. 
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4. Results and discussion 
 
4.1. Operating conditions and specifications 
4.1.1. Electrolysis 
The electrolysis model was analyzed in Aspen Plus to establish the most suitable operating conditions and specifications 
for the whole PtM plant. Temperature, pressure, power input, number of cells, and cell's area were taken as variables 
to observe the hydrogen molar flow from cathode output and Faraday's efficiency behavior.  
 
Figure 3 shows the (a) hydrogen molar flow, (b) hydrogen to oxygen 
fraction (HTO), and (c) Faraday efficiency for different numbers of 
cells (N) and cell areas at specific operating conditions (100 °C, 7 bar, 
10 kW) taken from Sanchez et al. (2020) simulation. Hydrogen molar 
flow increases as the cell area does, reaching a steady-state value 
between 0.096 and 0.098 kmol/h for any number of cells between 10 
and 20. However, Faraday's efficiency decreases as cell area and cell 
number increase, the latter having a more significant impact on this 
variable. Therefore, a considerable hydrogen flow of 0.097 kmol/h, a 
low HTO fraction (0.018), and an appreciable efficiency of 91% can 
be obtained using 15 cells with an area of 0.16 m2, being this 
specification appropriate for the cell stack. 
Keeping the mentioned cell stack specifications constant, Figure 4 
shows the effect of pressure and temperature on the (a) hydrogen molar 
flow, (b) HTO, and (c) Faraday's efficiency. This analysis shows a 
lower incidence of pressure (affecting the system when it exceeds 15 
bar) and a higher incidence of temperature on these variables: direct for hydrogen flow and proportionally inverse to 
Faraday's efficiency. Consequently, it is preferable to operate at low pressures to reduce the pump's (P-1) energy 
requirement and the energy extraction necessary in the phase separators in later stages. Adverse effects and changes in 

the HTO and efficiency are noted when the temperature exceeds 100 °C, with 
little increase in the hydrogen flow. Hence, it is preferable to operate at 
temperatures below 100 °C. 
 
Finally, the effect of power input at different temperatures on hydrogen flow 
(a), HTO (b), and Faraday's efficiency (c) is shown in Figure 5. Hydrogen flow 
seems to increase significantly as power input does, without strongly affecting 
HTO fraction nor Faraday's efficiency. However, since power input is intended 
to be provided by renewable energy sources (e.g., solar panels), necessary 
arrangements and capacities to maintain more than 10 kW of power in 
operating times of around 6 hours a day can be costly compared to the 
hydrogen production that can be achieved in the stack model.  
 

4.1.2. Methanation and combustion operating conditions 
For the methanation reactor, 
hydrogen conversion at different 
temperatures and pressures is 
outlined in Figure 6a, showing a 
decreasing behavior as 
temperature increases, whereas the 
pressure effects are not sizable at 
temperatures below 550 °C. 
Therefore, it is preferred low 
operating pressures to reduce the 
compression energy requirement for 
both hydrogen and CO2 feeds. 
Hence, reactor operating 

temperature and pressure are set to be 226.8 °C and 5 bar, with an 
H2/CO2 ratio of 4, as recommended by Ortiz et al. (2020). A catalytic (hexaaluminate) combustion reactor was supposed 
to reach complete methane conversion since it is suitable for gas turbines and operates at high temperatures (He et al., 
2020). Hence, combustion is simulated in a stoichiometric reactor with 100% methane conversion at standard operating 
conditions of 1230 °C and 15.8 bar (Alderetes, 2018). A 20 % air excess is specified as Eckerlin (2016) suggested for 
proper methane combustion performance. Table 1 shows the operating conditions for all the units involved in the PtM 
arrangements simulated. 
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4.2. Steady-state simulation results  
Each stream's temperature, pressure, mass flow, and composition is shown in Table 2 and 3 for ideal and rigorous PtM 
plants respectively. The results are very similar even for the methane flow produced at the R-1 reactor's outlet, yet the 
compositions change since oxygen and nitrogen are present from carbon capture. A difference is found in the outlet 
temperatures since RGibbs keeps it constant while the rigorous reactor considers an increase because of the Sabatier's 
reaction exothermic nature and a reduction by the heat exchange with the 
recirculating water stream. For those reasons, a few streams are added to the 
rigorous arrangement, where the flow of some streams changes (e.g., air, CO2, 
and water feed).  
Tables 2 and 3 include the power streams as well. It is shown that the turbine's 
generation is greater than the total power requirement for all compressors and 
pumps involved, having 0.92 and 1.34 kW of available power for ideal and 
rigorous plant, respectively. The rigorous plant has more available power because 
it needs a lower airflow hence a lower power input at C-2, considering that some 
of the oxygen requirement enters the system from CO2 capture. The available 
power is lower compared to the electrolysis power supply; however, PtM systems 
will serve as an essential contribution to the continuity issues that renewable 
energy sources (intended to feed the system) have. These fluctuating renewable 
power sources and their effects on the system cannot be observed in a steady-state 
simulation (where a value of 10 kW is set), requiring a dynamic-state simulation.  
 
4.3. Dynamic-state simulation results 
For renewable energy source supply simulation, POWER-IN is adjusted with 
sinusoidal ramp tasks to 8 and 10 kW in a time frame of 1 hour, keeping the operating conditions set in section 4.1. The 
design specifications for the electrolysis water inlet, H2/CO2 ratio, excess air, and thermal fluid (the last one only for 
rigorous simulation) are manipulated using PID controllers.  

Figure 7 shows the behavior for the renewable power input (POWER-IN), 
the compressors required power (P-C1 and P-C2), and the power generated 

by the turbine (POWER-G, which is reported negative since it is leaving the system) for ideal (a) and rigorous (b) PtM 
arrangement. The incidence of POWER-IN on the rest of the power streams is direct: when the power input increases, 
the hydrogen flow leaving the cell stack does as well, and CO2 and air feeds increases because of the ratio controllers. 
The feeds flow increasing requires more power to maintain the compressors' discharge pressure for the streams to enter 
the system. For this same reason, these feed ratios are also affected by the input power fluctuations as the system exerts 
control over them as design specifications. Thus, Figure 8, a) and b) show the design specifications variations with 
deviations less significant than 6% from the set point for both ideal and rigorous arrangements. Finally, in Figure 9, it 
is shown that the flows of the main reaction products (hydrogen and methane) obey the direct incidence of power input 
described previously. However, there is a difference in the methane fraction at the R-1 reactor's outlet from one 
arrangement to the other since the ideal runs with a pure CO2 feed, and the rigorous CO2 feed has the presence of 
oxygen and nitrogen.  
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5. Conclusions 
This research compares the simulation results of an AEC coupled to a methanation process (ideal and rigorous) in a 
PtM context in both steady and dynamic state using two different plant arrangements. This simulation approach 
contributes to studying and understanding the coupling of electrolysis and methanation technologies for electricity 
generation by analyzing and setting the operating conditions that favor the PtM system performance. Steady-state 
simulations' results showed the temperature, pressure, power input, and stack specifications effects in the electrolysis 
process and how it affects when it is part of a PtM system for power generation. Dynamic-state simulations, considering 
a fluctuating renewable energy source, showed the direct effects of electrolysis power input on the main reaction 
products' flows and how it changes the system's power requirement. Steady and dynamic state simulations showed that 
despite the available power is lower than the electrolysis power supply, PtM systems serve as an essential contribution 
to the continuity issues that renewable energy sources have and as an attractive carbon capture technology. However, 
it is essential to enhance the grasp of the coupling of these processes. Different electrolysis technologies might be 
considered with more rigorous models, improvements in the accuracy of design specifications' control, and Brayton 
cycle performance. 
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Abstract 
This work revises and improves our meta-learning based surrogate selection framework, 
LEAPS2. We perform several modifications to revise LEAPS2 (LEAPS2v2): incorporate 
noise in response to mimic reality, avoid recommending surrogates that fit noise, add 
stronger attributes that capture nonlinearities better, propose a novel performance metric 
that balances surrogate accuracy and complexity, and include larger pool of data sets and 
surrogate models. Evaluating the recommendation performance of LEAPS2v2 revealed 
that it successfully recommended at least one of three true best surrogates for more than 
94% non-noisy and 89% noisy data sets. It showed large correlation between chances of 
a surrogate being recommended by LEAPS2v2 and being true best. No specific surrogate 
accomplished superior performance than others over all data sets. LEAPS2v2 made 
successful recommendations on a case study involving an industrial compressor.  

Keywords: meta-learning, surrogate model, predictive accuracy, surrogate complexity. 

1. Introduction 
The desire and ability to accurately model complex, nonlinear processes using digital 
twins has been on the rise. While high-fidelity virtual models offer significant advantages 
in process analyses and decision-making, they suffer from two main drawbacks. Firstly, 
it requires rich domain knowledge, expertise, and substantial time to develop robust 
digital twins. Secondly, it is often computationally prohibitive to use them frequently for 
real-time analyses. Hence, computationally cheaper surrogate models offer an attractive 
alternative. They are easy to build by learning the relationships between key inputs and 
appropriate outputs, using process data. The literature (Queipo et al., 2005) has discussed 
various surrogate modeling techniques such as Artificial Neural Network (ANN), Support 
Vector Regression (SVR), Radial Basis Function (RBF), Multivariate Adaptive 
Regression Spline (MARS), among many others in detail. Identifying an appropriate 
surrogate is crucial for precise approximation of the system behaviour. One approach for 
model selection is to employ meta-learning (Rice, 1976), where surrogate selection is 
guided by accumulating experience of surrogates’ performances for diverse data sets. A 
meta-learning framework is trained by correlating certain features of data or attributes to 
surrogates’ performances, using a learning algorithm. This framework is used for 
identifying and recommending best surrogates for any data set, based on its learnt 
knowledge. A recent meta-learning framework, LEAPS2 (Learning based Evolutionary 
Assistive Paradigm for Surrogate Selection) was developed by Garud et al., (2018). 
Although LEAPS2 showed good performance in identifying accurate surrogates for a data 
set, it had some limitations. In this work, we aim to address the limitations of LEAPS2, 
in addition to upgrading and widening its scope and functionality significantly.   

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50169-8
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2. LEAPS2 and its Limitations 
Garud et al., (2018) developed LEAPS2 (call it LEAPS2v1) for recommending few 
accurate surrogates, for modeling any data set. It was trained on 264 data sets, generated 
from 66 test functions, obtained from a virtual library. It extracted 14 attributes and 
evaluated performances based on prediction error for 25 surrogates. It used regression 
tree ensembles to learn attributes-performance correlations for each surrogate. Then, it 
used its stored knowledge for recommending 𝑃∗ number of surrogates for any given data 
set. 𝑃∗ was determined by finding a trade-off between computational burden and success 
while recommending few surrogates.  

LEAPS2v1 had some limitations. First, it was trained completely on non-noisy, synthetic 
data. Second, attributes such as mean, variance, difference between extreme responses, 
laid more emphasis in describing and summarizing the response, rather than disclosing 
the underlying trend and patterns in response which would guide surrogate selection. 
Third, the performance metric used for evaluating a surrogate’s performance was a purely 
error-based metric. In other words, the complexity of a model was not considered during 
evaluation. Finally, LEAPS2v1 often recommended as many as 𝑃∗ = 5 or 6 surrogates, 
which may burden the user and defeat the basic purpose of a recommendation framework. 

3. LEAPS2 Version 2 (LEAPS2v2) 
Let 𝒙 denote 𝑁-dimensional inputs 𝑥  (𝑛 = 1, 2, … , 𝑁) , and 𝑦 = 𝑓(𝒙) denote the 
response, for any data set. From a pool of 𝑀 surrogate models, an 𝑚  surrogate 𝑓 (𝒙), 𝑚 = 1, 2, … , 𝑀  is trained on a set of 𝐾 sample points (𝒙( ), 𝑦( ) , 𝑘 =1, 2, … , 𝐾  to approximate 𝑓(𝒙). We revise and upgrade LEAPS2v1, and call our revised 
framework as LEAPS2v2. LEAPS2v2 has been modified in several ways. First, we 
consider noise in response and widen the pool of data sets. Second, we remove ineffective 
attributes and add powerful attributes. Third, we develop and use a novel performance 
metric that considers both model accuracy and complexity. Fourth, we include many more 
surrogates as compared to LEAPS2v1. Finally, we revise the recommendation strategy. 

3.1. Data Sets 
To gather many data sets, we generated synthetic data from different analytical functions 
having varied characteristic shapes (Multi-modal, Valley, Plate, Bowl and Ridges-
shaped). Sobol sampling was used to generate four data sets for each of the following four 
sample sizes, 𝐾 = 50𝑁, 100𝑁, 150𝑁, 200𝑁. We also added 20 simulation-based data 
sets pertaining to LNG flash calculations (Coimbatore Meenakshi Sundaram and Karimi, 
2021). This gave us 1508 (93x4x4+20) non-noisy data sets. For noisy data sets, we added 
gaussian noise with 5% standard deviation, to each non-noisy data set. Moreover, we also 
included 80 data sets from an industrial compressor and 3 from a machine learning 
repository (Dua and Graff, 2019), to accumulate 1591 noisy data sets. LEAPS2v2 was 
trained on data sets with up to 20 input dimensions. 
3.2. Attributes 

LEAPS2v2 consists of powerful attributes that capture response nonlinearities efficiently. 
Redundant attributes of LEAPS2v1 that solely summarize the response (such as mean, 
standard deviations, fluctuations) were removed. LEAPS2v2 has the following attributes: 
� Dimensionality (𝑁) of input data. 
� Average Absolute Error, Root Mean Squared Error, and Maximum Absolute Error in 

predictions by 1st order and 2nd order PRSM models, which are simplest models. These 
attributes indicate the extent of inherent complexity and nonlinearity in the response. 

1100



Upgraded Meta-Learning based Surrogate Selection Paradigm (LEAPS2v2) 
  

� Degree of Local Nonlinearity (𝜆): 𝜆 gives an idea of local nonlinearity in the 
neighbourhood of any sample point. To compute 𝜆, we compute the slope angle 
estimates at sample point 𝑘 along dimension 𝑛, by considering the nearest sample 
point to 𝑘 [𝑁𝑁1(𝑘)] and its next nearest neighbour [𝑁𝑁2(𝑘)]. Then, we compute 
degree of nonlinearity (𝜆( )) at sample point 𝑘 along dimension 𝑛, as:   𝜆( ) = 12𝜋 tan 𝑦( ) − 𝑦 ( )𝑥( ) − 𝑥 ( ) − tan 𝑦( ) − 𝑦 ( )𝑥( ) − 𝑥 ( )                    (1) 

We calculate the average and standard deviations in 𝜆( ) over all sample points, in 
each dimension, to extract 2𝑁 attributes. We also compute overall local nonlinearity 
as average of averaged nonlinearities, over all dimensions, as an additional attribute.  

� Regional and Inter-Regional Directional Slopes: The directional slope (𝑚( , ) =𝑚( , )) between two sample points 𝒙( ) and 𝒙( ) can be estimated as follows: 𝑚( , ) = 𝑚( , ) = 2𝜋 tan 𝑦( ) − 𝑦( )|𝒙( ) − 𝒙( )|                                                                 (2) 

We create local regions in the input space using 𝑘-means clustering technique, where 𝑘 = 𝑐𝑒𝑖𝑙(𝐾/10). For each local region having at least two sample points, regional 
directional slope is estimated as the average directional slope between all pairs of 
points within the region. Average and standard deviation of regional directional slopes 
over all regions constitute two attributes. Inter-regional directional slopes are 
estimated by computing directional slopes between nearest local regions. Each local 
region is characterized by its centroid. The response at centroid is approximated by 
the weighted response of all points within the region. Average and standard deviations 
in inter-regional directional slopes over the entire input space are two more attributes. 

We arranged the aforementioned (2𝑁 + 12) attributes in a specific order to ensure proper 
correlation of attributes with surrogates’ performances for any 𝑁-dimensional data set. 
The attributes were ordered as: 𝑁, errors after fitting simplest PRSMs, average and 
standard deviation in regional directional slopes, average and standard deviation in inter-
regional directional slopes, overall local nonlinearity, 𝑁 average local nonlinearities, (100 − 𝑁) zeros, 𝑁 standard deviations in local nonlinearities, and (100 − 𝑁) zeros. 
3.3. Surrogate Models 

LEAPS2v2 has 36 surrogate models, derived from well-known modeling techniques such 
as Polynomial Response Surface Model (PRSM), Kriging (K), RBF, SVR, ANN, MARS, 
and Gaussian Kernel Regression (GKR). Each technique provides various mathematical 
forms such as basis functions, activation functions, kernels, etc. to build a unique 
surrogate. LEAPS2v2 also consists of additive power law (APL) and multiplicative power 
law (MPL) models, formed by linear sum and product of power law terms 𝑥 , 𝑛 =1, … , 𝑁, respectively.  
3.4. Surrogate Performance Metric 

In a quest to evaluate a surrogate’s performance based on predictive accuracy as well as 
complexity, we developed a novel composite performance metric called Surrogate 
Quality Score (𝑆𝑄𝑆). 𝑆𝑄𝑆 balances accuracy via a surrogate’s coefficient of 
determination or 𝑅 -value, and complexity via its degrees of freedom (𝑑𝑜𝑓) or the 
number of independent model parameters. We define and compute 𝑆𝑄𝑆  for 𝑓 (𝒙) as: 𝑆𝑄𝑆 = (1 − 𝑅 ) × ln(1 + 𝑑𝑜𝑓 )ln(1 + 𝐾) .                                                                                      (3) 
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where, (1 − 𝑅 ) measures 𝑓 (𝒙)’s accuracy, while ln(1 + dof ) ln(1 + K)⁄ .  
represents its complexity. Table 1 shows 𝑑𝑜𝑓  for the surrogates used in LEAPS2v2. 
Table 1: Degrees of freedom for surrogate models used in LEAPS2v2 

Surrogate dof Surrogate dof 
PRSM  (𝑂 + 𝑁)! (𝑂! × 𝑁!⁄ )∗ GKR, APL 2𝑁 + 1 
Kriging, RBF 𝐾 MPL 𝑁 + 1 
SVR, MARS ≤ 𝐾** ANN 𝑁𝑛 + ⋯ + 𝑛 𝑛 + 𝑛 + ⋯ + 𝑛  
* 𝑂: Polynomial order; **𝑑𝑜𝑓  cannot be pre-determined explicitly; ***𝑛 : number of nodes 

in 𝑝  hidden layer, ℎ: total number of hidden layers, 𝑛 : number of nodes in output layer 

For non-noisy data sets, 𝑅  was evaluated on 𝐾 sample points of the trained data set, 
combined with 𝐾 additional points. However, for noisy data sets, we evaluated 𝑅  on 𝐾 
sample points of training data set alone. This is because real-world data is often limited 
and does not readily allow additional data sampling. In order to reject surrogates that may 
fit noise, LEAPS2v2 uses a user-specified limit on maximum allowable 𝑅  (𝑅 ) for a 
surrogate. 𝑅 > 𝑅  indicates 𝑓 (𝒙) overfits, and hence should not be recommended. 
3.5. LEAPS2v2 Recommendation Strategy 

In order to recommend appropriate surrogates, LEAPS2v2 first requires to learn 
surrogates’ performances (here 𝑆𝑄𝑆) over various data sets. Then, for any given data set, 
it uses its stored knowledge to predict 𝑆𝑄𝑆  for all surrogates, to make recommendations. 
We used 36 regression tree ensembles (RTEs) to learn the correlations between data 
attributes and 𝑅  for the 36 surrogates. Since the aim of LEAPS2v2 is to recommend 
surrogates based on 𝑆𝑄𝑆 , it uses its predicted 𝑅 , and corresponding 𝑑𝑜𝑓  (Table 1) to 
yield predicted 𝑆𝑄𝑆  (Eq.3). However, for surrogates such as MARS and SVR, 𝑑𝑜𝑓  
cannot be pre-estimated. Hence, predicting 𝑆𝑄𝑆  for such surrogates is not possible 
unless the respective 𝑑𝑜𝑓  is known explicitly. Therefore, we use 5 additional RTEs to 
learn attributes-𝑑𝑜𝑓  correlations for the 5 SVR and MARS models. This allows 
LEAPS2v2 to use its predicted 𝑅  and predicted 𝑑𝑜𝑓 , to compute its predicted 𝑆𝑄𝑆 , 
for SVR and MARS as well. Finally, LEAPS2v2 identifies and recommends three 
surrogates with least predicted 𝑆𝑄𝑆 . For noisy data sets, LEAPS2v2 performs an 
additional check on its predicted 𝑅 , to reject overfitting surrogates with 𝑅 > 𝑅 .  

4. LEAPS2v2 Performance 
4.1. Performance Evaluation on Trained and Untrained Data Sets 

For any data set, LEAPS2v2’s recommendation was flagged as a success, if at least one 
of its three recommended surrogates were the 1st, 2nd, or 3rd true best surrogates. We define 
a metric, Degree of Success (𝐷𝑜𝑆) as percentage of data sets for which LEAPS2v2 made 
successful recommendations. On training LEAPS2v2 on 1130 (75% of 1508) randomly 
selected non-noisy data sets, it achieved a 𝐷𝑜𝑆 of 94.7% on trained data sets, and 81.8% 
on untrained data sets. After training LEAPS2v2 on all 1508 data sets, it showed 𝐷𝑜𝑆 of 
94.2%. For noisy data sets, we used five 𝑅 ={0.98, 0.96, 0.94, 0.92, 0.90}. On training 
LEAPS2v2 on 1192 (75% of 1591) randomly selected noisy data sets, it achieved 𝐷𝑜𝑆 = 
{96.6%, 96.4%, 96.4%, 94.6%, 93.0%} on trained data sets, and 𝐷𝑜𝑆 = {92.2%, 90.5%, 
85.0%, 84.5%, 84.0%} on the untrained data sets, for the five 𝑅𝑚𝑎𝑥2  respectively. Finally, 
after re-training LEAPS2v2 on all 1591 noisy data sets, it achieved 𝐷𝑜𝑆 = {97.0%, 
94.9%, 93.8%, 91.8%, 89.8%} for the five 𝑅𝑚𝑎𝑥2  respectively. 𝐷𝑜𝑆 deteriorated as 𝑅  
decreased, as for lower 𝑅𝑚𝑎𝑥2 , LEAPS2v2 had to reject overfitting models and recommend 
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true best surrogates. Most data sets for which LEAPS2v2 was unable to make successful 
recommendations were simple, low dimensional, as such data sets have many surrogates 
with similar, superior performances. Thus, identifying and recommending one of the top 
three true best surrogates, while duly rejecting overfitting ones becomes challenging.  

We also looked at an alternative way to gauge LEAPS2v2’s learning and recommendation 
capability. We focused on observing, to what extent a surrogate’s chance of being 
recommended correlated with its chance of being one of the 1st, 2nd, or 3rd true best 
surrogate. In other words, an intelligent framework should recommend true best 
surrogates more often, and seldom recommend poor ones. Thus, for each surrogate, we 
observed the number of data sets for which it was one of the top-3 true best surrogates, 
and number of data sets for which it was recommended. We used Pearson correlation 
coefficient (𝑃𝐶𝐶) to measure the extent of correlation between these two frequencies. 
LEAPS2v2 showed 𝑃𝐶𝐶 of 91.7% for non-noisy data sets, and 𝑃𝐶𝐶 of {96.8%, 96.3%, 
97.0%, 97.3%, 96.2%} for five 𝑅  constraints for noisy data sets. High correlations re-
iterate that LEAPS2v2 can learn and recommend appropriate surrogates efficiently.  
4.2. LEAPS2v2 versus LEAPS2v1 

A straightforward comparison between LEAPS2v1 and LEAPS2v2 is not fair as the latter 
has undergone substantial modifications with respect to quality and quantity of data sets, 
surrogates, attributes, performance metric, and recommendation strategies. However, 
ignoring these differences, solely looking at respective 𝐷𝑜𝑆 of the two frameworks, 
LEAPS2v1 achieved a 𝐷𝑜𝑆 of 93% recommending 4 / 25 surrogates, while LEAPS2v2 
achieved a 𝐷𝑜𝑆 of 94.2% on more data sets, while recommending 3 / 36 surrogates.  
4.3. True Best Surrogates for Non-Noisy and Noisy Data Sets 

Observing the true performance of surrogates over various noisy and non-noisy data sets 
revealed that the true best surrogates for noisy data were very different to those for non-
noisy data. This is because in case of noisy data, certain surrogates are prone to 
overfitting. Fig. 1a depicts the percentage of non-noisy data sets, for which a surrogate is 
one of the top-3 true best surrogates, while Fig. 1b shows the same for the noisy SDSs. It 
is evident that ANNs with 2N nodes, K, RBF, and 2nd order PRSMs were preferred for 
many non-noisy data sets, owing to their combined factors of high accuracies and 
simplicities. On the other hand, K and RBF were never preferred for noisy data sets as 
they fit noise at the trained sample points. Rather, MARS, PRSMs, SVRs with polynomial 
and gaussian kernels, and ANNs were more favoured choices for noisy data sets. 

 
Fig. 1a: Percent of non-noisy data sets for which a surrogate is one of top-3 true best surrogates 
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Fig. 1b: Percent of noisy data sets for which a surrogate is one of top-3 true best surrogates 

Moreover, no single surrogate stood out as the dominant model for modeling all data sets.  
4.4. Performance Evaluation on a Case Study 

To further validate the performance of LEAPS2v2, we applied it for modeling volumetric 
flow across a three stage reciprocating compressor in an LNG (Liquefied Natural Gas) 
regasification terminal. The flow was modeled for each stage, using suction temperature, 
suction pressure, discharge pressure, and flow setting capacity as inputs. We considered 𝑅  of 0.96 and 0.94. For both 𝑅 , LEAPS2v2 recommended one of the top three 
true best surrogates for stage 1 and stage 3, while two of the top three true best surrogates 
for stage 2. In other words, LEAPS2v2 achieved 100% 𝐷𝑜𝑆 for all three stages. 

5. Conclusions 
This work significantly upgrades the scope and utility of our learning-based 
recommendation paradigm (LEAPS2) through numerous modifications. We incorporate 
noise in response, update attributes, propose and use a novel composite performance 
metric that balances surrogate’s accuracy and complexity, widen the pool of data sets and 
surrogates, and revise the recommendation logic. Evaluation of LEAPS2v2 revealed 
remarkable success in recommending true best surrogates for most noisy and non-noisy 
data sets. The choice of best surrogates for noisy and non-noisy data sets were very 
different. We also illustrated LEAPS2v2’s successful performance on a case study, 
involving an industrial reciprocating compressor. LEAPS2v2 clearly proves itself as a 
smarter, more robust and much refined paradigm for surrogate selection than LEAPS2v1.  
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Abstract 
Chemical processes are usually subject to varying operating conditions. Consequently, 
the evaluation of the flexibility of a process with respect to variations in inlet conditions 
is vital to identify bottlenecks in current process flowsheets or new flowsheet design 
proposals. The flexibility index is a well-established concept to perform flexibility 
analysis of chemical processes. In this paper, we propose a novel approach to incorporate 
knowledge regarding dependencies between input parameters when calculating the 
flexibility index. The aim is to achieve a more accurate indication of a process's flexibility 
when dependencies between input parameters are present. 
 
Keywords: Flexibility Index, Correlation, Parameter Dependence, Chemical Process 
Design 

1. Introduction 
Flexibility analysis of chemical processes has been investigated by the research 
community since the early 1980s when the Flexibility Index (FI) was introduced by 
Swaney and Grossmann (1985). The FI indicates the maximum disturbance range within 
which input parameters may vary while at the same time achieving feasible operation. To 
be able to solve the FI problem computationally, an active set approach was developed 
by Grossmann and Floudas (1987) which later was extended to a global solution 
algorithm by Floudas et al. (2001). Since the active set approach may result in problem 
formulations which are hard to solve even with state-of-the-art algorithms, alternative 
strategies to solve the FI problem have been reported in the literature. Li et al. (2015) 
suggested a framework to calculate the FI by means of an alternating direction matrix 
embedded in a Simulated Annealing algorithm. Additionally, Kachacha et al. (2018) 
proposed to conduct Monte Carlo network simulations in the entire expected disturbance 
range while manipulating degrees of freedom. If sufficiently many operating points are 
tested, the shape of the feasible uncertainty space is identified. Furthermore, Zhao and 
Chen (2018) proposed to explicitly calculate the shape of the feasible uncertainty space 
via cylindrical algebraic decomposition and quantifier elimination. In addition to different 
strategies to solve the FI problem, Ochoa and Grossmann (2020) extended the traditional 
FI problem to account also for uncertain input parameters which cannot be measured and 
therefore recursive actions cannot be taken to respond to variations.  
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Despite numerous publications on flexibility analysis and on the FI in particular, very 
little attention has been paid to the influence of dependencies, e.g. correlations, between 
uncertain input parameters on the flexibility of chemical processes. The reason for this 
shortcoming is that it is commonly assumed that the correlation between two (or more) 
input parameters can be expressed via a single algebraic equation, obtained via e.g. linear 
regression (compare Grossmann and Floudas (1987); Grossmann et al. (2014)). However, 
single equation (regression) models are only exact if the strongest possible agreement 
exists between the correlated input parameters (i.e. if the Pearson correlation coefficient 
is ±1). Commonly, correlated input parameters in chemical processes agree only to some 
extent (correlation coefficient < |±1|) which means that single equation (regression) 
models are only able to capture the trend between these input parameters while operating 
points which deviate from this trend are neglected (i.e. operating points which are caused 
by “other” sources of variation). However, these outlying operating points (which cannot 
be captured via single equation regression models) can be vital for actual plant operation. 
In this paper, we therefore propose a strategy to account for correlations between input 
parameters when calculating the FI by means of the active set approach (compare 
Grossmann and Floudas (1987)) which goes beyond single equation regression models. 

2. Flexibility Index 
As mentioned in the introduction, the FI indicates the maximum disturbance range in 
which inlet conditions may vary while at the same time achieving feasible operation. The 
feasible region of a chemical process can be described by the following set of constraints: 

ℎ"(𝑑, 𝑥, 𝑧, 𝜃) = 0, 𝑖	𝜖	𝐼	
𝑔1(𝑑, 𝑥, 𝑧, 𝜃) ≤ 0, 𝑗	𝜖	𝐽	

where d is the vector of design variables, x corresponds to the state variables, z is used for 
the control variables or degrees of freedom and the varying inlet conditions or uncertain 
parameters are depicted by 𝜃. In this context, feasibility is achieved when all constraints 
𝑖	𝜖	𝐼 and 𝑗	𝜖	𝐽 are satisfied at the point of operation. In the case of independent input 
parameters, variations in these parameters can be interpreted as a hyperrectangle in the 
space of the input parameters. The FI is then defined as the ratio between the largest 
scaled hyperrectangle within the feasible region and the hyperrectangle corresponding to 
the expected variations. Therefore, feasibility over the expected uncertainty space is 
guaranteed if the FI is larger than or equal to 1. A visualization of the FI for an example 
is discussed in Section 3 and is shown in Figure 2. 
2.1. Flexibility Index for dependent input parameters 
The largest scaled hyperrectangle within the feasible region can be described by the 
following set of equations: 

 𝑇(𝛿) = 7𝜃",8 − 𝛿∆𝜃"; ≤ 𝜃" ≤ 𝜃",8 + 𝛿∆𝜃"=>	∀	𝜃" ∈ 𝜃	 (1) 
For the case where only some input parameters vary independently while other input 
parameters show dependencies such as correlating trends to the independent input 
parameters, the total set of input parameters 𝜃 must be divided into independent input 
parameters 𝜃"AB and dependent input parameters 𝜃BCD. To express the shape in which the 
input parameters vary (compare hyperrectangle in independent case), it is necessary to 
formulate mathematical models for the dependent input parameters, i.e. perform the 
transformation 𝜃 → 𝜃"AB. In the following, it is assumed that the dependent input 
parameters can be expressed by a set of functions M of the independent input parameters. 
Consequently, the space in which the input parameters vary can be described as follows: 
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 𝑇(𝛿) = {7𝜃",8 − 𝛿∆𝜃"; ≤ 𝜃" ≤ 𝜃",8 + 𝛿∆𝜃"=>	∀	𝜃"
∈ 𝜃"AB	{𝑓H(𝜃"AB)	∀	𝑚 ∈ 𝑀}	∀	𝜃1 ∈ 𝜃BCD	 

(2) 

In general, different mathematical models are available to express the dependency 
between dependent and independent parameters. In the following section, it is illustrated 
how the choice of the mathematical model can influence the FI by comparing the results 
obtained with a single equation and a dual equation model. 

3. Example 
Let us consider three different cases for a process 
with two input parameters, 𝜃L and 𝜃M, operating at 
the nominal point (𝜃L,8, 𝜃M,8) = (10, 35). In the 
first case, 𝜃L and 𝜃M vary completely 
independently in the range (±5, ±20), while in the 
second and the third case, a significant correlation 
(positive and negative) between 𝜃L and 𝜃M is 
assumed. Figure 1 shows the distributions of 𝜃L 
and 𝜃M for each case. It should be noted that for the 
correlation cases, the variation range is similar to 
the independent case: (Δ𝜃L,HNO, Δ𝜃M,HNO) = (±5, 
±20). Furthermore, assuming different cases with 
different distributions is highly theoretical since in 
reality a dependency between input parameters 
either occurs or does not occur. 
 
Let us further consider that 𝜃L and 𝜃M are the input 
to a process whose feasible region can be 
described by a set of given constraints (compare 
Eq. 3a to 3f) where 𝑥L denotes an additional state 
variable. For the independent case, the FI can be 
calculated directly and is equal to 0.36. The 
graphical interpretation of the FI for the 
independent case is shown in Figure 2. Since all 
six constraints are linear, the feasible region is 
convex and the FI is determined by one (or 
several) corner points of the largest scaled 
rectangle inscribed in the feasible region (i.e. one 
or several corner points of the scaled rectangle 
intercept with the boundaries of the feasible 
region). The proportions (length-to-width ratio) of 
this scaled rectangle are given by the rectangle describing the expected variations. As 
mentioned in Section 2, the FI can be interpreted as the ratio of the size of the largest 
scaled rectangle compared to the size of the rectangle describing the expected variations. 
 
As explained in Section 2.1, correlations between input parameters can be expressed 
using mathematical models. Two approaches have been investigated and are presented in 
the following two subsections. 

Figure  SEQ Figure \* ARABIC 1: 
Distribution of operating points for 
three different cases (top) 
independent variation (middle) 
positive correlated variation (bottom) 
negative correlated variation. 
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 𝜃L − 2𝑥L = 0	 (3a) 
 2𝑥L − Q40 −

2
3 ∗ 𝜃MU ≤ 0	 (3b) 

 10 − 0.25𝜃M − 𝜃L ≤ 0	 (3c) 
 𝜃L − (0.5𝜃M + 5) ≤ 0	 (3d) 
 2.5 + 0.05𝜃M − 2𝑥L ≤ 0	 (3e) 
 𝜃L − (17.5 − 0.05𝜃M) ≤ 0	 (3f)  

3.1. Linear regression model 
In the first approach, the positive and 
negative correlations were expressed using 
single equation models obtained by linear 
regression. The linear equation models are 
shown in Figure 3 together with the feasible 
region of the problem. Compared to the 
independent case, the shape which describes the range of the variations (feasible and 
expected) is no longer a hyperrectangle but a line. The calculated values of the FI are 
0.385 (positive correlation) and 0.71 (negative correlation). When using a linear function 
as model function, the FI is determined by the smallest possible variation for 𝜃M at which 
the model function fm(𝜃M) intercepts with the boundary of the feasible region. The 
corresponding points are marked with a star in Figure 3.   
From Figure 3 it can be inferred that the used linear models are able to capture the trend 
between 𝜃L and 𝜃M while neglecting operating points which deviate from this trend. 
However, as mentioned in Section 1, these operating points can be vital for actual process 
operation. To be able to include these operating points, a second approach was studied. 

  
Figure 3: Visualization of the flexibility index when using a linear equation to model (left) 
positive correlated variations and (right) negative correlated variations. 

3.2. Correlation Corridors 
Instead of modelling the correlation between the two input parameters 𝜃L and 𝜃M via a 
single linear function obtained by regression, an upper boundary function fu(𝜃M) and a 
lower boundary function fl(𝜃M) were defined for each case, yielding a correlation corridor. 
Practically, this means that 𝜃L can take any value between fu(𝜃M) and fl(𝜃M) which infers 
additional uncertainty compared to a single equation model. Different approaches can be 
followed when defining fu(𝜃M) and fl(𝜃M) and a straightforward way is to parallel shift the 
linear function obtained by regression. This parallel shifting is demonstrated in Figure 4 
for the illustrative example and was performed so that 95% of the operating points are in 
the region between fu(𝜃M) and fl(𝜃M). The corresponding values of the FI are 0.27 (positive 

Figure  SEQ Figure \* ARABIC 2: 
Visualization of the flexibility index 
assuming input parameters  and  to be 
independent. 
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correlation) and 0.496 (negative correlation). When using a correlation corridor to model 
the dependencies between 𝜃L and 𝜃M, the FI is determined by the smallest possible 
variation of 𝜃M at which either fu(𝜃M) or fl(𝜃M) intercepts with the boundary of the feasible 
region. The corresponding points are marked with a star in Figure 4. 

  Figure 4: Visualization of the flexibility index when using a correlation corridor to model (left) 
positive correlated variations and (right) negative correlated variations. 

4. Results and Discussion 
The results obtained for the FI are summarized in Table 1. It can be seen that the FI 
obtained with correlation corridors is smaller compared to the FI obtained when using a 
single equation to model the correlation. This is because the correlation corridor approach 
leads to a geometric shape describing the range of variations (feasible and expected) that 
is larger compared to the single equation approach (for the illustrative example: 
parallelogram vs. line). Figure 3 and Figure 4 show that the geometric shape of expected 
variations of correlated input parameters (measured operating points) can be emulated 
more exactly using correlation corridors compared to single equation models. 
Consequently, it can be implied that the results obtained using correlation corridors give 
a more accurate indication of a process's flexibility.   
Table 1: Flexibility index for different approaches to model correlations between the two input 
parameters of the illustrative example. 

Flexibility index [-] Linear function Correlation corridor 
Positive correlation 0.385 0.27 
Negative correlation 0.71 0.496 

Furthermore, the obtained FI can differ substantially depending on the sign of the 
correlation coefficient. For the presented example, higher values for the FI were achieved 
when assuming a negative correlation between 𝜃L and 𝜃M. It should be noted that this 
observation is highly dependent on the nature of the feasible region. For illustrative 
purposes, the feasible region was modified by changing the intercept of Eq. 3b from 40 
to 50 and the intercept of Eq. 3d from 5 to -2.1. The modified feasible region and the 
corresponding FI for independent variations of 𝜃L and 𝜃M are shown in Figure 5. The 
feasible region was altered in such a way that the FI for the independent case remains 
0.36. However, when comparing Figure 5 and Figure 2, it is obvious that in the modified 
case, a positive correlation would lead to higher FI values. Consequently, no general 
conclusion can be drawn regarding the influence of the sign of the correlation coefficient 
on the FI. Generally, it should be noted that in reality a dependency between input 
parameters of a process either occurs or does not occur. Consequently, assuming different 
cases and comparing obtained values for the FI is highly theoretical since only one 
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solution for the FI represents reality (which 
must include the existence or non-existence 
of dependencies between input parameters). 
 
In contrast to the presented illustrative 
example, the dimensionality of the 
uncertainty space (i.e. number of varying 
input parameters) of processes in industrial 
applications is often (much) higher than 
two. In such situations, it is probable that 
the dimensionality of dependencies also 
increases which leads to difficulties when 
identifying the correlation corridors 
graphically. A solution approach could be 
to identify correlation corridors using two-
dimensional projections of the multi-dimensional correlation(s). However, this approach 
may become cumbersome and, thus, further work is necessary to develop automatization 
strategies for analyzing multi-dimensional dependencies. Furthermore, future work 
should address the possibility of non-linear dependencies between uncertain parameters 
and investigate possible impacts on the presented methodology to perform flexibility 
analysis. 

5. Conclusion 
In this paper, we presented an example to illustrate that if a dependency between (some 
of) the input parameters is ignored, the obtained FI can be severely wrong, leading to an 
over- or underestimation of the process’s flexibility. In the case of correlations between 
input parameters, it is necessary to formulate mathematical models in order to include the 
parameter dependencies in the FI problem formulation. Two approaches were studied, 
and it was demonstrated that increased accuracy can be achieved by using correlation 
corridors instead of single equation models if the correlation coefficient is < |±1|. 
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Abstract 
Nitrogen porosimetry is a characterization technique used to obtain qualitative and 
quantitative information about the textural properties of porous materials. The physical 
phenomena exploited in the technique is related to thermodynamic equilibrium and 
conditioned by pore blocking. The latter phenomenon becomes relevant in highly 
disordered solids with a wide pore size distribution and a multilevel organization. The 
aforementioned technique encloses topological information associated with the trend of 
sorption isotherm. In this work, it is shown how a pore network model can be used to 
simulate nitrogen sorption process by using an efficient algorithm that combines 
equilibrium conditions and invasion percolation considerations. Such simulation tool 
will be the basis for a more comprehensive treatment of experimental characteristic 
curves and characterization of porous material properties. 
Keywords: Digital characterization, Porosimetry, Pore Network Model, Catalyst 
support, Percolation algorithm, Simulation. 

1. Methodology for the Simulation of the Characterization Techniques 
The objective of the model is to simulate the evolution of the measured variables during 
the nitrogen porosimetry characterization experiment. Such an experiment measures, at 
various nitrogen pressures, the quantity of nitrogen that is present within the porous 
medium, either adsorbed on the pore walls or filling the pore volume as a liquid phase. 
An adsorption branch is obtained by increasing the pressure from zero to saturation 
pressure, and a desorption branch by decreasing the pressure from saturation pressure to 
zero. If during adsorption, pressure is decreased before reaching saturation pressure, a 
so-called scanning curve is obtained. 
Since the system is equilibrated at every pressure step, a thermodynamic equilibrium 
model (see 1.1) has to be used to relate the pore size to the volume measured during the 
sorption process. After generating a geometrical model of the porous medium, it is 
scanned using an algorithm that determines the desorption sequence of the nitrogen 
contained in the network pores (see 1.2). The nitrogen sorption simulations can now be 
performed, both for adsorption and desorption, solving the thermodynamic model 
equations (see Algorithm 1). 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Read Pore Network Model 
Find desorption triggering diameter for each pore 
FOR Prelative = 0 to 1 
   FOR pore = 1,Npores 

Calculate the quantity of nitrogen inside the pore (Eq.1 
and Eq.2) using the actual diameter (adsorption) or the 
triggering diameter (desorption) 

   END FOR 
END FOR 
Print isotherm branch 

Algorithm 1. Pseudo-code for the sorption algorithm 

 
The main characteristics of the pore network generation algorithm used in this work 
were described by Ferreira (Ferreira et al., 2017; Ferreira, 2018). The hypotheses for the 
sorption simulations are: 

 All pores are cylindrical and rigid. 
 The adsorption mechanism starts with the adsorption of the nitrogen on the 

walls followed by sudden condensation. 
 The phase change pressure is governed by capillary forces and pore blocking 

phenomena. 
 The meniscus shape is cylindrical for adsorption and hemispherical for 

desorption. 
 The condensed nitrogen needs to be in contact with the vapor phase to 

evaporate. 
 The pore-blocking phenomenon is only dependent on the topology of the 

system. 
 The pore size distribution is within the mesopore range and over 5 nm. 
 The system is in equilibrium. 
 No other cooperative effects are considered. 

1.1. Thermodynamic Model 
To model the vapor-liquid equilibrium in a confined medium, the Kelvin-Cohan 
equation is used, (Equation 1) (Zhang et al., 2006). 𝑝𝑝 = 𝑒𝑥𝑝 −𝜎 ∙ 𝑉𝑅𝑇 ∙ 1𝑟 𝑡 + 1𝑟 𝑡  

Equation 1. Kelvin-Cohan equation as a function of the two curvature radii of the 
liquid-gas interface. 

In order to calculate the thickness of adsorbed nitrogen, t, we have chosen the Harkins-
Jura statistical thickness equation, (Equation 2) (Šolcová et al., 2006). 

𝑡 Å = 13.990.034 − 𝑙𝑜𝑔 𝑝𝑝  

Equation 2. Harkins-Jura statistical thickness equation. 

1.2. Pore Blocking Phenomena: Triggering diameter assignment. 
Nitrogen adsorption is not supposed to be constrained by the topology of the structure, 
but nitrogen desorption can be delayed creating a metastable state. Even if the 
desorption pressure in a given pore is reached, the liquid phase needs to be in contact 
with the gaseous phase to be able to vaporize. This condition can generate a pore-
blocking phenomenon. Indeed, during the desorption step, nitrogen condensed in small 
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pores can constrain the nitrogen in bigger pores to evaporate at a lower pressure than the 
one dictated by its vapor-liquid equilibrium condition. Algorithmically, the pore-
blocking phenomenon is approached from the external boundary of the pore network as 
a simultaneous advancing or receding problem. We will define as external pores to 
those located at this external boundary harboring the liquid-vapor interphase. The pore-
blocking is modeled as a sequence of events, each of which corresponds to a given pore. 
Once the equilibrium constraints are set with Equation 1, the sequence of the events will 
depend on the pore size and its position within the network. A pore’s triggering 
diameter represents the pressure at which the change of state (vaporization) will happen 
within the pore. Since the value of the pore’s triggering diameter is not necessarily 
equal to the actual pore diameter, two diameters have to be assigned to each pore: its 
actual diameter and a triggering diameter for desorption. The actual diameter is used to 
calculate the quantity of nitrogen subject to the change of state that occurs at the 
pressure corresponding to the triggering diameter during the desorption process. 
To assign a triggering diameter for desorption to each pore, a dedicated assignation 
algorithm was developed. There are six main rules on which our algorithm is based: 

 The triggering diameter (for desorption) is assigned only once to every pore. 
There is no overwriting of the triggering diameter. 

 A pore can be added to the search list only once. 
 A node can be visited only once. 
 The pore picked up from the search list must always be the pore with the 

biggest diameter on the list (priority rule). 
 The triggering diameters of the external pores correspond to their actual pore 

diameters. 
 The input of the search list must contain all the external pores (boundary 

conditions). 
For the triggering diameter assignation algorithm, we employ four different lists: 
visited_nodes, visited_pores, searchlist and connectivity_matrix. The first two are 
indexed lists. The third one is a dynamic list handled through binary heaps. The last one 
is a matrix that contains the information of the pore network. 
First, the external pores and the external nodes of the network are identified and listed in 
searchlist and visited_nodes respectively. Searchlist contains the list of pores to be 
analyzed. The binary heap (max heap) used to handle searchlist allows to rapidly find 
the pore with the biggest diameter, faster than using any kind of sorting algorithm 
(Masson and Pride, 2014). The pore with the biggest diameter is the first to be taken for 
analysis and will be called “guide pore”. There are two nodes connected to the guide 
pore: one of them has already been identified and saved in visited_nodes, so the “new” 
one (not visited yet) can easily be recognized. The connectivity of the unvisited node is 
explored to identify the pores connected to the guide pore using the connectivity_matrix. 
The newly identified pores will be added to searchlist, but first, two actions are needed: 
a test and the triggering diameter assignation. First, it is verified that the newly 
identified pores have not been analyzed before by comparing their index to the 
visited_pores list. For those that have not been analyzed before, their triggering 
diameter is obtained using the two following assignation rules: 

 If the diameter of the pore is smaller than the triggering diameter of the guide 
pore, the pore conserves its original diameter as triggering diameter. 

 If the diameter of the pore is bigger than the triggering diameter of the guide 
pore, the pore adopts the guide pore’s triggering diameter as its own triggering 
diameter. 
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Once the triggering diameter is assigned, the pore is added to searchlist and to 
visited_pores. On the other hand, the node is saved in the visited_nodes list. Finally, the 
guide pore is removed from searchlist. The loop starts again with a new guide pore 
selected from searchlist. The process is repeated until searchlist has been emptied, 
which means that all the non-isolated pores (pores with a pathway to the surface) have 
been assigned a triggering diameter. The binary heap created in searchlist uses a 
function for creating the heap, one for adding new elements to the heap and one for 
eliminating the guide pore from the heap once it has been treated. 

2. Simulation of Nitrogen Porosimetry Curves 
The simulation starts from a relative pressure equal to zero. As the adsorption process 
evolves in two steps, it is necessary to establish a condensation criterion for the 
cumulated volume of condensed nitrogen. If the diameter of the pore (Dp) is higher than 
the Kelvin-Cohan equilibrium diameter (Deq_n-2t) for a given relative pressure, then the 
adsorbed volume in the pore will be equal to: 𝑉@ = 𝜋 ∙ 𝐷 − 𝑡 ∙ 𝑡 ∙ 𝑙 
Equation 3. Total adsorbed volume as a function of the adsorbed layer thickness. 

Otherwise, it is considered that core volume has already been filled with liquid nitrogen 
and the condensed volume in the pore is simply equal to: 𝑉@ = 𝜋4 ∙ 𝐷 ∙ 𝑙 
Equation 4. Total liquid volume within the pore 

For the desorption, as the pore blocking phenomenon exist, the procedure is the same 
but using the triggering diameter (D ) of the pore instead of its actual diameter (D ) for 
the comparison against the Kelvin-Cohan equilibrium diameter (Deq_n-2t) for the given 
pressure step.  
2.1. Scanning Curves 
It is also possible to generate scanning curves accounting for the pore blocking 
phenomenon by adapting the full Nitrogen Adsorption algorithm. An easy way to do 
this is by changing the input provided to the invasion percolation algorithm. The initial 
pressure of the desorption scanning branch is fixed and the corresponding critical pore 
diameter is calculated. For the pores with a diameter over the calculated critical 
diameter, they are temporarily assigned a very large diameter. 

3. Case Study 
3.1. Network Parameters 
Networks with zero volume spherical nodes are considered for the case study. A 3D 
regular cubic lattice of 50x50x50 nodes was employed along with a Pore Existence 
Probability (PEP) equal to 0.75. The length of the pores is considered constant and 
equal to 21 nm. A pore size distribution generated by a Gaussian distribution centered at 
10 nm and a standard deviation of 2 nm was employed. The consistency between the 
input and output cumulative distribution functions for the networks with zero volume 
spherical nodes was verified. An average connectivity equal to 4.2 and a void fraction of 
0.38 were obtained. 
3.2. Characteristic Curves 
The simulated sorption isotherm is shown in Figure 1a. It corresponds qualitatively to 
typically observed experimental curves for mesoporous alumina. The isotherm 
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qualitatively corresponds to a type V isotherm (according to IUPAC classification) with 
a hysteresis loop closing at about 0.42 (Rouquerol et al., 2014). The hysteresis loop is a 
consequence of the pore blocking phenomenon and the meniscus curvature difference 
considered between condensation and vaporization in the Kelvin-Cohan equation. The 
starting and closing volume naturally coincide for both branches. 
Figure 1b shows the back-calculated pore size distribution by applying the BJH method 
(Barrett et al., 1951)to the simulated isotherm. A good agreement was found between 
the pore size distribution generated from the adsorption branch and the original 
distribution used for the pore network generation. 
 

 
Figure 1: (a) Numerical Nitrogen Isotherm (b) Calculated BJH Pore Size Distribution (Adsorption 
and desorption branches) 

 

 
Figure 2: Digital Scanning Curves 

Finally, Figure 2 provides an example of the adsorption-desorption scanning curves 
obtained for this sample. The hysteresis loop is of the H2 type with the scanning curves 
converging to the closure point of the hysteresis loop. 
3.3. Algorithm’s Execution Time 
In order to test how the execution time of the simulations scales with the size of the 
network, six cubic lattice networks of different sizes were generated. The pore existence 
probability (PEP) was set to 1. All the other input parameters have been maintained as 
described in section 3.1. The results are shown in Figure 3. The execution time is 
plotted as a function of the total number of pores connected to the surface. As the size of 
the network increases, the time required for the execution increases as well. The 
algorithm execution time proceeds with an O(Mlog(N)) time. 

(b) (a) 
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Figure 3: Effect of the number of pores on execution time of the nitrogen porosimetry algorithm. 

4. Conclusions 
A fast algorithm for the simulation of nitrogen porosimetry within a digital pore 
network was developed. The thermodynamic equilibrium conditions within the porous 
solid during nitrogen porosimetry and the associated pore blocking phenomena were 
considered. The algorithm was sped up by using a Max-Heap. A time execution test for 
the nitrogen porosimetry algorithm and an octahedral lattice of about 2 million pores 
only required 6.7 seconds for a single simulation using the binary heap in comparison to 
19 hours using conventional sorting algorithms. This shows the advantage of using the 
binary heap for handling the search list as suggested by Masson (Masson and Pride, 
2014). The size of the network is the main parameter that affects the execution time and 
exhibits an O(Mlog(N)) behavior. 
Valuable information about the topology of the pore network is implicit in the 
desorption branch of the isotherm and can be exploited by using this type of simulation. 
Adding an optimizer to this algorithm in order to adjust the digital characteristic curves 
to those of an actual porous alumina sample will allow obtaining a digital structure that 
not only exhibits the same macroscopic properties but that could also represent 
statistically the topology of the material. This algorithm has also been adapted to other 
porosimetry characterization techniques, such as mercury porosimetry, cryo-porometry, 
and thermo-porometry. 
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Abstract
This paper presents an algorithm to optimize process flowsheets using Gaussian
processes regression and trust regions. We exploit the modular structure of the flowsheet
by training separate Gaussian processes (GPs) for each module based on data generated
by a process simulator. These GPs are embedded into an optimization model, whose
outcome is used to adapt the position and size of the trust region at each iteration. A
complication that arises because of the multiple trust regions is that the optimization
problem may become infeasible, in which case a feasibility (restoration) problem is
invoked. An inherent advantage of this approach is that it removes the need for
simulating the complete flowsheet at any point. We demonstrate these ideas on the
case-study of an extractive distillation system in order to minimize its total annualized
cost (TAC). The performance shows a robust strategy to address flowsheet optimization
problems without recycles.

Keywords: Flowsheet optimization, Gaussian processes, trust regions, machine learning

1. Introduction
Process flowsheet optimization carried out using gradient-based methods requires that
the gradient information for all the process models is available (i.e., equation oriented
modeling). However, the convergence of the equation-oriented method is limited when
comparing it to the sequential modular approach. This extra benefit in the convergence
comes at the expense of the flowsheet’s gradient information, preventing gradient-based
optimizers to be applied. In these cases, derivative-free techniques are often paired to
the simulation models for optimization. But a flowsheet simulation itself may be
computationally demanding, which calls for robust and sampling-efficient methods to
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drive the optimization. Existing approaches can be broadly classified into two
categories. Global approaches proceed by constructing a surrogate model based on a
flowsheet simulation before optimizing it, often within an iteration where the surrogate
is progressively refined. A number of successful implementations rely on Gaussian
processes (Caballero and Grossmann, 2008; Keßler et al., 2019) or artificial neural
networks (Schweidtmann et al., 2019). By contrast, local approaches maintain an
accurate representation of the flowsheet (or separate modules thereof) within a trust
region, whose position and size are adapted iteratively. This procedure entails
reconstructing the surrogate model as the trust region moves towards the local optimum.
Applications of this approach to flowsheet optimization include the work by Eason and
Biegler (2018) and Bajaj et al. (2018).
This paper leverages ideas from the real-time optimization field to optimize modular
process flowsheets, by training separate Gaussian processes for each module with data
generated by the process simulation in a trust region. Background material is reviewed
next, before describing the new approach and illustrating it on an extractive distillation
system.

2. Background

Gaussian process (GP) regression: Initially developed as an interpolation technique,
GP regression can be used to describe an unknown function using noisy observations.𝑓
GPs consider a distribution over functions and can be seen as a generalization of
multivariate Gaussian distributions, .The mean function𝑓(∙)~𝐺𝑃(𝑚 •( ),  𝑘 ∙, ∙( )) 𝑚 •( )
can express prior knowledge about . The covariance function accounts for𝑓 𝑘 ∙, ∙( )
correlations between the function values at different points and has a great impact on the
GP’s prediction accuracy. The so-called hyperparameters in the covariance functions
need to be estimated in order to represent the observations as accurately as possible,
e.g., by maximizing a log likelihood function. The predicted distribution of at an𝑓(𝑥)
arbitrary input point , given the input-output data , follows a Gaussian𝑥 𝑋, 𝑦( )
distribution, .𝑓(𝑥)|𝑋,  𝑦 ~𝑁 µ

𝑓
𝑥( ),  σ

𝑓
2(𝑥)( )

GPs and trust regions in flowsheet optimization: The approach developed by Palmer
and Realff (2002) builds GPs around the whole flowsheet, which requires converged
flowsheet simulation runs over a large input domain in order to be successful. Caballero
and Grossmann (2008) proposed to construct GPs around individual process modules
instead, thereby removing the need to simulate the entire flowsheet. But difficulties with
this approach arise due to the presence of additional equality constraints (connecting
streams) in the optimization problem. del Rio-Chanona et al. (2019, 2020) recently
brought trust region concepts into a modifier-adaptation scheme for real-time
optimization. The main idea is to use GPs to correct the cost and constraint functions of
the optimization problem locally in the trust region. The present work builds upon these
ideas to enable separate Gaussian processes in multiple trust regions corresponding to
the flowsheet modules.

3. Multiple trust regions and Gaussian processes for optimization

The modular flowsheet optimization problem can be stated as:
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Each module ( denoting the last connected module) has inputs , process𝑖 = 1…𝑚 𝑚 𝑥
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parameters , outputs , cost contribution , and design/operating constraints .θ
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The equality constraints describe the connections between modules. Notice that these𝑐
𝑗

connecting constraints are nonlinear in general—think for instance about the input
stream to a module being obtained by mixing the output streams from two modules.
And the is the input-output mapping for module .φ
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The proposed approach entails the use of GP regression to predict the performance of
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where denotes the radius of the input trust region for module . At iteration , the∆
𝑖
𝑘≥0 𝑖 𝑘

GPs for module are trained with the input-output dataset . This dataset is𝑖 𝑋
𝑖
𝑘, 𝑌

𝑖
𝑘( )

generated using a Sobol sequence sampling within the space delimited by the double of
each trust region radius (i.e. 2 ). Sampling beyond the trust region radius allows for∆

𝑖
𝑘

the complete trust region space to be well-approximated (i.e., without large mismatch
errors near the trust region boundary).
The decisions about moving the trust region center (current operating point ) or𝑥𝑘

changing its radius are based upon:

(i) the ratio of actual cost reduction to predicted cost reduction:

ρ𝑘+1≔ 𝑖=1

𝑚

∑ 𝑔
𝑖,0

𝑥
𝑖
𝑘,φ

𝑖
𝑥

𝑖
𝑘,θ

𝑖( )( )−𝑔
𝑖,0

𝑥
𝑖
𝑘+𝑑

𝑖
𝑘+1,φ

𝑖
𝑥

𝑖
𝑘+𝑑

𝑖
𝑘+1,θ

𝑖( )( )

𝑖=1

𝑚

∑ 𝑔
𝑖,0

𝑥
𝑖
𝑘,µ

φ
𝑖

𝑥
𝑖
𝑘,θ

𝑖( )( )−𝑔
𝑖,0

𝑥
𝑖
𝑘+𝑑

𝑖
𝑘+1,µ

φ
𝑖

𝑥
𝑖
𝑘+𝑑

𝑖
𝑘+1,θ

𝑖( )( )
(10)

Gaussian process regression
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(ii) the violation of any inequality constraint :𝑗 =  1…𝑛
𝑔

𝑖
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A complete statement of the scheme is provided in Algorithm 1. Whenever the
optimization model (5)-(9) turns out to be infeasible, the following restoration
phase is invoked, that minimizes the violation of the design/operating
constraints:
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1
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𝑚
𝑘 + 𝑑

𝑚( ) ∈ 𝑋 (15)

Whenever the solution of the optimization subproblem (5)-(9) is feasible, the trust
regions are updated according to the value of the search performance factor shown in
Eq. 10. The step is accepted whenever this accuracy ratio is large enough. The radii for
each trust region are expanded whenever the largest feasible step is taken (i.e.,

) and a good enough prediction is achieved. If, on the other hand, the‖ 𝑑
𝑖
∥ = ∆

𝑖
𝑘

accuracy ratio is too small, only the radius of the last connected module (i.e., ) is𝑖 =  𝑚
reduced. This prevents a possible mismatch among trust regions while still allowing for
radius shrinkage as the algorithm convergences. For this reason, it is worth mentioning
that the proposed algorithm is limited to acyclic process flowsheets only. If a recycle
would be present the identification of the last connected module (see line 12 in
Algorithm 1) would be problematic. In this case, the optimization subproblem (5)-(9)
might become infeasible due to a violation of a connectivity constraint (Eq. 7). For this
same reason, the violations considered within the restoration problem (12)-(15) are only
coming from the design/operation inequality constraints (Eq. 6) (see line 4 in Algorithm
1).

Algorithm 1: Multiple trust regions and Gaussian process regression for optimization
Input: Input-output mappings ; process parameters ; initial trust regionφ

𝑖
θ

𝑖
centers

; initial and maximal trust region radii ; trust region𝑥
𝑖
0 0 <  ∆

𝑖
𝑘 < ∆

𝑖
parameters ; shrinkage and expansion0 <  η

1
≤ η

2
≤ η

3
< 1

parameters ; bounds and0 <  ξ
1
 <  1 < ξ

2
𝑋 𝑌

Repeat for 𝑘 = 0, 1, …
1 Retrieve input-output dataset using Sobol sequence sampling;𝑋

𝑖
𝑘, 𝑌

𝑖
𝑘( )

2   Train GP for each module ;𝑖
3   Solve trust region optimization subproblem (Eqs. 5-9);
4 if Infeasible due to Eq. 11 then
5         Solve feasibility (restoration) subproblem (Eqs. 12-15) ;
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6 ∆
𝑖
𝑘+1≔∆

𝑖
𝑘

7 𝑥
𝑖
𝑘+1≔𝑥

𝑖
𝑘 + 𝑑

𝑖
𝑘

8 else
9         Retrieve output values for ;𝑦

𝑖
φ

𝑖
𝑥

𝑖
𝑘 + 𝑑

𝑖
𝑘+1, θ

𝑖( )
10       Compute according to Eq. 10;ρ𝑘+1

11       Update trust regions radii:
12 if and then ;ρ𝑘+1 < η

2
𝑖 =  𝑚 ∆

𝑖
𝑘+1≔∆

𝑖
𝑘ξ

1

13 else if and then ;ρ𝑘+1 < η
3

‖ 𝑑
𝑖
∥ = ∆

𝑖
𝑘 ∆

𝑖
𝑘+1≔𝑚𝑖𝑛 {∆

𝑖
,  ∆

𝑖
𝑘ξ

2
}

14 else ;∆
𝑖
𝑘+1≔∆

𝑖
𝑘

15        Update operating point:
16 if thenρ𝑘+1 < η

1
𝑥

𝑖
𝑘+1≔𝑥

𝑖
𝑘

17 else 𝑥
𝑖
𝑘+1≔𝑥

𝑖
𝑘 + 𝑑

𝑖
𝑘+1

4. Computational case-study
4.1. Extractive distillation system

The proposed methodology is applied to the minimization of the total annualized cost
(TAC) of an extractive distillation system. An isomolar mixture of n-heptane and
toluene is separated using phenol as the extractive medium. The input-output mappings
are two separate Aspen HYSYS V9 simulations, corresponding to the two distillation
columns in the process. These two columns are connected in a serial arrangement.
Figure 1 shows a
schematic representation of each individual column containing important information
for their simulation. Purity constraints of at least 97% mole were imposed to the
n-heptane
and toluene at the top of the columns.

Figure 1: Extractive distillation diagram with some important information. Dashed lines represent
the two individual flowsheets used in the proposed methodology.

Acyclic modular flowsheet optimization using multiple trust regions and 
Gaussian process regression
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The decision variables of this problem are the reflux and boilup ratios for both columns
and the molar flowrate of phenol at the inlet of the first column. However, the process
variables related to the connecting stream (IN and OUT in Fig. 1) are also part of the
optimization subproblem that is solved at each iteration. The proposed algorithm
requires that the initial trust regions fulfill the equality (connectivity) constraints. Then,
at each iteration, a GP is trained around each column using a Sobol sequence sampling
on the vicinity of the current trust region. To construct the GPs, the mean function is set
to zero and the Matern 3/2 covariance function is used. For this case study, the trust
region parameters were set to: ; , and . η

1
= η

2
= 0. 1 η

3
= 0. 9 ξ

1
= 0. 5 ξ

2
= 2

We implemented Algorithm 1 in Python 3.7. The optimization subproblems were solved
using IPOPT (Wächter and Biegler, 2006) using CasADi (Andersson et al., 2019) for
automatic differentiation. At each iteration, we used 10 and 25 samples to construct the
GPs for the first and second columns, respectively. We also normalized the input values
to be between 0 and 1 and used an initial trust region radius of and∆

1
0 = 0. 02

. In general, the number of samples and the initial trust regions radii have to∆
2
0 = 0. 025

be chosen such that a relatively accurate approximation of the original function is
obtained, and fast computations can be achieved. Therefore, these two are important
problem-dependent hyperparameters. The optimum was reached after 50 iterations.
The starting point violates the purity constraints. Therefore, the restoration phase is
called
from the beginning as shown by the dashed line in Figure 2. Once the operating point
reaches the feasible area, the TAC is continuously minimized at each iteration (solid
line). And after the minimum is reached, the trust region radius of the second column
starts to shrink to achieve a better approximation of the true problem (dotted-dashed
line).

Figure 2: Optimization trajectory for the extractive distillation system. Black solid line: Total Annualized Cost
[MM$/year]. Red dashed line: Purity constraints violation. Blue dotted-dashed line: Trust region radius around
second column.

5. Conclusion
In this work an algorithm to optimize process flowsheets was presented. The main
advantage of the proposed method is that a complete flowsheet does not need to be
simulated at any point. The modular flowsheet structure is exploited so that multiple
GPs are trained independently for each individual module. These surrogates are built on
separate trust regions and connected within an optimization subproblem using equality
constraints corresponding to the connecting streams in the flowsheet. The location and
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size of the trust regions are updated according to the search performance at each
iteration. A restoration problem is invoked whenever infeasibility is encountered due to
an inequality constraint violation. However, the algorithm is unable to account for a
mismatch between trust regions. Therefore, its application to process flowsheets with
recycles remain an open question and it is subject of future improvement and
investigation. The algorithm demonstrated to reach the optimum effectively in the
presented case-study.

References
J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, M. Diehl, 2019. CasADi – A software framework for

nonlinear optimization and optimal control. Mathematical Programming Computation 11 (1), 1–36.
I. Bajaj, S. S. Iyer, M. M. F. Hasan, 2018. A trust region-based two phase algorithm for constrained blackbox

and grey-box optimization with infeasible initial point. Computers & Chemical Engineering 116, 306–321.
J. A. Caballero, I. E. Grossmann, 2008. An algorithm for the use of surrogate models in modular flowsheet

optimization. AIChE Journal 54 (10), 2633–2650.
E. A. del Rio-Chanona, J. E. A. Graciano, E. Bradford, B. Chachuat, 2019. Modifier-adaptation schemes

employing Gaussian processes and trust regions for real-time optimization. IFAC-PapersOnLine 52 (1),
52–57.

E. A. del Rio-Chanona, P. Petsagkourakis, E. Bradford, J. E. A. Graciano, B. Chachuat, 2020. Modifier
adaptation meets bayesian optimization and derivative-free optimization. arXiv preprint
arXiv:2009.08819.

J. P. Eason, L. T. Biegler, 2018. Advanced trust region optimization strategies for glass box/black box models.
AIChE Journal 64 (11), 3934–3943.

T. Keßler, C. Kunde, K. McBride, N. Mertens, D. Michaels, K. Sundmacher, A. Kienle, 2019. Global
optimization of distillation columns using explicit and implicit surrogate models. Chemical Engineering
Science 197, 235 – 245.

K. Palmer, M. Realff, 2002. Metamodeling approach to optimization of steady-state flowsheet simulations:
Model generation. Chemical Engineering Research and Design 80 (7), 760 – 772.

A. M. Schweidtmann, W. R. Huster, J. T. Lüthje, A. Mitsos, 2019. Deterministic global process optimization:
Accurate (single-species) properties via artificial neural networks. Computers & Chemical Engineering
121, 67–74.

A. Wächter, L. T. Biegler, 2006. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical programming 106 (1), 25–57.

Acyclic modular flowsheet optimization using multiple trust regions and 
Gaussian process regression

1123





PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

  

Systematic generation and targeting of chemical 
recycling pathways: A mixed plastic waste 
upcycling case study 
Adrián Pacheco-Lópeza*, Ana Somoza-Tornosa,b, Antonio Espuñaa*, Moisès 
Graellsa 
aChemical Engineering Department, Universitat Politècnica de Catalunya, Escola 
d’Enginyeria de Barcelona Est, C/ Eduard Maristany 16, Barcelona 08019, Spain 
bRenewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, 
Colorado 80303, United States of America 
*adrian.pacheco@upc.edu *antonio.espuna@upc.edu 

Abstract 
The current concerns regarding plastic waste accumulation and resource scarcity are 
leading to a waste and resource management paradigm shift, and consequently the number 
of alternatives for treating and upcycling waste keeps increasing. Here, we develop a new 
approach to determine the most promising processes or process routes to valorize waste 
by seeking the best environmental and economic performance. Due to the large number 
of alternatives, we designed this method to select a certain number of choices prior to 
further assessment and optimization. As a case study, we chose the treatment of mixed 
plastic waste. Using the methodology, we are able to select a few alternatives among a 
large number of different alternatives as the most promising towards closing material 
loops. The use of graph theory and branch and bound algorithms allows building an 
efficient framework for this purpose. 
 
Keywords: waste-to-resource, chemical recycling, circular economy, short-path 
algorithms, material upcycling.  

1. Introduction 
Plastics are widely spread materials due to their versatility, good performance in a wide 
range of applications, lightweight and low production cost. This fact has led along the last 
decades to the rapid increase of plastic items production, especially in segments showing 
low costs and short useful life, leading to increasingly high amounts of plastic waste 
generation across the globe, mainly in rapidly growing economies. Thus, waste 
accumulation and resources depletion concerns are set to grow in the following years due 
to the lack of effective and efficient resource and waste management policies in most 
countries worldwide. In addition, there are many barriers that prevent the development of 
suitable long-term solutions to this problem, such as social, technological and financial, 
among others. 

In an effort to address this challenge, there has been an increasing interest in developing 
waste-to-resources processes to obtain valuable products from plastic wastes. Among 
them, chemical recycling stands out as one of the most promising alternatives, including 
a significant number of different implementations, which keeps growing up. This opens 
up a wide range of options for the upcycling of materials. Within these resource recovery 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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technologies, the ones drawing more attention are thermolysis processes such as 
pyrolysis, hydrocracking and gasification, which are being studied under a wide range of 
conditions (Zhang et al., 2020). 

There have been efforts towards model development in order to find optimum solutions 
for the treatment of available plastic waste, such as mixed plastic waste (MPW), as the 
one proposed by Somoza-Tornos et al., 2021. Nevertheless, based on the increasing 
number of choices present, there is a surging need for a methodology to systematically 
generate and assess new potential pathways as a means to obtain the most promising and 
profitable alternatives as a previous step to their detailed analysis and optimization. 

To address such a problem, the methodology developed in this work extends the 
framework proposed in previous contributions (Pacheco-López et al., 2020). This 
framework aims to identify and assess the most suitable routes towards closing materials 
loops and resources upcycling. For the knowledge modelling of process, waste and 
resources information in the domain of Process Systems Engineering (PSE), we based 
our approach on the use of ontologies. The resulting knowledge corpus is queried in order 
to implicitly generate all possible routes connecting available wastes with tradable raw 
components. Bounds for partial and complete routes are assessed according to economic 
and environmental aspects for the identification of the most promising alternatives. 
However, due to the large number of alternatives available, we propose a pre-selection of 
the most promising ones, as a previous step to a more thorough assessment. 

2. Problem Statement 
The problem can be formally posed as follows: 

Given: 
o A large database of processes available for the domain of PSE, 

including information about processes, such as costs, environmental 
impacts and yields. Some of them can be potentially used for the 
treatment of plastic waste and its transformation into eventual 
intermediate or valuable products.  

o A list of available plastic waste sources, including information about 
its composition, cost and environmental footprint. 

o A list of potential products demand, including information about their 
marketable price, quality requirements and technical specifications. 

 Find: 
o A set of the most promising routes and alternatives in order to connect 

waste with tradable products. 

3. Methodology 
This work focuses on the generation of routes using branch and bound algorithms (B&B). 
Before applying such algorithms, all the possible processes are obtained from the 
ontology with the aim of connecting waste sources with tradable products thanks to an 
input-output matching method, linking each material stream with each one of their 
tentative processes. Then a tree-like graph with all the possible paths is built using a state-
task network approach (Kondili et al., 1993), where operations and processes are 
considered as “tasks” and feedstock, intermediate and final products as “states”, both 
included as explicit or implicit network interconnected nodes. Using this kind of 
algorithm, we are able to find a set of tentative routes avoiding the need of evaluating 
every single possibility. Consequently, a certain number of paths is generated whose are 
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fit for further assessment. The methodology can be structured into four sections: 
knowledge management, database querying, graph building and graph evaluation. 

3.1. Knowledge management 
As introduced in section 1, we are using ontologies as a knowledge management tool, 
providing consensual knowledge representation for a specific application domain. For the 
domain of Chemical Aided Chemical Engineering (CAPE), we are using an open-source, 
recognized ontology within the domain as it is OntoCAPE (Marquardt et al., 2010). The 
ontology has been analyzed and adapted to the framework in development; likewise, some 
concepts have been modified or added to specify aspects that were not previously defined 
in the ontology, such as the environmental impact indicators among others.  

All the processes, plastic wastes, intermediate products and tentative final products have 
been asserted in the ontology with all the corresponding property relations and values 
such as costs, prices, yields and environmental indicators. 

3.2. Database querying 
For the integration of the ontology and the algorithm, an ontology-oriented interface is 
needed. We are using an object-oriented programming tool for accessing entities from 
OWL ontologies, namely an Open-Source software called Owlready developed in Python 
(Lamy, 2017). This tool enables, not only an easy access to all information available in 
the ontology, such as entities and relations between them, but also adding new 
information in a systematic way and running a reasoner for the inference of new missing 
relations or discovery of possible conceptual inconsistencies. 

3.3. Graph building 
With the information for each entity available in the ontology, an input-output matching 
method is developed to connect wastes, processes and products, thus building the 
corresponding graph with the STN approach mentioned above. This representation can 
be classified as a bipartite graph, which has two kinds of nodes, one for processes 
(considered in the ontology as “steps”) and another for materials (considered as “states”), 
which are connected through edges. At this level, the graph stores information about 
economic, environmental or behavioral aspects in its nodes, but no routing or path finding 
is performed yet. 

3.4. Network evaluation 
Once the graph is implicitly built, a branch and bound algorithm is implemented so as to 
analyze the branches rooting from the initial node, which corresponds with the waste to 
treat. The algorithm starts building branches and choosing only those with better 
performance to continue advancing towards the final products or choosing an 
intermediate point that could be more profitable. The algorithm is adapted to allow the 
completion of a limited number of paths for an easier further assessment. 

With the purpose of calculating the bounds for each branch, economic and environmental 
aspects are added up, specifically prices with monetized impacts for materials on one 
side, and costs with monetized impacts for processes on the other. Then, for each process 
considered, a total profit is obtained and added to the respective branch as shown in 
equations 1 to 4. 𝐸𝐸_𝑝𝑟𝑖𝑐𝑒 =  𝑃𝑟𝑖𝑐𝑒 +  𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝐸𝐼   (1) 𝐸𝐸_𝑐𝑜𝑠𝑡 =  𝐶𝑜𝑠𝑡 +  𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐸𝐼  (2) 𝐸𝐸_𝑝𝑟𝑜𝑓𝑖𝑡 =  ∑ 𝐸𝐸_𝑝𝑟𝑖𝑐𝑒∈ −  ∑ 𝐸𝐸_𝑝𝑟𝑖𝑐𝑒∈ − 𝐸𝐸_𝑐𝑜𝑠𝑡  (3) 𝑇𝑜𝑡𝑎𝑙_𝑝𝑟𝑜𝑓𝑖𝑡 =  ∑ 𝐸𝐸_𝑝𝑟𝑜𝑓𝑖𝑡∈  (4) 
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4. Case Study 
In order to test the methodology, we chose a case study for the recycling of Mixed Plastic 
Waste (MPW). All possible paths for the treatment of MPW are built, including those 
partial paths that may yield intermediate products and be used for other purposes, such as 
fuel for energy recovery or the transportation sector. 

For this case study, the ontology has been filled with information from processes available 
in the literature related to this domain, including end-of-pipe processes traditionally used 
to get rid of this kind of wastes, such as landfilling and incineration for energy recovery, 
as well as other emerging processes like pyrolysis at a wide range of temperatures with 
and without previous mechanical sorting, leading to promising circular economy 
solutions. The information related to those processes which specifications not available 
in the literature, not reliable or contradictory has been estimated thanks to commercial 
simulators and standard procedures for the assessment of economic and environmental 
indicators. 

Departing from a total of 140 tentative steps asserted in the ontology which are directly 
or indirectly related to this specific case study, approximately 300 potential paths are 
obtained, from which nearly 100 complete paths have been deployed and 200 partial 
routes have been also analyzed. From this high number of possibilities, we select only 20 
paths for illustrative purposes, the partial process tree resulting from these 20 alternatives 
is schematized in Figure 1. The aggregated amounts for environmental and economic 
aspects, as well as the yields of each process are shown in the scheme. It is important to 
note that the values are unitary, i.e. per ton, and they have to be multiplied by the yield to 
obtain the absolute values. 
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1000ºC Separation Pure components

Pyrolysis 
740ºC Separation

MP Waste
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Separation

Separation

Separation

Separation

Separation
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Pure components

Pure components

Pure components

Pure components

Pure components

Pure components

Pyrolysis gas

Pyrolysis oil

Pyrolysis gas

Pyrolysis gas
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Figure 1. Possible alternatives for MPW treatment 
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Systematic generation of chemical recycling pathways: A mixed plastic waste  
upcycling case study  

5. Results and Discussion  
Among all the possible alternatives, only the selected 20 are shown in Table 1. The 
algorithm builds the paths with an input-output matching as explained in section 3.3, 
afterwards it evaluates the branches, node by node, and keeps the alternatives that show 
better performance, discarding those with lower economic and environmental results. 

For this case study, the upper bound corresponds to that where a sorting is applied and a 
pyrolysis is performed on the polyethylene waste at 1000ºC and a mixture of gases is 
obtained apart from polypropylene, polyethylene terephthalate and polystyrene sorted 
wastes. As we can appreciate in Table 1 the next upper bound comes when the mixture 
of gases is separated into its pure components, the third one is the pyrolysis at 740ºC of 
the polyethylene waste, obtaining a mixture of pyrolysis oil and gas, apart from the sorted 
wastes as mentioned before. The rest of the bounds can be consulted in Table 1. 
Table 1. Deployed process paths, outputs and bounds for the illustrative 20 alternatives. 

 Processes Outputs OF 
1 Sorting + Pyro. PE 1000ºC PE 1000ºC Pyrolysis gas + PP, PET, PS wastes 1457 
2 Sorting + Pyrolysis PE 

1000ºC + Separation 
Butadiene, benzene, ethylene, methane and propene 
+ PP, PET, PS wastes 

1084 

3 Sorting + Pyro. PE 740ºC  PE 740ºC Pyro. oil and gas + PP, PET, PS wastes 1048 
4 Sorting + Pyro. PS 425ºC PS 425ºC Pyrolysis oil + PP, PET, PE wastes 985 
5 Sorting + Pyrolysis PE 

740ºC + Separation(Gas) 
PE 740ºC Pyrolysis oil, ethylene, ethane, methane 
and propene + PP, PET, PS wastes 

769 

6 Pyrolysis MPW 600ºC + 
Separation(Gas) 

MPW Pyrolysis oil, butane, ethylene, 1-butene, 
propene, propane, hydrogen, methane and ethane 

619 

7 Sorting + Pyro. PE 740ºC + 
Separation(Oil) 

PE 740ºC Pyrolysis gas, pyrene, indane, benzene 
and toluene + PP, PET, PS wastes 

423 

8 Pyrolysis MPW 600ºC MPW Pyrolysis oil and gas 356 
9 Pyrolysis MPW 600ºC + 

Separation(Both) 
Butane, ethylene, propane, hydrogen, methane, 
ethane, ethylbenzene, styrene, benzene, toluene… 

288 

10 Sorting Sorted plastic waste (PE, PP, PET, PS) 236 
11 Sorting + Pyrolysis PS 425ºC 

+ Separation 
Ethylbenzene, cumene and toluene + PP, PET, PE 
wastes 

185 

12 Sorting + Pyrolysis PE 
740ºC + Separation(Both) 

Ethylene, ethane, methane, propene, pyrene, indane, 
benzene and toluene + PP, PET, PS wastes 

144 

13 Sorting + Pyrolysis PP 760ºC 
+ Separation(Gas) 

PP 760ºC Pyrolysis oil, ethane, methane, propene, 
and ethylene + PE, PET, PS wastes 

123 

14 Sorting + Pyro. PP 760ºC PP 760ºC Pyro. gas and oil + PE, PET, PS wastes 115 
15 Sorting + Pyrolysis PP 760ºC 

+ Separation(Both) 
Ethane, methane, propene, ethylene, benzene, 
toluene and naphthalene + PE, PET, PS wastes 

94 

16 Pyrolysis MPW 600ºC + 
Separation(Oil) 

MPW Pyrolysis gas, ethylbenzene, styrene, benzene 
and toluene 

25 

17 Sorting + Pyrolysis PP 760ºC 
+ Separation(Oil) 

PP 760ºC Pyrolysis gas, benzene, toluene and 
naphthalene + PE, PET, PS wastes 

86 

18 Direct Downcycling MPW MPW 0 
19 Incineration Energy Recovery -17 
20 Landfill None -238 
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Among the most promising possibilities for the upcycling of MPW, we find pyrolysis at 
different temperatures, with or without previous sorting. The number of alternatives 
grows exponentially with the number of available processes. Therefore, it is not efficient 
to assess all these alternatives individually, in addition to being more time consuming and 
computing resources demanding. Hence, this previous selection guarantees that the 
subsequent assessment and in-depth analysis is performed only on the most promising 
alternatives, and not all possible alternatives. 

Results show that this methodology is useful to identify all the possible routes for closing 
the materials loops and select only those that are most promising, prior to more detailed 
route assessment. This contribution represents an important previous step and extension 
of the previously developed scheme (Pacheco-López et al., 2020), with the purpose of 
narrowing down the number of available alternatives. 

6. Conclusions  
This approach enables the systematic identification of the available opportunities for the 
treatment of waste and therefore closing the material loops, reducing resources 
exploitation and depletion, as well as the disposal of waste and reducing the 
environmental impact this entails. The methodology allows the pre-selection of paths 
according to their performance, reduces the amount of choices to those that are more 
promising and facilitates next steps. Moreover, the method allows the pre-selection of the 
most relevant paths and removes those that are economically and environmentally less 
profitable. 
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Abstract 
By using the EPANET software, the distribution system of Sedibeng Water in the 
Republic of South Africa was modelled and populated with actual free chlorine data.  It 
was found from the model that the maximum age of the water from leaving the plant up 
to a point 70 kilometres away from the plant was 160 hours.  With a calculated summer 
chlorine decay rate of 0.052 h-1 for summer conditions and 0.027 h-1 for winter conditions, 
it was demonstrated that interim booster chlorination can be discontinued during the 
winter months, while these booster stations should be operational during the warmer 
periods to ensure adequate disinfection in the overall 300 kilometre pipe supply system.    

In addition to optimising the current disinfectant conditions, it was also demonstrated that 
a switch to ClO2 for final disinfection in the network is possible, with the benefit that 
interim chlorination can be discontinued. This option will require an additional USD 
27,000 to be spend per annum, with provision made for a once-off capital expense of 
USD 65,000. 

 
Keywords: Chlorine, Chlorine dioxide, EPANET, decay, disinfectant. 

1. Introduction and Context 
Sedibeng Water is a Water Board in South Africa and purifies approximately 210 Ml/d 
raw water from the Vaal River to potable standards.  This raw water is characterized by 
seasonal elevated levels of algae which leads to unpleasant taste and odours in the water.  
Sedibeng Water employs standard clarification and filtration technologies at their two 
water treatment plants (WTP’s) namely the Balkfontein WTP and the Virginia WTP. Use 
is made of chlorine as disinfectant while they also make use of interim chlorination at 
three areas in their network due to the vast distances being covered by their supply system 
which uses over 300 kilometres of piping. Chlorine depletion occurs in the network and 
a need was established to predict this occurrence using suitable software.  
 
EPANET is a public domain software application which can be used to track amongst 
others the flow of water, the pressure at nodes, chemical concentrations and the decay 
thereof, and the age of the water in the network.   
 
Another aspect of this research included the evaluation of chlorine dioxide (ClO2) as an 
alternative to using chlorine as final disinfectant in the network. Due to the superior ability 
of ClO2 in controlling iron, manganese, and taste and odour causing compounds, the 
option to replace chlorine with ClO2 becomes an attractive possibility, and once the 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50174-1



 CJ van der Walt et al.

EPANET model was calibrated, a “what-if” scenario was modelled where the efficacy of 
ClO2  to provide for sufficient residuals was investigated.  

2. Disinfectant Decay 
 
Disinfection is regarded to be the most important process in water treatment, and with 
known dangers associated with this action around the formation of disinfectant by-
products, the formation of these compounds need to be minimised (Monteiro et al, 2014).  
At the same time, it is recognised that water without disinfection, will result in far greater 
dangers around health, and cost implications of cleaning out overgrown reticulation 
systems. It is also difficult to predict chlorine decay in extensive and complex distribution 
systems, due to all the variables such as pH, organic content, hydraulic conditions and 
temperature to name but a few. 
 
Since these large number of variables limit extensive applications of universal chlorine 
decay models, each distribution system should be considered individually, depending on 
its different environmental conditions (Pasha & Lansey, 2010). The decay of disinfectants 
have been reported on by numerous authors and it is generally accepted that the decay of 
any disinfectant is affected by two main items namely the bulk reaction in the water mass 
and the surface reactions (wall decay) in the pipe network (Fisher, et al., 2011).  The bulk 
reaction is influenced by chemical properties of the water such as temperature, organic 
content and pH, while the surface reactions are more complex and influenced by biofilm 
growth, sediments in the pipe, type of pipe as well as its condition and age.   
 
Laboratory studies can be conducted on-site to determine the bulk decay rate of chlorine 
in treated water, while the determination of the wall decay rates can best be obtained by 
analysing actual data in the network.  By obtaining these values, and applying a suitable 
mathematical model to it, it is possible to populate the EPANET model with these decay 
rates and calculate theoretical free chlorine values at selected points in the network. 
EPANET is the most well-known process based model to be used for chlorine decay as it 
makes provision for separate measurement and programming for bulk decay and wall 
reactions (Rossman, 2000) 
 
Comparing theoretical values to actual values subsequently remains to be done in 
delivering a calibrated model of EPANET whereby the decay of disinfectants can be 
modelled and used in “what-if” scenarios for planning purposes 

3. 3. Model Calibration 
3.1. On-site Experimental Decay Work  
 
The on-site decay tests were done by taking a sample of the treated chlorinated water 
from the sampling point at the pumping station, placing it in amber, dark glass bottles in 
a controlled temperature environment (13 ⁰C and 23 ⁰C) and testing for free chlorine 
readings on hourly intervals for a period of 14 hours.  Free chlorine analysis was done by 
the laboratory using the same method employed for the weekly monitoring points in the 
network. These tests were done for the final chlorinated water at the Balkfontein WTP 
and at the Virginia WTP.  Figure 1 indicates the results for these tests. 
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Figure 1: Experimental decay rates for Balkfontein and Virginia final water 

 

Decay rates for chlorine were calculated using the following equation: 𝐶  𝐶 𝑒  

Where : 

C(t) = Calculated disinfectant concentration after time t (mg/l) 
Co = Initial disinfectant concentration (mg/l) 
k = Decay rate (1/h) 
t = time (h) 
 

In general it is seen that the 10 ⁰C difference in temperature leads to an approximate 
doubling in decay rates, which is not nearly as drastic as the suggested 5 ⁰C increase as 
per Fisher, et al., 2011, and also lower than the 16–17 ⁰C temperature rise as per the 
(Sathasivan, et al., 2009) findings for doubling of decay rates. 
 
3.2. Calibration with Network Data 
 
Weekly monitoring of water quality is done at selected sites in the Sedibeng Water 
network and measured amongst others for free chlorine, pH and turbidity.  This data were 
analysed to obtain site specific bulk- and wall decay coefficients. The method followed 
for every EPANET pipework section is set out below: 

• Obvious errors regarding the measured values were discarded.  These were 
mostly where an increase in free chlorine value was found following a period of decay.  
In discussions with Sedibeng Water it was indicated that this is acceptable and dealt with 
instances where interim emergency adding of chlorine was made; 

• A first order equation was fit on the data to determine bulk decay coefficients 
and wall decay coefficients.  Where data points only constitutes a pipe section, a 
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combined bulk and wall decay coefficient was established and where only a reservoir was 
monitored for inlet and outlet sections, a bulk decay coefficient was established; 

• The wall decay coefficients and bulk decay coefficients were plotted on a graph 
as a function of time of year to determine any obvious correlations with temperature; 

• Statistical evaluations were done on the data to determine a median for the data, 
a standard deviation of the data as well as a coefficient of variation (CV).  A CV larger 
than one (1) was considered to be statistically less usable in the calculation of a decay 
coefficient, and was hence discarded.   

• Finally, the coefficients for the various sections were introduced into the 
EPANET model and an average residual chlorine concentration was calculated for the 
various monitored nodes in the system and compared to an average value of chlorine 
residual actually monitored at the node over a period of a year (See Table 1) 

Two clear results stood out from the data in that:  

• the decay rate during the winter months dropped to 50-60% of the decay rate 
experienced during the summer months.  This is in line with the on-site test results and it 
was therefore necessary to make provision for a winter model and a summer model; and 

• the bulk decay rates in the system for both winter and summer conditions 
approximated the value of the combined decay coefficient.  This is in line with findings 
from (Fisher, et al., 2017) where it was found that bulk decay is predominant when pipe 
diameters exceeds 500 mm, which is the case in most of this network. 

Figure 2 below shows a typical distribution of calculated decay coefficients as a function 
of the time of year experienced at two of the monitoring points in the network.  With 
South Africa being in the Southern hemisphere, the colder months are typically from 
April to July, and it is seen that the decay coefficient decreases in the colder months 

 

 
Figure 2: Calculated decay coefficients for two monitoring points in the network 
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Table 1 below shows the average actual measured free chlorine values per node in the 
supply system, compared with the calculated EPANET free chlorine values. 

Table 1: Calculated EPANET model values compared with actual measured values 

Item 

Summer data Winter data 

Actual EPA-
NET 

Absolute 
variance 

(%) 
Actual EPA-

NET 
Absolute 
variance 

(%) 
Balkfontein Old Reservoir 2.38  

 
2.68  

 Balkfontein New Reservoir 2.11 2.70 
Bothaville Reservoir in 1.17 0.71 39.3 % 1.49 1.24 16.8 % 
Leeudoringstad Reservoir in 0.73 0.72 1.46 % 1.44 1.43 0.7 % 
Re-chlorine Leeudoringstad 1.19  1.69  

Buisfontein Reservoir out 0.51 0.69 35.3 % 1.19 1.40 17.6 % 
De Erf reservoir out 1.64 1.33 8.9% 2 2.02 1.0 % 
Allanridge Reservoir in 1.32 0.95 28.0 % 1.56 1.63 4.5 % 
Allanridge Reservoir out 0.29 0.31 6.9 % 1.1 0.86 21.8 % 
Re-chlorine Koppie Alleen 1.79  1.91  

Brabant Reservoir out 1.36 1.36 0.0 % 1.62 1.66 2.5 % 
Ventersburg Reservoir out 0.74 0.58 21.6 % 1.06 1.06 0.0 % 
Wesselsbron draw-off 1.27 1.28 0.8 % 1.48 1.62 9.5 % 
Wesselsbron Reservoir in 0.91 0.74 18.7 % 1.32 1.22 7.6 % 
Wesselsbron Reservoir out 0.34 0.30 11.8 % 0.93 0.69 25.8 % 
Virginia Reservoir 2.04  1.34  

Dirksburg Reservoir 1 out 0.32 0.33 3.1 % 0.49 0.55 12.2 % 
Leeubult reservoirs out 0.18 0.13 27.8 % 0.25 0.22 12.2 % 
AVERAGE VARIANCE  16.4 %  10.0 % 

4. Discussion 
 
The above sections demonstrated that EPANET can be used successfully to simulate 
actual conditions in the bulk distribution network regarding hydraulic behaviour and 
chlorine decay.  After calibration of the model, an 84-90 % correlation with actual 
measured values could be reported.  To use this model in practice, a number of “what-if” 
scenarios have been identified to assist Sedibeng Water in planning purposes for: 

• the possible change to an alternative disinfectant like chlorine dioxide and the 
financial implications thereof; 

• the determination of minimum levels of chlorine measured at the two WTP’s to 
not warrant any additional chlorination in the network; and 

• the determination of minimum levels of chlorination at the WTP’s and the  
booster chlorination stations to ensure adequate free disinfectant levels in the system. 
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5. Conclusions 
 
The aim of this research was to develop a mathematical model for chlorine decay based 
on actual conditions prevalent in the bulk distribution system of Sedibeng Water.  This 
model can then be used for operational and planning purposes. The following conclusions 
were reached following the investigation: 

a) Although the effect of wall decay rates was expected to have a similar impact of 
bulk decay rates, it was found that the bulk decay coefficient approached the total decay 
rate coefficient.  This can be attributed to the large number of reservoirs in the system, 
mostly laminar flow conditions being experienced in the pipes and the fact that the 
majority of bulk pipelines has a diameter larger than 500 mm. 

b) A definite effect of temperature could be seen on the calculated decay rates with 
the so-called winter decay rate being 50-60% of the so-called summer decay rate. 

c) Using the monitoring values in the reservoirs, a reasonably accurate simulation 
of hydraulic and disinfectant decay conditions of the Sedibeng Water bulk distribution 
network could be done by means of the EPANET software.  This model has an 84-90% 
correlation with actual conditions in the network; 

d) It was found that Sedibeng Water already to a large extent has optimised their 
booster dosing conditions.  There is a possibility to further reduce average chlorine 
consumption at the Balkfontein WTP by 25% and save about USD 65,000 per annum in 
the process; 

e) It will not be possible to do away with interim chlorination during summer 
periods due to the impact which high levels of chlorine will have on nearby communities  
and due to the relatively fast decay rate of chlorine in the network; and 

f) The implementation of chlorine dioxide as secondary disinfectant at the 
Balkfontein WTP is an option, while the use of interim chlorine booster stations can be 
discontinued.  This option will require an additional USD 27,000 to be spend per annum, 
with provision made for a once-off capital expense of USD 65,000 
 

References 
Monteiro, L. et al., 2014. Modeling of chlorine decay in drinking water supply systems using 

EPANET MSX, Procedia Engineering, Issue 70, pp. 1192-1200. 

Pasha, M. & Lansey, K., 2010. Effect of parameter uncertainty on water quality predictions in 
distribution systems-case study. Journal of hydroinformatics, Volume 12, pp. 1-21 

Fisher, I. et al., 2011. Suitability of Chlorine Bulk Decay Models for Planning and Management 
of Water Distribution Systems. Critical Reviews in Environmental Science and Technology, 
Volume 41, pp. 1843-1882. 

Rossman, L., 2000. EPANET 2 user’s manual. U.S. Environmental Protection Agency. 

Sathasivan, A., Chiang, J. & Nolan, P., 2009. Temperature dependence of chemical and 
microbiological chloramine decay in bulk waters of distribution systems. Water Science & 
Technology: Water Supply–WSTW 

Fisher, I., Kastl, G. & Sathasivan, A., 2017. New Model of Chlorine-Wall Reaction for 
Simulating Chlorine Concentration in Drinking Water Distribution Systems. Water Research, 
Volume 15, pp. 427-437 

1136  CJ van der Walt et al.



 

Compartmental Modelling of Shell Side Fouling in 
a Shell and Tube Heat Exchanger 
Renat Taurgalinova, Federico Lozano Santamariaa and Sandro Macchiettoa* 
aImperial College London, South Kensington Campus, London SW7 2AZ, UK 

s.macchietto@imperial.ac.uk 

Abstract 
Accurate and fast models are required to optimise the design, control and operations of 
shell and tube heat exchangers (STHE) subject to fouling. To date, research effort has 
mainly focused on tube side fouling. Techniques proposed for the shell side fouling are 
limited to i) mechanistic thermo-hydraulic models with simple Flow Stream Analysis 
(FSA) and ii) Computational Fluid Dynamics (CFD) models. The former ignore flow 
dynamics on the shell side. The latter cannot quantitatively predict fouling, are 
computationally very heavy and cannot be utilised for optimisation and control. 
In the paper, we combine the benefits of FSA and CFD methods by creating a hybrid 
Compartmental Model (CM). For an actual exchanger subject to crude oil fouling we 
analyse its outcomes and compare them to CFD and FSA methods. A preliminary CFD 
study yields detailed shell side velocity field information, based on which an 
appropriate compartments network is created. A simulation is performed using a two 
dimension (2D) distributed dynamic STHE model which utilises a FSA for the shell 
side . A dynamic model for the compartments with a shell side threshold fouling model 
is developed, utilising selected results from the CFD (velocity data) and 2D-FSA (heat 
duty) studies. Results from the CM model and comparison with the CFD and 2D-FSA 
models, for the same operation, provide valuable insights regarding the role of shell side 
velocities in predicting overall exchanger performance. 
Computationally, for this case study, the CM model is solved 5.5 times faster than the 
distributed dynamic model and 36 times faster than the CFD model, indicating the 
approach has good potential for use in design and operations optimisation. 

Keywords: Compartmental multi-zonal hybrid model, CFD model, Heat exchanger 
shell side, crude oil fouling, Flow Stream Analysis. 

1.  INTRODUCTION 
Accurate and robust models of STHEs under fouling are required for design, control and 
operations support purposes, with large economic and safety implications (Diaz-
Bejarano et al., 2018). A choice must be made between model detail and usability. 
Mechanistic thermo-hydraulic models can simulate mass and heat transfer together with 
complex reaction kinetics and separations in relatively simple geometries and over long 
periods in reasonable computer times and are therefore useful for control and 
operational studies. Computational Fluid Dynamics (CFD) models, on the other hand, 
can describe complex fluid dynamics in far greater detail in complex geometries, 
however only over short periods and at the expense of long computation times. 
Compartmental Models (CM) aim to achieve a compromise between the two. There is a 
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rich literature on their use (Jourdan et al., 2019), however, not for shell and tube heat 
exchangers (STHE) subject to fouling. Here, a CM model, specifically capable of 
dealing with fouling on the shell side, is presented. A direct comparison of three 
approaches (CFD, a 2D distributed thermo-hydraulic and CM) is also presented. 

1.1. Shell and tube heat exchanger models 
To date, research effort has mainly focused on fouling on the tube side. Shell side 
fouling is very common but has not been adequately studied. Various mechanistic 
thermo-hydraulic heat exchanger models can deal with fouling (see Diaz-Bejarano et al. 
2017 for a review). Lumped parameter type models do not consider spatial variations in 
the heat exchanger. Distributed parameter models account for spatial changes axially 
along the tubes and radially inside a tube (e.g. Coletti and Macchietto, 2011, Diaz-
Bejarano et al., 2016) resulting in much better predictions. 

Estimating the thermal and hydraulic performance on the shell side is challenging due to 
the complex flow distribution induced by the equipment geometry (e.g. segmental 
baffles, bundle supports, flow bypasses) (Figure 1). The Bell-Delaware and Flow 
Stream Analysis (FSA) (Hewitt, 2008) approaches, extensively used in industry for the 
shell side in a clean state, do not account for fouling. All the thermo-hydraulic lumped 
models and most of the distributed ones discussed above neglect shell side fouling. A 
notable exception is Diaz-Bejarano et al. (2018), who couple a shell side Flow Stream 
Analysis with a typical reaction fouling model, to calculate the progressive occlusion of 
flow bypasses. This model, implemented in Hexxcell Studio (2018) is used later. By its 
nature, this approach does not reflect the spatial distribution of velocities and all related 
quantities (e.g. Reynolds no., deposition, heat transfer) on the shell side. 

CFD models calculate detailed fluid dynamics and heat transfer taking into account 
irregular flow distribution patterns (e.g. vorticity, recirculation joints, etc.), wall effect 
and boundary layer conditions. For particulate fouling in crude oil, Emani et al. (2017), 
calculated the particles transportation, adhesion and removal trajectories. This gives 
only a qualitative assessment of mass, thickness and locations of fouling. For chemical 
reaction fouling CFD still lacks the ability to predict accurately reaction kinetics and 
fouling rates. Chambon et al. (2019) calculated a-posteriori steady state fouling rates 
based on velocity and temperature profiles. For dynamics, CFD fouling simulations is 
normally restricted to seconds or minutes. Many simplifications are used, such as 
decoupling shell and tube sides (Wang et al., 2012, Yang et al, 2015, Emani et al., 2019; 
Gounder & Emani, 2018). Altogether, this presently prevents the use of CFD models for 
control and operations optimisation. 

Compartmental Models (CM) achieve a compromise between the above approaches. 
CFD views an object as a very large number of small cells, CM as a small number of 
large, approximately homogeneous, compartments (macro cells), mapped to a finer 
CFD grid (Figure 2 left). Equations in a compartment detail the processes within it (e.g. 
heat exchange, fouling), while convective and turbulent fluxes between them define 
their interaction (Figure 2 right) (Bezzo et al., 2000; Haag et al., 2018).  
1.2. Case study, CFD model, Compartment model and 2D distributed model 
A case study is drawn from a well-documented CFD paper (Chambon et al., 2019), 
from which exchanger data (single pass, 4 baffles), properties of both fluids (residue in 
the shell side and crude oil in the tube side) and inlet operating conditions (Table 1), 
were obtained (additional details in Taurgalinov, 2020). A CFD model of the exchanger 
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was developed in COMSOL Multiphysics 5.4 (COMSOL Inc., 2019). A simulation 
without fouling gives the velocity fields on tube and shell sides (Figure 3). As expected, 
the shell side velocity field is greatly affected by the baffles, with low velocity wakes 
and recirculation joints. All central and outlet baffle spacing have a low and a high 
velocity zones. This CFD simulation took 72 minutes. Additional cylinders (around the 
tube bundle and avoiding the bypass clearance) of various lengths allowed calculating 
average shell side velocities in the corresponding domains (Figure 4, top left).  

 
Figure 1 Shell-Side Flow Distribution (left, Mukherjee, 1998) and Flow Streams (right, Diaz-
Bejarano et al., 2018) 

     
Figure 2 Compartment Formation through Aggregation or Division (left) and Exchange Fluxes 
between Compartments (right) (Haag et al., 2018) 

Based on these flow distributions, the shell side was divided into 9 cylindrical 
compartments (1 for the residue inlet section, 2 for each baffle section and 2 for the exit 
section), mapped onto the exchanger and linked between them as shown in Figure 4 
(bottom). Each compartment model is structured as detailed in Figure 4 (top right). A 
single tube is considered to represent all tubes in the bundle, with a fouling layer 
deposited on the outside (shell side) according to the prevailing conditions in that 
compartment (for ease of assessment, no fouling is assumed to occur on the tube side). 
Due to space limitations selected equations only are given in Table 2. Deposition on the 
outside of the tube is assumed to follow the Ebert and Panchal model (Panchal et al., 
1997), with conductive heat transfer through the tube wall and the fouling layer in series 
in the radial direction. Velocities of shell-side flows in each compartment are based 
initially (clean bundle) on averages from the CFD simulation, and then adjusted for 
fouling according to the gap reduction between the tubes (Eq. 5 in Table 2). Shell side 
heat transfer is modelled as forced convection across cylinders (Hilpert, 1933). The CM 
model was implemented in gPROMS (2018). The same exchanger was simulated using 
the 2D-FSA dynamic model in Hexxcell Studio (labelled HS). The CFD model does not 
include fouling, HS does, using FSA on the shell side. Comparison runs assumed no 
fouling on either side, and fouling only on the shell side with the same fouling 
parameters. Full details are reported in Taurgalinov (2020). 

Compartmental Modelling of Shell Side Fouling in a Shell and
Tube Heat Exchanger
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Figure 3 CFD Streamline Plots of Velocity Field: z-x plane and z-y plane views  

 
Figure 4 A sectional fluid domain for calculation of average velocities (top left); Mapping 
between CM and CFD grids (bottom left); Structure of CM tube and shell side model (top right); 
Network structure linking all CM modules (bottom right) 

Table 1 Properties of Materials and Inlet Conditions 

 Units Residue Crude Carbon Steel 
Density kg/m3 730 675 7800 
Dynamic viscosity Pa s 7.23*10-4 3.75*10-4  
Thermal conductivity W/m/K 8.94*10-2 9.18*10-2 45 
Specific heat capacity J/kg/K 2925 2980 470 
Inlet velocity m/s 0.7 0.5  
Inlet temperature °C 314.3 293.9  

2. Results and conclusions 
The dynamic CM model runs well and calculates all variables. Without fouling, CM 
predicts an overall heat duty (5.949 KW) within 17.9% of the CFD result (5.045 KW), 
while the HS duty (7.451 KW) is 25.2% and 47.7% higher than with CM and CFD. 
Notably, the FSA model in HS gives a shell side velocity of 0.52 m/s, much larger than 
the CFD velocities for the flow through the tube bundle (0.24-0.34 m/s), also used in 
CM. The difference in velocities leads to differences in velocity-dependent quantities 
(e.g. Reynolds No., fouling deposition, deposit depth, exit temperatures). As the current 
CM model does not include the faster bypass flows in the gap between bundle and shell, 
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a by-pass flow split factor (fb in eq. 5, Table 2) was adjusted so as to match the clean HS 
shell velocity, achieved with fb = 1.74. This factor, assumed constant, was used in the 
dynamic simulation with shell side fouling. Figure 5, left shows the bulk temperature of 
the shell fluid along the exchanger at Days 0 and 40. The HS profile is linear, while the 
CM profile is “discretised” in the 9 different compartments. There are visible 
differences in the two compartments corresponding to parallel flows within two baffles. 
Differences are reduced as fouling progresses. Figure 5, right shows the predicted shell-
side Fouling Thickness and Velocity for CM and HS. As before, differences in 
predicted velocities result in different deposit thickness.  

Table 2 Selected equations in Compartment model (superscripts are omitted for clarity) 

№ Equations Notes and assumptions 
 Tube wall +Shell-side Deposit Domain 

1 
 

Ebert and Panchal threshold fouling model 
(Panchal et al., 1997), with α, β, γ, and E 
given. R is the gas constant. 

2  kf is assumed uniform, constant and known. 

3 
 

Conductive radial heat transfer through the 
tube wall and fouling deposit layer (i.e. 
conduction in series). Adjustment factor (fc) 
is applied to control the effect of fouling on 
heat conduction. kf, kw and all geometric 
parameters are assumed known. 

 Shell Side Domain 

5 

 

 
 

Shell side local flow velocity u depends on: 
i. initial velocity relative to inlet velocity uin 
ii. clearance between tubes due to fouling 
deposit of depth d  
iii. compartment split factor (fu), from CFD 
iv. bypass flow split factor (fb). 

13  

Forced convection across cylinders (Hilpert, 
1933). Constants C and m based on shell side 
Reynolds no. (range 4000 – 40000). 

 
Compared to models based on FSAs, CM enables calculating the shell side fouling rates 
along the exchanger as a function of the local (average) conditions in each 
compartment. The initial results in this work suggest that some refinements may be 
useful in respect of selection of compartments (e.g. adding compartments for the 
parallel flow portions or the radial gap between bundle and shell) and velocity split 
factors. While the FSA methods mainly aim at getting the overall thermal behaviour 
right, the method proposed aims mainly at incorporating the shell side hydraulics 
behaviour, with an input from CFD calculations. A way of adjusting the compartment 
split and bypass flow split factors to improve model predictions matching (if desired), 
beyond their initial setting may be useful. Independent experimental verification of shell 
side velocities would be useful to improve both CM and fully distributed models.  
Computationally, the case study presented was solved with the CM model 5.5 times and 
36 times faster than with the 2D distributed and CFD models, respectively, indicating 
the approach has good potential for use in design and operations optimisation. 
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Figure 5 Simulation results with CM (bypass split factor fb = 1.74) and HS: Bulk Temperature 
along STHE at Days 0 and 40 (left); Fouling Thickness and Shell Velocity (right) 
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Abstract 
This work demonstrates a systematic development of a digital twin of a commercial active 
pharmaceutical ingredient (API) - Compound A - crystallization processes to be used for 
in-silico design of experiments (DoE) and process optimization. Eleven highly corelated 
kinetic parameters were estimated by exploiting an optimization approach with an 
evolutionary algorithm, to fit to concentration profile, mean size and the shape 
distribution of the product. Two more experiments were then performed to validate the 
model showing that the developed model could predict the product size and shape 
properties. The digital twin of the process was used to perform in silico design of 
experiments to understand the attainable operating space of the system and provide a 
framework for rapid quality-by-design (QbD). Subsequently the model was used in a 
dynamic optimization framework for the digital design of the API crystallization process 
to achieve the critical quality attributes (CQAs) without extensive experimentation. 

Keywords: Digital twin, crystallization, process optimization, digital design 

1. Introduction 
Prediction and control of the product properties in crystallization processes represent 
significant challenges in the pharmaceutical industry. To meet the critical quality 
attributes (CQAs) with the least variation among batches, effective crystallization process 
design and operation techniques are needed. Hence, monitoring, modelling, and control 
of CSD has become the focal point of the QbD driven crystallization process design 
(Nagy and Braatz, 2012). The paradigm shifts in pharmaceutical crystallization from 
Quality-by-Testing (QbT) to QbD promoted the extensive usage of process analytical 
technology (PAT) tools for the direct measurement of CQAs. PAT tools not only enabled 
more profound process understanding but also opened the way for the application of PAT-
based process control strategies and model development and have became standard 
instruments in crystallization process design (Saleemi, Onyemelukwe and Nagy, 2013).  

From an experimental perspective, DoEs are simple, legacy tools for design space 
identification. The number of necessary experiments depends on the number of factors, 
and the levels associated to each factor. As the number of design variables increase, for 
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example, temperature cycles are included or combined anti-solvent and cooling 
crystallization process is considered, the number of experiments will increase 
substantially. Being labour and material intensive, this is undesired in the pharmaceutical 
industry. Moreover, material availability can become a bottleneck in the case of APIs 
under early phase clinical trials for designing such complex crystallization processes, in 
which case the application of mathematical modelling tools for in silico experimental 
design can be advantageous (Rosenbaum et al., 2019). 

The objective of this work is a process model development for the batch cooling 
crystallization of Compound A that is suitable for quick process simulations (for in-silico 
DoE) and process optimizations. The Compound A has high nucleation tendency and 
forms slow-growing high aspect ratio crystals, which requires the implementation of 
temperature cycles for internal fines removal and for aspect ratio improvement. 
Secondary nucleation, growth and dissolution of crystals is considered in the one-
dimensional (1D) PBM, which is solved numerically with a high-resolution finite volume 
method. 

2. Experimental Methods, Model Development, Parameter Estimation, 
and Process Optimization 
Six batch cooling experiments were performed with varying operating parameters such 
as temperature cycle number, seed loading, seeding temperature and cooling rate to be 
used in model training. Two more experiments with same parameters varied were 
conducted after parameter estimation to validate the model in the same batch system. The 
experimental space is given in table 1 summarizing these changing operation conditions 
for these experiments. 
Table 1. Experimental space for the parameter estimation calculations. 

Name C.R. (°C/min) # Cycles Seed load (%)* 
𝑇  

(°C) 

𝑇  

(°C) 

𝑇  

(°C) 

𝑇  

(°C) 

Cal #1 0.1 1 1 70 65 40 60 

Cal #2 0.1 2 1 75 68 45 65 

Cal #3 0.1 4 1 70 65 50 70 

Cal #4 0.1 … 0.3** 3 1 75 68 55 69 

Cal #5 0.2 1 3 75 68 20 68 

Cal #6 0.2 2 1 70 65 40 65 

Val #1 0.2 1 3 70 65 20 65 

Val #2 0.2 2 2 75 68 20 70 

*% of expected product mass, **parabolic cooling was applied between the given rates 
to understand better the crystallization behaviour. 

In each experiment, PAT tools were utilized for data acquisition and monitoring. UV/Vis 
spectrophotometer, focused beam reflectance measurement (FBRM), and Particle Vision 
Measurement (PVM) were used to measure concentration, particle count, morphology 
and size. In addition, Malvern Mastersizer 3000 and Nikon SMZ1500 microscope were 
used for offline characterization of size distribution and crystal morphology. A 
supervisory control software, CryMOCO, was used to implement temperature cycles with 
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different cooling/heating rates (Simone, Zhang and Nagy, 2015). Population balance 
model (PBM) was used to describe the crystallization of Compound A considering 
nucleation, size dependent growth (SDG) and dissolution (SDD) mechanisms based on 
the experimental data as shown below. The monovariate population density function is 
introduced and noted by 𝑛(𝐿, 𝑡)𝑛(𝐿), which gives the number of particles in time t within 
the size domain 𝐿, 𝐿 + 𝑑𝐿.  𝜕𝑛(𝐿)𝜕𝑡 + 𝜕[𝐺𝑛(𝐿)]𝜕𝐿 = 𝐵 𝛿(𝐿 − 𝐿 )

(1) 𝜕𝑛(𝐿)𝜕𝑡 − 𝜕[𝐷𝑛(𝐿)]𝜕𝐿 = 0𝑑𝑐𝑑𝑡 = {−𝑘 𝜌 3 𝐺𝐿 𝑛(𝐿)𝑑𝐿 + 𝐵 𝐿 , 𝑖𝑓 𝜎> 0 3𝑘 𝜌 𝐷𝐿 𝑛(𝐿)𝑑𝐿, 𝑒𝑙𝑠𝑒  
(2) 

𝐵𝑏 = 𝑘𝑏𝜎𝑏𝐴𝑐𝐵 = 𝑘 𝜎 𝑉 , 𝐺 = 𝑘 𝜎 𝑒𝑥𝑝 − 𝐺 = 𝑘𝑔,0 12 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ 𝑘(𝐿𝑐 − 𝐿) + 1 1 +𝛼𝐿𝛾 𝜎𝑔𝑒𝑥𝑝 − 𝐸𝑎𝑅𝑇𝐾 , 𝛽(𝜆, 𝐿) = 𝐷 = 𝑘𝑑(−𝜎)𝑑𝐷 = 𝑘 (𝐿)𝜎 𝐷 = (1 + 𝛼 𝐿) 𝜎   (3) 

Finding the values of parameters was carried out by solving an optimization problem as 
shown:  

𝑂(𝑃) = 1𝐼  𝐽 𝑐 , − 𝑐 ,
+ 𝑤𝐼  𝐽 𝑣 , (𝐿) − 𝑣 , (𝐿) 𝑑𝐿
+ 𝑤𝐼 𝐽 1𝜇 , 𝑅

(4) 

where the first term minimizes the differences between the measured (𝑐 , ) and simulated 
(𝑐 , ) concentrations in all experiments having concentration data (𝐼 ), in all 
concentration sampling instance (𝐽 ). The second term minimizes the difference between 
the measured (𝑣 , (𝐿)) and simulated (𝑣 , (𝐿)) cumulative CSDs in all experiments (𝐼 ) 
in all CSD sampling instance (𝐽 ). The last term is another novelty introduced in this 
work. It introduces the maximization of correlation between the FBRM count and the 
simulated number density function, in all experiments (𝐼 ) and in all FBRM sampling 
instance (𝐽 ). The parameters 𝑤  and 𝑤  are weight factors. In the last term of the 
objective function, 𝜇 ,  denotes the mean simulated crystal number density in the 𝑖  
experiment, and 𝑅  is defined as: 𝑅 = 𝜇 , − 𝐹 (5

) 

where 𝐹  is the number density calculated by the best fitting first order polynomial on 
the points in the FBRM count-simulated number density diagram. Therefore, 𝑅  is the 
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𝑗  residual of the corresponding first order polynomial fit in the 𝑖 experiment. The 
parameters P were determined solving the multivariable minimization problem: 𝑂(𝑃)  (6

) 

where 𝑅  denotes the set of non-negative real numbers. 

In this work, a novel SDG formulation was used combining the different behaviours of 
commonly used SDG rate equations as shown with 𝐺 in equation 3 (Mydlarzf and Jones, 
1990). The reason to develop a new SDG formula was that the experimentally observed 
broadening in the CSD and obtaining product size distributions was not reachable with 
the seed CSD used in the experiments. Given the experimental observations that the small 
particles can get confined in the eddies and deplete the local supersaturation, one might 
hypothesize that strong size dependent character can be expected for the crystal size range 
comparable to the Kolmogorov length scale of turbulence, and there is a critical crystal 
size under which the particles are virtually not growing. Therefore, we looked for an 
equation that provides significant size dependency in the small crystal size range. The 
different behaviours of all the SDG formulas were examined and these were tested in the 
model. The behaviours of these models are shown in Figure 1 and these models are named 
as: Quasi power-law (QPL), exponential, hyperbolic tangent dependency (HT), and 
extended hyperbolic tangent formula (E-HT) (Equation 3 in this paper). 

a) 

 

b
) 

 

Figure 1. Comparison of the SDG functions considered in this work: the hyperbolic tangent function 
decouples the size dependency in the small and large size domains. a) linear and b) logarithmic size 
scale. 

3. Results and Discussion 
Four SDG models are applied: QPL and exponential, as well as HT and E-HT. HT was 
also considered as it has the same number of parameters as model QPL and exponential. 
Two parameter estimations were carried out for all model structures: with and without 
using the FBRM count data. Although the objective function values differ depending on 
the usage of FBRM data, the general conclusions remain unchanged. Namely, amongst 
the three parameter SDG models the QPL one gave the worst calibration performance. 
Exponential model gave an order of magnitude lower objective function value, whereas 
another order of magnitude decrease was achieved by the hyperbolic tangent model. For 
these models, the difference in achievable performance is explained with the shape of 
relative growth rate curves (see Figure 1). Extending the tangent hyperbolic model HT to 
E-HT, improved the CSD shape fit, but less prominent objective function value decrease 
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is achieved. The same trends exist in the case of validation experiments, which is a good 
indication that there is no overfitting. These results underline the applicability of 
hyperbolic tangent function family as SDG model. Table 2 lists the kinetic parameters 
estimated using the FBRM count data in the proposed way. The first observation is that 
the width of confidence intervals (CI) became better i.e. less narrow for the QPL and 
exponential models and significantly narrower for the proposed SDG formula (E-HT). It 
is hypothesized that in the case of using E-HT formula, the FBRM count term contributed 
to de-coupling of nucleation and growth kinetics, which reduced greatly the inter-
correlation of parameters between these mechanisms. 
Table 2. Parameter estimation results for the considered model structures with the 95 % CI limits 
for the parameter estimation using the FBRM data. 

Parameter  (units) 
Nominal parameters (± confidence interval limits) 

QPL Exponential HT E-HT 𝑙𝑜𝑔10(𝑘 )  (#/m3s) -2.8 ± 7.6 10-4 -2.55 ± 0.36 -3.04 ± 6.1 10-2 -3.06 ± 0.21 𝑠  (-) 6.56 ± 9.5 10-4 1.85 ± 0.58 2.74 ± 5.0 10-2 2.25 ± 0.37 𝑙𝑜𝑔10(𝑘 )  (µm/s) 9.46 ± 5.2 10-4 10.08 ± 0.24 10.86 ± 1.9 10-2 10.79 ± 0.79 𝑔  (-) 2 ± 8.0 10-4 1.05 ± 8.6 10-2 1.95 ± 8.5 10-3 1.04 ± 0.17 𝑙𝑜𝑔10(𝐸 )  (J/mol K) 4.90 ± 5 10-8 4.83 ± 8.7 10-3 4.88 ± 1.4 10-3 4.92 ± 2.4 10-2 𝑙𝑜𝑔10(𝛼)  (-) 1.7 10-3 ± 2 10-6 -2.93 ± 8.9 10-2 - -0.90 ± 0.39  𝛾  (-) 0.5 ± 3 10-6 -0.73 ± 7.1 10-2 * - 0.84 ± 0.14 𝑙𝑜𝑔10(𝑘)  (-) - - -0.84 ± 5.7 10-3 -0.81 ± 2.9 10-2 𝑙𝑜𝑔10(𝐿 )  (µm) - - 1.19 ± 5.6 10-3 1.05 ± 1.4 10-2 𝑙𝑜𝑔10(𝑘 ) (µm/s) -0.52 ± 2 10-7 -0.41 ± 0.24 -1.35 ± 7.2 10-2 -1.90 ± 3.0 10-2 𝑙𝑜𝑔10(𝛼 )  (-) 0.3 ± 3 10-6 0.057 ± 0.138 -0.54 ± 0.35 -3.19 ± 105.6 𝛾   (-) 0.5 ± 2.5 10-8 1 ± 5.9 10-3 0.34 ± 8.8 10-2 1 ± 237.6 

 
a
) 

 

b
) 

 
Figure 2. Model performance to predict the product CSD denoted as P (model) in the validation 
simulations (not used in the kinetic parameter estimations). a) Validation expt. #1 b) Validation 
expt. #1 (see table 1 for details). 

Figure 2 presents the model performance for the two validation experiments for product 
CSD prediction. According to both validation simulations the QPL model showed 
minimal size increase throughout the process, whereas the exponential model predicted 
slightly larger product sizes, but still much below the measured values. Both hyperbolic 
tangent models captured the mean product size reasonably. The width of the distribution 
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given by the E-HT is broader than the HT, but still narrower than the measured product 
CSD, while the shape could be captured better. In addition to the model simplifications, 
the Mastersizer’s tendency to overestimate the width of the CSD should also be 
mentioned as a contributing factor to this mismatch (Rønnest et al., 2012). 

4. Conclusions 
The paper demonstrated a workflow for the crystallization process model development 
and calibration of a commercial API, Compound A. This model was needed for executing 
numerical experimentations and simulation-based DoE that permits to analyse and design 
the Compound A crystallization process with less experimental burden. The model 
developed in this work introduced two novelties: 1) new SDG formulation and 2) 
integration of crystal count in the objective function for parameter estimation shrinking 
the confidence hyper ellipsoid during parameter estimation and enhancing the search 
process, while making FBRM a mainstream PAT tool for modelling purposes. 

The traditionally applied growth rate models are compared with a newly proposed 
hyperbolic tangent based equation, that is well-known in the field of crystal breakage and 
shown superior ability to capture the experimentally measured CSD dynamics in this 
case. Additionally, a graphical user interface (GUI) is developed that enables quick and 
coding-free (standalone application) process simulation for the batch cooling 
crystallization processes. This is not only suitable to simulate the crystallization of 
Compound A, but by changing the appropriate kinetic and thermodynamic parameters it 
can be used as a generic, simple to use cooling batch crystallization simulator. 
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Abstract
Sustainable and green industrial chemical processes enhance the profitability,
production of merchandises, inherent safety, and minimize the generation of waste.
Among them, profitability, and especially inherent safety, can be characterized
indirectly through the controllability and flexibility of the processes. Although several
indices have been proposed to measure these parameters, the flexibility index and the
controllability measured by the condition number stand out. However, these two
indicators are usually quantified individually, losing information inherent to the
synergies by the link between profitability and process safety. The present work aims to
find a quantitative parameter, similar to the condition number, to simultaneously
measure the flexibility and controllability of the processes with the purpose of
generating a simple measurement of the inherent safety of the processes. This indicator
can be applied for designing processes enhancing their profitable, green and sustainable
dimensions. To show the advantages of the use of the metric proposed, the results binary
and multicomponent reactive distillation are evaluated, showing that the condition
number measuring controllability at low frequencies can be related to flexibility. This
results in a double indicator which can measure both controllability and flexibility
simultaneously.

Keywords: Controllability, Condition Number, Flexibility, Green Chemistry.

1. Introduction
Nowadays sustainable and efficient processes are needed in the chemical industry to
address the great challenges of resource depletion, energy consumption and
environmental impact. Therefore, the identification, design, and development of
appropriate processes are important. For the industry to remain competitive (Wang, et
al., 2019), the development of sustainable and efficient processes, along with inherent
safety is a primary objective. In order to achieve this, safe and reliable systems are
required (Cheng & Zhao, 2019). Indirect measures of safety are the controllability and
the flexibility. Therefore, the evaluation of the controllability of the system, together
with the evaluation of the process flexibility can indicate the safety level of the process.
An integrated indicator including these aspects, would facilitate the optimization of the
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process at the design stage. Achieving that the indirect indicator provides values   of
inherent safety would favor the objective of having a more effective risk management,
since actions can be taken to avoid accidents instead of mitigating their consequences
(Medina-Herrera et al., 2019).
Inherent safety has gained popularity thanks to its ability to assess the level of safety of
the plant at an early stage of design by presenting four main objectives: intensification,
substitution, attenuation and limitation. Considerations of these principles allow the
designer to give safety aspects the same importance than economic and environmental
parameters, thus safety is considered as a key variable design, rather than a late
occurrence (Vázquez et al., 2019). Having an indicator that can assess both the
controllability of the system and its flexibility at the same time also contributes to the
fact that the indicator can indirectly measure objectives of the metrics of green
chemistry and the circular economy, such as inherent safety.
Processes designed from a control perspective to respond fast to disturbances, being less
disturbed from approach of flexibility, influence the process safety. Control and
flexibility are parameters with a great impact on the design of processes. Although they
seem similar aspects, control and flexibility correspond to different technical concepts.
On one hand, the condition number, is a method commonly used to measure control, it
has to do with the stability and quality of the process in dynamic state. On the other
hand, flexibility is related to the fact that the operation of the process is viable in
different operating conditions in state stationary. The condition number and the
minimum singular value provide important information in the theoretical control for a
given frequency in a transfer function matrix in a multivariate system, it is the
relationship between the maximum and minimum singular value, and represents the
sensitivity of the system to the uncertainty that is presented in the input. Therefore, it is
possible to have the condition number as a reference to measure the flexibility of a
process (Cabrera et al., 2017).
This work proposes an indicator that relates flexibility with controllability. Having a
single indicator, it would be simpler to implement in optimization processes, and obtain
cheaper processes as a result, and at the same time ensure compliance with
environmental and safety indicators.

2. Methodology
The study of the condition number as a quantitative measure of the flexibility of the
processes, was carried out in five different processes. The three of these processes are
the production of solar grade silicon (0.99999 mole fraction) following the (a) Siemens,
(b) Union Carbide, and (c) Hybrid processes, as reported by Ramírez-Márquez et al.
(2019). To meet the performance of 2000 t/y, the processes are fed with the components
and quantities with 532.32 kg/h of SiO2 and 369.84 kg/h of Carbon. These processes,
shown Figure 1, were studied due to their complexity. In addition, two separation
processes by means of distillation columns are studied, a binary distillation column that
separates pentane and hexane (0.98 mole fraction), Figure 1 (d) , and the intensified
Petlyuk scheme to separate propane-butane-pentane (0.99 mole fraction in dome and
bottom, 0.98 mole fraction in side stream), Figure 1 (e).
In Figure 2 (a) we can see the methodology for calculating the flexibility index.
Equations [1] and [2] correspond to inscribing the largest proposed polytope within the
feasible region, then the flexibility index is equal to the distance between the vertex (V)
and the nominal operating point [0] (Di Pretoro et al., 2019). Furthermore, in Figure 2
(b) we can see the methodology for calculating the condition number (Cabrera et al.,
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2017). Once both the flexibility index and the condition number have been calculated, it
will be possible to see the trend of both and solve if there is a guideline that both in
complex processes and in simple processes the condition number can be used as a
qualitative measure of the process flexibility.

Fig. 1 a) Flowsheet of the Siemens Facility, b) Flowsheet of the Union Carbide Facility,
c) Flowsheet of the Hybrid Facility, d) Flowsheet of the binary distillation column, e)
Flowsheet of the Petlyuk distillation column.

Fig. 2. a) Methodology to calculate the flexibility index. b) Methodology to calculate
condition number.

1151



C. Ramírez-Márquez et al.

3. Results
The results are shown in Figure 3. It can be observed that, in each one of the processes
studied at low frequencies (w≤1), there is a very similar behavior trend between the
condition number and the flexibility index. It is evident that with increasing frequency
this trend changes, to the extent that at very large frequencies (w≥1000), the condition
number is not useful as a quantitative measure of the flexibility of a process.

Fig. 3 a) Results of the Siemens Facility, b) Results of the Union Carbide Facility, c)
Results of the Hybrid Facility, d) Results of the binary distillation column, e) Results of
the Petlyuk distillation column.

The results of the processes for obtaining silicon are shown in Figure 3 (a-c). We can
observe that at low and medium frequencies (w≤1000) the condition numbers have a
behavior antagonistic to the flexibility index, and it is precisely the trend that we wanted
to observe. That is, at low condition numbers (which represent systems with better
control properties), the value of flexibility is greater (that is, processes that support a
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variety of changes in steady state). The similar trend is observed in Figure 3 (d) and (e),
where for the binary distillation columns and Petlyuk distillation column, at low
frequencies (w≤1), the condition number can be considered as a quantitative measure of
the flexibility of each of the processes. Therefore, we can observe that the flexibility has
to do with the issue of ensuring a viable steady state operation under a variety of
operating conditions, while controllability has to do with the quality and stability of the
dynamic response of the process. This provides a suitable index for the processes
control and the flexibility could be the condition number.
Table 1 shows the design parameters for the separation within the Siemens Process,
such as the values of the condition number and the flexibility index. A strong
relationship in the design parameters of the most relevant equipment in the processes it
can be observed. In other words, the larger the height of a column or its diameter, the
better control properties the process has, and subsequently, also better performance in
the flexibility of the process. With parameters such as reboiler duty and reflux ratio, a
similar behavior is displayed if the value is higher, a disturbance could represent such a
small percentage that it would not alter the process. The performance of each
configuration studied was maintained.

Table 1. Results of flexibility index, condition number (different frequencies), and other
parameters for the Siemens Process.

Poin
t

Flexibilit
y

index

Conditio
n

number

Conditio
n

number
w≤1000

Stage
s

Reflu
x

Reboiler
duty [kW]

Diameter
[m]

1 0.155 26.97 1729.96 40 29.9 1219.94 0.89

2 0.223 31.42 1141.48 99 29.9 1220.89 0.89

3 0.174 24.58 805.37 22 71.2 2951.68 4.75

4 0.174 55.22 1727.97 39 30.0 1223.33 3.59

5 0.229 62.09 1967.96 50 39.4 1615.49 2.55

6 0.227 34.24 1051.27 54 93.5 3884.55 2.45

The results show that in each scenario it is necessary to ensure that the process is
controllable in an adequate minimum time, even when the conditions of the process may
change. Since the one that takes a long time to stabilize represents more operational
costs, as well as not reaching the desired product in the oscillation period, stoichiometry
problems would arise, more waste would be generated, resulting in a low safety profile.
It would differentiate it from an unstable and unsafe process by not incorporating green
metrics is an economical process from a green perspective. Therefore, not well
controlled processes produce a lot of waste, consume more materials and energy per
unit of finished product, and in some cases lead to a reduction in performance and life
cycle. The process must also operate in the most flexible way possible in order to adapt
to consumer demands, in this context the use of appropriate operational strategies for
the process and control will increase production and increase the performance of
high-end products value, in addition to minimizing energy consumption, pollution and,
as a direct consequence, environmental impact.
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According to the study, the condition number, for these processes, near the steady state
has an effect directly proportional to the flexibility behavior. Therefore, it indicates that
there is a direct correlation between the condition number and flexibility, and revealing
the option that the condition number that can be used as a control objective function.
The limitations to highlight of these results, is that for the correlation to be used, it is
necessary to work with low frequencies (w≤1), because with high frequencies (w≥1000)
the behavior changes, however, working with low frequencies does not represent a
drawback, since Cabrera, et al. (2017) mention that a real process behaves at such
frequencies (w≤1). Having relatively large diameters in the design, and a high number
of stages, becomes a necessary condition, and this can associate controllability with
flexibility simultaneously.

4. Conclusions
In this work, a quantitative measure is presented to evaluate simultaneously both the
controllability of a process and its flexibility through the condition number. The results
show that the condition number serves as a quantitative index of the controllability of
the processes, and that in turn, this correlates with flexibility. However, this correlation
presents problems when working with relatively high frequencies (w≥1000), but at low
frequencies (w≤1) it could be a reliable index to measure both items. With the above,
this index could be provided that would ensure in future optimizations to have
economic, affordable, green and controllable processes, respecting and also enhancing
an objective that is currently as important within sustainable processes as safety is.
Considering the results obtained, the fusion of the flexibility and controllability
indicators in a single indicator for the first time, such as the condition number, seems to
be an important advance in the area of green and sustainable process design.
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Abstract 
This work presents a framework for the optimal control of several sterilization units 
operating in parallel to satisfy the thermal processing needs of a process motivated by a 
food industrial facility producing canned fish (Georgiadis et al., 2020). The objective is 
to consider all relevant control challenges that arise during the operation of the 
sterilizers such as the required microbial lethality set-point while minimizing the overall 
processing time. Furthermore, energy consumption minimization is also considered. To 
this end, a Nonlinear Model Predictive Control (NMPC) framework is developed and 
applied in multiple sterilization units operating in parallel and sharing the same steam 
network. A novel reduced order process model is derived and validated. Simulation 
experiments reveal significant benefits by using the NMPC framework with respect to 
the availability of shared resources  without  any loss of performance.  

Keywords: optimum control, shared resource efficiency, time-varying operation, 
nonlinear dynamic optimization 

1. Introduction 
Today food industries are facing critical challenges in response to consumers’ needs, 
which, in addition to health and safety awareness, demand products with high quality 
standards. Food process industries that deliver canned products are trying to satisfy the 
needs of new markets and population sectors, relying on more efficient processes in 
order to gain an increased market share (Simpson et al., 2019). Thermal processing of 
canned food is one of the most critical steps in the overall production chain. The 
duration of the sterilization process is usually dictated by the microbial lethality 
evolution, which is a product dependent parameter (Alonso et al., 2013). The 
sterilization process in the food industries must guarantee a uniform processing 
temperature throughout the cans and achieve the respective lethality levels. In order to 
systematically improve and optimize the efficiency of the sterilization processes, 
advanced process control can significantly enhance the efficient operation of the 
sterilization units by optimizing the utilization of  shared resources such as the steam 
network.  
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2. Process description and modeling  
The process under consideration has been inspired by a large-scale, real-life food 
industrial facility producing canned fish (Vilas and Alonso, 2018). Sterilization units 
use steam from a common plant network and their operation is constrained by the 
availability of this resource (Fig. 1). The cans, which are thermally sterilized, are heated 
at a specified temperature for a prescribed duration in a retort. The sterilizing duration is 
defined by a safety index, the microbial lethality evolution.  

 
Figure 1 Overview of the sterilizer unit                 Figure 2 Model response vs. experimental data  

The operation cycle begins by the insertion of preheated water (~ 60°C) into the 
sterilizer and recycled to the Plate Heat Exchanger (PHE). The water temperature in the 
retort increases until it reaches the operation point (Tretort =110 - 130°C). Subsequently 
the temperature is kept constant for a given amount of time and the steam valve in the 
PHE is closed. After the lethality specifications are met, cold water is introduced to cool 
down the cans. The duration of the 2-stage cooling is usually 13mins. Initially the inlet 
water temperature is set at 65°C while the retort temperature is above 75°C and then the 
inlet water temperature is set at 20°C for the remaining cooling time. 

2.1. Modeling of the sterilization process 
 
A reduced order process model is derived and validated against a detailed model using 
measurements from an industrial plant. The model consists of three parts and was used 
by the control framework. The aim is to capture the dynamic behavior of the involved 
subsystems and to derive a model, suitable for control purposes. The governing 
equations for the can temperature (Tcan) evolution profiles are: 
dTcan

dt
= Bi2(Tw,R - (co + c1+ c2)(1+q / 2)) - Bi1(co(1+q / 2) - Tw,R )+

            2MBiR (Tw,R - (1+q)(co + c1 / 2+ c2 / 3))
  

(1) 

q =
BiR (Tw,R / (co + c1 / 2+ c2 / 3) -1

2+BiR
                               (2) 

BiR =
hRR
k
,Bi1 =

hZ1L
k
,Bi2 =

hZ2L
k
,M =

L2

R2      (3) 
where Tw,R is the retort water temperature, k is the thermal conductivity, L and R are the 
length and the radius, h(R,Z1,Z2) is the convective heat transfer coefficient right, top and 
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bottom of the can. In each time step co, c1 and c2 have to be found from the solution of 
the following 3x3 system of nonlinear algebraic equations: 
Tcan = (co + c1 / 2+ c2 / 3)(1+q / 2)                     (4a) 

c1(1+q / 2) = Bi1(co(1+q / 2)−TA)       (4b) 

(c1+ 2c2)(1+q / 2) = Bi2(TA − (co + c1+ c2)(1+q / 2))     (4c) 
The integration of a single ordinary differential equation with a system of three 
algebraic equations describes the evolution of a two-dimensional temperature profile in 
the can.  
2.1.1. Parallel Plate Heat Exchanger Model (PPHE) 
Let us assume a parallel plate heat exchanger (PPHE) with mass flow rate of water Mw 
and mass flow rate of steam Ms. A steady state problem for the countercurrent parallel 
heat exchanger is considered. The equations can be integrated in closed form and scaled 
back to the whole heat exchanger to give: 
Q =Mscps(Ts,in −Ts,out )        (5) 

Q =Mwcpw (Tw,out −Tw,in )                       (6) 

Q =UA(Tw,out −Ts,in − (Tw,in −Ts,out )) / ln((Tw,out −Ts,in ) / (Tw,in −Ts,out ))    (7) 
where Q is the rate of heat transferred in the PPHE. The heat transfer coefficient and the 
(one side) surface area of the plate is U and A respectively. Q can be eliminated between 
the above equations to leave with a system of two equations with two unknowns (the 
outlet temperatures). The system of Eq.(4) - (6) is highly non-linear and can be replaced 
by the linear system: 

Tw,out =
Tw,in + p2 1− p1( )Ts,in −Tw,in( )

1− p1p2
     (8) 

Ts,out =Tw,in + p1 Ts,in −Tw,out( )        (9) 

p1= exp UA 1
Mwcpw

−
1

Mscps

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟        (10) 

p2 =
Mscps
Mwcpw

        (11) 

For given inlet temperatures to PHE the outlet temperatures are computed by Eq. (8) 
and (9) and then Q by Eq. (5). 
2.1.2. Sterilizer Model 
The heat balance in the sterilizer is the leading equation of the model. The water 
temperature Tw,R is dominated by the equation: 

MwRcpw
dTw,R
dt

=QPHE −Qcan −Qenv        (12) 

s,in ,( )PHE s ps s outQ M c T T= −
                   (12a) 

Qcan = ncanMcancpcan
dTcan
dt

                   (12b) 

Qenv = hcAc (Tenv −TwR )                     (11c) 
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where MwR is the water mass in sterilizer, Qcan is the heat adsorbed by the cans and Qenv 
is a simple loss term where hc, Ac are the corresponding heat transfer coefficient and the 
metal cover area of the retort respectively and Tenv is the environment temperature. The 
total model consists of the main Eq. (12) which must be solved simultaneously to the 
can heating submodel (one ODE and three algebraic equations) and to the PPHE model 
(two algebraic equations). Everything else is post processing (e.g. lethality, color) or 
control actions (e.g. steam valve) of the core model. Model predictions are in excellent 
agreement with experimental results (Vilas and Alonso, 2018) as illustrated in Fig. 2. 

3. Control framework 
To optimize the operation of the sterilization processes, advanced control can provide 
significant benefits by satisfying all operating constraints and managing the availability 
of shared resources such as the steam network. Thus, a number of time-varying 
parameters must be taken into account along with dynamic changes, which occur as 
multiple sterilizers operate in parallel. The control objective is to address, in a 
centralized manner, several challenging control issues that arise during the parallel 
operation of the sterilizers and to monitor and evaluate their performance at real time. 
More specifically, the operational objectives are to achieve the required microbial 
lethality set-point for each batch of cans while minimizing the overall processing time 
to avoid quality deterioration of the canned food. Furthermore, it is crucial to minimize 
energy consumption during the heat-up stage of the sterilization process. To achieve 
these objectives a Nonlinear Model Predictive Control (NMPC) framework is proposed 
and demonstrated in this problem involving  16 units operating in parallel. 

NMPC computes online a finite-time constrained optimization problem over a 
prediction horizon ( pT ), using the current state of the process as the initial state. The 
optimization yields an optimal control sequence ( ..k k Ncu u +

) over a control horizon ( cT ), 
which is partitioned into cN  intervals and only the first control action ( ku ) for the 
current time is applied to the system. We consider the following formulation of the 
NMPC problem: 

min J = ( ŷk+ j − ysp,k+ j )
T QR

j=1

Np

∑ ( ŷk+ j − ysp,k+ j )+ Δuk+l
T R1Δuk+l

l=0

Nc−1

∑    (13) 

s.t.:     !x = fd x,u( ),      y = g x,u( )                     (14a) 

 ( )k pred meas ke y y= −                            (14b) 

 ŷk+ j = ypred ,k+ j + ek                     (14c) 

uL ≤ u(t)k+ j ≤ u
U , yL ≤ y(t)k+ j ≤ y

U

       (14d) 

where u,y,x are the manipulated, the controlled and the state variables, ypred , ymeas , ysp  
are the predicted, the measured variables and the desired set-points and QR, R1 are the 
output tracking and the input move weighing matrices. The minimization of functional J 
(eq. 13) is also subject to constraints of u, x and y. The controlled variables are the retort 
temperature (Tw,R ) and the lethality ( F0 ) while the manipulated variable is the steam 
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flow. A centralized approach is applied for the control of the sterilization process that 
uses the nonlinear model described by Eq. (1)-(12). 

4. Operation analysis and discussion of results 
A set of scenarios where multiple sterilizers operate concurrently is explored. The sole 
purpose of this study is to evaluate the flexibility of the NMPC framework under 
various conditions and different operation requirements. We assume that each sterilizer 
processes the same amount and type of cans. A nonlinear programming problem (NLP) 
is solved at each iteration while the NMPC parameters are Tc=1, Tp=2, ts=60sec. The 
framework is developed at the Mathworks MATLAB environment. The optimization 
problem is solved using a Sequential Quadratic Programming (SQP) method with 
constraint tolerance 1e-6 and step tolerance 1e-8. In order to explore the response of the 
NMPC architecture a scenario where three sterilizers start to operate concurrently is 
presented.  

Fig. 3 presents the retort temperature profile while Fig. 4 illustrates the duration of 
batches at each sterilizer. The steam flow rate is adjusted according to the number of 
sterilizers that are concurrently employed during the heat-up stage. It is clearly 
illustrated that the heat-up time is affected accordingly when multiple sterilizers are 
activated. For example, the slope of the 2nd (yellow) sterilizer changes when the 1st 
sterilizer reaches the heat maintenance stage and when the 3rd sterilizer enters the heat-
up stage. 

 
Figure 3 Operation of three sterilizers that start to heat-up concurrently 

 
Figure 4 Batch timing for the three sterilizers 
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Finally, Fig 5 shows the distribution of steam between the 3 sterilizers. Initially the 1st 
sterilizer operates. The 2nd sterilizer starts to heat-up at t=8min and the steam is shared 
equally between the 2 sterilizers.  Finally, the 3rd sterilizer is activated at t=30min and 
the shared steam is further reduced between the 3 sterilizers.  At t=50min the 1st 
sterilizer reaches the temperature target and the steam requirement is reduced.  After an 
hour only the 3rd sterilizer is still operating at the heat-up stage and is allowed to use the 
maximum steam flow rate from the network. Overall, it can be seen that the steam is 
adjusted according to the operating stage of the sterilizers. 

 
Figure 5 Steam flow rate distribution among the three sterlizers 

The sterilization time of the processing units is dynamically adjusted over time 
according to the availability of steam. The operation follows the optimal temperature 
profiles, thus ensuring that the required degree of sterilization is met, and the cost is 
minimized.  

5. Conclusions 
An NMPC framework that relies on a reduced order model is developed and validated 
against realistic conditions for the sterilization units of a canned food process. The 
predictive power of the model is clearly illustrated to capture the dynamic behaviour of 
the parallel plate heat exchangers, the retort temperature, the canned food product 
temperature evolution and the effect of food temperature on safety and quality. A case 
study used to illustrate the applicability and efficiency of the proposed NMPC approach.  
The Results illustrate that the optimal operation of the sterilizers is achieved under tight 
operating constraints and taking into account the availability of steam.  

References 
A. A. Alonso, A. Arias-Mendez, E. Balsa-Canto, M. R. Garcia, J. I. Molina, C. Vilas, M. Villafin. 

2013, Real time optimization for quality control of batch thermal sterilization of prepackaged 
foods. Food Control, 32(2), 392-403  

G. P. Georgiadis, B. Pampín, D. Cabo, M. C. Georgiadis, 2020, Optimal production scheduling of 
food process industries, Computers & Chemical Engineering, 134, 106682  

C. Vilas and A.A. Alonso, 2018. Real time optimization of the sterilization process in a canning 
industry. Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018 

R. Simpson, C. Ramirez, D. Jiménez, S. Almonacid, H., Nuñez, A. Angulo, 2019. Simultaneous 
multi-product sterilization: Revisited, explored, and optimized. Journal of food Engineering, 
241,149-158 

1160



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

  

Design and control of triple-column pressure swing 
distillation process for acetone-methanol-hexane 
separation 
Tan Akinciturk , Devrim B. Kaymak* 
Department of Chemical Engineering, Istanbul Technical University, 34469 Maslak, 
Istanbul 

Abstract 
The mixture of acetone-methanol-hexane is used in the industry as a solvent, an 
extraction agent and for cleaning purposes. This mixture belongs to the topological class 
of 3.1-2 in Serafimov’s classification with three binary and one ternary minimum 
boiling homogeneous azeotropes (Shen et al., 2016). To our knowledge, steady-state 
design studies for this class of azeotropes are very rare, and there is no dynamic control 
study in the literature. In this study, a triple-column pressure swing distillation (PSD) 
process is designed for separation of three components with a 99.9 mole % purity. The 
process is optimized based on total annual cost (TAC), and a plant-wide control 
structure is designed for the optimal steady-state case. The control structure including 
inferential temperature controllers shows an effective base-level regulatory control with 
acceptable offsets in compositions. This work hereby demonstrates that a ternary 
mixture which forms three binary and one ternary azeotropes can be separated using a 
triple-column PSD process, and this process system can be controlled robustly using a 
decentralized control structure. 
 
Keywords: Ternary azeotropes, Pressure-swing distillation, Process design, Dynamic 
control. 

1. Introduction 
Distillation is the most attractive method of separation that is based on vapor-liquid 
equilibrium (VLE), and studied widely in the literature. In recent years, the interest has 
shifted to more complex, multicomponent distillation systems with non-ideal vapor-
liquid equilibrium. Especially, distillation boundaries that are imposed by azeotropic 
mixtures are challenging, and require complex distillation strategies. 
Pressure swing distillation (PSD) is a method that makes use of the pressure sensitivity 
of azeotropic mixtures for separation. Thus, by designing more than one column 
operating at significantly different pressures, the distillation boundaries are shifted so 
that the separation can be achieved. There is an extensive library on the separation of 
binary azeotropic mixtures using PSD processes in the literature (Luyben and Chien, 
2010). Nowadays, the interest of academia is on the separation of ternary mixtures 
including more than one binary azeotropes and/or ternary azeotropes. Although the non-
ideal thermodynamics and distillation concepts for multicomponent azeotropic mixtures 
have been discussed since the nineties (Doherty and Malone, 2001; Stichlmair and Fair, 
1998), the papers on rigorous design and control of triple-column PSD processes are 
started to be published after the second half of 2010’s, and there are still a very small 
number of papers in the literature.  
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Separation of acetonitrile-methanol-benzene mixture which has three binary azeotropes 
has been investigated by three papers (Zhu et al., 2017; Luyben, 2017; Zhang et al., 
2019). Among these studies, Luyben (2017) focused on the process control aspects, 
while other studies dealt only with steady-state design. On the other hand, Wang et al. 
(2019a, 2019b) studied the separation of tetrahydrofuran-ethanol-water mixture. They 
compared alternative PSD sequences for the ternary mixture having three binary 
azeotropes.  
In none of the aforementioned papers, the studied mixtures form ternary azeotropes. 
Nevertheless, to our knowledge, there are only two papers studied the separation of 
mixtures with ternary azeotropes (Cui et al., 2019; Guang et al., 2019).  In the first 
study, benzene-isopropanol-water mixture has been investigated, while the second study 
focused on diisopropyl ether-isopropanol-water mixture. Both mixtures form a 
heterogeneous ternary azeotrope besides two homogeneous and one heterogeneous 
binary azeotropes. Although these papers discussed the steady-state design of triple-
column PSD processes, they did not investigate the controllability of the proposed 
configurations. 
On the other hand, Gmehling and Bölts (1996) presented in their experimental work that 
acetone, methanol and hexane form a ternary azeotrope besides three binary azeotropes. 
This mixture is used in laboratories for several purposes such as a solvent for 
chromatography, an extraction agent and for cleaning purposes. Although there is a 
patent by Forman (1952) where four columns are used for lab scale separation of this 
mixture, there is no integrated design and control study of this mixture in the open 
literature. In this study, as an alternative to the above-mentioned patent, a novel triple-
column PSD process is proposed based on ternary diagram analysis. Furthermore, a 
robust plant-wide control structure is developed and tested for the optimum design of 
the proposed flowsheet.  

2. Process Studied and Methods 
The feed flowrate of the process is 100 kmol/h with mole fractions of 47 % methanol, 
43 % acetone and 10 % hexane. The desired product specifications are 99.9 mole % for 
each component. First, ternary diagrams at different operating pressures are used to 
develop a triple-column PSD process flowsheet. Several thermodynamic model results 
are investigated and compared with the experimental data in the literature. Since the 
results of UNIFAC model are in coherence with the experimental work of Gmehling 
and Bölts (1996), this thermodynamic model is used in this study. Then, the steady-state 
simulations are conducted by Aspen Plus. The product purities are achieved using the 
“Design Spec/Vary” feature of the simulator. The flowsheet is optimized based on total 
annual cost (TAC). A sequential iterative procedure is used for the cost evaluation of 
the triple-column PSD process. Minimal TAC is determined by sequentially changing 
the values of variables such as recycle flowrate, recycle feed location for the first 
distillation column, and number of trays and feed tray locations for each column. The 
values of these variables when all the local minima are combined are presented as the 
best case. Equations used for capital cost calculations are taken from Douglas (1988) 
and Dimian (2003). Data for operating costs are found from Luyben (2013) and 
Patrascu at al. (2016). Next, plant-wide control structures are designed for the optimized 
steady-state design. Level and pressure controllers are used for inventory control 
purposes. Feed flowrate acting as the production rate handle is manipulated by a flow 
controller. PI controllers are used for temperature and/or composition control. A dead 
time of one minute for temperature, and three minutes for composition loops is included 
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into these loops. Steepest slope method is used to decide the tray location in case of 
temperature control. These loops are tuned by Auto Tune Variation (ATV) test 
following Skogestad’s sequential loop method (Hovd and Skogestad, 1994). Controller 
parameters are calculated using Tyreus-Luyben parameter settings. All control valves 
are designed half-open at the nominal conditions. Finally, the robustness of the 
proposed control structure is tested against disturbances in feed flowrate and 
composition. 

3. Results and Discussion 
3.1. Steady-State Design 
In Figure 3.1, ternary diagrams of acetone-methanol-hexane mixture are examined at 
two different pressures. The dashed curve represents the distillation boundary at 1 bar, 
while the solid curve represents the distillation boundary at 5 bar. It is seen that the 
distillation boundaries differ considerably as pressure changes. The F point is the 
composition of fresh feed stream. It is combined with the distillate of the third 
distillation column, which is recycled back to the first column, using a straight line on 
the figure. It means that the composition of the total feed into the first distillation 
column is anywhere on this line, shown with FI. 

 
Figure 3.1: Ternary diagram for acetone-methanol-hexane 

As dictated by Lever Rule, the feed, bottoms and distillate compositions of a distillation 
column should lie on a straight line, and this line should stay within the distillation 
boundary. Based on this idea, for each distillation column, a straight line starting from 
99.9% pure component is connected to the point representing the column feed, and then 
elongated up to the composition of distillate staying within the corresponding 
distillation boundary.  
As the result, a triple-column PSD flowsheet is developed with operating pressure of 5 
bar, 1 bar and 5 bar, respectively. In this sequence; acetone, methanol and hexane are 
drawn from the bottoms of distillation columns, respectively. Table 3.1 shows the 
economic optimization results for this process configuration. 
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Table 3.1 : Summary of variables and costs of optimal case 
 C1 C2 C3 

Number of Trays 52 52 8 
Recycle Location            30                     -                        - 
Feed Location 4 4 4 
Reflux Ratio 3.02 0.03 0.23 
Diameter (m) 2.84 1.42 2.00 
Recycle (kmol/h) 450 -         - 
Fixed Column Cost (103$) 1,778.,5 
Fixed Heat Exchanger Cost (103$) 1,776.1 
Operating Cost (103$/yr) 5,765.8 
Total Annual Cost (103$/yr) 6,947.3 

3.2. Plant-wide Control Design  
Several control structures are evaluated for this process, and the results of the one with 
the best performance are given in this study. Figure 3.2 shows the proposed control 
structure including inferential temperature controllers with reflux to feed (R/F) ratio. 
The location of the trays to control the temperature is decided via steepest slope analysis 
as controlling the temperature on these stages would end up with a more robust 
composition control. As the result of the analysis, the temperature on stage 44 is 
selected to be controlled for first and second distillation columns, while the temperature 
on stage 5 is chosen for the third distillation column.  

 
Figure 3.2: Proposed Control Structure 

Dynamic simulations are run in Aspen Dynamics, and the performance of control 
structures are tested by applying two types of disturbances. Response of the control 
structure for ±20 % throughput change is illustrated in Figure 3.3. The solid line 
represents positive change and the dashed line represents the negative change. It is seen 
that temperatures settle down into their set-points easily. Additionally, the overshoots of 
temperatures are very small for all columns. Since inferential temperature controllers 
are used, an offset in compositions is expected. However, as seen from the figure, the 
composition of hexane recovers back to the steady-state, while there are only very small 
offset in compositions of acetone and methanol. 
An improvement is done by adding composition controllers in the control structure. As 
the result, the temperature-composition cascade controllers eliminate the offset in 
compositions. However, it is observed that the settle time is approximately twice of the 
time spent with temperature only controllers. Additionally composition control requires 
analyzers, which are expensive equipment with hefty maintenance processes. Since the 
offset obtained with the inferential temperature controllers is tolerable, it is selected as 
the proposed control structure in this study. 
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Figure 3.3: Response of control structure for feed flowrate changes 

Second disturbance given to the system is in feed composition. The magnitude of 
composition changes in the feed stream is selected based on the distillation boundaries 
of ternary diagrams. The fractions are first changed to 0.42, 0.43 and 0.15 for acetone, 
methanol and hexane, respectively. Then, the feed composition is changed to 0.45, 0.5 
and 0.05 for acetone, methanol and hexane, respectively. 
The dynamic response for the feed composition changes is illustrated in Figure 3.4. The 
solid line represents the first composition set, while the dashed line represents the 
second disturbance. Similar to the throughput change results, the temperatures settle 
down into their set-points easily. In addition, hexane composition does not show any 
offset, while there are small offsets in the compositions of acetone and methanol. 
Compared to the responses of throughput disturbance, the response here is more 
sluggish. However, offsets of the product purities are smaller. These results illustrate 
that the proposed control structure is capable of handling both disturbances, and 
provides an effective base-level regulatory control. 

 
Figure 3.4: Response of control structure for feed composition changes 

4. Conclusions 
This work covers the steady-state design, cost optimization and process control of a 
triple-column PSD process for the separation of acetone-methanol-hexane mixture. 
Ternary diagrams reveal that there is significant change in distillation boundaries with 
the change in operating pressure for the studied process. A triple-column PSD process is 
designed based on ternary diagrams, where the columns operate at 5-1-5 bar, 
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respectively. Total annual cost of the steady-state process with 99.9% product purity is 
optimized using Aspen Plus. The optimal TAC of this process configuration is 
calculated to be 6,947,319 $. Different control structures are designed for the optimal 
process design. As the result of their responses against disturbances in feed flowrate and 
composition, it is concluded that the control structure including the inferential 
temperature controllers with reflux to feed ratio provides the best performance. 
In the future, additional studies will be carried out in which optimal TAC of this process 
configuration is further reduced by applying heat integration. Furthermore, the process 
control of the heat integrated PSD configuration will be studied. Moreover, alternative 
triple-column PSD process configurations are going to be obtained based on the further 
analysis of ternary diagrams at different pressures, and their results will be compared in 
terms of total annual cost and process control aspects. 
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Abstract 
The decrease in energy sources, the increase in energy demand and the environmental 
concerns have caused to be in search of renewable and cleaner sources compared to fossil 
fuels. Biobutanol stands out as an alternative which has superior fuel properties compared 
to other alcohol-based biofuels. In this study, a novel flowsheet configuration providing 
high-purity alcohol products is developed for isopropanol-butanol-ethanol (IBE) 
purification process. First, the flowsheet is optimized by minimizing the total annual cost 
(TAC). Then, a plantwide control structure is designed for the optimized process 
configuration. The proposed control structure is evaluated by exposing it to disturbances. 
The results show that the developed control structure provides a robust control for this 
process configuration. 
 
Keywords: biobutanol purification, plantwide control, IBE fermentation, azeotropic 
mixture. 

1. Introduction 
In recent years, renewable energy sources have started to draw attention of industry and 
academia because of the increasing energy demands and environmental concerns. To 
meet these demands and concerns, several studies have been conducted on alternative 
energy sources including biofuels. Among several biofuels, biobutanol comes forward 
with its advantages such as high energy content, less solubility in water and the ability of 
blending with gasoline in any percentage without any engine modification. The 
production of biobutanol by Clostridia microorganisms is called either acetone-butanol-
ethanol (ABE) or isopropanol-butanol-ethanol (IBE) fermentation depending on the 
formation of acetone or isopropanol, respectively. There are several studies in the 
literature on biobutanol production based on ABE fermentation (Kreamer, et al. 2010, 
Bildea, et al. 2016, Patraşcu, et al. 2017, Kaymak, 2019). However, biobutanol production 
by IBE fermentation has some other advantages compared to ABE fermentation. First of 
all, isopropanol produced by IBE is a more requested by-product compared to acetone, 
because its energy density is higher than acetone. In addition, acetone has some unwanted 
corrosive effects on engine parts. On the other hand, downstream processing of IBE is 
more complex because it includes two homogeneous azeotropes between isopropanol-
water and ethanol-water in addition to a heterogeneous azeotrope between butanol-water. 
Besides, isopropanol and ethanol form a closed-boiling mixture. 
As far as we know, there are only a few studies on the downstream processing of IBE 
fermentation in the literature. In their pioneering study, Pyrgakis et al. developed a 
process flowsheet including a seven column distillation sequence to purify isopropanol, 
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butanol and ethanol from IBE fermentation broth (2016). Results of this study show that 
this process flowsheet has a very large energy consumption. In another study, a separation 
system including two distillation columns has been proposed for IBE dehydration, but 
this process flowsheet does not include any distillation sequence to purify isopropanol, 
butanol and ethanol (Grisales Diaz and Olivar Tost, 2017). Recently, Zhang et al. 
proposed a six column distillation sequence to obtain high purity biobutanol with lower 
energy consumption (2020). However, this process does not purify other components of 
IBE, and obtain them as an isopropanol-ethanol mixture. Furthermore, none of the above 
mentioned papers studied the controllability of the proposed process flowsheets.  
The aim of this study is to develop a novel process configuration to purify all three 
components of IBE fermentation broth with a lower energy consumption compared to the 
pioneering study mentioned above. The study proposes also a plantwide control structure 
for this process configuration, which provides a regulatory level control.   

2. Process Studied 
As mentioned above, the process flowsheet reported by Pyrgakis and co-workers includes 
seven distillation columns in total, where they proposed a distillation column operating 
at 0.05 atm to separate ethanol from isopropanol-water mixture, while the azeotropic 
mixture of isopropanol-water is separated using a pressure swing distillation system 
(2016). Since the azeotropic composition of isopropanol-water mixture shifts slightly 
with the change of operating pressure, the use of pressure swing distillation significantly 
increases the energy consumption of the process. In addition, the ethanol purification 
column operating at 0.05 atm requires frozen brine to condense the top stream, which 
significantly increases the operating cost. On the other hand, the six-column configuration 
suggested by Zhang and co-workers focuses on obtaining high purity biobutanol, but it 
does not deal with the purification of isopropanol-ethanol mixture (2020). Since 
isopropanol and ethanol form a closed-boiling mixture, if they were aiming to separate 
this mixture, they had to use two more distillation column. 

Thus, the configuration proposed here includes eight distillation columns as given in 
Figure 1 with an aim of purifying all three components of IBE mixture. The flowsheet 

Figure 1. Steady-state design flowsheet 

1168



Design and control of a biobutanol purification process through IBE  
fermentation: basic design configuration   

consists of a preconcentration column, C1, to take away the excess amount of water, a 
conventional distillation column, C2, to separate homogeneous and heterogeneous 
azeotropic mixtures from each other, a decanter-distillation hybrid system, 
DEC+CB+CW, to separate butanol-water heterogeneous azeotrope, and two extractive 
distillation systems in series, C3+C4 and C5+C6 to purify water, isopropanol and ethanol, 
respectively. DMSO is used as the entrainer in extractive distillation part of the process.  
Version 10.0 of Aspen Plus is used for the simulation of steady-state configuration. The 
feed properties of the downstream process are obtained from the study of Pyrgakis et al. 
(2016). The feed flowrate is 31282 kg/h with mass fractions of 0.024, 0.045, 0.003 and 
0.928 for isopropanol, butanol, ethanol and water, respectively. NRTL is selected as the 
suitable thermodynamic model after comparing its results with experimental data.  
The basic configuration of the IBE purification process discussed in this study is 
economically optimized using total annual cost (TAC) as the objective function. TAC 
consists of operating cost and capital cost with a payback period of 3 years. Capital cost 
includes the cost of column shells, trays, heat exchangers and decanter, while operating 
cost includes the cost of steam and cooling water. The minimum value of TAC is searched 
using a sequential iterative optimization method. In this method, design variables such as 
number of trays and feed tray locations are changed until to find their optimum values 
minimizing TAC. For each run, “Design Spec/Vary” function of Aspen Plus is used to 
keep the product purities at their desired values by varying manipulated variables such as 
reflux ratio and product flowrates. Figure 2 gives the sequential iterative optimization 
procedure for the extractive distillation part of process. 

In addition to economic evaluation, CO2, SO2 and NOx emissions are investigated as an 
environmental sustainable metric, where standard coal is used as the fuel to generate 
steam. Gas emissions are calculated based on the following formula, where A is the 
standard coal conversion factor for different gases (2.493, 0.075 and 0.0375), T is the 
operating time (8000 hr/year), Qstd is the calorific value of the standard coal (29307.6 
kJ/kg) and QR is the reboiler heat duty (Zhang et al. 2020):  𝐺 = 𝐴 ∗ 𝑀               (1) 

Figure 2. Sequential iterative optimization procedure for extractive distillation 
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𝑀 =  𝑄 ∗ 𝑇 𝑄⁄                    (2)  

3. Results and Discussion 
3.1. Steady-State Simulation Results 
The design parameters of the optimal case are given in Table 1. NT, is the total number of 
trays, while NF, and NF,S are the feed trays for mixture and entrainer, respectively. P, RR 
and DC represent operating pressure, reflux ratio and column diameter. Heat duty of 
condensers and reboilers are given by QC and QR, respectively. Results indicate that the 
total reboiler heat duty of this configuration is 6309 kW. On the other hand, the total 
reboiler heat duty of seven column configuration of Pyrgakis et al. is 17370 kW, which 
is reduced to 10990 kW by applying heat integration (2016). Based on these results, it is 
seen that the basic process configuration proposed here reduces the energy consumption 
by 42.5%, even compared with the heat-integrated flowsheet of the benchmark study. The 
total annual cost of this configuration is 1881.7x103 $/yr. In addition, the annual CO2, 
SO2, and NOx emissions of the configuration are calculated as 15455.93, 464.98 and 
232.49 t/yr, respectively. 
Table 1. Design parameters for basic configuration 

 C1  C2  C3  C4  C5  C6 CB CW DEC 
NT   27  34 55 24 50 20 19 16    - 
NF     4    6  49  15  35    8    2    2    - 
NF,S     -     -    5    -    4     -       -    -    - 
P (atm)     1     2   1   1   1    1   1   1    1 
RR   0.49  3.00 1.11 2.36 2.00 5.00 0.043 0.15     - 
DC (m)  1.01  0.59 0.36 0.47 0.56 0.31 0.61 0.27  1.06 
QC (kW) 2189 1048  341  368  416 -129  577  153     - 
QR (kW) 2617 1260  348  398  752 134  606  194     - 
TAC 
(103$/yr) 706.1 364.6 136.7 96.9 242.8 63.7 191.1 68.5 11.3 

 
3.2. Design of Plantwide Control Structure 
Aspen Dynamics is used to run the pressure-driven dynamic simulations. Figure 3 
illustrates the plantwide control structure designed for the basic process configuration. A 
decentralized multi-loop control system employing several single-input and single-output 
(SISO) feedback controllers are used in this control structure. Feed flowrate acting as the 
production rate handle is controlled by a flow controller. All reflux drum levels are 
controlled by manipulating distillate flowrates, while the column base levels are 
controlled by manipulating bottoms flowrates except C4 and C6. Since these are entrainer 
recovery columns, their base levels are controlled by arranging make-up streams. 
Bottoms flowrates of C4 and C6 are manipulated to control the entrainer flowrates to C3 
and C5, respectively. For all columns, a feed/reflux ratio controller is used. The operating 
pressures are controlled by manipulating the heat removal of condensers. The organic and 
aqueous phase levels in the decanter are controlled by manipulating the corresponding 
effluent stream flowrates, respectively. The temperatures of the entrainer feed streams are 
held by manipulating heat duties of HX1 and HX4, respectively. Similarly, the 
temperatures of decanter feed streams are controlled by arranging the heat duties of HX2 
and HX3. Inferential temperature controllers are used to keep the product purities at their 
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desired values. Tray locations for temperature control are selected based on steepest slope 
criteria.  
All level controllers are P-only with a gain of 2. PI controllers are used for flow, pressure 
and temperature controls. Temperature controllers with 60 s lag implemented are tuned 
using ATV test, and controller parameters are calculated using Tyreus-Luyben tuning 

relations. All valves are half opened at the nominal conditions, and the robustness of the 
control structure is checked against disturbances in feed flowrate and composition. 
3.3. Dynamic Simulation Results 
Figure 4a illustrates the dynamic response of product purities, controlled tray 
temperatures and manipulated reboiler heat duties against ± 10% changes in production 

rate handle. It is seen that it takes approximately 4 hours for temperatures to recovery 
back to their set points with proper changes in their manipulated variables. However, it is 
not the same for product purities. Although the compositions of butanol and isopropanol 
settle down into close vicinity of their set point, a larger deviation in the ethanol 

Figure 3. Plantwide control structure 

Figure 4: Dynamic response of control structure against disturbances in a) feed 
flowrate, b) feed composition

1171



 I.N. Oksal, and D. B. Kaymak 

composition is observed in case of +10% disturbances. It is seen that there are small 
transient deviations in temperature controllers of butanol and isopropanol purification 
columns, while transient deviation of temperature controller related to ethanol 
purification is large. A direct composition control at the top of C6 instead of an inferential 
temperature control could improve dynamic behaviour ethanol composition. 
The response of control structure against a change in feed composition is given in Figure 
4b. It is seen that the controlled temperatures recovery back to their set points in less than 
5 hours without any big transient deviation. Similarly, the product compositions settle 
down into their steady-state values with very small deviations in a short transient time. 

4. Conclusions 
In this study, a new downstream process configuration for isopropanol, butanol and 
ethanol purification is investigated in terms of design and control. The complex system 
includes two homogeneous and one heterogeneous binary azeotropes is purified using 
extractive distillation and decanter-distillation hybrid parts. Optimized process flowsheet 
reduces the energy consumption significantly compared the benchmark configuration 
given in the literature. A decentralized plantwide control structure designed for the 
optimal flowsheet configuration provides an effective base-level regulatory control 
against disturbance in feed flowrate and composition. 
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Abstract
In this work we develop hybrid QC-based deep learning models for fault diagnosis of
electrical power systems that effectively extract suitable features from time-series data
using Conditional restricted Boltzmann machine (CRBM) based network. Generatively
training the CRBM network using classical learning techniques can be computationally
intensive. Therefore, we train the CRBM network with a learning algorithm assisted by
a quantum computer that yields better quality of optimal model parameters of the
CRBM network. To demonstrate the applicability of the proposed hybrid QC-based
deep learning model, we use a standard case study based on IEEE 14-bus that is
commonly used to test concepts and methodologies in power systems. The obtained
fault diagnosis results show that the proposed hybrid QC-CRBM fault diagnosis model
clearly outperforms state-of-the-art classical fault diagnosis models with low missed
detection rates and false alarm rates.

Keywords: Quantum computing, deep learning, power systems, hybrid approach

1. Introduction
Critical problems like blackouts and unwanted variations in voltages and currents can be
avoided by taking timely protective actions, which require fast and accurate fault
diagnosis approaches (Gao et al., 2015). This need motivates the research and
development of new fault detection and diagnosis methods capable of detecting and
identifying potential abnormalities in electrical power systems to minimize performance
degradation (Shang and You, 2019). Pattern recognition techniques have been widely
used in fault detection and diagnosis of power systems owing to their ability of
extracting useful features from process signals. The ability of an artificial neural
network (ANN) to learn new nonlinear relationships and generalize previously unseen
data can be applied to solve complex problems in power systems (Haque and Kashtiban,
2000). Support vector machines (SVMs) due to their ability to use multiple classes and
mapping to higher dimensions have also been used in fault diagnosis of power systems
(Salat and Osowski, 2004).

Quantum computing (QC) which has attracted widespread attention from the scientific
community in recent years, is a field that applies quantum mechanical theories to solve
complex problems in a multitude of areas. There are various QC applications in process
systems optimization (Ajagekar et al., 2020) and energy systems (Ajagekar and You,
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2019). Quantum machine learning has also been gaining traction with technological
advancements in quantum hardware (Biamonte et al., 2017) and quantum deep learning
algorithms (Wiebe et al., 2014). Fast and accurate fault diagnosis can be achieved by
quantum advantages offered by QC in terms of both speed and methods of operations
(Ajagekar and You, 2020). Harnessing the complementary strenghts of both quantum
and classical computers to develop hybrid pattern recognition algorithms and overcome
QC’s limitations is a promising strategy for fault analysis and diagnosis. The objective
of this paper is to develop hybrid QC-based deep learning models for fault diagnosis of
electrical power systems that effectively extract suitable features from time-series data
using conditional restricted Boltzmann machines (CRBM) based network. The superior
feature extraction capabilities of the CRBM are combined with discriminative learning
to identify the unknown state of measured data samples with high fidelity. To
demonstrate the applicability of the proposed hybrid QC-based deep learning model, we
use a standard case study based on IEEE 14-bus system.

2. Background
Restricted Boltzmann machines (RBMs) are generative neural networks used to model
the unknown data distributions. CRBM is a nonlinear generative model typically used
for time-series data. It uses an undirected RBM model with visible neurons and hidden
neurons that represent the observable data and dependencies between the latent
variables, respectively (Taylor and Hinton, 2009). In a CRBM, the visible variables v
and binary latent variables h receive directed connections from neurons in the
conditioning layer u that account for the visible data at the last N timesteps. Model
parameters of the CRBM network are the weight and bias vectors associated with its
visible, conditioning, and hidden layers. Like the RBM, an undirected weight Wij is
assigned to the edge between the ith visible unit and the jth hidden unit of the CRBM
network. Similarly, weights Aki and Bkj are directed from the kth conditioning unit to the
ith visible unit and the jth hidden unit, respectively. The static bias terms bi and cj are
associated with the visible and hidden units, respectively. A CRBM models the

distribution by using an RBM network to model v and using the conditioning
vector u to dynamically calculate the biases of that RBM. The energy function of the
CRBM for a joint configuration of visible, hidden, and conditioning units is denoted by
E(v,h,u) as given in Eq. (1). A joint probability distribution over v and h and
conditional on u is assigned by the CRBM model through its energy function and is
analogous to the Gibbs or Boltzmann distribution.

Learning in CRBMs generally involves performing gradient ascent to maximize the log
conditional likelihood of the observed or visible data. Computing the exact model
expectations could be very computationally expensive. These model expectations can be
approximately estimated through the contrastive divergence (CD) learning algorithm
performed on a classical computer that is extensively used to train RBM and other
energy-based models (Hinton, 2002).
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3. Hybrid Quantum-Classical Fault Diagnosis Model
Fault diagnosis tasks largely depend on feature extraction from the measured signals.
Energy based models like RBM and CRBM are capable of learning hierarchical
representations of measured data and could be used for such feature extraction tasks.
CRBMs can effectively model short-term temporal structures and are suitable choices to
model multivariate time-series data (Taylor and Hinton, 2009). Implementation and use
of the proposed fault diagnosis model involve two sequential phases, offline training,
and online fault classification. Primary components of the offline training phase in
building the hybrid QC-based fault diagnosis model are quantum generative training
followed by discriminative training. Quantum generative training is an automatic
unsupervised learning technique that uses unlabeled measured data. The trained fault
diagnosis model can then be used to classify the states of the measured data. The
amount of training data required to achieve maximum performance depends on the
model complexity and can be determined using statistical heuristics.

Figure 1. Model architecture of the hybrid quantum-classical fault diagnosis model in
generative training and discriminative training phases

As seen in Figure 1, the model architecture consists of several components that include
the input, the CRBM network, and the classification network. Input data to the CRBM
network consists of two sets of inputs, the observed data samples xo and the historical
data samples xh. History data sample xh captures N observed data samples immediately
prior to the current observed data sample. CRBMs can effectively capture higher order
regularities in the input feature space. For d dimensional observed data samples and
their corresponding Nd dimensional conditional data samples, a CRBM network can be
constructed with associated weights and dynamic biases as the model parameters.

Weights and denote the directed weights between units in
the conditional layer and the visible units, and between conditional units and hidden

units, respectively, where m latent units are present in the hidden layer.
represent the weight matrix associated with the connections between the visible and the

hidden layer. Additionally, the visible and hidden bias vectors and
together with the weights form the CRBM model parameters. The local conditional
output probabilities can be easily computed using standard sigmoid function as shown

in Eqs. (3) and (4), where . With all defined sets of inputs,

Deep Learning
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outputs, and model parameters, the CRBM network in the hybrid QC-based fault
diagnosis model is trained in an unsupervised generative manner. Discriminative
training is performed on the classification network and is achieved by attaching
classification layers on top of a subgraph of the CRBM network to form the
classification network.

(3)

(4)
Energy based models like the CRBM are often trained with the CD algorithm and its
variants. However, CD is a biased algorithm that could result in poor estimates of the
log conditional likelihood gradients (Carreira-Perpinan and Hinton, 2005). In some
cases, CD may not even converge and fail to yield maximum likelihood estimates of the
model parameters. To overcome such limitations of the CD algorithm, we train the
CRBM network in the hybrid QC-based fault diagnosis model with a new quantum
generative training technique proposed in this work. Quantum sampling can be carried
out on an adiabatic quantum computing (AQC) device. The use of AQC devices as a
sampling engine has been inspired by some of the previous works in pattern recognition
(Adachi and Henderson, 2015). Problem formulation step for programming the QPU
involves translating the nodes and edges of the objective or energy function to qubits
and coupler strengths in the Chimera lattice of the QPU. The energy function is required
to take the form of a quadratic unconstrained binary optimization problem. Model
expectations required to estimate the log conditional likelihood gradients are calculated
through the quantum sampling technique described above. Evidence from experiments
conducted with AQC devices has confirmed that AQC devices approximately sample
from a Boltzmann distribution under certain conditions (Perdomo-Ortiz et al., 2016). A
subgraph of the CRBM network is an RBM network with an energy function given in
Eq. (5). Sampling the RBM energy function from an AQC device requires embedding
of ERBM on the Chimera lattice of the QPU. As the RBM energy function takes the form
of a quadratic unconstrained binary optimization problem, the visible and hidden
variables can be mapped as physical qubits on the QPU. Final states of the qubits can be
effectively described by a Boltzmann distribution (Benedetti et al., 2016), which allows
us to approximately model the joint probability distribution of visible and hidden units.
Assuming that Nq samples are drawn from the QPU for the corresponding energy
function, the model parameters of the CRBM network are updated based on learning
rule in Eq. (10). At every step of the quantum generative training process, the model
parameters are updated for every mini-batch of training data to introduce stochasticity in
gradient ascent.

(5)

(6)

The architecture of the classification network of the hybrid QC-based fault diagnosis
model used to detect the state of the measured data is shown in Figure 1. Only observed
measurement data and their labels are considered for discriminatively training the
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classification network. The bipartite subgraph of the CRBM network with model

parameters and forms the first fully connected layer of the
classification network. An additional fully connected layer is connected to the first
layer, where each input neuron is connected to every hidden unit, in order to learn
nonlinear combinations of the extracted features. Model parameters of the classification
network are fine-tuned and optimized by updating them sequentially, utilizing the
gradients of the loss function computed at each step with the backpropagation
technique. In supervised learning, categorical cross entropy between the predicted and
true labels is minimized. Discriminatively training the classifier network in the hybrid
QC-based network yields the model parameters that minimize the total categorical cross
entropy loss. The trained model can then be used to predict the unknown state of
measured data samples by identifying one of the previously defined faults.

Table 1. Computational results of the IEEE 14-bus case study

Fault Type Support vector machine Hybrid QC-based fault
diagnosis model

MDR (%) FAR (%) MDR (%) FAR (%)
1) ABC / ABCG 0 0 5.3 0
2) AG 5.1 13.78 3.6 1.02
3) BG 0.7 16.4 3.1 3.86
4) CG 12.7 8.89 2.2 6.02
5) AB 0 18.6 8.4 0.91
6) AC 0 22.7 3.5 2.95
7) BC 9.6 7.11 3.3 3.58
8) ABG 0 0 7.3 0
9) ACG 0 0 4.1 0
10) BCG 0 0 10.4 0

4. Computational Results : IEEE 14-Bus System
The performance of the proposed hybrid QC-based fault diagnosis model is evaluated
with the IEEE 14-bus system. A MATLAB simulation of this case study is used to
collect training and testing data for building and evaluating the hybrid QC-based fault
diagnosis model. Three phase voltage data collected at each bus account for the 42
process variables in the IEEE 14-bus simulation. Ten different types of faults are
simulated at bus 14 in the case study. We carry out computational experiments with the
simulated IEEE 14-bus test system and the proposed hybrid QC-based fault diagnosis
model, in order to illustrate the applicability. Quantum generative training of the CRBM
network in the hybrid QC-based fault diagnosis model, which is initialized with the
above configuration, is performed on an AQC device with a D-Wave 2000Q quantum
processor. This QPU provides access to 2,048 qubits and 5,600 couplers that can be
used to sample the energy function. We compare the training performance of the CRBM
network with CD algorithm (Hinton, 2002). Another instance of the same CRBM
network is trained by CD implemented on a classical computer. From the free-energy
curves it can be seen that quantum generative training converges much faster than CD
learning. This also implies that less computational effort is required by the quantum
technique to achieve similar performance. After training the hybrid QC-based fault
diagnosis model for the IEEE 14-bus system, we test its fault diagnosis performance by

Fault Diagnosis of Electrical Power Systems with Hybrid Quantum-Classical 
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identifying the state of measured data samples in the testing dataset. Computational
results obtained with both methods are reported in Table 1. Symmetrical faults ABC and
ABCG that rarely occur in practice are detected by both techniques easily with
comparable performance. Severe faults like the line-to-line faults AB, AC, and BC are
identified with slightly higher MDRs by using the hybrid QC-based fault diagnosis
model for the cases of AB and AC. However, as evident from the computational results,
their FARs are significantly low as compared to those of SVM. The MDRs achieved
with the hybrid QC-based fault diagnosis model are less than 11%. With low MDRs for
both symmetrical and unsymmetrical system faults paired with some of the lowest
FARs, the proposed hybrid QC-based fault diagnosis model demonstrates a viable and
superior alternative to SVM based fault diagnosis model for the IEEE 14-bus system.

5. Conclusions
In this paper, we proposed a hybrid QC-based fault diagnosis model for analysis and
diagnosis of faults in electrical power systems. We performed unsupervised learning of
the CRBM network using quantum generative training with quantum sampling
facilitated by an AQC device. Discriminative training of the classifier network in the
hybrid QC-based fault diagnosis model further allowed us to identify several types of
faults from normal operating states. The obtained fault diagnosis results showed that the
proposed hybrid QC-based fault diagnosis model clearly outperformed state-of-the-art
classical fault diagnosis models.
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Abstract
In this work, a data-driven robust model predictive control (DDRMPC) framework for
greenhouse climate control is proposed to minimize the total control cost, while
minimizing the constraint violation on system states. First, the state-space model of the
greenhouse is generated. Next, historical data on weather forecast errors which
represent uncertain disturbances are collected. Support vector clustering with weighted
generalized intersection kernel is adopted for constructing data-driven uncertainty sets
of ambient temperature, solar radiation, and humidity. The historical data information
can then be incorporated into robust model predictive control (RMPC). Uncertainty sets
constructed in the proposed DDRMPC framework balance between reducing control
cost and conservatism. A case study of controlling indoor temperature, CO2
concentration, and humidity of a semi-closed greenhouse in New York City is presented
to demonstrate the advantages of the proposed DDRMPC framework for greenhouse
climate control over rule-based control, certainty-equivalent model predictive control,
and RMPC strategies.

Keywords: Model predictive control, greenhouse climate control, uncertainty.

1. Introduction
The purpose of greenhouse is to protect plants from outdoor weather (Bakker et al.,
1995). Temperature, CO2 concentration, and humidity are the most important factors of
the greenhouse’s indoor climate that should be carefully regulated in controlled
environment agriculture. Model predictive control (MPC) is an ideal framework for
greenhouse control (Chen, 2018), because building dynamics are slow and the system
model incorporates disturbances and constraints that can be derived from first principles
models (Serale et al., 2018). However, most existing studies on MPC for greenhouse
climate control do not consider robustness (Blasco et al., 2007), given that uncertain
disturbances could deviate the greenhouse climate from the optimal condition
(Shamshiri et al., 2018). For those studies using robust MPC (RMPC), the possibility of
over-conservatism due to the oversized uncertainty set is not considered (Shang et al.,
2019). Thus, to fill this knowledge gap, the objective of this work is to develop a novel
RMPC framework for greenhouse climate control that can effectively hedge against
uncertain disturbances, leverage the value of historical weather forecast data to reduce
over-conservatism, and simultaneously control multiple system states of greenhouse
climate to minimize the total cost and the constraint violation probability.
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2. Greenhouse Dynamic Model Formulation
In this work, the states we consider are greenhouse air temperature, floor temperature,
ceiling temperature, wall temperature, absolute humidity, and greenhouse CO2
concentration. The control inputs are the heating and cooling power, dehumidifier, and
CO2 enrichment. The disturbances are solar radiation, ambient temperature, ground
temperature, ambient humidity, and ambient CO2 concentration. Forecast errors are only
from solar radiation, ambient temperature, and absolute humidity. The structure of the
proposed dynamic model for greenhouse climate control is shown in Figure 1.

Figure 1. Semi-closed greenhouse structure model that shows control actuators, disturbances, and
greenhouse climate system states.

To control greenhouse CO2 concentration, a model to calculate net uptake rate of CO2
by crops per unit greenhouse area is required, and it can be estimated by an empirical
model of net photosynthesis as follows (Kläring et al., 2007).

where Pnet is the net photosynthesis, I is the photosynthetically active radiation (PAR), C
is the CO2 concentration in the air, T is the air temperature, LAI is the leaf area index of
the crop, and a0 are coefficients that can be obtained from the literature (Kläring et al.,
2007). The functions fI, fC, and fTP show the effects of solar radiation, CO2 concentration
and temperature on photosynthesis, respectively. fTR is for the temperature effect on
respiration, and fL describes the effect of the leaf index on both photosynthesis and
respiration.

For greenhouse humidity control, humidity is strongly affected by temperature. Since
the temperature would be controlled within a small range in the greenhouse that is most
beneficial for the crop’s growth, absolute humidity could be taken into account in the
MPC to avoid the complexity of dependency between temperature and relative
humidity.
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where Qgr is the greenhouse absolute humidity, Qtran is the plant transpiration, Qcond is
the condensation, Qamb is the flux of ambient absolute humidity, and l is the greenhouse
height.

The dynamic greenhouse climate model in this work combines the greenhouse
temperature model generated by Building Resistance-Capacitance Modeling (BRCM)
toolbox, CO2 concentration model, and absolute humidity model, given in Eq. (1)-(2).
When the length of prediction horizon H is given, a compact form of the dynamic
greenhouse climate model is given by

where x includes greenhouse air temperature, ceiling temperature, floor temperature,
wall temperature, greenhouse CO2 concentration, and absolute humidity. u consists of
heating/cooling power, CO2 enrichment, and dehumidifying rate. v contains forecast of
ambient temperature, ground temperature, solar radiation, and ambient humidity. w has
forecast error for ambient temperature, solar radiation, and ambient humidity.

The constraints on control inputs and system states in the prediction horizon H can be
stacked together. The compact forms are shown as

where Fx and fx are vectors that define the state constraints. Fu and fu are vectors that
define the control input constraints.

3. Control Strategies
3.1. Data-Driven Uncertainty Set for RMPC

In this work, we adopt support vector clustering (SVC) with weighted generalized
intersection kernel (WGIK) approach to form uncertainty sets of temperature, solar
radiation, and humidity due to its capability of handling asymmetry and correlation in
the uncertainty distribution, as well as tackling outliers (Shang and You, 2019). The
SVC approach tries to find the minimal sphere radius that can capture data (Shang et al.,
2017); WGIK is implemented when solving the dual form of SVC optimization
problem, and it is well suited for robust optimization due to its piecewise linearity
(Shang et al., 2020). To construct the uncertainty set for ambient temperature, training
data have to be first obtained. By adopting SVC with WGIK approach, the uncertainty
set for temperature is formed as follows,

.

where Dtemp is the data-driven uncertainty set for temperature forecast error, Qtemp is a
weighting matrix that can be obtained from the covariance matrix of temperature
forecast error wtemp, model parameters αi and uncertainty set parameters θ are determined
after solving the dual form of SVC using WGIK. Since Eq. (5) is a polytope, solving the
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resulting robust optimization problem could be accomplished without difficulties. The
uncertainty sets for solar radiation and absolute humidity are constructed in a similar
way. Other types of data-driven uncertainty sets (Ning and You, 2019), such as those
based on principle component analysis (Ning and You, 2018), could be used as well.

3.2. Soft-Constrained Data-Driven Robust Model Predictive Control

DDRMPC strategy in this work adopts SVC with WGIK to construct uncertainty sets
that could tackle outliers of weather forecast errors. Furthermore, the performance
guarantee is ensured after tuning uncertainty sets by the calibration data set. The
approach to solving the optimization problem in DDRMPC also uses affine disturbance
feedback (ADF) policy to obtain the approximate solution given that the original
problem is intractable (Goulart et al., 2006).

Although ADF policy could transform the original optimization problem into a tractable
problem, it is impossible to guarantee that it is always feasible at each time step due to
the presence of system state constraints, control input constraints, and disturbances. A
common approach to guarantee the recursive feasibility of MPC is to soften constraints
that might be violated. The corresponding soft-constrained MPC is formulated as,

where S is constraint violation penalty weight matrix, and ε is slack vector for system
state constraints. Since this is a minimization problem and the penalty weights in S are
all positive, slack variables would be zero when hard-constrained DDRMPC is feasible.

4. Case Study
4.1. Problem Description

In this work, a semi-closed greenhouse located in Brooklyn, New York, USA for
year-round tomato production is simulated for closed-loop temperature, humidity, and
CO2 concentration level control under four different control strategies: rule-based
control, certainty equivalence MPC (CEMPC), RMPC, and DDRMPC. The dimension
of this greenhouse is 40 m × 13 m × 4 m. The main material for roof and walls is 10 mm
twin-wall polycarbonate which provides good insulation against heat. The floor is made
of concrete. Historical temperature forecast data, historical temperature measurement
data, and historical solar radiation data from May 2018 to June 2018 are collected from
(Meteogram Generator, 2018). Historical solar radiation forecast data is hard to access,
so we adopt the following model from literature (Kasten and Czeplak, 1980) to estimate
solar radiation from cloud coverage, since historical cloud coverage forecast data is
easier to obtain, compared to historical solar radiation forecast data.
4.2. Results and Discussion
Figure 2 presents the temperature control profile of May under all four control
strategies. The trajectory of DDRMPC leaves some margin from the temperature
constraints, so as to avoid constraint violation when the weather forecast errors are
large. Therefore, due to the margin saved for prediction error, temperature constraint
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would not be violated, or there is at most only very minor violation when extreme cases
strike. Similar to DDRMPC, RMPC also leaves some margin for the temperature
constraints. However, the margin left by RMPC is usually larger than DDRMPC’s,
especially from 10pm to 5am. The comparison clearly demonstrates the ability of
DDRMPC to reduce conservatism. On the other hand, both CEMPC and rule-based
control violate the constraints more severely. The reason for the violation is that
CEMPC does not consider prediction error when the MPC optimization problem is
being solved at each step, and rule-based control does not take the weather forecast into
account. When the actual ambient temperature turns out to be lower than the predicted
ambient temperature, greenhouse temperature could not be maintained to be above the
minimum acceptable temperature, and this is when constraint violation happens. The
results demonstrate the robustness of RMPC.

Figure 2. Greenhouse temperature profile in first half of May 2018 under different control
strategies with upper bound constraint and lower bound constraint that change according to time
of the day. Higher constraint during daytime and lower constraint during nighttime.

Table 1. Percentage of time violating temperature constraint in each month
May June Average.

Rule-Based (%) 69.1 68.1 68.6
CEMPC (%) 76.5 79.14 77.82
RMPC (%) 0.13 0.28 0.21

DDRMPC (%) 0.27 0.41 0.39

Table 2. Cost of controlling temperature, CO2 concentration, and absolute humidity under
different control strategies in each month

May June Total
Rule-Based ($) 6,237 5,144 11,381

CEMPC ($) 4,716 3,601 8,317
RMPC ($) 5,801 4,372 10,173

DDRMPC ($) 5,604 4,162 9,766

Overall, CEMPC shows the least conservative control profile. Although CEMPC has
the lowest overall control cost, which is the sum of heating/cooling cost, CO2 cost, and
water cost, shown in Table 2, it ends up with violating system constraints the most as
shown in Table 1. Neglecting the forecast errors makes CEMPC violate constraints,
because of the difference between the real weather condition and the weather forecast.
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Whenever the weather is colder than predicted, CEMPC would violate the constraint,
because the controller neglects the weather forecast errors and usually takes the most
aggressive actions. Some violations are so severe that the greenhouse indoor air
temperature drops to 14℃, which is 4℃ below the minimum required temperature for
tomato growth. This is undesirable in a greenhouse because tomatoes are usually
sensitive to temperature. Even a 2-3℃ temperature drop may cause serious damages to
the fruits.

5. Conclusions
In this paper, we developed a DDRMPC framework that was able to simultaneously
control multiple system states for indoor climate of a semi-closed greenhouse. To
prevent greenhouse climate from becoming harmful to plant and fruit due to harsh
weather conditions and inherent uncertainty in weather forecast, uncertainty sets for
ambient temperature, solar radiation, and absolute humidity were first constructed by
adopting the SVC approach with WGIK on historical weather data. Affine disturbance
feedback policy was implemented for solving the optimization problem in proposed
DDRMPC. We presented a case study of simultaneously controlling the indoor
temperature, CO2 concentration, and absolute humidity of a semi-closed greenhouse
located in Brooklyn, New York for tomato production. The results showed that
DDRMPC reduces 14% and 4% control cost compared with rule-based control and
CEMPC, respectively, while only violating temperature constraint 0.39% of time.
Therefore, DDRMPC showed better control performance compared to other approaches
for greenhouse climate control.
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Abstract 
Batch distillation is one of the most common separation processes used in the 
pharmaceutical, agricultural, food and biotechnology industries. The rate-based model is 
an accurate approach to represent the performance of distillation trays, since it involves 
the mass and energy transfer equations to describe the interaction between the phases. For 
batch distillation, such approach results in a set of nonlinear differential and algebraic 
equations (DAE). Because of the complexity of such systems, good initial values are 
required for their solution. Thus, a strategy to estimate the initial values for a trayed batch 
distillation column modeled with a rate-based approach is presented in this work. The 
column under investigation consists of four sieve trays, a pot, and a total condenser. For 
the initialization procedure, the model equations are solved under a steady state 
assumption. 

Keywords: rate-based modelling, batch distillation, discretization. 

1. Introduction 
Distillation is the process of separating of components in the mixture based on the 
differences among the relative volatilities or boiling points. Distillation can be to 
continuous or batch, there are some guidelines that can help to decide when a batch 
process may be favored over a continuous one. Batch distillation the process of separation 
for liquid mixture that containing high value chemical, such as pharmaceutic, 
biochemical, food, agricultural industries. Due to their flexibility, batch column can be 
used for a variety of system with relatively small amounts of components, under various 
operating conditions and changing compositions and components. In recent years, 
different models have been proposed to study the performance of batch distillation 
columns, mainly divided into two different types: equilibrium and rate-based models. The 
first model requires the solution of mass and energy balances while considering the vapor-
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liquid streams leaving the stage to reach thermodynamic equilibrium, but its accuracy 
depends on the efficiency values assumed for the trays. The rate-based model is more 
accurate since it involves the addition of the mass and energy transfer equations to 
describe the interaction between the phases. Correlations of mass and heat transport 
coefficients are required. The column is described by the MERSHQ equations. May-
Vazquez et al. (2020) presented a rate-based model of a batch column to separate 
methanol and ethanol, in which a novel mass transfer model for sieve trays is incorporated 
to the rate-based equations. The resulting formulation comprises a set of nonlinear 
differential and algebraic equations (DAE), whose solution require a significant 
computational effort. Numerical solution techniques for solving the differential equations 
have been development: one step methods and multistep methods. Some methods used 
are Euler´s, Runge-Kutta, Adams-Bashforth and Predictor-Corrector. Another 
classification of the integration techniques depends on whether the method is explicit or 
not, semi-implicit or implicit: BDF (backward difference formula) and orthogonal 
collocation method (Diwekar, 2014).  The modeling, simulation, and optimization of 
batch distillation columns is of interest to improve the performance of this dynamic 
process, involving the solution of the set of DAEs through dynamic optimization. 
Safdarnejad et al. (2016) mentioned that the optimization column batch can be subdivided 
into optimal design problems and optimal control problems. There is a difference between 
the two types of optimization, the first generally deal with column configuration while 
the second deal with operation. The optimization of the batch column is focused on the 
solution of optimal control problems, the indices of performed such as maximum 
distillate, minimum time, and maximum profit. To solve this problem, earlier works 
(Logsdon and Biegler, 1989) proposed the use of orthogonal collocation over finite 
elements as a discretization approach to simultaneously simulate and optimize batch 
distillation columns. Most of the recent literature related to dynamic optimization of such 
columns use equilibrium models; rate-based approaches are mainly used for packed 
columns. In any case, to solve this complex set of DAEs using orthogonal collocation 
over finite elements, it is necessary to provide the initial values and limits of the variables. 
In this work, a strategy to estimate the initial values for a trayed batch distillation column 
modeled with a rate-based approach is presented; these values will be used as the initial 
values for future works to perform the dynamic optimization of the column. 

2. Methodology 
For the initialization procedure, the model equations are solved under a steady state 
assumption, approach that has been applied to initialize equilibrium models for batch 
columns (López-Saucedo et al., 2016). In this work, the use of this technique is extended 
for the initialization of more complex rate-based models. The methodology is divided 
into three stages: (i) rate-based model, (ii) initial values using Matlab R2013a, (iii) steady 
state simulation using GAMS. 
The batch distillation column consists four sieve trays, a pot, and a total condenser. Figure 
1 shows a diagram of the column. The batch system separates a methanol/ethanol, 
mixture, with an initial composition of 75% mol of methanol and 25% mol of ethanol. 
Initial charge of the mixture is 0.163 kmol. The operation is stopped at 80 minutes, with 
constant thermal duty of 500 W.  
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Figure 1.- Simplified representation of the batch column 

 

The rate-based model is based on the MERSHQ equations and the following assumptions: 
vapor-liquid interface reaches thermodynamic equilibrium, the trays are in mechanical 
equilibrium, a total condenser is used, the walls of the column are perfectly insulated and 
the pressure along the column is constant. The mass transfer model is based on the 
proposal of Taylor and Krishna for sieve trays (Eq.11), with the modifications reported 
by May-Vazquez et al. (2020). It was also necessary to introduce correlation or methods 
to calculate physical and transport properties (density, viscosity, diffusivity, heat capacity 
and thermal conductivity).  

The equations used to model the behavior of the batch column are presented below. 

Accumulator:  
Total material balance  

a
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dM L
dt


                                                                                                                    (1)                                                 

Component material balance  
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Component material balances for component i in vapor and liquid phases on stage j 
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Energy balances on vapor and liquid phases on stage j 
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Equilibrium equations  
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Reboiler         
Total material balance 
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Component material balances  
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            (17)                               

It was necessary to have initial values for compositions and enthalpies to solve the steady 
state simulation. To obtain these values, the system of algebraic and differential equations 
of the rate-based model was written in Matlab R2013 at total reflux for 10 minutes, and 
the initial composition in the pot was 75% methanol and 25% ethanol. At the beginning 
of the simulation, the compositions and enthalpies were considered zero at the sieve trays 
and accumulator. The fourth order Runge-Kutta method with constant step size of 0.001 
s  
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The differential equations of the rate-based model are equal to zero (Eq.1 to Eq.6 and 
Eq.16 to Eq.17) and the initial values obtained from MATLAB were used for the 
initialization of the steady state simulation. The system of algebraic system was solved at 
GAMS.  It was also necessary to introduce upper and lower bounds to the variables. 
 

3. Results 
In this section, the obtained experimental data at total reflux is compared with the data 
obtained by the developed steady-state model. 

The system of algebraic equations of the rate-based model at steady state of the binary 
batch distillation column consists of 301 equations and 28 inequality constraints. 
CONOPT was used to solve the nonlinear programming.  

Figure 1 shows the composition profile when the column operates at steady state. The 
stage 1 corresponds to the pot and stage 6 to the tray 4. In this figure the composition of 
methanol in the liquid phase increases in each tray since it is the lightest component. The 
Figure shows a good agreement between the experimental results and steady state 
simulation, the average error is 1.63%.  

 

 
Figure 2.- Composition profile 

 

Figure 2 shows the temperature profile obtained by both, the temperature is lower in the 
upper stages because the amount of methanol increases. These results indicate that the 
steady state simulation has a good approximation with the experimental results. The 
deviations between the experimental data and steady state were ±1.21%. 
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Figure 3.-Temperature profile 

4. Conclusions 
A strategy to estimate the initial values for a batch distillation column to scale pilot was 
proposed, the strategy shows a good approximation with the experimental results.  These 
values will be used by the solution of the optimal control. The initial values and limits to 
the upper and lower bounds on variables are very important for the simulation in GAMS 
to converge.  
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Abstract 

As the scale and complexity of the chemical process increase, it is important to detect 

anomalies in the process at an early stage and respond in real-time. Currently, however, 

it is difficult for process operators to identify numerous alarms in the factory and to make 

a consistent and immediate abnormal diagnosis because each has different safety 

standards. To this end, this study proposed an adversarial autoencoder(AAE) based 

process monitoring model. AAE uses adversarial training to impose an arbitrary prior 

distribution on the latent vectors. In other words, the discriminator is trained to distinguish 

between the samples from the data distribution and the samples from the encoder, and the 

encoder is trained to match the latent vectors with a prior distribution. In the AAE-based 

process monitoring model, normal condition samples are used for train data and prior 

distribution is set up to be Gaussian distribution. T2 and SPE statistics are constructed in 

the feature space and residual space respectively to monitor the process. By employing 

AAE, the model learns a deep generative representation that maps the orignal data 

distribution. To demonstrate the performance of the proposed model, a case study using 

the Tennessee Eastman benchmark process is employed. False alarm rate(FAR) and false 

detection rate(FDR) are used as the assessment criteria to measure the monitoring 

performance.  

Keywords: Nonlinear process monitoring, Adversarial autoencoder, Fault detection, 

Gaussian feature learning 

1. Introduction 

Timely detection of faults in chemical systems is critical to ensuring the safety product 

quality. However, currently, these methods are relying upon human operators who need 

to recognize anomalies and make timely corrective decisions. Therefore, there has been 

a need to develop an intelligent automated fault detection system to assist operators in 

handling abnormal situations. To this end, various methods have been developed over 

three decades(N. Olivier-Maget et al, 2008). Data-driven methods possess great potential 

to be applied to chemical processes since a large amount of data is collected and stored 

in a distributed control system. Initially, principal component analysis (PCA)(S.Joe Qin, 

2003), the most popular feature extraction method, has been widely used for monitoring 

linear processes. However, the data characteristics of many modern industrial processes 

are complicated, and the relationships among different variables are highly nonlinear. To 

overcome this, several nonlinear methods have been proposed. One of them is kernel 

 http://dx.doi.org/10.1016/B978-0-323-88506-5.50184-4
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PCA(KPCA)(S. W. Choi et al, 2005) which involves data transformation from the low-

dimensional nonlinear observation space into the high-dimensional linear feature space. 

However, standard kernel functions do not always guarantee good results and the 

performance is also very sensitive to some hyper-parameters. Recently, deep learning 

(DL) has received a lot of attention in process monitoring because of its high model 

flexibility. Among various DL-based methods, autoencoder(AE)(Z. Zhang et al, 2018) 

provides good performance by achieving automated key latent variables. However, the 

typical autoencoder based method lacked good model interpretability(Y. Qiu and Y. Dai, 

2019). To address these issues, an algorithm for process monitoring based on adversarial 

autoencoder (AAE) has been developed. AAE(A. Makhzani et al, 2015), which is a 

probabilistic autoencoder that used the generative adversarial networks, extracts the latent 

code vector matching the arbitrary prior distribution. Two monitoring indices are 

proposed and constructed based on the extracted latent code. The proposed method is 

applied to the Tennessee Eastman (TE) process(J. J. Downs and E. F. Vogel, 1993) to 

verify its monitoring performance. 

2. AAE based fault detection 

2.1. AAE based dimension reduction 

AAE is a generative autoencoder that uses generative adversarial networks (GAN) to 

impose an arbitrary prior distribution on the latent code. The structure of AAE is shown 

in Figure 1. It contains autoencoder and discriminator of GAN. It uses adversarial training 

to perform variational inference by matching the aggregated posterior distribution 

  with a prior distribution . The encoder network  defines 

(1

) 

Figure  SEQ Figure \* ARABIC 1. Structure of AAE 
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an aggregated posterior distribution on the latent vector  as follows: 

  

Meanwhile, the autoencoder attempts to minimize the reconstruction error as follows: 

  
(2) 

where  and  are the updating parameters of encoder and decoder respectively and 

 is the reconstructed output of autoencoder. Then the adversarial network differentiates 

the true samples from the generated samples by updating its discriminator . The 

generator  is updated to fool the discriminative network into trusting that the samples 

from the generator come from the prior distribution. The objective function of an 

adversarial network is as follows: 

Figure  SEQ Figure \* ARABIC 2. Flowchart of AAE based monitoring method 
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(3) 

Matching the aggregated posterior to the prior samples ensures that generating ones from 

any part of prior space results in a meaningful latent vector.  As a result, the decoder of 

the AAE learns a deep generative model that maps the imposed prior ones to the data 

distribution. The extracted latent vector has compressed and enhanced representations. 

2.2. Monitoring indices 

After AAE based dimension reduction model is developed, latent space and residual 

space are obtained by the encoder and decoder, respectively. For fault detection, the 

indices should be constructed to measure how far the variables are out of the normal 

range. 

In the latent space, the index  based on hidden representations is defined as follows: 

Figure  SEQ Figure \* ARABIC 3. Layout of Tennessee Eastman process 
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(4) 

where  is a covariance matrix of a latent vector . It describes the comprehensive 

fluctuation of the model. In the residual space, the index  based on reconstruction 

error is defined as follows: 

 

 

 

(5) 

 

It reflects the degree of deviation between the process variable and reconstructed 

variables from the model. In order to detect whether a new sample includes fault 

information, the control limits of the indices should be determined. As the distribution of 

real process data is unknown, it is necessary to use a density based approach. Based on 

the the confidence level , control limit is obtained. To sum up, the flowchart with the 

proposed AAE based fault detection is depicted in Figure 2. 

3. Case study 

3.1. Process description 

The Tennessee Eastman (TE) process is a well-known benchmark process in process 

control and monitoring.  The TE process is shown in Figure 3, which is mainly composed 

of five operating units: a reactor, a condenser, a separator, a compressor, and a stripper.  

There are 22 continuously measure variables, 19 composition measurements, and 11 

manipulated variables. TE process also has 21 programmed process faults like step, 

random variation, sticking, and unknowns. Each fault data has 960 samples with a fault 

introduced from sample 161.  Normal data for training the proposed model contains 500 

samples. 

3.2. Monitoring results 

In this case study, the proposed method and several comparative methods (PCA, KPCA, 

AE) are applied to detect the faults of the process.  To demonstrate the performance of 

the proposed methods, fault detection rates(FDRs) for all fault types and false alarm 

rates(FARs) of normal data are calculated and shown in Table 1 and Table 2. For large 

magnitude faults 1, 2, 4, 6, 7, 8, 12, 13, 14, and 17, all four methods show similar detection 

results. The FDR of the proposed method outperforms that of the other three methods in 
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some faults (3, 5, 9, 15, 20, and 21) and the average FDR is also higher than the other 

three methods. Fault detection using AAE model shows strong robustness to all types of 

faults. In FAR, the proposed method also gives significantly better results than other 

methods. Extraction of robust features following Gaussian distribution improves the 

performance of process monitoring.  

 

 

Table 1. Fault detection rates of PCA, KPCA, AE, and AAE based method 

Fault type PCA KPCA AE AAE 

1 1 1 0.997 1 

2 0.987 0.987 0.99 0.99 

3 0.258 0.135 0.258 0.348 

4 0.987 0.973 0.993 0.986 

5 0.511 0.336 0.497 0.55 

6 1 1 1 1 

7 1 1 1 1 

8 0.987 0.981 0.99 0.978 

9 0.226 0.214 0.255 0.336 

10 0.695 0.682 0.678 0.74 

11 0.822 0.826 0.843 0.82 

12 0.99 0.995 0.993 0.997 

13 0.958 0.955 0.963 0.962 

14 1 1 1 1 

15 0.275 0.252 0.315 0.312 

16 0.645 0.645 0.636 0.647 

17 0.955 0.958 0.955 0.96 

18 0.928 0.93 0.928 0.95 

19 0.505 0.498 0.477 0.538 

20 0.731 0.697 0.692 0.786 

21 0.597 0.568 0.608 0.59 

Table 2. False alarm rates of PCA, KPCA, AE, and AAE based method 

PCA KPCA AE AAE 

0.1 0.0513 0.0813 0.0313 
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4. Conclusion 

The AAE-based process monitoring model is particularly good for nonlinear, non-

Gaussian systems because AAE is specialized in extracting Gaussian features that are 

most desired in these systems. It automatically extracts features through the pre-trained 

deep neural network and calculates the monitoring statistics using the latent and residual 

features, so can be easily applied to large-scale data. The proposed method is applied to 

the benchmark process and shows superior performance in fault detection rate and false 

alarm rate. Extending the AAE-based model to the multimode process monitoring is an 

important part of future work. 
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Abstract 
Self-optimizing control (SOC) is a method to select controlled variables (CVs) and keep 
them constant such that the plant operates optimally. Since the concept of SOC was 
proposed, some difficult problems in this field have not been solved such as active 
constraint changes. Previous work either handles the constrained SOC problem with 
complicated control structure or in the sense of local SOC, and has limitations such as 
structural complexity and inaccuracy of control. To address the shortcomings of the 
existing methods, this paper proposed a constrained variable approximation (CVA) 
method to solve the problem in the global sense using a simple control structure. The 
constrained variables which may vary between active and inactive are approximated by a 
nonlinear function of available measurements in the whole operational region using 
artificial neural network (ANN). Then the CVs are determined as the difference between 
the nonlinear function and the constrained variables. The system would be near optimal 
operation when the CVs are controlled at zero. An evaporator process is applied to 
illustrate the effectiveness of the proposed method. 
 
Keywords: Self-optimizing control, Active constraint changes, Controlled variable 
selection. 

1. Introduction 
Operation optimization is difficult to achieve under various disturbances and 
uncertainties. Real-time optimization (RTO) offers a solution that handles the problem 
through repeated online optimization, however this would result in large computation 
burden. Besides, the RTO is an open-loop solution, which means it is not robust when the 
accuracy of uncertainty estimation is poor. Alternatively, self-optimizing control (SOC) 
(Skogestad, 2000) focuses on the selection of appropriate controlled variables (CVs), 
such that the plant operates almost optimally under all circumstances when these CVs are 
controlled at their constant setpoints through closed feedback control. Since the concept 
of SOC was proposed, the research associated with CV selection methods has made 
substantial progress (Jäschke et al., 2017). One of the most interesting problems about 
SOC is how to control constraints varying between inactive and active. Since there may 
be different number of unconstrainted degrees of freedom in different disturbance 
regions, Manum and Skogestad (2012) designed a switching structure between different 
disturbance regions within each of which the active constraints remained unchanged. The 
extended null space method (Alstad and Skogestad, 2007) was developed to find the CVs 
for different regions and a special strategy is used to decide when to switch between 
different regions. Difficulty arises to find the switching method in the presence of 
measurement noise. Cao (2004) proposed a cascade control structure that the self-
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optimizing CVs are in the outer loop while the variables likely to violate the constraints 
are in the inner loop with a saturation block to restrict the inner loop setpoint so that the 
variables will not go beyond the constraints. Nevertheless, this scheme requires that the 
number of CVs is not less than the number of the constraints likely to change between 
inactive and active because one constraint needs to be controlled by one CV. Hu et al. 
(2012) considered a simple control structure that aims to find CVs which can ensure all 
the variables are within their constraints and also within the whole disturbance and 
uncertainty region. Nonetheless, the CVs are chosen based on the exact local method 
through minimizing the local average loss. 
Existing approaches associated with active constraint changes are either difficult to 
complement due to the complicated control structure or locally valid. To address this 
problem, this paper proposes a method to find a CV which makes the average loss 
acceptable once it is kept zero despite of changes of active constraint.  This is achieved 
by constructing a nonlinear function of available measurements to track the optimal value 
of the constraints which may vary between active and inactive using artificial neural 
network (ANN). Then the CV is selected based on the difference between the nonlinear 
function and the constraint variable. Finally, a simple feedback control structure can 
achieve constrained global self-optimizing control. 
The rest of the paper is organized as follows. Section 2 introduces the constrained global 
self-optimizing control (gSOC) problem formulation and the CV selection method, then, 
the proposed approach is demonstrated to be effective through an evaporator case study 
in Section 3. Finally, the paper is concluded in Section 4. 

2. Constrained gSOC formulation and CV selection 
Consider a constrained static optimization problem 

 
 

min ,

. . , 0
u

J u d

s t g u d 
 (1) 

with available measurements 

my y n   and  ,y = f u d  (2) 

Where J  is a scalar objective (economic cost) function to be minimized, and unu , 
dnd , ynn , yn

my  and yny are manipulated variables, uncertain 
disturbances, measurement errors, measured and true output measurements, respectively. 

: yu d nn nf    and   : gu d nn ng     are the input-output mapping function and 
operational constraints, respectively.  These constraints are often related to operational 
safety or product qualities. 
Suppose c  is the self-optimizing CVs. According to the SOC principle, when c  are kept 
as constant, the process operation is optimal or near optimal. This means the desired c  at 
optimal condition, i.e.  optc d  should be insensitive to the change of d . Therefore, the 
optimizing problem (1) becomes the problem of choosing appropriate c  which remain 
almost the same under optimal conditions with respect to d . Previous work selects 
individual measurement y  or linear combinations of available measurements Hy  as c  
and most of them are based on the assumption that the active constraints do not change 
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under different disturbance scenarios. Actually, during the operation, constraints g  can 
be divided into three types: (i) 1g : always active; (ii) 2g : always inactive; (iii) 3g : vary 
between active and inactive. For case (i), 1g  can always be controlled by u  hence 
consuming the same number of degrees of freedom of 1g , and for case (ii) 2g  can be 
neglected because they have no effect on the optimal solution. Therefore, only 3g  
deserve careful attention.  
It is assumed that the optimal operation data under various disturbances are available. The 
aim is to select appropriate CVs which are kept at constant setpoints so that the plant is 
operating near optimally in spite of 3g  switching between active and inactive. Because 
the optimal values of 3g  are not constant in the whole operation region, they cannot be 
directly selected as CVs. It is proposed to find a proper function to fit the optimal 
constraint values of 3g , and then CVs are selected as the difference between the function 
and the constraint variables. When the CVs are kept at zero, the optimality of constraint 
variables in 3g  is maintained by tracking the function in the whole region. Since 3g  
sometimes reach the upper bounds, sometimes the lower bounds and sometimes in 
between, 3g  are strongly nonlinear, hence cannot be fitted well by linear functions. 
According to the well-known universal approximation theorem of neural network 
(Hidalgo et al., 2020), that is, a given feedforward neural network with enough hidden 
nodes, equipped with a linear output layer and activation function of the hidden layer, can 
approximate any function by any desired error, the ANN method is applied to obtain the 
nonlinear function which is used to fit the constraint variables in 3g .   

The proposed constrained variable approximation (CVA) method can be described as two 
parts: one is offline CV selection as shown in Figure 1, and the other is online SOC in 
Figure 2. As shown in Figure 1, optimal measurements y  including controlled variables 
in 3g  are obtained by solving optimization problem (1) under different disturbances d . 
Then the controlled variables in 3g  are fitted by a nonlinear function of y , i.e.  Z y  

through ANN. Finally, the CV can be selected as   3c = Z y g . As shown in Figure 2, 
the selected CV is applied to the SOC structure. The process can operate near optimally 
when c  is kept at zero through a feedback control. 

 
Figure 1: offline CV selection 

 
Figure 2: online SOC structure using CVA 
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3. Case study 
A forced-circulation evaporator (Newell and Lee, 1989) is considered as shown in Figure 
3. The solute concentration increases through evaporation of the solvent in the forced 
circulation evaporator. The detailed model equations and the nominally optimal values 
can both be referred to Ye et al. (2013). 

 
Figure 3: Evaporator system 

There are three state variables 2L , 2X , 2P , four manipulated variables 2F , 100P , 3F , 

200F  and four disturbances 1F , 1X , 1T , 200T  in the process. The variations of disturbance 
variables are 20 %  of their nominal optimal values. The cost objective function ($/h) 
of the whole process is defined as 

 100 200 2 3600 0.6 1.009J F F F F     (3) 

The process constraints are listed as follows: 

2 35.5%X   (4) 

240 80 kPa P kPa   (5) 

100 400 P kPa  (6) 

200 400 /F kg min  (7) 

30 / 100 /kg min F kg min   (8) 

The constraints in (7) and (8) are always inactive, hence they can be neglected. Two 
constraints 100 400 kPaP   and 2 35.5 %X   are always active within the whole 
disturbance region, and the separate level 2L  which has no steady-state effect, but needs 
to be controlled at its nominal value, hence totally consuming three degrees of freedom 
(DOF). Hence, only one DOF is left for CV selection to achieve SOC. 
Monte Carlo simulation is applied to generate a sequence of 1000 nonuniformly 
distributed samples within the predefined disturbance set and then optimal measurements 
are obtained by numerical optimization with respect to different disturbance. Note that 

2P  in constraint (5) vary between inactive and active within the whole sampling region, 
so the number of activeness and inactiveness of 2P  are similar by sampling nonuniformly 
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to ensure the representativeness of the samples. There are 4 measurements to be 
considered for CVA method, which are identified as one of the best subsets (Kariwala et 
al., 2008): 

 2 100 201 3, , ,y F F T F  

The ANN is applied to find a nonlinear combination function of optimal y , i.e.  Z y  

which can fit the optimal 2P  in the whole operation region. There is one hidden layer 
with 12 neurons in the ANN structure and the determinant coefficient 2R  is 0.99 after 
training. Then the self-optimizing controlled variable can be selected as   2c Z y P   

and kept at zero through a feedback control. In this way,  Z y  is able to track the optimal 

setpoint of 2P  with respect to different disturbance, so 2P  can be maintained at optimum 
through keeping 0c  . 
To evaluate the performance of the CV selected through the Monte Carlo experiment, 100 
random samples are generated within the expected disturbance ranges without 
measurement noise and the results are shown in Figure 4. It is clear that the values of 
objective function after controlling 0c   are almost similar with its optimal values at the 
same disturbance, and the average loss between the two is 0.0864. From Figure 5, it can 
be seen that 2P  after self-optimizing control is able to track the corresponding optimal 

2P  well without violation of its limits. Table 1 compares the proposed constrained 
variable approximation (CVA) method with the necessary condition of optimality (NCO) 
approximation using least square method (Ye et al., 2013), which selects CVs as a linear 
function of the available measurements that approximates the gradient of J  with respect 
to u . To compare fairly, the same measurement set including 2P  is chosen and the 
constraint equation (5) is ensured when solving the constrained gSOC problem. It is clear 
that the average loss and maximum loss of CVA method are about two orders of 
magnitude smaller than the NCO approximation method, which indicates the superiority 
of the proposed method. 

Figure 4: Monte Carlo simulation results 

 

Figure 5: Tracking of optimal 2
P  
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Table 1: Comparison of previous method with this work 
Method Average loss Maximum loss Standard deviation 

NCO approximation 2.7954 12.9476 3.1219 

CVA (our approach) 0.0864 1.3779 0.2302 

4. Conclusions 
This work proposed a new CV selection approach to solve the constrained gSOC 
problems. In this approach, the constrained variable which may vary between active and 
inactive is tracked by a nonlinear function of available measurements using ANN. Then 
the CV is selected as the difference between the two which are kept zero, leading to good 
SOC performances. The proposed approach was applied to a forced-circulation 
evaporator process and was proved to be effective to achieve low loss while satisfying 
the constrained limits. However, as a preliminary study, only a single degree of freedom 
(DOF) is considered in this work and how to select CVs when more than one DOF exists 
will be further investigated. 
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Abstract 
This paper presents a toolbox for driving force based integrated design and control of 
reactive distillation (RD) systems. The toolbox provides links to other necessary tools for 
the design, simulation, and analysis of RD systems. One convenient feature of the toolbox 
is that it guides the user through the steps of problem definition, including the selection 
of design-control variables and associated data-flow as well as the generation of the 
necessary scripts for links to simulation and analysis software. The implementation of 
this new toolbox is tested through binary/multielement single/double feed RD systems. 
For each RD system, the needed driving force calculations are done in ProCAPE. Steady 
state simulation and analysis are performed through ASPEN PLUS, MoT, or ProCACD. 
Dynamic open and closed-loop PI or MPC simulations are performed in ASPEN PLUS 
Dynamics, MoT, or MATLAB. The goal of the tests is to confirm the advantages of using 
the toolbox for studies involving RD systems in terms of fast, reliable, and efficient 
solution and analysis of integrated design-control problems. 
 
Keywords: MPC, driving force, reactive distillation, ProCACD, toolbox 
 
1. Introduction 
Reactive distillation is an attractive intensified process unit because of its many 
advantages, e.g., the requirement of fewer process units, less heat addition, improved 
product removal, degradation of azeotropes, etc. (Tian et al., 2018). However, it is 
inherently difficult to control due to the shrinkage of the controllability region, and 
propagation of nonlinearity because of non-optimal design decisions (Rafiei and 
Ricardez-Sandoval, 2020). Hence, it is important to consider design-control issues 
simultaneously to eliminate potentially promising design alternatives that may be 
dynamically inoperable. Tian et al. (2020) have proposed a parametric optimization and 
control approach for simultaneous design-control of RD systems. Hamid et al. (2010) 
used thermodynamic insights and reverse design for decomposition based integrated 
design-control of nonreactive and reactive systems. Mansouri et al. (2016) have shown 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50186-8



 A. Iftakher et al. 

that by simultaneously considering design and control issues through the driving force 
concept, better design-control of reactive distillation units can be achieved. Iftakher et al. 
(2021) extended this concept by showing that various RD systems, designed at the 
maximum available driving force actually lead to superior controllability under advanced 
controllers such as MPC. In this work, an integrated design-control toolbox especially 
suitable for RD systems that provides systematic process modeling, simulation, and 
verification options based on the extended RD design-control framework of Iftakher et 
al. (2021), is presented. This paper is organized as follows: first, the extended design-
control framework is presented. Next, the work- and data-flow of the developed 
integrated RD design-control toolbox are described. Then, the calculation steps are 
highlighted through a case study. Finally, conclusions are stated.  
 
2. Integrated design-control framework for RD systems 
The extended integrated design-control framework has 3 main steps: data collection & 
problem formulation; determination of integrated design-control; and, verification. 
2.1. Data collection & problem formulation  
Here, an RD system is defined in terms of compounds (and catalysts), feed condition, 
number of reactions, and a design target. To quantify the design and control issues of the 
specified RD system, a multiparametric objective function is defined. Iftakher et al. 
(2021) proposed the use of an objective function in terms of six parameters: total energy 
consumption by the process, CO2 footprint per kg feed, integral absolute error, total 
variation of input, relative gain array (RGA), and the Niederlinski Index. The reactive 
systems are expressed in terms of elements (difference between the number of compounds 
and the number of reactions). Therefore, a reactive system with three compounds, and 
one reaction is expressed in terms of binary elements, whereas a reactive system with 
multiple elements is represented in terms of equivalent binary elements. At the end of this 
step, the choice of the elements is verified through an atom-balance of the reactive system. 
2.2. Determination of integrated design-control 
Here, the integration of design and control is performed through operation at the 
maximum driving force. First, the reactive phase (vapor-liquid equilibrium) diagram and 
its translation to a driving force diagram are calculated based on the element reactive 
system, appropriate thermodynamic models, and the specified operating conditions. The 
location of the maximum driving force and the operational area are identified to determine 
the RD column design parameters. Next, the MPC controller parameters are determined 
(Iftakher et al. 2021). 
2.3. Dynamic analysis and verification 
Here, at first, the steady state analysis is performed (to verify the designed controller 
structure from step 2) using the linearized state space model of the process. Next, the 
dynamic simulation is performed (in open-loop and closed-loop with PI or MPC options). 
Finally, the objective function parameters are calculated to quantify the design-control 
performance of the designed RD system. 

3. Integrated design-control toolbox for RD systems 
The integrated design-control framework has been translated into a toolbox for the study 
of RD systems. As shown in Figure 1, the toolbox has 5 main steps, which are briefly 
described below.  
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Figure 1: Work-data flow of the Integrated RD design-control Toolbox. 

3.1. Step 1: Problem formulation 
In this step, the user is guided to enter the following: compounds, feed specification, 
number of feeds, reaction definition, reaction parameters, design target, choice of 
elements. The RD toolbox exports these data to ProCAPE where the user selects the 
needed thermodynamic models to calculate the Reactive VLE data at the specified 
pressure. The reactive VLE data is then converted to a driving force diagram from which 
the necessary column design parameters (number of reactive stages, feed stage, reflux 
ratio) are determined. At the end of this step, a simulator input file is generated that 
contains all the required flowsheet and design information for steady state simulation in 
Step 2. 
3.2. Step 2: Steady state simulation 
The input file generated in Step 1 is loaded to a simulation software (ASPEN PLUS, 
ProII, or MoT) where all the required process and design variables are defined. Next, the 
steady state simulation is performed. The product compositions are inspected and if the 
design targets are satisfied, the required data (column hydraulics, reflux drum level, hold 
up, etc.) for dynamic simulation are provided for the generation of the corresponding flow 
driven dynamic model. Otherwise, the user is guided back to Step 1 to refine the problem 
formulation. 
3.3. Step 3: Open-loop simulation and linearization 
With the generated dynamic model file, open-loop simulation is performed in ASPEN 
Plus Dynamics or MoT for a selected disturbance scenario. The open-loop data are used 
to derive the transfer function model of the process. Also, in this step, a control-design 
interface script (autogenerated by the integrated RD toolbox), is applied to determine the 

1211



 A. Iftakher et al. 

state space matrices of the process by linearizing the dynamic model at the nominal 
steady-state condition. 
3.4. Step 4: Analysis 
Steady state analysis is performed in ProCACD (Tula et al, 2020). The transfer function 
models derived from the open-loop data or the state-space matrices are used to determine 
the relative gain array (RGA), which indicates the degree of loop interaction. Also, the 
system stability is checked by determining the Niederlinski Index or directly through 
analysis of the transfer function model. 
3.5. Step 5: Closed-loop simulation 
Closed loop simulation is performed using either the regulatory controller (PI) or the 
supervisory controller (MPC). For both control structures, the top and bottom 
compositions of the product(s) of interest are controlled, by varying the reflux rate and 
reboiler duty, respectively. The selection of the control structure is verified by inspecting 
the diagonal values of RGA. For MPC closed-loop simulation, the toolbox prompts the 
user to provide the following inputs: nominal values of the controlled and manipulated 
variables, weights on the controlled and manipulated variables, prediction horizon, and 
control horizon. After a check of consistency of data, the integrated RD toolbox links to 
MATLAB or MoT where a script for MPC closed-loop simulation is autogenerated. After 
performing the closed-loop simulation, the controller performance is quantified by 
determining the Integral absolute error (IAE), and the total variation of input (TV). 
 
4. Application example 
The application of the integrated design-control toolbox is highlighted through a single 
feed multielement reactive system (MTBE production with inert) as a case study. Details 
of application examples for other reactive systems can be obtained from the 
corresponding authors. 
The involved compounds (selected from the in-house database) are isobutene (C4H8); 
methanol (CH4O); 1-butene (C4H8); and MTBE (C5H12O). The feed condition and the 
design targets are given in Table 1 (data obtained from Pérez Cisneros et al. 1997). 
Reversible and exothermic reaction (taking place in acidic catalyst) between methanol 
and isobutene with the presence of 1-butene (inert) yields MTBE, as follows:  
isobutene(C4H8)+methanol(CH4O)+1-butene(C4H8) ⇌ MTBE(C5H12O)+1-butene(C4H8) 
The number of elements required to represent this reactive system is three. SRK equation 
of state and the Wilson model are used for the generation of reactive VLE data from 
where the driving force diagram is generated. Using the driving force diagram, the 
following column design parameters are obtained: total number of stages = 7 (reactive 
stages from 2 to 6), feed stage = 4, reflux ratio = 2.813).  
Table 1: Design targets and feed specifications for MTBE system with inert. 

Component Molar composition 
 Feed Distillate Bottom 

Isobutene (C4H8) 0.590 0.773 0.061 
Methanol (CH4O) 0.343 0.0 0.012 
1-butene(C4H8) 0.067 0.196 0.024 

MTBE (C5H12O) 0.0 0.031 0.907 
Feed flowrate: 100 kmol/h; Feed temperature and Pressure: 320K and 11 atm. 

The design-control multi-objective function is defined similarly as proposed by Iftakher 
et al. 2021. Next, the toolbox creates an input file containing necessary data and the 
flowsheet description to be loaded to ASPEN PLUS or MoT where the flowsheet is 
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autogenerated and the steady state simulation is performed. The design targets are 
satisfied, and the following objective function values (to indicate design issues) are 
calculated: total energy consumption, J1 = 958.34 KW; total carbon-footprint, J6 = 0.0941 
CO2 eq per kg feed. Next, the flow driven dynamic model is exported to ASPEN PLUS 
dynamics or MoT for open-loop simulation. The disturbance scenario is as follows: 
+16.5% step change in methanol flow rate. After linearizing the dynamic model, the 
following steady state metrics are obtained in ProCACD: relative gain array, J4 = 1.26 −0.26−0.26 1.26  ; Niederlinski index (𝑁 ), J5 = 0.7915. As the diagonal values are close 
to unity, the degree of loop interaction is predicted to be minimal. Also, the positive value 
of 𝑁  along with the positive real parts of the eigenvalues of both the open loop and closed 
loop dynamic model verifies that the system is stable.   
PI closed loop simulation is carried out in ASPEN Plus dynamics or MoT. Based on the 
RGA values, the MTBE top composition is controlled by varying the reflux rate, and the 
MTBE bottom composition is controlled by varying the reboiler duty. The controllers are 
tuned using the IMC rules. The reflux drum and sump level controllers (proportional type) 
are also included for dynamic model consistency and perfect pressure control is assumed 
for the RD column.  
For the MPC closed-loop simulation, a linear MPC with MIMO control strategy is used. 
The controller design and corresponding simulation is carried out in MATLAB or MoT 
where a script is autogenerated by the toolbox. Note that the controller pairings are kept 
the same as for the PI controllers. The plant inputs are: the condenser duty - 𝑄 , the reflux 
mass flow rate - R (kg/hr), the reboiler duty - 𝑄 , the distillate mass flow rate – D (kg/hr), 
the bottoms mass flow rate – B (kg/hr), and the feed molar flow rate (kmol/hr). The plant 
outputs are: the column pressure (stage 1) – P (atm), the mole fraction of the distillate of 
interest - 𝑥 , the mole fraction of the bottoms of interest - 𝑥 , the reflux drum liquid level 
– Rlev (m), and the sump liquid level – Slev (m). MPC controller is designed in such a 
way that the nominal set point for all the controlled and manipulated variables is set at 
50%. The simulation is run for 25 hours with a sampling time of 30s. The weights on the 
controlled variables are as follows: 10 1 1 0.1 0.1 . Note that the relative weights are a 
measure to assign importance for keeping the controlled variables at the set point. For 
example, MPC controller assigns 10 times more importance to keep the distillate and 
bottom product compositions at their set points compared to drum level or sump level. 
Analogously, maintaining column pressure at the set point is given 100 times more 
importance than maintaining sump level, since, the column pressure must be regulated 
tightly for safe operation. Finally, the prediction horizon is set to 30 min which is large 
enough to make the controller performance insensitive to further increases of the 
prediction horizon. The control horizon is set to 4 min which is kept small to reduce 
computational effort. The resulting closed loop dynamic responses for both PI and MPC 
controllers are shown in Figure 2. It is clear that both PI and MPC controllers are able to 
reject the feed disturbance very efficiently with minimal process upset. Finally, the 
control performance parameters (integral absolute error, 𝐽  and total variation of input, 𝐽 ) are calculated for both PI and MPC controllers and listed in 

Table 2. Note that the parameters are calculated both for the top and bottom control loops. 

5. Conclusions 
An integrated toolbox for the design and control of reactive distillation systems using the 
driving force approach has been presented together with an illustration of an example of 
application. The toolbox links to other external property prediction tools for problem 
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formulation and design parameter calculation. It also links to simulation and control tools 
for steady state simulation, dynamic simulation, and overall quantification of design and 
control issues. Required scripts for state space model generation and simulation are 
autogenerated through the integrated toolbox, thereby providing flexible and systematic 
work-flow through which the study of RD systems can be easily set up for modelling, 
simulation, and verification with respect to integrated design-control. The application 
results confirm that RD systems designed at the maximum driving force are able to 
efficiently reject disturbances under both PI and MPC controllers because the interactions 
are reduced by the design at the maximum driving force. Future works include the 
integration of design and control of Petlyuk and dividing wall columns, as well as the 
extension of the reported toolbox to handle distillation columns with or without reactions. 
 

  
A B 

Figure 2: Closed-loop response of MTBE reaction with inert system (designed at the maximum 
driving force) for step change in feed flow rate; A) PI; B) MPC.    

 

Table 2: Controller performance parameters of MTBE with inert system. 

J2,D [hr] 
(PI) 

J2,D [hr] 
(MPC) 

J2,B [hr] 
(PI) 

J2,B [hr] 
(MPC) 

J3,D [-] 
(PI) 

J3,D [-] 
(MPC) 

J3,B [-] 
(PI) 

J3,B [-] 
(MPC) 

0.0010 1.6E-07 9.8E-04 7.5E-04 803.30 2.4E+03 4585 6E+04 
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Abstract 
The development of advanced process control schemes is continuing driver of research 
within process systems engineering. In this work, we propose a framework, which 
leverages existing process data to automatically learn and update a control policy. This 
framework is underpinned by machine learning methods, namely, apprenticeship (AL) 
and reinforcement learning (RL), which compose offline and online learning respectively. 
In offline learning, we synchronously identify a function descriptive of the control 
objective and a parameterisation of the existing control policy expressed in data. The 
parameterised control policy is then updated automatically online via data from the 
ongoing process and RL. Importantly, the parameterisation learned offline achieves 
similar performance under the identified control objective to the existing control policy. 
Ultimately, the framework proposed enables a reduction in the technical intensity of 
offline RL-based policy learning, and approximates existing controllers in a more robust 
fashion than by supervised learning. The performance and efficiency of the framework 
proposed is explored via case study. Future work should focus on increasing sample 
efficiency in policy learning, satisfaction of constraints and accounting for model 
uncertainty. 
Keywords: Apprenticeship learning, Reinforcement learning, Inverse reinforcement 
learning, Optimal control, Machine learning 

1. Introduction  
Recent initiatives for efficiency improvements in industrial process operation has driven 
interest in the development of high performance, data-driven advanced process control 
(APC) schemes. Reinforcement learning (RL) has achieved impressive results on 
benchmark game-based control tasks (Heess et al. (2015)), providing an avenue for 
research in translation to APC (S. P. K. Spielberg et al. (2017)). In spite of its high and 
well documented potential (T. Badgwell et al. (2018)), RL has yet to produce any 
meaningful impact in the (bio)chemical process industry. A number of challenges exist 
to wider deployment of RL-based controllers. One obstacle is the technical expertise, time 
and computation demanded in policy training and tuning. This work presents a two-step 
approach to RL-based policy learning, which leverages process data to parameterise an 
existing control law and then improves the performance of such control further. The 
approach promises to increase the learning efficiency of RL-based control policies, by 
reducing computational and technical investment via the utilisation and synthesis of 
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existing process knowledge with empirical observations (data) of system response to 
existing control strategies.  

2. Methodology 
In this work, we assume that the system concerned displays elements of stochastic 
behaviour and that process evolution is ultimately Markovian, and adheres to the 
following description:  𝒙 ~ 𝑝(𝒙  |𝒙 , 𝒖 ) 

(1) 𝒚 ∼ 𝑝(𝒚 |𝒙 )       
Here, we formally state the process dynamics as a conditional probability density, where 
the probability of observing some future state 𝒙 ∈ ℝ   at discrete time index 𝑡 +  1 
is not conditioned on the process history but rather the current state 𝒙 ∈ ℝ    and control    𝒖 ∈ ℝ  imparted into the system at discrete time index 𝑡. Additionally, we assume the 
availability of a noisy system observation 𝒚 ∈ ℝ . Such an observation is distributed 
according to some measurement process 𝑝(𝒚 |𝒙 ), upon which the control policy 𝜋(𝒖 |𝒚 ) is conditioned. The goal of decision making within an MDP is to maximise the 
discounted sum of rewards accumulated during a (discrete-time) process trajectory   𝝉 = (𝒙 , 𝒚 , 𝒖 , . . . , 𝒙  , 𝒚 ) from some initial state 𝒙  over a finite horizon of length 𝑇. Given 
the underlying system adheres to some stochastic dynamics, the probability of observing 
a given process trajectory is denoted 𝑝(𝝉| 𝜋). Hence, the objective of any RL method is 
to learn a parameterisation 𝜽 upon which the control policy 𝜋(𝒖 |𝒚 , 𝜽) is conditioned to 
maximise the following objective: 

𝐺(𝝉) = 𝛾 𝑅   (2) 𝐽(𝝉 ) = 𝑝(𝝉|𝜋(·, 𝜽))𝐺(𝝉)𝑑𝝉  (3) 
 
where 𝛾 ∈ [0,1] is the discount factor and 𝑅  is the immediate reward as allocated by a 
reward function 𝑅: 𝑌 × 𝑈 → ℝ. The optimal policy 𝜋(·, 𝜽∗ ) maximises Eq. 3, subject to 
satisfying the set of hard constraints on the available control inputs. In this work, we 
deploy an ’on-policy’, policy optimisation RL algorithm, known as Reinforce. Due to 
space constraints, little discussion is provided here. For further details see the following 
works (Petsagkourakis et al. (2020); Sutton et al. (2000)).  
 
Most importantly, apprenticeship learning via inverse reinforcement learning is adopted 
in this work to formalise an approach to learning a parameterisation of a control policy 
expressed in process data (Coates et al. (2009)). The general problem statement follows: 
given demonstrations 𝚻 = [ 𝜏  , … , 𝜏 ] from an existing control scheme; mathematically 
abstract the control objectives guiding the existing policy via the reward function 𝑅. The 
foundational IRL algorithms, construct 𝑅 as a linear combination of hypothesised control 
objectives 𝝋 =  [𝜑 , . . . , 𝜑 ] via the following expression: 𝑅 = 𝜶 𝝋  (4) 
where 𝜶 ∈ ℝ  denotes a vector of weights and 𝜑 : 𝑌 ×  𝑈 → ℝ denotes a single control 
hypothesis. Explicitly, each control hypothesis is a hand constructed basis function, which 
must provide coherent control objective temporally. Given 𝜑  are of fixed structure, IRL 
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is concerned with abstracting control objectives via learning the optimal weights 𝛼∗, 
which reproduce the desired characteristics of the demonstrated control response as 
expressed by 𝚻. These characteristics are quantified by the formulation of trajectory 
features 𝝊 ∈ ℝ , where: 

𝜐 = 𝛾 𝜑 (𝒚𝒕, 𝒖 )  (5) 

Ultimately, solution 𝜶∗ provides control objectives, such that the following is satisfied: 𝔼 (𝝉)[𝝊 , ] = 𝔼 (𝝉)[𝝊 , ] (6) 

where 𝝊 , ∈ ℝ  are the characteristics of system response 𝝉   on the control task under  
the existing control scheme and 𝝊 , ∈ ℝ are those under the response 𝝉  of the RL  
policy as learned under the weight vector 𝜶∗. Specifically, we used maximum entropy 
IRL (Max-Ent IRL) to learn such a weight vector 𝜶∗. From an implementation 
perspective, it provides explicit mechanisms for matching the condition provided by Eq. 
6. More detailed explanation of this algorithm can be found in Ziebart et al. (2013). 
Explicitly, we propose a framework to: learn an RL-based parameterisation of an existing 
control scheme by leveraging existing process data and an offline learning procedure 
(apprenticeship learning); then, to deploy this RL-based parameterisation to the real 
process to continually learn and update the control policy online via the Reinforce (or 
other policy optimisation) algorithm. Therefore, the framework naturally mitigates the 
effects of plant-model mismatch and process variability. Fig. 1 expands this further. 

Figure 1: The framework for learning proposed. In offline learning, we leverage 
maximum entropy inverse RL and existing process data to synchronously abstract the 
objective function 𝑅(𝜶∗, 𝝋) guiding the existing controller and a parameterisation 𝜋 (𝜽 ,⋅ ) of the control law. We then propose to deploy the controller online to 
continually learn from the ongoing process under a reward function 𝑅(·) reflective of the 
true process objective. 

3. Case Study  
In the following section, we demonstrate the methodology presented via case study. The 
investigation is underpinned by a multiple-input, multiple-output (MIMO) control 
problem descriptive of an endothermic isomerism reaction in a continuous stirred tank 
reactor (CSTR) i.e.  𝐴 → 𝐵.  We construct the conditional probability functions in Eq.  1 
across a continuous state, control and measurement space and subsequently approximate 
the dynamics of the problem by the following system of stochastic differential equations: 

1217



 M.Mowbray et al. 
 𝒙∗ =  𝒙∗ + ℎ(𝒙∗, 𝒖∗)𝑑𝑡 + 𝛿(𝒙∗)𝑑𝑊  (7) 𝒚∗ = 𝑔(𝒙∗ )       (8) 

where 𝒉(⋅): ℝ𝒏𝒙×𝒏𝒖 → ℝ𝒏𝒙 represents the underlying process dynamics as derived from 
first principles; 𝜹(⋅): ℝ𝒏𝒙 → ℝ𝒏𝒙  is process disturbance; 𝑾𝒕 is the Wiener process; and, 𝒈(⋅): ℝ𝒏𝒙 → ℝ𝒏𝒚 is the mechanism of noisy state observation. Explicitly, control is 
concerned with tracking the set points of the reactor temperature 𝑻 and concentration of 𝑨, 𝑪𝑨 in the outlet. The controls available to the scheme are the temperature of a heated 
jacket TE and the concentration of 𝑨 in the inlet 𝑪𝑨𝟎, respectively. Further details of the 
process and implementation are provided by Fig. 2. In this work, we constructed a 
proportional-integral-derivative (PID) control scheme of subjectively near optimal 
performance. The control scheme consists of two PID controllers, one for each variable 
control loop. The PID controllers were constructed and tuned via the MATLAB Simulink 
package. Existing process data 𝚻 was generated for the control scheme, by performing 
Monte Carlo realizations on the approximate process model. Implementation utilised 
Python 3.7.3. The data generated was then characterised by Eq. 5 in the scope of trajectory 
feature matching, which underpins MaxEnt IRL and the offline section of the framework. 

Figure 2: Flow diagram of the existing PID control scheme at implementation level. The 
underlying process dynamics are described by 𝒉(⋅) (see Eq 7). Process stochasticity is 
dependent on the state 𝒙 and 𝜹(⋅), and modelled via the Wiener process 𝑾. System 
integration was performed via the Euler-Maruyama method. The state observation is 𝒚 as 
mapped from the true state 𝒙 by the function 𝒈(⋅); subscript 𝒔𝒑 indicates the variable set 
point; 𝑪𝑨𝟎 and 𝑻𝑬 represent the control inputs to the system. 

4. Results and Discussion  
The purpose of this case study is to construct an RL controller which learns from 
demonstration provided by a near optimal control policy on a single control task and then 
to improve it further. As such, we demonstrate the full utility of the offline-online frame- 
work proposed. The control task itself is a set point change, such that in the concentration 
control loop, set point is changed by −1 𝑘𝑚𝑜𝑙 𝑚   and in the temperature control loop, 
set point is changed by +4 𝐾. Firstly, offline learning under MaxEnt IRL is deployed to 
find a linear combination 𝜶∗ of control hypotheses 𝝋, which describes the control 
objectives of the existing scheme. Under this reward function a parameterisation of the 
control policy expressed in process data is learned in order to match the demonstrated 
process behavior  as characterised via 𝔼 (𝝉)[𝝊 ] (see Eq. 6). The learned parameterisation 
is then improved under the real process objective, which in this case is pure tracking. 
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Here, the demonstrated control policy is that of a well-tuned PID controller and the 
learned policy is parameterised by a long-short term memory neural network. In this 
work, we use the normalized absolute error 𝝐 to quantify the similarity between the 
learned policy and that demonstrated, with respect to each 𝜐 , which is formalized by Eq. 
9: 𝝐 = 𝔼 (𝝉)[𝝊 , ] − 𝔼 (𝝉)[𝝊 , ]𝔼 (𝝉)[𝝊 , ]  (9) 

The results the of the offline learning section of the case study described are detailed by 
Table 1. 
Table 1: The expected discounted sum of the state features of the PID (𝝊 , ) and the policy 
learned through AL (𝝊 , ), the normalized absolute error in approximation 𝝐 and the 
feature weight (𝜶∗) generated in case study.  

 Trajectory Features 𝝊  𝜐  𝜐  𝜐  𝜐  𝜐  𝜐  𝔼 (𝝉)[𝝊 , ] 21.63 20.68 4.08 7.93 -22.87 -22.43 𝔼 (𝝉)[𝝊 , ] 21.41 20.76 4.31 7.03 -22.28 -22.71 𝝐 0.01 0.004 0.06 0.10 0.03 0.01 𝜶∗ 0.137 0.652 -0.067 -0.630 -0.194 -0.343 

From Table 1, it is concluded that offline learning was able to abstract an RL 
parameterisation of the demonstrated policy (i.e. PID controller). The quality of solution 
is indicated by the normalized absolute error 𝝐. Table 1 details that the algorithm found a 
solution, which achieves a maximum 𝝐 = 0.1 and an average of 𝝐 = 0.035. This was 
achieved after just four iterations of the algorithm. It is also worth noting, that the learned 
weight vector 𝜶∗ encodes information about the process dynamics into control objectives. 
Although further discussion is not provided here, this implies that the weight vector itself 
is both specific to the set point change and the process itself. The policy was then 
transferred to the “real process”, which was simulated under the assumption of the same 
process model as in the offline setting but a reward function representative of the true 
process objective. Through further online learning, it is observed that the parameterisation 
can achieve a better control strategy compared to the existing PID controller (see Fig. 3). 
Specifically, RL is able to facilitate a system response, which meets set point faster with 
less overshoot observed than using the PID controller. For example, the updated 
parameterisation yields a better temperature response characterised by a fast rise time 
with no observable overshoot. This performance increase is derived from the ability to 
account for process stochasticity in a proper closed loop manner, as well as the 
nonlinearity of the resultant control function.  

5. Conclusions 
Here, we propose a framework based on apprenticeship learning (AL) to learn a control 
law based on process data. This approach allows us to synthesize a neural network control 
policy from a previous controller (e.g. PID, MPC or human controllers) more robustly 
than with supervised learning. Having learned a parameterisation of the control law, 
subsequent deployment of RL enables further policy improvement by directly interacting 
with the real process, thus outperforming the existing control law. Here, AL is 
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implemented through inverse reinforcement learning (IRL). Given the data-driven nature 
of AL via IRL, the RL-based policy parameterisation promises to express the action of 
the control scheme and process knowledge of operators. The RL controller is constructed 
via a policy optimisation algorithm, although other methods could be applied. Based on 
the case study, it is concluded that the current framework can effectively extract control 
information from available process data, resulting in a better optimal control policy 
efficiently. In future work, we will explore the performance of this framework when 
handling constrained chemical processes, look to account for uncertainty in the 
approximate process model and introduce mechanisms to account for process-model 
mismatch in transfer of the policy to the real process. 

Figure 3: Optimal policy learned in Case study. A and B: System response in the 
concentration 𝐶  control loop and in the temperature 𝑇 control loop, respectively. 𝜋  and 𝜋  indicate the learned policy (after online update) and the PID, respectively. Shaded 
regions indicate the two standard deviations of system response and central line indicates 
the expected control response. Line properties: dashed line - 𝜋 ; solid line - 𝜋 . Set points 
are indicated. Only the first 30 control interactions are plotted, given the efficacy of 
system response 
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Abstract
A rigorous and systematic methodology was developed to optimize multistage
combined cooling and antisolvent continuous MSMPR (mixed-suspension,
mixed-product removal) crystallizers. The crystallization of aspirin (acetylsalicylic acid,
ASA) in ethanol (solvent) and water (antisolvent) was used as a case study. A validated
mathematical model of the system was firstly used to optimize the steady state
performance followed by the development of several optimizations strategies aiming at
the minimization of the start-up time using optimal dynamic profiles of antisolvent
addition, cooling temperature, seeding flowrate and the combination of these decision
variables. The start-up scenarios were also considered in the case of initially prefilled
and empty vessels. Using the proposed dynamic optimization strategies, it was predicted
that the start-up time can be reduced by up to 70%, which represents a significant gain
in time, cost and environmental performance.

Keywords: Continuous crystallization, start-up, antisolvent, optimal seeding, dynamic
optimization.

1. Introduction
Continuous manufacturing is increasingly seen as a the most flexible and viable options
for the pharmaceutical industry (Mascia et al., 2013). However, despite the strides
forward, many technical challenges are still to be overcome. Continuous pharmaceutical
campaigns are anticipated to have short operating windows (Benyahia et al., 2012). This
makes the impact of start-up and shut-down extremely important on both cost of
production and environmental footprint. To address some of these key issues, the next
generation pharmaceutical plants require systematic, rigorous and robust optimization
strategies for process design, operation and control of single processes and integrated
plants(Benyahia et al., 2012; Lakerveld et al., 2015).

Crystallization is a key purification technology widely adopted in the pharmaceutical
industry to isolate active pharmaceutical ingredients (API). The critical quality
attributes of the drug product, such as solubility, safety and efficacy are commonly
determined by the crystal size distribution, shape and purity, which also impact the
downstream processability such as flowability, filterability and dyability. A common
optimization target in crystallization is to maximise the mean crystal size, lower the
coefficient of variation (CV) and improve the aspect ratio(Fysikopoulos et al., 2019;
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Hatcher et al., 2020). The fundamental driving force for crystallization is
supersaturation. Typically, the supersaturation is generated by cooling, solvent
evaporation or addition of antisolvent. Most of crystallization literature focused on the
design, optimization and control of batch processes. Various model-based and
model-free technique have been extensively implemented and thoroughly discussed in
the literature. However only few decision and control variables are available to
optimally design and operate a batch crystallization process. The most common
approach is to use the temperature or/and antisolvent ratio to optimize the crystal size
distribution, CV and batch time.

Over the last decade, continuous crystallization of active pharmaceutical ingredients
(API) received growing interest. To date, most literatures focused on three main
continuous crystallizers: mixed suspension mixed product removal (MSMPR), plug
flow crystallizers and continuous oscillatory baffled crystallizers. The most dominant
type of crystallizers in the pharmaceutical industries is based on a stirred tank design
which exploits well-established theory and know-how accumulated over decades of
batch crystallization. Consequently, many experimental and modelling efforts have been
devoted to the continuous MSMPR crystallizers. Several studies focused on the
optimization of single, multistage MSMPR and integrated end-to-end continuous
pharmaceutical plant with a series of MSMPR crystallizers (Lakerveld et al., 2015;
Mascia et al., 2013; Benyahia, 2018; Su et al., 2015). Despite the importance of optimal
start-up strategies in continuous pharmaceutical manufacturing, due its significant
impact on cost and environmental footprint, only few investigations were reported in the
literature which identified mainly the optimal dynamic profile of the cooling
temperature and antisolvent flowrate (Yang & Nagy, 2015). However, the MSMPR
vessels were assumed to be prefilled with a solution having the steady state
composition. This approach is unrealistic and disregards the impact of filling the vessels
during the start-up which may increase even further the start-up time. To date, only few
papers showed the potential impact of different start-up scenarios, including starting
from empty MSMPR vessels, on continuous pharmaceutical campaigns (Benyahia et al.,
2012). The later laid the ground to the current investigation, which consists in a
systematic optimization approach starting from steady state optimization, aimed at the
identification of the attainable mean particle size, followed by different start-up
optimization strategies including start-up from empty vessels. The start-up time will be
optimized by identifying the optimal discrete piece-wise profiles of antisolvent flowrate,
seed flowrate, cooling rates as well as the seed loading in the seed vessel.

2. Materials and Methods
To implement the dynamic and steady state optimization strategies, the crystallization of
aspirin (acetylsalicylic acid, ASA) in ethanol (solvent) and water (antisolvent) mixture
is considered as a case study. The dynamic mathematical model which represents the
population balances, based on the standard method of moment, the energy balance, the
total mass balance in each vessel as well as the mass balance of API, solvent and
antisolvent was developed based on data available in the literature(Barik et al., 2020;
Lindenberg et al., 2008; Liu & Benyahia, 2020).

Prior to the development of the optimal start-up policies, a steady-state optimization
problem was solved with the aim of maximizing the mean crystal size (d) using the
jacket temperature (TJ), antisolvent flowrate (FAS) and residence time (R) at each
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crystallization stage, as the decision variables. This approach delivered the reference
attainable crystal size for a 3-stage MSMPR system and the optimal design and
operating steady state conditions shown in Table 1. However, the steady state
optimization, does not consider the dynamic performance of the process and disregards
large amounts of off-specification crystals (waste) generated during start-up. To address
this issue, several dynamic optimizations strategies were developed to minimize the
start-up time by identifying the discrete optimal dynamic profiles (piece-wise constant)
of the antisolvent flowrates, cooling rates, seed flowrates and seed loading. In addition,
the crystallizers were assumed both empty and prefilled at the beginning of the process.

Table 1 steady state control variable

TJ (℃) FAS (g /min) R (min)

Stage 1 32.75 9.94 5.83

Stage 2 32.10 5.88 10.15

Stage 3 25.00 2.68 14.02

2.1. Start-up optimization using dynamic antisolvent addition

The first series of start-up optimization focused on the manipulation of the antisolvent
flowrate profiles at the first, the first two then all three MSMPR stages. The approach
was developed to investigate whether manipulating the antisolvent flowrates in multiple
stages would add any value, despite the increased complexity. As a first attempt, the
antisolvent flowrate profiles were divided into nk equality spaced time intervals. The
flowrates of the antisolvent at each interval are the decision variables. The first set of
scenarios focussed on prefilled vessels and the second considered empty vessels. The
dynamic optimization problems can be expressed using the generic mathematical
formulation below:

s.t.

Where t95 is the time required for the crystallizer to reach controlled state of operation
that has less than 5% variation. TJ,i,k (℃) and FAS,i,k (g/min) are the jacket temperature

antisolvent multistage continuous crystallization process
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and antisolvent flow rate at the kth time interval in the ith stage. Si is the relative
supersaturation maintained above 1 in all stages to prevent dissolution of crystals.

2.2. Start-up optimization using a dynamic seeding profile

The addition of seeds is commonly adopted in batch systems to generate initial particles
without relying on the nucleation, which is difficult to control and requires larger
supersaturation levels to reach the boundary of the metastable zone. The addition of
seeds in batch systems can provide an effective control strategy over the number of
particles and consequently the final particle size distribution. In this work, the seeding
approach was used to optimize the start-up time. Instead of one single seeding addition,
the optimizer will determine the optimal seed addition profiles as well as the required
initial seeding charge in the seeding vessel. The seeds are suspended in a saturated
solution having the same composition as the feed solution and the size distribution of
seeds was obtained from literature. The seeds were added to the first stage only, where
most of the nucleation occurs. The mathematical formulation of the optimization
problem is similar to the one described above, with the decision variables being the
piece-wise flow rate profile of seed addition alongside the seeding bounds (0: lower
bound and 20% of the API load in the feed solution).

2.3. Start-up optimization using combined seeding, cooling and antisolvent
addition

To maximize the efficiency of the start-up optimization, the optimal seeding policies,
which correspond to a piece-wise seeding profile and seed loading (µ0,seed), were
combined with the cooling and antisolvent profiles.

3. Results and Discussion
The optimization problems were solved using a hybrid method which combines a
genetic algorithm and a deterministic method (SQP) available in MATLAB. The
start-up optimization results obtained using dynamic antisolvent and cooling (jacket
temperature) profiles in the three stages are shown in Figure 1. The predicted optimal
start-up time (t95) was 26.1 min in the case of prefilled vessels and 22.2 min in the case
empty vessels. Compared to the reference start-up time obtained by the implementation
of the steady state operating conditions (69.2 min), an improvement of 62.3% and
67.0% respectively, can be achieved.

Additional start-up optimization problems based on the manipulation of the operating
profiles in one stage and two stages starting from prefilled and empty vessels were also
addressed. However, the predicted start-up times were larger compared to the cases
discussed above. These results are not presented here for the sake of brevity. Despite the
increased complexity, manipulating the antisolvent flowrates and cooling profiles in
three stages enhances the flexibility and degrees of freedom and help achieve shorter
start-up times and increased on-specification production.
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(a) (b)

Figure 1.  Optimization results obtained by manipulating jacket temperatures and
antisolvent flowrates in the 3 MSMPR stages (a) Mean crystal size profiles (b) optimal
cooling and antisolvent addition profiles.

(a) (b)

Figure 2. Optimization results obtained by manipulating the jacket temperatures and
antisolvent and seeding flowrates in the 3 MSMPR stages (a) Mean crystal size profiles
(b) optimal cooling, seeding and antisolvent addition profiles.

Figure 2 shows the dynamic optimization results obtained by manipulating the jacket
temperatures as well as the antisolvent and seeding flowrates in the 3 MSMPR stages.
With the addition of the seeding policies (seeding flow rates and initial seed load) to the
set of decision variable comprising the jacket temperature and antisolvent flowrate
profiles, the start-up time can be shortened to 21.8 min (in the case of prefilled vessels)
and 20.9 min (in the case of initially empty vessel). This is equivalent to a 67.8% and
69.8% improvement respectively compared to the reference steady state settings.
Moreover, a start-up time of 28.5 min was obtained using solely the optimal seeding
policies (not presented here). It becomes clear that the combination of optimal seeding
policies, cooling and antisolvent addition enhances the degrees of freedom and
optimization flexibility and therefore delivers the best start-up performance.

4. Conclusion
The start-up performance of a three-stage MSMPR crystallizer was optimized based on
a rigorous and systematic model-based approach. The attainable steady state particle

Systematic model-based dynamic optimization of a combined cooling and
antisolvent multistage continuous crystallization process
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size and start-up time, obtained using steady state optimization, were used as references
for the start-up optimization. To minimize the start-up time, several strategies were
adopted including starting from empty and prefilled vessels. The dynamic optimization
of the start-up was achieved using discretised piece-wise antisolvent flowrates, seed
addition and the combination of both. The discretisation policy was based on equally
spaced time intervals which can be refined further using optimized variable time
intervals. The seed charge in the seeding vessel was also optimized in order to identify
the optimal seeding policies. Overall, the start-up cases associated with the empty
vessels seem to outperform the cases starting from prefilled vessels. The start from
prefilled vessels may indicate that the nucleation requires longer time compared to
starting from empty vessels where nucleation may happen very quickly. The number of
time intervals was also increased from 5 to 10 and 20. However, these results were not
presented for the sake of brevity.

It was shown that the implementation of optimal piece-wise continuous cooling and
piece-wise antisolvent flowrates in the three stages can help reduce the start-up time by
67%. However, the best performance was obtained by combining the optimal cooling,
antisolvent and seeding policies which predicted a reduction of the start-up time by
nearly 70%. It is worth mentioning that the optimization strategies developed in this
work are in essence open- loop and their implementation may require and advanced
control strategy such as model predictive control to ensure effective trajectory tracking
and the predicted minimization of the start-up time.
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Abstract
A semi-closed greenhouse has been studied in this research. The greenhouse is designed
to keep the inside temperature and relative humidity within the optimum growing range
throughout the year while maximizing the utilization of solar energy for the plants. The
Venlo shaped greenhouse has 4 mm tempered glass as the covering material and three
air handling units which control the microclimate. Using air handling units to manage
the microclimate of a greenhouse is becoming increasingly popular in arid climates. The
plant yield productivity and quality depend on the accurate monitoring and control of
the greenhouse microclimate. This study aims to develop a dynamic model that predicts
the temperature and relative humidity to improve climate monitoring control accuracy.
The data-driven model determines the temperature and relative humidity by
incorporating factors affecting the microclimate, such as solar radiation, ambient
temperature, relative humidity, fan speed, etc. The available greenhouse data spans from
April to June (3 months). Results illustrate that the model predicted accurate values for
temperature and relative humidity with an R2 value of 0.930 and 0.911 and an RMSE
value of 0.826 and 1.740, respectively. By accurately predicting the temperature and
relative humidity inside the greenhouse, the crop yield can be increased, while
minimizing the energy consumption by the air handling units, making greenhouses in an
arid climate a more economically feasible option.

Keywords: Greenhouse, Dynamic modeling, Support vector machine, Climate control,
microclimate.

1. Introduction
As the world population is expected to rise to 9.7 billion by the year 2050, achieving
food security is one of the most challenging problems of the 21st century (UN, 2019).
With the expected increase in the population coupled with the demand for food, it is
essentially required to develop clean and sustainable food production systems.
Agriculture greenhouse presents a viable solution as they minimize resource
consumption while increasing the yield by 10-20% (De Gelder et al., 2012).
Greenhouses offer a closed and controlled environment to the plants while maintaining
optimum conditions for plant development. Maintaining these optimum growing
conditions throughout the year is a significant concern as various factors affect the
greenhouse microclimate. Greenhouse microclimate variables are complex and
nonlinear and depend on environmental factors such as solar radiation, ambient air
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temperature, outside relative humidity, etc. Therefore, developing an accurate model to
predict the microclimate parameters is an essential part of greenhouse management.
Microclimate prediction models can be based on thermodynamics laws that incorporate
the heat and mass exchange taking place between the different driving factors or
data-driven models using data from the input-output of the process occurring inside the
greenhouse. The microclimate models are highly complex, resulting in inconsistent
results when physical models are used to predict the microclimate (Van Henten, 1994).
On the other hand, data-driven models are increasingly being applied to the ongoing
development of new computational methods. The data-driven approach provides
accurate and quick results for agricultural applications such as predicting the
temperature and relative humidity inside a greenhouse (Chen et al., 2016).
Neural networks have been extensively used to model nonlinear systems such as the
greenhouse microclimate (Ribeiro et al., 2019). However, the application of neural
networks is limited due to certain disadvantages such as overfitting and stopping at local
minima (Vapnik, 1995). Support vector machines can model nonlinear systems without
the mentioned disadvantages (Engel et al., 2002). Wang et al. (2009) used support
vector regression (SVR) to develop a greenhouse microclimate model to predict the
temperature inside the greenhouse based on external and internal factors. Results
demonstrated that the SVR successfully predicted the temperature with a mean square
value of 0.351. Liu et al., (2016) developed a wireless sensor network-based prediction
model to predict the greenhouse microclimate. Results illustrated that SVM had a value
of R2 of 0.9865 and 0.9605 for the temperature and relative humidity inside the
greenhouse, respectively. Similarly, Taki et al., (2018) developed a model to estimate
the temperature of air, plant, and soil inside a greenhouse using SVM and artificial
neural networks. The model included factors such as inside temperature, outside
temperature, solar radiation, and wind speed. Results illustrated the SVM had an R2

value of 0.83, 0.99, and 0.98 for the air, plant, and soil temperature, respectively.
Most of the studies existing in literature have developed models for greenhouses with
natural ventilation in tropical or cold environments. Semi-closed greenhouses depend on
the cooling system to maintain the optimum growing conditions inside the greenhouse.
Maintaining optimum temperature is a challenging task during the summer season as the
solar radiation and ambient temperature rise, increasing the cooling load of the
greenhouse. In this study, a microclimate model is developed to predict the temperature
and relative humidity inside a closed greenhouse with no ventilation in an arid climate
to improve greenhouse management.

2. Greenhouse data
The experiments were conducted in a Venlo shaped greenhouse (800 m2) with 4 mm
tempered glass as the covering material located on a greenhouse farm in Qatar. The data
was collected from April 1, 2020, to June 30, 2020, using tomatoes as the plants. The
temperature and relative humidity inside the greenhouse were measured using a sensor
module shown in Figure 1. The data was recorded after every five minutes and saved in
the data logger. The external conditions such as solar radiation, ambient temperature,
and outside relative humidity were all measured and recorded by external sensors.
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Figure 1: Temperature and relative humidity monitoring sensor.

3. Methodology
Support vector machines (SVM) were initially developed to recognize patterns and
classify objects. A small subset from the training sample is used to define the decision
boundary called support vectors. The concept of support vectors originated from the
optimum separation of the hyperplane which could separate the points without error and
maximize the distance between the closest point and the hyperplane. SVM is similar to
perceptron in neural networks as the output is a combination of the nodes present in the
middle, as illustrated in Figure 2.

Figure 2: Support vector machine structure.

Support vector machine regression (SVMR) calculates the real value function by
generalizing the support vectors. Support vector machine regression (SMVR) is also
called support vector regression (SVR) to differentiate it from support vector machine
(SVM). SVR follows the structural risk minimization (SRM), which has been shown to
give better results than empirical risk minimization (ERM) (Wang et al., 2009). SVR
maps data from a vector x into an F, which is a high dimensional feature space, and the
linear regression is performed as with b as the threshold value:
𝑓 𝑥( ) = 𝑤. φ 𝑥( )( ) + 𝑏(φ : 𝑅𝑛⟶𝐹,  𝑤 ∈𝐹) (1)
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The resulting linear regression corresponds to nonlinear regression in a low dimension
space. The value of w can be calculated by the following:

𝑅 𝑤( ) = 𝑅
𝑒𝑚𝑝

+ λ 𝑤| || |2 =
𝑖=1

𝑙

∑ 𝑒 𝑓 𝑥
𝑖( ) − 𝑦

𝑖( ) + λ 𝑤| || |2 (2)

Where is the cost function, l is the number of samples, is the sum of empirical𝑒 𝑅
𝑒𝑚𝑝

risk, and is the constant of regularization. The cost function can be represented in aλ
linear form given as:

𝑒 𝑓 𝑥( ) − 𝑦( ) = 𝑚𝑎𝑥 (0, | 𝑓 𝑥( ) − 𝑦| −  Ɛ) (3)

Quadratic cost function:

𝑒 𝑓 𝑥( ) − 𝑦( ) = 𝑓 𝑥( ) − 𝑦( )2
(4)

Huber cost function:

(5)

The function is minimized by first determining (α𝑅 𝑤( ) − α
𝑖
*)

𝑤 =  
𝑖=1

𝑙

∑ (α
𝑖

− α
𝑖
*) φ 𝑥

𝑖( ) (6)

4. Results and Discussion
The data set has outside temperature, solar radiation, fan speed, cooling temperature
setpoint, and humidity deficit as the input factors, while the greenhouse temperature and
relative humidity are the outputs. The dataset is split into training and testing data, with
70% dedicated for training and 30% for the testing set. The model's performance is
evaluated at different time steps such as 5,10, 15, and 20 minutes (SVM-5, SVM-10,
SVM-15, SVM-20) by increasing the prediction time step. The SVM model algorithm is
implemented in Python 3.7.

Table 1 shows the temperature and relative humidity predicted results using the SVR
model. The results have been obtained by increasing the time step of the data from 5 up
to 20 minutes.

Table 1: SVM prediction accuracy for temperature and relative humidity.

SVM-5 SVM-10

Temperature Relative Humidity Temperature Relative Humidity

RMSE 0.826 1.740 0.909 2.207

R2 0.930 0.911 0.917 0.857

SVM-15 SVM-20
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Temperature Relative Humidity Temperature Relative Humidity

RMSE 0.982 2.517 0.998 2.598

R2 0.899 0.818 0.897 0.807

The temperature has an RMSE and R2 value of 0.826 and 0.93, respectively and relative
humidity has an RSME and R2 value of 1.740 and 0.911 at time step 5. The accuracy of
the model decreases by increasing the time step as the number of data points decreases
and has the lowest accuracy at time step of 20 minutes, which illustrates for better
prediction performance, a more extensive data set should be used. Figure 3 shows the
prediction of the trained model over an unseen data set of 3 days. The graph on the left
side is the actual vs. predicted temperature of the greenhouse, and the graph on the right
shows the actual vs. predicted data for the relative humidity. The red shows the actual
data, and the yellow lines indicate the predicated temperature and relative humidity
values, respectively. The model gives accurate predictions for the temperature and
relative humidity, as shown in the graphs. Also, the actual vs. predicted graph illustrates
that the trained model is not overfitted as it produces accurate results for a new set of
values for both the temperature and relative humidity inside the greenhouse.

Figure 3: Actual vs. Predicted for a 3-day data set; (left) Temperature (Right) Relative
humidity.

To improve the prediction accuracy of the relative humidity, data regarding the
irrigation history and soil moisture can be included by using the relevant sensors as the
greenhouse uses a hydroponic system to provide water and nutrients to the plants.

5. Conclusion
The microclimate of a greenhouse is a dynamic system where various factors such as
solar radiation, ambient temperature, relative humidity, etc., affect the temperature and
relative on the inside of the greenhouse. The study shows the possibility of predicting
the greenhouse temperature and relative humidity using support vector machines.
Support vector machines are feasible for modeling dynamic environments where the
variables are constantly changing, such as the environmental factors. The developed
model has an R2 and RMSE value of 0.930 and 0.826 for temperature and 0.911 and
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1.740 for relative humidity. The accuracy of the model for temperature and relative
humidity dropped by increasing the data time step as the training data points were
reduced. The model had the lowest prediction accuracy at a twenty-minute interval with
an R2 value of 0.897 and 0.807 for temperature and relative humidity. By predicting the
temperature and relative humidity based on the factors, the water and energy
consumption can be optimized while providing optimum growing conditions to the
plants. The results of this study show the potential of applying machine learning for
greenhouse management.
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Abstract 
This paper has proposed an adjustable robust dynamic optimization (ARDO) scheme for 
nonlinear chemical process under time-dependent uncertainties. A novel continuous 
affine decision rule extended from multistage affine decision rule is developed to 
approximate the causal dependence of wait-and-see decision variables on the infinite 
dimensional uncertainty factors. Through applying the state-of-the-art first-order Taylor 
expansion method, the adjustable robust counterpart can be formulated. The effectiveness 
and applicability of the proposed ARDO scheme is demonstrated by a classic Williams-
Otto semi-batch problem. Compared with traditional robust optimization for uncertain 
dynamic systems, the proposed framework can adjust the decision variables based on true 
values of the revealed uncertainties, leading to more flexible control profiles and less 
conservative solutions.  

Keywords: adjustable robust dynamic optimization, time-dependent uncertainty, 
continuous affine decision rule, nonlinear semi-batch reactor 

1. Introduction 
Dynamic optimization has received extensive attention during the past decades to deal 
with batch optimal operation problems. Unfortunately, usually employing deterministic 
optimal control will force systems running on safety margins, potentiate constraints 
violation in the presence of uncertainties. Although traditional static robust optimization 
(SRO) methods provide effective frameworks to overcome uncertainties, in general, their 
inherent conservatism cannot be completely avoided, because the manipulated variables 
in SRO schemes, which are referred to as here-and-now decision variables, are optimized 
without knowledge of the true values of the uncertainties (Diehl et al, 2006). To reduce 
the conservativeness of the solution, lessons can be learned from the adjustable robust 
optimization (ARO) method for two-stage linear problems (Ben-Tal et al, 2004). By 
introducing wait-and-see or adjustable decision variables, part of the manipulated 
variables in ARO scheme can correspond to gradually revealing information about the 
uncertainty, thus leading to lower conservative system performance and better objective 
values. However, owing to the intrinsic difficulties of nonlinear problems, research on 
adjustable robust nonlinear optimization with only algebraic constraint or differential-
algebraic constraints is scarce. 
Triggered by the progresses of ARO on multistage planning and scheduling (Zhang et al, 
2016), we propose an adjustable robust optimal control scheme for nonlinear chemical 
processes under time-dependent uncertainties on continuous time horizon. A novel 
continuous affine decision rule is developed to approximate the causal dependence of 
wait-and-see decision variables on the infinite dimensional uncertainty factors to 
overcome potential computational intractability. Then the classical first-order Taylor 
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expansion method is applied to derive the robust counterpart which is finally solved 
numerically by IPOPT in Pyomo. The effectiveness and applicability of the proposed 
ARDO scheme is demonstrated by a classic Williams-Otto semi-batch problem.  

2. Model formulation  
2.1. General formulation of deterministic dynamic optimization 
General deterministic dynamic optimization problem defined on 𝑡 ∈ 0, 𝑡  can be 
formulated as follows: min Φ(𝑥 𝑡 , 𝑡 ) (1) 𝑑𝑥𝑑𝑡 = 𝑓(𝑥, 𝑢, 𝑡, 𝑝);  𝑥(0) = 𝑥 , (2) 0 ≥ 𝐺(𝑥, 𝑢, 𝑡, 𝑝) (3) 
where 𝑥 ∈ ℝ , 𝑢 ∈ ℝ  and 𝑝 ∈ ℝ  represent state, controls and model parameters 
respectively. Besides, Φ(·)  is a scalar Mayer-type cost function, 𝑓(·)  represents 
differential equations with initial conditions 𝑥  while 𝐺(·) denotes inequalities.  
2.2. General formulation of traditional static robust dynamic optimization  
Regarding the problem under uncertainty, model parameters are divided into 𝑝 = [𝜁; �̅�] 
where 𝜁 ∈ ℝ  and �̅� ∈ ℝ  denote uncertain and known parameters respectively. 
Furthermore, time-dependent uncertainties are denoted as 𝜁(𝜏) ∈ ℝ . Time horizon for 
uncertainty realization is denoted as 𝜏 ∈ [0, 𝑡 ] while horizon for states and controls is 𝑡 ∈ [0, 𝑡 ]. Formulation of traditional SRO defined on 𝜏, 𝑡 ∈ 0, 𝑡  is: minimize( )   max( )∈ Φ 𝑥 𝑡 , 𝑡  (4)  𝑑𝑥𝑑𝑡 = 𝑓(𝑥, 𝑢, 𝑡, �̅�, 𝜁);   𝑥(0) = 𝑥 ; ∀𝜁(𝜏) ∈ 𝑍 (5)  0 ≥ 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁);   ∀𝜁(𝜏) ∈ 𝑍 (6)  𝑍 ≔ 𝜁(𝜏) ∈ ℝ | − ∆𝜁 ≤ 𝜁 (𝜏) − 𝜁 ≤ ∆𝜁 , 𝑗 ∈ 𝐼 } (7) 
Where 𝑍 is a predefined box uncertainty set and 𝐼  is the subscript set of uncertainties.  

2.3. General scheme of proposed adjustable robust dynamic optimization  
The proposed adjustable robust dynamic optimization is proposed by applying wait-and-
see strategy to nonlinear dynamic optimization problems under time-dependent 
uncertainty. In the proposed ARDO scheme, the wait-and-see decision variables are 
determined based on a general decision policy 𝒹 (·) defined as: 𝑢(𝑡) = 𝒹 𝜁(𝑡) , 𝒹 (·): 𝑍 → ℝ  (8) 

where  𝜁(𝑡) is the trajectory of uncertainties revealing in time interval  𝜏 ∈ [0, 𝑡].  
Proposed ARDO scheme is defined as Eqs.(9)-(13),  minimize𝒹 (·)   max( )∈   Φ 𝑥 𝑡 , 𝑡  (9) 𝑑𝑥𝑑𝑡 = 𝑓(𝑥, 𝑢, 𝑡, �̅�, 𝜁);  𝑥(0) = 𝑥 ; ∀𝜁(𝜏) ∈ 𝑍 (10) 0 ≥ 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁);   ∀𝜁(𝜏) ∈ 𝑍 (11) 𝑍 ≔ 𝜁(𝜏) ∈ ℝ | − ∆𝜁 ≤ 𝜁 (𝜏) − 𝜁 ≤ ∆𝜁 , 𝑗 ∈ 𝐼 } (12) 𝑢(𝑡) = 𝒹 𝜁(𝑡)  (13) 

The above formulation is generally computationally intractable due to undermentioned 
reasons. On one hand, functional space of possible 𝒹 (·) is infinite. On the other hand, 
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requirement of satisfying constraints over uncertainty set leads to a semi-infinite problem. 
Therefore, this general ARDO model will be reformulated to gain tractability in next 
section. 

3. ARDO reformulations 
3.1. Continuous affine decision rule  
As a preliminary, multistage affine decision rule is defined as Eq.(14), which restricts 
decision-making at 𝑡  depend on observed uncertainty till 𝑡 , since the undesired effect 
of uncertainty at 𝑡  may not be fully compensated only by decision 𝑢(𝑡 ), which is 
bounded within operation limits. 𝒖(𝒕𝒌) = 𝒖𝟎(𝒕𝒌) + 𝒖𝟏(𝒕𝒌, 𝝉𝒊)𝜻(𝝉𝒊)𝒌

𝒊 𝟎 , 𝒌 = 𝟎, 𝟏, … , 𝑵 (14) 

Obviously, Eq.(14) cannot be directly employed for differential-algebraic systems due to 
its discrete nature. Therefore, a novel continuous affine decision policy is proposed to 
approximate 𝒹 (·) for dynamic optimization problem on continuous time horizon. 
The slope parameter in Eq.(14) can be written as 𝑢 (𝑡 , 𝜏 ) = 𝑤(𝑡 , 𝜏 )Δ𝜏  where the time 
span is defined as ∆𝜏 = 𝜏 − 𝜏 . In such way, Eq.(14) is converted to,  𝑢(𝑡 ) = 𝑢 (𝑡 ) + 𝑤(𝑡 , 𝜏 )𝜁(𝜏 ) Δ𝜏 , 𝑘 = 0,1, … , 𝑁    (15) 

Naturally, if the number of time intervals 𝑁 approaches infinity, time spans ∆𝜏  become 
infinitesimals, denoted as 𝑑𝜏. Thus Eq.(15) is extended to continuous time horizon as,  𝑢(𝑡 ) = 𝑢 (𝑡 ) + 𝑤(𝑡 , 𝜏)𝜁(𝜏)𝑑𝜏 , 𝑘 = 0,1, … , 𝑁       (16) 

If 𝑡  is replaced by 𝑡 in Eq.(16), the continuous affine decision rule can be formulated as, 𝑢(𝑡) = 𝑢 (𝑡) + 𝑤(𝑡, 𝜏)𝜁(𝜏)𝑑𝜏 , 𝑡 ∈ 0, 𝑡  (17) 

3.2. Adjustable robust counterpart formulation 
The uncertain problem given by Eqs. (9)-(12) is a semi-infinite program. Therefore, the 
state-of-the-art first-order Taylor expansion is applied at the nominal uncertainty values 
to guarantee constraints be satisfied on uncertainty set. The robust counterparts of 
inequality constraints Eq.(11) are written as: 0 ≥ 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁 ) + 𝛻 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁)∆𝜁    (18) 𝛻 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁) = 𝜕𝐺𝜕𝜁 + 𝜕𝐺𝜕𝑥 𝐷(𝑡) + 𝜕𝐺𝜕𝑢 𝜕𝑢𝜕𝜁    (19) 

The inner level of original objective function is approximated as:  max( )∈ Φ 𝑥 𝑡 , 𝑡 = Φ 𝑥 𝑡 , 𝑡 + 𝜕Φ𝜕𝑥 𝐷(𝑡 )∆𝜁  (20) 

To summarize, the adjustable robust counterpart of ARDO model in Eqs. (9)-(13) can be 
described as Eqs. (21)-(27). 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞𝒘(𝒕,𝝉),𝒖𝟎(𝒕)  𝚽 𝒙 𝒕𝒇 , 𝒕𝒇 + 𝝏𝚽𝝏𝒙 𝑫(𝒕𝒇)∆𝜻 𝟏 (21) 𝒅𝒙𝒅𝒕 = 𝒇(𝒙, 𝒖, 𝒕, 𝒑, 𝜻𝒏𝒐𝒎);   𝒙(𝟎) = 𝒙𝟎; (22) 𝑢(𝑡) = 𝑢 (𝑡) + 𝑤(𝑡, 𝜏)𝜁(𝜏)𝑑𝜏 , 𝑡 ∈ 0, 𝑡  (23) 𝑑𝐷(𝑡)𝑑𝑡 = 𝜕𝑓𝜕𝜁 + 𝜕𝑓𝜕𝑥 𝐷(𝑡) + 𝜕𝑓𝜕𝑢 𝜕𝑢𝜕𝜁  (24) 

under Uncertainty 
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0 ≥ 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁 ) + 𝛻 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁)∆𝜁  (25) 𝛻 𝐺(𝑥, 𝑢, 𝑡, �̅�, 𝜁) = 𝜕𝐺𝜕𝜁 + 𝜕𝐺𝜕𝑥 𝐷(𝑡) + 𝜕𝐺𝜕𝑢 𝜕𝑢𝜕𝜁  (26) 𝐷(0) = 0 (27) 

4. Case study: Williams-Otto semi-batch  
We apply the adjustable robust dynamic optimization scheme to the Williams Otto 
process with reactions A + B → C, B + C → P + E and C + P → G. Reactant A is the only 
prefilled substance and reactant B is continuously fed in. Corresponding adjustable robust 
dynamic optimization formulation under uncertain inlet temperature 𝑇 (𝜏) is: minimize, ( ), ( )    max( ) Φ(𝑡 ) (28) 𝑑𝑥𝑑𝑡 = − 𝐹 , 𝑥1000𝑉 − 𝑘 𝜂 𝑥 𝑥  (29) 𝑑𝑥𝑑𝑡 = − 𝐹 , (𝑥 − 1)1000𝑉 − 𝑘 𝜂 𝑥 𝑥 − 𝑘 𝜂 𝑥 𝑥  (30) 𝑑𝑥𝑑𝑡 = − 𝐹 , 𝑥1000𝑉 + 2𝑘 𝜂 𝑥 𝑥 − 2𝑘 𝜂 𝑥 𝑥 − 𝑘 𝜂 𝑥 𝑥  (31) 𝑑𝑥𝑑𝑡 = − 𝐹 , 𝑥1000𝑉 + 𝑘 𝜂 𝑥 𝑥 − 12 𝑘 𝜂 𝑥 𝑥  (32) 𝑑𝑥𝑑𝑡 = − 𝐹 , 𝑥1000𝑉 + 2𝑘 𝜂 𝑥 𝑥  (33) 𝑑𝑥𝑑𝑡 = − 𝐹 , 𝑥1000𝑉 + 32 𝑘 𝜂 𝑥 𝑥  (34)   𝑑𝑇𝑑𝑡 = − 𝑅 + 𝑅 + 𝑅𝐶 − 𝐿 𝑇 + 𝐿 𝑇 + 𝐹 , (𝑇 − 𝑇)1000𝑉  (35)   𝑑𝑉𝑑𝑡 = 𝐹 ,1000𝑉 (36)  𝑑Φ𝑑𝑡 = −5554.1 𝑘 𝜂 𝑥 𝑥 − 12 𝑘 𝜂 𝑥 𝑥 𝑉 − 251.82𝑘 𝜂 𝑥 𝑥 𝑉 (37) 0 ≤ 𝑉 𝑡   ≤ 5;                  60 ≤ 𝑇(𝑡) ≤ 90 (38) 0 ≤ 𝐹 , (𝑡) ≤ 5.784;       0.02 ≤ 𝑇 (𝑡) ≤ 0.1 (39) 𝑍 = 𝑇 (𝜏) ∈ ℝ| 32 ≤ 𝑇 (𝜏) ≤ 38} (40) 𝑥(0) = [1, 0, 0, 0, 0, 0, 65, 2, 0]  (41) 
where manipulated variables 𝐹 , (𝑡) and 𝑇 (𝑡) are feeding flowrate and dimensionless 
jacket temperature limited by Eq.(38). Other necessary parameters can be found in the 
paper (Assassa and Marquardt, 2014). In this problem, the continuous affine decision 
rules for 𝐹 , (𝑡) and 𝑇 (𝑡) are defined as: 𝐹 , (𝑡) = 𝐹 , (𝑡) + 𝑤 (𝑡, 𝜏)𝑇 (𝜏) 𝑑𝜏 (42) 𝑇 (𝑡) = 𝑇 (𝑡) + 𝑤 (𝑡, 𝜏)𝑇 (𝜏) 𝑑𝜏 (43) 

4.1. Optimal continuous affine decision rule  
Figure 2 depicts the optimized 𝑤 (𝑡, 𝜏), 𝑤 (𝑡, 𝜏), 𝐹 , (𝑡) and 𝑇 (𝑡), respectively. Slope 
parameters 𝑤 (𝑡, 𝜏) and 𝑤 (𝑡, 𝜏) indicate the sensitivities of manipulated 𝐹 , (𝑡) and 𝑇 (𝑡) to the realized uncertainty. The intercepts 𝐹 , (𝑡) and 𝑇 (𝑡) represent the values 
of wait-and-see decisions when uncertain 𝑇  equals to zero.  
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Figure 2. Optimal parameters of continuous affine decision rule 

In Figure 2.(a)(b), we have ∀𝑡, 𝜏, 𝑤 (𝑡, 𝜏) ≤ 2 10 , which suggests that the optimal 
feeding rate should take fixed actions with respect to uncertain 𝑇 . Such phenomenon 
can be explained that the objective values monotonously decrease with the increment of 
volume, decided only by feeding rate 𝐹 , (𝑡), thus the reactor should always be fulfilled 
at terminal time regardless of uncertain feeding temperature profile.  
On the other hand, the optimal 𝑤 (𝑡, 𝜏) shown in Figure 2.(d)(e) can lead to a maximum 
adjustment at 0.02  for 𝑇 (𝑡) applying Eq.(40). Slope parameter 𝑤 (𝑡, 𝜏) ≤ 0 when 𝑡 ∈[200,450], indicating value of scaled jacket temperature should increase to meet to 
decrement of uncertainty in these time intervals. The choice of 𝑤 (𝑡, 𝜏) is consistent with 
reactor temperature profiles in Figure 3.(a), where reactor temperature 𝑇 is close to its 
lower bound in  𝑡 ∈ [200,450]. In this time period, decrement of feeding temperature 
may cause violation to constraint 𝑇 ≥ 60 , therefore manipulated jacket temperature  𝑇 (𝑡) should be raised to compensate the undesired effect by 𝑇  falling. Moreover, the 
gray upper-triangular zone reflects that current manipulated action is only related to 
preceding uncertainty realization, while the gray areas in the lower-triangular zone 
indicates no adjustments are applied in these time periods.  

4.2. Benefits evaluation of ARDO solution 
In order to examine the benefits of ARDO solution, 200 random scenarios are generated 
via Eq.(44), where 𝑟(𝜏) ∈ [0,1]  is time-varying primitive uncertainty under uniform 
distribution.  𝑇 (𝜏) = 𝑇 + 𝑟(𝜏) 𝑇 − 𝑇  (44) 
The overall computational results are provided in Table 1. Conclusion can be drawn that 
the proposed ARDO method reaches lower average objective cost than SRO. No violation 
is observed in 200 random scenarios, demonstrating the robust feasibilities of proposed 
method. 

Table 1. Benefit evaluation results of ARDO framework 
Method SRO ARDO 
Average objective value [$] -4734.26 -4746.36 
Average 𝑇  [ºC] 61.06 61.03 
Constraint violations              0 0 

Adjustable Robust Optimal Control of Nonlinear Chemical Process
under Uncertainty 
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Figure 3.(a) provides detailed profiles of reactor temperature and Figure 3.(b) shows the 
objective values of 200 uncertain scenarios, where each point stands for a single scenario. 
In Figure 3.(a), it is indicated that both proposed ARDO method can indeed prevent 
constraint violation under uncertainty as the reactor temperature profile 𝑇 is always 
between predefined lower bound 𝑇  and upper bound 𝑇 . Furthermore, in Figure 3.(b), 
significant improvement of objective performance by ARDO method can be seen. 
Objective costs Φ  is lower than Φ  in every scenario, hinting the superiority of 
ARDO to SRO in achieving better objective performances.  

 
Figure 3. Robust solutions under 200 random scenarios. 

5. Conclusion  
The adjustable robust dynamic optimization scheme was proposed in this work. A novel 
continuous affine decision rule was developed to approximate the causal dependence of 
wait-and-see decision variables on the infinite dimensional uncertainty factors. To the 
best knowledge, it was the first attempt to employ adjustable robust optimization 
approach to addressing dynamic optimization of nonlinear chemical processes under 
uncertainty. Through the application to the classical nonlinear chemical process, when 
compared to traditional robust optimization approach, the proposed framework led to 
more flexible control profiles and less conservative solutions. 
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Abstract 
This paper presents combining extreme learning machine (ELM) and recursive least 
square (RLS) technique in modelling and optimisation of a fed-batch fermentation 
process. ELM has some characteristic features of fast training together with better 
generalisation capability. In order to cope with batch-to-batch variations due to unknown 
disturbances such as unknown process condition drift, the RLS algorithm is integrated 
with the ELM to update the output layer weights recursively from batch to batch. The 
offline trained output layer weights of the ELM are used as the initial parameter 
estimation in RLS. After updating the ELM model, optimisation is carried out to update 
the feeding policy for the next batch. The proposed method is applied to a simulated 
baker’s yeast fermentation process and the results obtained shows that the proposed 
method can cope with unknown disturbance and improve process operation from batch 
to batch. 

Keywords Extreme Learning Machine, Fed-batch Process, Optimization, Recursive 
Least Square, Optimization Control. 

1. Introduction 
Mostly in biotechnology and food industries, fermentation process plays vital role in the 
production of baker’s yeast also known as Saccharomyces cerevisiae, alcoholic 
beverages, organic solvents and antibiotics or biopolymers. The importance of these 
products in food industries cannot be over-emphasised which leads to their highly 
competitive market value demands and hence, the industrial production of baker’s yeast.  

Fed-batch processes operation are commonly seen in many fermentation industries. This 
mode of operation allows the substrate concentration and all other operating variables 
(such as the feed-rate, temperature, pressure, and agitation rate) to be varied and 
monitored during the progress of production to obtain maximum and desired biomass 
yield at the end of production.  According to (Xiong and Zhang 2005), the significant 
requirement of batch process modelling lies in the accurate mathematical representation 
of the process. 

The new trending concept of machine learning coupled with big data analytics has 
become a widely acceptable concept used in modelling, monitoring and optimisation of 
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many industrial process operations. Thus, the data-driven modelling concept utilizes 
statistical theories in establishing process models, monitoring the progress of pre-set 
conditions of operation for optimization purpose and generalization capabilities in 
predicting the unforeseen circumstances. In this concept, detailed knowledge of the 
process operation is not necessary but past historical data of the process operation is 
required. As much as the historical data is large and representative enough, data-driven 
modelling and process optimization can be established with machine learning and 
statistical theories conceptualization (Liu et al., 2019). 

In extreme learning machine (ELM), the hidden layer-weights are arbitrarily assigned and 
fixed without repeatedly adjustment unlike the traditional training approaches for single 
hidden layer feedforward networks (SLFNs). Parameters to be learnt in ELM are the 
connections (weights) between the hidden layer and the output layer, which are 
determined with a one-step regression type approach using Moore-Penrose (MP) 
generalized inverse operation of the hidden layer output matrices. ELM has been 
successfully applied to batch process modelling (Alli and Zhang, 2020).  

This paper proposes integrating ELM with RLS algorithm in obtaining reliable modelling 
for batch-to-batch optimal control of the final biomass concentration of a baker’s yeast 
fermentation process. An ELM model is initially developed from historical process 
operation data which is used to calculate the optimal control policy for the baker’s yeast 
fermentation process. After the completion of each batch, the output layer weights of the 
ELM model are updated using the data from the newly completed batch through the RLS 
algorithm. The updated ELM model is then used to optimise the next batch and the 
procedure is repeated from batch to batch. By using this proposed modelling approach, 
the ELM model can keep track of any variations that may arises during the progress of 
the batch process operation. 

The rest of this article is organized as follows. Batch-to-batch modelling with recursive 
updated ELM model is given in Section 2. Section 3 presents application to a fed-batch 
fermentation process and Section 4 gives the final concluding remarks. 

2. Batch-to-Batch Modelling with an Updated ELM Model 
2.1. Extreme Learning Machine 

An ELM is a single-hidden layer feedforward networks (SLFNs) where the hidden layer 
weights and bias are assigned randomly (Huang et al., 2006). The output layer usually 
uses the linear activation function, and the output is calculated as: 𝑓 (𝑥) = ∑ 𝛽 ℎ (𝑥) = ℎ(𝑥)𝛽         (1) 

where 𝛽 = [𝛽 , … , 𝛽 ]  is a vector of the output layer weights, L is the number of hidden 
neurons, and ℎ(𝑥) = [ℎ (𝑥), … , ℎ (𝑥)] is a vector of the hidden layer outputs calculated 
as: ℎ (𝑥) = 𝐺 𝑎 . 𝑥 + 𝑏           (2) 

where j = 1, …, N, 𝑎 = [𝑎 , 𝑎 , … , 𝑎 ]  is a vector of weights connecting the ith hidden 
node to the inputs,  𝑏   is the bias of the ith hidden nodes, 𝑥  is the jth input sample, and 
G is the hidden layer neuron activation function typically taken as the sigmoid function. 
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The output layer weights, denoted by 𝛽, are obtained by solving a regression type problem 
as follows: ‖𝐻𝛽 − 𝑇‖          (3) 

where H is the hidden layer output matrix and T is the training target matrix. 

The optimal solution of Eq. (3) is given by:  𝛽 = 𝐻 𝑇                   (4) 

where 𝐻  denotes the Moore-Penrose generalised inverse of matrix H. 

2.2. Batch-wise Updated ELM Model with RLS 

Batch to batch variations exist due to the presence of unknown disturbances. Any 
variations in the batch process could make the ELM model invalid. To cope with 
operating condition changes, the ELM can be updated from batch to batch by using the 
RLS algorithm.  
In RLS, the parameter estimation at the current batch is obtained by using the previous 
parameter estimation and data from the current batch. The correctional term applied to 
the output layer weights is proportional to the prediction error at the current batch. The 
updating output layer weights by the RLS algorithm is given as: 𝛽(𝑘 + 1) = 𝛽(𝑘) + 𝐹(𝑘). 𝐸(𝑘 + 1)     (5) 𝐹(𝑘) = 𝑃(k)𝐻 [𝜆 + 𝐻 𝑃(𝑘)𝐻 ]      (6) 𝑃(k+1) = [I-F(k). 𝐻 ] 𝑃(k)/ 𝜆      (7) 𝑃(𝑘) = 𝑃(0) = ∑ [𝜆 𝐻(𝑖). 𝐻(𝑖) ]     
 (8) 

where E(𝑘 + 1) = 𝑦 − 𝐻 𝛽(𝑘) is the ELM model prediction error at the current 
batch, 𝛽(𝑘) is the current parameter estimate (the ELM output layer weights), 𝐹(𝑘) is the 
Kalman gain, Hk+1 is a vector of the hidden neuron outputs at the current batch, and λ is a 
forgetting factor. 

3. Application to a Fed-Batch Fermentation Process 
3.1. Baker’s Yeast Fermentation Process 

Baker’s yeast also known as Saccharomyces cerevisiae is one of the various products of 
culturing yeast which is being produced from glucose as substrate to grow 
microorganism. The main source of energy in growing this culture is the glucose in 
molasses for the growth reaction of the yeast cells and energy production. The chemical 
reaction representing this description is given by (Karakuzu et al., 2006) as: 𝐶𝐻 𝑂 + 𝑌 𝑁𝐻 +𝑌 𝑂 → 𝑌 𝐶𝐻 . 𝑂 . 𝑁 . + 𝑌 𝐶𝐻 𝑂 . + 𝑌 𝐶𝑂 + 𝑌 𝐻 𝑂    (9) 

where 𝐶𝐻 𝑂,  𝐶𝐻 . 𝑂 . 𝑁 . , and 𝐶𝐻 𝑂 .  are glucose, biomass, and ethanol 
concentrations in (g/L) respectively, the coefficient 𝑌   represents the stoichiometric 
yield coefficients where 𝑖 = 𝑛, 𝑜, 𝑥, 𝑒, 𝑐, 𝑤  and their values can be found in (Karakuzu 
et al., 2006). The main objective of production is to maximise the biomass production 
thereby limiting the formation of ethanol as a by-product in the fermentation process. 
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Ethanol formation can be limited either through limiting the oxygen concentration in the 
reaction process or overfeeding the substrate concentration to completely oxidise the 
yeast cells in the fermentor for maximum productivity during fermentation. To limit the 
amount of ethanol formation, the feed rate needs to be controlled and monitored during 
the progress of reaction. Detailed cell kinetics and reactor dynamic equations describing 
the baker’s yeast fermentation process are presented in (Yüzgeç et al., 2009; Baron and 
Zhang, 2017).  

Based on the kinetics, cell dynamics and the model parameters from (Baron and Zhang, 
2017), simulation algorithm codes were developed in MATLAB to generate process 
operational data for modelling the fed-batch fermentation process with ELM+RLS 
algorithms and also determine the optimal final biomass concentration of the process 
operation through optimal control policies. 

3.2. Batch-to-Batch Modelling Using ELM and RLS 

The mechanistic model-based simulation is used to produce 100 batches of historical 
operation data. The batch time is 16.5h and is divided into 10 equal intervals. The model 
inputs are the substrate feed flow rates randomly generated in the range of 0 to 2500 L/h. 
The ELM model is of the following form: 𝑌 (𝑡 ) = 𝑓(𝑥 )        (10) 

where 𝑌 (𝑡 ) and 𝑥 = [𝑥 , 𝑥 … 𝑥 ] are the final biomass concentration and the substrate 
feed rates of the ith batch respectively. The simulated data were scaled to zero mean and 
unit variance before parting the data set into training and testing (70% of the data) while 
the remaining data were used as validation data (30% of the data).  

After obtaining the ELM model with the first 20 batches, the output weight and bias 
obtained were used to initialize the parameter estimation of the RLS algorithm. These 
weights and biases are updated through the RLS algorithm based on the amount of data 
in the simulated training data sets.  

 
Figure 1. Model prediction performance on training and testing data. 
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Figure 2. Model prediction performance on validation data 

Figure 1 shows the model prediction performance on the training and testing data for both 
ELM and the proposed method (ELM+RLS). Figure 2 shows the model prediction 
performance on the validation data for both ELM and the proposed method (ELM+RLS).  
It can be seen from Figures 1 and 2 how the proposed method tracked the actual data 
accurately on both training and validation plots. Table 1 shows the mean square error 
(MSE) of the predictions shown in Figures 1 and 2.  
Table 1. Mean Squared Error Values 

Models MSE (Training and Testing) MSE (Validation)  

ELM 0.4783 0. 4234 

ELM+RLS 0.0257 0.0039 

 

3.3. Batch-to-Batch Optimization Control 

The proposed adaptive optimal control of the baker’s yeast fermentation is based on the 
ELM+RLS model prediction given by Eq. (10). The objective is to maximise the final 
biomass concentration by modifying the substrate feed rate subject to process constraints 
given below where the optimisation problem can be represented as: 𝐽 = −𝑓 (𝐹)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 0 𝐹 3000, 𝑖 = 1,2, … ,10 𝑉 10000    
  (11) 

where 𝑓 (𝐹) is the ELM+RLS predicted final biomass concentration and 𝐹 is the 
vector of substrate feeding rates. The constrained optimisation problem in Eq. (11) was 
solved with the “fmincon” function in the MATLAB 2019a Optimization Toolbox using 
interior-point method and random selection of a batch from 100 initial substrate feeding 
rate in modelling simulation as the starting point. 

 
Table 2. Optimal control results on final biomass concentration 

Models Model final biomass concentration 
predicted (g/L) 

Actual final biomass 
concentration (g/L) 
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ELM 58.13 40.79 

ELM+RLS 65.39 53.55 

 

The optimisation results given in Table 2 substantiate the improvement in model accuracy 
and reliability of the proposed method. The optimal control policy obtained using the 
ELM+RLS model gives much better performance than that using the ELM model, 
especially when applied to the actual process (i.e., mechanistic model simulation).  

4. Conclusions  
An adaptive optimal control strategy of a fed-batch fermentation process is proposed in 
this paper through integrating ELM and RLS technique. Historical process operation data 
is used to establish an initial ELM model and in order to cope with the presence of 
unknown disturbances, the ELM model is updated after each batch using RLS. The 
updated ELM with RLS is used to find the optimal control policy for the next batch. The 
proposed batch-wise modelling and optimisation control strategy is demonstrated on a 
simulated fed-batch fermentation process for producing baker’s yeast. It has been shown 
that the proposed adaptive optimal control strategy can effectively overcome the effect of 
unknown disturbances and achieve improved product output operation from batch to 
batch. 
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Abstract 
Inferential (or soft) sensors are used in industry to infer the values of imprecisely and 
rarely measured (or completely unmeasured) variables from variables measured online 
(e.g., pressures, temperatures). The main challenge, akin to classical model overfitting, in 
designing an effective inferential sensor is to select a correct structure represented by the 
number of sensor inputs. This work is focused on the design of an inferential sensor for 
bottom product composition of an industrial distillation column. We study effectiveness 
of various subset selection methods that regard different model-overfitting criteria. Our 
results show that the subset selection is a viable methodology to sensor design and that 
we are able to improve accuracy of the current refinery sensor by around 15 %. 
 
Keywords: Inferential (Soft) Sensors, Process Monitoring, Subset Selection 
 

1. Introduction 
The accuracy and reliability of industrial measurements have a huge impact on the 
effectiveness of industrial process control (Khatibisepehr et al., 2013). Especially, the 
control performance of advanced process controllers (Qin and Badgwell, 2003) is highly 
related to the indication quality of controlled variables (CVs). It is often the case that the 
crucial CVs (e.g. distillate purity) are too expensive or impossible to measure at the 
frequency required for an effective feedback control. This gave rise to a use of so-called 
inferential (or soft) sensors (Mejdell and Skogestad, 1991; Kordon et al., 2003; Curreri et 
al., 2020). 
 
The purpose of an inferential sensor is to infer the CV value (output) using the data from 
other measured variables (inputs). The design procedure aims at a) identifying a sensor 
structure and b) at estimating the sensor parameters. While the latter problem can be 
solved relatively easily, the former issue of structure selection can be much more 
challenging in practice. 
 
The focus of the paper is on a class of subset selection (SS) methods. These methods use 
mixed-integer programming to determine the optimal structure of an inferential sensor 
using various model-overfitting criteria such as adjusted  , corrected Akaike 
information criterion , Bayesian information criterion (BIC), and cross-
validation. We make a comparison of effectiveness of the SS methods investigating a 
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linear soft-sensor design for a depropanizer column in an industrial fluid catalytic 
cracking (FCC) unit. 

2. Problem Description 
Our goal is to identify models of inferential sensors of the following linear form: 

 (1) 

where  stands for the desired CV inferred by the sensor,  is the vector of available 
input variables, and  represents the vector of sensor parameters. 
 
2.1. Industrial FCC unit 

We study a depropanizer that is a part of an FCC unit of the refinery Slovnaft, a.s. in 
Bratislava, Slovakia. The column separates a seven-component feed to a C3-fraction-rich 
distillate and to a C4/C5-fraction-rich bottom product. Plant description is given in Mojto 
et al. (2020). The candidate input vector for inferring the bottom impurity is: 

 (2) 

with feed flowrate , reflux flowrate , reboiler heat duty , pressure at the top of 
the column , pressure at the bottom of the column , and temperatures of distillate 

, at the 10  tray , at the 37  tray  and at the bottom . This set  
involves all variables measured directly at the column and their commonly used fractions. 
 
Any use of a thermodynamic model to monitor top/bottom stream compositions is 
prohibitive here, even under some ideality assumptions. This occurs as there are too many 
degrees of freedom for a seven-component mixture that cannot be inferred from online 
data. Current inferential sensor (denoted as ref) in use in the refinery is designed 
according to King (2011) and uses , , and  as inputs. 

3. Soft-sensor Design by Optimal Subset Selection 
This section introduces the optimal SS methods for soft-sensor design. An effective 
design procedure usually requires splitting the  available dataset with  measurement 
points  into the following subsets: dataset for 
sensor design that contains training data  and dataset used for the 
performance evaluation of designed sensors that contains testing data . 
Here  and  denote the corresponding row-selection operators. 
 
3.1. Optimal Subset Selection with Model-overfitting Criteria 

Subset selection denotes a class of methods that explicitly seek for the simplest possible 
sensor structures such that some model-overfitting criterion  is minimized 
(Miyashiro and Takano, 2015). Here the variable  denotes a vector with binary entries 

 signifying selection of  input into sensor structure. Correspondingly, the sum 
of the vector entries  denotes the sensor complexity. 
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Optimal subset selection solves the following bi-level program (Bertsimas et al., 2016): 

 (3a) 

 (3b) 

where  represents an upper bound on  to be tuned and the optimization criterion 
 might take the form : 

 (4) 

The bi-level program (3) can be effectively solved by standard MIQP solvers using big-
M reformulation as shown in Takano and Miyashiro (2020). 
 
3.2. Optimal Subset Selection with Cross-Validation Criterion 

The principle of this method is to mimic a standard cross-validation procedure within the 
training dataset. Let us divide the training data into  smaller subsets , such that: 

 (5) 

The data is distributed into training ( ) and validation ( ) sets as follows: 

 (6) 

where  sets contain unique data, while the different  sets involve recurring 
measurements. The SS with cross-validation solves (Takano and Miyashiro, 2020): 

 (7a) 

 (7b) 

 (7c) 

The problem (7) can be solved for several values of  — considering constraints on 
parameter identifiability, i.e., the cardinality condition in Eq. (6) — and for different 
randomly generated distributions of data into  and  sets. The structure of the 
resulting sensor is then given by the most frequent inputs occurring in the calculated 
sensors. Once the optimal sensor structure is calculated, a least-squares fitting of such 
model is used with the entire training dataset to determine the parameters of designed 
soft-sensor. Similarly to problem (3), the problem (7) can be effectively resolved by 
standard MIQP solvers. 

4. Results 
Industrial data available from the refinery represents more than two years of production. 
We possess 177 lab measurements of the bottom product composition. 
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We use MATLAB, Yalmip (Löfberg, 2004), and Gurobi (Gurobi Optimization LLC, 
2020) to solve various instances of the problems (3) and (7). When determining the best 
sensor according to SS with cross-validation, we take a median of  from the results  

Table 1: Comparison of the number of inputs  and sensor accuracy (RMSE) for the soft 
sensors designed using time series data. 

of different runs (different  and data distribution) to obtain the , i.e., the 
number of inputs of the final sensor. We then select the  most frequent inputs from the 
results of different runs to finalize the sensor structure. 
 
4.1. Design of an Inferential Sensor using Time Series Data 

We chronologically assign first 50 % of the data to the training set and the last 50 % of 
the data to the testing set. The accuracy of the designed sensors is assessed by root mean 
squared error (RMSE) evaluated on the testing dataset. 
 
Table 1 shows the obtained results. The SS with  suggests to include almost all 
available inputs (except  and  and the accuracy of this sensor is slightly decreased 
compared to other designed soft sensors. Therefore we conclude that this criterion is not 
appropriate option for structure selection of an soft sensor. The performance of SS using 

,  and cross-validation is the same. These methods suggest to include four 
common variables , ,  and  into the structure of the soft sensor. Suitable 
candidates for a good quality soft-sensor thus seem to be temperatures in the column  
and  and variables measured near to the inferred variable  and  
 
The inferential sensors designed via SS with , BIC, and cross-validation show better 
performance compared to the reference inferential sensor. We can thus conclude that an 
improvement of the current inferential sensor is possible with only slight modifications, 
i.e., at least one extra variable in the inferential sensor is required. The accuracy 

1T z
*( )pn

6K £ *
p pn n£

*
pn

2
adjR

DT B )Q

CAIC BIC
B(T 10T 37T B / )Q F

10(T
37 )T B(T B / ).Q F

CAIC

    Cross-validation ref 
 9 4 4 4 3 

RMSE 0.110 0.106 0.106 0.106 0.128 

2
adjR CAIC BIC

*
pn

Figure 1: Comparison of the soft sensors designed using time series data. 
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improvement achieved by the inferential sensor of SS with , BIC and cross-
validation is more than 15 % compared to the reference inferential sensor. 

Table 2: Comparison of the number of inputs  and sensor accuracy (RMSE) for the soft 
sensors designed using randomly distributed data. 

    Cross-validation ref 
 8 6 5 5 3 

RMSE 0.107 0.107 0.109 0.111 0.127 
 
Figure 1 shows a comparison of the measured data with the output of the sensors. We plot 
the predictions of the reference sensor and of the sensors designed by SS with  and 
SS with  (the same as the rest of SS-based sensors). The performance of the 
designed sensors on the training data is good as can be expected, despite we can clearly 
observe problems of the reference sensor in fitting the data. This already suggests its 
inappropriate structure. This is further documented when looking at the testing data, 
where the quality of the reference sensor rapidly deteriorates once leaving the training-
data window. The last period of the testing data (measurements 130–177) shows a 
significant discrepancy between the measurements and values inferred by all the designed 
sensors. This might be caused by a major change in the operating conditions of the FCC 
unit. A possible remedy could be to design a new sensor (with different structure) or a 
simple bias correction, which seems to be more appropriate in this case. The bias 
correction strategy is actually used at the refinery to improve the reference sensor. 
 
4.2. Design of an Inferential Sensor using Randomly Distributed Data 

To further investigate the problem, we study the impact of the training/testing data 
distribution on the sensors performance. Therefore, we randomly assign 50 % of the 
available data to the training set and leave the rest of the data for testing. 
 
Table 2 shows the results averaged over fifty different randomly generated 
training/testing data distributions. These results show slightly increased complexity of the 
inferential sensors designed by SS with  and  compared to inferential sensors 
designed by SS with BIC and cross-validation. Nevertheless, these SS approaches suggest 
five common variables ( , , ,  and ) into the structure of the soft sensor. 
 
The sensors accuracy (see Table 2) confirms better performance of the inferential sensors 
designed via SS compared to the current inferential sensor. However, only SS with  
improved its accuracy compared to the sensors in Sec. 4.1. Therefore, the overall 
improvement of the designed soft sensors is comparable with Sec. 4.1 (around 15 %). 
 
In comparison to the results shown in Fig. 1, the performance of the designed inferential 
sensors using random distributed data (Fig. 2) is slightly improved in the section 
represented by the measurements 130–177. Nevertheless, the performance of the 
reference inferential sensor is almost the same as in Sec. 4.1. Therefore, we can conclude 
that the simple structure of the reference inferential sensor provides the robustness and 
constant accuracy at the whole time interval. On the other hand, the designed inferential 
sensors with enhanced structure (more input variables) are more accurate than the 
reference inferential sensor, but only within a short time horizon. We thus conclude that 
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a design of one efficient global sensor at the whole time interval is too complicated or 
impossible and one should better design a family of switching sensors or an appropriate 
mechanism for update of sensor parameters (beyond the simple bias correction). These 
are the directions for our further research. 

Conclusions 
We analyzed effectiveness of optimal subset selection to design a soft sensor. We used 
several variants of the SS method with different model-overfitting criteria and with cross-
validation. According to the time series data, the use of ,  and cross-validation 
results in better performing sensors than if  is used. The designed soft sensors via SS 
could improve the current soft sensor by around 15 %. Further investigations revealed 
that any further improvements would be possible using a set of switching sensors. 
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Abstract 
This paper presents an eMPC controller that integrates Modifier Adaptation (MA) 
methods in order to achieve in closed loop the real optimum in spite of the presence of 
model-process structural mismatch. The main difficulty associated with MA is the 
correct process gradient estimation that usually requires waiting for several process 
steady states. Then in a large settling time process, the time required for computing 
corrective actions with MA can be so large that the method becomes impractical. To 
avoid these problems, this work presents an eMPC+MA that estimates process gradients 
using transient data and an on-line identification algorithm (TMA). The integrated 
eMPC+TMA method is applied to the Williams-Otto reactor. The results show that 
eMPC+TMA can approach the plant’s real steady state optimum despite process-model 
mismatch without using steady state measurements in a sensible period of time. 

Keywords: Real-time Optimization, Modifier Adaptation, Uncertainty, Transient 
Measurements, MPC. 

1. Introduction  
Real-Time Optimization (RTO) is a largely used technique to increase the industry 
competitiveness, fulfilling quality, environmental, and security demands. RTO is 
formulated as an optimization problem with economic objectives that use explicit 
process models to calculate the optimal decision variables to be used as setpoints of 
low-level controllers, commonly MPC (Model Predictive Control). RTO generally 
optimizes an economic cost function ϕ with respect to the decision variables or inputs 𝒖 
and constraints 𝒈 using a steady state model as in (1). Min𝒖 𝒖 𝒖  𝜙(𝒖, 𝒚) 𝑠. 𝑡   𝒈(𝒖, 𝒚) ≤ 0 (1) 

In case of parametric and/or structural model-process mismatch, (1) will not provide the 
correct process optimum. So modifier adaptation methodology (MA) can be applied to (1) in order to match model and real plant optimum (Marchetti et al., 2009). MA adds 
modifiers to the cost function and constraints, resulting in problem (2). 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50193-5
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 min𝒖 𝒖 𝒖 𝜙 =  𝜙(𝒖) + 𝝀 (𝒖 − 𝒖∗ ) 
 𝑠. 𝑡   𝒈 (𝒖) = 𝒈(𝒖) + 𝜸 , (𝒖 − 𝒖∗ ) + 𝜺 ≤ 0 

(2) 

Where 𝜙  is the modified cost function and 𝒖∗  are the optimum values of the 
decision variables in the previous steady state. 𝝀, 𝜸, and 𝜺 are the modifiers computed as 
in Error! Reference source not found., using the information of the plant (subscript P) 
and model. 
 𝝀 = 𝜕𝜙𝜕𝒖 𝒖∗ − 𝜕𝜙𝜕𝒖 𝒖∗ , 𝜸 = 𝜕𝒈𝜕𝒖 𝒖∗ − 𝜕𝒈𝜕𝒖 𝒖∗ , 𝜺𝑘 = 𝒈𝑃(𝒖𝑘−1∗ ) − 𝒈(𝒖𝑘−1∗ )   (3) 
 

The RTO+MA problem (2) is a static optimization that uses a different model than the 
model predictive controller (MPC). To avoid compatibility problems and benefit from 
considering dynamics, it is logical to think of an integration of these two layers where 
the economic problem of the RTO+MA could be used as an objective function of an 
economic MPC (eMPC). Another point to have in mind in this integration is the process 
gradient estimation. In traditional MA, process gradients in Error! Reference source 
not found. are estimated using steady state measurements, requiring quite a few steady 
states to the problem (2) reach the optimum. Therefore, when dealing with slow 
dynamics processes, as often happens in practice, the time required for computing 
corrective actions with RTO+MA can be so large that the method becomes impractical. 
Another problem is that MPC controllers usually operates in a time scale of seconds or 
minutes and they constantly interact with the system making a traditional MA 
impractical. So, an estimation of process gradients using transient measurements is 
required.  
Recent works have presented proposals to solve the RTO+MA+MPC problem as in 
Vaccari and Pannocchia (2016) eMPC, Pannocchia (2018), Vaccari and Pannocchia 
(2018), Hernández and Engell (2019), Faulwasser and Pannocchia (2019), and Vaccari 
et al. (2020). Most of these papers maintain two layers inside the controller: a static 
economic optimization problem and a target optimization problem. Faulwasser and 
Pannocchia (2019) is an exception. All the authors mentioned show different 
frameworks to the unification eMPC+MA and some of them apply identification 
algorithms or other methods to estimate the processes gradients using steady or transient 
measurements. 
To contribute to the practical applications of MA, the present paper proposes a different 
method, using transient measurements and an identification framework, to estimate 
process gradients to an eMPC+MA controller. This new architecture will be called 
eMPC+TMA. The paper is organized as follows. Section 2 describes the algorithm to 
estimate gradients with transient data. Then, the structure of the eMPC is presented and 
eMPC+TMA is applied to the benchmark example of William Otto reactor in Section 4. 
Finally, in the last section some conclusions are presented. 

2. Modifier Adaptation using transient measurements (TMA) 
One possible approach to estimate process gradient using transient information is to 
approximate the variation of the process cost function using a second order Taylor’s 
expansion with an adaptative estimation technique (Navia et al., 2017; Rodríguez-
Blanco et al., 2017). In this paper, this idea is expanded and integrated into the context 
of eMPC assuming that the process cost depends not only on previous decisions but also 
on its time dynamics. Then, a second order Taylor’s expansion will lead to:  
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𝛥𝜙 , = 𝜕𝜙𝜕𝑢 𝛥𝑢 + 𝜕𝜙𝜕𝑢 𝛥𝑢 + 𝜕 𝜙𝜕𝑢 12 𝛥𝑢 𝛥𝑢  + 𝜕 𝜙𝜕𝑢 𝑢 𝛥𝑢 𝛥𝑢 + 𝜕 𝜙𝜕𝑢 12 𝛥𝑢 𝛥𝑢 + 𝜂 𝜕𝐽𝜕𝑡 𝛥𝑡 
(4) 

Now, if we define two vectors 𝜑 and 𝜃 as in (5), (6), then, (4) can be written as (7). 
Notice that (5) is a vector of the changes in the decision variables and the derivative of 
the cost function in the past iterations. The derivative with respect to time can be 
approximated using past data and Nordsieck’s vector (Butcher, 2002). In the same way, (6) is a vector of unknown values that contains the gradients of the process cost 
function w.r.t. the decision variables in the two first positions. So (7) has the form of a 
typical model used in parameter identification problems.    𝜑= 𝛥𝑢    𝛥𝑢     

12 𝛥𝑢 𝛥𝑢     𝛥𝑢 𝛥𝑢     
12 𝛥𝑢 𝛥𝑢    

𝜕𝜙𝜕𝑡 𝛥𝑡  (5) 

𝜃 = 𝜕𝜙𝜕𝑢     
𝜕𝜙𝜕𝑢     

𝜕 𝜙𝜕𝑢     
𝜕 𝜙𝜕𝑢 𝑢     

𝜕 𝜙𝜕𝑢      𝜂  (6) 𝛥𝜙 = 𝜑 𝜃  (7) 
In our case, the normalized least mean square algorithm, NLMS  is used to minimize the 
module of difference of the current estimate of � and the real one (Isermann and 
Münchhof, 2011). The NLMS algorithm is easy to implement and it is computationally 
less expensive than other recursive methods (8). 𝜃 = 𝜃 + 𝜇 , 0 2   (8) 

3. eMPC+TMA formulation 
The eMPC+MA is formulated in a single layer using an economic objective function 
composed of three terms (9). The first term, 𝜙 𝑡 , corresponds to an economic 
target computed from the continuous dynamic model 𝑭(𝒙, 𝒙, 𝒖, 𝒗 )at the end of the 
prediction horizon has a typical RTO cost function. This implies that 𝜙 𝑡  depends 
on the expected dynamic of the system, control moves, and disturbances. The second 
term in (9) is a MA type modifier term that modifies the objective function to match the 
NCO of the real plant when it reaches steady state. The term is equivalent to the first 
order modifier in the traditional MA formulations (2). The term �k is computed every 
sampling time k using the process gradient estimated using transient measurements and 
model gradients as in Error! Reference source not found. and then filtered. Similar 
formulations apply to the constraints modifiers, 𝛄  and 𝛆 . Finally, the third term of (9), 
with a matrix weighting factor 𝑸, penalizes changes in the manipulated variables (move 
suppression parameter) over the control horizon, increasing stability, and contributes to 
model adequacy and convexification (François and Bonvin, 2013).  
An overall view of the proposed eMPC+TMA architecture is presented in Figure 1. The 
MHE module is a moving horizon estimator responsible for estimating states and 
disturbances for the controller (Rawlings et al., 2019). In each iteration 𝑘 that could 
correspond to each sample time of the controller, the measurements 𝒚 and the value of 
manipulated variables 𝒖 are used to estimate the process states, 𝒙 , and disturbance 
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𝐯  in MHE module. These values, together with process measurements 𝜙 , , 𝒈 ,  are 
used to estimate the process gradients that besides model gradient are used to calculate 
the modifiers as in Section 2. The modifiers calculated in TMA are filtered and used in 
eMPC+MA module, problem (9),(10) resulting in the vector of control moves to be 
applied in the process. 

min
�𝒖, ,… 𝜙 𝑡 + �𝒌𝑻(𝒖 − 𝒖𝒌 𝟏) + �𝒖 𝑸�𝒖  (9) 

𝑠. 𝑡. 𝒈(𝒖) + 𝛄 (𝒖 − 𝒖 ) + � ≤ 𝟎, ∀𝑡 ∈ 𝑡 , 𝑡  𝒖𝒌 𝒊 = 𝒖𝒌 𝒊 𝟏 + ∆𝒖𝒌 𝒊, 𝑖 = 0,1, … 𝑛 − 1 𝒖𝑳 ≤ 𝒖𝒌 𝒊 ≤ 𝒖𝑼, 𝑖 = 0,1, … 𝑛  𝒖(𝒕) = 𝒖𝒌 𝒊 , 𝑡 ∈ 𝑡 , 𝑡 , 𝑖 = 0,1, … 𝑛 − 1 ∆𝒖𝒌 𝒊 = 0 ,   𝑖 = 𝑛 , … 𝑛 − 1 𝒙(𝑡 ) = 𝒙  𝑭(𝒙, 𝒙, 𝒖, 𝒗 ) = 𝟎, ∀𝑡 ∈ 𝑡 , 𝑡  

(10) 

 
Figure 1: eMPC+TMA architecture. 

4. Williams-Otto Case study 
The benchmark example (Williams and Otto, 1960) is used to validate the proposed 
eMPC+TMA approach. The process consists of a continuous stirred tank reactor CSTR 
where the reactants A and B combine to generate four species C, E, G, P in three 
different reactions. The eMPC uses a simplified dynamic model that differs in structure 
and parameters from the process. Only two reactions and 5 components A, B, E, G, P 
are considered. The nonlinear dynamic models used to represent the real process and the 
controller dynamic model consist of mass balance equations for each component 
(Faulwasser and Pannocchia, 2019). The eMPC+TMA problem to be solved is (11). The 
initial states and disturbances in k are provided by the MHE module. The modifiers’ 
values are calculated by the TMA module and then filtered with a first order filter.  
The reactor simulation and the dynamic optimization problem in MHE are formulated in 
a continuous domain in MATLAB. The eMPC was implemented using the nlmpc object 
with the custom cost function (11). The optimization problems are solved using the 
NLP solver fmincon. The eMPC+TMA framework executes every 2 minutes. The 
control/prediction horizons are 𝑛 = 3, 𝑛 = 30, MA filter K = 0.7 and move 
suppression 𝛽 = (0.5,0.5). The NLMS parameters, 𝜇 = 0.1 and 𝜎 is a small value to 
avoid division by zero (𝜎 = 0.0001 for example). The first 8 minutes of data are 

1256



Economic MPC with Modifier Adaptation using Transient Measurements 

collected to be used in the identification algorithm. Then the controller starts at minute 
10. max𝜙, = 𝐹 (𝑋 𝑝 + 𝑋 𝑝 ) − 𝐹 𝑋 𝑝 − 𝐹 𝑋 𝑝 + 𝜆 , 𝛥𝐹 ,

                        + 𝜆 , 𝛥𝑇 + 𝛽 𝛥𝐹 , + 𝛽 (𝛥𝑇 )  

s.t. nonlinear dynamic model 
�𝐹 , = 𝐹 , − 𝐹 , , 𝑖 = 0 … 𝑛 − 1 

�𝑇 = 𝑇 − 𝑇 , 𝑖 = 0 … 𝑛 − 1 𝐹 (𝑡) = 𝐹     ,   𝑡 ∈ 𝑡 , 𝑡  𝑇(𝑡) = 𝑇   , 𝑡 ∈ 𝑡 , 𝑡  180 𝑙𝑚𝑖𝑛 ≤ 𝐹 , ≤ 360 𝑙𝑚𝑖𝑛 , 𝑖 = 0 … 𝑛 − 175º𝐶 ≤ 𝑇 ≤ 100ºC, 𝑖 = 0 … 𝑛 − 1 

(11) 

Figure 2 shows the results of the eMPC+TMA in the case of study. The closed loop 
system stabilizes around 50 min, which is, approximately, twice the time of the reactor 
open loop response (30 min). For comparison, the cost function obtained without the 
TMA module is shown in the right bottom. It means, if there is no MA correction in the 
cost function (𝜆 = 𝜆 = 0 in (11)) as happens in traditional eMPC or RTO problems, 
the cost obtained could be far away from the real optimum.The small offset in the 
temperature results may are caused by problems in the optimizer (the cost function 
region next to the optimum is relatively flat), besides the process gradients are estimated 
using transient data and not steady-state data. 

 

  
Figure 2: Cost function and manipulated variables over time. 
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5. Conclusions 
The implementation of eMPC+TMA shows that it is possible to achieve an operating 
point close to the real optimum, despite the parametric and structural mismatch between 
model and real process using transient measurements in a shorter time than the one 
required in the RTO+MA+MPC traditional architecture, avoiding without waiting for 
multiple process steady states. 
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Abstract
Cyber-Physical Systems (CPS) are collections of physical and computer components
that are integrated with each other to operate a process safely and efficiently. Examples
of CPS include industrial control systems, water systems, robotics systems, smart grid,
etc. However, the security aspect of CPS is still a concern that makes them vulnerable to
cyber attacks on the control elements, network or physical systems. The work reported
here is an attempt towards detecting cyber attacks and improving process monitoring in
CPS; using unsupervised machine learning anomaly detection algorithms such as
one-class SVM, isolation forest, elliptic envelope. These algorithms are evaluated using
the dataset of a real Water Distribution Plant (WADI) built at the iTrust centre at
Singapore University of Technology and Design for cyber security research. For
modelling purposes, process 1 and 2 of the aforementioned plant were taken into
consideration because the implemented attacks were closely related to only these
sub-processes. The result of the experiment shows that one-class SVM is found to be
the most effective algorithm in determining anomalies for this particular dataset.

Keywords: Cyber-Physical System, Machine Learning, Unsupervised Learning,
Anomaly Detection, One-Class SVM, Isolation Forest, Elliptic Envelope, Principal
Component Analysis (PCA)

1. Introduction
The automation in industries is increasing proportionally with the advancement of
technology. Although, security infrastructure of Industrial Control Systems (ICS) is
continuously ongoing development, yet there is an abundant possibility that artificial
intelligence and domain knowledge can be merged to help us identify deviation in
processes more effectively, in order to increase the safety of industries. Machine
learning allows us to take into account all inputs at once and return the status of the
process. Therefore, it is possible that these trained models can be installed in process
industries and could potentially act as an additional layer of security and monitoring. A
number of papers are available that discuss the use of various supervised learning
algorithms for attack detection. Observations made by Gharibian and Ghorbani (2007)
demonstrated that Decision Trees are very sensitive to the training data and don't learn
quite well from imbalanced data. Furthermore, they found that Decision Trees and
Random Forests (ensemble of Decision Trees) are very sensitive to the training data and
their performance can vary significantly based on it. Naive Bayes Classifier implements
Bayes theorem for classification problems. In comparison to MLP, Naive Bayes

http://dx.doi.org/10.1016/B978-0-323-88506-5.50194-7
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classifiers can be trained within a short period of time (Fleizach and Fukushima, 1998).
According to Domingos and Pazzani (1996) & Langley and Sage (1994), Naive Bayes
can perform quite well when there exists a reasonable dependency in the data. It has
been also observed that the performance of Naive Bayes classifier improves when
redundant features are removed. The observations from Huy Anh and Deokjai (2008),
where they applied a wide variety of algorithms: Bayesian approach, Decision Trees,
Rule-based models, etc., states that no single algorithm is capable of detecting all kinds
of attack with high detection and low false alarm rate. Muda Z, et al. (2011) performed a
hybrid learning approach by combining Naive Bayes and K-means Clustering. The
training dataset was divided into k-clusters based on an initial value known as the seed
points into each cluster centre. The results showed that this hybrid approach performed
better as compared to only Naive Bayes Classifier. Wang H. et al. (2011) made an
attempt to improvise SVM by combining Principal Component Analysis (PCA) and
Particle Swarm Optimization (PSO). PCA is quite effective in reducing the dimensions
of data. Thereafter, PSO was used to optimize the kernel parameters. The experimental
results showed that the performance of PCA and PSO combined SVM was higher than
those of PSO-SVM and standard SVM. Another work is conducted by Cheng Feng et al.
(2019), proposed an approach which combined several machine learning and data
mining techniques to generate a significant number of invariant rules (defined as a
physical condition that must be satisfied for any given state of an ICS) (S. Adepu and A.
Mathur, 2016). They observed that generated invariant rules can achieve high anomaly
detection performance by demonstrating on two real-world ICS case studies. Their
results outperform commonly used residual error-based anomaly detection models.
Another advantage of this methodology is that it can be applied to diverse ICS
frameworks as it is dependent only on the general control dynamics of ICS. The
approach followed in the present work is slightly different and includes the outlier
detection methods using unsupervised learning.

2. Methodology
The testbed under study for the scope of this work is Water Distribution Plant (WADI),
built at the iTrust centre at Singapore University of Technology and Design for cyber
security research (C. M. Ahmed et al., 2017). The entire plant is divided into 3
sub-processes namely process 1 (primary supply and analysis), process 2 (domestic grid
with booster pump) and process 3 (return water system) as shown in Figure 1.

Figure 1: Overview of WADI testbed

The plant was operated for 14 days and the dataset1 is divided into two parts. The initial
12 days correspond to normal operation data, and in the last 2 days, at different time

1 https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
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segments, a variety of 15 attacks were performed on the testbed. The stated attack
detection task is tackled as an anomaly detection problem. Outlier and novelty detection
classification algorithms, such as One-Class SVM, Isolation Forest and Elliptic
Envelope were trained on cleaned and transformed normal operation data. Then, the
trained models were used to predict attacks/anomalies in the remaining 2 days data,
which consists of both attack and normal instances. Then, based on the prediction result
for each model, their hyperparameters are manually adjusted in order to obtain the most
optimum performance. Since the last 2 days data belongs to the category of imbalance
dataset, using only accuracy as the performance indicator is ineffective. Therefore, the
confusion matrix is used for evaluating the models’ performance. The major steps
involved in the present study are as follows: (I) Slicing process variables from the
normal operation data (II) Data preprocessing (III) Implementing Principal Component
Analysis (PCA) for dimensionality reduction. (IV) Modelling the data with all three
methods followed by manual hyperparameter optimization. The above steps were
executed for both process 1 and process 2 respectively.

3. Procedure and Results
3.1. Process 1 (Primary Supply and Analysis)

Process 1 data is sliced from the initial 12 days normal operation dataset. It consists of
19 process variables which include different sort of equipment, such as motorized valve,
level indicator, transfer pumps, physical properties sensors (eg. turbidity, conductivity,
pH, ORP, TRC). Then, this data is cleaned and preprocessed in order to prepare it for
PCA implementation. After performing PCA, 19 variables were reduced to 3 principal
components which explained 99.8 % variance of the original dataset. Similarly, PCA is
applied to the variables of process 1 in the last 2 days data, to obtain 3 principal
components. After implementing PCA, process 1 normal operation dataset is then
trained for each algorithm; i.e., one-class SVM, isolation forest and elliptic envelope.
After training, models were tested with last 2 days data to examine their performance.
The results are shown in Table 1.

Table 1: Performance of different algorithms modelled on Process 1 data and tested on the last 2
days dataset to detect attacks.

One-Class SVM Isolation Forest Elliptic Envelope

Attack Normal Attack Normal Attack Normal

Precision 0.25                     0.97 0.39                     0.96             0.21 0.96

Recall 0.48                     0.91 0.33                     0.97             0.32 0.93

F-1 score        0.33                     0.94 0.36                     0.96             0.26 0.94

It can be observed from Table 1 that the isolation forest performed slightly better than
one-class SVM in terms of F-1 score. However, considering the ability to detect
maximum number of attacks, it is found that one-class SVM detected 11 attacks out of

1261



D. Tiwari et al.

15. Whereas, isolation forest detected 10 attacks out of 15. Figure 2 highlights the
timestamps that are detected as attacks (anomalies) in the last 2 days dataset by the
one-class SVM model discussed in Table 1. The model classifies inlier (normal) as 1
and outlier (anomaly) as -1. As shown in Figure 2, the duration of the last 2 days data
starts at 18:00 on Day 1 and ends at 18:00 on Day 3. Similar kinds of plots were
obtained for isolation forest and elliptic envelope algorithms.

Figure 2: Predicting attacks in the last 2 days data using one-class SVM trained on process 1.

3.2. Process 2 (Domestic Grid with Booster Pump)

Process 2 is the largest among all the 3 processes. Initially, when sliced from the 12
days normal operation dataset, it consists of 86 variables. After removal of some
redundant features, a total of 75 variables were extracted followed by the PCA
transformation step. After performing PCA, these 75 variables were reduced to 7
principal components which explained 95 % variance of the original dataset. Similarly,
PCA is applied to the variables of process 2 in the last 2 days data, to obtain 7 principal
components. After implementing PCA, process 1 normal operation dataset is then
trained for each algorithm; i.e., one-class SVM, isolation forest and elliptic envelope.
After training, models were tested with last 2 days data to examine their performance.
The results are shown in Table 2 which indicates that one-class SVM performed better
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in detecting attacks as compared to isolation forest and elliptic envelope. In fact,
one-class SVM detected 14 attacks out of 15 when modelled on process 2.

Table 2: Performance of different algorithms modelled on Process 2 data and tested on the last 2
days dataset to detect attacks.

One-Class SVM Isolation Forest Elliptic Envelope

Attack Normal Attack Normal Attack Normal

Precision 0.32                     0.97 0.34                     0.96             0.07 0.94

Recall 0.48                     0.94 0.26                     0.97             0.13 0.89

F-1 score        0.38                     0.95 0.30                     0.96             0.09 0.91

Figure 3 highlights the timestamps that are detected as attacks (anomalies) in the last 2
days dataset by the one-class SVM model discussed in Table 2.

Figure 3: Predicting attacks in the last 2 days data using one-class SVM trained on process 2.
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4. Conclusion
This work explored the possibility of using unsupervised machine learning anomaly
detection algorithms for cyber attack detection in cyber-physical systems. The task is
considered as an anomaly detection problem, where each attack instance is expected to
be classified as an anomaly. Three anomaly detection techniques; i.e., one-class SVM,
isolation forest and elliptic envelope were taken into consideration for the scope of this
work. Modelling of all the 3 algorithms was carried out on both process 1 and process 2
of the Water Distribution Plant (WADI); i.e., a total of 6 models were trained. Based on
the distribution of training data used in this work, it is found that one-class SVM
performed reasonably well for detecting attacks in both the processes. However, few
challenges that hold the possibility of further improvements are: (I) Reducing the
number of false alarms that are generated by the models (II) Reducing the time delay in
identification of attacks. It would be interesting to address these issues in the future
work.
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Abstract 
The optimal operation of heat exchanger networks are important for increasing energy 
efficiency and reducing the environmental impact. In this paper control method called 
self-optimizing control is analysed and applied to a network with stream splits in a real 
refinery environment. By using only the temperature measurements, new control 
variables are defined. Optimization is done by manipulating the split ratios in the network. 
The optimal operation is defined by the economics of the process, which is maximizing 
the exit temperature of the exchanger network. Optimal control of the exchanger 
networks, whose operational purpose is to maximize the total heat transfer, are achieved 
by determining the amount of flow to be distributed to the individual branches at all times. 
Results showed that this method achieves an important increase in network exit 
temperature, which means a decrease in energy consumption compared to traditional 
strategy used in the refinery. 

Keywords: optimization, self-optimizing control, heat exchanger networks 

1. Introduction 
Heat Exchanger Networks (HENs) are often used in refinery processes to recover as much 
thermal energy as possible from hot streams using thermal integration methods before 
sending the hot product or intermediate to the tank or to the next process (Biyanto et al., 
2016).  

The first main stage of oil refining is the distillation process. A pretreatment step is 
required for the distillation process before the crude oil stream is fed to the distillation 
column; preheating of crude oil to around 380 °C. For this purpose, about 60-70% of the 
required thermal energy is supplied by a network of heat exchangers called the crude 
preheat train (CPT) (Assis et al., 2013). The remainder of the thermal energy is provided 
by furnaces. It is important to gain as much as thermal energy from CPT units to decrease 
the need for energy supplied from furnaces, which uses external energy sources and 
increases the energy consumption of the refinery.  

In CPTs, cold flow is divided into two or more branches and heated with different hot 
streams in different heat exchangers. The ideal operation is to maximize the total heat 
transfer or, in other words, to reach the highest cold flow temperature at the junction point 
at all times. This optimization goal is tried to be accomplished by adjusting the split ratio 
of the cold streams into the branches of the network. In literature, real-time optimization 
(RTO) approach is well studied, where the potential savings are very high but 
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computational needs are also very complicated. Other approach for optimization of CPTs 
is a practical method used in the refinery as current strategy, which is adjusting the split 
ratio by equalizing each cold stream’s outlet temperature (Lid and Skogestad, 2001). 
Although this method has no computational need, it can easily diverge from optimal 
operation point. 

Another method is called self-optimizing control (SOC), where, a cost function is 
continuously optimized to update the set points of the control variables to study the 
optimal solution. The control variable defined with its self-optimizing control concept 
aims to keep the process at an economically optimum level. The newly designed control 
variables are translated into the design of a simple control structure that keeps the process 
at high efficiency levels despite the changing conditions. This simplification in the control 
structure can result in suboptimal levels, but in most cases the benefits of a simple 
program outweigh the increased 'goodness' of complex models due to the high costs of 
implementation and maintenance. The control variables defined for CPT in self-
optimizing control is called “Jäschke temperature” in the literature. For each stream, 
Jäschke temperature is calculated, where the objective for optimum operation is to 
equalize these control variables in each stream (Jäschke et al., 2017). 

This study aims to optimize the heat exchanger networks of CPTs by maximizing the final 
CPT outlet temperature to reduce furnace fuel consumption and carbon emissions by 
using self-optimizing control system for flow distribution in a real refinery environment 
and comparing the results with current strategy used in the process.  

2. Theory 
The theoretical background for self-optimizing control of heat exchanger networks are 
well defined in the literature (Jäschke and Skogestad, 2014a). Optimization is done by 
assuming arithmetic mean temperature difference. This assumption causes little 
divergence from the real optimum but it is an acceptable loss compared to computational 
work needed. The objective function is defined to be the economically best scenario, 
which is the maximum outlet temperature in the network exit. The manipulated variable 
for the network optimization that maximizes the total heat transfer is the split ratio. The 
self-optimization control variable called Jäschke temperature is calculated for achieving 
this goal for each branch of the network as described in the literature (Jäschke and 
Skogestad, 2014b). The computation is well-defined and highly adaptable to different 
kinds of network configurations. For the calculations, only temperature values are used 
and other variables such as flow rates of the streams, heat transfer properties, or any other 
information regarding the process is not needed. The optimal controlled variable is also 
defined in the literature to be equal values of Jäschke temperatures in all branches. 
Jäschke temperatures can be regarded as the representation of the available potential for 
heat transfer. In example, a branch with zero Jäschke temperature stem from equal 
temperatures in cold stream outlet temperature and hot stream inlet temperature. In this 
case, increasing the cold stream flow rate would not result with an increase in heat transfer 
rate. Therefore, it can be said that all the potential in that branch is already utilized. In a 
network with two or more branches, for optimum operation, streams should be adjusted 
to increase the flow on the branch with higher Jäschke temperature. By doing that the 
potential of that stream would be utilized more, and corresponding Jäschke temperature 
will decrease. Keeping Jäschke temperature difference between branches at zero is the 
defined condition for optimal operation. The varying operating conditions and 
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disturbances, such as the change oil characteristics, fouling in heat exchangers, or the 
changes in stream flow rates and temperatures, are not needed to be monitored in terms 
of optimal operation, as the defined optimal control condition is valid in all cases (Girei 
et al., 2014).  
 

3. Case Study 
The study of self-optimizing control of HEX networks is performed in a vacuum 
distillation unit in Tüpraş İzmit refinery. The mathematical equations for the calculation 
of self-optimizing control variable are well defined in the literature and given in related 
papers (Jäschke and Skogestad, 2014a). The adaptation of the standardized calculations 
in the literature is carried out for the selected CPT unit by evaluating the network 
configuration. In Fig. 1, the network configuration of the studied CPT unit is given. The 
network consists of two branches with different hot stream passing through from each 
branch. The number and the type of the heat exchangers are different in each branch as 
well as the hot stream characteristics. Only temperature values are needed for the 
calculation of self-optimizing variables for each branch, and as shown in the Fig 1, the 
boxed variables are the ones used in the calculations. 

 

 
Figure 1: The heat exchanger network studied for self-optimizing control 

 
The Jäschke temperatures for each branch is calculated. As defined in the literature 
equalizing these control variables in each branch results in optimum operation. 

Before the implementation of this method into real operation, the historical data is 
collected and examined. In steady operational conditions, Jäschke temperature difference 
between branches must directly effects the exit temperature of the network stream as 
stated. To identify this behaviour, the historical data of the selected heat exchanger 
network is filtered by selecting a subset where the operational variables can be regarded 
as constant. The analysis of Jäschke temperature differences versus exit temperature of 
the network stream describes a negative correlation between those two as shown in Figure 
2. The straight line in the figure shows the linear relationship between Jäschke difference 
between branches with exit temperature. Although the relationship is not a linear 
relationship as discussed in the literature, it is used as it is for illustration purposes, which 
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is a fair approximation locally.  As backed up with the literature, it is also apparent in the 
historical data that minimizing the Jäschke temperature difference between branches 
positively effects the exit temperature. 

 

Figure 2: Jäschke temperature difference between branches versus exit temperature of the network 
stream 

4. Results 
To understand the effect of self-optimizing control variables in the exit temperature of 
the network stream in real time, a test run is constructed. Two scenarios are tested, while 
the operational variables are kept constant. The duration of the scenarios were selected to 
be twelve hours where the starting hours are same for eliminating the effect of day and 
night temperature differences. Two scenarios were tested in real operation by only 
manipulating the control variables defined by self-optimizing control by keeping the 
Jäschke temperature difference between branches at 2 and 10 as shown in Figure 3. This 
values of Jäschke temperature difference between branches are selected to approximately 
compare the best use case of self-optimizing control with current strategy. The results 
showed that, in the region of testing, an 8 °C decrease in the differences in Jäschke 
temperatures, resulted in 3.6 °C  increase in exit temperature of the network stream and 
by considering the downstream furnace operation; a 0.2 decrease in energy intensity index 
(EII).  
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Figure 3: Test run results, Jäschke difference between branches and corresponding exit 
temperature over time 

 

As shown in Figure 4, the average value of the Jäschke temperature difference between 
branches in the heat exchanger unit in current strategy is 3.7 °C. After verification of the 
effect of self-optimizing control method in test run, the method is integrated into DCS 
screens (open loop implementation). The manipulation of the stream splits are done 
manually by the operators by controlling the Jäschke temperature difference between 
branches. By this manual operation, the average Jäschke temperature difference between 
branches is decreased into 1.9 °C. However, because of the need for constant action to 
manipulate the stream splits stemming from operational changes, an optimal operation 
did not sustained. For automation purposes, implementation into Automatic Performance 
Control (APC) system is done (closed loop implementation). As shown in Figure 4, 
Jäschke temperature difference between branches is decreased into 0.5 °C by automation 
of the self-optimizing control method.   

Heat exchanger networks in operational environment is prone to the changes in the system 
variables. Hence, test runs are particularly important for exploring the relation between 
control variable and exit temperature, where all the variables are kept almost constant. 
After the construction of test runs, the results are linearly interpolated and, it is found that 
open loop implementation resulted in 0.8 °C increase in exit temperature of the network 
stream and 0.045 decrease in EII, and closed loop implementation resulted in 1.4 °C 
increase in exit temperature of the network stream and 0.08 decrease in EII. 
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Figure 4: Absolute Jäschke difference over time 

5. Conclusions 
Self-optimizing control method for heat exchanger networks is well defined in the 
literature. Previous works in the literature also proved the usefulness of the method by 
simulations. This paper focused on real use case of the method and results showed that 
compared to past strategy used for maximizing the exit temperature of the network, self-
optimizing control resulted in more optimized solution in real refinery environment. The 
economic and environmental effects are investigated, although a major assumption of 
linear interpolation is done for estimating the effects from the test run results. Because of 
the simplicity of the method compared to RTO methods, the implementation and the 
maintenance of the self-optimizing control method is done relatively easily without any 
need for investment. However there are also limitations that may prevent the optimal 
operation stemming from the operational safety limits, minimum and maximum flows 
permitted for each branch and, maximum allowable level of pressure drop in the heat 
exchanger network.  
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Abstract 
In this contribution, we studied the deep neural network (DNN) for the control of the 
cooling crystallization of a model compound system. To this end, firstly the performance 
of the different neural network architectures in conjunction with the various combination 
of the time-series process data was tested for the training of the data-based model in order 
to assess the best fit model-training data architecture. The identified network model, 
which was trained with the offline process data, was utilized in a predictive control 
strategy. The objective of the control strategy was to optimize the supersaturation 
generating/decaying variable in the crystallizer to achieve a target crystal-state property 
profile throughout the process. The performance of the proposed control strategy was 
tested in the presence of the process disturbance and benchmarked against a radial basis 
function (RBF) based control strategy. The results showed that the DNN model was able 
to approximate the crystallization process input-output relation with R2 ranging between 
0.767 and 0.990 and achieve the target profile at the end of the operation with a 22.3 % 
offset. 
 
Keywords: crystallization, data-based models, control, neural networks. 

1. Introduction 
In pharmaceutical manufacturing, crystallization is an essential unit in the downstream 
processing to recover and purify high-purity active pharmaceutical ingredients (API) and 
fine chemicals. The design,  operation and control of a  pharmaceutical crystallization 
process is a great challenge due to the highly nonlinear and multivariable nature of the 
crystallization process in conjunction with the strict and versatile requirements of the end-
product. The current industrial practice for the crystallization process design and 
optimization relies on the quality-by-design framework based on the factorial design of 
the resource-intensive open-loop crystallization experiments (Szilagyi et al., 2020). 
Despite the significant progress in academia in the area of model-based (based on high 
fidelity population balance equations) and model-free (e.g. direct nucleation control, 
supersaturation control) techniques for the control of the crystallization process, 
establishing control over the crystallization process is still an issue in pharmaceutical 
manufacturing that can be reasoned due to strict dichotomy of the developed control 
strategies (Griffin et al., 2016).   A  third category,  which is different from model-based 
and model-free techniques, can be attributed to the data-driven (based on process data) 
control strategies. The main advantage of the data-driven approaches is their ability to 
learn from the provided multidimensional process data with high accuracy. Accordingly, 
they became very useful and quickly applicable particularly for the optimization and 
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control of the complex processes that are troublesome, and have nonlinear and stochastic 
characteristics (Qin and Chiang, 2019; Venkatasubramanian, 2019) such as the 
crystallization process.  A review of literature studies focusing on the data-driven control 
applied to the crystallization process can be found elsewhere (Öner et al., 2020a).  
Although the development of efficient training algorithms, availability of more powerful 
computers, easy-to-use software, and access to the online crystallization process data 
through the process analytical (PAT) tools enable overcoming of past challenges that 
hindered the expanding application of the data-driven strategies, the number of the studies 
focusing on the crystallization process is still limited.  Therefore, in this contribution, we 
studied a data-driven control strategy based on the deep neural network (DNN) for a 
pharmaceutical crystallization process. The feasibility of the different neural network 
structures (models, training data) was explored, and the control performance was tested 
and benchmarked in the presence of the process disturbance.   

2. Methods 
2.1. Crystallization modeling 
A mechanistic model incorporating population, mass, and energy balance equations for 
the crystallization process was developed in our previous work (Öner et al., 2020b). This 
model was employed firstly to generate data to be used to develop/train neural network 
models for the crystallization process and secondly to mimic a physical crystallization 
process under the data-based feedback control. As a case study, a seeded cooling 
crystallization (from 40 oC down to 20 oC) of paracetamol in ethanol solvent (400 mL) 
was demonstrated. The kinetic parameters of paracetamol crystallization were adopted 
from the literature. A total of 20 batches of data was generated by varying the process 
parameters of initial relative supersaturation (1.0 – 1.2), seed crystal size distribution 
(mean (90 – 250 µm) and standard deviation (5 – 10 µm) and shear rate created by the 
impeller in terms of secondary nucleation parameters (coefficient (50 % of the reported 
value) and exponent (5 % of the reported value)) based on the Latin Hypercube Sampling 
strategy from parameter space similar to the workflow described in our previous study 
(Öner et al., 2020a). The remaining process parameters were kept constant between the 
batches.   
2.2. Deep neural network: structure, training and validation for process modeling 
As one of the machine learning techniques, neural networks are structured in terms of 
processing units of input, hidden and output layers to resemble the human nervous system 
and the structure of the brain, by which they were inspired. Each layer contains nodes or 
units, which have connections to the other nodes and layer in adjacent layers with a weight 
value. Weighted summation of the inputs at each unit undergoes a transformation based 
on an activation function that is then fed to the respective unit in the next layer. 
Consequently, the outcome of the final output layer yields the solution for the problem 
(Shrestha and Mahmood, 2019). Various algorithms of the deep neural networks have 
been developed and used with varying purposes such as long short-term memory for 
forecasting models, convolutional neural networks in computer vision and image 
recognition, and recurrent neural networks for time series problems and forecasting 
(Hwangbo and Sin, 2020; Shrestha and Mahmood, 2019). In this study, the aim is to 
design a deep neural network model based on the ground of supervised learning for the 
crystallization process using the process data generated from the crystallization 
mechanistic model simulations. For this purpose, a general deep learning algorithm is 
adopted following the previously published framework (Hwangbo and Sin, 2020). To this 
end, a list of deep neural network model candidates are generated by manipulating the 
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hyperparameters in the structure of the deep neural network. The explored 
hyperparameters are the number of hidden layers and hidden neurons. A key step in the 
deep network architecture is to solve a regression problem embodying activation 
functions, connections and a loss function (Hwangbo and Sin, 2020). In this network 
architecture, the connections between the neurons in a hidden layer (h), weights and bias 
are linear as shown in Eq. (1). W[h] is a weight matrix and b[h] is a bias matrix having the 
shape of (n[h], n[h-1] ) and (n[h], 1), respectively. The number of hidden neurons is 
represented by n[h] (1 ≤  h < H) where n[0] and n[H] are equal to the numbers of input and 
target (output) variables. A[h] is the activation matrix (Eq. (2)) having a shape of (n[h], 1), 
where A[0] represents the input matrix [x1, x2, . . . ]T and A[H] contains one single value 
from the output layer. The activation function is indicated by g(z). A commonly used 
function, which is the hyperbolic tangent sigmoid function, is used as the activation 
function in both hidden layers and the output layer (Lau and Lim, 2017; Hwangbo and 
Sin, 2020). As the loss function, mean squared error difference (MSE) between the target 
value and the estimated value from the neural network comprising all training data is used 
(Wang et al., 2016): 
 
          𝑍[ ] =  𝑊[ ]𝐴[ ] + 𝑏[ ]     (1 ≤ h ≤ H)                                                              (1)       
 
          𝐴[ ] = 𝑔 𝑍[ ]      (1 ≤ h ≤ H),     𝑔(𝑧) =   − 1                                          (2) 
                                       
The machine learning toolbox in Matlab 2018b was used for the training of the DNN. The 
process variables such as processing time (t), bulk temperature in the crystallizer (Tb), 
solute concentration (C) and relative supersaturation (SS) were regarded as inputs, while 
the sum of square weighted crystal counts, mean crystal size and yield were used as the 
outputs. The choice of the parameters can be attributed to the fact that the main driving 
force for the crystallization process is the difference between the solute concentration and 
the saturation concentration (simplification of the chemical potential) that is often defined 
as supersaturation, and it is created by the manipulation of the temperature in a cooling 
crystallization process. On the other hand, crystal size distribution related measures (e.g. 
mean crystal size) and yield are some of the parameters that are commonly regarded as 
the critical product quality attributes or key process performance indicators. Therefore, a 
total of 165 different combinations (11 model structure, 5 input data structure, 3 output 
data structure) were tested (Table 1). A simple min-max data normalization was applied 
to both input and output data so that the data take the value between 0 and 1. To support 
the model selection criteria, two estimators of information criterion have been consulted. 
These criteria are the Akaike information criterion (AIC) and Bayesian information 
criterion (BIC). These information criteria are calculated from the sum of squared of 
errors (SSE) between the target value and the details can be found elsewhere (Hwangbo 
and Sin, 2020). The optimal model candidate is identified by the minimum AIC and BIC 
values. 
2.2.1. Crystallization control 
The ultimate goal of the crystallization process operation is to have a robust strategy that 
achieves a desired (or a reference) profile of a solid-state attribute in the presence or 
absence of any process disturbances.  To achieve this goal, the  particular control strategy 
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Table 1: DNN architecture candidates based on model, input and output structures. 
 

Model Network structure Input Output 
1 [4 2] [t Tb] ∑ 𝑁𝐿  (Sum of square weighted counts) 
2 [8 4]   
3 [16 4] [Tb C] ∑∑  (Mean crystal size) 
4 [32 4]  
5 [16 4 4] [t Tb C]  
6 [32 8 4] (@ ) (Yield) 
7 [16 8 4 4] [Tb SS] 
8 [32 16 4 4]   
9 [32 16 8 4] [t Tb SS]
10 [16 16 8 4 4]   
11 [32 16 8 4 4]   

 
utilizes the DNN model trained offline in a predictive control to optimize the cooling 
water (jacket) temperature setpoint for a specific time horizon in near future. The 
optimization of the temperature setpoint was realized using fmincon function in Matlab 
2018b with respect to a cost function (minimization of the square of the normalized 
difference between the reference state and the DNN-predicted state) under imposed 
constraints (temperature and heating/cooling rate). The control strategy implemented in 
this study follows the same strategy published in our previous work (Öner et al., 2020a), 
where a radial basis network (RBF) model was used as a data-driven model trained with 
a very limited process data (up to 2 batches). The main difference between the DNN based 
strategy compared to RBF based strategy was i) the usage of a higher number of batch 
data and ii) training of the data-driven model offline. Considering these differences, the 
DNN based control was benchmarked against the RBF based control as well. 

3. Results and Discussion 
3.1. Deep neural network model for the crystallization process 
As mentioned previously, 5 input data and 3 output data structures in conjunction with 11 
neural network model structures were evaluated with respect to the best performance of 
the deep neural network. The datasets from 20 crystallization batches (shown in Figure 
1) consisting of approximately 42000 data points were fed into all these neural network 
models to train and evaluate the performance. The ratio between training/validation/test 
data was 0.8/0.1/0.1. Levenberg-Marquardt back-propagation was used as the network 
training function with respect to the objective function of MSE. The maximum number 
of validation failure and number of epochs to train were 10 and 10,000, respectively. The 
training of the DNN on a computer with an Intel Core i5-6200U 2.30 GHz processor took 
between 30 minutes and 12 hours.  The optimum combination was found considering the 
minimum information criteria (AIC and BIC). In the cases, in which AIC and BIC criteria 
showed different neural network structures, an additional criterion of the coefficient of 
determination (R2) was also considered to discriminate the best fit. The obtained results 
can be seen in Table 2. For the outputs of the sum of the square weighted crystal counts 
(output 1) and mean crystal size (output 2), the same input data type [t Tb SS] yielded the 
best fit incorporated in the structure of the neural network Model 9 and Model 11, 
respectively. For the output of yield (output 3), in the discriminated structure of Model 9, 
the replacement of supersaturation  data with  the concentration data in the input showed  
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Figure 1: The process output data of 20 crystallization batches.  
 
 

Table 2: Selected DNN structures based on the information criteria. 

Output Input Best structure R2Training  R2Test  
Sum of sqr. wt. counts  [t Tb SS] [32 16 8 4] 0.960-0.981 0.956-0.990 
Mean crystal size [t Tb SS] [32 16 8 4 4] 0.675-0.853 0.653-0.864 
Yield [t Tb C] [32 16 8 4] 0.874-0.952 0.921-0.951 

 
 
the best fit. This can be rationalized with the direct relation between concentration and 
yield terms. 
3.2. Crystallization control  
The DNN based control was studied in comparison with the RBF based control in the 
presence of the process disturbance on the initial supersaturation. During the first 90 
minutes, both data-based controls were inactivate, while a pre-defined temperature profile 
was applied to the system. Corresponding data was collected during this period. After this 
data collection period, the data-based controls were activated, and they took the control 
of the crystallization operation, run the system autonomously and taking decisions of 
heating or cooling the system to achieve the target solid-state profile. Compared to the 
RBF based control (final offset was 2.4 %), the DNN based control behaved more 
conservatively and achieved the final target profile with an offset up to 22.3 %. The 
manipulated variable set points predicted by the RBF based control could eliminate the 
disturbance-sourced offsets better in the earlier stages of the operation and consequently 
could follow smoothly the target profile. While these initial results showed DNN 
approach does not have a superior performance against RBF based data-driven approach, 
which employs a simpler network configuration, future work will examine the ability of 
DNN to extract patterns from heterogeneous sources of data including image analysis. 

4. Conclusions 
The results of this study demonstrated the feasibility of the data-driven models substituted 
for the knowledge-driven models for the crystallization process. The regarded 
performance metrics made evident that the DNN performs quite well with high prediction 
quality even though training data was still limited to 20 batches in contrast to the common 
applications involving the big data. However, system-dependent studies are still required 
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to discriminate the best network architecture for the specific input/output information and 
a generalization is not possible. With respect to control, the utilization of the DNN as a 
predictive model in a control strategy performed acceptably compared to RBF based 
control. As a future work, further comprehensive analyses will be performed to assess 
and improve the performance of the DNN based control. It can be concluded that the data 
driven control has a great potential due to its quick and simple implementation compared 
to time, effort and knowledge needed for developing a knowledge-driven model-based 
optimization and control for the highly nonlinear and stochastic crystallization process. 
 

 
 
Figure 2: The performance of the DNN and RBF based predictive controls in the presence 
of positive disturbance on the initial supersaturation. 
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Abstract
Renewable energy is a promising candidate as a green and sustainable energy source.
Nevertheless, it is also well known for its dynamic and unpredictable nature. These
characteristics make it difficult to decide whether to choose it as an energy source or
not. On the other hand, ample renewable energy availability creates insecurity when it
comes to storing this energy. A battery can be a short-term energy storage viability.
However, in the long run, hydrogen is considered a promising candidate. In this study,
standalone solar powered 4.5 MW alkaline water electrolyzer (AWE) operation is
optimized for one-year predicted solar data via a dynamic optimization approach. The
purpose of optimization was to find (1) optimal power split fraction for the battery and
electrolyzer and (2) discharge power value when subjected to a predicted solar profile.
These optimal points later will be used to run the model on actual weather data to
analyze the possibility of future operation and control action plan for enhanced plant
performance. The optimization results show a 24.6 % increase in annual hydrogen
production with a 39.14% reduction of startups compared to the base case. Conversely,

the optimal values of and at 0.9784 and 111 kW, respectively, ensured 26.53%
reduction in startups for the actual profile too in comparison to the base case, and with a
3.45% reduction in annual hydrogen production (kg) than the optimized case for the
predicted solar profile. This study will serve as a supporting tool for future investors to
analyze renewable hydrogen’s operational and economic potential in any region by just
inputting solar-generated power profile.

Keywords: Electrolyzer, dynamic operation, optimization, solar, hydrogen production.

Nomenclature

PV Photovoltaic Total hydrogen (kg)

AWE Alkaline water electrolyzer Power to AWE

BESS Battery energy storage system Power to BESS
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SAM System advisor model Power from BESS

SOC State of charge (%) Power for sale

Hydrogen produced (kg/hr) Minimum and maximum
charging power

Efficiency of electrolyzer (%) Minimum and maximum
discharging power

Power to AWE Minimum and maximum state of
charge

Lower heating value of H2
Charging and discharging
efficiencies

1. Introduction
Sooner or later, fossil fuels will run out, but their impact on our environment would take
years to recover. Currently, the threshold for atmospheric CO2 levels is at 415.26 ppm,
which is the highest recorded up to date and has not been witnessed in millions of years
(Moreno-Benito et al., 2016; Hannah Ritchie and Max Roser, 2020). The increase in
greenhouse emissions has created an urge to implement renewable energy as an
alternative to fossil fuels, but renewable energy's unpredictability is still persistent. This
behavior makes renewable energy a less reliable resource when it comes to a continuous
production system. However, storing renewable energy in batteries is a viable option but
not the optimal one. For long-term storage, renewable hydrogen is considered the most
viable means of achieving long-term energy storage at a lower cost and greater
volumetric energy density than other fuels (Hirscher et al., 2020).

The principal method for converting renewable energy into hydrogen is through an
electrolyzer. Among electrolyzer types, the alkaline water electrolyzer (AWE) is the
most common and commercially accepted technology for hydrogen production (Brauns
and Turek, 2020). However, a hydrogen production system will not be efficient if
operated with an interrupted energy supply. With a proper set of controls and energy
backup such as BESS, renewable energy fluctuations can be mitigated effectively
(Kwon et al., 2016; Pascuzzi et al., 2016). Ulleberg presented a dynamic model of a
PV-hydrogen with a battery and grid support in Germany (Ulleberg, 2003). The
possibility of combining two or more renewable energy sources such as solar, wind, and
hydropower to produce hydrogen has also been studied (Hoste et al., 2020). For a
smooth operation, there should be a minimum interruption in power supplied to
electrolyzers. To overcome that, a battery energy storage system (BESS) plays a
prominent role in providing power at times with no solar-based energy or during power
outages to operate the AWE at a minimum operational capacity (Eichman et al., 2014).

Therefore in this study, a 4.5 MW AWE dynamic operation for one year is optimized
based on a predicted solar forecast for possible future operation based on the optimal
split value of power to the AWE and BESS for hydrogen production and BESS
charging, respectively. Also, an optimal discharge power value from BESS to AWE is
selected for safe BESS operation. When subjected to the actual solar data-based
operation, these optimized split fractions and discharge power values resulted in a
continuous hydrogen production with no shutdowns, however a bit lower hydrogen
production. Results suggested a substantial insight into operation planning and control
for enhanced performance and optimal operation via optimizing predicted solar-based
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operation for actual operation. This study will guide as a supporting tool in estimating
the power distribution to the AWE and BESS based on the solar potential for any
region.

2. Method
The solar irradiation data for the year 2018, both predicted, and actual weather of
Incheon Korea was obtained from the System Advisor Model (SAM) (Ezeanya et al.,
2018). SAM was used to simulate the power profile of a 6.5 MW PV system. The solar
power production model by SAM takes the following assumptions:

a) Solar PV modules are operated in a shadow-free environment.

b) The PV system is standalone with no connection to the grid.

The general equations representing the dynamic operation of AWE and moles of

hydrogen generated ( ) can be represented, as shown in Eq. (1).

(1)

Where is the efficiency of electrolyzer (68%), the power to the electrolyzer,

and is lower heating value of hydrogen. The amount of hydrogen being stored (

) can be represented, as shown in Eq. (2), where is equal to 8760 hrs.

(2)

To ensure a safe operation, some constraints must be considered for BESS operation and
are enlisted below in Eq. (3) – (6):

I. (3)

II. (4)

III. (5)

IV. (6)

is the power to BESS, is the maximum charging power for BESS, is the

power discharged from the BESS, is the minimum discharge power from the

BESS to ensure hydrogen production during the night at lowest possible power. is

for future operation using a predicted solar forecast
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the maximum discharge power from the BESS, is the state of charge of the

BESS, and represent the minimum and maximum level

respectively. In this study, are 30% and 100%, respectively. Overall

can be represented, as shown in Eq.(7).

(7)

Where are the charging and discharging efficiencies. Charging and discharging
efficiencies consider 5% loss.

The data used for modeling the electrolyzer and values of the model's parameters are
taken from (Ulleberg, 2003; Mayyas and Mann, 2018). gPROMS platform was used to
model the dynamic equations for the alkaline water electrolyzer. An illustration for the

overall model can be seen in Figure 1. represents the solar power, represent

the split fractions for the power to AWE ( ) and power to BESS (

). represents the surplus power when neither the AWE and neither the
BESS needs power, i.e., either the BESS is fully charged, or the AWE is already

operating at maximum load. is used as a product and is assumed to be sold to

neighboring industries. represents the total power and is the sum of .

Solar power ( ) is split into two fractions ( ) and ( ), as shown in Figure 1.

These fractions are set at different ratios. In this model, ( ) is 0.7, then ( ) will be

0.3, provided their sum always counts to 1.0. is the power split going to the

electrolyzer, and is the power split going to the BESS for charging the batteries. In

general, during day time (06:00 AM to 06:00 PM), power ( ) is primarily the power
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coming from . However, during the initial morning hours, due to lesser solar energy
production, the BESS supports maintaining a smooth power profile for the AWE until it

is greater than the discharge power ( ). Two data sets are considered in this study for

, one is based on the predicted solar data, and the second one comprises the actual
weather data, both for the year 2018. Firstly the base model with predicted solar data set

was run with as 0.7, as 0.3, and as 700. Secondly, for Case 1(Optimized

model), the base model was optimized to get the optimal values for , , and .
Thirdly for Case 3 (Base model with actual solar data), was run with optimal values
evaluated in Case 2. The objective of the optimization was to maximize the hydrogen

production, keeping the within the operational constraints i.e.

. The optimization formulation is shown below with the
constraints mentioned in Eq. (8) – (11):

s.t.

(8)

(9)

(10)

(11)

3. Results

As shown in Figure 1, the base model was run with as 0.7, as 0.3, and as

700. The value was kept higher to maximize BESS's utilization during night hours.
The cumulative hydrogen produced for Base Case, Case 1, and Case 2 can be seen in
Figure 2. Each graph in Figure 2 on the top right corner shows a greater resolution of

Dynamic optimization of a stand-alone alkaline water electrolyzer
for future operation using a predicted solar forecast
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time from 70 to 100 h to better understand the main graph. Figure 2 shows that the Base
case had the lowest hydrogen produced among all the discussed cases with 157,280 kg.
Whereas the optimized case i.e., Case 1, had the highest production of 196,024 kg.
Throughout the year, Base case faced a total of 3683 startups due to the lack of solar or
not having enough power in the BESS to support the AWE operation. These startups
were reduced by 39.14% for Case 1 (optimized case). Results show that an optimized
operation not only produced higher production but also reduced the number of startups.
Optimized decision variables from Case 1 were then given as an input for Case 2. Case
2 was powered by an actual solar profile to analyze the possibility of operation based on
optimized operation for a predicted solar forecast. Hydrogen produced for Case 2 was
20.34% higher than the Base case. Furthermore, a reduction of 26.53 % in the startups
throughout the year were reported. Results demonstrate that there is a possibility to
pre-plan a year ahead of operations and manage any unforeseen situations to enable the
plant's maximum potential based on predicted solar data and available resources.
Furthermore, a year ahead of planning can help in monitoring the annual performance of
the system. However, if this time is reduced from a year ahead to a week ahead of
planning, the results would be different and may even result in improved control and
performance. Currently, the model operates on time-invariant values. However, a huge
potential lies if the model is operated with control variables that are optimized every
hour based on the plant's current state and available renewable energy.

4. Conclusion
In this study, a 4.5 MW AWE dynamic operation was analysed for a year operation. The
model was tested on a predicted solar profile for the upcoming year. Later the model
was optimized to find optimal values for the control variables to ensure maximum
production while observing model constraints. Later, those optimal values were used to
run the model with the actual weather data to see if there is a possibility to plan a year
before for plant operation. Results demonstrated that planning based on the predicted
solar data and optimized control variables could help in better plant operation and plan
for any unforeseen situation in the future operation, keeping in mind the unpredictable
nature of renewable energy. Furthermore, in future work, the control variables will be
optimized for piecewise control, i.e., for each interval, an optimal control variable value
will be found to ensure a more robust control and reliable plan for future operation
based on the predicted solar profile.
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Abstract 
Renewable energy sources are sustainable, cost-effective, and environment-friendly 
alternatives for fossil fuels. However, renewable energy's intermittency and storage 
remain a challenge, leading researchers to study hybrid energy systems. In general, 
batteries can be considered as a short-time energy storage option. For sustainable and 
long term energy storage, hydrogen can be a suitable candidate. Among hydrogen 
production pathways, water electrolysis is considered a sustainable and widely accepted 
energy conversion route when powered by a hybrid renewable energy source (i.e., solar 
and wind energy). However, essential improvements are required for renewable hydrogen 
to be competitive enough with fossil fuels derived hydrogen energy. In this work, a mixed 
integer dynamic optimization (MIDO) approach is presented. The problem's objective is 
to minimize the Levelized cost of hydrogen (LCOH) ($/kg) by determining the optimal 
size for a battery energy storage system (BESS). The hybrid system is connected with a 
BESS to ensure the electrolyzer's operation with no support from the grid electricity. The 
model is simulated over one year based on an actual solar and wind profile to include 
seasonal variation and its performance effect. With the inclusion of economic studies, a 
mixed integer dynamic optimization problem is constructed and presented a LCOH of 
10.33 $/kg and BESS capacity of 6575 kW. This study can be extended into simulation-
based design tools for estimating the optimal size and approximate cost estimates for 
stand-alone renewable energy powered electrolyzer for hydrogen production for any 
given location. 

Keywords: Alkaline water electrolyzer, Mixed integer dynamic optimization, hydrogen 
production, levelized cost of hydrogen 

 

Nomenclature 

PV Photovoltaic 
 

Total hydrogen (kg) 

AWE Alkaline water electrolyzer 
 

Power to AWE 

BESS Battery energy storage system 
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SAM System advisor model 
 

Power from BESS 

SOC State of charge (%) 
 

Power for sale 

 
Hydrogen produced (kg/hr) 

 
Minimum and maximum 
charging power 

 
Efficiency of electrolyzer (%) 

 
Minimum and maximum 
discharging power 

 Power to AWE 
 

Minimum and maximum state of 
charge 

 
Lower heating value of H2 

 
Charging and discharging 
efficiencies 

 
Power from solar and wind LCOH Levelized cost of Hydrogen  

1. Introduction 
Fossil fuel extinction is a real threat to the upcoming generations. Their excessive use has 
done enough damage to our environment and will take years to recover from it. A radical 
step must be taken to control the ever-increasing emissions and replace fossil fuels with 
environment-friendly energy, providing renewable energy resources (Tokarska and 
Gillett, 2018). Renewable energy being dynamic creates a void at being a reliable energy 
source. But storing this energy in batteries can be a good remedy. Storing all energy in 
batteries can cost us several million dollars, but storing renewable energy in the form of 
hydrogen can help us overcome this huge capital investment as hydrogen has the 
properties to store the largest energy content among fuels (Nicita et al., 2020).  
electrolyzers are recognized as green hydrogen generators when powered by a renewable 
energy source. The possibility of combining two or more renewable energy sources such 
as solar, wind, and hydropower to produce hydrogen has also been studied (Gökçek and 
Kale, 2018; Hoste et al., 2020). A battery energy storage system (BESS) can play an 
important role in ensuring a consistent energy supply to the electrolyzers. BESS can help 
minimize the power fluctuations by supplying the power when needed and store when 
there is enough renewable generation. In this context, a combination of a commercially 
accepted electrolyzer technology, i.e., alkaline water electrolyzer (AWE), a BESS, and 
solar and wind power for hydrogen generation, will be a perfect and promising candidate.  
 
In this study, a 4.5 MW AWE is powered by a combination of 4.5 MW solar, 2.0 MW 
wind, and a 1.0 MW BESS. The study focuses on solving a mixed integer dynamic 
optimization problem to find the optimal size for a BESS, maximize the hydrogen 
production, and minimize the Levelized cost of hydrogen (LCOH) ($/kg). The model is 
simulated over one year with one hour time interval to accommodate the solar and wind 
generation's seasonal variations. This study's dynamic and economic perspective can help 
evaluate the overall plant costs at minimum capital expenditure (CAPEX) by evaluating 
the optimal size for the BESS. Future work will consider minimizing the operational cost 
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and CAPEX based on the available hydrogen demand and required optimal size for AWE, 
solar, and wind capacity.  

2. Method 
The solar irradiation and wind data for the year 2018 was taken from Phoenix, Arizona, 
USA, was obtained from the System Advisor Model (SAM) (Ezeanya et al., 2018). SAM 
was used to simulate a 4.5 MW PV and Wind system's voltage and power profile. An 
overall block diagram for the solar and wind-powered AWE & BESS system with 
hydrogen storage can be seen in Figure 1.  

The general equations representing the dynamic operation of AWE and moles of 

hydrogen generated ( ) can be represented, as shown in Eq. (1). 

                                  (1) 

Where  is the efficiency of electrolyzer (68%), the power to the electrolyzer, and 

 is lower heating value of hydrogen. The amount of hydrogen being stored (

) can be represented, as shown in Eq. (2), where  is equal to 8760 hrs.  

                          (2) 

To ensure a safe operation, some constraints must be considered for BESS operation and 
are enlisted below in Eq. (3) – (6): 

I.                      (3) 

II.              (4) 

III.              (5) 

IV.             (6) 
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Figure . Solar and Wind Powered 4.5 MW AWE with BESS and hydrogen storage. 
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is the power to BESS, is the maximum charging power for BESS,  is the 

power discharged from the BESS, is the minimum discharge power from the BESS 

to ensure hydrogen production during the night at lowest possible power.  is the 

maximum discharge power from the BESS,  is the state of charge of the BESS, and 

 represent the minimum and maximum level respectively. In this 

study, are 30% and 100%, respectively. Overall  can be 
represented, as shown in Eq.(7). 

          (7) 

Where are the charging and discharging efficiencies. Charging and discharging 
efficiencies consider 5% loss.  

The data used for modeling the electrolyzer and values of the model's parameters are 
taken from (Ulleberg, 2003; Mayyas and Mann, 2018). gPROMS platform was used to 
model the dynamic equations for the alkaline water electrolyzer. An illustration for the 

overall model can be seen in Figure 1. represents the sum of solar and wind power, 

represent the split fractions for the power to AWE ( ) and power to 

BESS ( ). represents the surplus power when neither the AWE and neither 
the BESS needs power, i.e., either the BESS is fully charged, or the AWE is already 

operating at maximum load.  is used as a product and is assumed to be sold to 

neighboring industries. represents the total power and is the sum of .  

Solar and wind power ( ) is split into two fractions ( ) and ( ), as shown in Figure 
1. These fractions are set at different ratios. In this model, ( ) is 0.7, then ( ) will be 

0.3, provided their sum always counts to 1.0. is the power split going to the 

electrolyzer, and  is the power split going to the BESS for charging the batteries. In 
general, during day time (06:00 AM to 06:00 PM), power ( ) is primarily the power 

coming from . However, at times with lesser solar and wind energy production, the 
BESS supports maintaining a smooth power profile for the AWE until it is greater than 

the discharge power ( ).  

Technoeconomic model and the method to calculate the LCOH used in this study were 
similar to the National Renewable Energy Laboratory (NREL) (Short et al., 1995; Dutta 
et al., 2011). Other raw materials (i.e., steam and KOH) consumption per kg of hydrogen 
produced for hydrogen production were estimated using the ones quoted in the NREL 
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(Ivy, 2004). The cost of the Electrolyser is taken from Gim and Yoon (Gim and Yoon, 
2012). The cost of storage and compression equipment was taken from NREL and other 
sources. The plant life was assumed to be 30 years with an IRR of 4.5%. Our study's 
startup time was taken as 0.25 years with a working capital equivalent of 5% of the fixed 
capital investment (FCI). LCOH was calculated using NREL's equation, as shown in Eq.8 
(Short et al., 1995).  

          (8) 

Where  is the total life cycle cost of the plant, is the net present 

value of the other products, i.e., , is the discount rate and is the analysis year, and 
 is the analysis period in years i.e., 30.  

The objective of the optimization was to minimize the  keeping the  within 

the operational constraints i.e. .  can be 
represented as shown in Eq. (9). 

                                 (9) 

Where represents the $/kW cost for the battery. For , SAM was used 
to evaluate the total cost for the BESS (Ezeanya et al., 2018). SAM incorporates the 
number of cells required for a specific size of a battery and can present the $/kW for any 
BESS capacity. The optimization formulation is shown below with the constraints 

mentioned in Eq. (9) – (13), where are continuous values and  is an 
integer value:  

 s.t.  

               (9) 
             (10) 
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Figure . and for a 4.5 MW AWE powered by 4.5 MW solar and 2.0 MW wind power. 
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            (11) 

           (12)  

                (13) 

gPROMS platform was used to solve the problem. Solvers used for dynamic optimization 
was CVP_SS (control vector parameterization), and for MINLP, OAERAP solver was 
employed, which uses an outer approximation (OA) algorithm for the solution of MINLP. 

3. Results 

Figure 2 demonstrates the power ( ) to power the AWE. Followed by the hydrogen 
produced in a year. In Figure 2 the top right corner graph shows a greater time resolution 

for the main power graph. The optimization resulted in a cumulative of 223 tons 
of hydrogen a year. Keeping in mind the other objectives of the optimization was to 

evaluate the operational variables, i.e., and ,  for an optimal operation. Results 

demonstrated and proposed a value of 1 for and 8 kW for . It is assumed that 8 kW 
is the minimum possible power at which the AWE can run. Based on these values, the 
optimal size for the BESS was taken as 6575 kW.  

Apart from operational results, the techno-economic model evaluated the LCOH, 
operational, and the CAPEX for the plant. Results demonstrated that for a 4.5 MW AWE 
powered by 4.5 solar and 2.0 MW wind turbine with a 6575 kW of BESS will have an 
equipment cost of $10.81 MM. Major equipment costs include $3.6 MM for a solar plant, 
$2.83 for AWE, $1.57 MM for BESS and $ 2.8 MM for the wind turbine, and other costs, 
including compression storage and cost for inverters. The project resulted in an LCOH of 
$10.33 /kg.  

4. Conclusion 
In this study, a mixed integer dynamic optimization was performed for a 4.5 MW AWE 
for a year operation using solar and wind power coupled with a BESS.  The objective of 
the optimization was to maximize the hydrogen and minimize the LCOH and CAPEX for 
BESS. Results demonstrated that a dynamic operation and economic optimization could 
overcome and consider the seasonal fluctuations for a renewable energy powered project 
and provide realistic cost estimates. Furthermore, optimal sizing for the BESS can reduce 
the oversizing of the plant and save cost. In future work, this study will be extended into 
a simulation-based design tool for estimating the optimal size and approximate cost 
estimates for stand-alone renewable energy powered electrolyzer for hydrogen 
production for any given location.  
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Abstract 
Online model-based redesign of experiments (OMBRE) methods are advanced methods 
to optimize input controls and sampling times to attain data with the highest information 
for precisely estimating the parameters of a dynamic process model. The way OMBRE 
methods are implemented is to first design a dynamic experiment, but only implement it 
over a fixed time interval, then perform parameter estimation with data collected in that 
interval to update the process model as the process is running and, finally, optimizing the 
experiment repeatedly until the experiment is concluded. In this work, we propose an 
adaptive version of OMBRE (A-OMBRE) where an algorithm determines when to re-
optimize/update the current experiment based on parameter estimation results. The 
proposed method does not require any user input regarding the updating policy, instead it 
uses the real time parametric uncertainty to determine the updating times. The method is 
tested on a simulated case study of fermentation kinetics and is compared with i) a 
conventional offline design; ii) an OMBRE approach with user-defined redesign strategy. 
 
Keywords: model-based redesign of experiments, adaptive design, collocation 

1. Introduction 
Identification of reliable mathematical models for dynamic systems is crucial as dynamic 
simulation mimics the behaviour of real plant and can be used to represent plant’s real 
time operation, control and optimization. In several systems, mathematical models with a 
set of unobservable parameters are constructed from the physical laws governing the 
process and identification of those models needs precise estimation of the model 
parameters. Model-based design of experiments (MBDoE) methods are applied to 
dynamic systems with the purpose of designing a set of experiments yielding the most 
informative process data to be used for the estimation of the process model parameters 
(Franceschini and Macchietto, 2008). In conventional MBDoE methods, the experiment 
design phase, the actual experimental phase and the parameter estimation phase are 
carried out in a strictly sequential manner. This means that information is exploited only 
when the experiment is concluded. In contrast, in online MBDoE methods (Galvanin et 
al., 2009) a dynamic experiment is initially designed by optimizing input control 
configurations, allocation of sampling times, initial values of states and experiment 
duration, but the experiment is then redesigned within predefined time intervals 
(“updating intervals”). In each updating interval the information regarding model 
parameters is updated using parameter estimation techniques using past data and the 
updated model is used for designing the remaining part of the experiment repeatedly, until 
the model parameters are determined with minimal variance (Galvanin et al., 2009). Thus, 
in the online model-based redesign of experiments (OMBRE) method, information 
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content in the data is used during the experiment. The idea of online redesign was first 
proposed in Mehra (1974), applied to linear systems and later extended to nonlinear 
systems (Stigter et al., 2006). Compared to the conventional offline design, online 
experimental redesign methods offer great potential for the real time parameter estimation 
and model identification. However, a challenging aspect of the online redesign methods 
is the systematic choice of the number of redesigns and duration of each updating interval 
which are usually given as user-defined inputs. An improper choice of the above updating 
policy without system knowledge may lead to process data with insuf ficient information 
for parameter estimation in each updating interval. In De-Luca et al. (2016), authors 
proposed a method to minimize the duration of updating intervals while ensuring a 
sufficient reduction in parametric uncertainty in each updating interval. However, the 
method seems to be feasible for systems with nearly continuous measurements.  More 
recently, a method based on auto-updating of sampling time redesign (Wang and Yue, 
2019) was proposed to determine the length of updating intervals to assure identifiability 
for parameter estimation. To tackle the issue of properly determining the updating times, 
a framework for adaptive online model-based redesign of experiments for the 
identification of dynamic models is proposed in this work. The framework introduces a 
rational criterion based on the real time parametric uncertainty assessed through 
likelihood function of model parameters for the redesign of experiments. In the 
framework, orthogonal collocation method (Biegler, 2010) is used to discretize the 
dynamic model and the optimization is formulated as a mixed integer nonlinear 
programming (MINLP) problem  to facilitate the optimal allocation of sampling points. 
The proposed redesign framework is tested on a simulated case study and compared with 
offline design and online redesign with user-defined redesign strategy.  

2. Problem statement 
The optimal design of dynamic experiments can be formulated as a dynamic optimization 
problem of the form of Eq. (1). The problem seeks the optimal design vector φ that excites 
the dynamic system in order to optimize the function ψ towards the end of the experiment 
tf. For convenience, the set of optimization variables are aggregated to form the design 
vector φ, which usually contains the vector of initial conditions y0, the experiment 
duration tf, the vector of input trajectories u(t) and the Nsp-dimensional set of sampling 
points tsp i.e., tsp = [y0, tf, u(t), tsp]. The basis for such a problem is the dynamic model f 
that describes the evolution of the state variables with time x(t), starting from the initial 
condition x(0).  
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In Eq. (1), x(·) ∈ ℝNx is the vector of differential states, ŷ (·) ∈ ℝNy is the vector of model 
predictions for the response variables y(t) (those state variables which are actually 
measured), u(·) ∈ ℝNu is the vector of input controls and θ ∈ ℝNθ is the vector of model 
parameters. The differential states x(·), controls u(·) and parameters θ are bounded within 
the admissible sets X, U and Θ respectively; f: ℝNx × ℝNθ × ℝNu ↦ ℝNx and g: ℝNx ↦ ℝNy 
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are differentiable functions. In Eq. (1), the predicted parameter covariance matrix Vθ(φ, 
θ, tf) toward the end of the experiment is defined as 

     
sp

1

1
10 1

f, ,
Ntt tt t t 

  



         
θ θ YV φ θ V Q Σ Q  (2) 

In Eq. (2), ΣY denotes the covariance matrix of measurement errors which is assumed as 
a diagonal matrix with variances along the diagonal, 0

θV  denotes the prior uncertainty of 
the model parameters and Q(t) is the dynamic sensitivity matrix (Franceschini and 
Macchietto, 2008). 

3. Methodology 
In the online experimental redesign framework proposed in this work called as adaptive 
online model-based redesign of experiments (A-OMBRE), dynamic experiment design 
problem in Eq. (1) is solved using the simultaneous discretization approach using 
orthogonal collocation (Biegler, 2010). The method discretizes the continuous domains 
in the model and approximates the differential equations using algebraic equations 
defined at the discretization points. To incorporate the constraint on the number of 
measurements, we modify the optimization problem of Eq. (1) (discretized version) into 
a mixed integer non-linear programming (MINLP) problem in which the objective 
function is evaluated as 
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In Eq. (3), the binary variables bi are used to choose the Nsp number of sampling points 
from the set of discretization points. Given the experimental budget in terms of number 
of samples allowed (Nsp) and the maximum duration of the experiment ( ub

ft ), Eq. (1) is 

solved using the prior estimate θ0 and the prior uncertainty 0
θV to obtain the optimal 

experimental settings φ at which the dynamic experiment is started. This is shown in the 
first three blocks from top of the flow sheet in Figure 1 and in the first line of Algorithm 
1. The first parameter estimation (PE) is carried out after sufficient data (at least as many 
as twice the number of model parameters; an empirical rule used in this work) is obtained, 
which is necessary for a proper estimation of the parameters and the variances. In cases 
where all parameters are not estimated well,  which is most likely after the first parameter 
estimation, the likelihood ratio (LR) test (Quaglio et al., 2019) is used for an additional 
decision making which involves whether to ‘CONTINUE’ the running experiment or to 
‘REDESIGN’ the experiment. At this purpose, the likelihood ratio (LR) test is carried out 
against a null hypothesis which states there is no significant difference between the 
likelihood functions at the prior θ0 and at the new estimate θ̂  obtained from the parameter 
estimation. The LR is evaluated by computing the statistic according to Eq. (4): 

       sp sp
2

0 1 1
ˆ2 log , , log , , ,n nLR L t t L t t N     

 
θ y θ y    (4) 

If the LR test appears to be statistically significant (p-value < 0.05), the current experiment 
which is optimized using the prior θ0 might become sub-optimal and the remaining part of 
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the experiment is then redesigned using the new estimate θ̂ (updated prior) and modified 
constraints. If the LR test is not significant, there is no evidence to disprove the null 
hypothesis and the running experiment remains optimal and hence continues. This 
concept is explored to decide whether the experiment needs to be redesigned after a new 
sample has been collected. The above redesign strategy is shown in the second decision 
block of the flow sheet in Figure 1 and in lines 4 to 11 of Algorithm 1. 

 

 
Figure 1. Flowsheet for the proposed adaptive 
ombre framework 

Algorithm 1 Adaptive OMBRE 
  1: Input: Nsp, ub

ft , 0
θV ; solve Eq. (1), return φ  

  2: Start exp; wait until nsp = 2·Nθ/Ny 
  3: Solve PE using y(t1,…,tnsp), return θ̂ , θ̂V    

  4: if θ̂V  is satisfactory then STOP 
  5: else compute LR statistic using Eq. (4) 
  6:       if LR test is significant then modify and 
      solve Eq. (1) and replace running exp. 
  7:       else Continue the same experiment 
  8:       end if 
  9: nsp = nsp +1, solve PE and go to step 4 
10: Continue step 9 until nsp = Nsp 
11: end if 
 

 

4. Case study 
A process for the fermentation of biomass by Baker’s yeast presented in (Cooney and 
McDonald, 1995) is chosen as the case study to test the performance of the proposed 
algorithm. A Monod-type kinetic model which is described by following the set of DAEs 
is assumed to characterize the real system. 
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In Eq. (5), the state variables x1 and x2 represent the biomass concentration [g L-1] and the 
substrate concentration [g L-1] respectively. The control variables in the model include 
the dilution factor [h-1] and the substrate concentration in the feed [g L-1], which are 
respectively denoted as u1(t) and u2(t). The experimental design vector φ contains the 
initial biomass concentration 0

1x (range: 1-10 g L-1), the experiment duration with an 

upper bound ub
ft of 18 h, the dilution factor u1(t) (range: 0.05-0.20 h-1), the substrate 

concentration in the feed u2(t) (range: 5-35 g L-1) and the set of Nsp sampling points at 
which the state variables x1 and x2 are measured. The assumed true values for model 
parameters are given in Table 1 which are used to generate in-silico measurements by 
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adding random noise (ΣY with 0.01 and 0.05 along the diagonal) to the simulated values. 
The assumed initial values of model parameters (with 90 % relative error with respect to 
the true values) are also provided in Table 1. The entire time horizon is divided into 18 
equal control intervals or finite elements. The 18 finite element points except the starting 
point was allowed as potential sampling points in the MINLP design formulation. The 
maximum number of sampling points allowed (Nsp) was assumed as 12. An A-optimal 
criterion was used to design the experiments in all the design configurations: 1) a 
conventional offline method (MBDoE); 2) an online redesign method with pre-defined 
updating times (OMBRE); 3) the proposed method (A-OMBRE). The comparison is 
shown in Figure 2. In all the three cases, the experimental design involved four-point 
Legendre collocation, 18 finite elements and the controls have been discretized as 
piecewise constant profiles. The same initialisation and variable bounds discussed above 
were used in all the three cases. 

 

(a) MBDoE (b) OMBRE (c) A-OMBRE 

Figure 2. Experimental design results using three different design strategies (MBDoE, OMBRE, A-
OMBRE). Figure shows the optimal control trajectories u(t) and the predicted state trajectories y(t). 
Measured states within the error bar are shown at the optimal alocation of sampling points. The 
vertical lines on panel b and c indicate the updating instances 

In MBDoE, Eq. (1) was solved to obtain the optimal controls and sampling times shown 
in Figure 2(a). In OMBRE method, Eq. (1) was solved initially to obtain the design vector 
φ. Later, the running experiments were redesigned twice, each time after collecting new 
2·Nθ measurements or 2·Nθ/Ny sampling points. The proposed A-OMBRE method 
followed the methodology discussed in section 3 and involved three redesigns. The 
optimal control settings, sampling times and the updating times in OMBRE and A-
OMBRE are shown in Figure 2(b) and Figure 2(c) respectively. The comparison of 
parameter estimation results using the three different design strategies (Table 1) indicates 
that slightly more precise parameter estima tion was achieved in the OMBRE method 
compared to the proposed adaptive OMBRE method. However, the significant advantage 
of the proposed method is that it allows to track the parametric uncertainty with respect 
to the optimal experimental design in real time with the help of a hypothesis testing (LR 
test) problem. The details of hypothesis testing problem (discussed in section 3) which is 
used to correlate the updating decision with parametric uncertainty in the proposed A-
OMBRE method is illustrated in Table 2. 
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Table 1. Parameter estimation results including estimates and 95 % confidence intervals at the end 
of three different design strategies 

Model 
parameter 

True  
value 

Initial 
value 

Estimates from 
MBDoE 

Estimates from 
OMBRE 

Estimates from 
A-OMBRE 

θ1 0.31 0.589 0.313 ± 0.021 0.307 ± 0.007 0.312 ± 0.013 
θ2 0.18 0.018 0.257 ± 0.328 0.153 ± 0.039 0.153 ± 0.057 
θ3 0.55 1.045 0.549 ± 0.012 0.549 ± 0.013 0.561 ± 0.028 
θ4 0.05 0.005 0.049 ± 0.003 0.050 ± 0.005 0.054 ± 0.012 

Table 2. Redesign decision criteria in the adaptive ombre framework 

Parameter estimation Time [h] LR statistic p value Decision 
1 11 4.54 0.33 CONTINUE 
2 12 13.17 0.01 REDESIGN 
3 13 0.92 0.92 CONTINUE 
4 14 11.65 0.02 REDESIGN 
5 15 0.07 0.99 CONTINUE 
6 16 0.77 0.94 CONTINUE 
7 17 1.23 0.87 CONTINUE 
8 18 0.49 0.97 CONTINUE 

5. Conclusion 
In this work, a novel algorithm is proposed to automatically redesign a dynamic 
experiment in the online model-based redesign of experiments method which is used for 
precisely estimating the parameters of a dynamic process model. The proposed algorithm 
uses the updated parametric uncertainty to redesign a dynamic experiment. The 
effectiveness of the algorithm is tested on a simulated case study by comparing the 
proposed algorithm to a standard offline MBDoE and an OMBRE method. The algorithm 
appears to be promising for online identification of dynamic models due to its  ability to 
automate the calculation of updating times in redesign policies based on a rational criteria, 
an approach lacking in current state of the art algorithms. 
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Abstract
Hybrid Real-Time Optimization (HRTO) approaches consist of the economical
steady-state optimization performed after the dynamic adaptation of the process model,
usually carried out by an Extended Kalman Filter. Despite the increasing number of
works concerning this technique, the literature still lacks a larger number of case studies
supporting these alternatives, including cases that present nonlinear behavior at certain
operating ranges and model uncertainties. This work aims to analyze the HRTO applied
to a wide range of examples, exploring systems presenting different transient patterns,
including slow (or fast) non-minimum (or minimum) phase behavior. Different RTO
frameworks were evaluated, and nonlinear model predictive control was implemented
as the advanced control layer for all architectures. As expected, under no structural
uncertainties, the reached steady-state is the same for all approaches. Concerning
transient operation, the area under the objective function curve was calculated by
numerical integration and applied as a quantitative performance indicator, with the
DRTO curve set as a reference since it outperforms its counterparts. The better
performance of the HRTO for several systems with complex dynamics gives this
approach more possibilities for industrial application, but care should be taken for
systems with long time delays.

Keywords: Steady-state optimization, Dynamic optimization, Hybrid Real-time
optimization, Kalman Filter, Van de Vusse Reactor.

1. Introduction
Real-Time Optimization (RTO) algorithms have a large participation in the industry,
especially in petrochemical processes (Ruiz, 2009). Traditionally, steady-state model
parameters are updated through real-time steady-state process measurements. After this
step, an economic optimization is carried out with the updated steady-state model,
generating the optimal setpoint for the controlled variables (Melo et al., 2009).
Regarding the parameter estimation and steady-state optimization steps, the RTO is
commonly referred to as a two-step approach (Trierweiler, 2014). One of the main
challenges involving traditional RTO algorithms is the steady-state detection step,
which usually uses statistics or heuristics to assess whether the system is sufficiently
close to steady-state operation (Cao and Rhinehart, 1995). This matter becomes more
relevant when facing real large-scale processes, with frequent transitions and long
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transient dynamics (Bousbia-Salah et al., 2017).

Dynamic RTO (DRTO), unlike traditional RTO, performs the calculation of the optimal
trajectory of the decision variables of the plant through a dynamic model of the process,
making the steady-state detection step no longer needed. Despite this advantage, a major
problem arises: the computational cost associated with the dynamic optimization.
Solving a dynamic optimization problem for nonlinear systems can be a highly costly
task, especially for large-scale systems. Given this fact alone, the industry in general
still opts to apply the traditional RTO (Krishnamoorthy et al., 2018).

Driven by these limitations, some authors (Krishnamoorthy et al., 2018; Matias and Le
Roux, 2018) have suggested an alternative hybrid approach for the real-time
optimization that combines the strengths of traditional RTO and DRTO: the static
optimization combined with the dynamic adaptation of the model. As this is a very
recent technique, there are not many applications reported in the literature. Thus, the
main goal of this work is to evaluate how hybrid RTO performs in processes presenting
nonlinear and non-minimum phase behaviors and to evaluate its robustness under
diverse scenarios, comparing different real-time optimization architectures.

2. Real-time optimization frameworks
Model-based real-time optimization techniques are imperative to deal with parametric
plant-model mismatch (Serralunga et al., 2012). Structural divergences can make the
system erroneously reach operating points that differ from the real optimum,
highlighting the importance of a well-designed estimator. Thus, four RTO architectures
were considered:

● RTO-LS: a traditional two-step RTO. First, the plant runs until its stationarity
is addressed by a steady-state detection step. Once the process is at
steady-state, its model is updated by a nonlinear least-squares estimator in
order to perform the steady-state optimization. This optimizer returns the
optimal controlled variables setpoints and the optimal manipulated variables
targets that are fed into the advanced control layer with the updated model
parameters. It is noteworthy that the controller only initiates when the first pair
setpoint-target is calculated, i.e., when the plant is at steady-state for the first
time;

● RTO-EKF: this framework differs from the previous RTO scheme when it
comes to the model update phase. An extended Kalman filter was designed and
acts as a state-parameter estimator at all sampling steps. This comes with the
reasoning that, since non-measured disturbances are only estimated at
steady-state, setpoint control is compromised when the process is at transient
operation;

● DRTO: traditional dynamic real-time optimization, i.e, the optimization
problem and estimation step consider the dynamic model of the process;

● HRTO: the original approach designed by Krishnamoorthy et al. (2018) was
applied. Similarly to the mentioned RTO-EKF, the steady-state detector was
removed. Thus, the dynamic model of the process is updated combined with
the optimization of the steady-state model.

Concerning the mathematical formulation, more details can be found at Krishnamoorthy
et al. (2018), where the optimization and estimation problems are stated for traditional
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RTO (RTO-LS in the present work), DRTO, and HRTO.

3. Illustrative example: the Van de Vusse CSTR
The Van de Vusse reactor (Van de Vusse, 1962) is a continuous stirred-tank reactor
containing a reaction system in which cyclopentadiene is used to synthesize
cyclopentanol by electrophilic addition of water. The reaction is catalyzed by an acid
solution (Diels-Alder reaction or cycloaddition), with the generation of
cyclopentenediol and dicyclopentadiene as side products due to the high reactivity of
reagents and products. This system is a well-known benchmark for multivariable control
algorithms and nonlinear optimization. This process combines nonlinear behavior in
several operational ranges with a relatively simple modelling.

Summarizing, this work considers the measurement vector , the input𝑦 = 𝐶
𝐴

, 𝐶
𝐵

, 𝑇[ ]𝑇

vector , as unmeasured disturbances, and and are𝑢 = 𝐹
𝑉 ,  𝑇

𝑘
⎡⎢⎣

⎤⎥⎦

𝑇
θ = 𝐶

𝐴,𝑖𝑛
, 𝑇

𝑖𝑛[ ]𝑇 𝐶
𝐵

𝑇
the controlled variables. The remainder of the physico-chemical parameters are
considered known.

Concerning the optimization problem for this system, the yield of B ( ) is usually𝐶
𝐵

implemented as the objective function, with another common formulation being the sum
of selectivity and conversion for the same component ( . A𝐶

𝐵
/(𝐶

𝐴,𝑖𝑛
− 𝐶

𝐴
) + 𝐶

𝐵
/𝐶

𝐴,𝑖𝑛
study of the system’s steady-state profiles shows that both objective functions always
raise with the increase of the jacket temperature. Thus, in order to prevent the saturation
of the manipulated variables throughout RTO operation, a new objective function to be
maximized that takes into account the energy cost related to higher jacket temperatures
was proposed:

(1)𝐽 =
𝐶

𝐵

𝐶
𝐴,𝑖𝑛

−𝐶
𝐴

+
𝐶

𝐵

𝐶
𝐴,𝑖𝑛

− 6×10−4𝑇
𝑘

Regarding complex dynamics, different models were considered:

● Base Van de Vusse: standard model formulation with equations and
parameters available in Engell and Klatt (1993);

● Van de Vusse with dead time: in this case, fixed time delays were inserted
into the measured and input variables.

The NLP problems were implemented with CasADi v3.5.5 (Anderson, 2013) using
Python v3.8.3 programming environment and solved using IPOPT v3.12.2 (Wächter
and Biegler, 2006) and IDAS (Hindmarsh, 2005) was the integrator applied to develop
the plant simulator with relative and absolute accuracies of for both solvers. The10−6

sampling time and total simulation time were and for all cases and architectures.9𝑠 2ℎ
A common practice in industrial applications is to run the optimizer in a fixed
frequency; in this case the optimization cycle was of sampling times. For all10
frameworks, nonlinear model predictive control (NMPC) was considered for the
advanced control layer with control and prediction horizons of and sampling10 40
times, respectively. The steady-state detection uses the last five plant measurements at
all sampling times.
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Figure 1 shows the results for all architectures considering step perturbations in the
disturbances at different simulation times. Regarding the objective function
performance and computational effort, Table 1 summarizes the average CPU time per
optimization cycle for each approach.

Figure 1: Performance of the RTO frameworks: (i) estimates of ; (ii) difference of the𝐶
𝐵

objective function plant value to DRTO; (iii) input values for ; (iv) input values for𝐹
𝑉 𝑇

𝑘
; (v) estimates of ; and (vi) estimates of .𝐶

𝐴,𝑖𝑛
𝑇

𝑖𝑛

Table 1: Integrated objective function and average CPU time per optimization cycle.
Approach Integrated objective function Avg. time per optimization cycle [ ]𝑠

DRTO 518. 32 2. 62
HRTO 517. 70 2. 11

RTO-EKF 516. 92 2. 11
RTO-LS 517. 06 2. 13

It is clear that the NMPC acts faster with the DRTO, and the hybrid approach performs
better when compared to its steady-state counterparts, which are held back by the
steady-state detection step. The steady-state optimum is expected to be the same for all
cases, and the delay in RTO-EKF and RTO-LS to reach the new optimum is evident. It
is noteworthy that all optimization approaches are limited to a fixed input variation
constraint of units, explaining why DRTO can move faster than the other strategies5
since it is able to perform actions during the sampling times cycle. In addition,3 10
HRTO architecture behaved as fast as its steady-state counterparts while performing
slightly better, as shown in Table 1 and Figure 1.

3.1. Base Van de Vusse
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It is also important to state the robustness of the HRTO approach to disturbances of
different types and magnitudes, considering that only parametric uncertainty is present
and that the plant is open-loop stable. Different disturbance scenarios should only affect
the estimation convergence rate since the EKF was tuned in order to converge
reasonably fast for this specific perturbation scenario.

3.2. Van de Vusse with dead time
Regarding this study, the implemented delays were sampling times for the[10,  10]
inputs and for the plant measurements. Since the results for the base case[15,  15,  6]
study showed how HRTO overperformed in comparison to RTO-EKF and RTO-LS, this
example has the purpose of evaluating its behavior in a process presenting dead time.
Figure 2 illustrates performances for HRTO in four different cases: base case, delay
only on the inputs, delay only on the measurements, and delay on both.

Figure 2: HRTO performance in the presence of dead-time: (i) estimates of ; (ii)𝐶
𝐵

difference of the objective function plant value to DRTO; (iii) input values for ; (iv)𝐹⁄𝑉
input values for ; (v) estimates of ; and (vi) estimates of .𝑇

𝑘
𝐶

𝐴,𝑖𝑛
𝑇

𝑖𝑛
Figure 2 clearly shows that the dead time´s inclusion affects HRTO’s performance. It is
noteworthy that the estimation becomes especially compromised with the inclusion of
dead times, which translates into poorer performances from the optimizer and controller.
Concerning and the objective function profiles, the system struggles to reach the𝐶

𝐵
steady-state, and the HRTO base curve stabilizes faster. As expected, the insertion of
dead time in both inputs and measurements proved to be the worst-case scenario as it
comes with the presence of oscillatory modes. Simulations with greater delays resulted
in the system becoming unstable. It is noteworthy that the DRTO and RTO-EKF
simulation with the same delays did not present oscillatory behavior, unlike HRTO and
RTO-LS.
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Table 2 shows the objective function performance and CPU effort for DRTO, HRTO
and RTO-EKF considering dead-time in the inputs and outputs, confirming that the
existence of time delays in the inputs and outputs compromises the overall performance
of the real-time optimization. RTO-LS was not considered for this comparison since the
LS estimator relies on steady-state operation and the system becomes highly unstable,
as seen in Figure 2.

Table 2: Van de Vusse with dead-time - Integrated objective function and average CPU
time per optimization cycle.
Approach Integrated objective function Avg. time per optimization cycle [s]

DRTO 517. 84 2. 58
HRTO 514. 52 1. 99

RTO-EKF 514. 35 2. 17

4. Conclusion
In this work, the hybrid RTO approach was applied to the Van de Vusse CSTR. The
DRTO is still expected to outperform its counterparts. This result is showed by
numerically integrating the objective function curve while in transient operation and
using this value for the DRTO as reference. By comparing the objective function profile
for the RTO and HRTO, a similar behavior was observed during most of the steady-state
operation, with close performances. The HRTO stands out especially thanks to the
absence of the steady-state detection step, which makes standard RTO have a delayed
performance at some operational ranges. HRTO’s behavior in the presence of dead time
was also evaluated, and it was observed that it does affect its performance, especially in
the estimation step. The presence of dead time arose oscillatory modes, and it is even
possible to destabilize the system depending on its amplitude. However, this issue can
possibly be overpassed by the use of dead-time compensators.
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Abstract 
The significance of operator training has dramatically increased due to complex 
automation strategies in modern process plants. It is reported that human errors account 
for 70% of the accidents in process industries, with inadequate training cited as one of the 
most common reasons for these incidents. Our previous work has shown the potential of 
eye-tracking to infer the mental state of control room operators. In this work, we propose 
a methodology that combines multi-scale data from the process simulator, control actions 
performed, and eye gaze data of the operators to evaluate their training outcomes. 
Specifically, we use fixation transition entropy, an eye-tracking metric, which can help 
infer the mental models of the process abnormalities developed by the operators during 
repeated control room tasks. Results indicate that the fixation transition entropy decreases 
on account of development of correct mental models of process while it remain at higher 
values when operator fails to update their mental models during plant abnormalities. 
Thus, the proposed metric can be used to gauge the development of operator's mental 
models during training to understand the transition from novice to becoming experts.  
 
Keywords: Operator Training, Eye-tracking, Transition Entropy, Mental Model, Process 
Safety 

1. Introduction 
Operator training is an important part of industrial safety, during which novice operators 
acquire skills and develop mental models of the process. After training, the operators are 
deployed to a real control room setting to monitor the automated system and intervene 
when the automation underperforms, especially during abnormalities. When dealing with 
such abnormalities, an incorrect mental model of the abnormal situation developed by the 
operator increases the likelihood of committing. Thus, it is crucial to have skilled 
operators with the correct mental models of the process. However, the complex nature of 
modern plants, with sophisticated and complex automation strategies, makes it 
challenging for the operators to develop correct mental models of the process (Kludge et 
al., 2014). As a result, assessment of mental models during training is important to 
evaluate their understanding of process dynamics.  
 
Typically, process industries rely on Operator Training Simulators (OTS) to impart skills 
to the operators. Several studies have been conducted to evaluate operator performance 
during these training trials. Most of these studies either focus on developing 
comprehensive OTS that can accurately mimic plant behavior (Patle et al., 2014) or 

http://dx.doi.org/10.1016/B978-0-323-88506-5.50201-1
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assessing operator's ability to follow standard guidelines based on metrics derived from 
process and operator interactions. For instance, Manca et al. (2014) evaluated the 
performance based on the time taken and the sequence of actions by the operator against 
a standard protocol in a virtual polymerization plant. Nevertheless, these studies do not 
explicitly focus on the evolution of the operator's knowledge about the dynamics of the 
process during the training trials. In addition, there are hardly a few works that focus on 
understanding the cognitive behavior of operators, crucial to enhancing operators' skills 
and abilities (Bullemer and Nimmo, 1994). 
 
Eye-tracking is one of the widely used approaches to analyze the cognitive behavior of 
human operators in several safety-critical domains such as aviation, health care, and 
nuclear industries (Srinivasan et al., 2019).  In the past, our research group has utilized 
physiological data obtained from eye tracking to understand the cognitive behavior of 
control room operators during abnormal situations (Bhavsar et al., 2017, Srinivasan et al., 
2019). Our studies indicated that eye gaze analysis could identify the orientation, 
diagnosis, and execution tasks performed by the operator during an experiment 
(Kodapully et al., 2016). Statistical studies revealed that gaze-based entropy measures 
could be used to understand the situational awareness of the operators while handling 
plant abnormalities (Bhavsar et al., 2017). With the knowledge acquired from these 
studies, in this work, we develop a methodology to understand the evolution of operator's 
mental models and expertise level during training tasks using metrics derived from 
process dynamics, operator actions, and eye-tracking data. The details of the proposed 
methodology, along with experimental studies are discussed in the following section. 

2. Experimental setup and methodology 
The experimental study consisted of participants interacting with the Human Machine 
Interface (HMI) of a simulated ethanol production plant. Participants were asked to 
monitor and perform necessary control actions (using sliders provided on the HMI) during 
plant abnormalities. There are six different scenarios that result in abnormal situations 
that need to be handled by the participant. If the participant fails to handle the 
abnormality, they can use emergency shutdown button else the plant will shut down 
automatically in 2 mins after the occurrence of alarms. The reader is referred to Bhavsar 
et al. (2017) for more details on the simulation. Ten participants were involved in the 
study. Each participant carried out repetitive tasks (repetition of a scenario) in different 
trials. Overall, these ten participants performed 81 trials for each scenario leading to a 
total of 486 tasks. We recorded process data, alarm information, and operator action data 
during all these tasks. In addition to these measurements, we also recorded eye-gaze data 
obtained from Tobii TX 300 eye tracker. 

For assessing the effect of training (repetition of scenarios), in every trial, we analyzed 
the number of alarms triggered (Nt), the number of alarms cleared (Nc), and the number 
of slider actions (Ns). In addition to these process and action-based metrics, we also 
quantified operators' cognitive behavior using eye gazed fixation transition entropy (H̃F). 

To calculate H̃F, we divided the HMI into L rectangular-shaped areas of interest (AOI) 
based on the location of variables tag, alarm panel, and trend panel. In this work, we have 
defined 19 (L) AOIs.  We obtained the fixation distribution on these AOIs and generated 
a sequence of fixations based on the AOI they belong. Next, we computed the transition 
matrix (T’ of size L x L) which represents the frequency of fixation transitions between 
Ai (i = 1, 2…, L) to Aj (j = 1, 2, …, L). 
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,                                               (1) 

 
Here A'L1 denotes the number of transitions from Lth AOI to 1st AOI and likewise. We 
then weighted T' by a weight matrix (W) to avoid the effect of unintentional fixation 
transitions between nearby AOI's. The weight matrix (W) is computed based on the 
Euclidian distance between the center of the AOIs. The coordinates of the center of ith 
AOI (Ai) is given by (xi, yi).  An element of W is given by: 
 

            𝑊./ = 	01𝑥/ − 𝑥.4
5 	+	(𝑦/ − 𝑦.)5	, 𝑖 = 1,2, … , 𝐿, 𝑗 = 1, 2, … , 𝐿                        (2) 

 
where Wij represents Euclidian distance between Ai and Aj. We then rescale W between 0 
and 1. For the sake of simplicity, we call the rescaled weight matrix as W. The weighted 
transition matrix (T) is then obtained as: 
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,                                   (3) 

 
The diagonal elements in T (self-transitions) are zero as Wii (self-distance) is zero. After 
assigning weights to the transition matrix, we calculated H̃F as per  
equation (4) and (5):    
 
              𝐻C =	−∑ ∑ 𝑃1𝐴./F𝐴.) log5 𝑃(𝐴./|𝐴.)𝑃(𝐴.))

/K',/L.
)
.K'                                     (4) 

 
                                                   	𝐻CM =	 NO

NO
PQR                                                                  (5) 

 
where HF is the weighted fixation transition entropy. Here P(Aij|Ai) denotes the 
probability of transition of fixation from AOI Ai to AOI Aj, and P(Ai) is the probability of 
fixation on AOI Ai. H̃F represents the relative weighted fixation transition entropy, while 
HFmax is the maximum value of HF given by HFmax = log2(L-1). The larger the H̃F, the 
more disordered fixation pattern on HMI and vice-versa. It is expected that with repetition 
of trials, the operator's fixation pattern will move towards lower entropy values as the 
transition takes place only between those regions which give information of disturbance 
or help in removing disturbance. 
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Figure 1: Operator actions with alarm and slider action details in key trials.  

3. Results and Discussion 
In this section, we demonstrate the potential of the proposed methodology in assessing 
operator's ability as well as inability in developing correct mental models of the process 
dynamics. 
3.1. Illustrative Example 1  

In this illustration, we demonstrate the potential of the proposed methodology to assess 
the development of a correct mental model of the process dynamics under a given 
abnormality with the training of novice operators. Consider an operator who performed 
ten trials of a scenario that involves a disturbance in the reflux ratio of the distillation 
column, and which can be rectified by manipulating V401. Operator actions in key trials 
are shown in Fig. 1. Consider trial 2 (Fig. 1), at around 22 s alarms T104 and T105 occur, 
followed by T106. Operator clicks on the tag of T104 to observe the trend of the process 
variable T104 and takes first control action at around 29 s by manipulating V201. At 
around 35 s, the operator manipulates V401 (correct control action). In the same trial, the 
operator also manipulates V301 later, depicting that the operator keeps on exploring the 
possible actions which can clear the disturbance in the process. In trial 2 and 3, the 
operator has used multiple control actions as shown by different markers of stem plot 
(Fig. 1). The use of multiple control actions indicates that the operator is unaware of the 
root cause of the disturbance. While manipulating different sliders, operator somehow 
manages to clear all the alarms in trial 2, but it is not necessary that the operator 
understands the root cause of the disturbance. Trial 3 ends in automatic shutdown because 
of operator's inability to deal with the disturbance. With the repetition of trials, the 
operator develops an understanding of the underlying principle of the process and is 
reflected in the trial 10 where the operator only manipulates V401.  
The alarm information (Nt & Nc) and operator actions (Ns) with the trial number is shown 
in Fig. 2 (a) and 2 (b), respectively. We observe a decrease in Nt towards the end of the 
trial (Fig. 2 (a)), implying that the operator has taken the right control actions because of 
which few additional alarms are triggered. Also, the operator successfully cleared all the 
triggered alarms (Nt – Nc = 0). The operator action data (Fig. 2 (b)) shows a decrease in 
Ns from trial 8 onwards. This implies that with repetition of trials, an understanding of the 
scenario (less slider manipulation) is developed by the operator. 
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Figure 2: (a) Number of alarms triggered (Nt) and cleared (Nc) with trial number (b) Number of 
slider actions (Ns) with trial number (c) Weighted Fixation Transition Entropy (H̃F) with trial 
number 

Trials 1 and 2 need special mention as both Nt and Ns stay at lower values. In trial 1, the 
operator puts minimal effort (Ns = 3) to clear the alarms, which leads to the shutdown of 
the plant. During trial 2, there is a possibility that the operator manages to clear the 
disturbance by chance. This is supported by the fact that the next three trials (trials 3, 4 
& 5) are not completed successfully. From Fig. 2 (c), it can be observed that H̃F decreases 
(from 0.562 in the first trial to 0.203 in the last trial) with repetition of trials and remains 
at lower values towards the end of the trial. This signifies that with increasing trials, the 
attention is increasingly directed to the relevant AOIs. During trials 1 and 2, H̃F remains 
at a higher value in contrast to Nt and Ns. This indicates that the operator is unaware of 
the dynamic response of the process because of which distributed attention on HMI is 
observed. Thus H̃F is able to track the mental model of the operator under the given 
abnormality correctly and therefore has the potential to gauge the learning progress of 
novice operators. 
3.2. Illustrative Example 2 

In this illustrative example, we demonstrate the potential of H̃F to capture the instances 
when operators struggle to update their mental models of the process, and as such, do not 
learn with repetition of trials. Consider an operator who performed seven trials of scenario 
5 in which feed flow to the CSTR gets disturbed, resulting in alarms F101, F105 and 
C101. The number of alarms triggered and cleared (Nt & Nc), and number of slider actions 
(Ns) are shown in Fig. 3 (a) and 3 (b) respectively. The operator was unsuccessful in 
bringing the plant to the normal operating range till the last trial (Nt – Nc > 0), except 
during trials 2 and 4. The inability to learn is captured by the inability to clear all the 
alarms within the stipulated amount of time as shown in Fig. 3(a), and as also reflected 
by Ns which does not show a decreasing trend with trial number. Even though trials 2 and 
4 were a success, with low values in all the process and action-based metrics, there was a 
very little decrease in H̃F as depicted by Fig. 3 (c). Nevertheless, H̃F remained more or 
less constant, during the other trials as well, even towards the end of the trials, indicating 
that the operator did not update their mental model of the given abnormality with 
repetitions. Failure to update the mental model is manifested in the inability to improve 
the fixation pattern from a disordered one to a more directed pattern of information 
acquisition from the HMI. Thus, the proposed eye-tracking based metric has the potential 
to capture whether an operator is learning or not and can complement all other process 
and action-based metrics by providing critical insights into the operator cognitive 
behaviour. 
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Figure 3: (a) Number of alarms triggered (Nt) and cleared (Nc) with trial number (b) Number of 
slider actions (Ns) with trial number (c) Weighted Fixation Transition Entropy (H̃F) with trial 
number 

4. Conclusions 
The present work proposed a multi-scale data-driven to gauge the development of 
expertise level of control room operators during training. When the operators develop the 
correct mental models of the process, the process-based measures (Nt & Nc), operator 
actions (Ns), and fixation transition entropy (H̃F) decrease and remain at a lower value. 
The lower values of H̃F signifies that operators have arranged their fixation pattern on 
only a few regions on HMI. Further, our results demonstrate that the proposed cognitive 
measure H̃F help infer the mental models of the operators even when the process and 
operation action based measures fail. Our future work will focus on developing robust 
multivariate measures using various physiological sensors (such as EEG, ECG, audio and 
video analytics etc.) for expertise level assessment of control room operators.  
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Abstract 
In order to ensure the safety and stability of industrial processes, it is necessary to 

research more efficient and accurate fault detection technology. Methods based on 
multivariate statistics analysis are very suitable for complex industrial processes. Based 
on the pros and cons of current fault detection methods, deep principle component 
analysis (DePCA) was developed by Deng previously. In this work, by combining 
DePCA with dynamic process, the deep dynamic principle component analysis 
(DeDPCA) is proposed, where optimizing variables for extended time series is used to 
reduce computational complexity. Case study in the benchmark Tennessee Eastman 
process demonstrates the superior performance of the proposed DeDPCA method over 
the DePCA method. 

Keywords: fault detection, DPCA, KPCA, deep learning 

1. Introduction 
    With the development of modern science and technology and the intensification of 
market competition, the production level of the chemical process continues to improve. 
Traditional detection systems lack reliability, and data-driven methods are getting more 
and more attention[1]. 

    Deep learning, as one of the most currently remarkable machine learning techniques, 
has achieved great success in many applications such as image analysis, speech 
recognition and text understanding. Deng[2] took the advantages of deep learning strategy 
and designed a hierarchical statistical model structure to extract multilayer data features, 
including both the linear and nonlinear principal components, which is called deep 
principle component analysis (DePCA). Although DePCA's ability to detect faults is 
better than kernel principle component analysis (KPCA)[3] and serial principal component 
analysis (SPCA)[4], it is not sensitive to dynamic data for most industrial processes. 

When combine DePCA with dynamic process[5], deep dynamic principle component 
analysis(DeDPCA) is established. Then variables for extended time series is optimized 
using autocorrelation analysis to reduce computational complexity. Which layer to extract 
dynamic feature was conducted by comparing two models with different structure, one 
extract dynamic feature in first linear layer and another in second nonlinear layer. 

The remainder of this paper is structured as follows. In Section 2, our proposed 
DeDPCA method for nonlinear dynamic process monitoring is given. In Section 3, case 
study of TE process is used to validate the proposed method, and our conclusions are 
drawn in Section 4. 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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2. Construction of Proposed Model 
2.1. Proposed DeDPCA model 

The proposed DeDPCA model extracts linear and nonlinear features by integrating 
dynamic principle component analysis(DPCA) and KPCA into a 2-layer structure. In this 
deep feature extraction structure, first the training data matrix 𝑿 ∈ 𝑅 × with 𝑁 samples 
of 𝑀 variables expands to an augmented matrix 𝑿(𝑘) ∈ 𝑅( )× ( )with a lag of 𝑘. 
Then the linear principal components are extracted from the augmented matrix 𝑿(𝑘) to 
obtain the first layer feature 𝑻( ) ∈ 𝑅( )× ( ), where 𝑁( ) = 𝑀(𝑘 + 1). Then KPCA is 
applied to 𝑻( )to extract nonlinear principal components to obtain the second layer feature 𝑻( ) ∈ R( )× ( ), where 𝑁( ) is the number of nonlinear non-zero features extracted in 
the second layer.  

More specifically, in the first feature layer, the linear optimization task is designed as max𝒑( ) 1𝑁 − 1 (𝒑( )) 𝑿(𝑘) 𝑿(𝑘)𝒑( )  

s. t.  (𝒑( )) 𝒑( ) = 1 (1) 

to obtain 𝑀(𝑘 + 1)  projection vector 𝒑( ) ∈ 𝑅 ( )  and score vector 𝒕 ( ) =𝑿(𝑘)𝒑 ( ), 1 ≤ 𝑖 ≤ 𝑀(𝑘 + 1). The score vector constitutes the first layer  feature  𝑻( ) =[𝒕( ) 𝒕( ) ··· 𝒕 ( )( ) ]. In the second feature layer, we perform nonlinear optimization task 

max𝒑( ) 1𝑁 − 1 (𝒑( )) 𝛟(𝑻( )) 𝛟(𝑻( ))𝒑( )  

s. t. ( 𝒑( )) 𝒑( ) = 1 (2) 

where 𝒑( ) is the nonlinear projection vector that can be obtained by 

𝒑( ) = 𝛟 (�̅� ( )) 𝛼 ( ) = 𝛟 (𝑻( ))𝜶( ) (3) 

where �̅� ( ) ∈ R ( )is the 𝑗th column of (𝑻( )) , 𝜶( ) = [𝛼 ( ) 𝛼 ( ) ··· 𝛼 ( )] . Besides, 
denote 𝑲( ) = 𝛟(𝐓( ))𝛟 (𝐓( )), The nonlinear optimization formula can be written as max𝜶( ) 1𝑁 − 𝑘 − 1 (𝜶( )) 𝑲( )𝑲( )𝜶( )  

s. t.  (𝜶( )) 𝑲( )𝜶( ) = 1 (4) 

resulting in the projection vector 𝜶 ( ) ∈ R  and the corresponding nonlinear score 
vector 𝒕( ) = 𝑲( )𝜶 ( ) ∈ R , 1 ≤ 𝑖 ≤ 𝑁 . Therefore, the second feature layer is 𝑻( ) = [𝒕( ) 𝒕( ) ··· 𝒕( )] ∈ R( )× . 

For the testing vector 𝒚 = [𝒙  𝒙  ⋯ 𝒙 ], the feature vector of the first layer 𝒕 ( ) = [𝑡 ,( ) 𝑡 ,( ) ··· 𝑡 , ( )( ) ]  can be calculated as  
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𝑡 ,( ) = 𝒚 𝒑( ), 1 ≤ i ≤ 𝑀(𝑘 + 1)   (5) 

Second layer feature vector 𝒕 ( ) = [𝑡 ,( ) 𝑡 ,( ) ··· 𝑡 ,( ) ] , can be expressed as  𝑡 ,( ) = 𝒌( ) 𝜶( )   (6) 

where the kernel vector 𝒌( ) = 𝛟(𝑻( ))𝛟(𝒕 ( ))= [𝑘 ,( ) 𝑘 ,( ) ··· 𝑘 ,( ) ] ∈ R . As can 
be emphasized that, like the DePCA method, the DeDPCA method  also does not require 
complex network optimization to achieve layer-by-layer feature extraction. 

For the first layer, 𝑇 ( ) and 𝑄( ) monitoring statistics can be obtained as 𝑇 ( ) = 𝒕 ( ) ∧ 𝒕 ( )  𝑄( ) = ||𝒚 − 𝒚 || =(𝒚 − 𝑷 𝒕 ( )) (𝒚 − 𝑷 𝒕 ( )) (7) 

where ∧  is 𝐾 × 𝐾 -dimensional matrix. Eigenvalues 𝜆 , 1 ≤ 𝑖 ≤ 𝐾  are their diagonal 
elements. 𝒚 = 𝑷 𝒕 ( ) is the reconstruction of the test vector 𝒚 .  

For the second layer, 𝑇 ( ) and 𝑄( ) monitoring statistics can be obtained as 𝑇 ( ) = 𝒕 ( ) ∧ 𝒕 ( )    

𝑄( ) = ||𝝓(𝒚 ) − 𝝓(𝒚 )|| =∑ 𝒕 ( ) − ∑ 𝒕 ( )  (8) 

where ∧  is 𝐾 × 𝐾 -dimensional matrix. Eigenvalues 𝜆 , 1 ≤ 𝑖 ≤ 𝐾  are their diagonal 
elements. 𝛟(𝒚 ) is the reconstruction of the test vector 𝛟(𝒚 ).  
2.2. Improved DeDPCA 

The purpose of extending the time series matrix to the original matrix is to eliminate 
the autocorrelation of variables. If the autocorrelation of a variable is low, not only little 
information can be included, but also it will increase the unnecessary calculation 
complexity. Therefore, the improved DeDPCA algorithm analyzes the autocorrelation 𝛼 
to set an appropriate lag 𝑘 for each variable. We denote a strong autocorrelation standard 𝛼 . 𝛼  was set to 0.5 empirically. Taking variable 𝑥  for example, if 𝛼(𝑛) > 𝛼  
when 𝑘 = 𝑛 , and 𝛼(𝑛 + 1) < 𝛼  when 𝑘 = 𝑛 + 1 , [𝑥 , ,  𝑥 , …𝑥 , ] will be 
added into expansion matrix at time t, where 𝑛 ≤ 𝑘 , 𝑘  is the maximum time lag 
calculated above. In this way, variables with strong autocorrelation are retained and 
variables with weak autocorrelation are eliminated, which can effectively retain the time 
series characteristics of data, but also simplify the data set and reduce unnecessary 
calculations. 
2.3. Control limit calculation 

Kernel density estimation(KDE)[6] is an  effective method for estimating probably 
density function(PDF), especially for univariate random processes. Therefore, it is very 
suitable for univariate 𝑇  and Q index estimation. 

The probability density function p(𝑥) at point x estimated according to the kernel 
function K(·)is defined as follows 
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p(𝑥) = 1𝑀ℎ K(𝑥 − 𝑥ℎ ) (9) 

Where 𝑥 ，k=1,2,···,M  is the sample of 𝑥, and ℎ is the bandwidth. 
Through the probability density function, the control limits 𝑇  and 𝑄  under a given 

confidence interval 𝛼 can be obtained.  
2.4. Fault information fusion 

For DeDPCA-based online sample monitoring, each layer provides two monitoring 
statistics 𝑇 ( ) and 𝑄( ), where 𝑙 = 1,2. In order to integrate the monitoring statistics of 
all feature layers, a fusion strategy based on Bayesian inference is proposed to conduct 
the overall decision. 

Taking 𝑇  metric for example, we express the failure probability of sample 𝐱  under 
the fault condition 𝐶  as 𝑃( )(𝒙 |𝐶 ), under the normal condition 𝐶  as 𝑃( )(𝐱 |𝐶 ) 𝑃( ) 𝐱 𝐶 = exp (−𝛾𝑇 ( )/𝑇 ( ))   (10) 

𝑃( )(𝒙 |𝐶 ) = exp (−𝛾𝑇 ( )/𝑇 ( )) (11) 

where  𝛾 is a parameter and was set to 0.2 empirically. 
According to Bayesian inference, monitoring statistics 𝑇 ( )  can be transformed to 

posterior probability 𝑃( )(𝐶 |𝐱 ) by 

𝑃( ) 𝐶 𝐱 = ( )(𝐱 | ) ( )( )( )(𝐱 ) ,  1 ≤ 𝑙 ≤ 2 (12) 

where 𝑃( )(𝐶 )  is prior failure probability equal to significance level 𝛿. 𝑃( )(𝐱 ) is the 
occurrence probability of sample  𝐱  𝑃( )(𝐱 ) = 𝑃( ) 𝐱 𝐶 𝑃( ) 𝐶 + 𝑃( )(𝐱 |𝐶 )𝑃( )(𝐶 ) (13) 

where 𝑃( )(𝐶 ) is prior normal probability equal to confidence level 1 − 𝛿. 
By weighting the posterior failure probability of each layer, an overall monitoring 

statistic data 𝑃𝑇  is constructed 

𝑃𝑇 = ∑ 𝜔( )𝑃( ) 𝐶 𝐱∑ 𝜔( ) = 𝜔( )𝑃( ) 𝐶 𝐱  (14) 

where 𝜔( ) and 𝜔( ) are weighting factor,  𝜔( ) = 𝜔( )/ ∑ 𝜔( ).  
     𝑃𝑄 can be obtained by the same way. The process is in normal condition if 𝑃𝑇 ≤𝑃𝑇  and 𝑃𝑄 ≤ 𝑃𝑄 ,  otherwise a fault is detected. 𝑃𝑇  and 𝑃𝑄  was set to 𝛿. 

3. Case study 
The TE process [7], [8], detailed by Downs and Vogel, has been a benchmark process for 

evaluating the process monitoring and fault diagnosis methods. For process monitoring 
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modelling, we select 52 monitored variables and 21 typical faults. The corresponding 
simulation data can be downloaded from http://web.mit.edu/braatzgroup/links.html. The 
normal operation dataset includes 500 samples. Each fault data set involves 960 samples 
and the faults are introduced after the 160th sample.  

For the DePCA, and DeDPCA, the Gaussian kernel function is used with a kernel width 
of σ =  50𝑁 found empirically. The number of the retained linear and nonlinear PCs is 
determined by the average method, which keep PCs greater than the average variance. 
The control limits of the monitoring statistics are computed by the KDE method, and the 
95% confidence limits are computed for each statistic. Bayesian inference is used to 
integrate the monitoring statistics of each feature layer to generate an overall decision. 
Three performance indices are used to evaluate the monitoring results, which are the fault 
detection rate (FDR), the fault detection time (FDT) and the false alarming rate (FAR).  

The detection results of the DePCA and DeDPCA are demonstrated in Table I. The 
average FDR of DeDPCA method is higher than DePCA for about 2.35%, indicading that 
DeDPCA is more likely to detect faults. The average FDT of DeDPCA method is earlier 
than DePCA for about 7 samples, indicating that DeDPCA can discover the fault more 
sensitive than DePCA. The average FARs of two methods are both low. Through the 
comparison of the three detection performance indices, the superiority of the proposed 
DeDPCA method can be clearly seen. 
Table I. Average FDRs(%), FDTs(sample) and FARs(%) of the 21 TE process faults 
obtained by DePCA and DeDPCA methods 

 

    In order to determine which layer to extract dynamic feature could have better 
monitoring performance, two models with different structure have been tested. One 
model extracting the dynamic feature at first linear layer is called DeDPCA-1, another 
extracting the dynamic feature at second nonlinear layer is called DeDPCA-2. The 
detection results are listed in Table II. Obviously, DeDPCA-1 gets higher FDR and lower 
FAR, denoting that extracting the dynamic feature at first linear layer is more suitable. 
Extracting the dynamic feature at second layer may loss some dynamic information at the 
first linear feature extracting process. 
Table II. Average FDRs(%), FDTs(sample) and FARs(%) of the 21 TE process faults 
obtained by DeDPCA-1 and DeDPCA-2 methods 

 
Although extending the time series matrix could improve the monitoring performance 

in TE process, it also increases the computational complexity. Thus improved DeDPCA 
method was proposed to reduce the computational complexity and keep effective 
monitoring performance at the same time. Table III shows the detection results of 
improved DeDPCA. Online monitoring programs of each method was runned 5 times for 

Method Average FDR Average FDT Average FAR 

DePCA 81.57 17 3.21 

DeDPCA 83.92 10 3.52 

Method Average FDR Average FDT Average FAR 

DeDPCA-1 83.92 10 3.52 

DeDPCA-2 79.47 6 14.01 
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average, configured with Intel Core i5-6200U CPU(2.4 GHz) and 8G RAM memory. It 
shows that the average time to compute one sample of improved DeDPCA reduced by 
34% compared to the former. The average FDRs, FDTs and FARs are about the same. 
Table III. Average FDRs(%), FDTs(sample), FARs(%) and C-time(s) of the 21 TE 
process faults obtained by DeDPCA and  improved DeDPCA methods 

 

4. Conclusions 
This paper takes the Tennessee-Eastman process as the test object to improves the 

DePCA method based on deep learning. Aiming at the problem that it does not consider 
the autocorrelation of process variables, a dynamic process is added to construct a 
DeDPCA model and is optimized. The simulation results show that DeDPCA is 
conducive to early detection of faults.  Besides, extracting the dynamic feature at first 
linear layer can get best detection results. Finally, improved DeDPCA reduces the 
computational complexity and meanwhile keeps excellent monitoring performance. 

There are still many issues worth discussing and improving. The current deep model 
only includes one linear layer and one non-linear layer. Whether it is necessary to extend 
several layers to increase the depth of potential data feature mining is a question. Besides, 
how to calculate the contribution of variables in the deep model to monitoring statistics 
requires further investigating. 
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Abstract 
In this paper, we present digitalization, control and optimization for entire cement plants 
based on model predictive control (MPC) technologies. We provide an overview of the 
employed MPC technologies and report statistics from several industrial implementations. 
This demonstrates that MPC technology can simultaneously increase the production by 
5-10%, reduce the fuel consumption for the cement kiln by 2-4%, reduce the power 
consumption by 3-8%, and significantly improve the consistency and uniformity of the 
final cement powder. The cement production industry contributes approximately 8% of 
the global CO2 emissions. We outline oxy fuel combustion and carbon capture 
technologies for cement plants operated along with water electrolysis plants and other 
power-2-X facilities. These technologies can decarbonize the cement production 
completely and rely on MPC technologies for their coordinated and optimized operation.  
Keywords: Model Predictive Control, Cement plants, CO2 capture, Power-2-X  

1. Introduction 
World cement production has increased around 20% in the past decade and reached a 
high of 4100 million tonnes in 2019. The electrical energy consumed in the cement 
production is approximately 110 kWh/tonne. 30% of the electrical energy is used for raw 
material crushing and grinding while around 40% of this energy is consumed for grinding 
clinker to cement powder. Hence, global cement production uses 18.7 TWh which is 
approximately 2% of the world’s primary energy consumption and 5% of the total 
industrial energy consumption. Furthermore, manufacturing of cement emits 3 Gton CO2, 
which is 45% of industrial’s CO2 emission. (IEA, 2020). Figure 1 describes the cement 
manufacturing process. It consists of blending, raw meal grinding, pre-calcining, clinker 
burning and cement grinding. In the crusher, mixing bed, and raw mill, limestone and 
other materials containing calcium, silicon, aluminums, and iron oxides are crushed, 
blended, and milled into a raw meal of a certain chemical composition and size 
distribution. This raw meal is blended and heated in the pre-heating system (cyclones) to 
start the dissociation of calcium carbonate into calcium oxide. In the kiln, the material is 
heated, kept at a temperature of 1200-1450◦C, and reacts to form calcium silicates and 
calcium aluminates. The reaction products leave the kiln as a nodular material called 
clinker. The clinker is cooled in the clinker coolers before being stored in the clinker silos. 
The clinker is ground with gypsum and other materials such as fly ash in a cement mill 
to form Portland cement.  In this paper, we present two cement related industrial MPC 
applications. A cement raw-mix blending application and a cement mill grinding MPC 
application. In applications, we apply a linear model predictive control (LMPC) algorithm 
with soft constraints. The proposed LMPC in both applications is able to optimally control 
the system operation, reduce power consumption, and improve production.  

http://dx.doi.org/10.1016/B978-0-323-88506-5.50203-5

PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Figure 1. Cement manufacturing process 

Carbon capture, storage, and utilization (CCUS) technologies can reduce CO2 emissions 
of cement plants significantly. Voldsund et al. evaluated and compared several CO2 
capture technologies, e.g., oxyfuel combustion, chilled ammonia process, membrane-
assisted CO2 liquefaction and calcium looping. Oxyfuel combustion provides the best 
energy performance and may significantly reduce CO2 emissions of cement kilns 
(Voldsund et al. 2019). Power-2-X refers to a series of technologies which can turn 
electricity into hydrogen and liquid fuels. We apply Power-2-X facilities to convert 
captured CO2 into added-value products by using renewable energies. The combination 
of CCUS and power-2-X technologies provides possibilities for reaching zero-emission 
cement plants and has the potential to be implemented in the cement manufacturing 
process of the future. 

2. Cement related Industrial MPC Applications 
2.1. Cement Raw-Mix Blending MPC Application 

 
Figure 2. The cement raw-mix blending process. 

Figure 2 describes the cement raw-mix blending process. The quarried materials such as 
limestone, clay, sand, and iron are crushed and sorted into piles in the mixing bed. The 
chemical compositions of sorted piles are assumed known and described in terms of the 
oxides CaO, SiO2, Al2O3 and Fe2O3. These piles are transported to a raw mill by a 
conveyor with a certain mixture proportion. In the raw mill, the raw material mixtures are 
blended and ground to the raw mill with a certain size. The output raw mill then is 
transported and stored in the homogenization silos. The cement raw-mix blending process 
is important since it will affect the quality of the clinker and the quality of the final product.  
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Two coupled input-output models describe the blending process 
𝑍"(𝑠) = 𝐺"(𝑠) ( 𝑃*𝑈*

*∈-

(𝑠) + 𝐻"(𝑠)𝑊"(𝑠), 21𝑎5 

									𝑍7(𝑠) = 𝐺7(𝑠)𝑍"(𝑠) + 𝐻7(𝑠)𝑊7(𝑠).																						 (1𝑏) 
𝑍" are the compositions of the mixture measured before the raw mill process and 𝑍7 is 
the compositions measured in the raw meal. 𝐺"(𝑠), 𝐺7(𝑠) are deterministic models and 
𝐻"(𝑠) , 𝐻7(𝑠)  are stochastic models. 𝑃*  is a constant parameter indicating the 
compositions of pile 𝑚 and 𝑈* is the input from the pile 𝑚, 𝑊" and 𝑊7 are stochastic 
inputs.  

 
Figure 3. The objective function of the soft constrained LMPC with three compositional parameter 
constraints and the simulation result. 

The raw meal must fulfil a set of quality requirements determined by three nonlinear 
compositional parameters: lime saturation parameter (LSP), silica modulus (SIM), and 
alumina modulus (ALM). Figure 3 shows the objective function. The objective function 
consists of a reference tracking objective 𝜙<, an input rate of movement objective 𝜙=>, 
an economic objective 𝜙?@A  and two penalty function terms 𝜙B , 𝜙C . For the reference 
tracking objective, the LSF parameter tracks the given setpoint for the optimal quality. 
The economic term of the LMPC objective function reduces the system input 
consumption. To avoid the infeasibility problem caused by hard constraints, we express 
the compositional parameter boundaries, LSF, ALM, and SIM as soft output constraints. 

Figure 3 shows the simulation results obtained by applying the soft constrained LMPC 
on a cement raw-mix blending model. The soft constrained linear model predictive 
controller is able to control the raw meal within the compositional parameter bounds. 
Furthermore, the produced clinker of cement kiln is increased by 3-5% and the energy       
consumption of the cement raw-mix blending process is reduced by 2-4%. The product 
quality improvement is up to 30%. 

2.2. Cement Mill Grinding MPC Application 
Figure 4 describes the cement mill grinding process. Clinker, gypsum, and fly ash are fed 
to a ball mill by a feed conveyor with a certain proportion. The ball mill has two chambers. 
In the first chamber, the material is crushed roughly with large steel balls. In the second 
chamber, the roughly crushed material is finely ground to a fine grey powder. The grey 
powder then is transported by an elevator to an air separator. In the air separator, particles 
are suspended by the stream from the bottom and rotated with a specific speed around the 
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wall. Coarse particles will hit the wall and fall into the recycle pipe. Finally, classified 
fine particles (cement powder) will be stored in cement silos. 

 
Figure 4. The cement mill grinding process 

A MIMO continuous-time input-output model describes the cement mill grinding process  
𝑍(𝑠) = 𝐺(𝑠)𝑈(𝑠) + 𝐺D(𝑠)2𝐷(𝑠) +𝑊(𝑠)5, 22𝑎5 
𝑦(𝑡I) = 𝑧(𝑡I) + 𝑣(𝑡I).																																				 (2𝑏) 

The system input is U(s) = [feed rate; separator speed], 𝐷(𝑠) +𝑊(𝑠)  are stochastic 
inputs. 	𝐺(𝑠)  is the deterministic model and 	𝐺D(𝑠)  is the disturbance model. The 
measurement output Y(s) = [elevator load; fineness] is obtained at discrete time and 𝑣(𝑡I) 
is the measurement noise. In the grinding process, the unmeasurable variations in material 
properties will cause significant nonlinearities and uncertainties. These nonlinearities and 
uncertainties lead to a model mismatch problem. Furthermore, the loading material level 
of the ball mill can also influence the system operation. Too much loading material will 
cause a plugging problem and too less loading material will cause energy waste (Prasath 
et al, 2013).  

 
Figure 5. The principle of MPC with soft output constraints and normal MPC (Prasath et al, 2013).  

To solve the described problems, we apply a soft constrained LMPC algorithm. The soft 
constrained LMPC can indirectly control the loading material level of the ball mill to 
reach the maximum capacity. The model mismatch problem can be solved by soft output 
constraints. The purpose of applying soft constraints in the cement mill grinding 
application is to make the controlled system less sensitive to model uncertainties. Figure 
5 describes the principle of normal constrained LMPC and soft constrained LMPC. A 
dead zone is created by the soft output constraints penalty function (red line). In this dead 
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zone, the penalty function is not sensitive to the change of error 𝑒 = 𝑧 − 𝑟. The value of 
the penalty function is extremely small and close to 0 in the dead zone and increase rapidly 
when the error is out of the dead zone. The range of the dead zone depends on the 
covariance analysis of the nominal system (Prasath et al. 2010). In this way, the controlled 
system is more robust to the stochastic noise and model uncertainties.  
We test the soft constrained LMPC algorithm on a simulated cement mill grinding circuit. 
The simulation results imply that the soft constrained LMPC can control and stabilize the 
cement mill grinding circuit. Furthermore, it improves the quality of the final cement 
powder. The production is increased by 3-8% and the power consumption is reduced by 
3-8%. The standard deviation of the final cement powder fineness is decreased 
significantly, in the range of 10-20%. 

3. CCUS & Power-2-X Technologies 
3.1. Oxyfuel Combustion CO2 Capture 

 
Figure 6. Reference clinker burning line with oxyfuel CO2 capture. 

Figure 6 shows a schematic illustration of a cement kiln with an oxyfuel combustion CO2 
capture system. The oxyfuel combustion process mixes recycled CO2 and air to produce 
a CO2 rich gas. Some of the CO2 rich gas is purified by a CO2 processing unit (CPU) 
and other is mixed with O2 in a gas mixer. O2 is produced by an air separation unit (ASU). 
Both ASU and CPU require power to work and some of the power requirement may be 
provided by an organic Rankine cycle (ORC). The mixed gas of CO2 and O2 is used in 
the rotary kiln process (Gardarsdottir et al. 2019).  
We can apply MPC technology to optimal control the oxyfuel combustion CO2 capture 
process. The operation of ASU and CPU requires additional electrical energy and 
economic MPC can help reduce system energy consumption and improve efficiency. In 
this way, the combination of the MPC algorithm and CO2 capture technology can 
significantly reduce CO2 emissions and power consumption. 
3.2. Power-2-X Advanced Process Control 
Figure 7 shows a network diagram that illustrates how Power-2-X facilities interact with 
CO2-emitting industry (cement plants). Application of CCUS technologies to capture 
CO2 emissions and Power-2-X facilities can convert captured CO2 into added-value 
products, e.g. methanol, ammonia, fertilizer, etc. The energy consumption of these 
facilities is covered by renewable wind and solar energy. Furthermore, integrated 
electrolytic hydrogen plants can produce H2 and SNG plants can, fuel and SNG+ by using 
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renewable energy. These added-value products can be used in other industries, e.g.  
chemical industries, farms, mobility, power and gas consumers. 

 
Figure 7. Carbon Capture, storage, and utilization (CCUS) & Power-to-X technologies. 

Coordination and optimization of such a system presented in Figure 7 require advanced 
process control system; and MPC technologies are in development and ideal to optimally 
control and coordinate the facilities in such an integrated system. In this way, we may 
achieve zero-emission cement plants that only rely on renewable energy. 

4. Conclusion 
This paper describes two cement related industrial MPC applications and outlines the 
oxyfuel combustion CO2 capture process for cement kilns as well as Power-2-X 
technologies. A soft constrained LMPC algorithm is implemented on a cement raw-mix 
blending process and a cement mill grinding process. The proposed soft constrained 
LMPC technology can increase the production by 5-10%, reduce the energy consumption 
for cement kilns by 2-4%, and improve product quality significantly. For the cement mill 
grinding process, the production is increased by 3-8% and the power consumption is 
reduced by 3-8%. The standard deviation of the final cement powder fineness is decreased 
between 10-20%. The combination of the MPC algorithms, CCUS as well as Power-2-X 
technologies have the potential to achieve zero-emission cement plants. 
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As a globally renowned specialist in chemical processes and plant construction, 
we can deliver turnkey solutions for sustainable chemical value chains. Fully 
integrated plant concepts harness synergies and enable high-efficiency produc-
tion of ammonia, methanol, SNG, fertilizers, and much more. Our portfolio  
also includes refinery technology, plastics and bioplastics and  
other downstream applications. All value chains gain in  
sustainability or can be completely CO2-free, such as  
“green ammonia” derived from photovoltaic  
energy, water electrolysis, air, and a  
world-class ammonia process.

Sustainable chemicals – integrated 
solutions from a single source

thyssenkrupp offers power-to-gas solutions for the needs of grid-scale renewables inte-
gration, and for industrial scale usage of hydrogen and subsequent products. Hydrogen 
serves as a clean energy carrier and can be stored for later re-conversion into electricity. 
It can be used within the gas grid, as fuel, or for carbon capture/recycling e.g. by producing 
methanol or SNG/methane.

A comprehensive set of solutions for the 
hydrogen economy of the future

Water, wind and sunlight are abundant. So is hydrogen, thanks to large-scale water electrolysis by thyssenkrupp. As world 
market leader in chlor-alkali electrolysis we put our technological expertise, our plant engineering and construction know-how 
into a high-efficiency solution. We provide pre-mounted skid modules for easy transport and quick installation. The result: 
Plug-and-play hydrogen production with low energy consumption and fast responding, flexible operation – suitable for any 
application, up to hundreds of megawatts.

Electrolytic hydrogen –  
the clean energy carrier, feedstock and fuel
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Abstract 
Pharmaceutical manufacturing plants consist of a wide range of complex unit operations, 
from upstream processing aimed at synthesis of Active Pharmaceutical Ingredients (APIs) 
to intermediate purifications and downstream processing for final product formulation. 
To ensure high pharma plant performance at minimised total cost and solvent waste, 
operators continuously assess key units, frequently with only input-output data available. 
First-principles modelling is desirable, yet parameterisation is often arduous and elusive. 
Statistical techniques, e.g. Latent Variable (LV) methods such as Principal Component 
Analysis (PCA) are widely used to explore industrial data and discover causality patterns. 
The present paper uses a PCA model to evaluate multicomponent adsorption of Volatile 
Organic Compound (VOC) gas emissions from salbutamol synthesis, via industrial FTIR 
data for mixtures of dichloromethane, chloroform, toluene, methanol and ethanol (IMS). 
Two industrial case studies are considered to analyse the interplay of these solvents, with 
strong evidence of preferential toluene adsorption on the activated carbon bed discussed.  

Keywords: Principal Component Analysis (PCA), Volatile Organic Compounds (VOC). 

1. Introduction 
Primary (upstream) pharmaceutical manufacturing is characterized by the consumption 
of large solvent volumes, key in reactions and separations. Volatile Organic Compounds 
(VOCs) are prominent but also problematic, as their high volatility at standard conditions 
has catastrophic effects on human health and environment, with extensive research on 
mitigation (Constable et al., 2007; Balasubramanian et al., 2012; Perez-Vega et al., 2013). 
Adsorption is a very effective abatement method, as it exploits the strong potential of 
porous materials to selectively adsorb VOCs from pharma effluents (Yang et al., 2019). 
Widely employed to treat high waste stream volumetric flows of low VOC concentrations 
(Das et al., 2004), it can achieve high process efficiency at relatively low energy demand. 
Nevertheless, adsorbent material procurement and/or regeneration costs are a challenge. 
 

The present paper describes the development and use of a novel Latent Variable, LV 
(specifically a Principal Component Analysis, PCA) model to analyse multicomponent 
VOC adsorption from pharma effluent mixtures onto an industrial activated carbon bed. 
This ongoing project has three goals. First, to develop and validate LV (PCA) models. 
Second, to explore causality and improve process understanding. Third, to improve VOC 
abatement performance by preventing undesirable (e.g. selective adsorption) phenomena.   

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50204-7
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2. Salbutamol Manufacturing Process Description  
Salbutamol is a proven bronchodilation medication: reliably expanding lung airways to 
comfort patients with respiratory conditions, it is commonly prescribed against Chronic 
Obstructive Pulmonary Disease (COPD), bronchitis, emphysema and other ailments. 
Manufacturing this API requires 4 feedstock compounds (diacetate, glycyl, benzyl, base), 
each produced in the plant as part of the salbutamol batch production schedule (Fig. 1). 
Prior to this project, the first two (diacetate and glycyl) subsystems were conclusively 
identified as the two major VOC sources, thus forming the exclusive focus of our study. 
The root cause of VOC emissions are the distillation units needed for solvent separation.   
Mass balance analysis for the majority of VOC emissions has previously indicated that: 
(1) for diacetate production, VOCs come from dichloromethane (DCM) atmospheric and 
vacuum distillation (occurring in vessel 3/V3), and toluene distillation (in vessel 4/V4). 
(2) for glycyl production, VOCs originate from chloroform and toluene distillation (V3).   
 

 
Figure 1: Diacetate (top) and glycyl (bottom) production schedules (grey denotes separation steps).  

Fig. 2 describes the VOC abatement system: all solvent emissions due to salbutamol 
production are simultaneously fed to the same treatment (fixed activated carbon bed) unit. 
Gas effluents from all vessels mainly comprise four solvents: toluene, dichloromethane 
(DCM), trichloromethane (TCM, chloroform), and Industrial Methylated Spirit (IMS), a 
mixture of methanol (MeOH) and ethanol (EtOH) which is widely used in pharma plants. 
Incoming fumes first enter a heat exchanger, which reduces the Relative Humidity (RH) 
to 50%,  as lower water content is known to improve VOC adsorption by the carbon bed. 
Once treated, the purified gas stream is subsequently discharged into the atmosphere, with 
the FTIR sensor collecting VOC concentration data within the exhaust stack (Fig. 2/star).  
 

 
Figure 2: The VOC abatement system (a star denotes the FTIR sensor sampling point of the stack).  

 

1326



Process Monitoring with Advanced Analytics in the Pharmaceutical Industry 

3. Principal Component Analysis (PCA) Methodology 
Principal Component Analysis (PCA) is an established statistical methodology we use 
here for VOC adsorption evaluation, to extract process features and elucidate key trends 
(MacGregor et al., 2005; Rajalahti & Kvalheim, 2011; Venkatasubramanian et al., 2013). 
Industrial (GSK) data on VOC emissions production conditions have been compiled from 
an effluent gas monitoring station for the salbutamol API plant (Montrose, Scotland, UK). 
The VOC emissions discharged from the API plant exhaust stack (Fig. 2) are continuously 
monitored via Fourier Transform Infrared Spectroscopy (FTIR), and the key compound 
concentrations, process conditions (P, T) and vessel numbers, are fed to a nearby station. 
 
For the purpose of this project, two distinct phases and case studies have been considered, 
corresponding to VOC-critical production stages encompassing distillation separations. 
The raw FTIR data has been pre-processed and split into a training and a testing dataset. 
For each dataset, observations have been mean-centred and auto-scaled to reduce bias, 
and then pre-processed to remove obvious outliers due to sensor shutoffs. The Hotelling T  values have been subsequently computed in order to identify other potential outliers.  
 
After essential pre-processing, PCA models are validated and used for two case studies. 
An important PCA modelling decision is the selection of the number of latent variables 
(Principal Components, PCs) required, for which we have considered three (3) criteria:  
 
(1) The first criterion is the level of variance explained by Principal Components: we 
have opted for our PCA model to explain a minimum of 80% of the variance in the data,  
(2) The second criterion is the pair of R2 and Q2: the coefficient of determination (R2) 
is the proportion of the dependent variable variance that is predictable from independent 
variables, Eq (1); the predictive squared correlation coefficient (Q2) is the residual 
variation after applying it to samples held out (the portion of such a sample not explicable 
by the model), Eq (2). The combination of R2 and Q2 metrics helps selecting the number 
of PCs at the point where R2 and Q2 are about equal and as the Q2 value begins to decline. 
 𝑅 = 1 − Var(𝑿 − 𝑿)Var(𝑿)  (1) 

 𝑄 = 1 − Var(𝑿 − 𝑿𝑪𝑽)Var(𝑿)  (2) 

 

where Var denotes variance of the data sample (R2) and cross-validation sample (for Q2). 
Their calculation is almost identical: the only difference is that R2 is computed from data 
used for PCA model training, while Q2 is computed from held-out (cross-validation) data. 
 

(3) The third criterion (Root Mean Square Error of Cross-Validation, RMSECV), is 
calculated using Eq. (3). To select the number of PCs, we use the point where RMSECV 
values increase and then begin to decline, reflecting Q2 trends from the second criterion. 
 

𝑅𝑀𝑆𝐸𝐶𝑉 = 1(𝐼𝐽) 𝑋( )  (3) 

 
where Xij

(r) is the residual of sample i (total: I) and variable j (total: J) after r components. 
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4. First Case Study: Results and Discussion 
The first PCA model addresses the simultaneous operation of toluene distillation in V4 
(during the first batch of the diacetate stage), the DCM atmospheric distillation in V3 
(during the second batch of diacetate stage) and the chloroform and toluene distillation in 
V15 during the glycyl stage. For ease of reference, this dataset is referred to as the 
simultaneous operation of V3 and V4, as per the colour-coded process diagram (Fig. 3).  
The loadings scatter plot (left) shows the use of Principal Components (PCs) to explain 
each variable: here, we note PC2 separates toluene emissions from the rest of the VOCs. 
The score plot (middle) quantifies how PCs explain each observation in a dataset, with 
data point colours corresponding to time periods in which vessels operate simultaneously. 
For example, toluene distillation (in V4) and DCM atmospheric distillation (in V3) occur 
together between 06:00-09:00; data point swarms clearly shift with time (orange arrows). 
The biplot (right) synthesises information from the said two plots, illustrating a 
combination of all PC scores and loadings which helps us draw quantitative conclusions. 
A key observation is that the amount of toluene recorded declines with time (data subsets). 
 

 
Figure 3. Case study 1 schedule (top); loadings scatter plot, score plot and biplot (L to R, bottom). 
 

The contribution plots are valuable in portraying variance captured vs. PCs used (Fig. 4). 
The first two PCs explain 55.37% but four (4) PCs can explain 80.81% of data variance. 
The R2 and Q2 plots are also key in deciding the number of PC employed: for the case of 
4 PCs, we note that both R2 and Q2 values are similar and the Q2 value starts to decline. 
The RMSECV plot confirms that 4 PCs suffice here, as it mirrors the trend of the Q2 plot.  

 
Figure 4. Contribution plots, R2 and Q2 and RMSECV plots for variable PC number - case study 1. 
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5. Second Study: Results and Discussion 
The second PCA model addresses the simultaneous DCM vacuum distillation (in V3) and 
chloroform distillation (in V15), which is followed by toluene distillation therein (Fig. 5). 
The PCA model construction and analysis methodology is identical to the one described 
and followed in the first case study, but the situation and observations are quite different. 
The loadings scatter plot shows that PC1 separates toluene from other VOC emissions; 
the latter change considerably as time progresses, from toluene, to ethanol, to chloroform, 
to DCM and methanol. The biplot corroborates these indications of industrial importance.  
 

 
Figure 5. Case study 2 schedule (top); loadings scatter plot, score plot and biplot (L to R, bottom). 
 

From the contribution plots (Fig. 6), we see the first 2 PCs explain 60.57% of the data, 
while the first 4 PCs explain 82.76% of the data, thus being adequate for our PCA model. 
The R2 and Q2 plots, and the RMSECV plot, concur that 4 PCs suffice to explain the data.    

 
Figure 6. Contribution plots, R2 and Q2 and RMSECV plots for variable PC number - case study 2. 
 

The PCA analysis plots for both case studies clearly indicate that toluene emissions 
progressively decline over time, with concurrent increase of others (DCM, MeOH/IMS), 
despite the existence of toluene in the raw stream fed to the carbon bed at the same time. 
This observation suggests the selective adsorption of toluene onto the carbon bed, a trait 
that differs from what happens for other VOC compounds coexistent in the VOC mixture. 
Adsorption Theory informs us that vapour thermophysical properties can be used to probe 
selective absorption, the strongest indicators being high boiling point and high polarity. 
Toluene has a similar MW to DCM (92.1 to 84.9), but much higher b.p. (111 vs. 39.6 °C). 
A similar trend holds for toluene vs. TCM/chloroform (MW= 119.4, but b.p.= 61.2 °C).  
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6. Conclusions 
Upstream pharmaceutical manufacturing inevitably relies on significant solvent volumes 
for many (especially reaction/separation) uses, with great environmental repercussions.  
Efficiently capturing VOCs from pharmaceutical effluent streams is a strategic priority 
for advanced manufacturing striving to embrace greener practices via limiting waste, and 
VOC pollutant adsorption on activated carbon beds is an established industrial practice. 
The power of LV (PCA) methods (MacGregor et al., 2005; Kourti, 2005) comes to aid. 
The present paper has validated and used a PCA model to study VOC adsorption onto an 
activated carbon bed which processes multicomponent effluents of salbutamol synthesis. 
We have confirmed that toluene clearly behaves differently from all other VOCs emitted, 
with strong evidence suggesting its selective adsorption; its higher boiling point vs. the 
other compounds is an indication of strong adsorbate-adsorbent intermolecular forces. 
Furthermore, Industrial Methylated Spirit (IMS) appears to play a key role in adsorption, 
as it appears that it has substantial interaction with the carbon bed and is potentially 
inhibiting the removal of more hazardous VOCs (e.g. DCM, TCM) from the raw feed. 
Though selective toluene adsorption has already been suspected from empirical evidence, 
the potentially harmful role of IMS presence is a new key finding of this research study. 
Ensuring inlet concentration data acquisition is essential for subsequent studies, as it is 
clearly important to distinguish sources and composition of streams fed to the carbon bed. 
Further investigation of toluene and IMS effects via data from various batches/locations 
can elucidate their potential for detrimental bed interactions and preferential adsorption,  
towards measures (e.g. effluent feed scheduling) ensuring cost-effective performance. 
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Abstract
Petroleum refineries are complex systems that consist of multiple integrated units. This
situation makes it difficult to track down the root cause of abnormal situations that
occur during production. It is noted that abnormal situations usually trigger plant-wide
oscillations in a number of measured process variables. Therefore, root cause detection
is often attempted to be carried out by examining these trends in process data.
Observing multiple effects and underlying problems at the same time presents a
challenge in determining the root cause by examining trends only. In this study, spectral
envelope is used to detect oscillations by identifying the variables and categorizing them
based on a statistical hypothesis test which produces Oscillation Contribution Index
(OCI) in order to isolate potential root cause variables. Two distinct abnormal events in
the hydrocracker unit that occur simultaneously were successfully isolated and the root
causes could be assigned by using the spectral envelope analysis.

Keywords: Root-cause analysis, Multi-effects, Plant-wide oscillation, Spectral
Envelope

1. Introduction
Plant-wide oscillation is a general term used to express the propagation of an oscillatory
effect throughout the entire plant originating at one location in the plant. Plant-wide
oscillations may cause deterioration in the quality of the product, energy losses, sudden
problems/shut-downs in the plant. Poor tuning in control loops, valve problems such as
valve stiction and fouling, interactions between different plants are common root-causes
of oscillations.

In the literature, different techniques have been proposed for detecting similar
characteristics of the variables and diagnosing root-causes. Duan et al. (2014) provided
a review of these detection and diagnostic techniques (Choudhury MAAS, 2011).
High-density plot is one of the off-line visualization technique to show spectral plots of
related variables. Thornhill et al. (2003) have tried to detect the oscillations that have a
common frequency based on the regularity of zero-crossings of the control error signal.
Jiang et al. (2007) have proposed a new method called the spectral envelope to cluster
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the variables, which have similar spectral behaviors. This paper shows the capability of
spectral envelope method for diagnosing two different root-causes based on a real plant
data from a refinery in Turkey. One of the major root cause is the temperature effect
associated with a stream coming from another plant. The other root cause is related to
the fouling of a control valve for a level control loop in a downstream process drum that
acts to compensate for the effect of the temperature change of this stream.

2. Detection and Diagnosis with the Spectral Envelope Method
2.1. The Spectral Envelope Method

Finite number of data samples is used in a data matrix of m variables and n samples
represented as Here, x is a multivariate,𝑋 = 𝑥 0( ),  𝑥 1( ), …,  𝑥 𝑛 − 1( )[ ] ∈ 𝑅𝑚𝑥𝑛.  
vector-valued time series on as in Eq. (1):𝑅𝑚

…𝑥 = 𝑥
1
(𝑡) 𝑥

2
(𝑡) ...  𝑥

𝑚
(𝑡) [ ]𝑇   𝑡 = 0, ±1,  ±2, (1)

To simplify the calculations and obtain more meaningful results, it is preferable to use
the matrix created with the normalized form of each variable (Jiang et al., 2007). The
periodogram of the X matrix is calculated for a large sample set based on the fast
Fourier transform assumption as:

𝐼
𝑛

^
ω
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where , for are the Fourier frequencies. This approach isω
𝑘

= 𝑘/𝑛 𝑘 = 1,  2,  …, 𝑛/2
not exactly consistent with the power spectral density (PSD). Therefore, a smoothed
periodogram estimate by creating the symmetric moving average of can be𝑃
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When the maximum value of the eigenvalues , say , isλ
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𝑚

ω( ) { } λ(ω)
plotted against the frequency and if a peak appears at any frequency,ω = 1, 2, …,  𝑛/2
it implies that a plant-wide oscillation may be possible at that frequency. For further
detection of oscillating variables, the asymptotic covariance matrix of the optimal
scaling vector , is estimated according to the calculated eigenvectors andβ
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to which is the upper α% of the distribution with 2 degrees of freedom. If theχ
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2,α
2

test statistic exceeds the critical value, the null hypothesis is rejected and hence it is
concluded that the time series has an oscillation at that frequency for the jth variable
(David et al., 2000).

2.2. Root Cause Diagnosis via the Spectral Envelope Method

The root-cause determination of unit-wide oscillations and the isolation of the root
cause are challenging tasks. To isolate key variables after applying the chi-square test,
Jiang et al. (2007) proposed a new index called as the Oscillation Contribution Index
(OCI):

𝑂𝐶𝐼
𝑗

ω( ) =
β

1,𝑗

^
(ω)

2σ
β
(ω) (6)

where is the standard deviation of the optimal scalings of variables which haveσ
β
(ω)

oscillations based on the chi-square test. This index shows the contribution of variables
to the oscillation at that frequency. The criterion for the most contribution to the
oscillation is OCI( ) >1 at frequency .ω ω

using Industrial Data
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3. Refinery Case Study
3.1. Process Description

The Steam-Methane Reforming Unit, which is known as the Hydrogen Generation Unit,
is a common process due to the increasing demand on producing environmentally
friendly and light-end products by cracking and desulfurization in refineries and other
petrochemical industries. In this paper, a process anomaly experienced in a specific part
of this unit has been studied.

Since the catalyst of the reforming reactor is very sensitive to sulfur and halogens, the
steam-hydrocarbon mixture undergoes a pretreating process before entering the
reforming reactor. In the pretreating reactors, sulfur and halogens in the natural gas and
naphtha should be converted to H2S and HF/HCl in order not to deactivate the
reforming catalyst. After the pretreatment section, a mixture of CO, CO2, CH4 and H2,
which is also known as syngas, is obtained and goes to the shift reactor for conversion
of CO to CO2.

Figure 1. Process Flow Diagram of Part of the Hydrocracker Unit

In Figure 1, the process flow diagram of the section that includes the shift reactors in the
unit is shown. The syngas coming out of the shift reactor (C-1 in Figure 1) is cooled
first in the heat exchanger E-1 and then on the shell-side of E-2, E-3, E-4 heat
exchangers with boiler feed water (BFW) on the other side. The purpose of the cooling
of the stream after the reactor is the condensation of the steam and then, to remove the
resulting water from the gas stream as liquid in the hot condenser drum (C-2 in Figure
1). Then, the water-gas mixture is separated into gas and water streams in C-2. The gas
stream obtained from C-2 is cooled to a lower temperature in the E-5 and E-6 coolers
and sent to the cold condenser drum (C-3 in Figure 1) for removing the water in the gas
phase. The water stream obtained from C-2 is mixed with the output water stream of
C-3 and fed into a stripper column (C-5 in Figure 1).

3.2. Case Study

As mentioned above, BFW is generally fed into the heat exchangers as a cold stream.
However, BFW may sometimes be sent as a hot stream into the exchangers depending
on the operations of the BFW generation unit. If the BFW stream coming from the unit
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is hot, water present in the syngas cannot be condensed to the extent when BFW is
charged as a cold stream. As a result, the upstream of C-2 contains much more water as
steam and more steam condenses in E-5 and E-6 coolers. Condensed excess water
causes an increase in the C-3 drum level and this situation is normally controlled by the
valve connected to the level controller in the bottom of the drum. As time passes,
however, the presence of water leads to fouling (often as scaling) inside the valve and
so, in the case of a level increase, the valve stem opening cannot be effectively
controlled, leading to a sticky valve situation. In this study, the simultaneous effect of
temperature variation of the BFW stream and valve fouling were investigated.

3.3 Industrial Data Sets

Total of 33 tags from the hydrocracker unit in the Turkish Petroleum Refinery were
studied. Four of these tags belong to the control loops and the remaining 29 tags to
sensor transmitters. The points where the numbers in the general flow schema given in
Figure 1. show the location of tags. The labels of both transmitter and controller
information corresponding to the numbers are noted in the table in Figure 1. TI, PI, LIC,
TIC and FIC represent temperature indicator, pressure indicator, level controller,
temperature controller and flow controller, respectively. In this study, using historical
data, the spectral envelope was estimated on a daily basis for the 64 days before the
event occurred. The sampling interval was 60 s and so there were a total of 1440 data
points in one day. The tags of daily data are placed in a matrix with columns as
variables. The data matrix is standardized and then the spectral envelope on a daily
basis is calculated using Eq. (2) to (6). Based on the estimated spectral envelope and
determined oscillation frequencies, a statistical hypothesis test is performed to
determine if the variables oscillate with these frequencies. Then, the OCI index is used
to isolate key variables that cause (or associated with) the problem.

A Study of Spectral Envelope Method for Multi-Cause Diagnosis
using Industrial Data
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4. Results and Discussion
With the spectral envelope analysis performed for 64 days, the OCI index values show
that about 20 variables could be root-cause variables contributing to the oscillation(s).
Therefore, the rest of the article will examine these 20 variables known to have an
effect, which are indicated on the y-axis in Figure-2. The common frequencies of the
oscillations are determined by the spectral envelope and the results are verified by
estimation of Power Spectra. Power spectra on the 2nd(without any problems), 34th(BFW
temperature switch), 61st(with valve stiction) days are given as samples in Figure 2a, b
and c, respectively.

It is expected that the effect of temperature change can be observed on days when the
temperature of the BFW stream changes. If there is no temperature effect, the normal
oscillation period of the level control loops will be observable. In Figure 2a, the effect
of the level itself over oscillation is seen at Tag-8, Tag-24 and Tag-27. Temperature of
BFW was supplied as slightly cooler to the plant on the 34th day. Therefore, the
oscillations observed in all tags (Tag-4, 5, 8, 9, 14, 18, 20, 24, 25) could be attributed to
the BFW temperature shift with a frequency of 0.0002034 s-1 as detected in Figure 2b.
On the 64th day, the valve fouling reached a critical level and caused a shut-down in the
unit. The fouling effect of the valve is also seen in the power spectrum of the data set
from a few days before the event, i.e., 61 days, given in Figure 2c. Process and
manipulated variables of the level controller (Tag-24 and Tag-25), on the C-3 drum are
dominantly oscillating with a frequency of 0.0039632 s-1. Power spectrum results are
validated with spectral envelope as in Figure 3 and two distinct effects can be easily
isolated. Variables contributing to the specified frequencies as OCI>1 were also noted
on the below graph.

Figure 3.Spectral envelope of the 33 variables

In the early days, there was no frequency for valve contamination (as in Figure 2a). A
new frequency (0.25692 s-1 or 0.23889s-1) with OCI>1 for both Tag-24 and Tag-25
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appear over time (as in Figure 2b, 2c) and maintained its continuity close to the unit
shut-down.

5. Conclusion
In this study, the simultaneous events affecting a process unit and how these effects can
be isolated using a post-mortem analysis are studied. With the increasing fouling of the
valve the unit has been experiencing a gradual build-up a failure mode. According to the
results of spectral envelope method, the impact of the fouling can be detected up to a
few days in advance without causing any serious problems in the unit, while also
identifying a shift in the BFW stream temperature occurring during the same period.
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Abstract 
The proceeding digitalisation of industrial facilities does not only provide meeting the 
requirements of flexibility and just-in-time production. It comes with increasing 
vulnerability against cyberattacks. This already manifests in high numbers of 
cyberattacks against industry 4.0 facilities (KasperskyLab, 2020). In these cyber-
physical-systems, cyberattacks do not only affect the informational system, they can also 
cause damage in the physical part that is closely coupled to the informational part. 
Therefore, new methods for securing industry 4.0 facilities against cyberattacks are 
required. The method introduced in this paper continuously checks if the measurements 
and setpoints fulfil the systems physical relations utilizing data reconciliation and extends 
it by consideration of informational properties for detecting, localizing and selectively 
combatting cyberattacks.  

Conventional protection methods like the comparison of each measurement with a 
specific range of save service cover only basic sensor failures and trivial cyberattacks. A 
more sophisticated protection method, which analyses the consistence of the static system 
state with respect to a static system model of the process was introduced in (Reibelt et al. 
2020) using static data reconciliation. The new method presented here is also applicable 
in dynamic system states. This paper shows the adaptation of the data reconciliation based 
approach for dynamic system relations and demonstrates its application. 

Keywords: cyber-security, data reconciliation, industry 4.0, cyber-physical systems, 
dynamic states  

1. Introduction 
Cyberattacks targeting on physical damage are usually based on false data injection. 
Values of measurements (or actuator setpoints) are exchanged by different values. The 
manipulated values pretend a system state that is different from the actual one. For 
causing physical damage, the manipulated system variables can pretend to require 
setpoint values different from the ones the actual system state requires. This can cause 
control actions running the system into a critical state or prevent mandatory control 
interventions. Manipulated actuator setpoints can directly cause critical system states. 
Attacks can also aim at production losses, either by disturbance of product quality or by 
extending down times.  
Many of these manipulations can be realized in a manner they are not detected by 
common protection systems on comparing values to ranges of safe service. As data 
reconciliation uses a more detailed description of the system, taking into account the 
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relations between variables, it is able to detect and localize false data injection in many 
more cases.  
The manipulation can be implemented e.g. by modifying the measurement itself, by 
modifying the preprocessing of values in smart sensors, by modifying the communication 
interface, messages, or communication connections or by manipulating the values in the 
process control system. This variety of possible attack vectors as well as the existence of 
unknown ones cannot be satisfactorily faced with attacker models. For our detection 
method, prior knowledge that is more general is used to improve the detection, such as 
exposition to networks or informational commonalities effecting the vulnerability 
towards cyberattacks. This also prefers anomalies caused by manipulations against sensor 
failures that are also detected by the anomaly detection. 
This paper will give a brief summary to gross error detection based on data reconciliation 
and our extension for the detection of cyberattacks in section 2. In section 3, the modelling 
of dynamic system relations and the adaptation for data reconciliation is described. 
Section 4 shows the evaluation of the detection performance. Therefore, a simulated 
example system with manipulations is used to generate receiver operating characteristic 
curves (ROC-Curves). 

2. Extended Data Reconciliation Gross Error Detection 
For the evaluation of system variable values, the physical relations, restrictions and 
conservation laws are described by mathematical equations. With the vector 𝑦 containing 
all observed system variables, the equations are converted to one common system 
equation 
 𝑨 ∙ 𝑦 = 0 (1) 
 
Statistical errors of the variables as well as manipulations cause deviations from this 
equation that manifest in equation residuals 𝑟 = 𝑨 ∙ 𝑦. Data reconciliation allows for 
calculating optimized variables 𝑦 that are the closest values to the noisy system values 𝑦, 
fulfilling the system equation (1). The gross error detection methods used in this paper, 
are based on the evaluation of the residuals 𝑟 or on the measurement deviations (𝑦 − 𝑦).  
- For the measurement test the measurement deviation of every system variable is 

considered. The test statistics is calculated by weighting the deviation with the 
corresponding variance 𝑽 : 𝑑 = 𝑽 ∙ (𝑦 − 𝑦)  (Tahamhane, 2010) 

- The global test evaluates, if the sum of the residuals 𝑟 = 𝑨 ∙ 𝑦 is compatible to a 
system without manipulations, with respect to the variance in the residual space: 𝛾 =𝑟 ∙ 𝑽 ∙ 𝑟. For localizing manipulations, the variables are removed one by one and 
the test is repeated. (Madron, 1985) 

- For the hypotheses test, reference residuals 𝑓 for norm manipulations are calculated. 
They form the column vectors of a matrix 𝑭. These reference residuals are compared 
to actual residuals 𝑓 by calculating the test statistics: 𝑇 = (𝑭 ∙ 𝑽 ∙ 𝑭) ∙(𝑭 ∙ 𝑽 ∙ 𝑟) . (Narasimhan et al., 1987) 

In all three test methods a threshold is applied to decide whether current 
residuals/deviations can be explained by measurement noise or indicate a cyberattack.  
In order to facilitate the detection of manipulations of combinations (subsets) Xi of 
variables Y with common properties Pi: 𝑋  =  𝑌|𝑃  (such as common subnet or 
operation system of the sensors, having a common type of vulnerability towards 
cyberattacks) in this paper an adaption of the threshold is proposed. Therefore, the general 
threshold is multiplied by an adaptation factor 1 − 𝑆 / ∙ 𝐼  for measurement/ 
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hypotheses test and by (1 + 𝑆 ∙ 𝐼 ) for the global test respectively. Here 𝐼  (0 ≤ 𝐼 ≤ 1)  
is a factor representing the prior knowledge about the vulnerability of the common 
property 𝑃 . A value 𝐼 = 1 means maximum vulnerability. The factor 𝑆 (0 ≤ 𝑆 < 1) 
specifies how strong the prior knowledge about common vulnerabilities of Xi affects the 
resulting threshold. Thus, for subsets Xi, the general thresholds for measurement test 
TH0_MT  and for hypotheses test TH0_HT  are adapted according to: 
 𝑇𝐻 _ / = 𝑇𝐻 _ / ∙ 1 − 𝑆 / ∙ 𝐼  (2) 
 
And for global test the general threshold TH0_HT has to be raised for expected 
manipulations and therefore is adapted according to:  
 𝑇𝐻 _ = 𝑇𝐻 _ ∙ (1 + 𝑆 ∙ 𝐼 ) (3) 
 
Here, 𝑆 is limited to a degree, that the detection of combinations without prior known 
commonalities is not completely suppressed. Additionally in the proposed method, 
thresholds are defined, that allow the decision, if higher order combinations of 
manipulated variables are likely.  

3. Considering Dynamic System Relations 
The construction of a dynamic system model used in this paper comes from the common 
dynamic equation scheme with input variable u and system state variables x: 
 𝑑𝑥(𝑡)𝑑𝑡 = 𝑨 ∙ 𝑥(𝑡) + 𝑩 ∙ 𝑢(𝑡) (4) 

 
This time-continuous model can be transformed to a time-discrete form, fulfilling the 
equation: 
 𝑥(𝑘) = 𝑨 ∙ 𝑥(𝑘 − 1) + 𝑩 ∙ 𝑢(𝑘 − 1) (5) 
 
For our appliance of data reconciliation, the system equation has to be expressed 
according to the pattern of Eq. (1). When the input variables 𝑢 and the system variables 𝑥 are composed to a new variable vector 𝑦(𝑘) = 𝑢(𝑘) 𝑥(𝑘) 𝑢(𝑘 − 1) 𝑥(𝑘 − 1) , 
Eq. (5) can be transformed to the pattern of Eq. (1): 
 𝟎 −𝑰 𝑩 𝑨 ∙ 𝑦(𝑘) = 0 ⟹ 𝓐 ∙ 𝑦(𝑘) = 0 (6) 
 
For this model at least two timesteps have to be taken into consideration. For improving 
the data reconciliation in real systems with statistical errors, longer timespans are 
considered. Then variable vectors are extended to  
 𝑦(𝑘) = 𝑢(𝑘) 𝑥(𝑘) 𝑢(𝑘 − 1) 𝑥(𝑘 − 1) … 𝑢(𝑘 − 𝑛) 𝑥(𝑘 − 𝑛)  (7) 
 
and the matrix 𝓐 is extended to 
 𝓐 = 𝟎 −𝑰 𝑩𝟎 𝟎 𝟎⋮ ⋮ ⋱ 𝑨 𝟎−𝑰 𝑩⋱ ⋱ 𝟎 𝟎 ⋯𝑨 𝟎 ⋯⋱ ⋱ ⋱  (8) 
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There are publications using an optimization method they call dynamic data 
reconciliation (e.g. Bai et al. 2006), but they use a tuning factor for adapting the predicted 
values 𝑥(𝑘 + 1) to the measured values similar to the Kalman-Filter. This adaption hides 
manipulations that do not show fast changes, therefore it is not usable for manipulation 
detection. 

4. Evaluation 
The dynamic system example was constructed on the standard example of data 
reconciliation shown in Figure 1 (Narasimhan et al., 2000). Between the 
measurement/actuator points dampings with time constants of T2 = 2 s, T3 = 3 s, T4 = 4 s, 
T5 = 5 s, T6 = 6 s are introduced. As varying input signal a sine function of amplitude 1 
and period time of 2π s was used. The total time considered is 10 s.  
 

 
Figure 1: Standard example, cooling circuit with six connected devices, matrices for 
continuous dynamic system model. 

From these matrices describing the dynamic system in time-continuous form, the time-
discrete form is calculated for sample time 1 s (zero order hold) and finally the matrix 𝒜 
is determined. 
The variables are not coupled with the same strength, so an additional normalization of 
the test statistics is necessary. Therefore, for a normalized manipulation of all variables 
and combinations, the test statistics of the variables or combinations manipulated indeed 
are calculated without statistical errors. For demonstration in Table 1 the test statistics for 
manipulations in single variables are shown for a manipulation height of 1 and 2 for 
measurement test and hypotheses test. For the global test all test statistics would be 0, 
since the manipulated variable is directly eliminated for calculating the test statistics.  

Table 1: Test statistics of single variable in case of manipulation of the respective 
variable. Manipulation amplitudes are 1 and 2. 
 Measurement Test Global Test Hypotheses Test 
Var manip 1 manip 2 manip 1 manip 2 manip 1 manip 2 

1 0.9792 1.9584 0 0 0.0641 0.2566 
2 0.7228 1.4456 0 0 0.3028 1.2115 
3 0.5025 1.0050 0 0 0.1069 0.4276 
4 0.4145 0.8290 0 0 0.0567 0.2267 
5 0.3205 0.6410 0 0 0.0392 0.1569 
6 0.1265 0.2531 0 0 0.0156 0.0626 

 
In the case of linear systems for hypotheses test, the test statics for manipulations with 
amplitude of 2 are always 4 times the value of the ones for manipulations with amplitude 
of 1. For measurement test they are only double the value. These relations are the same 
for all combinations as well. Therefore, a normalization with the test statistics value of 
the normalized manipulations does make sense for measurement test and hypotheses test. 
The relations also allow for determining the threshold adaptions 𝑆 for measurement test 
and hypotheses test. If e.g. an unexpected manipulation should be detected at double the 
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amplitude of an expected one, the adapted threshold can be half the general threshold for 
measurement test (=> 𝑆 = 0.5), a quarter of the threshold for hypotheses test (=> 𝑆 = 0.75). For global test, this kind of determining the threshold adaption is not 
feasible, as without statistical errors, the test statistics values always become zero (test 
statistics for GT in Table 1). For the evaluation example the threshold was chosen to be 
raised by up to three quarters (=> 𝑆 = 0.75).  
For evaluation of the new detection method, the statistic errors are simulated with a 
variance of 1. More than 23,000 manipulations are simulated with amplitudes of ±3. The 
combinations of variables Xi with common properties (common type of vulnerability 
towards cyberattacks, i.e. expected manipulations) are listed in Table 2. 

Table 2: Example for prior knowledge, used for evaluation. 
Property Pi Factor Ii Variables Xi = {Y|Pi} 
e.g. online configurable 1 1 
e.g. value transmitted online 1 3 
e.g. non-decrypted Wifi communication 1 6 
e.g. common operating system 1 1, 5 
e.g. shared hardware 1 4, 6 
e.g. common firmware producer 1 2, 3 
e.g. common communication protocol 1 1, 2, 3 
e.g. common network layer with high exposition 1 3, 4, 5 
e.g. common software producer 1 2, 4, 6 
… 1 3, 5, 6 

 
For creating comprehensible results, the vulnerability factor is set to maximum (𝐼 = 1) 
for each property Pi. When testing for expected manipulations Xi, the adapted threshold 
is considered, otherwise the general threshold is used.  
 

 
Figure 2: ROC-Curves for the three tests for different numbers of manipulated variables 
and different threshold adaptions.  

Based on all simulated manipulations, for determining the ability of the tests and the 
optimal general thresholds, ROC-curves (Fawcett, 2005) are generated. ROC-curves are 
determined by plotting the true positive rate (sensitivity) against the false positive rate (1-
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specificity) for different general thresholds (Figure 2). For optimal selectivity, the general 
threshold referring to the point with the highest distance to the diagonal is selected. This 
threshold is labelled in the plots. For all detection methods, the ROC-curves are 
determined for manipulations of single variables (1 Error), for conjoint manipulation of 
two variables (2 Errors) and for conjoint manipulation of three variables (3 Errors). To 
show the effect of the threshold adaption, the ROC-curves are calculated for different 
threshold adaptions 𝑆. The brightest coloured curve is the ROC-curve without threshold 
adaption (𝑆 = 0), and the darkest coloured curve the one for the adaption values given 
above. The green coloured curves refer to the test for selecting higher order combinations 
as candidates for the actual manipulated variables. For measurement test (yellow) and 
hypotheses test (blue) the threshold is used to check if single variables or certain 
combinations of variables are a subset of the actual manipulated variables. The area 
between the ROC-curves and the diagonal (random guesses) is a measure for the 
performance of the test. Already when using the general thresholds (adaption 𝑆 = 0), the 
tests performs much better than random guesses. By introducing prior knowledge of 
commonalities, using adaptions 𝑆 > 0, all three test methods show a high performance, 
as the majority of the area in the left upper half is below the ROC-curves. 

5. Conclusion 
In this paper, the adaption for dynamic systems of our new model-based detection method 
for cyberattacks is introduced. It is shown to come with a high performance in detection 
using classical data reconciliation extended by prior knowledge regarding informational 
properties of the system variables. The dynamic model based detection enables the 
application for industry 4.0 facilities during non-static system states, which are currently 
rarely covered by security measures. Our method is scalable, following the real system 
size, as most calculations can be prepared prior to its application. As the hypotheses test 
and the global test both evaluate resulting residuals, they can easily be adopted for any 
kind of system, including nonlinear systems. In case of the measurement test, an 
analytical reconciliation would be required. The method enables the selection of targeted 
countermeasures for reducing the risk of damages and losses. 
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Abstract 
Post Combustion CO2 Capture process (PCC) is a popular technology for regulating CO2 
emissions from Coal-based power generation plants. The process uses Mono Ethanol 
Amine (MEA) solvent to absorb CO2 from Flue gas. The CO2 rich solvent is regenerated 
in a stripping tower with kettle reboiler using process steam as heating media. The lean 
MEA solution is recirculated back to absorption column, and the recovered CO2 is taken 
for further processing depending on the nature of demand. 

The PCC unit control set-up has challenges in coping up with process upsets caused by 
variations in power demand resulting in lower operating rate for the power plant. The 
rapid reduction of flue gas flow rate to the absorber leads to a decreased load on the 
regeneration stripping tower, necessitating steep reduction of the steam flow to the 
reboiler. The problem is caused by the dynamic response rate of the regenerator-reboiler 
combine, which must match the fast-dynamics of the flue gas feed rate. The process upset 
in the absorber-stripper system takes time to settle down, leading to CO2 slip from the 
PCC unit. The loss of CO2 is not only an economic concern but an environmental issue 
as well. This study intends to observe this problem in a simulated environment and 
evaluate options to ensure faster stabilization of the MEA absorber-regenerator system; 
to minimize loss of CO2 during changes in production rate of the power plant. The study 
involves developing a high-fidelity dynamic simulation model of the MEA absorber-
stripper unit using 1st principles unit-op models and rigorous thermodynamics on a 
commercial dynamic simulator platform. Once the steady state conditions and 
disturbance caused in the system due to plant turn-down  have been successfully 
replicated; the model is used to study the impact of process upsets on key operating 
parameters like solvent flow rate to absorber, regenerator bottom and top temperature, 
steam flow-rate and temperature of the reboiler, CO2 slip from the absorber and the key 
parameter of overall CO2 capture by the system. The next step is evaluation of various 
control schemes and operating strategies in their effectiveness of controlling the key 
process parameters viz. lean solvent flow rate to absorber, ratio of solvent flow to feed 
gas rate and regenerator bottom / reboiler temperature. In the final step the optimal control 
scheme and operating strategy to be followed by plant operators for the absorber-stripper 
system is identified. The selection is made based on the capability of the strategy to 
quickly react to the process upsets caused by reduction in power plant production rate, 
and to establish steady state operations in the least amount of time; reducing CO2 loss 
during the process transients. 

Keywords: Power plant, CO2 capture, MEA solvent, Dynamic simulation, Control 
Strategy. 
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1. Introduction 
Post combustion CO2 capture unit is an important part of fossil fuel-based power plants 
and plays a key role in minimizing CO2 emission. A typical challenge faced by the PCC 
unit is the disturbance in the flue gas feed rate to the PCC unit due to variation in demand 
for power production from the power plant. Timely controller action to minimize the 
effect of variation in feed gas rate and reestablishment of steady state conditions are 
required to ensure minimal impact on overall CO2 capture quantity and environmental 
consequences. Several studies on control strategy of PCC unit have been done in recent 
times. Sharifzadeh [1], Rua [2], Mejdell [3], Chen [4] and Dutta [5] have studied several 
possible operating scenarios for an integrated PCC - Power plant complex and evaluated 
multiple control strategies for the PCC unit in detail. One specific scenario, which is quite 
challenging, involves rapid ramp down of power plant production rate. In this scenario, it 
is observed that the heating steam flowrate to the CO2 regenerator reboiler fluctuates 
significantly and poses a tough challenge to quick reestablishment of steady state 
conditions. In our study, we have focused on this specific challenge and evaluated 
different configurations, controller schemes and transient state operating strategies to 
identify the best option to address this scenario. We have also considered an 
unconventional operating approach in the study, which involves rapid reduction of 
solvent flowrate to the CO2 absorber; to match the reduction in incoming flue gas flow 
rate, while ensuring consistent CO2 slip within acceptable operating range. 

2. Process Description 
A simplified process flow diagram of a typical MEA solvent based PCC unit is depicted 
in Figure 1. Flue gas from the power plant furnace is fed to the absorber, where CO2 is 
absorbed by the circulating MEA solution. The rich MEA solvent is then regenerated in 
the CO2 stripper, while the CO2 is taken for further processing depending upon the nature 
of requirement. The regenerator tower is typically accompanied with a kettle type reboiler 
and uses process steam as heating utility. 

 
Figure 1 - Process flow diagram of a typical MEA solvent based PCC 
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Evaluation of control strategies in CO2 capture unit 

In the process used for study, the solvent is 30 wt% aqueous Lean MEA solvent, which 
enters the absorber at 40℃  after being cooled by an air cooler. The solvent captures 85% 
of the CO2 present in the feed. The rich solution exiting the absorber is heated by the 
stripper effluent stream and then fed to the stripping tower. The rich solution is 
regenerated in the stripping tower, and the kettle reboiler is maintained at 120℃ using 
steam as heating media. The CO2 gas after condensation from stripper exit is also cooled 
in an air cooler, and the recovered condensate is recycled back to the stripper column as 
reflux. We have developed a rigorous dynamic simulation model of the above process, 
using a state of the art dynamic simulator, AVEVATM Dynamic Simulation (formerly 
known as DYNSIMTM), from AVEVA to carry out the operational study and validation 
of various control schemes / operating strategies. 

3. Evaluation of Control Strategy 
The study focusses on the operating scenario of 50% drop in power plant production, 
leading to a rapid drop of flue gas feed rate to the PCC unit. The details of the control 
strategy used for controlling the process are as per Table 1. 

Table 1. Base case control strategy 

Controlled Variable Manipulated variable 

Lean Amine Flow to Absorber Inlet Valve Position 

Reboiler Outlet Temperature Steam Inlet Flow 

Absorber Level Absorber Outlet Valve Position 

Stripper Level Stripper Bottom Outlet Valve Position 

Stripper Pressure Stripper Top Outlet Valve Position 

Absorber Pressure Reflux Drum Outlet Valve Position 

Reboiler Level Reboiler Outlet Valve Position 

 

In our study, the primary objective was to study the transient behaviour of key operating 
parameters, for the scenario where the feed gas flow ramps down to half of the normal 
value in about 30 mins and comes back to normal in about the same time. We have studied 
the effectivity of different control schemes in handling this process upset. The control 
schemes are evaluated by their capability to maintain expected operating condition in 
both the absorber and regenerator, i.e., avoid sharp change in gas / solvent flow rate, 
avoiding flooding or weeping in the towers, maintain sump levels and ultimately the CO2 
capture %. 

The following three control schemes / strategies have been studied for their response to 
the above mention process scenario: 

a. Reboiler bottom outlet temperature control (kettle type reboiler) 
b. Stripper top outlet temperature control (kettle type reboiler) 
c. Reboiler bottom outlet temperature control (thermosyphon reboiler) 
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In all these scenarios, the flowrate of lean solvent to Absorber is controlled manually, i.e. 
the set point of the flow controller is reduced gradually by operator every 5 minutes, until 
the solvent flow corresponding to 50% absorber load is achieved. 

4. Results and Discussion 

The charts below depict all the key parameters recorded during the transient scenario, 
plotted against time (in minutes). 

In scenario (a), the reboiler outlet temperature is controlled to 1200C by varying the 
heating steam flow rate. Figures 2-9 show the response of the key process parameters. 

  
    Figure 2. Flue gas flow ramp down                     Figure 3. Solvent flow ramp down 

  
       Figure 4 Steam Flow        Figure 5. Lean Amine Solvent Flow 

 
Figure 6. Reboiler Outlet Temperature     Figure 7. CO2 Capture Percentage 
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Figure 8. Stripper Top Outlet Temperature    Figure 9. Recovered CO2 Temperature 
 
In scenario (b), the stripper top outlet temperature is controlled, by varying the steam 
flow rate to the reboiler. The main reason for considering this scenario is, in scenario (a), 
it is observed that the Stripper top temperature (figure 8)  increases significantly during 
the ramp down phase. Figures 10-13 give trends of key operating parameters during the 
transient. The trends indicate that the steam flow, reboiler outlet temperature and stripper 
top temperature do not stabilize any faster than scenario (a). Further, significant 
oscillations are introduced into the system by this control strategy. 

  
Figure 10. Steam flow to the Reboiler           Figure 11. Stripper Top outlet Temperature 

         
Figure 12. Reboiler Outlet Temperature  Figure 13. CO2 Capture percentage 
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In scenario (c), the kettle type reboiler is replaced with an equivalent thermosyphon 
reboiler, and the reboiler outlet temperature is controlled with steam flow as variable. The 
key parameters response for this configuration is depicted in figures 14 and 15. This 
configuration produced oscillations in the reboiler outlet temperature , steam flow and 
Percent CO2 Capture.  

    
Figure 14. Reboiler outlet Temperature  Figure 15. Steam flow rate 

5. Conclusions 

A state-of-the-art dynamic simulator was utilized to perform studies and identify an 
optimal control strategy to minimize the impact of variation in power demand on the 
effectiveness of the PCC unit. The results from the study show that the reboiler 
temperature control plays an important role in ensuring quick stabilization of the process 
and should be the deciding criteria for recommending the optimal control strategy. 
Among the three scenarios studied, scenario (a), where the kettle type reboiler 
temperature is controlled, turns out to be the most optimal strategy. In this strategy the 
ramp down scenario was most effectively handled, and the steady state operation was 
achieved in a shorter period without introducing any significant oscillations. 
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Abstract 
A mathematical model is adjusted to mimic the operational data of an industrial brewery 
during the fermentation process. The model is composed of a set of nonlinear ordinary 
differential equations. The parameters of the model were estimated using the least-squares 
method and the Levenberg-Marquardt algorithm. Once the model is adjusted, stochastic 
simulations run for different temperature profiles which are obtained using a Latin-
hypercube sampling strategy. The results show the impact of the temperature uncertainty 
on the fermentation sub-products responsible of the final products' off-flavors. 

Keywords: Mathematical modelling, Temperature uncertainty, Brewery, Off-flavor. 

1. Introduction 
Beer is one of the most widely consumed alcoholic beverages worldwide. Its market is 
estimated to be around 500 billion USD. Its competitiveness motivates breweries to 
encompass their production processes towards enhancing the operation to improve 
profitability and the ultimate success of the brewery. A key process in the industry 
corresponds to the fermentation stage, which not only demands high processing-times but 
it also guarantees key organoleptic characteristics of the beer. The industrial-scale 
fermentation process takes place inside a type-batch bioreactor, and the biochemical 
transformation of the wort or substrate into ethanol occurs through the action of yeast.  

The dynamic understanding of the beer fermentation process has received considerable 
interest in recent years. Main reasons include the requirement of brewers to improve the 
process efficiency under different market conditions while complying with quality 
constraints. A number of mathematical models have been proposed for simulating the 
fermentation stage in breweries (Gee et al., 1994; Andres-Toro et al.,1998). In this 
context, a phenomenological-based methodology addressed the time evolution of the 
concentration of substrate, biomass, ethanol and off-flavors in a batch-type bioreactor 
(Gomez et al., 2008; Alvarez et al., 2009).  

Despite these developments, the current operation in fermentation reactors can frequently 
be far from its desired conditions. In this sense, the incorporation and study of the 
uncertainty appears to be a tool of remarkable importance for model based frameworks 
(Salas et al., 2017, Gonzalez et al., 2020). 

In this work, a mathematical model is fitted to the operational data of an industrial 
brewery. The model consists of a nonlinear system of ordinary differential equations, 
which solutions were approximated for certain conditions. The parameters of the model 
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were estimated using the least-squares method for nonlinear functions along with the 
Levenberg-Marquardt algorithm. 

Once the model is adjusted, a total of 5000 stochastic simulations run for different 
temperature profiles, resembling common process disturbances. Finally, the results are 
statistically evaluated showing the effects of the temperature in the outputs of the system. 

2. Mathematical Modelling 
2.1. Background information 

The proposed dynamic model is based in a material balance carried out on a batch-type 
fermenter. The model is reduced to a kinetic-type such as that proposed by (Andres-Toro 
et al.,1998) The state variables correspond to the concentrations of latent yeast 𝑋 ; 
active yeast 𝑋 ; dead yeast 𝑋 ; suspended yeast 𝑋 ; substrate 𝐶 ; ethanol 𝐶 ; 
diacetyl 𝐶  and ethyl acetate 𝐶 . Also, it is necessary a temperature profile given by a 
continuous function 𝑇(𝑡) with respect to time 𝑡 ≥ 0. These variables describe the two 
essential phases in the brewing process (see details in (Rodman et al., 2016). During the 
first (lag) phase, the biomass mostly consists of latent yeast cells and, while they are 
activated, minimal fermentation takes place. The time interval which corresponds to this 
phase is𝛺 = [0, 𝑡 ), with 𝑡  the time around the lag phase ends. Once approximately 
half of the suspended cells are activated, the second (fermentation) phase begins. The 
active cell concentration is enough for inducing enzymatic effects, converting the sugar 
substrate into ethanol product. This phase time interval is denoted by 𝛺 = [𝑡 , +∞). 
The model considers the complete interval 𝛺 = 𝛺 ∪ 𝛺 . For defining the kinetics terms 
regarding the dynamics of active, dead and suspended yeast in each phase, we define the 
characteristic functions 𝜒 (𝑡), with value of 1, if 𝑡 ∈ 𝛺 , and 0 otherwise, for 𝑖 = 1,2.  
Therefore, the matrix function depending on the variables 𝐶 (𝑡), 𝐶 (𝑡) and 𝑇(𝑡) is 
defined as 

𝐴 = −𝜇 0𝜇 (𝜒 + 𝜒 ) (𝜇 − 𝜇 )𝜒 0 0                  0                    00                𝜇 𝜒0       𝜇 𝜒 −𝜇 (𝜒 + 𝜒 )            0𝜇 (𝜒 − 𝜒 ) 0 , (1)

where 𝜇 = 𝜇 (𝐶 (𝑡), 𝐶 (𝑡); 𝜽 ) are given functions based on Michaelis-Menten-
Arrhenius kinetics (Trelea et al., 2001) for 𝑗 ∈ {𝐸, 𝑆, 𝑋, 𝑆𝐷}, and 𝜇 = 𝜇 (𝑇(𝑡); 𝜽 ) are 
Arrhenius functions of 𝑇 that represent specific rate  for 𝑘 ∈ {𝐿, 𝐴𝐵, 𝐷𝑇, 𝐷𝑌}. The 
parameters for each 𝜇  and 𝜇  are denoted as the vectors 𝜽 ∈ ℝ  and 𝜽 ∈ ℝ , 
respectively, with 𝑛  and 𝑛   representing their correspondent vector size. These 
parameters are estimated using data provided by an industrial brewery. 

The model consists on determining, for all 𝑡 ∈ Ω ∖ {0}, the vector function, 𝑿(𝑡) =[𝑋 (𝑡), 𝑋 (𝑡), 𝑋 (𝑡), 𝑋 (𝑡)] , and the functions 𝐶 (𝑡), 𝐶 (𝑡), 𝐶 (𝑡) and 𝐶 (𝑡), 
such that, 𝑿(𝑡) = 𝐴𝑿(𝑡), (2)𝐶 (𝑡) = −𝜇 𝑋 (𝑡), (3)
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𝐶 (𝑡) = 𝑓𝜇 𝑋 (𝑡), (4)𝐶 (𝑡) = 𝑌 𝜇 𝑋 (𝑡), (5)𝐶 (𝑡) = 𝜇 𝐶 (𝑡)𝑋 (𝑡) − 𝜇 𝐶 (𝑡)𝐶 (𝑡), (6)

subject to initial conditions in 𝑡 = 0. In Eq. (4), 𝑓 is a function that depends on 𝐶  
(inhibition factor). In Eq. (5) the stoichiometric factor 𝑌  is also an Arrhenius function 
of system temperature 𝑇(𝑡), both functions are taken from (Andres-Toro et al., 1998). 

2.2. Parameter estimation 

The vectors of parameters 𝜽  and 𝜽 , for 𝑗 ∈ {𝐸, 𝑆, 𝑋, 𝑆𝐷} and 𝑘 ∈ {𝐿, 𝐴𝐵, 𝐷𝑇, 𝐷𝑌}, 
respectively, are estimated by minimizing in each 𝑡ℓ ∈ Ω the relative squared error. The 
operational data of the concentrations of substrate 𝐶 (𝑡ℓ) and ethanol 𝐶 (𝑡ℓ) are 
compared with respect to the concentrations obtained from the model depending on 𝜽   
and 𝜽 , denoted by 𝐶 (𝑡ℓ; 𝜽 ; 𝜽 ) and 𝐶 (𝑡ℓ; 𝜽 ; 𝜽 ). Here, 𝑡ℓ is the sampling time for ℓ = 1, … , 𝑁, where 𝑁 ∈ ℕ∗ is the number of fitted data points. Thereafter, the Levenberg-
Marquardt algorithm estimates the parameters by solving a dynamic optimization 
problem (Bellavia et al., 2018) subject to the system of equations (2)-(6) and constraints. 
The feasible domain of variables 𝜃 , with 𝑝 = 1, … , 𝑛 , and 𝜃 , with 𝑞 = 1, … , 𝑛 , are 
defined by their lower and upper bounds 𝑙 , 𝑙  and 𝑢 , 𝑢 , respectively; this means 𝑙 ≤ 𝜃 ≤ 𝑢  and 𝑙 ≤ 𝜃 ≤ 𝑢 . 

The initial conditions of the state variables are set based on the operational data. The 
vectors of parameters 𝜽  and 𝜽  are constrained to guarantee the physical realizability of 
the parameters. The initial guests and the upper and lower bounds for the variables 𝜃  
and 𝜃  are obtained from (Andres-Toro et al., 1998) and (Rodman et al., 2016). 

To adjust the parameters, a set of 10 batches of a specific beer recipe were considered. A 
total of 19 parameters related to the kinetics of the fermentation process obtained residual 
norms of the difference of the experimental and simulated data between 0.002 and 0.057. 
The following study used the parameter's mean values for all the batches. 

3. Stochastic dynamic modelling under uncertainty 
To study the variability of the system dynamics when introducing temperature 
uncertainty, a series of stochastic simulations are carried out. In our practice a Python 
environment is utilized, in which the libraries NumPy, SciPy, pandas, pyDOE, 
matplotlib and seaborn facilitate the obtainment of meaningful results. 

Initially, a total of 5000 temperature profiles are generated using the Latin-hypercube 
sampling method available in pyDOE. A standard deviation (𝜎 ) of 0.4 is considered in 
this case. The temperature profile changes at different pre-established time intervals. The 
objective of this experimental design is to represent process disturbances that affect the 
products of a brewery at the fermentation stage. The ODEs are solved using 
solve_ivp, available in the module SciPy.Integrate. The resultant state variable 
vectors, for each temperature profile, are stored in a data frame for further processing. 
This study focuses on the dynamic visualization of the process when temperature 
uncertainty is introduced. Thus, the library seaborn allows to observe its effects. 

1353



 W. Angulo et al. 

4. Results 
The variation of the temperature from its recipe profile is captured in Figure 1. Notice 
that the bold line corresponds to the average, and the bold area the region between 25th 
and 75th percentiles. The temperature LHC varies as piece-wise function at the times 
(hour) 𝑡 = 0, 60, 72, 84, 96, 108, 120, and 140. The blue dots correspond to the 
experimental values. Figure 2 illustrates the influence of the temperature uncertainty to 
the different yeast growth as well as the substrate (sugars) and ethanol production. It is 
important to notice that the active, dead, and suspended yeast show important relative 
variability from the input. On the other hand, active and suspended yest only show and 
important variability at the end of the fermentation process. The substrate plot shows the 
relationship between the variability and the experimental values. In this case, the model 
is not able the capture the variations at the beginning and at the end of the process. 
Although ethanol shows certain variability in the middle of the process; and after time 𝑡 = 100, it tends to narrow the variability, showing that, the result of producing ethanol 
is stable regarding the temperature variation. 

Figure 1: Temperature including uncertainty obtained using LHS. The vertical dotted lines 
correspond to the times (hour) 𝑡 =  60, 72, 84, 96, 108. The solid line corresponds to theoretical 
final fermentation time at 𝑡 =  120 hours. The blue dots are the experimental values of temperature. 

Regarding the off-flavors, Figure 3 illustrates the influence of the temperature uncertainty 
to their dynamics, which are represented by the concentrations of ethyl-acetate and the 
diacetyl in parts per million (ppm). The upper panel shows the concentrations of both 
ethyl-acetate and diacetyl. The plot inset, included at the upper east side, allows to make 
the comparison of the concentration of both off-flavors after the time 𝑡 = 118 hours. The 
lower panel shows the 𝜎  of the variability of both off-flavors, providing a dynamic 
quantitative evaluation of the actual uncertainty introduced to the outputs. Even though 
they are in the magnitude of ppm, unpleasant flavors can be perceived in the taste of beer, 
and after certain levels they could even become toxic. The diacetyl shows an important 
sensitivity to the temperature uncertainty at the middle of the process. However, after 
fermentation time 𝑡 = 100 hours, this uncertainty reduces significantly. Indeed, a 
common practice in breweries is to measure off-flavors' concentration at certain time 
intervals to quantify whether the fermentation should last longer or not. These results 
show that a strict control of the temperature seems to be critical in this stage in order to 
reach dyacetil concentration below 0.15 ppm (Olaniran et al., 2017). 
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Figure 2: Concentration of active, latent, dead and suspended yeast, substrate and ethanol. The 
painted region corresponds to minimum and maximum values, the darker zone corresponds the 
values between 25th and 75th percentiles. The blue dots in center-lower panel are the experimental 
values of substrate. 

Figure 3: Ethyl-acetate and diacetyl concentration (upper panel). The painted region correspond to 
minimum and maximum values. The darker zone correspond the values between 25th and 75th 
percentiles. Lower panel shows their respective 𝜎 . The vertical dotted lines correspond to the times 
(hour) 𝑡 =  60, 72, 84, 96, 108. The solid line corresponds to theoretical final fermentation time at 
120 hours. 
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5. Conclusions 
In this work, the validated mathematical model of the fermentation process in an 
industrial brewery is studied by introducing uncertainty to the temperature. The model is 
adjusted using real experimental data from an industrial facility, the least-squares method, 
and the Levenberg-Marquardt algorithm. Stochastic simulations run for different 
temperature profiles which are generated using a Latin-hypercube sampling strategy 
setting a value of the standard deviation. The results show the impact of the temperature 
uncertainty to fermentation products. Among these outputs certain sub-products, 
responsible of the final products off-flavors, are analyzed. It is observed from the results 
that the off-flavors could be corrected by suitably extending the reaction and managing a 
well adjusted trade-off between them. Nevertheless, an extended operation could impact 
the economy of a brewery because it introduces an inefficient use of energy and other 
resources such as the tanks due to time delay in production. In this sense, these types of 
tools could benefit brewers for decision making as well as for adequate process 
scheduling. 
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Abstract
Root cause analysis is an important step in process monitoring for the disclosure of
causes of process disturbances. In the past research and practice, transfer entropy has
been widely adopted for its capability to handle process nonlinearity. However, the
conventional transfer entropy is not robust to noise and computational inefficient, which
affects its application performance. These problems can be solved by incorporating the
technique of symbolization. To the best of our knowledge, symbolic transfer entropy
(STE) has seldom been implemented in the field of process monitoring. In this work, the
concepts of statistical process control (SPC) and STE are integrated to achieve
satisfactory diagnosis results. As known, SPC charts, e.g. Shewhart charts, exponential
weighted moving average charts, and cumulative sum charts, are useful tools for process
monitoring, where the sample locations on the control chart indicate certain process
status. Therefore, it is reasonable to symbolize process measurements according to such
information. After symbolization, STE is conducted to reveal the causality among
process variables which is then visualized with a signed directed graph. The case study
on the Tennessee Eastman process shows that the control chart-based STE possesses a
capability to understand the causes of disturbances and offers the convenience of root
cause analysis.

Keywords: root cause analysis, diagnosis, symbolic transfer entropy, causality analysis,
process monitoring.

1. Introduction
Disclosure of the fault root causes is a critical step in process monitoring, which is
important for controlling the risks associated with process failures and preventing
problem recurrence. Based on the concept of statistical process control (SPC) (Woodall
and Montgomery, 1999), a large number of process monitoring methods have been
developed in recent decades (Ge et al., 2013). Most of these research works focus on
timely detection of process faults or disturbances, as well as accurately isolation of
critical process variables, while root cause diagnosis is relatively overlooked.
Conventionally, process knowledge is a necessity to achieve reasonable diagnosis
results (Iri et al., 1979). In recent years, statistical causality analysis techniques have
been adopted to this field so as to relieve the dependency on the prior knowledge of the
investigated process (Li et al., 2016), among which transfer entropy (TE) (Schreiber,
2000) is a representative method because of its capability to handle nonlinearity. A
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number of improved versions of TE have been proposed in the past years. For example,
permutation entropy (Bandt and Pompe, 2002) has been proved to provide robustness to
noise, which estimates transfer entropy using symbolization. The concept of symbolic
transfer entropy (STE) was then extended (Staniek and Lehnertz, 2008) by using a
surrogate-based testing scheme. Applications of STE demonstrated its advantages of
better computational efficiency and accuracy comparing to the conventional TE.

In this work, a new scheme is proposed for root cause analysis of process disturbances,
which integrates the concepts of STE and SPC. The application results illustrate the
feasibility of this method.

2. Methodology
2.1. Transfer entropy

As an information theoretic measure, TE was first introduced by Schreiber (2000), the
basics of which are as following. Supposing X and Y represent lth and kth order Markov
processes, respectively, the transfer entropy from X to Y is defined as:

(1)

2.2. Symbolic Transfer entropy

In 2008, Staniek and Lehnertz (2008) proposed an STE as a method of calculating
information transfer between time series processes with discrete states. The STE for two

discrete-time random processes and can be expressed as Eq. (2):

(2)

Here, the symbols have similar definitions to those in Eq. (1), except that the data used
for estimate STE are discretized. The discretization can be achieved by partitioning the
data into a finite number of bins. The size of each bin can be determined based on the
user-specified upper and lower bounds or by choosing specific quantiles of the
empirical distribution of the data. In detail, if the bounds of n bins are denoted as q1, q2,
…, qn, where q1 < q2 < …< qn, the symbolized data can be recorded in the following
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of causality. In Eq. (1), the complete or conditional probability density functions can be 

estimated by kernel methods (Silverman, 1986).  



way. For , ; for , ; and so on and so forth. In
practice, the selection of bin size requires balancing information conservation and
computational burden. In general, the smaller the selected bin size, the more
information retained. However, the reduction of noise and computational burden
becomes insignificant in such cases.

In this work, we propose to divide the bins by adopting the concept of SPC. In detail, a
modified exponential weighted moving average (EWMA) chart (Hunter, 1986) is
utilized. The calculation of the EWMA statistic for monitoring the time series X is as
Eq. (3)

(3)

Conventionally, the control limits of an EWMA chart is calculated as:

UCL, LCL (4)

where

(5)

z0 and s are the process target, i.e. the mean of the historical data, and the estimated
standard deviation, respectively, and k is user-specified parameter controlling the type I
error rate. Therefore, totally seven bins can be set up according to the values of k. For

example, for , ; for ,

; …; for , ; …; and for

, . Note that the control limits approach to constant values (

) with the increased number of samples. Therefore, when the process
status is out of statistical control, i.e. when it is necessary to conduct root cause
diagnosis, there is a large chance that the symbolized process measurements have an
unchanged value, e.g. 1 or 7, and cannot reflect the process dynamics. To solve this
problem, in the proposed scheme, the estimate of standard deviation s is updated online
using a moving window technique. In doing this, the EWMA control chart may have a
lower alarm rate. However, note that the purpose of using the control chart here is not to
detect whether the process is in statistical control. Instead, the symbolization needs to
reflect the process dynamic characteristics and the information transfer between
variables.
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2.3. Estimation of Significance Level

No matter the conventional TE or STE is used, the estimates are seldom exactly zero
even if there is no information transfer between two time series. Practically, subjective
selected thresholds are usually needed for judge whether the statistical causality exists.
Herein, in order to make objective judgements, it is desired to use a more statistical
method. Therefore, the p-values are calculated based on bootstrap samples of the
transfer entropy estimates (Behrendt et al., 2019). After conducting STE, the results are
used to construct a signed directed graph (SDG), in which each vertex corresponds to a
process variable, and the arrows on the edges denote the direction of information
transfer, i.e. the inferred causality. In addition, a weight is assigned to each edge, whose
value equals to the p-value calculated in the previous step. Only the edges with p-values
smaller than 0.05 are connected.

3. Case study
3.1. Tennessee Eastman process and variable selection

Herein, the benchmark Tennessee Eastman process, developed by Downs and Vogel
(1993), is used as an illustrative case. The process consists of five main units, namely
reactor, product condenser, gas-liquid separation tower, product stripper, and recycle
compressor. The gaseous reactants include A, C, D, and E, while the products are
denoted as G and H. In addition, there is an inert component B and a by-product F. The
disturbance IDV1 is used as a case study to illustrate the feasibility of the proposed
method, where the composition of A in the feed stream 4 changes from 48.5 mol% to
45.5 mol% and at the same time the composition of C in the same stream changes from
51 mol% to 54 mol%. According to the previous research (Liu et al, 2014), nine process
variables as listed in Table 1 were chosen as the candidates for root cause diagnosis.

Table 1. variables selection of IDV1 case study

V1 A feed (stream 1) V20 Compressor work

V4 A and C feed (stream 4) V31 Component C (stream 9)

V8 Reactor level V38 Component E (stream 11)

V16 Stripper pressure V50 Stripper steam valve

V18 Stripper temperature

3.2. Parameter setting and symbolization

A few parameters were set before conducting symbolization. First, the average values
used in the control charts were calculated based on the normal operating data. Second,
the size of the moving window used for standard deviation estimation was chosen to be
5, 10, and 20, respectively, for comparison. In addition, the values of k and l used in
STE were chosen to be 1 according to the literature (Yu and Yang, 2015).

Two symbolization methods were adopted for the STE calculation. In the first method,
the Shewhart individual control charts are utilized, while the second method utilizes the
EWMA control charts combined with the moving window strategy proposed in this
paper.

C. Wen and Y. Yao1360



3.3. Results and discussions

Three indices were used to evaluate the performance of different root cause diagnosis
methods, as shown in Table 2. Sensitivity measures the correctness in identified causal
correlations, specificity calculates the correctness of the identification of the non-causal
relations, and edge density indicates the sparsity of the resulting SDGs. The first two
indices have values between 0 to 1, where larger values are preferred. For edge density,
a smaller value corresponds to a sparser graph.

Table 2. evaluation indexes of STE results
Window size Sensitivity Specificity Edge density

Shewhart 20 0.724 0.837 0.26
EWMA 5 0.86 0.58 0.43
EWMA 10 0.89 0.76 0.38
EWMA 20 0.931 0.860 0.37

As shown in Table 2, the EWMA chart-based STE methods outperformed the Shewhart
chart-based method in general no matter what size of the moving window was selected.
In addition, the modified EWMA chart with a moving window sized 20 performed best
in this case study, because it led to the largest sensitivity and specificity values. It is
noted that the edge density of the results of this model is not the lowest. However, this
index is not critical to the accuracy of root cause diagnosis. In addition, the generally
good performance of all three EWMA-based STE methods show that the proposed
scheme is not very sensitive to the parameter setting. The SDG achieved by the EWMA
chart-based STE method with the moving window sized 20 is plotted in Figure 1.

Figure 1. SDG resulted from EWMA-based STE
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4. Conclusion
Symbolic transfer entropy has been used for the estimation of functional connectivity in
networks. However, its applications to root cause diagnosis of process disturbances are
rarely reported. In this work, STE based on a modified EWMA control chart is
proposed, whose feasibility is illustrated using the benchmark Tennessee Eastman
process. In the future work, the SDG obtained by using STE will be simplified to further
highlight the root cause variables. As shown in Figure 1, the reciprocal causations
between several variables may lead to the difficulty in identify the variable closest to the
root of the disturbance. This may be partially caused by the improper selection of the
time slot to be analysed, because the fault propagation may distort the information of
the disturbance root cause. Therefore, how to determine the data segment for analysis is
also an important topic for future research.

References
C. Bandt, and B. Pompe, 2002, Permutation entropy: a natural complexity measure for time

series, Physical review letters, 88, 17, 174102.

S. Behrendt, T. Dimpfl, F. Peter, D. Zimmermann, 2019, RTransferEntropy — Quantifying
information flow between different time series using effective transfer entropy, SoftwareX, 10,
100265.

J. Downs, and E. Vogel, 1993. A plant-wide industrial process control problem, Computers &
Chemical Engineering, 17, 3, 245-255.

Z. Ge, Z. Song, and F. Gao, 2013, Review of recent research on data-based process monitoring,
Industrial & Engineering Chemistry Research, 52, 10, 3543-3562.

J. Hunter, 1986, The exponentially weighted moving average, Journal of quality technology, 18,
4, 203-210.

M. Iri, K. Aoki, E. O'Shima, and H. Matsuyama, 1979, An algorithm for diagnosis of system
failures in the chemical process, Computers & Chemical Engineering, 3, 1-4, 489-493.

G. Li, S. J. Qin, and T. Yuan, 2016, Data-driven root cause diagnosis of faults in process
industries, Chemometrics and Intelligent Laboratory Systems, 159, 1-11.

J. Liu, D. Wong, and D.-S. Chen, (2014). Bayesian filtering of the smearing effect: Fault isolation
in chemical process monitoring, Journal of Process Control, 24, 3, 1-21.

T. Schreiber, 2000, Measuring information transfer, Physical review letters, 85, 2, 461-464.

B. Silverman, 1996, Density estimation for statistics and data analysis, Monographs on Statistics
and Applied Probability, London: Chapman and Hall.

M. Staniek, and K. Lehnertz, 2008, Symbolic transfer entropy, Physical review letters, 100,
158101.

W. Woodall, and D. Montgomery, 1999, Research issues and ideas in statistical process control,
Journal of Quality Technology, 31, 4, 76-386.

W. Yu, and F. Yang, 2015, Detection of causality between process variables based on industrial
alarm data using transfer entropy, Entropy, 17, 8, 5868-5887.

C. Wen and Y. Yao1362



Quality-by-Control of continuous drug substance
isolation: study on a novel unit for integrated
filtration-drying

Francesco Destro,a Vivian Wangb, Mesfin Abdib, Xin Fengb, Erin Woodb, Simon
Coleman, c Paul Firth,c Alastair Barton,c Massimiliano Barolo,a Zoltan K.
Nagyd,*

aCAPE-Lab, University of Padova, 35131 Padova, PD, Italy
bOffice of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food &
Drug Administration, Silver Spring, MD, USA
cAlconbury Weston Ltd, Stoke-on-Trent, UK
dPurdue University, West Lafayette, IN 47906, USA

zknagy@purdue.edu

Abstract
In the last decade, pharmaceutical manufacturing has been undergoing a modernization
trend, promoted by the US Food and Drug Administration (FDA) with the
Quality-by-Design (QbD) initiative. However, in most of the cases, the product quality
is still controlled in open-loop, and pharmaceutical operation is carried out in the
traditional batch mode, rather than continuously. In this work, we present a framework
for closed-loop quality control of a novel continuous integrated filtration-drying unit.
The unit addresses the current lack of technology for continuous drug substance
isolation, which is the main bottleneck in end-to-end continuous pharmaceutical
manufacturing. With the proposed closed-loop control framework, the product
conformity is improved, showing how a Quality-by-Control (QbC) strategy can
outperform earlier QbD approaches based on open-loop control.

Keywords: Quality-by-Design, Quality-by-Control, Process control, Continuous
pharmaceutical manufacturing, Continuous filtration, Fluid-solid separation

1. Introduction
The QbD initiative of the US FDA (FDA, 2004) has generated a modernization
momentum in the pharmaceutical industry within the last decade. In the QbD
framework, the manufacturing process is developed with a risk-based approach relying
on process knowledge, to inherently build the quality into the product. The critical
process parameters (CPPs), the feed properties (critical material attributes, CMAs) and
the product critical quality attributes (CQAs) are first identified. Then, the design space
(DS) is determined, as that region of the multivariable space of CPPs and CMAs, where
the CQAs meet the target values. QbD represents a major step forward with respect to
the previous Quality-by-Testing (QbT) approach, that consisted in directly testing the

http://dx.doi.org/10.1016/B978-0-323-88506-5.50210-2

PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.

mailto:zknagy@purdue.edu


F. Destro et al.

quality of the end-product. In the industrial practice and in the vast majority of the
academic works, the DS is used in combination with a control system at open loop with
respect to the CQAs. Although active process control is used for controlling the CPPs,
their set-points are moved at open-loop within the DS in response to measured changes
in the CMAs. As acknowledged by regulators, practitioners and academics (Yu et al.,
2014), closed-loop control of the product quality can lead to a higher level of quality
assurance and can enable real time release. In a control strategy with active quality
control, the CQAs are monitored in real time, and the CPPs set-points are automatically
adjusted in response to registered changes in the CMAs and/or CQAs. Recent literature
publications demonstrated closed-loop control implementation and its advantages for a
number of pharmaceutical processes, including plant-wide applications (Lakerveld et
al., 2013). These results are leading to the development of a novel QbC framework (Su
et al., 2019). QbC is not an independent system with respect to QbD, but it rather is an
evolution, in which active process control is the core of the control strategy.
Another recent modernization of the pharma industry brought by the QbD initiative
involves the shift to a more continuous production mode, compared to the traditional
batch processing (Lee et al., 2015). When feasible, continuous manufacturing (CM) is
the preferred choice in the process industry for many reasons, an important one being
cost saving. For pharmaceutical manufacturing, the main motivation to the transition to
CM is the inherently greater product consistency that can be achieved, thanks to the
greater process controllability. Generally speaking, closed-loop control for continuous
processes is typically easier and has been explored more than for batch processes.
Overall, a tight interconnection emerges between the two main directions of evolution
of QbD: the transition to CM requires the QbC framework for systematic control system
design, while QbC implementation is gaining much momentum under the increased
interest in continuous processing. So far, CM and QbC publications (Su et al., 2019)
mainly focused on reactive systems, on crystallization and on drug product
manufacturing (e.g.: tableting lines). The intermediate steps of filtration, washing and
drying of crystallization slurries, and their integration, have not been studied yet in a
CM/QbC perspective. Nonetheless, they are of pivotal importance to obtain the pure
drug substance for downstream drug product manufacturing.
In this study, we make a step forward towards end-to-end automated CM by developing
a QbC framework for a novel continuous carousel for integrated filtration, washing and
drying of drug substances. The carousel filter-dryer system, manufactured by Alconbury
Weston Ltd (UK), is a breakthrough technology in the field, as it is one of the few
solutions available in the market for continuous upstream filtration, washing and drying.
The rest of the manuscript is organized as follows. In Section 2, the carousel technology
is described, while in Section 3 the conceived QbC system is discussed and the response
of the control system to a disturbance is presented. The concluding section follows.

2. The continuous carousel for integrated filtration, washing and
drying
Alconbury Weston Ltd designs and manufactures different models of carousels for
solid/liquid separation. In this study, we refer to a prototype installed in the
Crystallization Systems Engineering laboratory at Purdue University, used for isolating
active pharmaceutical ingredients (API) from crystallization slurries. The P&ID of the
process is showed in Figure 1. The controllers reported in the “Level 0” box (with the
exception of the pressure controllers) are all implemented in the in-built programmable
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logic control (PLC) of the unit. The carousel presents a main rotating cylindrical body,
with five processing stations (Figure 2a). However, in the P&ID, each processing station
is sketched as an independent tank (V104-108), to better illustrate the functioning of the
control system. During carousel operation, every fixed cycle duration Δtcycle the unit
rotates, moving the content of each station to the following one. In the P&ID, the
transfer of material upon carousel rotation is symbolized through the material streams
situated among tanks V104-108 (controller FC102 opens the stream valves at each cycle
switch). Processing stations V104-107 present filter meshes at the bottom (F101-104),
while V108 is open for discharge. Starting from the inlet of the process, the slurry from
the crystallizer (V101) is transported into an intermediate storage tank (V102) with a
peristaltic pump (P101). From there, every Δtcycle, an amount of slurry, controlled by
FC101 based on the set-point , is drawn into the charge cell V103 through the𝑉

𝑠𝑙𝑢𝑟𝑟𝑦,𝑠𝑝
action of the vacuum pump P102. P102 is connected to V103 only during the charging
phase at the beginning of every cycle, through the three-way valve. During the rest of
carousel operation, the vacuum pump is connected to the filtrate receiver V110 and,
hence, to the bottom of the processing stations V104-107, providing the driving force
for filtration, washing and drying. After the charging phase, the slurry enters V104, and
filtration starts. Meanwhile, in V105-107 the material loaded during the previous cycles
is processed. In V105, cake washing occurs, to reduce the amount of impurities in the
cake (V109 is the wash solvent tank), while cake deliquoring (i.e. mechanical drying) is
carried out in V106. A final drying step with hot air is delivered in V107, while the
product (dry API crystals cake) is discharged from V108 through the action of a piston.
The fan P103 can be used for increasing the pressure drops in each station (driving force
for the processing steps), or the top portion of V104-107 can be directly connected to
the atmosphere (i.e., eliminating F103 from the P&ID). PC101 and PC102 are,
respectively, the in-built pressure controllers of P103 and P102. The heater H101 is
responsible for heating the drying air, and its jacket temperature is manipulated by
TC101 to control the temperature of the air entering V107. If the jacket temperature
reaches 150°C, for safety reasons it is not heated up anymore, thanks to the action of
TA101 and to the low selector. Additional sensors have been installed for monitoring
and control purposes. PI101 measures the pressure at the bottom of the processing
stations, FI101 measures the gas flowrate entering the carousel, FI102 (a scale placed
below V110) measures the flowrate of filtrate coming from the ports, and TI101-103
are, respectively, the thermocouples for the jacket temperature, for the gas temperature
at the dryer inlet, and for the gas temperature at the dryer outlet. The automated filter
meshes cleaning system is not reported in the P&ID for conciseness. The control
systems in the “Level 1” (Section 3) box have been implemented in this study for
controlling the CQAs of the process, namely the residual solvents and impurities in the
discharged cake. Overall, a risk analysis (Destro et al., 2021) showed that Δtcycle,sp

(set-point of Δtcycle) and are the CPPs of the process.𝑉
𝑠𝑙𝑢𝑟𝑟𝑦,𝑠𝑝

3. A QbC framework for the continuous carousel
We develop the control system for the carousel following a recently proposed
hierarchical three-level approach for control system design (Su et al., 2019), based on
the ISA-95 Enterprise-Control System Integration Standard. The Level 0 of the control
system consists in the built-in PLCs of the carousel and of P102-103, already described
in Section 2, that allow controlling CPPs and control variables. The designed Level 1
and Level 2 are instead outlined in this Section.

unit for integrated filtration-drying
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The Level 1 of the control system (Figure 1) uses advanced PID loops for controlling
the CQAs. Since the solvents and impurities content cannot be measured online, the
CQAs are controlled by inference through AC101, directly controlling the outlet
temperature profile measured by TI103. Actually, the temperature profile of the outlet
drying gas is strictly correlated to the residual solvents and impurities content in the
cake. At the beginning of drying, the temperature drops, due to the latent heat of
vaporization. While drying progresses, the temperature starts rising, since the residual
solvents and impurities, and the energy consumed by their volatilization, are always
lower. A reference temperature profile is obtained in normal operating𝑇

𝑑𝑟𝑦𝑖𝑛𝑔,𝑠𝑝
𝑜𝑢𝑡 (𝑡)

conditions, and is then tracked by AC101 to control the CQAs during operation. If the
cake entering the dryer

Figure 1. P&ID of the continuous carousel for integrated filtration, washing and drying.
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Figure 2. (a) Carousel schematic diagram. Stations 1-4 present a filter mesh at the
bottom, connected to the collector. (b) Split range controller AC101: manipulated
variable (deviation form) per range of controller output (proportional to

).𝑇
𝑑𝑟𝑦𝑖𝑛𝑔,𝑠𝑝
𝑜𝑢𝑡 (𝑡

𝑘
) −  𝑇

𝑑𝑟𝑦𝑖𝑛𝑔
𝑜𝑢𝑡 (𝑡

𝑘
)

contains more solvents than usually, due to issues in the previous section of the process,
or if drying is progressing more slowly than usually, for example due to F104 fouling,
TI103 will measure an abnormally low temperature. AC101, a split range controller
(Figure 2b), will react increasing the set-points of one or more of the following: the
pressure drop in the processing stations ΔPsp (PC101), the drying gas inlet temperature

(TC101) and/or the cycle duration Δtcycle,sp (FC102). The choice of increasing𝑇
𝑑𝑟𝑦𝑖𝑛𝑔,𝑠𝑝
𝑜𝑢𝑡

Δtcycle,sp only at last (Figure 2b), after that the maximum values of ΔPsp and of 𝑇
𝑑𝑟𝑦𝑖𝑛𝑔,𝑠𝑝
𝑖𝑛

are reached, is meant to maximize the process throughput. Instead, if the cake entering
the dryer is purer than usually, the controller will react in the opposite direction,
eventually reducing Δtcycle,sp and increasing the process throughput. The flowrate
controller FC103 is also designed to help controlling the CQAs. FC103 (split-range
controller) controls the filtrate flowrate by increasing/decreasing ΔPsp and/or of Δtcycle,sp
if the filtrate flowrate is low/high. This controller compensates for the disturbances that
increase the filtration duration, such as fouling of F101-104, increase of crystals
concentration in V101 or increase of cake resistance. Since both AC101 and FC103 act
on ΔPsp and Δtcycle, sp, two high selectors are needed (Figure 1).
The response of Level 0 and Level 1 control system to a same filter mesh fouling
disturbance is reported in Figure 3 for the isolation of aspirin from an aqueous slurry, as
simulated by means of a detailed digital twin of the carousel, described elsewhere
(Destro et al., 2021). With Level 0 control, the batches produced in Cycles 7-71 have to
be rejected, as they do not meet the desired quality (Figure 3a), which is reached again
only after the meshes are cleaned (from Cycle 72 on). Instead, Level 1 controllers react
very fast to the abnormal CQAs, by increasing ΔPsp and . After about 15 min𝑇

𝑑𝑟𝑦𝑖𝑛𝑔,𝑠𝑝
𝑖𝑛

(~7 cycles) from the start of the process, ΔPsp and of saturate, and Level 1𝑇
𝑑𝑟𝑦𝑖𝑛𝑔,𝑠𝑝
𝑖𝑛

controllers start increasing Δtcycle,sp (Figure 3b). Due to the increased Δtcycle,sp, with Level
1 control only 68 cycles are completed in the same amount of time in which Level 0
control completes 115 cycles (Figure 3a). However, with Level 1 control the CQAs

Quality-by-Control of continuous drug substance isolation: study on a novel
unit for integrated filtration-drying
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always respect the quality threshold. When the filter meshes are cleaned (150 min from
the start of the process), a higher Δtcycle,sp is not needed anymore, and Level 1 controllers
start decreasing Δtcycle,sp (Figure 3b), effectively increasing the throughput again.
Level 2 improves carousel operation through model-based control, exploiting the
in-house developed model of the carousel (Destro et al., 2021). Due to space limitation,
Level 2 is not described in detail in this manuscript, but it includes a state estimator and
a real time optimization/model predictive control component (RTO/MPC).

Figure 3. Control system response to a fouling disturbance: Level 0 vs Level 1. The
solvent or impurity presenting the highest residual content in the discharged cake
(CQAs) is reported on the left, while the profiles of Δtcycle,sp (CPP) are on the right.

The RTO/MPC updates the control vector u = [ , ΔPsp, ] by𝑉
𝑠𝑙𝑢𝑟𝑟𝑦,𝑠𝑝

,  ∆𝑡
𝑐𝑦𝑐𝑙𝑒,𝑠𝑝

𝑇
𝑑𝑟𝑦𝑖𝑛𝑔,𝑠𝑝
𝑖𝑛

solving the following optimization problem:

          𝑊
1

𝑉
𝑠𝑙𝑢𝑟𝑟𝑦,𝑠𝑝

∆𝑡
𝑐𝑦𝑐𝑙𝑒,𝑠𝑝

 + 𝑢 −  𝑢
𝑟𝑒𝑓( )𝑇𝑊

2
𝑢 −  𝑢

𝑟𝑒𝑓( )
subject to: ,�̇� =  𝑓 𝑥,  𝑢( ), 𝑢

𝑚𝑖𝑛
 <  𝑢 <  𝑢

𝑚𝑎𝑥
,  𝑥

𝑚𝑖𝑛
 <  𝑥 <  𝑥

𝑚𝑎𝑥
(1)

where x is the states vector, W1 and W2 are suitable weighing matrices, is the carousel𝑓
model, uref is the reference control vector and , , and are suitable𝑢

𝑚𝑖𝑛
𝑢

𝑚𝑎𝑥
𝑥

𝑚𝑖𝑛
𝑥

𝑚𝑎𝑥
bounds for u and x. The first term of the cost function represents the overall carousel
throughput, which is maximized by the RTO/MPC respecting the quality constraints
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(included in the constraints relation for x.). This represents a step forward with respect
to Level 1, in which some sort of throughput maximization was only be achieved
through split range control.

4. Conclusions
We presented a QbC three-level control system for a continuous carousel for integrated
filtration, washing and drying of crystallization slurries. The control system successfully
rejected a disturbance related to filter mesh fouling. This study represents a novel
contribution to CM and QbC literature, as this type of process is scarcely studied. Future
work will focus on Level 2 and on implementing the control system in the carousel.
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Abstract 
In crystallization processes, the control of particle size distribution, shape and purity are 
crucial to achieve the targeted critical quality attributes of the final drug product and meet 
the pharmaceutical regulatory requirements. This work presents novel optimal trajectory 
tracking control strategies for batch and continuous cooling crystallization processes 
using reinforcement learning (RL). The cooling crystallization of paracetamol in water 
was used as a case study. A model-based reinforcement learning technique is 
implemented to achieve large crystal size by reducing the deviation from targeted 
reference trajectories namely process temperature, supersaturation and particle size. This 
multioutput tracking control strategy was development to address quality and 
performance challenges commonly encountered in batch and continuous crystallization 
processes. Various training strategies and reward functions were investigated to enhance 
the learning capabilities and robustness of the reinforcement-learning-based control. 
Despite the computational costs inherent to reinforcement learning, the later 
demonstrated robust control capabilities compared the benchmark control strategies such 
as model predictive control. 

Keywords: Reinforcement learning; Trajectory tracking control; Batch crystallization; 
Continuous crystallization; Supersaturation control; Crystal size distribution. 

1. Introduction and Background 
The pharmaceutical industry is subject to stringent regulatory requirements. The control 
of quality is critical as small deviations from the quality target profiles may have a 
significant impact on drug safety and efficacy, which may lead to failure of the clinical 
trials, at early development stages, or drug recalls causing dramatic economic 
consequences. The development of robust, flexible and agile control strategies is the 
cornerstone of the current Quality-by-Design paradigms. The development and successful 
integration of new process analytical technologies (PAT) allowed real time measurements 
of the critical quality attributes which has changed dramatically the pharmaceutical 
manufacturing landscape and paved the way for more advanced and reliable real-time 
optimization and control strategies (Lakerveld et al. 2015). 

The emergence of continuous manufacturing in pharma opened new opportunities for 
more cost-effective and flexible technologies (Benyahia 2018; Mascia et al. 2013). 
However, the successful development of continuous processes requires more reliable and 
advanced control strategies to cope with the different sources of variation and 
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perturbation as well the complexity associated with the large number of process outputs, 
interactive control loops and intrinsic process dynamics, particularly during start-up, shut-
down and ramp-up. 

Crystallization is used extensively in the pharmaceutical industry to purify reaction 
intermediates and final active pharmaceutical ingredients. As such, several crystallization 
steps may be used at different stages of the manufacturing process (Benyahia et al., 2012).  
A successful crystallization requires tight control over crystal size distribution, purity, 
and polymorphism. These properties impact dramatically the critical quality attributes of 
the final pharmaceutical product, such as solubility and safety, besides the downstream 
processability of the crystals, such as flowability and filterability. Various control and 
optimization techniques have been developed and implemented over the last 2 decades 
ranging from model-free to model-based techniques (Lakerveld and Benyahia, 2020). 
Despite the significant progress in crystallization process control, there is still an 
increasing demand for advanced, versatile, robust, and cost-effective real-time 
optimization and control strategies, driven by a broader adoption of Quality-by-Design 
and the emergence of pharma 4. Mathematical models and digital twins are increasingly 
used in all aspects of process design, optimization, control, and decision making. 

Over the last few years, artificial intelligence has witnessed a resurgence of interest in 
very broad research and industrial areas. Reinforcement Learning (RL) is particularly 
interesting and has the ability address dynamic problems encountered, for instance, in 
robotics and automotive industries (Roveda et al., 2018). These advantages have 
motivated recent implementation of RL as a new control strategy for bioprocesses 
(Petsagkourakis et al., 2020). This paper outlines the first application of RL in the field 
of crystallization. The approach consists in designing and training a RL agent to perform 
a tracking control over multiple refence trajectories, namely process temperature, 
supersaturation and particle size in batch and continuous crystallization processes. The 
performance of this model based RL control, which aims at minimizing the training costs, 
was compared against well-established and benchmark control strategies such as MPC. 

2. Problem Formulation 
The primary objective of this work is to develop a controller able to follow a set of 
dynamic performance trajectories effectively and reliably. This trajectory tracking control 
will help achieve shorter batch times as well optimal start-up, shut down and transitions 
between productions rates (production ramp-up). The approach will also help maintain 
the product critical quality attributes, such as crystal size distribution, within the 
acceptable and safe margins. The reference trajectories can be computed using model-
based open-loop dynamic optimization for both batch and continuous crystallization 
processes. As a first attempt, an optimal linear cooling profile is suggested. 

A model-based RL controller was developed in MATLAB Simulink. The idea is to train 
an agent in closed loop to achieve the best performance (highest reward) over a series of 
training episodes. The agent takes dynamic actions by changing the jacket temperature or 
cooling rate (manipulated variable) and receives rewards and penalties (negative rewards) 
according to its dynamic performance against the reference trajectories and process 
constraints. The setup of the closed loop training strategy is shown in Figure 1. The first 
block contains the reference trajectories, which are three in this case (i.e. temperature, 
supersaturation, and particle size). The second part receives the observations, quantifies 
the rewards, and decides whether the training episode should be skipped or restarted if 
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certain criteria are met. The third block in this sequence is the RL Agent that constitutes 
the policy and the training algorithm. The fourth block is the process model which is 
represented by a system of differential algebraic equations. 

The dynamic mathematical model of the continuous crystallization of paracetamol in 
water was derived from the population¸ mass, and energy balances. The kinetic 
parameters of the growth and nucleation were obtained from the literature (Nagy et al., 
2008). The standard method of moments is used to capture the population dynamics. The 
primary nucleation and size independent growth were considered whereas the secondary 
nucleation, agglomeration and breakage were negligible. The moment equations, mass 
and energy balances are described by the set of nonlinear ordinary differential equations 
described below. 𝑑𝜇𝑑𝑡 𝐹 𝑉 𝜇 , 𝐹𝑉 𝜇 𝐵 (1) 𝑑𝜇𝑑𝑡 𝐹 𝑉 𝜇 , 𝐹𝑉 𝜇 𝑖𝐺𝜇 (2) 𝑑𝐶𝑑𝑡 𝐹𝑉 𝐶 𝐹𝑉 𝐶 𝜌 𝑘 𝑑𝜇𝑑𝑡 (3) 𝑑𝑇𝑑𝑡 𝑇 𝐹𝑉 𝑇 𝐹𝑉 3 ∆𝐻𝑘 𝜌𝜌 𝐶 𝐺𝜇 𝑈𝐴 𝑇 𝑇𝑉𝜌 𝐶 (4) 

where Fin, Fout and Fseed are the inlet, outlet and seed flowrates respectively, 𝜇  is the ith 
moment, V is the volume of the crystallizer, C is the solution concentration, 𝜌  is the 
density of the crystals, 𝑘  is the volumetric shape factor, Tin, T and Tj are the inlet, process 
and jacket temperatures respectively, ∆𝐻 is the enthalpy of crystallization, U is the overall 
heat transfer coefficient and A the jacket surface area. The nucleation and growth rates 
are described below. 𝐵 𝑘 ∆𝐶 (5) 𝐺 𝑘 ∆𝐶 (6) 
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where ∆𝐶 𝐶 𝐶∗ is the absolute supersaturation. The mathematical model of the batch 
process can be obtained by eliminating the inlet and outlet terms (𝐹 𝐹 0). 

The proposed RL strategy relies on a Recurrent Neural Network (RNN) to parameterize 
the policy. RNN uses both process measurements and control actions as an input to deliver 
a probability distribution as an output. The efficiency of the policy strongly depends on 
the properties of the neural network. In this work we used the Deep Deterministic Policy 
Gradient (DDPG) method. 

The defining of an appropriate reward function is critical in RL owing its evident impact 
on the quality and performance of the training. The decomposing of the rewards is the 
best way to teach the agent with small incentives for every little positive state observed 
and help achieve a good compromise between exploration and exploitation. Several 
reward functions have been used with different levels of complexity. Figure 2 provides 
an example of the reward functions used in this work. Where 𝑅  - is the reward given to 
the RL agent at time ‘t’ of the simulation; 𝑇 - the error between the process temperature 
and the reference profile; 𝑇  – the time interval during which the RL agent takes a single 
control action; 𝑇  - the final simulation time. 

3. Results and Discussion 
The RL results were obtained suing the following settings: The actor network comprises 
3 hidden layers and the critic networks has 25 hidden layers for the actions and 
observations. Each layer comprises 100 neurons, and each training episode consists of 
300 steps. In addition to this several training parameters were optimized to achieve the 
best training performance which will not be provided for the sake of the brevity. 

The RL approach was implemented to two different case studies. The first case focused 
on the trajectory tracking control of a batch crystallization, aiming at minimizing the 
deviation from a cooling profile while achieving optimal supersaturation and mean crystal 
size trajectories. This RL-based control strategy can be designed to minimize the batch 
time while maximizing quality. The second case considers the same set of process and 
product quality attributes but uses different reference trajectories. The approach can be 
designed to minimise start-up time and achieve high quality steady state performance. 

In each case, the agent was trained using several training sets based on bespoke reward 
functions to achieve optimal training and control performances. The trained agent was 
validated against the reference trajectories in both cases and compared to a standard MPC, 
as shown in Figure 3. Overall, both MPC and RL perform well in terms of trajectory 
tracking. The RL seems to achieve better in the case of continuous crystallization.  
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To analyze more effectively the performance of the RL-controller against the MPC, the 
sum of the squared errors (SSE) were computed systematically for each trajectory in both 
cases, batch and continuous systems, as shown in Figure 4. This quantitative approach 
makes it possible to gain more accurate insights into the control performance in each case.  

4. Conclusion 
A model based RL controller was designed and trained to address tracking control 
problems for batch and continuous crystallization processes. Three critical reference 
trajectories were considered namely: process temperature, supersaturation, and mean 

 
Figure  SEQ Figure \* ARABIC 3: Performance comparison of RL against standard 
MPC. (a), (b) and (c) for a batch system and (d), (e) and (f) for a continuous system. 

Figure  SEQ Figure \* ARABIC 4: Performance comparison between RL and MPC 
using the sum of the squared errors. 
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crystal size. The jacket temperature was used as a control variable. The RL agent was 
trained using a range of reward functions to achieve the highest reward score, the fastest 
training and the best compromises between exploration and exploitation. The resulting 
RL-based controller was validated and compared against benchmark control strategies 
such as MPC. It was shown that the RL can achieve excellent performance, based on both 
qualitative and quantitative key performance indicators, despite the challenges inherent 
to the simultaneous tracking of three reference trajectories. As such, the RL can be a 
promising advanced process control candidate, where dynamic trajectory tracking, and 
constraint handling are required. Despite the computational burden, the development of 
model based RL, using reliable and predictable models, has a real potential to cut the high 
costs commonly associated with the training of the agent in real world processes. 
However, it is critical to assess the robustness of the agent in presence of model 
uncertainties, measurement noise and process upsets. This is precisely the current focus 
of the research group. 
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Abstract 
Bayesian modelling has recognized utility for system design, process monitoring and 
control strategy wherein decisions must be made under uncertainty. Applications to 
operation and quality assurance are particularly promising as the Bayesian paradigm 
enables unique multivariate probabilistic control strategies through the use of multi-level 
regression with post-stratification. This work demonstrates application to real-time 
quality control in a dropwise additive manufacturing system for pharmaceuticals. A 
variety of multilevel hierarchical models are developed, and rigorous model selection is 
performed using information criteria. Then, the probabilistic quality control strategy is 
presented in general form using transformations of the posterior predictive distribution, 
with results assessed on out-of-sample data. 

Keywords: hierarchical Bayesian, multilevel modelling, machine learning, 
pharmaceuticals, additive manufacturing 

1. Introduction 
When a mechanistic model of a system cannot be fully defined, data-driven modelling 
provides an adaptable means of relating inputs to outputs, but often without allowing 
ready interpretation of the relationships obtained. The Bayesian paradigm enables the 
specification of known mechanistic structure, which can then be supplemented by the 
relationships implicit in the data, thus providing improved interpretability, while the use 
of probability as uncertainty measure provides a ready framework for decision analysis. 

Bayesian approaches have attracted considerable interest for predictive purposes in 
process monitoring, control strategy, and systems design – where decisions must be made 
under uncertainty (Stamatis et al., 2018; Mockus et al., 2020). The ability to sensibly set 
up complex models with many parameters and multi-layered structure enabled by 
hierarchical Bayesian methods provides unique opportunities for addressing challenging 
problems in which a measurement model is used to predict quantities of interest from 
real-time sensor data. A simple example in which the data-level model is seemingly 
sufficient is the thermocouple, in which the measured voltage is related to temperature 
through its characteristic function under the assumption that the function is invariant 
under process conditions. In more complex sensors, the process conditions themselves 
may interact with the measured quantity in ways that cannot be accounted for by the 
measurement model. Such a scenario arises as the thermocouple ages, the thermoelectric 
properties change, and with them, the characteristic function. Hence the basic problem 
under consideration is how to utilize relevant information that arises from the process and 
device conditions, but which is external to the physics-based measurement model. 
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For inherently multi-level problems such as this, the hierarchical Bayesian approach 
enables creation of a model structure which reflects the relationship between phenomena, 
and therefore enables modelling of the parametric inter-/relations within levels, in 
addition to their relationship to the overarching physical variable spaces, thereby making 
full use of the extra information to improve predictive accuracy. As the posterior 
predictive distribution (PPD) is the method by which to rigorously evaluate event 
probabilities for new/out-of-sample data, this has direct use in control strategies based on 
model predictions.  

In this work we demonstrate these ideas with an application to an image-based process 
monitoring and control strategy enacted on a dropwise additive manufacturing (DAMP) 
system for pharmaceutical dosage units. In previous work, a hierarchical Bayesian 
approach was used which involved categorical partitioning to construct hierarchical 
groupings across a database of 41 batches of drug products, spanning a wide range of 
process conditions and ink formulations (Radcliffe and Reklaitis, 2020). We expand these 
into multilevel models via nested hierarchical regressions on the coefficients of the 
image-derived explanatory variables using the numerous group-level explanatory 
variables which arise from the interaction of process conditions, fluid properties, and 
particle properties. 

2. Modelling approach 
The DAMP system produces dosage units through the sequential dropwise deposition of 
a suspension onto a substrate. The control strategy involves multiple aspects – fluid 
composition/rheology, temperature, substrate position; the process output – drops – is 
monitored in real time using an online image acquisition system. With the content of each 
tablet/capsule determined by the volume of material added to it, the online image data 
provides the means to enact quality control strategies at several levels of complexity. 

2.1. Construction of the Explanatory Variables for Multi-level Regression 
In our approach the historical process data is used to inform a multi-level model which 
takes as inputs at the data-level the features extracted from the online images, and at the 
upper-level the explanatory variables constructed from the process conditions. Physical 
reasoning plays a critical role in building the explanatory variables at both levels to 
achieve a hybrid model whose structure reflects the physics. Such hybrid approaches 
provide several advantages: enhanced interpretability, improved prediction at out-of-
sample conditions, and lower requirements on volume of training data. 

For use in the data-level model, each image is reduced to 8 explanatory variables: 1) 
primary drop volume, 2) summed satellite volume(s), 3) cylindrical approximation for 
partially observed satellites, 4) spherical approximation for partially observed satellites, 
5) approximation for partially-observed primary drop at bottom border, 6) approximation 
for partially-observed primary drop at top border, 7) Euclidean distance from centroid of 
primary drop to image centre, and 8) mean of Euclidean distances from centroids of 
satellites drops to image centre. Partial observations necessitate the addition of parametric 
approximations for the missing volumes based on the geometry presented by each image 
and category of defect. The image processing, methodology and supporting logic for the 
image-derived explanatory variables are described in (Radcliffe and Reklaitis, 2020). 

The operating conditions and suspension properties have substantial effects on drop 
formation. Though such variables do not belong in the data-level model, the existence of 
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interaction between the drops observed in the images and the underlying physics is 
undeniable. Including such effects requires a multi-level model in which the data-level 
parameters are themselves modelled using a regression on a set of upper-level explanatory 
variables derived from the process conditions.  

In the DAMP operating with suspensions, the process conditions include ejection 
velocity, shear rate, nozzle radius, number of pump volume strokes, fluid properties 
(viscosity, density, surface tension), particle properties (size, shape, density) and particle 
loading. Dimensional analysis can be used to combine the numerous physical properties 
and process conditions, and thereby re-express them using the relevant dimensionless 
groups for drop formation and suspension rheology: Weber number, Ohnesorge number, 
suspension viscosity scaling with particle loading f(ϕ∕ϕmax), Stokes number and particle 
Reynolds number; the last two can be modified by the particle aspect ratio to produce 
shape-scaled variants. 

2.2. Hierarchical Structure 
In building a model, the extent to which data sets are similar is of fundamental importance 
in modelling as this determines the pooling choices and hence the model structure. 
Traditional methods offer two approaches: no pooling, or complete pooling; hierarchical 
modelling offers a third path: partial pooling, the extent of which is determined by the 
data. As the historical data consists of clearly portioned sets of dosage units (“a batch”) 
made distinct by the dosage properties themselves (e.g. target content, number of drops 
per unit) and their respective set of dimensionless variables, a hierarchical model can 
provide the necessary flexibility while avoiding overfitting. 

In the context of the multi-level regression, each batch of doses (a matrix of image-
derived explanatory variables) is allocated its own regression coefficient vector at the data 
level; the hierarchy is constructed based on the exchangeability of these vectors and is 
modelled through a multivariate prior. At the upper-level regression, there exists a vector 
of explanatory variables for each batch (dimensionless parameters), while the upper-level 
regression coefficients and covariance matrix are shared. This is shown in in Eq.(1)-(5). 

  [ ]~ , 1, ,n n jj njj n Ny normal X B n  (1) 

  ,~ , 1,j jmultinormal JU G j   (2) 

       ; ~ 2 , ~ 0,2.5 1, ,kdiag diag LKJcorr Cauchy k K          
(3) 

 , 15 , ,, 1, ,~ 0,l kG Kl L knormal    (4) 

 ~ - , 1, ,j jhalf normal a bw j J    (5) 

Support for the data-level model is based on the physics: the outcome (deposited volume, 
yn) should be the sum of the contributions from the primary drop and satellite drop(s) 
weighted by the respective coefficients βj,k. Given the high reproducibility of the process 
and apparent linearity of the deposited volume to image relation, a normal likelihood 
(Eq.(1)) is assigned to the outcome. The prior distribution on the j=1,…,J vectors of 
regression coefficients is assigned a multivariate normal distribution (Eq.(2)). For each βj 
there is a vector of upper-level explanatory variables, Uj; the components of the matrix of 
regression coefficients, G, are assigned weakly informative priors (Eq.(4)). The 
covariance matrix of the multivariate normal is decomposed into a vector of scale 
parameters, τ, and a correlation matrix, Ω (Eq.(3)); the components of τ are assigned 
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weakly informative priors with the potential for heavy tails using the half-Cauchy 
distribution (Eq.(3)). The correlation matrix is assigned a Lewandowski-Kurowicka-Joe 
correlation (LKJcorr) matrix distribution with some amount of concentration toward the 
identity using η = 2 (Eq.(3)). The scale parameter of the data-level model is modelled 
parametrically (Eq.(5)) using the half-normal distribution with location parameter a+bwj 
and scale ψ, given the relevant explanatory variable, wj = 1∕ndrops; the slope and intercept 
of the regression are shared. Hyperpriors on a,b are the standard normal and ψ ~ half-
normal(0,1). 

2.3. Model Comparison and Selection 
With the form of the model established, there remain many possible choices for the data-
level explanatory variables,  X, and upper-level explanatory variables, U. Physical 
reasoning provides general guidelines, but it may not be readily apparent which to 
include/exclude. This problem can be approached systematically by evaluation of 
multiple models followed by comparison utilizing information criteria which account for 
the ability of a large/ more complex model to fit data better. One such fully Bayesian 
measure is the WAIC (widely applicable information criterion) (Vehtari et al. 2017). This 
measure can be used to screen hundreds of models to obtain a handful which are then 
examined further using graphical checks, posterior predictive performance on out-of-
sample data, etc.  

For the problem at hand, there are 6 possible combinations of X’s and 24 possible 
combinations of U’s, yielding 144 models. The possible combinations of X’s can be 
reasonably well-constrained by physical reasoning, e.g., X1,2,3,4,5,6 should always be 
present as these are direct contributions to drop volume. However, it is not immediately 
clear whether the Euclidean distance measures (X8,9) should be included; furthermore, 
there is the option of adding a constant intercept (X7 = 1). For the upper-level explanatory 
variables, it is reasonable to forcibly include dimensionless groups related to drop 
formation – We (Uj1), Oh (Uj2) – and some measure of suspension behavior through 
f(ϕ∕ϕmax) (Uj4); alternately, Oh⸱f(ϕ∕ϕmax) can be used (Uj3). However, for other variables 
for which it is difficult to justify inclusion/exclusion a priori, terms are sequentially added 
to/ removed from the upper-level variable vector to construct 24 possible choices; these 
are denoted in the results as U_j_l_*, where the wildcard represents the member indices 
of included variables. Aspect-ratio (AR) scaling for the Stokes (Uj5) and particle Reynolds 
(Uj6) numbers is used for both or none. Pump volume strokes is also considered (Uj7). 

3. Computational Methodology 
Hamiltonian Monte Carlo with the No-U-Turn-Sampler, implemented in Stan (Carpenter 
et al., 2017), is used to draw samples from the joint posterior distribution of the model 
parameters given the training data. The historical dataset was partitioned into two equal 
halves: for each batch of doses, the odd dose indices (i=1,3,5,…) are allocated to the 
training data and the even indices (i=2,4,6,…) to the out-of-sample data. For each model, 
4 Markov chains are simulated with warm-up period of 20,000 followed by sampling 
period of 20,000 iterations; this yielded 80,000 samples upon mixing. Convergence is 
assessed using the rank normalized R̂, which must below 1.01 for a simulation to be 
considered for use; additionally, the effective sample size must be ≥400 to keep Monte 
Carlo error low.  

Scalability of such computations can present unique challenges related to dynamic 
memory requirements, particularly during predictive uses, as the number of stored values 
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scales with proportionality ndata points × nMCMC samples. The Markov chain simulations 
themselves can be parallelized to fully utilize available compute resources: multi-process 
(1 chain per process), and multi-threaded within each process; the latter enables efficiency 
improvements via map-reduce, which is very helpful for log-likelihood computations. 

4. Results and Discussion 
4.1. Using the posterior predictive distribution 
The major uses of the joint posterior distribution, p(θ|y,X), involve the PPD, 
p(ỹ|X̃,y,X)=∫p(ỹ|X̃,θ)p(θ|y,X)dθ, in which θ denotes the model parameters. Predictive 
accuracy scoring utilizes the training data to compute scores based on the log predictive 
density; in this vein, WAIC is used to score predictive performance for each of the 144 
models and identify superior variants, as shown in Figure 2. Detailed checks of the fit of 
the model to the training data, X, U, W, utilize the PPD to predict the distribution of the 
alternate possible realizations of the outcomes, yrep; then, test variables can be set up for 
this model and used to assess model performance (Radcliffe and Reklaitis, 2020). 

To make predictions with regression models given out-of-sample data, X̃, Ũ, W̃, the joint 
posterior draws are used to sample from the PPD of ỹ. The PPD of ỹ can be transformed 
by any function of interest, with full inference obtained on the transformed quantity since 
probability is conserved through transformations. Consequently, event probabilities can 
be evaluated in a straightforward manner on both ỹ and transformed quantities; this 
enables probabilistic control strategies at multiple levels. 

For the problem at hand, quality control can be enacted at the individual level (each dose) 
or for entire batches. For each new batch, there is a target value for content, T and a target 
tolerance, z, such that the quality specification requires each dose be within [T(1-z), 
T(1+z)]. The probability that a dose (index i) is within specification can be computed by 
transforming the samples from ỹ using Eq.(6), then computing the expectation of the 
transformed variable, E[f(ỹi,T,z)]. The distribution of the fraction of the batch within 
specification can be obtained by transforming the joint distribution of the transformed ỹi`s 
using Eq.(7), in which I is the index set of doses in the batch. The samples from Eq.(7) 
can then be used to compute the probability that a desired fraction of the batch, denoted 
D, is within specification by transforming using Eq.(8) and taking the expectation of the 
result. In addition to event probabilities, transformations such as Eq.(7) can also be used 
to assess the predictive performance on new/out-of-sample data, as shown in Figure 1. 

The ability to compute event probabilities at multiple levels of abstraction provides a 
powerful method for multi-level control schemes. For example, suppose that 
Pr(g(f(ỹ,T,z),I) ≥ D) is low, and it is proposed that some doses from the batch be discarded 
in order to increase the probability. The decision of identifying the best candidates to 
exclude can be posed as an optimization problem in which the optimal solution is the 
index (sub)set which maximizes Pr(g(f(ỹ,T,z),I) ≥ D), subject to the contraint that the 
number of doses in the reduced batch be greater than some constant. Alternately, this can 

1381

( )
( ) ( )1

0

11
, ,

i

i

y

e

zT z

other s

T

wi
f y T z

  +−
=

 
(6) 

( )( ) ( ), , , , ,
I

i

i

g f y T z I f y T z I


=

 

(7) 

( )( )( )
( )( )1 , , ,

0
, , , ,

g f y T z I

otherwise

D
h g f y T z I D


=

 
(8) 



 A. J. Radcliffe et al. 

  

be inverted: maximize the number of accepted doses, subject to the constraint that 
Pr(g(f(ỹ,T,z),I) ≥ D) must exceed some threshold. 

          

Figure 1. Percentiles (2.5, 25, 50, 75, 97.5) of 
g(f(ỹ,T,z),I) respective to each batch at z = 
0.01, 0.025. Actual values displayed as 

asterisk. Model shown: x1to6_78, 
U_j_l_1356. 
Figure 2. WAIC score for 144 models. Lighter 
color indicates better predictive accuracy.

5. Conclusions 
In this work a multilevel hierarchical Bayesian model was developed for probabilistic 
quality control in a DAMP system. The hybrid approach utilized physical understanding 
in building the models, thereby increasing interpretability of the joint posterior and 
improved confidence in prediction at new conditions. Working in the Bayesian paradigm 
enabled rigorous evaluation of event probabilities through transformations of the PPD, 
which provides unique capabilities for optimization and quantitative decision analysis. 
Future work will expand on use in batch/lot optimization, in addition to considering more 
abstract problems wherein a sensible physical model is not available, but the data exhibits 
innate multi-level structure which can be leveraged. 
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Abstract 
A pressure regulating station (PRS) is used to step down the pressure of gas distribution 
pipelines suitable for domestic or industrial users, irrespective of gas demand. A gas 
distribution network can have hundreds of PRSs. Hence, they are key assets, and have to 
be continuously monitored for condition deterioration and/or sudden faults. A PRS can 
be modelled using first principles, but it is computationally expensive. In this study, we 
developed a computationally cheaper machine learning based surrogate for a PRS. 
Subsequently, weekly cumulative flow is calculated for a PRS to monitor the filter 
chocking and to predict the remaining useful life of the filter. Finally, a dashboard has 
been developed for monitoring the health of PRSs in a gas distribution network that can 
be integrated with online operational data for their condition monitoring and predictive 
maintenance. This can increase the reliability of a gas distribution network and reduce the 
maintenance cost.  

Keywords: Gas Distribution Network, Pressure Regulating System, Frist Principles 
Modelling, Health Monitoring, Prescriptive Maintenance.   

1. Introduction 
Natural or town gas distribution requires a complex network of pipelines to supply gas 
from a supplier to the residential, commercial, and industrial end-users. Suitably placed 
pressure regulating stations (PRSs) are used to step down the supply pressure and 
maintain it within a specified range for the end-users, irrespective of the gas demand. Any 
issue with the PRS system should be identified and rectified before the supply of gas is 
adversely affected. As PRSs are critical assets of the gas distribution networks, they are 
carefully monitored for any heath deterioration and potential faults (Leo et al., 2020).   

Some vital potential health degradation and faults that may occur in a PRS are filter 
chocking, spring decay, valve seat damage, diaphragm malfunction, and overloading of 
network. The health of PRS should be monitored for gradual decrease in the performance 
and/or sudden faults. Real-time operational data is critical for online monitoring and 
automated prescriptive maintenance of a PRS.  

Depending upon the nature of operational data available for a PRS, both model-based and 
data-based techniques may be applied for its health monitoring. In this work, we applied 
a rigorous first principles model in for a PRS (Nabi and Dayan, 2000), which is validated 
using technical data provided by the vendor (RMG by Honeywell). However, a first 
principles based health monitoring may be computationally heavy for developing a fast 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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PRS health monitoring methodology for a large network. As an alternate, we have 
developed a computationally cheaper but equally effective machine learning (neural 
networks: NN) based surrogate to replace the first principles based model.  

 
Figure 1: Overview of PRS with downstream network 

Leo et al. (2019) have applied the PRS health monitoring methodology on a simulated 
case study. In this study, actual operational data from a gas distribution company is used. 
The schematic of a representative PRS is shown in Figure 1. Three potential pressure 
reading locations are shown in the figure. Our developed methodology for PRS health 
monitoring should be able to identify fault in filter, with high reliability and accuracy. In 
some cases, the intermediate pressure readings (Pin) are not available. Our methodology 
allows monitoring the filter chocking for both cases. For easy reference, let us call them 
Case 1 and Case 2. In case 1, available data set comprise all three pressure (P0, Pin, Pout). 
In Case 2, data for only two pressures (P0 and Pout) are available.  

Estimating Remaining Useful Life (RUL) is critical for the prescriptive maintenance of 
an equipment. The PRS health monitoring procedure includes prediction of RUL for its 
parts. Finally, a dashboard (a user-friendly GUI) has been developed for monitoring the 
health of all the PRSs in the gas distribution network. This dashboard can be further 
integrated with the real-time PRS operational data to extend health by advising on the 
prescriptive maintenance. In addition to supervising their gradual decline, the PRS health 
monitoring dashboard may also monitor swift abnormality in any PRS.  

2. First Principles Model and NN Surrogate for PRS 
Leo et al. (2019) have developed a first principles model for HON 280 pressure regulator. 
They have considered mass balance and energy balances across the flow chamber, and 
force balance on the assembly of valve seat and diaphragm. A pressure regulator reaches 
steady state almost instantaneously due to its faster dynamics compared to the 
downstream distribution network. Hence, solving the pressure regulator model assuming 
a steady state operation was found adequate.  

The developed first principles model for a pressure regulator accurately predicts the flow 
rate using intermediate and downstream pressures (Pin and Pout). This first principles 
model is expected to be computationally expensive for online monitoring and fault 
detection of hundreds of pressure regulators in a very large network. Hence, we have 
developed a simpler and computationally cheaper surrogate. The neural network-based 
surrogate was developed using the available operational data (pressures) for a gas 
distribution network.  
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Figure 2: Development of neural network-based surrogates for 2- and 3-pressures cases 

The NN-based surrogates (with 2 hidden layers) were developed using operational data 
(P0, Pin, and Pout) for the pressure regulator A (PR-A). The performance of the first 
principles model and surrogates were compared on the operational data of four pressure 
regulators (B with P0 and Pout; C, D, E with Pin and Pout). In other words, we developed 
surrogates for regulator A, and used them to predict the flows for other pressure 
regulators. Note that Pin (intermediate pressure in Figure 1) is not available for pressure 
regulator B, and Pin = P0 (no pressure drop across the filter) is assumed for calculating 
flow rate using the first principles model. Figure 3 presents hourly flow rate calculated 
using the first principles model and NN-based surrogates. It can be seen that surrogates 
were able to predict the flow rate with high accuracy (~0.6 to 2.9% deviation from the 
first principles model). Table 1 compares the performance of the first principles model 
and surrogates for four pressure regulator data set. The NN-based surrogates require 
negligible computation time compared to the first principles model.     

 

 
Figure 3: Hourly flow rate comparison using first principles model and neural network-
based surrogates, for pressure regulators B, C, D and E 
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Table 1: Performance comparison between first principles (FP) model and surrogates 
(computer processor: i5-8265u @ 1.60 GHz & 1.80 GHz, RAM: 8 GB) 

PR 
Name 

Number 
of 

Samples 

Computation Time (s) Flow Difference b/w FP 
Model and Surrogates 

FP Model Surrogate % Absolute, m3/h 

B (2P) 242691 2132 0.24 0.60 22.16 

C (3P) 249753 3869 0.29 -1.28 -54.90 

D (3P) 98057 859 0.20 -1.61 -91.19 

E (3P) 105954 832 0.21 -2.90 -134.21 

3. Monitoring Filter Choking on Gas Distribution Network Data 
PRSs are vital components in a gas distribution network. Hence, PRS health monitoring 
is essential for a reliable gas supply to the customers. Leo et al. (2019) studied four PRS 
faults on a simulated case study. Filter chocking and spring decay cause an under pressure 
in downstream distribution network, whereas valve seat damage causes an over pressure 
of downstream distribution network. A PRS does not work properly, if there is any 
damage in diaphragm. Leo et al. (2019) studied following three scenarios:  

Scenario 1: Pout data at short intervals and cumulative flow at long intervals 
Scenario 2: Pout and flow data at same intervals 
Scenario 3: Pin and Pout data at same intervals 
Mostly gas distribution companies do not measure flow rate for different pressure 
regulators. The gas flow is usually measured at the gas consumption sites (household, 
commercial or industry). Further, only inlet (P0) and outlet (Pout) pressures are measured 
for many pressure regulators. Thus, we present a methodology for the two cases defined 
earlier, in the next section.  

3.1. Weekly Cumulative Flow 

In Case 1, monitoring of filter choking is easier as discussed by Leo et al. (2019). As 
stated above, both filter chocking and spring decay cause under pressure downstream 
distribution network. Filter chocking occurs much faster than the spring decay. Thus, 
spring constant can be assumed constant for monitoring filter chocking over a relatively 
short time period.  

An ideal pressure regulator will supply gas at Pout (= set point) regardless of the flow. For 
a real pressure regulator, if Pin is fixed, Pout will decrease with increase in flow (droop 
curve, Emerson, 2019). For a constant value of the inlet pressure (P0), the intermediate 
pressure (Pin) decreases with increase in filter chocking. In order to compensate for the 
decrease in Pin, Pout also decreases that increases cumulative flow calculated by the PR 
model. In this study, we have estimated weekly cumulative flow through the pressure 
regulators using the surrogates. The RUL of the filter can be estimated by fitting a line 
through the weekly cumulative flows. Maintenance should be carried out when weekly 
cumulative flow exceeds some threshold value. Figure 4 shows variations in the weekly 
cumulative flow for five pressure regulators. In order to predict the RUL, we used a 
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threshold value of 106 m3 for weekly cumulative flow. The RUL values for different 
pressure regulators are also given on plots in Figure 4.  

  

  

 
Figure 4: Weekly cumulative flow-based RUL predictions for five pressure regulators 

3.2. Pressure Regulator Health Monitoring Dashboard 

We have developed a dashboard for the health monitoring of the PRSs in a gas network. 
The pressure regulator dashboard has two parts: the ‘PR Group Analysis’ is used to 
analyse the performance of the pressure regulators in a group or region, and the ‘PR 
Performance Comparison’ is used to compare the performance of selected pressure 
regulators from the same or different groups or regions (see Figure 5). Some important 
flexible features of the dashboard are automatic update of data files, possibility of 
rearranging pressure regulators in different groups, selecting some or all pressure 
regulators for performance analysis, selecting start and end dates of analysis, and 
interactive display of results/plots.  
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Figure 5: User interface of PRS health monitoring dashboard 

4. Conclusions 
The PRSs are key assets of a gas distribution network. This study compares the 
performance of first principles model and machine learning-based surrogate for some 
representative PRSs. It is demonstrated that weekly cumulative flow through the pressure 
regulators can be used to monitor the filter chocking and predict the RUL of the filter 
even if Pin data is not available. It is further shown that the PRS health monitoring 
dashboard under construction, if integrated with real time operational data of gas network, 
can monitor the filter health, and prescribe a predictive maintenance schedule. Other 
faults under investigation will be gradually included in the dashboard.  
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Abstract 

Continuous monitoring of abnormal conditions during operation is an important 

requirement to increase the quality, and efficiency of chemical processes, and to optimize 

operating costs. In this study, fault diagnosis of abnormal conditions is considered for 

flocculation processes, which due to the complexity of these processes requires more 

attention. To this end, an unsupervised learning method is developed to diagnose the 

faults in chemical processes based on recurrence analysis. This method consists of two 

stages of pre-processing and clustering. The pre-processing stage is carried out by 

transferring the time series from time space to state space and converting the data into a 

two-dimensional recurrence plot. Quantitative parameters of recurrence analysis can be 

extracted from this plot. Then, in the clustering stage, the density-based spatial clustering 

of applications with noise (DBSCAN) method was used for clustering different operating 

conditions and diagnosing faults. By comparing the results with conventional methods, 

such as independent component analysis (ICA) and Kernel ICA (KICA) it was found that 

the developed method is more powerful and shows the best performance. Application of 

this method was illustrated throughout a laboratory scale flocculation of silica particles 

in water. An on-line non-invasive sampling method was used for monitoring the size 

distribution of particles with a dynamic image analysis sensor. 

 

Keywords: Unsupervised learning, Recurrence plot, DBSCAN, Flocculation process, 

Fault diagnosis. 

1. Introduction 

Advances in bioprocessing equipment and instrumentation have increased the likelihood 

for diagnose of abnormal conditions while improving the process productivity and 

usability. Therefore, development of more powerful methods for monitoring the operating 

conditions of these processes is of particular importance. Process monitoring includes 

several stages of fault detection, diagnosis, and causal analysis. Fault diagnosis can be a 

significant help for operators and process engineers as it identifies the type of fault. Data-

driven methods are widely used for this purpose since they do not need basic principles 

knowledge of the process (Tidriri et al., 2016). Among these methods, due to the frequent 

lack of information about the operating conditions, development of a method based on 

unsupervised learning is of greater importance. In general, any unsupervised fault 
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diagnosis method involves two general stages of pre-processing and clustering. In 

addition to the importance of clustering methods, the development and proper application 

of pre-processing methods is very important (Zheng and Zhao, 2020).The main research 

conducted in this field is based on the principal component analysis (PCA), independent 

component analysis (ICA) and other extensions such as Kernel PCA (KPCA), dynamic 

PCA (DPCA), and many more methods provided by (Liang et al., 2019, Bounoua and 

Bakdi, 2020). Sebzalli and Wang (2001) developed an approach based on PCA and fuzzy 

c-means clustering to classify the operational spaces of the RFCC reaction mechanism 

and grouped 303 cases in four clusters or operating zones. Also, Singhal and Seborg 

(2005) modified the k-means clustering algorithm with two similarity factors based on 

PCA and Mahalanobis distance to cluster time-series multivariate data from both batch 

and continuous chemical systems. However, despite the capability of time series analysis 

methods, only a few studies have been carried out in this field. Recurrence plots (Marwan 

et al., 2007) are among the powerful methods in the field of analysis and extraction of 

information from nonlinear, non-stationary and short time series (Ziaei-Halimejani et al., 

2017). In this regard, Ziaei-Halimejani et al. (2021) conducted an unsupervised method 

using recurrence plot for fault diagnosis of Tennessee Eastman and four water tanks 

processes. They found that recurrence plot is a powerful method for isolating and 

capturing information of process time series. Accordingly, in this research recurrence 

plots were adopted for process monitoring of silica flocculation process. As a result, the 

main contributions of this research are: (i) development of a hybrid method of recurrence 

plot and density-based spatial clustering of applications with noise (DBSCAN) without 

the need for previous information about the operating conditions (unsupervised learning), 

and (ii) fault diagnosis of the silica flocculation process using the image processing 

technique 

2. Experiment 

Flocculation is a two-step aggregation phenomenon in which a large number of small 

particles form a small number of large flocs. In this study, a silica particle flocculation 

laboratory setup was employed to monitor the evolution of particle size distribution over 

time through data analysis (Nielsen et al., 2020). The particle size distribution was 

determined by the image segmentation algorithm developed by ParticleTech ApS (Farum, 

Denmark) (Nazemzadeh et al., 2020). As a result, time series of particle size distribution 

with particle area, minimum Feret size, maximum Feret size, mean Feret size, Feret ratio 

and other particle properties were obtained. The batch experiments were carried out for a 

range of process settings. Variation of the process settings affects particle interaction, 

which leads to variations in the flocculation rate. Accurate adjustment of the process 

settings improves the process efficiency, otherwise, abnormal conditions in the process 

may be encountered. The adjusted process settings are stirrer rotational speed and pH of 

the suspension. The stirrer rotational speed was adjusted by varying the voltage of the 

power supply of the stirrer and pH was varied by adding HCl (1 M) to move towards 

acidic conditions and NaOH (1 M) to move towards alkaline conditions. The particles 

used in this process were silica (acquired from Sigma-Aldrich, CAS no.: 7631-86-9) in 

demineralized water (0.015 wt% concentration). The suspension was then transferred to 

a stirring tank of 1.5 L. Also, a dynamic optical scanning device (oCelloscope by 

BioSense Solutions ApS, Farum, Denmark) was used to record images to monitor particle 

size distribution. The images were processed by ParticleTech Analyzer software, 

developed by ParticleTech ApS. In order to correctly diagnose different faults, six 
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different faults were artificially introduced into the process, which included step change, 

pulse and variation in the pH and stirrer rotational speed. 

3. Theory 

3.1. Recurrence Analysis 

The Recurrence plot (RP) is a method based on the analysis of the recurrence/return 

behavior of time series (Eckmann, 1987). In this method, the time series is transferred 

from the time domain to the state space. By comparing all points of the time series 

trajectories in the state space and considering a radius threshold, recurrence plots can be 

constructed. The recurrence plot is obtained based on the following definition: 

NjixxR jiji ,........,1,         )()(, 



 

(1) 

where N is the number of measured points xi, ɛ is the radius threshold, Θ is the Heaviside 

function and |.| is the norm for measuring the distance between trajectories. If the 

difference between two trajectories is greater than ɛ, the Heaviside function is, Ri,j(ɛ) = 0. 

On the contrary, if the distance is less than ɛ, the Heaviside function becomes one, Ri,j(ɛ) 

= 1. For plotting this matrix, a black dot is shown in place of 0 and a white dot in place 

of 1. According to its definition, the RP is a symmetric plot and its main diagonal line is 

black. According to this definition, each point shows the recurrences of dynamical system 

states. 

Complex structures in the recurrence plots include many information about the dynamic 

behavior of the time series. For example, diagonal lines indicate uniform and predictable 

behavior, and single points indicate noisy and random behavior. In addition to qualitative 

analysis, quantitative analysis of these patterns is required in order to accurately extract 

information from the time series. In this regard, the determinism (DET) is defined as the 

ratio of diagonal structures recurrence points to all recurrence points (Ziaei-Halimejani et 

al., 2018).  

3.2. Clustering 

Data clustering is a type of unsupervised classification in which a set of data is 

automatically placed in different clusters without any labelling. There are various 

methods in this field, most of which are statistical data analysis and data mining. 

Clustering methods are generally divided into five categories: hierarchical, partitional, 

distribution-based, density-based, and grid-based methods (Xu and Tian, 2015). In this 

study, the density-based DBSCAN method was used. 

This algorithm, like other clustering methods, requires finding the proximity of data. 

Euclidean distance can be used to measure distance (similarity). To describe the 

algorithm, it is necessary to determine distance threshold (d) and minimum points of each 

cluster (MinPts).Each point in the dataset is different from other points. Any point for 

which the distance from a given point is less than d is considered a neighbor of that point. 

Also, any assumed point that has neighboring MinPts is a central point. In general, in the 

DBSCAN algorithm, a point is optionally selected that has not been visited before. The 

neighborhood of this point is checked with distance threshold (d). If it has the required 

minimum number of neighborhood points, a cluster is created; otherwise, it is labelled as 

a noise point. Note that after visiting all points, this point may be in the neighborhood of 

other points and become a part of another cluster (Saxena et al., 2017). In order to evaluate 

the performance of the proposed method, the adjusted rand index (ARI) was used, 

calculation of which is described by Hubert and Arabie (1985). 
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3.3. Method Framework 

Fault diagnosis of the silica flocculation process using particle size distribution properties 

was carried out in the steps of the flowchart shown in Figure 1. 

Chemical Process Data Collection Data Normalization
RP Adjusting 

Parameters
RP Construction

DET Sorting of DETs

DBSCAN 

Adjusting 

Parameters

EvaluationFault Diagnosis

 

Figure 1. Overall workflow of the developed method for process fault diagnosis 

4. Application on silica flocculation process 

In order to diagnose faults associated with silica flocculation process, the particle size 

distribution time series was extracted from the reactor at normal operating conditions and 

used as input to proposed algorithm. In the pre-processing stage, after normalizing the 

data, the input parameters of the recurrence plot, including time delay (τ), embedding 

dimension (m), sub-series length (Sl) and radius threshold (ε) were determined. In this 

study, these values were calculated as 1, 2, 35 and 0.06, respectively. In this step, 

recurrence plots of time series were obtained. An example of recurrence plot for the 

particle size in the flocculation process during the normal operating condition is shown 

in Figure 2. The diagonal lines of recurrence plot correspond to the recurrence behavior 

of this process, at which its dynamics can be predicted by recurrence plots. In addition, 

the absence of the same patterns and the presence of single points in the plot indicate 

chaotic and nonstationary behavior. In order to extract this information in the form of 

quantitative index without any uncertainty, the determinism parameter was used. 

 

Figure 2. Recurrence plot of silica particle diameters during normal operating condition 

After this step, by calculating the determinism of the RP and comparing it with normal 

operating condition values, three variables with the highest rate of change were selected 

and a three-dimensional graph was obtained. Figure 3 shows the geometric location of 

the three variables with the highest rate of changes for various faults of the silica 

flocculation process. As shown in this figure, various faults are isolated by values of their 

determinism in different geometric locations. It can be seen that the determinism has 

properly isolated various faults of the process in different geometric locations. However, 
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in order to properly understand the extent of this quality, the DBSCAN method was used 

for clustering of the obtained three-dimensional graph. 

 

Figure 3. Geometric location of various kinds of faults in silica flocculation process 

Also, the results of the clustering were evaluated with the previously available methods, 

which were displayed in the ARI criterion. The results for the ARI criterion were given in 

Table 1. In order to compare the results of the developed method with other available 

methods, the results of the ICA and KICA method were also given in Table 1. As shown 

in this table, the RP-DBSCAN method is a powerful method in fault diagnosis of the 

silica flocculation process. 

Table 1. Evaluation criteria result of different fault diagnosis scheme for silica flocculation 

process 

Method of Diagnosis Evaluation Criteria (ARI) 

ICA-DBSCAN 0.68 

KICA-DBSCAN 0.73 

RP-DBSCAN 0.85 

5. Conclusions 

Fault diagnosis of abnormal condition in chemical processes is one of the main phases of 

on-line monitoring, which requires more attention due to the very high complexity of 

these processes. Therefore, in this study, flocculation of silica particles was considered 

for fault diagnosis. To monitor the particle size distribution of particles with an image 

analysis device, an on-line sampling method was used. In the proposed method, by 

transferring time series from time domain to state space and converting them into a two-

dimensional image of a recurrence plot, the pre-processing stage was accomplished. At 

the end, the time series was converted into quantitative recurrence parameters. Then, the 

DBSCAN method was used in the clustering stage to cluster various operating conditions 

and diagnose faults. It was found that the quality of the developed method stood at a high 

level and showed the best performance by assessing and comparing the results with 

conventional methods. 
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Abstract
Biochemicals produced from lignocellulosic residues appear to be a feasible alternative
to replace current chemicals derived from oil. Nevertheless, some important challenges
need to be overcome in order to achieve a feasible transition towards biochemicals.
These challenges are the biomass seasonality and availability, selection of suitable
feedstocks, potential biorefineries allocation, as well as numerous economic
environmental, social restrictions. Those challenges can be address through the design
of a suitable supply chain. In this work a multi-period supply chain to produce furfural
from agricultural wastes of Mexico is proposed, this model was written and optimized
in GAMS. The demand of furfural was selected in order to replace the raw materials
used to produce the terephthalic acid, which is imported to Mexico. Economic,
environmental, and social criteria were chosen to evaluate the supply chain
performance. Finally, the results obtained show that it is feasible the replacement of the
current raw materials for producing terephthalic acid by furfural produced from
agricultural wastes. The supply chain solution with the best tradeoff among the different
metrics consists of a net profit of 1000 million USD/year, 19000 jobs generated and 370
million of eco-points /year.

Keywords: Furfural Production, Supply chain, Agricultural wastes, Social Impact,
Biorefinery.

1. Introduction
Nowadays, the several problems associated with the climate change, pollution and the
depletion of fossil resources have forced humanity to seek renewable resources and
develop new technologies for using them. In this sense, the lignocellulosic residues
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generated by agricultural activities are considered as promissory alternative to fossil
resources due to their abundant availability, low costs and because they are not in
competition with food, preventing ethical dilemmas. In the case of Mexico, it has 20
million of hectares destined for agricultural purposes, according with data provided by
the Ministry of Agriculture and Fishing of Mexico (SAGARPA). This land generates
about 5.86·108 metric tons of lignocellulosic residues each year, however, only the 5%
of those residues are reused or leveraged. On the other hand, data from Ministry of
Ecology and Climate Change (INECC) indicate that a significant amount of these
agricultural wastes are burned in the harvest site generating around the 5% of the total
CO2 emissions of Mexico (INECC,2017; SAGARPA,2019).

Based on the aforementioned, the reutilization of theses agricultural wastes for
manufacturing new generation of bio-chemicals, bio-materials and fuels provides
important and benefits since economic, environmental and social point of view. In this
sense, the U.S. National Renewable Energy Laboratory (NREL) has catalogued the 30
most important chemicals produced from biomass and with the capability to compete
with chemicals derived from fossil resources. In this list, the furfural stands out over
other bio-chemicals because its several industrial applications for producing a wide
range of commodities. Currently, the furfural is employed to produce lubricant oils,
diols, solvents, furan resins and fuels (Cai et al., 2013). However, in recent years, novel
furfural applications have been proposed, in this way, the manufacture of polymers and
plastics to such as polyethylene terephthalate (PET), polyester or Nylon 6-6 has
attracted special attention. Despite, the immense potential of bio-chemicals such as
furfurals, some obstacles like biomass seasonality and availability, famers planting
decisions must be overcome in order to achieve a feasible transition towards the
eco-friendly. These obstacles generate a not continuous supply of agricultural wastes
and therefore an inconsistent production of bio-chemicals, as consequence several
difficulties to satisfy the market demand are presented. These challenges can be
overcome by an appropriate supply chain (SC) design where all those aspects are
considered. A properly designed SC offers adaptability for providing feedstocks to a
biorefinery and at the same time, it provides the ability to generate an optimal
operational schedule and planning in order to satisfy the production required.

This work proposes the use of a supply chain model as a tool to determine the feasibility
of producing furfural from agricultural wastes in Mexico at industrial scale. The
demand for furfural is assumed to be the one that replaces the importation of chemicals
required to produce terephthalic acid (TA). The TA is high added value chemical used in
the manufacturing of polyethylene terephthalate (PET), polyester fibers, molding resins,
adhesives. This study allows to determine the feasibility of replacing the current
chemicals by renewable ones in the production of important current commodities. Based
on sustainability criteria suggested by Garcia and You, (2015) the Economic,
environmental, and social aspects were considered as the most important indicators to
evaluate the supply chain solution. The economic objective is maximization of net
profit, whereas the environmental impact and social objectives are the minimization of
eco-indicator 99 and the maximization of the jobs generated, respectively.

2. Methodology
This work proposes the use of the four most abundant lignocellulosic residues produced
each year in Mexico. The choice of raw materials was carried out according with data
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provided by the Ministry of Agriculture and Fishing of Mexico (SAGARPA,2019).
Based on the data provided by SAGARPA the most abundant lignocellulosic wastes
produced each year in Mexico are corn stover, wheat straw, sorghum bagasse and
sugarcane bagasse. In order to take into account, the biomass seasonality in each harvest
site, a multiperiod inventory planning with one-year of time horizon is proposed. This
horizon has been divided into the four different time periods (t∈T), one period for each
season of the year. Figure 1 illustrates the superstructure considered for the supply
chain. With the aim of providing a more realistic distribution of biomass, the Mexican
territory was discretized into 59 different regions. This discretization was performed
based on population data, where the zones with less population have larger
lignocellulosic wastes availability, the biomass availability of each zone was fixed
according with data provided by SAGARPA.

Figure 1. Supply chain superstructure.

In order to solve the problem in a simpler way some assumptions are considered. The
centroid of each zone is the point where all the agricultural residues are located. This
consideration could be easily relaxed only increasing the discretization zones to
generate smaller sub-regions. Additionally, it is considered that the biomass is stored at
the harvesting sites, which prevents the monetary losses provoked by the transportation
of biomass that will not be used due to its degradation in the biorefineries. Finally, only
one biorefinery per region is allowed, the biorefineries are characterized by significant
use of water, this assumption avoids the excessive use of water and at the same time, it
avoids the depletion of the total biomass located per region, which can be used for other
purposes as cattle feed. The transportation distances and centroids locations are
calculated using the Rhumb line method, which is a common method used in
cartography to estimate distances. Furthermore, all the parameters required by this
method can be easily obtained from Google Maps.

3. Mathematical Model
This section provides the mathematical formulation for the supply chain for furfural
production and the corresponding objective functions used to evaluate the supply chain
performance. The mathematical model was formulated as multiperiod Mixed Integer
Lineal Programing (MILP).

The mass balances at the harvest sites can be modelled using the follow equation:

(1)
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Where and are the inventory levels at a harvest site for a specific time

and previous period, respectively. represents the loss factor coefficient by

biomass degradation, is the shipments of biomass j from a harvest site i to a

furfural plant k. Finally, represents the lignocellulosic wastes required at a
harvest site, it is calculated as follows:

(2)

Where is the availability of lignocellulosic waste j at a harvest site i at a period
t.

The shipments of lignocellulosic wastes from harvest to the furfural plants can be
constrained as follows:

(3)

Where / represents the lower/upper bounds for the wastes

required in a harvesting site, is the binary variable for selecting a specific

shipment arc (shipments from harvest to furfural plant).
In order to guarantee a continuous biomass supply to furfural plants, a cyclic inventory
was used, which can be implemented assuming that the biomass storage in the last
period (t=T) is equal to the storage at beginning period (t=0), according with the follow
equation:

(4)

The mass balances for the furfural plants (biorefineries) were modeled in similarly.
Additionally, three different criteria have been considered to evaluate the performance
of the supply chain. These criteria are the net profit, environmental impact, which is
calculated using the Eco indicator 99 and finally the jobs generated in the different
activities of supply chain, the jobs generated are calculated using the Jobs and
Economic Development Impact methodology (JEDI), more information about these
objectives is provided by Santibanez-Aguilar et al., (2014). Mathematically, the three
objectives function can be expressed as follows:

(5)

Subject to:

(14

)

(6)
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The Eq.6 indicates as the shipments (Sj,k,m,t) are constrained between upper (ϒU) and
lower bound (ϒL) respectively. Finally, this multi-objective optimization problem was
solved using the ε- constrained method, in order to find a tradeoff among different
objectives, more information about this method is provided by Diwekear (2008)

4. Results
The model proposed consists of 194,207 equations, 16,284 binary variables and
282,316 continuous variables. This model was solved using a computer with AMD
Ryzen 5-1600 @3.2GHz, and 16GB of RAM @2400MHz. Each Pareto point was
solved in an average time of 600s. The solver used was CPLEX with a relative gap of
1%. Figure 3 shows the Pareto fronts for all combiations of objetives. The form of these
graphics can be easily explained based on Eq.6. Please note, that this equation restricts
the solution between a lower and upper bound for the demand. The lower bound
represents the demand required and the upper bound is the minimum demand plus an
excess of 10%. Therefore, the extreme lines of the Pareto fronts correspond to different
solutions operating between lower upper bounds. The average difference between the
lower and upper bounded solutions is about 11% which is expected owing to the
difference between bounds is 10%.

Figure 2. Pareto Fronts for furfural supply chain.

1399



Please note, the large dots in Figure 2 correspond to the solution considered with most
appropriate trade off among different metrics, thus this point was selected as the best SC
solution. In this point the SC has around 75% of the maximum profitability, also the
EI99 is close to its lower limit and the jobs generated are 19500 jobs, which signifies
almost the 50% of the maximum possible jobs. It is important to highlight that this
number of jobs is associated with different activities of the supply chain, such as
recollection and distribution of raw materials and products, manufacturing in different
furfural plants etc. In addition the profit was performed considering current funeral sale
price of 2500USD ton. The biomass inventory in this point is given in Figure 3a. The
results show that only corn stover and wheat straw are required to produce furfural due
to the lower manufacturing cost than sorghum bagasse and sugarcane bagasse.
Moreover, based on Figure 3a, it results evident that the production of furfural is based
on corn stover principally, because the availability of wheat straw is less, especially
during the period t=1 and t=2 (spring and summer). For this reason, significant amounts
of corn stover must be stored in order to keep a constant furfural production.

Figure 3b illustrates the shipments of lignocellulosic wastes, during each time period.
The results show a clear relation between the biomass availability and the shipments.
During spring and summer (t=1, t=2), when the wheat straw availability is low the
shipments are mainly based in corn stover. However, during autumn and winter seasons
(t=3, t=4) the wastes shipments are based on wheat straw. These results also indicate
that most furfural plants that use corn stover as raw material will be active during
seasons in which corn stover is abundant, the same behavior occurs with wheat straw.

Figure 3. Biomass inventory and shipments levels for one-year time horizon.

5. Conclusions
In this work a supply chain model for furfural production is proposed. This
mathematical model is used as a tool to determine the feasibility of producing furfural at
industrial scale using as raw materials agricultural residues of Mexico. Economic,
environmental and social aspects, where considered as indexes to evaluate the supply
chain solution and to improve the sustainability of supply chain. Based on the results,
the furfural production using agricultural residues to replace chemicals derived from
petroleum is feasible. The results showed important profits up to 1250 Million
USD/year. The optimal SC solution consist in a profitability of 1056 million USD/year,
19300 jobs generated and 370 million of eco-points /year.
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Abstract 
Optimisation models for the design of distributed energy systems (DES) often exclude 
inherent nonlinearities and constraints associated with alternating current (AC) power 
flow and the underlying distribution network. This study aims to assess this gap by 
comparing the performance of linear and nonlinear formulations of DES design models, 
connected to and trading with an AC grid. The inclusion of the optimal power flow (OPF) 
constraints within the DES design framework is demonstrated in the methodology. A 
residential case study is used to test both models and compare the designs obtained from 
the two formulations. The results highlight that DES designs obtained are different when 
constraints related to the underlying distribution network are added, particularly when 
electricity storage is not considered. Overall, this study highlights the need for future 
modelling efforts to include OPF within DES optimisation frameworks to obtain 
practically feasible designs, rather than considering them as standalone problems.  
 
Keywords: distributed energy system, optimal power flow, mixed-integer nonlinear 
programming 

1. Introduction 
The implementation of DES has become increasingly attractive as the power industry 
aims to integrate more renewable energy resources into existing networks while avoiding 
costly grid upgrades. DES consist of local, often privately-owned, small-scale energy 
resources, many of which are renewable. Optimisation models for design and operation 
of DES are commonly used to determine the suitability and location of the energy 
resources, and their performance over the system lifetime (Mavromatidis et al., 2019). 
However, these models often exclude inherent nonlinearities associated with AC power 
flow, despite most DES generating AC power and interacting with the main electricity 
grid. Power flow constraints, which are nonlinear and nonconvex, are included in OPF 
models which determine capacities of distributed generators and calculating active and 
reactive powers within the network, while maintaining voltage limits (Frank & 
Rebennack, 2016). OPF has often been treated as a standalone problem and not 
adequately accounted for in DES design formulations. Modellers often choose to exclude 
these nonlinear and nonconvex constraints in DES design models to obtain more 
computationally tractable models, and achieve an accuracy-complexity balance (De Mel 
et al., 2020). Mixed-integer linear programming (MILP) models are the most used 
formulations for DES design, with direct current (DC) approximations that exclude 
reactive power flows. However, the consequences of doing so have not been adequately 
analysed, with preliminary studies suggesting that either excluding or linearising certain 
key constraints can result in practically infeasible designs (Mashayekh et al., 2017; 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Morvaj et al., 2016). This study addresses the increasing need to compare these different 
levels of approximation and establish which level is most suitable to achieving an 
accuracy-complexity balance and practically feasible designs.  

2. Methodology 
Four model formulations for DES design are employed in this study: 1) an MILP model 
with a general active power balance, based on works by Mehleri et al. (2012) for PV 
constraints and general power balances, and Mariaud et al. (2017) for battery 
representations and parameters, 2) a nonlinear programming model (labelled NLP-1) 
serving as a post-optimisation check with fixed binary decisions and capacities obtained 
from the MILP, and detailed AC power flow constraints, 3) an NLP model similar to 
model 2 (labelled NLP-2), however with capacities unfixed and treated as variables, and 
4) a mixed-integer nonlinear programming (MINLP) model with detailed AC power flow 
constraints. All models minimise total annualised cost, which includes technology 
investment costs, operation and maintenance costs, and income from relevant tariffs. Each 
of the buildings comprising the DES can install one or more of the following distributed 
energy resources (DERs): solar photovoltaics (PVs), lithium-ion batteries, and boilers. 

An OPF formulation based on the bus injection model in polar form (Frank & Rebennack, 
2016) for a single-phase, balanced, low voltage network is utilised. It includes nonlinear 
and nonconvex constraints for net active (Eq. (1)) and reactive power (Eq. (2)), 
considering node 𝑛 ∈ 𝐍 and branch (𝑛, 𝑚 ∈ 𝐋:  

𝑃 , = 𝑉 ,  𝑉 , ((𝐺 cos 𝜃 , − 𝜃 , + 𝐵 sin 𝜃 , − 𝜃 , ∀𝑛 ∈ 𝐍 (1) 

𝑄 , = 𝑉 ,  𝑉 , ((𝐺 sin 𝜃 , − 𝜃 , − 𝐵 cos 𝜃 , − 𝜃 , ∀𝑛 ∈ 𝐍 (2) 

where the variables voltage magnitude and angle are denoted by 𝑉 ,  and 𝜃 , , 
respectively. Note that parameters line conductance (𝐺 ) and line susceptance (𝐵 ) are 
obtained via bus admittance calculations (Frank & Rebennack, 2016). The OPF 
formulation also includes inequality constraints to ensure voltage magnitude and angles 
remain within specified lower and upper bounds. The layout of the network and 
connections are specified using a bus connectivity matrix for the set of all branches 𝐋.  
Note that a node which injects power has positive power flow, while a node absorbing 
power has negative power flow. Current limitations are introduced in Eq. (3) where 
current magnitude in each branch, expressed as a function of voltage, cannot exceed the 
network-specified maximum current 𝐼  (Frank & Rebennack, 2016): 𝑉 , cos 𝜃 , − 𝑉 , cos 𝜃 , + 𝑉 , sin 𝜃 , − 𝑉 , sin 𝜃 ,≤ (𝐼𝑦 ∀(𝑛, 𝑚 ∈ 𝐋 

(3) 

where 𝑦  refers to the magnitude of series branch admittance (which is usually 
calculated in complex form using the parameters series resistance (𝑅 ) and reactance 
(𝑋 ) for each branch). The OPF and MILP are linked by the following equality 
constraints for each house 𝑖 connected to node 𝑛, forming the overall MINLP formulation 
for DES design (Frank & Rebennack, 2016): 𝑃 , = 𝑃 , − 𝑃 ,  (4) 𝑄 , = 𝑄 , − 𝑄 ,  (5) 
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These determine whether the respective node is an injection or load node by calculating 
the net active and reactive powers, respectively. Note that the same OPF formulation is 
also used in the NLP models, with linear DES constraints and fixed binary decisions. 

3. Results 
3.1. Case study 
The models are tested using the residential DES network available in Morvaj et al. (2016) 
in a UK context, using seasonal averaged values for electricity demand and heating 
demand as inputs (note that cooling is not considered in this study). Solar irradiance data 
obtained from Met Office (2020) are also fed as inputs to the model. Demands, available 
area for PV installation, and available volumes for battery installation at each location are 
summarised in Table 1. Note that the model considers 24 hours (one representative day) 
for each season, discretised into hourly timesteps. Other input parameters include DER 
efficiencies, capacity and area of a solar panel, and battery parameters such as maximum 
state of charge/discharge, volumetric energy density, etc. The DES is assumed to operate 
under the Feed-In-Tariff scheme (Ofgem, 2019) over 20 years, which provided prosumers 
with tariffs for renewable energy generation and export. Separate day and night prices are 
used for buying electricity from the grid to encourage battery installation.  
Table 1. Average daily demands for electricity and heating per day 

Building Peak Electricity 
(kW) 

Peak Heat 
(kW) 

Area available 
(m2) 

Volume available  
(m3) 

A 3.8 10.0 150 5 
B 18.4 47.6 700 5 
C 14.1 27.1 600 5 
D 3.8 6.4 150 5 
E 12.0 31.3 550 5 

Total 52.2 122.3 2150 25 
 

The NLPs and MINLP are fed with network-related parameters, such as nominal voltage, 
resistance (R) and reactance (X), as presented in Figure 1. Note that the power factor (PF) 
for solar power is set to unity.  

 
Figure 1. The distribution network and parameters, where 𝑆  is the base apparent power 

Two scenarios are tested 1) PVs and boilers only, and 2) PVs, batteries and boilers. 
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3.2. Results and discussion 
The MILP, NLP and MINLP models are solved using CPLEX (IBM, 2019), CONOPT 
(Drud, 1985), and SBB (Bussieck and Drud, 2001), respectively, all on an Intel® Core™ 
i7-10510U processor. It is not possible to guarantee global optimality in the MINLP and 
NLP solutions, as the formulation is nonconvex and we experienced difficulties using 
global solvers. The statistics of the models (with all the technologies) are summarised in 
Table 2. The MINLP and NLPs are initialised using the MILP solution.  
Table 2. Number of variables and constraints in the complete models employed in this study. 

Model Continuous variables (#) Binary variables (#) Constraints (#) 

MILP 4,473 980 9,317 
NLP 8,217 - 16,113 

MINLP 8,217 980 16,133 
 
The most notable differences in results were observed in Scenario 1 (PVs and boilers 
only), which are summarised in Table 3. While the MILP provides the best objective 
value and chooses the highest total PV capacity of 307 kWp, the post-optimisation check 
conducted via NLP-1 suggests that this solution is unattainable when grid constraints are 
considered. It is evident that curtailment of solar power is carried out in NLP-1 at nodes 
1 and 2 in summer due to current violations in the network, which is also reflected by the 
lower income and thus an objective value approximately 6% greater than that of the 
MILP. This is further confirmed in Figure 2, which shows the current in branch (1, 2) 
(which carries the highest current out of all branches) for all four models. Both NLP-2 
and MINLP opt to install lower PV capacities of 294 kWp and 287 kWp, respectively, to 
achieve lower objective values than NLP-1, while maintaining grid constraints. The 
capacities of boilers installed across all four models are the same (122 kWth), which is 
reflected in the boiler investment and operation costs.  
Table 3. Solutions obtained from all four models for the PVs and boilers only scenario. 

Breakdown MILP NLP-1 NLP-2 MINLP 
Time taken (s)  5.29 5.57 5.84 6.86 
Objective value (£) 43,793 46,380 46,158 46,102 
Relative optimality gap  0 - - 0 
PV investment (£) 54231 54231 51825 50693 
Boiler investment (£) 480 480 480 480 
Battery investment (£) 0 0 0 0 
Grid electricity (£) 37944 37944 38294 38448 
PV operation (£) 5446 5382 5160 5055 
Boiler operation (£) 5240 5240 5240 5240 
Generation income (£) 50976 48938 47310 46498 
Export income (£) 8572 7959 7532 7316 
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Figure 2. Current in branch (1, 2) calculated for all four models. Note that the MILP branch 

current was calculated via the NLP with current constraints deactivated.  

Interestingly, in Scenario 2 where batteries are included in the model formulation, all four 
models produce the same objective value of £37,566. The total capacities for PVs (307 
kWp), batteries (322 kWh), and boilers (122 kWth) across the models are the same. These 
results suggest that batteries allow the network to compensate for any potential violations 
by storing power rather than selling all excess power to the grid. Despite the capacities 
being equivalent, the operational strategies proposed in the models vary, particularly, the 
quantities of excess electricity and times it is sold as shown in Figure 3, and/or the 
batteries are charged. Note that the integrals of these variables across all timesteps and 
nodes are the same across all four models. In Figure 3, although it appears as if the excess 
power sold in the nonlinear models are bounded at ~100 kW, this is a result of including 
the current constraint (Eq. (3)) and the value varies between 102.8 kW and 103.1 kW in 
the models. Note that it is necessary to use an OPF formulation to determine the maximum 
amount of power that can be sold without violating this constraint for each case study, as 
it is sensitive to the design and parameters used. The MILP operational strategy is tested 
using a modified version of NLP-1, with fixed variables for selling electricity and 
charging the battery. This renders the model infeasible, confirming that the MILP strategy 
is unattainable without violating current constraints.  

 
Figure 3. Total excess power sold at each time point. 

Despite including nonconvex constraints, the models solved within seconds as 
highlighted in Table 3 (this included initialisations). However, computational expense 
may increase significantly if the network is enlarged to include more nodes, particularly 
if solved as an MINLP. In that case, using a model such as NLP-2, where an MILP is 
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solved first to obtain and fix binary decisions, may enable the modeller to achieve an 
accuracy-complexity balance without excluding network constraints.  

4. Conclusions 
This study focuses on consolidating two previously standalone problems, design of 
distributed energy systems and optimal power flow, and comparing results from linear 
and nonlinear model formulations for DES design. The methodology demonstrates the 
inclusion of nonlinear and nonconvex active and reactive power balances when 
formulating optimisation models for DES design, as well as other network-related 
constraints. Results highlight that inclusion of nonconvex constraints guarantees that the 
design is practically feasible and allows the inclusion of key network constraints that rely 
on both active and reactive power flow calculations. While the MILP model produces a 
better objective value for the presented case study when electricity storage is not 
considered, this is misleading as the inclusion of OPF constraints shows that this would 
not be realised in practice. Including these constraints also significantly impacts the 
operation of the DES, regardless of whether electricity storage is available or not, and 
therefore should be investigated further using DES operational models. Future work 
includes the extension of the nonlinear model to consider a larger, three-phase unbalanced 
network where voltage violations may also occur. Other network-related constraints such 
as line thermal limits and transformer limits will also be considered. Using sensitivity 
analysis to quantify the effect of uncertainties present in the system and therefore analyse 
the intermittence of renewable generation may further shed light on the significance of 
including network constraints.  
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Abstract 
The lack of collection and processing infrastructure for waste management in developing 
countries is an overwhelming concern. Moreover, the growing generation of waste makes 
this problem even more complex. Specifically, in Mexico, the waste generation per day 
is approximately 0.13 MT. Landfill space is becoming increasingly constrained in some 
large urban centers where there are no other processing technologies, thus the use of open 
dump systems might be needed. The Mexican environmental protection agency 
(SEMARNAT) has reported that in 2012 from all the waste generated in Mexico, 72% 
was disposed of at sanitary landfills and regulated sites, while 23 % was disposed of at 
open dumps and the rest 5% was recycled. Considering these issues, we propose to 
optimize municipal solid waste management systems using a coordinated framework. The 
framework accommodates distinct stakeholders involved in the system, such as suppliers 
of waste, consumers of waste and derived products, and providers of transportation and 
processing services. The proposed optimization formulation seeks to maximize the 
collective profit and to balance supply and demand for waste and derived products. To 
achieve this, in the proposed framework, the stakeholders submit bids to a market 
coordinator that solves the optimization problem to find the allocations and clearing 
prices that guarantee that no stakeholder loses money. The framework also allows the 
monetization of environmental impacts, such as open dump disposal. Therefore, a 
taxation scheme to account for this environmental impact is evaluated. To illustrate the 
applicability of the presented approach, a municipal solid waste (MSW) system in Mexico 
was analyzed as a case study. Results show how taxation incentivizes the provision of 
services for all stakeholders. Furthermore, the minimum tax required to avoid diverting 
waste to open dump systems was identified. 
 
Keywords: waste management, stakeholders, coordinated markets, taxation. 

1. Introduction 
MSW management is a complex problem that has been addressed through different 
approaches. Such as a taxation framework to incentivize recycling (Ko et al., 2020), a 
waste management cycle to guide policy regulations (Jiang et al., 2020), and 
mathematical models for the optimization of the MSW supply chain (See for instance: 
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Santibañez-Aguilar et al., 2013). Particularly in developing countries, the lack of 
infrastructure has led to great environmental issues including open dump disposal. 
 
In the presented work, we propose to address the optimization of MSW management 
systems using a coordinated framework. We consider distinct options for the generated 
waste including recycling, sanitary landfills, and open dumps. Within the coordinated 
framework, the following stakeholders are identified: suppliers of waste, consumers of 
waste, consumers of products, providers of transportation, and providers of processing 
technologies. Specifically, in the MSW system, these stakeholders are urban centers that 
generate waste, sanitary landfills that consume waste, processing facilities that consume 
waste, urban centers that consume derived products, transportation providers that move 
waste or products, and transformation providers that treat different types of waste. We 
consider that the waste that is not allocated to consumers (sanitary landfills or processing 
facilities) ends up in open dumps. This problem is common in developing countries. 
Currently, there are not specific economic regulations associated with this practice. 
Therefore, to monetize this environmental impact, we include a taxation scheme. In this 
approach, we show how the coordinated framework allows identifying suitable tax 
structures and maximizing the collective profit of all stakeholders.  

2. System Description  
The stakeholders of the system and the proposed superstructure are presented in Figure 
1. Here, we can identify the consumers, suppliers, and providers (transportation and 
transformation) that participate in the MSW system. Note that each of these stakeholders 
manages different types of waste or products at a particular geographical location (urban 
centers). The players are categorized by the type of waste they handle plastic, metal, 
organic, glass, and non-recyclables. Furthermore, subtypes are involved in some waste. 
For instance, for glass, we consider clear, green, and brown glass. We consider that each 
urban center involves a specific generation rate of waste and has available sanitary 
landfills, open dumps, and processing facilities. Furthermore, the transformation 
providers offer different types of treatment and technologies for each type of waste. The 
transportation providers can move waste to sanitary landfills and processing facilities. 
These providers can also move products to final consumers. Regarding open dump 
disposal, we observe that the waste that is not sent to sanitary landfills or processing 
facilities is sent there. It is assumed that this type of disposal does not involve any 
economic cost. However, the environmental cost is considered through the proposed 
taxation scheme. To avoid open dump disposal, we include a tax for the waste sent to 
such systems. Within the coordinated framework, this tax is considered as a service that 
the environment provides to the waste suppliers. 
 
Into the coordination system, the suppliers, consumers, and service providers submit bids 
to an independent system operator (ISO). This coordinator uses the bidding information 
to clear the market by identifying the optimal allocations and clearing prices for all 
stakeholders. The next section describes these considerations. 
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Figure 1. Superstructure for the coordinated system. 

3. Coordinated Framework   
The proposed framework guarantees that no cleared stakeholder loses money (payments 
collected are equal to payments made). This is possible because the solutions provided 
by the ISO satisfy a set of economic properties (Sampat et al., 2019). The solution 
procedure is as follows. First, the bids are submitted to the ISO (they can be positive or 
negative). In Figure 1, we can observe that almost all stakeholders offer positive bids ($), 
however, the sanitary landfills offer negative bids (-$). This negative bid refers to a 
payment that landfill suppliers are willing to give the market for taking away their waste. 
Furthermore, the negative bid of landfill consumers involves that the landfill will take the 
waste only if it is paid for this action (such as a disposal fee). Once this information is 
provided, the ISO solves an optimization problem to clear the market. Here, the collective 
profit of all stakeholders is maximized. As part of the clearing process, the allocations, 
prices, and profits that balance supply and demand are found. It is considered that, when 
a player is not cleared, no product is allocated, and this stakeholder does not participate 
in the market. The cleared stakeholders are paid based on their allocations and clearing 
prices. Specifically, transportation providers are paid considering the differences in prices 
at the source and destination locations. Similarly, the transformation providers are paid 
considering the prices of their input and output products.  

4. Model Formulation  
The formulation of the coordination problem involves geographical locations N, products 
P, consumers D, suppliers S, transportation providers K, and transformation providers M. 
The bidding information (αd, βs, γk, δm) and the maximum capacities for the demand, 
supply, and service providers are given parameters. As shown in Eq. (1), the objective 
function seeks to maximize the collective profit. This profit is the difference between the 
demand served and the costs of supply, transportation, and transformation. The solution 
to the problem includes finding the optimal allocations (cd, gs, qk, fm). 

 (1) 

These allocations satisfy the physical conservation laws and capacity constraints of the 
following equations. The clearing prices are also part of the solution and they are 
estimated through the dual variables (πn,p). These variables act as market clearing prices 
because they set values for products P at each geographical locations N. Here, ςm,p is the 
conversion factor for each technology and product.  

max   d d s s k k m m
d D s S k K m M

c g q f   
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(2) 

  (3) 

  (4) 

  (5) 

   (6) 

These allocations and prices are used to charge consumers and remunerate providers. For 
the clearing prices of each stakeholder, we use the notation πd, πs, πk, πm. These prices 
along with the bids and the allocations are used to compute the profits of stakeholders as 
follows. Eq. (7) refers to the profit for consumers that is the difference between the 
allocated demand (αdcd) and the payment made to the market (πdcd). For suppliers, their 
profit is estimated as shown in Eq. (8). Here, πsgs refers to their revenue and βsgs represents 
their operating cost. Similarly, the profits for the transportation and transformation 
providers are computed by Eq. (9) and Eq. (10). 

   (7) 

  (8) 

  (9) 

    (10) 

The resulting model is linear and was solved through the GAMS modeling environment 
using the solver CPLEX. 

5. Results and Discussion  
To illustrate the applicability of the approach, we evaluate a case study of an MSW system 
in the central-west region of Mexico. Here, five urban centers (Morelia, Celaya, 
Apatzingan, Lazaro Cardenas, and Leon) are considered. These centers act as suppliers 
and consumers. We use the notation 1-5 to refer to where each stakeholder is situated. 
Each stakeholder has a specific flow, product type, capacity, location, and bidding cost. 
Also, we assume that 1) the urban centers have equal technologies available for treatment, 
2) the transportation bids exist to move the waste and products between locations, and 3) 
landfill suppliers are willing to pay for the service of taking away their waste. For the 
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taxation scheme, the minimum tax required to avoid open dump disposal was identified 
and evaluated for the case study. To compare the impact of the taxation, two scenarios 
were analyzed. We consider the Scenario I): a base case without taxation in which the 
impact of open dumps is ignored, and the Scenario II): a tax of 5.1 USD/t is applied to 
the waste disposed of at open dumps. We found that the collective profit of the system is 
871,744 USD and 784,061 USD for Scenarios I and II, respectively. Note that when the 
environmental impact of open dump disposal is penalized the profit decreases. For the 
plastic, organic, glass, and non-recyclable waste, we found that no transformation 
providers participate (for both scenarios). Therefore, the suppliers (S1-S5), consumers 
(D1-D5), and transportation providers (K1-K5) refer to the waste sent to the landfill. For 
Scenario I, there is no waste sent to the landfills. On the other hand, for scenario II, the 
waste is sent to sanitary landfills and open dump disposal is avoided because of the 
taxation. Only for metal waste, the processing providers are cleared. Thus, part of this 
waste is sent to treatment. In the following, we present some of the obtained results. 
Figure 3 shows the profits for glass waste. The types of glass are denoted by G1, G2, and 
G3. Here, we observe that the transportation providers attain the smallest profits. On the 
contrary, the landfill suppliers make the highest profits. We can see that stakeholders S1 
and K1 attain the highest benefits of the suppliers and providers, respectively. For the 
consumers, the stakeholder D5 makes the highest profit. Note that all profits are positive. 
Regarding the types of glass, G3 (corresponding to brown glass) represents most of the 
total profit. These results are similar in behavior to the solutions for plastic, organic, and 
non-recyclable waste since the same stakeholders are cleared. The specific profits vary 
due to the involved flows, bids, and prices. However, through the presented results we 
intend to illustrate the type of solutions that can be obtained using the coordinated 
framework. For metal waste, there is an important variation in the solutions since the 
transformation providers participate here (see Figure 4). Here, we observe the profits for 
involved stakeholders. As expected, the profits of the plant supply are the highest. We 
can see that only one plant consumer is cleared (D1). For the transportation providers, the 
profits are greater for Scenario I because no metal is sent to the landfill. For the processing 
providers, only the stakeholder M1 is cleared. The profit of this stakeholder is 1,070,035 
USD for both scenarios. Note that the profits for the transformation providers do not 
change with the taxation scenario since the tax is not involved on the recycled waste. 

 
Figure 2. Profits for supply, demand, and transportation providers of metal for Scenarios 
I and II. 
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Figure 3. Profits for landfill supply, demand, and transportation providers by types of 
glass in Scenario II. 

6. Conclusions  
This work presented a coordinated framework for multiple stakeholders in MSW systems. 
We considered the waste sent to treatment, sanitary landfills, and open dumps. A taxation 
scheme was included to account for this environmental impact. We analyze two different 
scenarios (with and without taxation). The results show how the tax incentivizes 
stakeholders to avoid open dump disposal. Furthermore, the optimal prices and 
allocations for the suppliers, consumers, and services providers of all types of waste were 
found. The collective profit was maximized, and the individual profits were identified (all 
of them non-negative). We evaluated a case study to show the applicability of the 
formulation, however, the model can be applied to any case study. 
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Abstract 
Turkey is one of the richest countries in terms of renewable energy resources. At the same 
time, the largest portion of the account deficit of Turkey is due to energy import. 
Optimization studies for design, integration and management of renewable energy is 
therefore crucial in terms of increasing overall energy efficiency.  In addition, energy 
sources and demands in Turkey have significant uncertainty and meeting the market 
conditions in a profitable manner is a challenging task. Stochastic programming is an 
efficient approach to deal with the aforementioned challenge. It requires introducing 
representative and comprehensive scenarios for the optimal design and scheduling. In this 
study, the aim is to propose a systematic and generic scenario generation method which 
is compatible with historical data, dependable for forecasts, and easily tunable for the 
scenario likelihood. Main contributions of this work are as follows: The uncertainty in 
the model parameters are propagated to the forecasts to obtain prediction intervals under 
a desired confidence, which provides probabilities of each scenario over the whole time 
horizon with predetermined likelihood the generated scenario set (e.g., likely, rare or 
statistically very low probability). Thus, scenario reduction is not needed. We 
implemented our method for Yalova, a developing city in Turkey, for the scenario 
generation of wind speed, population, air temperature, electricity consumption and solar 
irradiance, with a prediction horizon of 20 years. We also developed a preliminary mixed-
integer linear programming (MILP) decision making model which computes both the 
optimal equipment investments and the optimal sub-hourly scheduling sequences of the 
equipment based on these scenarios and economic considerations. 
 
Keywords: energy systems integration, renewable energy, scenario generation, mixed-
integer linear programming, stochastic programming. 

1. Introduction 
Optimal design and management of energy systems must take uncertainties and 
volatilities into account.  Deterministic models represent only the most likely behavior in 
contrast to stochastic models where the uncertainties due to varying demands, market 
conditions and other variables are considered additionally. In other words, random 
distributions with problem specific tunable parameters are incorporated to the 
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optimization in order to introduce the probabilistic nature of energy systems (Zakaria et 
al. (2020)). 
In stochastic optimization, scenario tree construction is a major approach in which a 
particular distribution function is discretized. In this approach, different probabilistic 
scenarios are generated with predetermined and limited branches in order to deal with 
computational load. Monte-Carlo sampling, optimal quantization and moment matching 
are prominent methods based on statistics for scenario tree construction (Löhndorf 
(2016)). In Monte-Carlo sampling, a uniform probability random sampling is done over 
the region (Ekblom and Blomvall (2020)). On the other hand, in optimal quantization, a 
distribution function is estimated by optimization whilst in moment matching method, 
optimization is performed by considering the higher order moments because first few 
moments do not represent the whole distribution (Löhndorf (2016); Høyland et al. 
(2003)). 
In this study, empirical time series models with tunable parameters are formulated for the 
air temperature, solar irradiance, wind speed, population and energy demand. For the 
prediction intervals of associated variables, the covariance matrix of the model 
parameters are calculated. Those prediction intervals having a particular probability 
distribution function are used for the generation of scenarios based on their likelihood. 
The highlights of the study are summarized as: Empirical models for the instantaneous 
air temperature, electricity demand, solar irradiance and population prediction are 
obtained through training actual historical data. Using parameter uncertainty propagation, 
covariance matrices and prediction intervals of prediction variables are calculated. 
Sampling for scenario generation is performed over these predefined intervals eliminating 
the need for scenario reduction to avoid additional computational effort. In addition, 
parameter uncertainty propagation builds a wider domain for scenario generation that is 
expected to increase the optimal design’s robustness by taking account of both the most 
likely representing usual operating conditions and the most unlikely cases representing 
extreme conditions such as sharp changes in the load demand or weather conditions. The 
proposed method is implemented on the optimal design of a hybrid renewable energy 
micro grid to be placed in Yalova, which is a developing city in Turkey. This is a pioneer 
and sole case study in which real historical Yalova data are used to generate scenarios 
based on uncertainty propagation (Yilmaz and Dincer (2017); Turkdogan (2020); Talebi 
et al. (2016)). 

2. Theoretical Background 
2.1. Formulation of Empirical Models 
All wind speed, solar irradiation and ambient temperature data are obtained from real data 
using the Darksky API (API (2020)) and electricity consumption data were taken from 
UEDAS, the official electricity distributor of Yalova. The empirical parameters related to 
wind speed, solar irradiance, electricity demand etc, with index j, are calculated by using 
nonlinear optimization as the following: 
 min ∑ ∥ 𝑓  𝑡 , 𝑢 , 𝑝 − 𝑦 ∥                                                                                      (1)  

 
where N is the number of measurement samples; pj is the vector of parameters in equation 
j; ti is the time instant of measurement; ui is the input to the equation; yi is the measure-
ment; fj is the formed empirical equation for the prediction of yi. Corresponding empirical 
time series models are obtained by parameter estimation using historical data. Formulated 
empirical models for daily and instantaneous air temperature and solar irradiance show 
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sinusoidal trend while wind speed model exhibits Weibull distribution. For brevity, only 
electricity demand and population models are given explicitly in the results part. 
The daily electricity demand is a function of population and time: 𝐸 = 𝑝 , , sin 𝑡 + 𝑝 , , + 𝑝 , , + 𝑝 , , 𝑃                                      (2)  

 
where Pt is the population of the city at time t. The daily electricity demand demonstrates 
both seasonal and hourly differences by the presence of sine function. Pt is determined 
through: 
 𝑃 = 𝑃 + 𝑃 , 𝑡 + 𝑃 , 𝑡                                                                                                  (3)  

 
where P0 is the reference population. The hourly electricity demand is calculated from:  
 𝐸 = 𝑝 , , 𝑡  + 𝑝 , , 𝑡  + 𝑝 , , 𝑡  + 𝑝 , , 𝑡 𝐸                                                 (4)  

 
2.2. Uncertainty Propagation 
Parameter covariance matrix is a measure of variations from the mean parameter values. 
Different parameter samples which result in different prediction profiles are obtained 
after parameter combinations are generated with Cholesky decomposition based methods.  
By this way, ultimate uncertainty is calculated considering parameters’ probable 
variations (Chakraborty (2006)).  Taylor series expansion using only first order term is 
utilized for uncertainty propagation in this study (Tellinghuisen (2001)):  
 𝑐𝑜𝑣 = 𝐽𝑐𝑜𝑣 𝐽                                                                                                               (5) 
 
covy is the output covariance matrix; covp is the parameter covariance matrix; J is the 
Jacobian matrix evaluated at the desired prediction regime. covy is a measure of prediction 
uncertainty (Borenstein et al. (2011)) to be considered in scenario generation by 
participating in upper and lower bound of prediction interval as follows (Lane and 
Dumouchel (1994); MathWorks (2020)): 
  𝑓 𝑡 , 𝑢 , 𝑝 − 𝜆 𝑐𝑜𝑣 + 𝑀𝑆𝐸 ≪ 𝑦 ≪ 𝑓 𝑡 , 𝑢 , 𝑝 + 𝜆 𝑐𝑜𝑣 + 𝑀𝑆𝐸                    (6) 

 
λ, which is the coefficient of  standard deviation  of the mean  value of ith output variable, 
depends on the confidence level and is calculated through the inverse of Student’s t 
cumulative distribution function. MSE is the mean squared error coming from the Eqn 1. 

3. Scenario Generation 
Inverse transform sampling is performed (Sugiyama (2015)) over a predefined interval as 
shown in the Eqn 6 to create the scenarios under their desired likelihood.  This sampling 
provides  to  manage  the  probabilities  of  scenarios  such  as  the  most  likely  or  the  
most unlikely. For  example,  a  likely  scenario  which  has  one  standard  deviation  
interval  is sampled  more  closely  to  the  mean  rather  than  the  tails  of  the  probability  
distribution function. On the other hand, a mid-likely and unlikely scenario which are 
sampled more closely to the tails than the mean have two and three times standard 
deviation interval, respectively.  
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4. Results 
Despite  its  small  area,  Yalova  is  an  important city with a large population density  
and  open  to  development  due  to  its geographical  and  industrial  location. It is 
surrounded by big industrial cities such as Istanbul, Bursa, and Kocaeli and there are ferry 
lines with these three cities having major industrial and financial companies. The climate 
of the city is very suitable for growing agricultural products with high commercial value.  
Because of all  these  reasons,  Yalova  is  the  city  that has  increased  its  share  in  the  
gross  national  product  the  most  in  the  last  ten years.  
 

       
 
 
Figure: 1. Population prediction intervals and scenarios. 2. Electricity demand prediction 
intervals and scenarios.  

                                                                                              
As   shown   in   Fig.1.a and 2.a, since the cumulative uncertainty propagates along with   
time, range of the prediction interval becomes wider while time horizon is extending. Fig. 
1.b and 2.b show the generated scenarios over a constrained time interval because when 
the scenarios are drawn over the whole time period, the figures look unclear. In the 
figures, the scenarios sampled from the unlikely, mid-likely and most-likely prediction 
interval are indicated instead of the whole interval for the representation of the 
distribution. 

5. Case Study 
We developed a deterministic MILP decision making model whose objective is to 
maximize the profit of the design and management of an integrated renewable energy 
system grid for the city of Yalova, for the upcoming 20 years. This model computes the 
optimal equipment investment decisions together with their rated powers and capacities, 
and the optimal sub-hourly scheduling sequences of these equipment. Exact linearization 
is applied on the nonlinear unit commitment constraints. The model also takes into 
account spinning reserves, peak shaving, time value of money as correction factor, piece-
wise generation equation formulations for both solar and wind energy and strict emission 
limits for CO2 (Mavromatidis et al. (2018)).  
The objective function of the model is written as:  max 𝑓 − 𝐶𝑅𝐹𝑓 − ∑ 𝑓                                                          (7) 
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where frevenue is the income from sales, CRF is capital recovery factor, finitial is the initial 
cost representing the fixed and variable costs for the investment, fkoperational is operational 
cost for year k, and K is investment period. The deterministic MILP model is formulated 
to supply all of the electricity demand of the city of Yalova and it is assumed that the 
selling price of the supplies of the system are 5 percent less than the usual price. All wind 
speed, solar irradiance, ambient temperature, population and electricity demand data were 
collected as mentioned in Section 2. Afterwards, these data are fed to the suggested 
scenario generation framework to obtain the required future predictions as a scenario. The 
decision making model is coded into the GAMS language and solved with the CPLEX 
solver. 32 different equipment, including both renewable and non-renewable, are 
characterized as candidates for the superstructure. As expected, optimal solution consists 
of only a subset of these equipment. Optimal equipment decisions are shown in Table 1 
with the corresponding rated power values. 
 
   Table 1: Installed equipment in the optimal solution of model 
 

Installed  Units Rated Power (kW) Capacity (kWh) 
Wind Turbine-1 200000 (upper limit)  
Wind Turbine-2 200000 (upper limit)  
Wind Turbine-3 29278.96  
Battery-1 69616.24 199019.49 
Heat Pump 2006.9  
Reciprocating Internal 
Combustion Engine-3 

9341  

Fuel Cell-1 1400  
 
Optimal profit is found as 13.01 billion $ for 20 years plant life. It is observed that the 
wind turbines are chosen over PV units. Although they have very similar cost and capacity 
values, photovoltaic cells are not suggested to be installed. The reason is related to the 
operating power of PV units which depends on temperature and UV lights. Furthermore, 
the surplus electricity penetration of wind during night time brings about larger profit 
margins by storing the electricity in the battery. Accordingly, in daytime where the 
electricity prices are relatively expensive, decision making model prefers to choose the 
battery to supply electricity instead of buying it from the national grid.  In addition to the 
suggested renewable energy equipment, combined heat and power generators, which 
produce both electricity and heat at certain ratio, are also included into the optimal 
configuration by the MILP model. The return on investment of such a project is around 
8-9 years. On the other hand, we should mention that this study is mainly deterministic 
and more reliable results could be obtained using stochastic programming framework. 
 
6. Conclusion 
In conclusion, in this study, empirical mathematical models including the uncertainty of 
parameters are formulated and validated with historical data from Yalova, Turkey. One 
of the most significant feature of this study is the propagation of uncertainty with 
covariance matrix of parameters, which are then used to determine prediction intervals 
having particular distribution functions. Thus, the proposed method allows to generate 
scenarios with user-defined probabilities. In addition, defining predetermined intervals 
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removes the need for scenario reduction causing extra computational effort and time. 
Moreover, the model is able to provide independent scenarios for each time interval. On 
the other hand, there is a restriction with this method that high number of empirical 
models and parameters may deliver different results due to various possible future 
forecast behavior. Proposed method is open to adding extra system parameters such as 
economic conditions or unit efficiency parameters. This flexibility may generate a wider 
range of scenarios. Furthermore, the method may also result in broad parameter 
uncertainty regions to capture the wider prediction uncertainty.  Handling the impact of 
uncertainty is a critical issue for energy system design. Finally, we also plan to integrate 
expert knowledge to the scenario generation method to forecast the future costs of the 
renewable energy systems reliably. We will employ the proposed scenario generation 
method for stochastic studies for Yalova and Turkey. Created scenarios with different 
probabilities will be fed into the stochastic version of the decision making model to assess 
the value and contribution of the stochastic programming to deal with uncertainty. 

7. Acknowledgement  
This publication has been produced benefiting from the 2232 International Fellowship for 
Outstanding Researchers Program of TUBITAK (Project No: 118C245). However, the 
entire responsibility of the publication belongs to the owner of the publication. We thank 
Uludag Electricity Distribution Company (UEDAS) for sharing the real electricity 
consumption data for Yalova. We also thank Su Meyra Tatar for her support. 

References 
D. API, 2020. Darksky api. Last accessed 16 August 2020. URL https://darksky.net/dev 
M. Borenstein, L. V. Hedges, J. P. Higgins, H. R. Rothstein, 2011. Introduction to meta-analysis. 

John Wiley & Sons. 
A. Chakraborty, 2006. Generating multivariate correlated samples. Computational Statistics 21 (1), 

103–119. 
J. Ekblom, J. Blomvall, 2020. Importance sampling in stochastic optimization: An application to 

intertemporal portfolio choice. European Journal of Operational Research 285 (1), 106–119. 
K. Høyland, M. Kaut, S. Wallace, 2003. Comput. Optim. Appl 24, 2–3. 
T. P. Lane, W. H. Dumouchel, 1994. Simultaneous confidence intervals in multiple regression. The 

American Statistician 48 (4), 315–321. 
N. Löhndorf, 2016. An empirical analysis of scenario generation methods for stochastic 

optimization. European Journal of Operational Research 255 (1), 121–132. 
MathWorks, 2020. Confidence and prediction bounds. Last accessed 16 August 2020. URL 

https://www.mathworks.com/help/curvefit/confidence-and-prediction-bounds.html 
G. Mavromatidis, K. Orehounig, J. Carmeliet, 2018. Design of distributed energy systems under 

uncertainty: A two-stage stochastic programming approach. Applied energy 222, 932–950. 
M. Sugiyama, 2015. Introduction to statistical machine learning. Morgan Kaufmann. 
S. Talebi, A. F. Ariza, T. V. Nguyen, 2016. High-level multi-objective model for microgrid design. 

In: 2016 Annual IEEE Systems Conference (SysCon). IEEE, pp. 1–8. 
J. Tellinghuisen, 2001. Statistical error propagation. The Journal of Physical Chemistry A 105 (15), 

3917–3921. 
S. Turkdogan, 2020. Design and optimization of a solely renewable based hybrid energy system for 

residential electrical load and fuel cell electric vehicle. Engineering Science and Technology, 
an International Journal. 

S. Yilmaz, F. Dincer, 2017. Optimal design of hybrid pv-diesel-battery systems for isolated lands: 
A case study for kilis, turkey. Renewable and Sustainable Energy Reviews 77, 344–352. 

A. Zakaria, F. B. Ismail, M. H. Lipu, M. A. Hannan, 2020. Uncertainty models for stochastic 
optimization in renewable energy applications. Renewable Energy 145, 1543–1571.  

1420



Dynamic optimization modelling for a national-scale
energy system in transition
Xiang Lia,*, Dario Müllera, Subhash Kumara and François Maréchala
aEcole Polytechnique Fédérale de Lausanne, Rue de l’industrie 17, Sion 1951, Switzer-
land
xiang.li@epfl.ch

Abstract
Despite numerous energy system optimization models for long-term planning on a na-
tional level, the plausibility assessment of suggested pathways is seldom involved taking
into consideration: 1) the impact of existing capacity stocks on the future energy system;
2) self-corrective functionality if the pathway diverges from the projected ones a posteri-
ori. In order to improve the reliability of energy planning models, a novel dynamic mod-
eling methodology is proposed and applied to the Swiss energy systems covering power,
heat, and mobility. It provides freedom for users to generate tailored pathways according
to region-specific inputs and to define model horizons determined by the variable start
year, end year, and time slice, taking into account dynamic minus-plus of existing stocks
and new installation across 140 energy conversion technologies. Four typical emission-
driven pathways representing different mitigation strategies for Switzerland are defined
and analyzed. The results show that an exponential strategy of carbon mitigation seems
cost-effective compared to the three other suggested pathways towards carbon neutrality.

Keywords: Energy transition pathways, dynamic optimization, carbon neutrality.

1. Introduction

In the context of transition from fossil-dominant to renewable-based society, energy sys-
tem modeling plays an essential role in guiding long-term decision-making, particularly
for achieving the 2°C temperature rise goal formulated by IPCC (2014). Many European
countries have set net zero carbon emissions in 2050 as objective. In terms of Switzerland,
the government published the Energy Strategy 2050 (SFOE, 2018) and recently declared
its fulfillment to net zero emission. One of the most important decisions is to phase out
nuclear power plants before 2035. How to fill the gap raised by the power production
deficit, and at the same time ensuring low carbon emissions are becoming overarching
in the system design. Concretely, the following questions need to be answered: 1) Is the
net zero emission objective achievable? 2) Is there a risk of energy deficit in the future,
especially in the period when nuclear is completely decommissioned? 3) What measures
and which technologies should be prioritized for development, and how much should be
deployed? What’s the consequence of final energy consumption (FEC)? 4) What is the
cost for achieving the energy transition?

In order to answer these questions, IPESE (Industrial Process and Energy Systems En-
gineering) lab and Energy center EPFL have developed Energyscope (Codina Gironès

 http://dx.doi.org/10.1016/B978-0-323-88506-5.50219-9
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et al., 2015), a snapshot bottom-up model based upon mixed-integer linear programming
(MILP) for cost minimization subject to various constraints such as supply-demand bal-
ance, energy conversion efficiency, storage continuity, availability of resources and so on.
Detailed mathematical formulations were reported in previous studies (Li et al., 2020).
Energyscope assists in characterizing the theoretically optimal configuration of the en-
ergy system in a "steady" state. One of the limitations lies in the "snapshot" nature, which
disables its application in depicting pathways for the energy transition. Therefore, a model
capable of handling dynamic changes of the energy system is expected in practice in fa-
vor of policy-making given the status quo and the ultimate objectives. In this study, we
propose a novel model - Energyscope Transition Pathway (ESTP) - adapted from Ener-
gyscope by applying a "glutton" algorithm for decision-making in each step. Although
the results obtained from ESTP may not be strictly optimal compared to global optimiza-
tion algorithms widely used over the whole time series, such as Panos et al. (2019), it is
assumed to be of more realistic guidance for making plausible strategies by simulating
the system’s dynamic behavior in evolution. In parallel, the convergence speed of the
optimization problem gets curtailed from hours to minutes depending on the granularity
of time steps.

In the following sections, we firstly elucidate the modelling structure and key data (Sec-
tion 2), followed by the definition and analyses of four typical scenarios representing
different mitigation strategies (Section 3). Finally we summarize the key discoveries and
project future research directions (Section 4).

2. Model description

2.1. Modeling structure

ESTP analyzed firstly the historical evolution of energy technologies from 1990-2018
with respect to annually newly installed capacities and energy production, leading to an
estimation of the capacity deficits in future years given the lifespans of the considered
technologies. Secondly, the model was applied to the reference year for calibrating en-
ergy and carbon balance. Thirdly, the optimization algorithm was executed in order to
obtain the results of the current period based upon all the information already given as

Figure 1: Model structure. Each optimization block is a MILP snapshot model. The
historical stocks exert influence on all time steps from the base year to the target year.
Each decision-making depends on previous optimization results.
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inputs or available as the outputs from previous iterations, until the end year. Within each
iteration, the total cost of the system was minimized taken into consideration the pro-
jected end energy demands (EUDs) driven by population, GDP, fuel price evolution and
carbon emission objectives, as well as over 140 conversion technologies. Figure 1 shows
the modeling structure. In this study, 2018 is set as the reference year with 4-year time
steps towards 2050. Within each year, 12 periods represent the 12 months respectively.

The objective function for each year y within the considered horizon is expressed by Eq.
1, in which Φ(y′ ≤ y) represents the inventory of installations in all years y′ starting from
1990 until a given year y∈ [2018, ...,2050]. Different from the well-known Markov Chain
where the probability of each event depends merely on the state attained in the previous
event, the optimal total cost of the year y in ESTP is determined by the whole historical
time series, including the previous state y− 1, as well as the specific parameters in the
year y, e.g. the energy demands, interest rate etc. F(y) and Ft(y) represent the installed
capacity and the used capacity in the month t ∈ [1, ...,12] in the year y respectively.

min
F(y),Ft (y)

(
TotalCost

(
y) | Φ(y′)

)
=
(
CAPEX

(
y)+OPEX

(
y) | Φ(y′)

)
(1)

All the parameters used for calculating the annualized investment CAPEX and operational
cost OPEX are year- and technology/resource-specific. Detailed mathematical formula-
tions for one year were reported in Li et al. (2020) and the corresponding data are available
in the same reference, as well as in Moret (2017) and Stadler et al. (2019).

2.2. Data: historical energy statistics

The historical data in Figure 2 on the installed capacity over 1990-2018 are based upon
Swiss official reports OFEN (2020). Some missing data are calculated by historical pro-
duction data and capacity factor assumptions according to Moret (2017). The calibration
of the base year was conducted from two perspectives: FECs balance and EUDs balance.

Figure 2: Historical accumulated installations from 1990-2018 and expected decommis-
sioning from 2019-2050 in the Swiss energy system. In this figure: DHN district heating
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First, all the resources obtained by the model were compared with the data reported in
OFEN (2020); secondly, the EUDs deduced by all the technologies in terms of electricity,
industrial process heat, low temperature heat (space heating and hot water), and mobility,
were calibrated with the data from JASM (2020) database. Based upon the model, the total
emissions of the Swiss energy system excluding land use, land-use change, and forestry
sum up to 36038 kt in 2018, with approx. 3% relative error compared with Statista (2019).

Based upon the calibrated historical data, we estimated the decommissioning time during
2019-2020 of all historical stocks before 2018. For instance, the new capacity of PV in
2015 is supposed to be decommissioned in 2040 given a typical life span of 25 years.
From Figure 2, the majority of stocks phase out gradually before 2040, except hydro
dam and river plants which are of long life span and encouraged by domestic policy to
carry on operation for those with positive results from re-evaluation of techno-ecological
feasibility after concession (Barry et al., 2015).

3. Scenarios analyses

In this study, four scenarios are defined representing four typical mitigation strategies
from 2018 towards the net zero emission objective in 2050:

(a) Linear: mitigating the emission in
a constant speed;

(b) Logarithmic: advocating a rapid
decrease in the short term then
slows down gradually;

(c) Exponential: limited decar-
bonization in the initial stage and
prompt action in the long term, in
contrast to (b);

(d) Logistic (S): allowing a quick
mitigation in the mid-term whilst
keeping the two ends smooth,
widely applied in simulation of
population growth and disease
propagation.

Figure 3: Carbon mitigation pathways

Without loss of generality, we take the results of scenario (a) for analysis, as shown in
Figure 4. RES represents renewable resources and WASTE_BIO and WASTE_FOS rep-
resent biogenic and fossil wastes respectively. Two typical periods could be categorized:

• Pre-2035: the transition refers substantially to the shift from oil to gas, reflected by
a considerable drop of light fuel oil (LFO) and motor fuel liquids, as well as the
disappearance of coal utilization in industry. Instead, the utilization of natural gas
increases significantly from 33 TWh in 2018 to 50-60 TWh in the 2030s.

• Post-2035: radical revolution is witnessed from fossils to renewables, where PV,
geothermal (RES_GEO), wind and biomass keep rapid increasing, reaching their
corresponding potentials in 2050.
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Figure 4: Evolution of resource utilization in Scenario a.

From an overall perspective, the total utilization of energy resources in the system de-
creases over the periods, as a result of the synergy of energy-efficient technologies, such
as heat pumps, district heating, electric vehicles, and increasing reduction on the heat
demand side from building and industry. Massive electrification, particularly renewable
power, is witnessed in Figure 4 after 2035. Electricity import (in light blue) appears
necessary in the proximity of 2035 where a drastic drop of domestic power production is
foreseen due to the decommissioning of all the remaining nuclear power plants in Switzer-
land. Around 22 TWh net import amount is needed in that period in order to compensate
the supply. Decreasing reliance on power import is expected afterwards, rendering finally
an import amount of 10 TWh in 2050, approx. 1/3 of today’s value.

Figure 5: Evolution of energy system to-
tal cost [MCHF/year] by different mitigation
strategies.

Associated to each mitigation scenario,
Figure 5 shows the annual total system
cost evolution from the first optimization
year 2022 to the target year 2050. In gen-
eral, cost declines in all scenarios over
time predominantly due to the reduction
of technology specific costs, and energy
demand saving. An abnormality is ob-
served in the scenario (d) where a steep
increase is observed from 2034 to 2038.
This results from a dramatic decreasing
slope of the S-curve in between 2034-
2038 that enforces the system to adopt
more expensive choices in a short term,
e.g heat pumps, and compulsorily shut-
ting down a part of carbon intensive gas plants that are still in operation as well to meet
the climate demand. Among the four scenarios, scenario c with exponential mitigation
strategy appears most cost-effective, which could be interpreted from two aspects: before
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2035, less stringent emission limitation implies less investment; after 2035, emerging
technologies today are supposed to become relatively mature, e.g electrolysis, of which
the specific investment is promising to be half of today’s value, by consequence, the cost
impact due to rapid decarbonization process could be dampened. By contrast, the most
expensive pathway appears in scenario b with logarithmic mitigation strategy.

4. Conclusion

Our research is dedicated for policy-makers to define pathways and quantify their impacts
towards net zero emission. The dynamic modeling approach by stepwise minus-plus rep-
resentation of the energy system evolution allows flexible adjustment if the pre-defined
pathway diverges from reality. The results consolidate our conclusion in previous studies
that the carbon neutrality of Swiss energy system could be achieved with massive pen-
etration of renewables (over 90 %) and wide deployment of CCUS technologies as well
as sufficient infrastructure support, by showing specific pathways towards this objective
taking into account the impact of decommissioning of all historical stocks and new capac-
ities. It should be highlighted that the curvature of the carbon mitigation pathway would
lead to different strategies. Therefore, exploring as exhaustively as possible the space of
transitional carbon pathways, e.g. via parameterization in combination with uncertainty
analysis, would be necessary in further research.
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Abstract 

The rising concerns about climate change have led to the emergence of several pathways 

for mitigating the increasing emissions of greenhouse gases, especially CO2. Several 

technologies and actions constitute such pathways, whether through reducing the 

production of CO2 streams by implementing renewable energy options for example or 

through processing them via CO2 capture, utilization, and storage. For such projects to be 

implemented, they need to satisfy an economic favourability that serves as an incentive 

for the industrial stakeholders to invest. Process Integration tools have been developed 

recently to optimize the planning of CO2 reduction through identifying the cheapest 

pathways. However, the interactions between the different stakeholders are not 

considered in such approaches. The existence of such interactions may lead to a non-

optimal implementation of CO2 reduction pathways under the applied policy framework. 

It is important for the enforced policies to guarantee the implementation of the lowest 

cost pathways to avoid recessive consequences associated with emissions mitigation.  

This work tries to identify the effect of such interactions on the feasibility of the optimal 

solution. CO2 reduction policy can then be assessed based on the resulting feasible 

solution in comparison with the optimal solution. A conducted case study showed that a 

high tax on CO2 emissions may result in deviations from the optimality. Subsidizing CO2 

capture and renewable energy would help in reducing the economic impact on the 

stakeholders, leading to a feasible optimal solution. 

Keywords: carbon policy, process integration, minimum cost CO2 reduction, CO2 

capture, renewable energy. 

1. Introduction 

The growing concern about the issue of global warming associated with the rising 

emissions of greenhouse gases has led to the emergence of national and international 

commitments to limit the pollution. CO2 is a major greenhouse gas which is heavily 

produced from industrial and power plants. Different pathways exist for CO2 reduction; 

however, the associated high costs prevent the required implementation (Tapia et al., 

2018). Hence, it is important to identify optimal CO2 reduction pathways to avoid 

unnecessary costs. In the field of process integration, various optimization methods have 

been developed as decision support platforms in CO2 reduction planning (Manan et al., 

2017). Such models consider different stages at which CO2 reduction pathways can be 

implemented and provide detailed designs for cost-optimal implementation. Al-

Mohannadi and Linke (2016) developed an optimization model to minimize the cost of 

implementation of CO2 capture, utilization, and sequestration (CCUS). A multi-objective 

multi-period optimization was solved to determine optimal CO2 reduction through 
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integration under conflicting environmental and economic objectives (Al-Mohannadi et 

al., 2019). Al-Mohannadi et al. (2020) considered a multiperiod optimization of CCUS 

and energy mix to assess CO2 reduction planning. Since the economic motive is a major 

factor affecting the decisions taken, the implementation of CO2 reducing pathways needs 

to achieve an economic favourability for the stakeholders to be implemented. The 

governments enforce different policies and regulations that act as incentives for the 

industries to implement pollution reduction options. As a result, symbiotic relations 

emerge between different interacting stakeholders that ensure the feasibility of such 

projects for all sides (Yazdanpanah et al., 2018). Different approaches have been 

developed to model such interactions. Tang et al. (2015) established an agent-based 

model to investigate the application of carbon emissions trading scheme on the Chinese 

case. Fraccascia et al. (2017) used a multi-agent model to study the effect of introducing 

landfill taxation and subsidy policies on the symbiotic relations within industrial parks. 

Aguilar et al. (2017) proposed a bi-level fuzzy optimization model to determine a proper 

incentive policy that results in the plants adopting proper heat and solid waste network to 

minimize CO2 emissions. Such approaches implement complicated tools, and the 

solutions are obtained without assessing the behavior leading to optimal performance. 

Hence it is important to develop a simple method to determine the optimal cost for CO2 

reduction and to understand the system with the various options at a higher level. This 

work investigates the impact of CO2 tax and subsidies on the implementation of CCUS 

and alternative energy options. The resulting feasible solution based on the interactions 

is determined and assessed in context of the minimum cost pathways determined from 

process integration perspective. 

2. Methodology 

The aim is to identify optimal CO2 reduction pathways for a set of emissions sources, and 

to describe the interactions between the possible stakeholders in order to determine a 

feasible solution under the set policy framework. The CO2 policy framework is assessed 

through comparing the costs of the feasible and optimal solutions. The CO2 reduction 

pathways considered are CO2 capture utilization and storage (CCUS), beside energy 

shifting. The system contains a set of existing emissions sources characterized by CO2 

capture and compression costs (Csi) and secondary emissions (γsi), and a set of available 

sinks characterized by their profitability (CO2 cost Rdj) and CO2 reduction efficiency (ηdj). 

Power sources are characterized by their costs CEk and CO2 intensity εk. Note that these 

techno-economic parameters are specified by the user, and their estimation is subjected 

to the user’s assumptions. 

The optimal pathways are determined through representing the possible options on a 

Marginal Abatement Cost (MAC) curve which shows the pathways arranged from 

cheapest to most expensive as represented by Lameh et al. (2020a). After that, the 

interactions between the stakeholders are modelled as a cooperative game where the 

allocation of CO2 between a source and a sink is feasible only if both players can achieve 

an economic benefit from the symbiosis. The interaction can be characterised by the 

material and monetary flows between the different components of the system. The 

government plays a coordinating role through setting CO2 tax (CT) and subsidy rates (SR) 

where the CO2 emitting sources need to pay for the emissions they produce, while the 

government can cover a fraction of the total cost of implementation of renewable energy 

or CO2 capture as an incentive to the industrial stakeholders.  
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The feasibility of the different options is determined by the economic favourability of the 

decisions. The decision of capturing and allocating a CO2 stream from a source to a sink 

should have a lower cost (or higher profit) than other possible decisions. A source may 

emit its CO2 to the atmosphere and pay the corresponding tax, or it can pay for the 

subsidized capture and allocate the emissions to the sink. The sink can afford to pay if the 

implemented utilization process is profitable. The stakeholders representing the sink may 

decide to invest in installing and operating the corresponding technology if it can reach a 

convincing level of profitability under the agreed-upon CO2 price. Otherwise, the sink 

won’t be available. Hence, under a set policy, the source (si) would have a minimum CO2 

price (CPsi) that the sink needs to pay, and the sink (dj) would have a maximum price 

(CPdj) which it can pay while meeting its profitability target. The CO2 prices are 

determined as follows:  

CPsi > Csi ×(1-SR) – CT × (1- γsi) (1) 

CPdj < Rdj (2) 

  
Feasibility condition: 

CPdj > CPsi (3) 

In a system with multiple sources and sinks, the price is determined through the CO2 

market dynamics. It depends on the CO2 availability, as well as CPsi and CPdj for the 

available sources and sinks. The resulting model can be solved graphically on the CO2 

price curve (Figure 1) to determine the feasible CO2 network scale and the participating 

players. The plot consists of a supply profile representing the sources by their CPsi and 

CO2 availability Fsi, and a demand profile representing the sinks by their CPdj and the 

capacity Fdj. The sources follow the law of supply and their segments are arranged in the 

increasing order of CPsi. The sinks follow the law of demand, and their segments are 

represented in the decreasing order of CPdj. The representation is similar to the graphical 

analysis presented by Lameh et al. (2020b). The CO2 market equilibrium is defined as the 

point at which the profiles intersect. This point divides the graph into two sections: before 

the carbon market equilibrium is achieved, there is a feasible region for establishing the 

network where CPsi<CPdj. Beyond that region, none of the sources or the sinks can afford 

to participate in the network at the set equilibrium price.  

Figure 1 The graphical representation of the network with multiple sources and multiple sinks  

The role of the government is played by the user through setting CT and SR. Note that 

the CO2 prices for the sources can vary depending on the policy framework implemented. 

For example, if the tax (or the subsidy) is high, then the sources would be willing to sell 
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CO2 at lower prices. Hence, the set CO2 reduction policy can control the market 

equilibrium, and consequently the level of CO2 reduction as well as the CO2 price. For 

power generating sources that produce CO2, beside the options of emitting the CO2 

streams or capturing them, they have the option of shifting to renewable energy sources. 

The renewable energy can be subsidized as well.  

3. Case Study 

Consider a system composed of different plants with different CO2 sources.  The different 

sources emit CO2 streams with varying conditions which affect the total cost of CO2 

supply (capture and compression) and the resulting secondary emissions. Table 1 

summarises the sources considered and the corresponding CO2 capture cost and 

secondary emissions. The data used is based on case studies present in Al-Mohannadi et 

al. (2017a) and Lameh et al. (2020b).  

Table 1 Source’s data for the case study on carbon policy 

Source CO2 Produced (106 

tCO2/y) 

Csi ($/tCO2) γsi (tCO2-produced/tCO2-

captured) 

GTL - Concentrated 4.12 2.5 0.03 

Cement 1.38 32.5 0.27 

GTL - Diluted 11.38 36.5 0.26 

Methanol 0.64 36.5 0.26 

Aluminium 3.30 36.5 0.29 

Power Plant  3.8 40 0.13 

 The total emissions level of the considered sources is 24.62×106 tCO2/y. Amine 

absorption is considered as the capture process with 90% capture efficiency. The 

considered sinks are summarized in Table 2 (Al-Mohannadi et al., 2017b). Beside CCUS, 

solar energy can be used to generate up to 50% of the power plant’s capacity to reduce 

CO2 emissions at a marginal abatement cost of 31 $/tCO2-reduced. The determined cost 

is based on a 714 $/kW capital cost for utility scale photovoltaic panels (IRENA, 2020), 

without storage and disregarding land cost, and assuming an emissions intensity of 0.54 

tCO2/MWh for the existing power plant.  

Table 2 Sink’s data for the case study on carbon policy 

Sink (di) Fdi (106 tCO2/y) Rdi ($/tCO2) ηdi 

Enhanced Oil Recovery (EOR)  5 30 100% 

Methanol B  2 20 99% 

Storage  18 -10 100% 

The MAC curve represents the optimal pathways to reduce CO2 from the described 

sources, considering the CCUS and solar energy options (Figure 2). The analysis shows 

that the maximum profit of the CO2 network is 113×106 $/y, achieved at 15% CO2 

reduction. The cost-neutral CO2 reduction (Xcost-neutral) was found to be around 31%. 

Three different scenarios for the implemented policy scheme were investigated (Table 3). 

A base case is considered where no policy is implemented, to examine the CO2 reduction 

limit under the absence of authority interference. Two different policy scenarios were 

investigated to analyze the impact of CO2 tax and subsidies on the system to achieve the 

31% reduction (Xcost-neutral). Scenario 2 considered only the CO2 tax as a policy, and 

Scenario 3 considers a mix between tax and subsidies. 
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Figure 2 MAC curve for the case study on carbon policy 

Table 3 CO2 reduction policy scenarios 

 CO2 Tax 

($/tCO2) 

Subsidy-Capture (% of 

total capture cost) 

Subsidy – Renewable Energy (% 

of the total renewable energy cost) 

Scenario 1 0 0 0 

Scenario 2 33 0 0 

Scenario 3  5 40 85 

The base case represented in the first scenario shows that there is only one feasible 

allocation: from the pure stream of the GTL to utilization in EOR. Such pathways would 

result in 15% reduction in the total CO2 emissions, and would generate a total profit of 

around 113×106 $/y, divided between the stakeholders of the GTL and the EOR, 

depending on the CO2 price which is estimated to be within 20$/tCO2 to 30$/tCO2. This 

pathway abides by the optimum route for CO2 reduction, as it is the only profitable option 

among the considered where a symbiotic opportunity that guarantees the economic profit 

for both the source and the sink exists.  

After that, the CO2 policy parameters were changed to achieve a CO2 reduction target 

close to the cost-neutral CO2 reduction suggested by the MAC curve analysis. Increasing 

the CO2 tax rate would decrease the price at which the sources are willing to sell their 

CO2 which pushes for more symbiotic opportunities and hence more CO2 reduction. Since 

the sources would still have to pay carbon tax for the secondary emissions from the 

capture process, the impact of the tax differs among the sources depending on the 

corresponding secondary emissions factor γi. It was shown that the feasible CO2 reduction 

pathways under the proposed carbon tax will be constituted of CCUS options between 

GTL-concentrated, cement, and power plant from the supply side, and from EOR and 

methanol on the demand side, with a CO2 exchange flowrate of 7×106 tCO2/y. Solar 

energy would be implemented at its maximum capacity. This showed a deviation from 

the MAC curve analysis where for a CO2 reduction of 30%, power plant did not 

participate. Hence, the CO2 tax resulted in a deviation from the optimal solution. The 

resulting feasible system from the CO2 tax cost 5×106 $/y in contrast to the zero cost of 

the optimal solution for the same level of CO2 reduction. 

Increasing the subsidy would have the same effect of increasing the tax in terms of providing 

an economic incentive that pushes down the required CO2 price by the sources and increases 

the feasible CO2 reduction limit. In the suggested policy of Scenario 3, polluting plants pay 

5 $/tCO2, and the collected tax is used to cover 40% and 85% of the total cost of 

implemented CO2 capture and solar power respectively.  With the lower tax, the CO2 price 

is affected by the cost of capture, and consequently, sources with lower capture cost 

participate in the CCUS network, beside the full implementation of solar power. This 

solution is coherent with the optimal pathway retrieved from the MAC curve analysis. 
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4. Conclusions 

This work introduced a novel approach to assessing CO2 reduction policy in context of 

process integration and optimization approaches. The methodology presented a simple 

tool that allows the identification of the symbiotic opportunities between different CO2 

sources and different CO2 sinks based on the economics controlled by the set policy 

framework. A case study was then developed in which the methodology showed that 

different policy schemes can result in varying total costs to achieve the same CO2 

reduction limit. This approach helps in giving context to the solutions obtained from 

optimization models when it comes to the implementation under different stakeholder’s 

interactions.  
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Abstract 
Low-carbon transformation of the energy system requires a combination of technology 
and policy options to ensure reliable, affordable, and clean energy. An assessment of 
plausible transition pathways can be guided with a set of tools that cover multi-sector 
dynamics of transitions and consider economy-wide and sectoral life-cycle analysis of 
numerous options. Sustainable Energy Systems Analysis Modeling Environment 
(SESAME) is a comprehensive system-level and pathway-level analysis model. Pathway-
level analysis includes two main analysis types: life cycle assessment (LCA) and techno-
economic assessment (TEA). The framework allows users to assess the sensitivity of key 
technological, operational, and geographical parameters associated with various energy 
pathways as measured by the emissions and costs. In this paper, we present the back-end 
design and implementation of the SESAME web application. The key contribution of    
web-based framework is that it supports easy integration of new LCA and/or TEA models 
and data sources in the backend so they can be made easily available to users for analysis 
via the front-end web interface. We achieve this by creating a Python-based library of 
classes and functions that model a higher-level code-based representation of LCA and 
TEA pathways. The tool is designed to capture the inherent modularity of SESAME, 
which makes it easier to add either new pathways or new data models and sources for 
existing pathways. 
 
Keywords: energy systems modeling, computational tool, life cycle assessment, techno-
economic assessment 

1. Introduction 
The global energy system is undergoing major transformations given the dual challenge 
of meeting increasing energy demand while reducing greenhouse gas (GHG) emissions. 
Such transformation requires a combination of technology selection and policy choices. 
Understanding the implications of these dynamics is challenging and requires a holistic 
approach to provide systems-level insights. Although there is considerable related 
research work emerging, there is a lack of readily available quantitative models and tools 
that consider a broad and robust life-cycle analysis approach for a range of plausible 
energy futures at regional and national levels. Such a tool is needed to help policy makers, 
industry, investors, and the financial sector to better understand and make decisions on 
energy choices and energy transitions.  
One of MIT’s modeling tools associated with energy choice evaluation is a 
comprehensive system-level and pathway-level LCA model called Sustainable Energy 
Systems Analysis Modeling Environment (SESAME). SESAME has a modular 
framework designed for supporting pathway-level and a system-level analysis (Gençer, 
2020). Pathway refers to life-cycle stages of a particular product from raw material 
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extraction to production to its final end use. Pathway-level analysis is subdivided into 
main analysis types: LCA and TEA. LCA calculates GHG emissions associated with each 
of the various life-cycle stages whereas TEA calculates combined costs associated with 
the product or process through its life-cycle. Systems-level analysis models the emissions 
associated with large-scale energy sectors such as electric power system or a vehicle fleet. 
The goal is to allow users to explore variations in emissions and costs arising from 
different technological, operational, and geospatial parameters selected by the user. Given 
potential trade-offs that might arise between options, SESAME will include optimization 
models to guide users in selecting the optimal solution based on their preferred objectives 
and provide an extensive analysis. Future publications will include details of such 
optimization models.  
 
The web- based framework of SESAME, developed in Python, is designed to capture the 
inherent modularity of the tool. The key contribution is the creation of a Python-based 
library of classes and functions to model a higher-level code-based representation of LCA 
and TEA pathways. Because LCA practitioners rely on a wide variety of models and data 
sources for analysing different pathways, the key aspect of our backend system design is 
to ensure its flexibility to incorporate new pathway models into the web framework using 
this library. Another contribution is defining a standard format for storage of model data 
for most effective ways to perform analytic calculations. A final contribution is the 
creation of useful HTTP end-points, abstracting away the analytic computations and 
programming-based back-end so that the front-end developer can easily use those 
endpoints to collect the required user inputs and display the results of analysis.  

2. Methodology 
2.1. Analysis Types  
Our framework supports three main analysis types: LCA, TEA and LCA combined with 
TEA, with two separate metadata objects, one for LCA pathways and one for TEA 
pathways. Metadata object for LCA pathways is quite intricate since we don’t simply 
design a separate model for every pathway; instead we design models for individual 
activities which are connected together to make up a pathway. This is because same 
activity may be shared across many different pathways and encoding the activity as part 
of a whole pathway instead of as a separate unit will lead to a lot of overhead in terms of 
repeated code and functions. For instance, upstream crude oil extraction activity has 
several different end-uses activities such as gasoline, diesel, and LPG, which make up 
many different energy pathways. The pathway metadata object for LCA analysis is a 
nested JSON data structure (Pezoa, 2016) that encapsulates all pathways available for 
LCA analysis in SESAME. The first layer comprises of life-cycle stages with second 
layer storing the activities in the stages and the third layer containing reference to the 
actual data source models within the activities that conduct LCA flow calculations. A new 
pathway for LCA analysis can easily be added to the SESAME framework by first 
implementing the new activity data source models and then adding all the relevant 
information about the implemented classes in the metadata object.  
For every pathway available to LCA analysis, we build the corresponding TEA model as 
well, so the combined analysis is defined for all pathways. TEA metadata object is simply 
a one-layer JSON data structure that contains the reference to the TEA model class and 
the lookup table by the pathway name and id. Each TEA model class specifies the user 
inputs that will need to be collected for a given pathway and performs the cost calculations 
using both the collected user input values and data stored in various cost-specific data tables.  
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2.1. Pathway Representation via Python Classes 
2.1.1. LCA Pathway Classes 
Figure 1 shows the hierarchical relationship between the objects. Metadata is a list of 
stages where each stage is a list of activities. Each activity is subsequently a list of sources 
that contains the reference to actual activity-source class which implements the LCA flow 
calculations for that activity in that stage.  

 
Figure 1 Pathway entity-relations diagram  
 
In implementation of these classes, we make use of the key concepts of object-oriented 
programming which include abstraction, encapsulation, and inheritance (D’Andrea and 
Gowda, 1990). Abstraction means that each object should only expose a high-level 
mechanism for using it, and hide the implementation details. While we describe the 
attributes and methods of all objects below, any user of this library only needs to know 
the high-level purpose of these methods and not the exact implementation detail. 
Inheritance means creating child classes from parent class where child classes can 
implement their own unique methods in addition to inheriting all the shared methods and 
common logic implemented by parent class. We make use of inheritance in creation of a 
parent Activity-Source class, which is described later.  
Metadata: A Metadata object represents the set of all pathways defined in SESAME. The 
metadata class is initialized with an empty list of stages, and supports two main methods: 
register stage and get stage. The register stage method adds a new stage object, initialized 
with the name argument, to the stages list. The get stage method returns the stage object 
from the list of stages whose name matches the name passed as argument.  
Stage: A Stage object represents all the activities that belong to a particular LCA stage. 
The stage class is initialized with attributes id, name, and an empty list of activities and 
supports two main methods: register activity and get activity. The register activity method 
adds a new activity object, initialized with the name passed as argument, to the activities 
list. The get activity method returns the activity object from the list of activities whose 
name matches the name passed as argument.  
Activity: An Activity object represents a specific life-cycle activity. The Activity class is 
initialized with attributes id, name, stage, empty list of links and an empty list of sources, 
and supports three main methods: link, register source and get source. Links denote the 
set of activities in the next stage that this activity leads to. For instance, for transmission 
activity, the links would include all power production activity including NG, wind, and 
other electricity generation activities since transmission activity in gate to user stage 
implies the process activities must be power generation activities.  
Source: Source objects denote the set of data source models that determine how the 
activity flow calculations will be performed. The Source object is initialized with 
attributes id, name, activity, lookup table, and class. The register source method takes as 
arguments a source name, the activity object, associated Activity-Source class, and 
lookup table and adds a new source object. The get source method returns the source 
object from the list of sources whose name matches the name passed as argument. The id 
attribute is initialized as null. The Activity-Source class is a reference to the specific class 
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that defines the set of user input parameters and implements the flow calculation methods. 
The lookup table is an optional table that may be read in the reference class and includes 
information for the input collection and stores associated emissions for selected pathways.  
When a source object is being registered to an activity object, it is also inserted as a record 
to a global sources database instance which stores all source records by their ids. The ids 
are created by concatenating the source name with activity identifier, thus ensuring their 
uniqueness. Sources database object is important because once the user interface collects 
all the user inputs for a particular source id, sources database is used to find the associated 
source object. The user inputs value collected are then passed to the corresponding 
Activity-Source class which is an attribute of this source object.  
Activity-Source: Since most activity source objects share some common attributes and 
methods, we create a parent class called Activity-Source that implements the common 
methods. Creation of such a class helps avoid repeated functions and code redundancy 
through various activity source classes. Within an Activity-Source class, we can create 
child classes that can be used to implement method specific to a particular pathway. The 
set of relevant parameters and the exact method of calculation may vary not only between 
different activities but also between different source models for same activity. Hence, in 
our implementation, there is a separate class for every unique activity source model. For 
example, for NG power production activity, we have two separate source models, and 
thus, we have two classes which take different set of user inputs and calculate flows 
differently. Likewise, we have a separate class for NG transportation activity in 
midstream, and NG extraction activity in upstream. However, all activity source classes 
share the same model and the they take as arguments the user inputs, an optional lookup 
table, and implement three methods which compute three flow types of input, output, and 
emission as shown in Figure 2.  

 
Figure 2 Activity source class model  
 
2.1. User Input Classes  
User inputs are a very important part of our analysis tool. In the user interface, we let the 
user specify a range of technological, temporal and geographical variables for each of the 
analysis type. Once the user inputs are all collected on the front-end, they are routed to 
the back-end where they are used in performing the necessary computations. The order 
of input collection matters because the activities between two different stages are linked 
by a shared input-output flow, and which flow type is passed from one activity to another 
differs. Regardless of the direction in which the user inputs are collected, whether it is 
from upstream to end use or from end-use to upstream, we choose to perform LCA 
calculations in one order on the back-end i.e. from end-use to upstream. 
The set of inputs required of user before they can see the analysis results can be quite 
large especially in case of five-stage LCA analysis. Thus, to take away some burden of 
specifying all inputs from the user, we put in place a mechanism for specifying defaults 
for all input types. Another advantage of having defaults is that not every value might be 
known by the user and having pre-filled data can be helpful for non-experts.  
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2.1.1. Input Subclass 
Based on the system needs, we defined three different sub-classes of input class in the 
back-end which include continuous, categorical and options. Continuous inputs represent 
input variables that take continuous numerical values such as turbine efficiency, plant 
lifetime or solar power intensity. Options inputs refer to any inputs with a fixed set of 
options that is passed as an argument to the class. Categorical inputs denote the inputs, 
which the options are read from a filtered data frame based on previous user input. 
2.2. Web Framework Interface 
For LCA analysis module, the front-end interface fetches the LCA pathway metadata 
object via an HTTP endpoint, and uses the object to dynamically collect the user inputs 
for all pathway stages starting from end use or upstream. The storage of activity links in 
the metadata object guides the appropriate user input collection for each subsequent stage 
based on the user activity selection in previous stage. Likewise, for TEA analysis module, 
the front-end fetches the TEA metadata object via a separate HTTP endpoint. For LCA-
TEA module, both LCA and TEA metadata are wrapped in one object to be sent to front-
end for input collection. The front-end posts the pathway analysis response object to back-
end, which contains the user input values for a pathway for a particular analysis type. The 
backend then performs the analysis on either LCA, TEA model or both by calling relevant 
models specified in the metadata objects for the pathway specified by user. Back-end 
returns the analysis results object back with either emissions data or costs data or both 
depending on the analysis type. The front-end uses a graphing library to display the 
relevant emissions/costs plot sent in the analysis results object.  
 
3. Case Examples 
3.1. Pathway classes of power production  
Stage objects corresponding to the five stages (upstream, midstream, process, gate to end-
use, and end-use) in a pathway are created. Next, for each, their corresponding activity 
objects need to be created. For example, for the process stage object, we create an activity 
object called XPowerProduction. X refers to energy source i.e. NG, coal, wind, or solar. 
For this activity object, we register a source object Data1, which is the data source we use 
for this calculation. Now, for this source object, we create a child class XPowerData1 
(with the parent class being an ActivitySource object) and link the file with the required 
data as the lookup table. Lastly, under the XPowerData1 class, we define a get_emissions 
method that calculates emissions based on the data in the lookup table and the specific 
inputs provided by the user. Figure 3 displays the GHG emissions results for multiple 
pathways across life cycle stages. As shown in this figure, the process stage is the main 
contributor to emissions in case of fossil fuels. The inputs default assumptions for each 
pathway is provided in Figure 4, which demonstrates the user’s capabilities to test the 
results to technological and operational varieties.  

 
Figure 3 LCA GHG emissions of producing 1000 kWh electricity through multiple pathways 

1437 Back-end Deasign and Development of an energy Systems Analysis Tool



 A. Firstauthor et al. 

 
Figure 4 Input assumptions for 1000 kWh power production (end-use) through multiple pathways 
assuming 4.68% electricity loss in transmission (get-to-user). For wind and solar, the adjustment is 
made by computing all the flows in the process activity, but passing the computed flow values to 
the upstream activity for correct flow attributions.  
 

3.2. System analysis - emissions impact of electric vehicles (EVs) charging pattern 
The magnitude of the emissions reduction associated with EV deployment depends 
significantly on EV charging patterns as well as hourly power grid variations. In this case 
study, we use SESAME to estimate the emissions associated with EV deployment in 60 
cases across the US using hourly grid data from 2018 and 2019 (alongside hourly 
charging, driving, and temperature data). The results show that the emissions impact of 
the charging pattern varies by region. For example, in California and New York, 
overnight EV charging produces ∼70% more and ∼20% fewer emissions than daytime 
charging, respectively (Miller, 2020). 
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Abstract 
CO2 compression and conditioning not only contributes to the overall energy penalty of 
Carbon Capture Utilisation and Storage (CCUS), it also influences the logistics 
surrounding the transportation network. The techno-economic feasibility of transporting 
CO2 through pipelines or in storage vessels has been reported extensively. However, the 
conclusions in the existing studies are case specific, and focus on either the CO2 source 
or the end-point. Whereas, in large CCUS clusters/networks, a range of sources will need 
to be interlinked and be able to supply conditioned CO2 to various transportation options. 
With the prospect of multi-national CCUS transportation infrastructures, the link between 
CO2 source and transport needs to be clearly characterised.  

Herein, a process model for a CO2 compression train is constructed in gPROMS gCCS, 
based off the IEAGHG base case B0 for post-combustion capture and compression. The 
model is capable of conditioning the CO2 stream to the required outlet pressure, temperature 
and composition. The results compare various CO2 streams from capture plants attached to 
a range of CO2 sources including power generation and industry. The findings highlight the 
power requirement for conditioning to various end point characteristics, specifically the 
level of moisture control required for different pipeline options. This analysis can also be 
used alongside economic evaluations to enable the cost-effective deployment of CCUS 
transport networks, and aid in forming effective CCUS clusters.  

Keywords: CCUS, CO2 Compression, CO2 Transport, CO2 Sources 

1. Introduction 
One of the new set of challenges facing the Carbon Capture Utilisation and Storage 
(CCUS) industry is the formation of cluster networks, interlinking various CO2 sources 
with different stream characteristics (pressure, temperature, and composition). The 
sources are mixed and delivered to potentially different storage options, posing technical 
and operational challenges for CO2 transportation (Moe, et al., 2020). Alongside power 
industry focused CO2 capture technologies (post-, pre-, and oxy-combustion), a growing 
interest is industrial sources such as the production of hydrogen, fertilisers, cement, iron 
and steel (Bui, et al., 2018).  
An early study by Aspelund and Jordal (2007) investigated the interface between CO2 

capture and transportation, stating the energy requirement for CO2 conditioning is 
between 90 and 120 kWh/tCO2. However, this depends on the inlet stream characteristics 
(i.e. the source) and the conditioning method. Centrifugal compressors are the 
conventional choice in the power generation industry, but due to the low-pressure ratio 
(between 1.7-2:1) a multistage system is required (Martynov, et al., 2016).  

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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Several studies have looked at optimising and comparing conditioning strategies, mainly 
focused on multistage compression and liquefaction processes. Witkowski & Majkut 
(2012) found power savings of up to 21% can be achieved through integrally geared 
centrifugal compressors, and over 45% using refrigerated subcritical liquefaction. 
IEAGHG (2011) also reported a reduced energy consumption when incorporating early 
liquefaction then liquid pumps, although it was only a 0.2 MW decrease, approximately 
0.35% lower than conventional compression. This saving is potentially offset by an 
increased cooling water demand. Therefore, this study focuses on the conventional 
multistage compression process.  
1.1. Aims and Objectives 

Several parametric and techno-economic studies have analysed different CO2 
transportation options, highlighting the effects of impurities, operating phase, and system 
design. However, the conclusions in the existing studies are case specific, and focus on 
either the CO2 source or the transportation option. The prospect of multi-national CCUS 
transportation infrastructures, means the link between CO2 source and transport needs to 
be clearly characterised. 
This study considers the impact different CO2 sources and end point specifications have 
on the power demand for the compression and conditioning train. Figure 1 highlights the 
CO2 capture technologies, the conditioning system, and the transportation options 
investigated in this study, focussing on dense phase pipelines for the transportation option 
(Harkin, et al., 2017). For each technology, the conventional multistage compression 
system will elevate the CO2 stream pressure to 111 bar and 70℃ as specified in IEAGHG 
(2011). Including intermediate storage and shipping in the transportation options is an 
unfair comparison, as the pressure requirements are much lower than for pipeline 
transportation. Therefore, less energy is required for conditioning. For more information 
on shipping transport, see MEP (2016). Three moisture control levels are used to compare 
different end-point composition guidelines:  

● 20ppm – Beverage industry CO2 specification as stated in EIGA (2016) 
● 300ppm – Optimal pipeline moisture content (250-350ppm) from Brunsvold et al. (2016) 
● 600ppm – Kinder Morgan pipeline specification stated in Jensen et al. (2014) 

2. CO2 Sources 
Table 1 shows the capture CO2 stream characteristics used in this study. Impurities affect 
pipeline operation, therefore, H2O (Brunsvold, et al., 2016) and N2 (Peletiri, et al., 2019) 
are included alongside CO2 in the composition of each steam. All other impurities are 
lumped as N2.  

Figure : Study overview 
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In terms of technology readiness level (TRL) post-combustion capture using amines is 
TRL9 (commercial), so too is pre-combustion capture for natural gas processing using 
the Selexol processes (Bui, et al., 2018). In oxy-fuel combustion the purification process 
involves compression integrated with additional separation technologies (Pipitone & 
Bolland, 2009). Therefore, it is not included in this study. For post-combustion capture, 
the benchmark is 30wt.% MEA. Aqueous Ammonia (NH3) was chosen as an alternative 
post-combustion solvent, due to the lower stripping duty 2.0-2.9 GJ/tCO2 compared to 
3.6-4.0 GJ/tCO2 for MEA (Bui, et al., 2018). Methyl diethanolamine (MDEA) was chosen 
as an alternative pre-combustion capture technology to Selexol, due to the high capture 
rate (95%) and low stripping duty 0.99-1.34 GJ/tCO2 (Romano, et al., 2010). Adsorption 
systems for post-combustion capture have advanced over past three decades, at TRL7 
they are at demonstration level (Bui, et al., 2018). For smaller scale operations such as 
the simultaneous production of H2 and CO2, the Gemini PSA process can recover 94% 
CO2 at 99.4% purity from steam methane reforming off-gas (Sircar & Golden, 2000). 
Membrane based CO2 separation has been investigated for hydrogen production (TRL5), 
power generation (TRL6), and natural gas reforming (TRL7) (Bui, et al., 2018). Chung 
et al. (2018) highlighted the potential for using hollow-fiber Polaris™ membranes to 
capture high purity CO2 from blast furnace gas in iron and steel plants.  

Table 1: Captured CO2 characteristics 

Source Temperature 
(℃) 

Pressure 
(bar)  

Composition (%) Source CO2 H2O N2 
Post-MEA 38.00 1.6 95.88 4.11 0.01 (IEAGHG, 2011) 
Post-NH3 20.00 6.00 99.00 0.40 0.00 (Yu, et al., 2011) 
Pre-MDEA 30.00 1.10 96.02 3.92 0.02 (Romano, et al., 2010) 

Pre-Selexol -5.00 1.20 99.77 0.17 0.00 (IEAGHG, 2011) 1.00 4.80 97.30 0.07 0.03 
SMR-PSA 21.00  1.00  99.40 0.00 0.00 (Sircar & Golden, 2000) 
Steel-MEM 40.00 1.00 98.97 0.00 0.01 (Chung, et al., 2018) 

3. Process Simulation 
The base case B0 for post-combustion CO2 compression from IEAGHG (2011) is used 
as the basis for the compression train model. The layout of the system is illustrated in 
Figure 2. The model is developed in gPROMS® gCCS 1.1.0, utilising the model library 
to construct a flowsheet of the compression system, including the compressor sections, 
inter-stage cooling, knock-out drums, surge valves and a dehydration unit. 

Each centrifugal compressor section consists of multiple stages, modelled via polytropic 
efficiency, with negligible hold-up and inertia of gas. The polytropic efficiency for the 
1st, 2nd, 3rd and 4th compression stages are 79.38, 86.66, 82.92 and 80.82 %, respectively, 
within the range (74.50-87.45 %) highlighted in IEAGHG (2011). The thermo-physical 
properties and phase equilibrium of the fluid is determined through gSAFT. The foreign 

Figure : Model topology for multistage CO2 compression, developed in gPROMS® gCCS 
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object CompPerformFO determines the compressor maps and number of stages for a 
given set of input parameters (PSE, 2016).  
Specific outlet conditions for the individual water coolers are not given in IEAGHG 
(2011), therefore, the two inter-stage water cooling steps are lumped into one and 
modelled via a heat exchanger unit. The cooling water supply is a set input parameter and 
each of the interstage cooling heat exchangers uses water at 6 bar and 12℃. The pressure drop 
over the inter-stage cooling and knock-out drums is 0.2 bar each. Ensuring the inlet 
conditions to the compression stages are identical to IEAGHG (2011). The dehydration 
unit removes H2O from the CO2 stream to a specified moisture content, and consists of 
three molecular sieve beds, two used for drying and one in regeneration mode operating 
simultaneously. The regeneration fraction (10%) and temperature (250℃) are specified 
parameters, and the model calculates the heat requirement and power consumption (PSE, 
2016). Table 2 shows the input parameters used to simulate the process. The inlet flow 
contained 95.88 vol.% CO2, 4.11 vol.% H2O, and 0.01 vol.% N2. The final CO2 product 
contained 50 ppm moisture at 111 bar, ready for pipeline transportation. 

Table 2: Input parameters and model validation 

Parameters Value Simulation Deviation (%) 
Inlet Flowrate (kg/s) 154.57 154.57 0.00 
Inlet Temperature (℃) 38.00 38.00 0.00 
Inlet Pressure (bar) 1.60 1.60 0.00 
Outlet Flowrate (kg/s) 151.90 148.17 2.46 
Outlet Temperature (℃) 73.00 73.00 0.00 
Outlet Pressure (bar)  111.00 110.76 0.22 
1st Compressor Power (MWe) 21.70 22.63 -4.29 
2nd Compressor Power (MWe) 24.10 20.60 14.52 
3rd Compressor Power (MWe) 8.00 6.97 12.88 
4th Compressor Power (MWe) 3.70 3.44 7.03 
Total Power Demand (MWe) 57.50 53.68 6.64 
Energy Demand (GJ/tCO2) 0.39 0.36 6.64 
Energy Demand (kWh/tCO2) 107.77 100.61 6.64 

For continuity across the CCUS chain the power demand has be converted into GJ/tCO2 
and kWh/tCO2. Based off the data for the IEAGHG (2011) base case B0 the energy 
demand for compression is 0.39 GJ/tCO2 or 107.77 kWh/tCO2, within the bounds detailed 
in Aspelund & Jordal (2007). The simulation results (0.36 GJ/tCO2) are 6.71% lower than 
expected. The simulation calculated the dehydration unit requires 4.04 MWe, to heat the 
regeneration stream to 250℃. The IEAGHG report does not give the power requirements 
for the dehydration unit. Therefore, if this additional power is included the simulations 
overall power demand is only 0.31% higher.  

4. Results and Discussion 
The flowrate basis is 1 kg/s for all technologies, in reality large CCUS clusters will have 
a range of flowrates attached with some having transient production, this is another 
challenge highlighted in Moe et al. (2020). Figure 3 highlights the power requirement for 
the compressors and dehydration unit, also included is the overall energy demand. All the 
technologies investigated have a low enough initial H2O content that the knock-out drums 
remove moisture to <600 ppm. Removing the need and the small power demand 
associated with the dehydration unit, subsequently decreasing the inlet flowrate and 
power demand for the 2nd compressor. For the post-combustion MEA case this reduces 
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the overall power demand by 9.35 %, when going from 20 to 600 ppm. Interestingly, the 
energy demand for the high moisture MEA case (162.43 kWh/tCO2) is lower than 
membrane separation for blast furnace gas treatment (174 kWh/tCO2). Whereas the low 
moisture MEA case is 2.82% higher, due to a higher 2nd compressor power demand and 
the inclusion of the dehydration unit, although this only accounts for 7.76 kWh/tCO2. 
Membrane separation has no H2O in the capture CO2 stream and requires no dehydration 
unit; however, the potential savings are offset by the the initial high temperature (40℃) 
and low pressure (1 bar).  

Starting at a higher pressure reduces the number of compressions stages and overall 
pressure ratio, therefore, reducing the energy demand. For NH3 this significantly reduces 
the power required for the first compressor which elevates the stream to 7 bar. Resulting 
in NH3 requiring 19.23% less power overall than MEA, for the 20 ppm scenario. The 
Selexol process produces two CO2 streams, it is assumed a 50/50 split between them, 
therefore, a pre-compression stage is required to get both streams to the same pressure. 
Slightly offsetting the savings of a higher initial stream pressure. Overall, there is no 
significant conditioning difference between the pre- and post-combustion capture 
technologies.  

Both of the industrial sources require no dehydration unit, and produce identical energy 
demands of 174 kWh/tCO2. Comparable to the 20 ppm and 300 ppm MEA cases. The 
results show the end moisture level does have an effect on process performance, but not 
as significant as the initial stream pressure.  

Energy demand in terms of kWh/tCO2 in almost all cases is higher than expected, 
compared to Aspelund & Jordal (2007) and the validation work. A result of the small CO2 
flowrate basis, indicating economies of scale could play a major role in determining 
successful cluster partnerships. For example, a small-scale H2/CO2 PSA system, could be 
connected to much larger capture streams. Whereas a small-scale pre-combustion capture 
plant may be economically unfavourable.  

Figure : Individual unit power consumption and overall conditioning energy demand 
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5. Conclusions 
The link between CO2 source and transport needs to be clearly quantified to aid in the 
design and decision making of CCUS clusters. Within this study, process simulation has 
shown energy requirements for compressing and conditioning CO2 streams from various 
power generation and industrial sources. This is purely a technical analysis and does not 
consider the economic impact of altering the inlet stream properties. End point moisture 
level has an effect on overall power consumption; however, the greater impact comes 
from the initial stream pressure. Higher starting pressures result in lower overall pressure 
ratios, and reduced number of compressor stages. The results indicate small-scale low-
pressure capture sources may suffer economies of scale during compression and 
conditioning.  Future studies should investigate the effects of different flowrates attached 
in the same CCUS cluster.   
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Abstract
In this work, we propose a novel superstructure of the hybrid energy systems with
geothermal-natural gas-hydroelectricity, biomass and earth source heating, and deep
water source cooling (DWSC). Based on the superstructure, a multi-period
mixed-integer nonlinear fractional programming (MINFP) model is formulated to
address the optimal design of the proposed hybrid energy systems to determine the
optimal energy system configuration and operational conditions corresponding to the
lowest levelized cost of energy, and simultaneously assess the life cycle carbon
footprint. To tackle the computational challenges stemming from the combinatorial
nature and nonconvexity of the resulting MINFP problem, a tailored global optimization
algorithm integrating two state-of-the-art algorithms, namely the parametric algorithm
and the branch-and-refine algorithm, is employed. The applicability of the proposed
optimization framework for the hybrid energy systems is illustrated through the
application based on Cornell campus hybrid energy system for accommodating the
seasonal demand of cooling, heating, and power across the campus.

Keywords: superstructure optimization, life cycle assessment, hybrid energy systems.

1. Introduction
Approximately 78%-80% of the commercial energy around the globe comes from fossil
fuels, namely petroleum, coal, and natural gas (Güney and Kaygusuz, 2010).
Considering the rapid depletion and environmental concerns with respect to fossil
resource utilization, it is imperative to reduce the dependence on conventional fossil
resources and shift to carbon-neutral energy (Lawan and Abidin, 2020). With increasing
research interest, one promising platform to achieve such carbon-neutral energy
transition is hybridization of multiple energy sources. Hybrid energy systems couples
two or more energy sources, potentially including fossil fuel, biomass, geothermal
energy, or nuclear power, as well as other intermittent energy supplies, such as wind
turbine, photovoltaic system, and hydropower (Davis et al., 2018). Hybrid energy
systems can be used for, but are not restricted to, electric power generation. Other
products from hybrid energy systems include heat, cooling, and hydrogen, etc (Ning and
You, 2020). On the one hand, hybrid energy systems can mitigate the problem of
intermittency and over-sizing of the overall systems based on single energy source
(Beckers et al., 2015). On the other hand, hybrid energy systems that couple various
forms of generation together and/or with storage technology may be able to provide
more elastic supply to conform with less elastic demand (Dykes et al., 2020). The
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engineering reliability, environmental implications, and economic feasibility are the
central aspects that must be systematically considered when designing the hybrid energy
systems. In this work, we propose a novel superstructure that incorporates
geothermal-natural gas-hydro electricity, biomass and earth source heating, and deep
water source cooling (DWSC) (Gong and You, 2015). A mixed-integer nonlinear
fractional programming (MINFP) model is formulated to minimize the levelized cost of
energy and simultaneously evaluate the carbon footprint of the optimal design and
operations of the proposed hybrid energy system. The model explicitly considers the
seasonality of heat and cooling demand, while the electric power demand is assumed to
be relatively constant. To illustrate the applicability of the proposed modelling
framework, a case study of Cornell's renewable campus energy systems is considered.

2. Superstructure Generation
In this work, we propose a novel superstructure of hybrid energy systems with
geothermal-natural gas-hydro electricity, biomass and earth source heating, and DWSC.
The geothermal energy and DWSC are regarded as the primary heating/cooling source.
Occasionally, these major energy sources cannot completely accommodate the heating
and cooling demand, or their availabilities are limited due to the geographical
conditions. Therefore, conventional cooling technologies and heating supplement based
on renewable biomass are considered as the auxiliaries to supply the peak heating and
cooling demand (Yue et al., 2014). The overall superstructure of the proposed hybrid
energy system is demonstrated in Figure 1. The electric power demand is satisfied by a
set of generation technologies, which substantially vary regionally and thus are not
completely reflected in the general superstructure.

Figure 1. Overview of the proposed superstructure of hybrid energy system with
geothermal-natural gas-hydro electricity, biomass and earth source heating, and DWSC.

3. Model Formulation
The general superstructure optimization model is subjected to five groups of constraints,
namely, mass balance and configuration constraints, energy balance constraints,
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temperature constraints, logic constraints, techno-economic evaluation constraints. The
selection of technologies is represented by the integer decision variables. The number of
well sets are integer decision variables. Other important decision variables such as the
mass flow rates, energy flows, and technology capacities are continuous variables. The
objective function, LCOH, includes integer variables such as the numbers of production
wells and injection wells, and thus is a mixed-integer fractional term. The other
nonlinear terms mainly come from the separable concave terms induced by economies
of scale, as well as the bilinear terms. Therefore, the resulting problem is an MINFP
problem. The general form of this MINFP problem is summarized as follows.

min

(1)

s.t. mass balance and configuration constraints; (2)

energy balance constraints; (3)

temperature constraints; (4)

logic constraints; (5)

techno-economic evaluation constraints; (6)

where LCOH denotes the levelized cost of heat. AICt, AOCt, and CREDITt refer to the
annualized investment costs, annual operating cost, and power and cooling credits in
year t, respectively. HEATt represents the heat produced in year t. r and pl denote the
discount rate and lifetime of the plant.

Figure 2. The pseudocode of the tailored global optimization algorithm integrating the
parametric algorithm and the branch-and-refine algorithm.

LCA is also conducted based on the optimization results. The goal of the LCA study is
to quantitively assess the life cycle environmental impacts of the optimal designs. Heat
is widely used for residential, commercial, and manufacturing purposes, with
approximately 50% of the total heat demand coming from the residential sector
(McCabe et al., 2016). Therefore, it is worth looking into the environmental
performance of heat generation, which arouses special research interests in the
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literature. The functional unit of this LCA is defined as 1 kWh of heat generated. The
impact category to evaluate the life cycle environmental performance of the hybrid
energy system is dedicated to the global warming potential (GWP) to examine the
extent of carbon neutrality. GWP is calculated using the IPCC 2013 method with
100-year time frame (Stocker et al., 2013).

The resulting MINFP problem for the optimal design of the proposed hybrid energy
systems is computationally challenging due to its combinatorial nature and
nonconvexity. In order to tackle the computational challenge, a tailored global
optimization algorithm integrating two state-of-the-art algorithms, namely the
parametric algorithm (Zhong and You, 2014) and the branch-and-refine algorithm (You
and Grossmann, 2011), is applied. The pseudocode of the tailored global optimization
algorithm is given in Figure 2, where a dual-loop structure can be identified.

4. Application to Cornell Campus Energy System
The proposed superstructure optimization model is applied to tackle the optimal design
of an envisioned hybrid energy system with lake source cooling (LSC), hybrid earth
source and biomass heating, as well as geothermal binary, natural gas and hydro-based
power for meeting the seasonal demand of cooling, heating and power of the facilities
(Tian et al., 2019). Historical demand data for Cornell’s campus in Ithaca, New York are
used for developing the case study. We address the problem over 12 time periods, with
each corresponding to one month. The geothermal fluid is extracted from at most five
production wells and the deep lake water is pumped from the Cayuga Lake. Willow is
chosen as the feedstock for torrefaction, because it is one of the main commercial
woody bioenergy crops in U.S. All computational experiments are conducted on a PC
with Intel (R) Core (TM) i7–6700 CPU @ 3.40GHz and 32GB RAM. The
superstructure optimization model and solution procedures are coded in GAMS 33, with
CPLEX 12.10 as the MILP solver and BARON (version 20.10.16), SCIP (version 7.0)
being the mixed-integer nonlinear programming (MINLP) solvers. The relative
optimality tolerances are all set to 10-6.

The case study considers at most five production and five reinjection wells, because
approximately five well sets are sufficient to meet base-load heating demand for
Cornell’s Ithaca campus (Beyers, 2018). The mass and energy balances for ORCs and
compression refrigeration cycles are extracted from the HYSYS simulation results. The
performance and cost data for the absorption refrigeration are retrieved from the
literature. Mass and energy balance information for the biomass torrefaction plant is
reported in existing publications. The standard levelized cost model is adopted with a
constant discount rate of 5% (Lee et al., 2019). According to (Beckers et al., 2015), the
geothermal gradient in Ithaca is assumed to be 25 ℃/km. The well depth is assumed to
be 5 km, and the average geofluid production temperature is around 125℃ (Tian et al.,
2020). For the DWSC system, deep lake water (250 feet deep) at around 3.89 ℃ is
pumped to a heat exchanger at the shore, which returns gradually to the lake at a
temperature no higher than 12.8 ℃ (Facilities and Campus Services, 2005). The space
heating supply/temperature is set to 82 ℃/72 ℃ and 71 ℃/65 ℃ at high and low heat
demand, respectively.

For a better comprehension of the optimal design in terms of LCOH, the breakdown
details of the AOC and the AIC are shown in Figure 3(a). AIC is calculated with the
same project lifetime (20 years) and discount rate (5%) as the LCOH model. The sum of
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AOC and AIC is the total annualized cost (TAC). The TAC for the optimal design is
$44.44 MM/yr, with AOC accounting for 55.5%. The major contribution from the
natural gas turbine (61%) and geothermal well drilling (19%) can be easily observed in
terms of capital investment. Moreover, the breakdown of the annual GWP of the
optimal solutions is shown in Figure 3(b). Emissions from the gas turbine (up to 118.12
kton CO2-eq/yr) dominates the annual GWP, while there are no direct emissions from
hydro power. We note that the selection of technologies varies from month to month, as
well as the operating level. We focus on three months, namely January, May, and
August to represent the cold winter days, average weather conditions, and hot summer
days, respectively. The DWSC is able to accommodate all the cooling demand in most
months other than August, in which compression refrigeration cycle using R134a as
working fluid is selected as the auxiliary cooling supplier. In January, torrefied wood is
combusted to provide extra hot water for space heating.

Figure 3. (a) Breakdowns of the annual operating cost (inner pie chart) and the
annualized investment cost (outer donut chart); (b) Annual GWP.

Table 1. Computational performance for the case study using BARON (version
20.10.16), SCIP (version 7.0) and the tailored global optimization algorithm.

Solver
Discrete
Variable

s

Continuous
Variables

Constraint
s

Objective
Value

($/MMBTU)

Solution
Time

(CPUs)
BARON (version 20.10.16) 26,277 3,856 81,746 16.12 835.16

SCIP (version 7.0) 26,277 3,856 81,746 N/Aa -
Global Optimization

Algorithm 26,294 3,874 81,806 16.12 24.13
a No upper/low bound is returned when reaching the time limit of two hours.

To demonstrate the computational performance, the proposed superstructure
optimization problem is solved by general-purpose MINLP solvers BARON and SCIP,
as well as the tailored global optimization algorithm. Table 1 summarizes the
computational results for the case study. BARON and the tailored global optimization
algorithm return the identical optimal solution. BARON returns the optimal solution
within 835.16 CPU seconds, while the global optimization algorithm only requires
24.13 CPU seconds. We note that there is no upper and low bound information returned
by SCIP solver before the program reaches the computation time limit of two hours.
Overall, the tailored optimization algorithm is more efficient and is less dependent on
initial values than general-purpose solvers. Since there is uncertainty embedded in the
hybrid energy systems design problem including the seasonal utility demands in coming
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years, the deterministic optimization problem proposed in this work that overlooks
uncertainty may result in suboptimal or even infeasible solutions in certain uncertainty
realization. It is crucial to hedge against such uncertainty using systematic approach in
the future work after relevant data become available.

5. Conclusion
A novel superstructure optimization model was developed to assess the economic
feasibility and environmental implications of the proposed hybrid energy systems with
geothermal-natural gas-hydro electricity, biomass and earth source heating, and DWSC.
The applicability of the proposed optimization framework was illustrated through a case
study based on the Cornell campus energy systems. The resulting levelized cost is as
low as $16.12/MMBTU and the proposed tailored optimization algorithm showed high
performance in solving the superstructure optimization model that outperformed the
general-purpose solvers.
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Abstract
In this work, we present a mixed integer linear programming (MILP) model to assess the
economic value an aggregator-led community electrical energy storage system provides,
with the inclusion of online degradation constraints. Studies have shown that community
energy storage devices present additional benefits to end users, such as an increased
renewable generation self-consumption, peak shaving and reduced electricity costs, when
compared to individually-owned devices. Further benefits may also be realised by giving
a load aggregator partial access to the device to participate in the wholesale energy market,
however previous studies have mostly assessed such benefits solely from an aggregator
or community point of view. Also, degradation considerations, when considered, were
implemented offline via a rolling horizon approach. The proposed model in this work
includes online degradation considerations over the entire planning horizon to obtain the
optimal schedule of the storage device. The community consists of a number of individual
participants each having local renewable energy generation and batteries installed behind-
the-meter, with the ability to export energy back to the grid. The LA has partial access to
the community energy storage devices to participate in the UK day-ahead energy market.
The model assesses the economic value a LA can realise under different storage sharing
quotas with an overall goal to maximise profits without infringing on the interests of its
participants. Results show that both the community and aggregator stand to gain with
certain storage device and profit sharing quotas.

Keywords: Community energy storage, Energy arbitrage, Battery degradation, Mixed
integer optimisation

1. Background

Electrical energy storage (EES) technologies have been shown to improve power system
reliability, flexibility and security (Ma et al., 2018). This is more important in the present
day as there is a growing reliance on intermittent renewable energy sources (RES) -
solar and wind energy - owing to increasing commitments to the decarbonisation and
decentralisation of the electric grid. EES devices have thus been identified as the “missing
piece” in the integration of such RES (Jankowiak et al., 2020) towards reduced greenhouse
gas emissions.
EES devices also have the advantage of being easily deployed both in front-of-meter
and behind-the-meter (BTM) applications. Once deployed, they can be controlled in a
centralized – by a large energy participant e.g. a system operator, load aggregator (LA) –
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or a decentralized – by small, privately owned participants – manner (Castagneto Gissey
et al., 2019). Decentralized devices may also be pooled and centrally controlled in what
may be referred to as community energy storage (CES) (Dong et al., 2020). Studies
have shown that sharing EES devices increase RES self-consumption, participant self-
sufficiency, peak demand shaving and lowers costs for individual participants (Dong et al.,
2020; Roberts et al., 2019). Such CES devices may also be connected to a LA. LAs
give additional advantages of access to energy markets and ancillary services markets,
increasing revenue potential and system reliability for a fee (Zhou et al., 2019).
A number of authors have proposed techno-economic models for scheduling CES devices
in order to determine the benefits to end-users/participants. Parra et al. (2015) proposed
a simulation-based model to assess current and projected performance and benefits of
Lithium ion (Li-ion) and Lead-acid (PbA) batteries, showing that a community approach
reduced the projected levelised cost by as much as 37%. Schram et al. (2020) considered
a multi-objective optimisation-based (MOO) approach for the community where cost
and CO2 emission objectives were explored assuming participation in the day-ahead
(DA) market. Terlouw et al. (2019) also proposed a MOO approach using different EES
technologies but from the perspective of a LA, exploring scenarios of energy arbitrage
with/without peak shaving, with Li-ion battery technology showing the best economic and
environmental performance. Cycle-induced battery degradation was considered by Pimm
et al. (2019) using a rolling horizon approach in a linear optimisation model for CES
devices. Degradation considerations are important as the performance of EES devices
has been shown to deplete with time, rate and frequency of charging/discharging and
operating temperature (Ciez and Whitacre, 2016). Hence, including such considerations
presents a more accurate estimation of the benefits to end-users.
In each of the aforementioned studies, and others, benefits - cost and/or CO2 emission
reduction - were almost always solely assessed from the LA’s or community’s perspective.
In reality, shared ownership also exists. Communities may offer partial access of their
CES device to a LA with access to additional energy services in exchange for a percentage
of the profit. Hence, it becomes important for considerations to be made from both the
community’s and aggregator’s perspective in order to ascertain sharing quotas that profits
both parties. To this end, an optimisation model that minimises the total cost of a CES
device is proposed. The CES device serves to increase RES consumption within the
community, reduce local energy consumption as well as participate in the DA market
through a LA. Using different device access and profit sharing quotas, the model seeks to
quantify the economic benefits to both the community members and LA. ’Online’ battery
degradation is also considered in a linear formulation, as opposed to post-processing such
values in a rolling horizon approach.
In the rest of the paper, the optimisation problem is outlined in section 2 and the proposed
model described in section 3. Results obtained from applying the model to a case study
(section 4) are discussed in section 5 with final remarks given in section 6.

2. Problem description

For the system illustrated in Figure 1, the optimisation problem is described as follows.
Given a community with a known number of domestic households (i) each with its energy
demand (Pl

it ), renewable energy generation (Git ), partial (x%) access to a CES device with
capacity, C̄max, and power, P̂max, and able to purchase power from a supplier at price, Cb

t ,
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Figure 1: System description
to satisfy local demands as well as feed-in excess generation back to the grid at a price,
Cs

t ; a LA ( j) with partial access (100− x%) to the pooled CES device participating in the
DA market;
Determine the optimal CES device schedule - charging (Pb+

it ,Pb+
jt ) and discharging (Pb−

it ,Pb−
jt )

power per time - so as to minimise the total cost of electricity purchased for the community
and traded by the LA.
It is assumed that the allotted CES device quota to the community and LA are operated
independently, and DA market prices (CDA

t ) are perfectly forecasted. The latter assumption
is justified as DA prices tend to follow similar daily patterns and can be predicted with a
high degree of accuracy.

3. Model description

The models for both the community and LA seek to minimise the total net cost of electricity
purchased, and are described as follows. For the community, the objective function is
given by eq. (1), which is the sum of the cost of power imported (Pimp

it ) less the revenue
generated from the amount fed into the grid (Pexp

it ). The amount of power imported/exported
is determined using eq. (2) with an additional restriction that the battery is solely charged
using excess energy from the RES. The state of charge (SOC) of the battery (SOCit ) at
each time period is calculated as the net power from charging and discharging the battery,
where ηc and ηd are the charge and discharge efficiencies of the battery. Bounds on the
battery power and SOC are enforced using eqs. (4) and (5).

min ∑
it

Cb
t ·P

imp
it −Cs

t ·P
exp
it (1)

Pimp
it −Pexp

it = Pl
it +Pb+

it −Pb−
it −Git ∀ i, t (2)

SOCit = SOCi,t−1 +η
c ·Pb+

it −
Pb−

it
ηd ∀ t (3)

Pb+
it ,Pb−

it ≤ x P̂max ∀ i, t (4)

x SOCmin C̄max ≤ SOCit ≤ x SOCmax C̄max ∀ i, t (5)
The objective function for the LA is given by eq. (6) - to minimise the total cost obtained
from trading in the DA market using the remaining portion (100−x%) of the CES device
subject to eqs. (3) - (5) for the LA ( j). It is assumed that the total quantity of electricity
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traded by the LA has negligible effect on market prices, hence a ’price taker’ strategy.
min ∑

jt
CDA

t · (Pb+
jt −Pb−

jt ) (6)

Battery degradation is modelled according to the power law relationship given by Ciez
and Whitacre (2016). These expressions are given in eq. (7) for Li-ion and PbA batteries,
where Ĉt represents the fraction of the total capacity degraded at time t by reason of the
SOC swing (SOCsw

t ) from battery actions in the previous time periods. The SOC swing
is determined as the actual depth of discharge over the past 24 hours of battery operation,
and the degradation models are implemented via a piecewise linear function.

Ĉt =


(

SOCsw
t

1307.4

)0.95
, Li_ion(

SOCsw
t

12.838

)1.838
, PbA

∀ t (7)

Additional constraints are also included for members of the community and the LA to
ensure that total energy discharged from the battery at each time period is always less than
or equal to the net amount contributed to charging the battery. Hence, each participant
may only use stored energy up to the net amount contributed in previous time periods.

4. Case study

For a case study, we consider a community with 1000 households each having a 3kWp
PV cell and 1kW/2kWh Li-ion battery installed. Load profiles for groups of households
for the month of January, 2019 were randomly generated using data from Elexon 10-
year average load profile for domestic consumers in the United Kingdom (UK). The solar
energy generated by each household is used to reduce household demands, the excess of
which can either be exported to the grid at a fixed rate of 5.5p/kWh or used to charge the
battery. Each of these batteries are pooled to form a CES device, a fraction (x%) of which
can be offered up to a LA in exchange for a percentage (y%) of the profits realised from
trading in the UK DA market. Households also purchase electricity to satisfy local loads
using a time of day tariff. For this study, the EKO tariff (Greenenergy) is adopted.
These considerations are implemented using Pyomo 5.6.8 and solved with Gurobi 9.0
solver and an optimality gap of 1%. The piecewise linearization was implemented using
Pyomo’s "Piecewise function" with 11 equidistant SOC swing values ranging from 0 - 1
inclusive. In order to ascertain the value to both the community and LA, storage quotas
ranging from 0 - 100%, with a step size of 20, were used to obtain results on the minimum
costs to each party with/without degradation considerations.

5. Results & Discussion

Figure 2 shows the total household savings under differing CES device quotas and LA
profit sharing percentages. The model was run for each scenario obtaining globally
optimal solutions in less than 40s (20s for cases without degradation considerations). The
total savings, with values indicated, are the sum of the average household savings and
a percentage of the LA’s profit. A CES device quota value of x = 0% corresponds to a
case where the LA has full access, and the community members may only import power
to satisfy residual load demand, or export excess solar energy at the feed-in price. This
is also the base household cost value, below which the total household savings for the
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community is calculated. A CES quota of 100% implies sole usage of the CES device by
the community, and is the point above which additional economic benefit is realised by
the community owing to LA participation.

Figure 2: Total household savings

(a) Profits per revenue sharing quota (y%) (b) Profits with/without degradation

Figure 3: Load aggregator profits

It can be first observed that for a 5% profit payment, the community stands to loose in
giving the LA any form of access to the CES device. With increasing incentives payment
percentages, the quota the community can let go of for a profit also increases up to 80%
(community storage quota value of 20%) where 30% of the LA profits are remitted. Figure
3a also shows that the LA stands to gain from an increased profit sharing quota. This is
as the community is more likely to give greater access to the CES device which leads to
an increased overall profit for the aggregator.
The impact degradation has on the total household savings is barely seen as it is spread
across all households for the period of consideration. Degradation considerations are
better observed in the LA profits shown in Figure 3b where with higher access by the
LA, and therefore greater use, the overall profits realised reduce. This is attributed to a
reduction in available capacity owing to degradation over the period of consideration, and
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represents a more realistic estimation of actual earnings.

6. Conclusion

In this work, the economic benefits an aggregator-led community EES device could realise
were assessed from both the community’s and LA’s point of view. To achieve this a mixed
integer linear programming (MILP) model was proposed to obtain the optimal schedule
for a CES device part accessed by the community and LA. The community is assumed
to consist of a set of households with energy demands, local generation and the ability
to feed-in to the grid. Online degradation constraints were also included to accurately
capture the final value to both parties based on use of the CES device.
Using differing CES device access quotas and LA profit sharing percentages, the economic
value to the community - in terms of total household cost savings - and LA - in terms of
total profits - were investigated. Results showed that both parties stand to gain at a LA
profit sharing value above 5% under differing storage quota ranges. Conditions in which
the community ran at a loss were also identified, and the impact of degradation, especially
on the LA’s profit, was highlighted.
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Abstract 
Waste management and clean electricity generation are amongst the most critical 
challenges and major barriers towards achieving sustainability. Ultra-Supercritical water 
oxidation (USWO) is an emerging technology that can possibly provide a solution for 
mitigating both these issues. It inherently allows the use of low-grade fuels, such as waste, 
for electricity generation with high efficiency. However, the true potential of USWO 
technology has not been extensively reported in the existing literature. This study focuses 
on modelling and optimisation of a novel USWO process working on the principles of 
Brayton cycle for electricity generation using sewage as fuel. The USWO process is 
integrated with carbon capture and storage (CCS) technology to reduce CO2 emissions. 
The process design also incorporates water recovery facility from the sewage used as the 
fuel stream. An advanced system level process model is developed in Aspen Plus 
simulator using experimentally derived inputs together with FORTRAN programs. A 
sensitivity analysis is conducted to determine the impact of reactor temperature on the net 
electrical efficiency. The results indicate that the USWO technology can generate 
electricity from sewage with net electrical efficiency of 31.5%,. It is also observed that 
integration of CCS can reduce the CO2 emissions to zero with an efficiency penalty of 
3.5% points. This efficiency penalty is comparable to the best performing CCS 
technologies for conventional gas- and coal-fired power plants. The sensitivity results 
show the electricity output is proportionate to reactor temperature and is primarily 
restricted by the material properties of the USWO reactor. The results also indicate nearly 
complete recovery of water from the sewage without any additional processing or energy 
requirement. Furthermore, the study also provides a systematic methodology to test other 
low-grade fuels (organic wastes) for the proposed USWO technology.   

Keywords: Sewage Treatment, electricity generation, CO2 capture, process modelling. 

1. Introduction 
With the rising world population, waste production has also soared substantially. 
Landfilling of waste can produce undesirable greenhouse gases, odour and leachate, 
which can contaminate the environment (Liu et al. 2017). Therefore, in the waste 
management hierarchy, landfilling is unquestionably the most unfavourable choice 
(Lukumon et al. 2013). Existing biochemical waste conversion processes are slow and 
have low conversion rates (Tyagi, 2013). Waste incineration, pyrolysis and gasification 
are attractive technologies that can generate waste-derived products such as electricity, 
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heat and synthetic fuels (Nakakubo et al. 2017, Lu et al. 2017, Gabriele and Siglinda, 
2020). However, high moisture content in waste, due to its type (sewage and food waste) 
or lack of segregation at the source, means a considerable amount of energy intensive pre-
processing required to make the waste suitable for use in the incinerator, gasifier or 
pyroliser. This significantly impacts the overall efficiency of the process and can make 
the technology financial unviable in most cases (Syed-Hassan et al., 2017).  

Supercritical water oxidation (SWO) is an emerging technology which has the potential 
to convert wastes with high moisture and low energy content to electricity, heat and 
synthetic fuels, more efficiently (Bermejo and Cocero, 2006). In a SWO technology, the 
oxidation of organic waste takes place in a supercritical water environment, which is an 
excellent non-polar solvent that dissolves the organic substance present in the sludge, 
thus, supporting the decomposition and reaction. Additionally, the heavy metals in the 
solid residues gets stabilised after the SWO (Hantoko et al., 2019). Sulphur and nitrogen 
in the waste gets deposited as inorganic salts in the supercritical water which means no 
NOx or SOx are released in the reactor exhaust (Guo et al., 2015). As the moisture in the 
waste becomes supercritical water in the reactor and helps in the conversion process, there 
is no requirement for waste pre-processing for moisture reduction.  

Several experimentally derived reactor designs and process models for Supercritical 
Water Gasification or Oxidation has been extensively covered in the literature (Azadi and 
Farnood, 2011; Okolie et al., 2019). However, very limited studies on the USWO of waste 
for electricity generation is available. Moreover, almost all the published literature on 
SWO uses Rankine cycle for electricity generation (Bermejo and Corcero, 2006; Donatini 
et al., 2009, Tang et al., 2020). This work conducts a detailed performance evaluation of 
a novel USWO process for electricity generation using Brayton cycle, with integrated 
oxy-combustion CO2 capture technology, based on electrical output, net electrical 
efficiency and CO2 emissions. The work also estimates the energy penalties occurred due 
to carbon capture through modelling and simulation using common modelling 
assumptions. 

2. Methodology 
This section describes the assumptions and input parameters used to develop the model 
of the proposed USWO process.  

2.1 Feedstock type 

Sewage sludge contains high organic matter and therefore, can be potentially used as an 
energy source for electricity generation. This study uses sludge from wastewater 
treatment plants as feedstock in the USWO process. The characteristics of the sewage 
sludge used in the model are given in Table 1.  
Table 1: Proximate and Ultimate analysis (wt % dry basis) of sewage (Hantoko et al., 2019). 

Items Proximate Analysis   Items       Ultimate Analysis  
Fixed carbon 2.29  Carbon 18.94 
Volatile matter 35.14  Hydrogen 2.21 
Ash 62.57  Nitrogen 2.89 
   Suphur 0.6 
Lower heating value  5.89 MJ/kg  Oxygen 12.79 

2.2 Process description 
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A process model for the USWO of sewage sludge to produce electricity along with carbon 
capture is developed in Aspen Plus V10 by Aspen Technology Inc. A detailed schematic 
of the process is shown in Figure 1. The overall process primarily consists of five key 
stages, (i) Air Separation Unit (ASU), (ii) Feed Stock preparation, (iii) Reactor unit, (iv) 
electricity generation and (v) CO2 capture.  

 

Figure 1: Schematic of the USWO process of sludge with carbon capture. 

In the reactor of the USWO process, the feedstock is fully oxidised by pure oxygen (O2) 
in an exothermic reaction under a supercritical water environment at 300 bar and 700 oC. 
The O2 required is produced in an ASU with 95% purity (by volume) at 1.0135 bar. This 
O2 is then compressed to the reactor pressure in a series of intercooled compressors. The 
heat released from O2 compression is used to preheat the already pressurised reactor 
feedstock consisting of sewage sludge mixed with make-up water. For a given flowrate 
of sludge, the reactor temperature can be regulated by varying the flowrate of make-up 
water in the sludge-water mixture. The high-pressure and hot reactor exhaust, comprising 
of supercritical water and products of oxidation reactions, is expanded to atmospheric 
pressure in an expander-generator to produce electricity. The heat in the expander exhaust 
is used to partially preheat the reactor feed (Sludge + water) to up to 87 oC. The expander 
exhaust is then sent to a water-cooled condenser unit followed by a flash separator, where 
most of the condensed water is extracted from the gases. The outlet gases from the flash 
separator consist of over 90% CO2 (by weight). The purity of CO2 in the stream is 
increased by some pre-processing, followed by CO2 compression for transport and 
storage. 

2.3 Aspen Plus Model 

A MIXCINC stream class is selected to represent the type of components flowing through 
the flowsheet streams. Components such as CO2, O2, methane, hydrogen, H2O and other 
gases are entered as ‘Conventional’ in the components list. Sewage Sludge and ash comes 
in a variety of compositions and therefore, are the only components entered as ‘Non-
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conventional’ in the list. The Peng-Robinson-Boston-Mathias (PR-BM) is used as the 
property method for the conventional components whereas, enthalpy models 
HCOALGEN and DCOALIGT are used for the non-conventional components.  
Table 2: Design assumptions and input parameters used for developing the process flowsheet 
model in Aspen Plus. 

Unit operations Parameters 
ASU and O2 
compression 

O2 purity: 95% (vol); Energy consumption: 250 kWh/ton of O2; 
Compressor efficiency: 83 %; Pressure ratio: 2.97 
 
 
 

Air compressor Pressure ratio: 3.12 
Reactor Pressure: 300 bar; Temperature: 700 °C; Zero pressure drop; 

Conversion rate: 99.9 %. 
CO2 compression  Delivery condition: 110 bar and 30 oC; 4 stage compression; 

Compressor efficiency: 83 % 
 
 

Expander  Isentropic efficiency: 92 %; Outlet pressure: 0.046 bar for USWO 
with CCS and 1 bar for USWO without CCS 

 

The Gibbs equilibrium reactor model RGIBBS is used for modelling the reactor. The key 
inputs needed for RGIBBS reactor model are pressure and heat duty. A multistage 
MCOMPR model is used to design the compressor units with inputs such as outlet 
pressure, temperature and efficiency. A ‘COMPR’ model is used to design the expander. 
The pressure, isentropic efficiency and mechanical efficiency are the key input 
parameters to the ‘COMPR’ model. A ‘HeatX’ and ‘MHeatX’ type heat exchanger 
models are used for modelling the heat exchanger units. A ‘PUMP’ model is used to 
pressurise the make-up and cooling water in the process. 

3. Results and Discussions 
The performance of the USWO of sewage sludge for electricity generation with CO2 
capture is estimated through modelling using Aspen Plus V10. The key performance 
indicators obtained from simulations are listed in Table 3. The USWO process without 
CCS generates 1,871 kWh of net electricity with 31.7 % efficiency. In comparison, the 
USWO process with CCS generates 207 kWh less net electricity with an efficiency of 
28.2 % and captures almost all the CO2 produced in the feedstock conversion process. 
The lower efficiency of USWO with CCS is mainly due to the significant drop in 
expander energy output resulting from the reduced mass flowrate of expanding gases 
caused by the separation of N2 in its ASU. The expander in USWO with CCS is modelled 
to partially subdued the energy losses by expanding the gases to a much lower pressure 
of 0.046 bars. This is only possible since the gases (mainly CO2) left after condenser and 
liquid-gas separator are compressed to 110 bars for transportation and storage, instead of 
venting. Whereas, in USWO without CCS, the expander outlet pressure is set to slightly 
above atmospheric pressure to overcome any resistance occurred while venting the gases 
to the environment. It is worth noting that even after reducing the expander outlet 
pressure, its energy output still experiences a loss of 17.7 %.  
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Table 3. Plant performance indicators for USWO process with and without CO2 capture. 

Plant Data Units With Capture Without capture 
Fuel input energy, LHV (A) kWhth 5,890 5,890 
Expander energy  output (B) KWh 3,126 3,798 
Energy consumed in ASU (C1) KWh 504 - 
Energy  intake in O2 compression (C2) KWh 390 - 
Energy  consumed in Air compression (C3) KWh - 1,823 
Energy  consumed in CO2 compression (C4) KWh 440 - 
Energy  consumed by pumps (C5) KWh 128 104 
Total auxiliary energy (C=C1+……+C5) KWh 1,462 1,927 
Net electrical output (D = B – C) KWh 1,664 1,871 
Net electrical efficiency (E = D/A x 100) % 28.2 31.7 
Gross electrical efficiency (F = B/A x 100) % 53.0 64.4 
CO2 capture efficiency % 100 - 

The design of the USWO process with CCS inherently delivers some additional energy 
savings achieved by compressing only pure O2 to 300 bars instead of air, as in the case of 
USWO process without CCS. Although, the USWO with CCS needs auxiliary energy for 
the ASU and CO2 compression unit, this additional energy requirement is much less than 
the energy saved by avoiding air compression to 300 bars. Table 3 indicates that the 
inclusion of ASU and CO2 capture in USWO process does not impose any additional 
energy penalties than that already imposed by the air compressor, instead, it saves 24 % 
in auxiliary energy requirement. It is observed that even after one fourth reduction in 
auxiliary energy, the net electrical efficiency drops by 3.5 % points on adding CCS, which 
is mainly because of a greater loss (672 kWh) in the expander energy generation than the 
auxiliary energy savings (465 kWh).  

 

Figure 2: Relation between reactor temperature and net electrical efficiency. 
Figure 2 showing the outcome of sensitivity analysis conducted to observe the relation 
between reactor temperature and net electrical efficiency indicates that a higher reactor 
temperature will work in favour of the electrical output. Although conventional Brayton 
cycles are known to operate at temperatures above 1500 oC, the suitability of existing 
metals and alloys needs to be tested at ultra-supercritical pressures and high temperatures. 
The outcomes from this sensitivity analysis will be a useful input for suitable reactor 
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material development and will also help to understand the corelation between additional 
electricity generation at higher temperatures and associated material cost.  

4. Conclusions 
This study investigates performance of a novel USWO process that uses sewage as fuel 
to generate electricity through modelling and simulation. The findings indicate a net 
electrical efficiency of 28.2 % with 100 % CO2 capture, which is comparable to some 
existing coal power plants. The sewage feedstock is free, which makes the technology a 
useful tool for waste management along with clean and affordable electricity generation. 
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Abstract
This article addresses food-energy-water-waste nexus (FEWWN) optimization under
the COVID-19 pandemic to alleviate the public health and environmental concerns from
increasing food waste generation using waste-to-energy technologies. Food waste
generation has noticeably increased during the pandemic across the globe. To alleviate
the associated health and environmental concerns, food waste could be converted into
electricity and heat through FEWWN systems using waste-to-energy facilities, such as
anaerobic digesters and combined heat and power units in wastewater treatment plants
and livestock farms. In this work, a multi-period multi-objective optimization model is
proposed for the design of efficient nexus systems under various impacts of the
pandemic. To illustrate the applicability of the proposed modelling framework, a case
study for New York State is presented. The optimized nexus systems could potentially
reduce the food waste disposal amounts by 38%. A clear trade-off between the
objectives is revealed by the Pareto-optimal solutions. The minimum total cost for the
FEWWN system is $27.1 million; the optimal unit processing profit is $11.9 per ton
processed food waste. Spatial analyses illustrate a strong correlation between facility
selections and their processing capacities. Sensitivity analysis revealed that electricity
price and biogas yield are the most important factors for the economic objectives.

Keywords: COVID-19, waste-to-energy, nexus optimization, food waste.

1. Introduction
Coronavirus disease 2019 (COVID-19) has been detected in more than 200 countries
resulting in tens of millions of confirmed cases and hundreds of thousands of deaths
around the world in 2020. Under COVID-19, the food waste amount has increased
substantially in the agriculture and residential sectors (Royte, 2020). If the increased
amount of food waste is not managed properly, it may cause immense harm to both
public health and the environment. In terms of public health, besides the risk of
pathogen spread associated with food waste increases (Gerba et al., 2011), more caution
and protection measures are required for the waste collectors and recyclers as suggested
by the government, due to their potentially contaminating working environment (CDC,
2020). As for the environmental impacts, food waste is responsible for 6% of global
greenhouse gas emissions before the COVID-19 outbreak (Poore et al., 2018). One
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main cause is landfilling, a conventional method for handling food waste (Kiran et al.,
2014), and it has the highest level of greenhouse gas emissions compared to other
approaches (Schott et al., 2016). It is important to apply alternative processing
technologies to the increased amount of food waste under the COVID-19 pandemic, to
prevent the landfilling of increased food waste from further amplifying global warming.

To alleviate both the public health and the environmental concerns, the food waste can
be processed through food-energy-water-waste nexus (FEWWN) systems using
waste-to-energy technologies (Garcia et al., 2019), rendering it with the potential of
serving as a valuable source of sustainable energy (Gong et al., 2015). For instance,
anaerobic digestion (AD) has been practically used for the treatment and valorization of
food waste (Chen et al., 2017). In AD, food waste is biologically degraded and
converted into biogas that mainly consists of methane (60%-70%) and carbon dioxide
(30%-40%) (Xu et al., 2018). The biogas produced can be subsequently used as fuel for
energy production technologies (Tian et al., 2020), such as combined heat and power
(CHP) (Garcia et al., 2016 and 2017) that produces thermal energy and electricity
simultaneously. Considering the availability of waste-to-energy facilities represented by
AD and CHP in livestock farms (Zhao et al., 2019) and wastewater treatment plants
(Bora et al., 2020) across New York State, it is valuable to model and optimize the
FEWWN to deal with the increased amount of food waste during the COVID-19
pandemic by including these facilities.

In this work, we address the FEWWN systems optimization on food waste valorization,
while considering the impacts of the COVID-19 pandemic on the nexus systems. The
impacts include the increasing food waste generation, the relatively short planning
horizon, the limited availability of processing facilities, and potential transportation
options using repurposed trucks. Under these impacts of the pandemic, the optimization
problem focuses on addressing efficient nexus systems that convert the increased
amount of food waste into electricity and heating using existing facilities, such as AD
and CHP units in wastewater treatment plants and livestock farms. The nexus systems
optimization is formulated as a multi-period multi-objective linear fractional program
(LFP), with two objective functions of minimizing the total cost and minimizing the unit
processing cost of the nexus systems. To illustrate the applicability of the proposed
modeling framework, a case study on the FEWWN system for New York State under
the COVID-19 pandemic is presented. The major novelties of this work include a novel
FEWWN systems optimization modeling framework that considers various impacts of
the COVID-19 pandemic on the nexus systems and the uses of existing waste-to-energy
facilities and a unique application to a regional FEWWN system for New York State
under the COVID-19 pandemic.

2. Problem Statement
The FEWWN system aims to convert the significantly increased amount of food waste
due to the COVID-19 pandemic into electricity and heat, using existing waste-to-energy
facilities, such as AD and CHP units on wastewater treatment plants (NYSDEC, 2019)
and livestock farms (AgSTAR, 2020). In addition to facilitating energy production, such
conversion could also alleviate the health and environmental concerns associated with
the increasing food waste generation during the pandemic. Food waste feedstocks are
collected from each collection site, and then they are transported to processing facilities.
Notably, the feedstock could be transported using repurposed trucks, because the

1466



COVID-19 Pandemic

pandemic has reduced the need for professional drivers, such as school bus workers
(Guelpa, 2020). The feedstocks transported to a processing facility are converted by the
available waste-to-energy technology into intermediate products (Nicoletti et al., 2019),
such as biogas. Subsequently, the intermediate products are used as fuel for the energy
production technologies in the facility (Ning et al., 2019). For instance, CHP could use
the intermediate biogas from AD to produce heat and electricity, simultaneously.
Additionally, the food waste that is not transported to waste-to-energy plants would be
landfilled. We are given a planning horizon of multiple months, considering that a
planning horizon of decades may not be appropriate to depict the COVID-19 pandemic.
The planning horizon is partitioned into a set of time periods with identical intervals,
and each time period is set to be one month in this study for the case of New York State.
Considering the relatively short planning horizon due to the COVID-19 pandemic, the
construction of new waste-to-energy facilities to deal with the sudden increases of food
waste may not be feasible in the short timeframe, so only existing facilities are
considered for food waste processing in this study. In this problem, two objective
functions are considered, namely minimizing total cost and minimizing unit processing
cost. The total cost depicts the overall cost to deal with the increased amount of food
waste under the COVID-19 pandemic, including costs related to food waste processing
using waste-to-energy facilities and costs associated with landfills. On the other hand,
the unit processing cost represents the cost to acquire, transport, and convert a unit
weight of food waste into electricity and heat. In terms of solution strategy, a parametric
algorithm (Zhong et al., 2014) is adopted to deal with the fractional objective function,
and an ε-constraint method is used to address the Pareto optimal solutions for the
objective functions.

3. Results and Discussion
To investigate the potential of converting the increased food waste generation during the
COVID-19 pandemic into electricity and heat, we present a case study on New York
State, a state that has been influenced significantly by the pandemic. New York State
has a 13% increase in monthly food waste generation compared to 2019 (DSNY, 2020).
Existing AD and CHP units in wastewater treatment plants and farms in New York State
are considered in this study to convert increased food waste into energy.
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Figure 1. Optimization results for the nexus systems. (a) Pareto-optimal curve illustrating
trade-offs between total cost and unit processing cost with the food waste processing level
(column charts) and the extent of using existing AD capacities (pie charts). (b) Total economic
breakdowns for the three representative Pareto-optimal solutions.

The Pareto-optimal solutions are shown in Figure 1(a), as well as the utilization of AD
capacity and the processing levels of food waste. A clear trade-off between the total cost
objective and the unit processing cost objective can be found from the Pareto-optimal
curve. Notably, a negative unit processing cost indicates that the food waste processing
system is profitable. Extreme point A minimizes the unit processing cost; it has the
lowest unit processing cost of -$11.9/ton, while extreme point C minimizes the total
cost, so it has the lowest total cost of $27.1 million. Point B represents a trade-off
solution between the two extreme points. For the processing levels of food waste, the
nexus systems have the potential of converting 37.6% of food waste produced in New
York State, using 98% of the existing AD capacities in wastewater treatment plants and
livestock farms. In Figure 1(b), the total economic breakdowns on cost and revenue are
presented in wide columns and narrow columns, respectively, and the total profit and
loss of waste processing are shown on the right-hand side of each column.
Transportation costs and O&M costs for AD are the major contributors to the total
processing cost for all three solutions, while O&M costs for CHP account for a small
proportion of the cost. The profit increase from solution C to solution A could be $3.43
million annually, due to the high transportation and production cost of solution C.

Figure 2. Facility locations, power generation, and heat production from solution C, as well as the
corresponding total feedstock transportation and the county-level food waste landfill amounts
within the planning horizon.

The spatial information of solution C that minimizes total cost is shown in Figure 2. In
terms of facility selection, the number of active wastewater treatment facilities and
farms is noticeably larger than those of solutions A and B. Notably, most plants with
large capacities are active in solution C, while the small plants tend to be idle. This

1468



 

trend can be further validated considering the utilization of existing AD capacities as
presented in Figure 1(a). For solution C, although 98% of AD capacities are used for
food waste conversion, several idle plants still exist as shown in Figure 2, indicating that
these inactive plants are small ones that make less than 2% of the total state-level
capacities. This is because using plants with large processing capacities could result in
low unit O&M costs that can help reduce both the unit processing cost and the total
cost, owing to the scaling factor of less than 1 (Ghafoori et al., 2006). In terms of
transportation, feedstock collection sites near an active waste processing plant tend to
transport more feedstocks to that facility. Moreover, feedstock transportations starting
from collection sites with higher food waste generation levels are likely to be larger, and
these trends are also observed for solutions A and B. As for landfill, most counties in
New York State show considerable decreases in landfill amounts, mainly because of the
vast increase of active waste-to-energy facilities for solution C. Taking advantage of
these local small-scale waste processing facilities could both reduce the landfill cost and
increase the energy production revenue, resulting in the minimum total cost for the
nexus systems.

Sensitivity analyses are conducted in this study to quantify the impacts from the
deviation of modelling parameters in a pre-optimization manner. In other words, while
investigating the effects to vary one parameter, the entire nexus systems would be
re-optimized under the updated value. Biogas yield, disposal cost, and electricity price
are major factors affecting the total cost objective function, while the price of electricity
is the most sensitive factor for the unit processing cost objective. This is presumably
because the revenue from electricity generation is the largest category of revenue for the
nexus systems that minimize unit processing costs as presented in Figure 1(b).

4. Conclusions
In this work, a multi-period multi-objective food-energy-water-waste nexus systems
optimization model that considers various impacts of the COVID-19 pandemic on the
nexus systems is proposed and applied to New York State. The model accounted for
special features of the pandemic, including the increasing food waste generation, short
planning horizon, limited availability of waste-to-energy facilities, and potential
transportation options with repurposed trucks. Existing anaerobic digesters and
combined heat and power units in wastewater treatment facilities and livestock farms
were considered to process the increased amount of food waste under the pandemic and
produce energy. The optimized systems showed considerable potential of reducing the
disposal amounts of food waste by 38%, which could alleviate both the public health
and environmental concerns. The Pareto-optimal solutions illustrated a clear trade-off
between the objective functions. The minimum total cost was $27.1 million, while the
optimal unit processing profit was $11.9 per ton processed food waste. Spatial analysis
clearly revealed that facility selections were strongly correlated with their processing
capacities. It also showed that the nexus systems could noticeably decrease the food
waste disposal amounts in most counties in New York State. Finally, sensitivity analyses
revealed that biogas yield and electricity price were the most sensitive factors for the
total cost objective and the unit processing cost objective, respectively.
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Abstract 

Tri-Generation Systems (TGS) are designed for combined cooling, heating, and power 

production within a single process. In this paper, the integration of Concentrated Solar 

Power (CSP) together with TGS is studied. The tri-generation setup consists of a CSP 

facility that is integrated onto a desalination plant, producing three different levels of 

steam (very high pressure, low pressure and very low pressure), in addition to power 

and freshwater, simultaneously. Due to the complexity of the process, it was found 

imperative to investigate different factors that would improve the overall performance 

of the system, and ultimately decrease associated costs and thermal losses. Moreover, 

the use of molten salts offers many advantages, compared to more conventional fluid 

options, such as mineral and synthetic oils. Hence, a Mixed Integer Nonlinear Program 

(MINLP) that allows the selection of optimal heat transfer media, in TGS, has been 

formulated, and the performance of three different molten salts (solar salt, Hitec, and 

Hitec XL) has been analysed. The operating temperature of molten salts was found to 

have a significant effect on the steam quality generated in TGS-CSP systems. 

Moreover, solar salt resulted in the lowest energy production cost (at 28 cents/kWh) 

amongst all options. On the other hand, Hitec and Hitec XL were found to yield higher 

energy costs, estimated at 45 and 47 cents/kWh, respectively. 

Keywords: Tri-generation systems, Concentrated solar power, Molten salts, Heat 

transfer, Power 

1. Introduction 

Concentrated solar power has been extensively proposed as an effective and 

economically viable renewable energy technology. CSP plants must be equipped with 

effective heat transfer media, and thermal energy storage systems. Molten salts have 

become an increasingly attractive option for high-temperature CSP applications 

(Fernandez et al., 2019). Several studies have investigated the performance of various 

molten salts from different perspectives, such as thermophysical properties, 

thermodynamic analysis, corrosion mitigation and system-level analysis. Such studies 

were found to be helpful for proposing the most convenient molten salt, to be used for 

commercial applications. For instance, Wang et al. (2021) conducted a system-level 
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analysis for MgCl2-KCl and showed that higher heat source temperatures result in 

slightly improved system efficiencies, due to the higher specific work associated with 

MgCl2-KCl. Rong et al. (2021) succeeded in proving that ab-initio molecular dynamics 

of NaCl-CaCl2 are effective for obtaining essential heat transfer information of molten 

salts, by investigating microstructures and thermophysical properties under various 

operating temperatures. Ibrahim et al. (2021) studied the performance of eight different 

molten salts, especially those that could withstand severe corrosion challenges in CSP 

systems. In their study, Rong et al. (2021) found that both MgNaK chloride and ZnNaK 

chloride possess high thermal stability, especially for temperatures above 800 oC. 

Additionally, low thermal energy storage costs were obtained for each. Hence, they 

recommended the use of molten halide salts for the next generation of CSP plants, since 

molten chloride salts are currently the most technologically mature. The performance of 

different molten salts in a tri-generation system has not been studied yet. As a result, 

this work develops an MINLP program that assesses the economic performance of 

different molten salts in TGS-CSP systems, for the production of different levels of 

steam, power and freshwater. 

2. Methodology 

The proposed model, based on the TGS-CSP system, is shown in Figure 1. First off, 

molten salt circulating in the CSP plant absorbs heat produced by the solar tower. The 

hot salt is then directed to a steam generator that produces very high pressure (VHP) 

steam. The temperature of VHP steam depends on the operating temperature of the 

studied molten salt, whereas the pressure is assumed constant at 100 bars. The generated 

LP steam can then be expanded into superheated steam. VLP steam may be converted to 

cooling water, which in turn may be used in the ejectors, and/or as a water source for 

VHP steam generation.  

 

 

Figure 1. Tri-generation System Structure 

On the other side of the system, inlet seawater can either be fed to a thermal and/or a 

membrane desalination option. The required energy demand for desalination may be 

covered either using LP steam produced from CSP, and/or shaft-electric power from 

1474



Assessment Strategies of Different Molten Salts for Heat Transfer in  

Tri-generation Systems   

turbo-generators, and turbo-pumps. Thermal-based desalination mainly relies on LP 

steam for operation, since a very low electric power consumption (from turbo-

generators) is required. However, membrane-based units consume shaft and electric 

power only, with no steam is required. Hence, any excess power produced can be sold 

to the grid, as a revenue stream. The molten salt used for heat transfer and energy 

storage in CSP is highly dependent on the required operating temperature. In fact, 

different salt temperatures would affect the temperature of VHP steam produced. 

Moreover, molten salt cost must be taken into account, especially when carrying out the 

assessment of different molten salt options. All of the above has been considered in the 

mathematical formulation of this problem.   

3. Mathematical Formulation 

A MINLP model, which aims to minimize the total cost of the TGS-CSP system has 

been developed. The objective function is shown in Eq. (1) below, where costtherm and 

costmem are thermal and membrane desalination unit costs, respectively, costCSP is the 

CSP unit cost, and revelec is the electricity revenue. All molten salt related costs are 

included within the capital cost of CSP plant.  Based on the terminology shown in 

Figure 1 above, the following sets have been defined: set G as the back-pressure turbo 

generators, BPTG, set C as the condensing turbo-generators, CTG, set P as the back-

pressure turbo-pumps, BPTP, set Q as the condensing turbo-pumps, CTP, set E as the 

ejectors, set K as the pumps (set K), Set T as thermal desalination units, and set M as 

membrane desalination units. The binary variables, Yi, have been used to indicate the 

selection of technology i, whereas the decision variables of the model refer to: (1) 

input/output flowrates associated with each desalination technology as well as (2) mass 

flowrates of produced VHP steam into the different expansion units. Equality 

constraints have been used to ensure no violation of mass and energy balances around 

the different system units. For example, Eq. (2) and Eq. (3) represent the mass balance 

of VHP steam and molten salt, respectively, where GVHP is the total mass flowrate of 

VHP steam produced, Gg
in, Gc

in, Gp
in, Gq

in and Gtv,in are the inlet VHP steam flowrates to 

BPTG, CTG, BPTP, CTP, and throttling valve, respectively, while Gsalt,in and Gsalt,out are 

the inlet and outlet mass flowrates of the molten salt. Eq. (4) describes the energy 

balance around steam generator, where Cp
salt is the specific heat of salt, while Tin and 

Tout are the inlet and outlet temperature of molten salt to steam generator. Moreover, ηSG 

is heat transfer efficiency parameter and GSG is the mass flowrate of water entering the 

steam generator, while Hout,s and Hin,w are the enthalpies for steam leaving and water, 

respectively. 
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The complete model includes similar mass and energy balance constraints on all 

remaining units shown in Figure 1. Moreover, performance limits on each unit have also 

been identified, and included as inequality constraints. For instance, the temperature of 

salt at the time of water boiling must ensure that no temperature cross-over is taking 

place in the steam generator, at any point. VHP steam inlet mass flowrate into the 

turbines were used to calculate the work produced by such units. Other inequality 

constraints ensure the minimum, (Gi
min, Fmin) and maximum, (Gi

max, Fmax) allowable 

mass flowrates of steam, Gi
in, and seawater, Fi, to the turbines and desalination units, 

respectively. In addition, the minimum water production recovery, χpw, and the 

minimum amount of electricity allocated to the grid, PGrid,min, have also been accounted 

for. Eq. (5-6) below represent capacity constraints, whereas Eq. (7-8) refer to constraints 

on water production and electricity production, respectively, where PWtotal is the product 

water flowrate, and PGrid refers to amount of electric power allocated to the grid. 

QPCGiYGGYG ii

in

iii ,,,maxmin   (5) 

MTiFFF i ,maxmin     (6) 

in

PW

total FPW   (7) 

min,GridGrid PP   (8) 

4. Case Study 

In this case study, the proposed model has been implemented on a TGS producing 

steam and power from a CSP plant. Freshwater can also be produced onsite via 

desalination, using a seawater source with a salinity of 25 g/L. The desalination 

technologies considered in the study are: multi-stage flashing (MSF), multi-effect 

distillation (MED) and reverse osmosis (RO). Each technology is associated with its 

own set of specifications and constraints, which have been accounted for in the model. 

All the parameters required to estimate CSP plant performance have been obtained from 

Gunawan et al. (2019), whereas the parameters associated with each desalination 

technology have been obtained from Klaimi and Alnouri (2020). As previously 

mentioned, three different molten salts (solar salt, Hitec, Hitec XL) have been assessed 

for their heat transfer fluid abilities within the system. Each molten salt has its own set 

of specifications, such as operating temperatures, specific heat capacity and cost, all of 

which have been provided in Table 1. Since VHP steam temperature is greatly 

correlated with high operating molten salt temperatures, it was very important to 

observe this property factor while assessing the effect of those different salts onto the 

overall system design. Table 1 below summarizes the molten salt specifications, noting 

that the low operating temperature has been assumed to be 290oC in all cases. 

Moreover, all conducted cases assume an inlet seawater flowrate of 100,000 m3/d, with 

a total system recovery of 40 %.  
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Table 1: Molten salts specifications (Chang et al., 2015) 

Molten Salt High Operating 

Temperature (oC) 

Specific Heat 

Capacity (kJ/kg K) 

Cost (USD/kg) 

Solar Salt 600 1.37 0.49 

Hitec 535 1.56 0.93 

Hitec XL 500 1.41 0.19 

The MINLP optimization problem has been implemented on GAMS, using BARON as 

the global solver (GAMS Software). When solar salt is used, the optimal configuration 

of the TGS-CSP system obtained is provided in Figure 2.  The results show that 11,961 

m3/d of solar salt is required to generate steam and power. The optimal steam expansion 

technologies that have been chosen by the solver are one CTG and two CTP units. It 

was found that the turbo-generator produces 7.47 MW to cover the electric power 

required for desalination, while the rest is exported to the grid. On the other hand, the 

turbo-pumps produce 15.49 MW of shaft power for desalination. Both MED and RO 

have been selected for seawater desalination. The selection of these two technologies 

have been attributed to the fact that MED has a lower energy requirement than MSF, 

while RO is characterized with a higher water recovery than thermal-based 

technologies. It is important to note that 26 % of inlet seawater has been allocated to 

MED, while the amount of power allocated to the grid was 4.75 MW. Overall, this 

results in an energy production cost (EPC) that is equivalent to 28 cents/kWh.  

 

 

Figure 2. Optimal System Configuration for Case 1, using Solar Salt as the heat transfer medium 

When Hitec salt has been used in place of solar salt, the lower operating temperature of 

this salt results in a higher required flowrate of 13,162 m3/d, when comparing the 

respective optimal solutions. The same desalination technologies as those reported in 

Case 1 have been selected, but a higher fraction of seawater has been allocated to MED. 

Therefore, it was found that an additional amount of LP steam is required. This resulted 

in the selection of a throttling valve for LP steam production, since it is a less expensive 

option than turbo-generators. As expected, the optimal solution resulted in a higher total 
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cost of the system, and a lower operating temperature of Hitec salt. A higher EPC 

estimated at 45 cents/kWh was obtained. When Hitec XL salt is used, the optimal 

configuration of the TGS-CSP system shows an increase in the total amount of seawater 

allocated to MED, which necessitates higher LP steam production. Therefore, besides 

CTG and CTP units, an additional BPTG unit has been selected in place of the throttling 

valve, due to its capability of generating electric power. This was found an attractive 

option economically, as a result of the extra revenue generated. Although the required 

flowrate of Hitec XL (estimated by 17,894 m3/d) is higher than that required for solar 

salt, the total cost of Hitec XL salt was lower. EPC was found to be 47 cents/kWh, 

which is even higher than the energy cost when using Hitec salt. A summary is provided 

in Table 2 below. 

Table 2: Summary of main aspects in optimal results 

Molten Salt Energy Water EPC (cents/kWh) 

Solar Salt CTG, CTP MED, RO 28 

Hitec CTG, CTP, TV MED, RO 45 

Hitec XL BPTG, CTG, CTP MED, RO 47 

5. Conclusions 

In this study, a mathematical model that assesses three different molten salts as heat 

transfer fluids in a tri-generation system producing steam, power and freshwater, has 

been presented. Solar salt was found to be the best option to be used in the TGS-CSP 

system, amongst all options, having resulted in a configuration with the lowest EPC. 

References 

A. G. Fernandez, J. Gomez-Vidal, E. Oro, A. Kruizenga, A. Sole, L. F. Cabeza, 2019, 

Mainstreaming commercial CSP systems: A technology review, Renewable Energy, 140, 152-

176 

A. Gunawan, R. A. Simmons, M. W. Haynes, D. Moreno, A. K. Menon, M. C. Hatzell, S. K. Yee, 

2019, Techno-economics of cogeneration approaches for combined power and desalination 

from concentrated solar power, Journal of Solar Energy Engineering, 141, 2. 

A. Ibrahim, H. Peng, A. Riaz, M. A. Basit, U. Rashid, A. Basit, 2021, Molten salts in the light of 

corrosion mitigation strategies and embedded with nanoparticles to enhance the 

thermophysical properties for CSP plants, Solar Energy Materials and Solar Cells, 219. 

GAMS Software. Retrieved from: www.gams.com/latest/docs/S_BARON.html 

K. Wang, M. J. Lee, Z. D. Zhang, C. H. Min, P. Li, 2021, Evaluation of alternative eutectic salt as 

heat transfer fluid for solar power tower coupling a supercritical CO2 Brayton cycle from the 

viewpoint of system-level analysis, Journal of Cleaner Production, 279. 

R. Klaimi, S. Y. Alnouri, 2020, GHG emission reduction assessment for desalination systems 

through carbon capture and renewable energy options, Computer Aided Chemical 

Engineering, 48, 1081-1086. 

Z. Chang, X. Li, C. Xu, C. Chang, Z. Wang, 2015, The design and numerical study of a 2 MWh 

     molten salt thermocline tank, Energy Procedia, 69, 779-789. 

Z. Rong, G. Pan, J. Lu, S. Liu, J. Ding, W. Wang, D. J. Lee, 2021, Ab-initio molecular dynamics 

study on thermal property of NaCl–CaCl2 molten salt for high-temperature heat transfer and 

storage, Renewable Energy, 163, 579-588. 

 

1478  R. Klaimi et al.



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

Techno-economic Assessment of Load Following 
Operation for Super-critical Power Plants 
Equipped with Carbon Capture Feature 
Calin-Cristian Cormos,a,* Ana-Maria Cormos,a Cristian Dinca b  
a Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany 
Janos 11, Cluj-Napoca, RO-400028, Cluj-Napoca, Romania  
b Politehnica University, Faculty of Power Engineering, 313 Splaiul Independentei, 
Bucharest, RO-060042, Romania  

cormos@chem.ubbcluj.ro 

Abstract 
Greenhouse gas emission reduction from energy-intensive industrial applications (e.g., 
power generation) is of paramount importance today. The fossil-based power plants 
have to be operated in a load following (cycling) scenario to balance the time 
intermittent renewable sources (e.g., solar and wind). This paper is assessing the techno-
economic implications of load following (dynamic) operation of decarbonized super-
critical power plants to improve the main performance indicators. Reactive gas-liquid 
absorption method is evaluated as decarbonization technology. As evaluated super-
critical power plants, one coal-based concept with 1,000 MW net output was considered 
as illustrative example. The overall carbon capture rate is set to min. 90 %. The 
proposed design was simulated in both base-load and dynamic-load conditions. The 
load following (dynamic) operation was considered for one-week duration considering 
the common pattern in European power generation sector. Relevant key design elements 
were assessed in details in term of main techno-economic implications (e.g., dynamic 
operation of carbon capture unit considering lean and rich solvent storage, integration of 
power block and carbon capture unit, power plant cycling etc.). The results show that 
the flexible decarbonized power generation has significant advantages in optimizing 
techno-economic performance and reducing the overall environmental impact. 

Keywords: Flexible operation of decarbonized power plants, Reactive gas-liquid 
decarbonization system, Techno-economic and environmental assessment. 

1. Introduction 
Reducing CO2 emissions from energy intensive sectors is a very important element in 
the fight against global warming and climate change. Several methods can be used to 
reduce the overall carbon footprint e.g., boosting renewable energy sources (e.g., solar, 
wind, biomass), improving energy conversion and utilization efficiencies, developing 
Carbon Capture, Utilisation and Storage (CCUS) technologies (European Commission, 
2019). Currently, the share of renewable energy is significantly increasing in power 
generation sector but the time-variability of solar and wind technologies is putting an 
additional pressure on existing fossil base-load capacities which have to be operated in 
load following (dynamic) conditions. Since the fossil fuels are predicted to remain an 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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important element in the overall energy sector at least for short and medium term, 
suitable and flexible decarbonized power generation technologies are needed (Papadis 
and Tsatsaronis, 2020). This paper is assessing the techno-economic implications of 
load following (dynamic) operation of decarbonized coal-based super-critical power 
plants to improve the main performance indicators for better integration into future 
highly time-dependent energy systems. The key innovative element of this paper 
towards the current state of the art in the field is the quantification of techno-economic 
and environmental performance indicators for a decarbonized power plant operated in 
dynamic (load-following) conditions using solvent storage.   

2. Design of decarbonized super-critical power plant, main model 
assumptions and thermal integration analysis 
The decarbonization of super-critical power plant was assessed using the post-
combustion chemical scrubbing by alkanolamines. Methyl-Di-Ethanol-Amine (MDEA) 
was considered as illustrative case. The chemical reaction for post-combustion CO2 
capture is the following:  

  322 HCOMDEAHOHCOMDEA  (1) 

The corresponded non-decarbonized super-critical power plant was also considered as 
benchmark case (noted as Case 1). The conceptual design of decarbonized super-critical 
power plant (noted as Case 2) is presented in Figure 1.  

 

Figure 1. Design of decarbonized super-critical power plant (Case 2) 

The most important model assumptions of evaluated super-critical power plants are 
presented in Table 1. These assumptions were used for modelling and simulation of the 
power plant using ChemCAD software. The model of CO2 capture unit was then 
validated by comparison to experimental data (see Figure 2 left). In addition, the 
decarbonized design was thermally integrated using pinch method for optimization of 
thermal duty used in CO2 capture unit for solvent regeneration. Figure 2 right presents 
the hot and cold composite curves for CO2 capture unit. 
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Table 1. Design assumptions of evaluated gasification-based poly-generation systems 

Power plant unit Design assumptions 
Coal composition and lower 
calorific value 

Composition (dry): 72.30 % C, 7.45 % O, 1.69 % N, 4.11 % 
H, 0.56 % S, 13.89 % ash; Moisture: 8 % (as received) 
Lower heating value (LHV): 25.35 MJ/kg (as received) 

Super-critical power block Steam temperatures: 582 oC / 580 oC / 580 oC 
Steam pressures: 290 bar / 75 bar / 20 bar 
Steam turbine efficiencies: 88 % HP / 90 % MP / 94 % LP 
Final steam expansion pressure: 45 mbar 
Feed water pump efficiency: 85 % 

Flue gas desulphurization unit Wet desulphurization system using limestone slurry 
Sulphur removal efficiency: >98.5 % 

CO2 capture unit  50 wt. % MDEA aqueous solution 
Absorption/desorption columns: 18 / 12 stages 
Carbon capture rate: 90 % 
Liquid to gas ratio: 3.75 
Heat duty for solvent regeneration: 3 GJ/t 

CO2 conditioning unit  
(drying and compression) 

TEG gas-liquid absorption dehydration unit  
CO2 purity and pressure: >95 % (vol.) / 120 bar 
Multi-stage inter-cooling compressor with 85 % efficiency 

Auxiliary units Coal handling energy consumption: 0.5 % of thermal input 
Pump efficiency: 85 % 
Heat exchanger minimum temperature difference: 10 oC 
Heat exchanger pressure drops: 1 – 3 % inlet pressure 

    

Figure 2. Validation of CO2 capture unit (left); Thermal integration of CO2 capture unit (right) 

3. Base-load and flexible techno-economic and environmental assessment 
Firstly, the techno-economic and environmental performances of both coal-based super-
critical power plants with and without decarbonization were assessed in base-load 
conditions. The overall description of the techno-economic assessment methodology as 
well as the main economic assumptions are presented in details in a separate paper of 
the authors (Cormos and Cormos, 2017). Table 2 presents the key performance 
indicators of evaluated base-load coal-based super-critical power plant concepts. As can 
be noticed, the introduction of carbon capture feature (a carbon capture rate of 90 % was 
considered) induces significant modifications of all performance indexes e.g., the net 
energy efficiency decreases by about 9.6 percentage points (this is the energy penalty 
for carbon capture), specific CO2 emission is reduced by about 88 %, specific 
investment cost is increasing by about 80 %, operation and maintenance costs are 
increasing by about 27 %, levelized cost of electricity is increasing by about 13.5 %.  
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Table 2. Main techno-economic and environmental performance indicators (base-load) 

Performance indicator UM Case 1 Case 2 
Coal flow rate t/h 327.76 420.92 
Coal lower heating value (LHV) MJ/kg 25.35 
Coal thermal energy MWth 2,308.00 2,964.00 
    
Gross power output MWe 1,057.75 1,140.10 
Fuel processing consumption  MWe 11.54 14.82 
CO2 capture and conditioning unit MWe - 71.05 
Power block consumption MWe 46.21 54.23 
Ancillary power consumption MWe 57.75 140.10 
    
Net power output MWe 1,000.00 1,000.00 
Net power efficiency % 43.32 33.73 
Carbon capture rate % 0 90.00 
Specific CO2 emissions kg/MWh 800.12 93.95 
    
Capital cost M€ 1,275.00 2,288.00 
Specific capital investment cost €/kW 1,275.00 2.288.00 
Operational & maintenance cost €/MWh 28.90 36.81 
    
Levelized cost of electricity €/MWh 66.00 74.90 
CO2 removal cost €/t - 31.50 
CO2 avoided cost €/t - 37.26 

 
After evaluation of base-load performances, a dynamic (cycling) operation scenario of 
decarbonized power plant was considered. In this respect, Table 3 presents the 
considered weekly variation of the plant capacity. This time behaviour was selected 
considering the daily pattern load common in Central Europe (Astolfi et al., 2019).     

 
Table 3. Time variation of plant capacity (weekly basis)  

Monday – Friday Saturday – Sunday 
6 AM to 1 PM 
7 PM to 9 PM 

10 PM to 5 AM 
2 PM to 6 PM 

0 AM to 12 PM (all day) 

100 % 50 % 50 % 
 
Considering this time variation of decarbonized power plant capacity, the flue gases 
flow in a flexible operation scenario compared to the base-load operation is about 73 % 
for the Monday to Friday period, 50 % for the weekend and about 66.5 % for the whole 
week. The nominal base-load flue gases flow for decarbonized power plant concept is 
about 4,100 t/h with 12.35 % vol. carbon dioxide and the corresponding plant capacity 
is 90 %. The power plant capacity has an important influence on levelized cost of 
electricity (Astolfi et al., 2019). Figure 3 presents the variation of levelized cost of 
electricity vs. plant capacity for both super-critical concepts with and without 
decarbonization. As can be observed, the plant capacity starts to have an important 
influence on levelized cost of electricity at values below 60 %. In addition, the reduction 
of the power plant load affects also the energy efficiency compared to the nominal 
steam cycle condition. In this respect, an off-design correction factor for the overall 
energy efficiency has to be used to consider the influence of part-load operation 
(Cormos, 2020).        
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Figure 3. Validation of levelized cost of electricity vs. power plant capacity 

 
For the time-flexible operation of the decarbonized super-critical power plant, when the 
power output is reduced, the flue gases flow is reduced with the same ratio. In order to 
keep the 90 % carbon capture ratio, the CO2 capture gas-liquid absorption cycle has to 
modified accordingly. In this respect, the flexible operation of decarbonized super-
critical power plant is equipped with MDEA solvent storage capacities in both lean and 
rich CO2 loadings. The solvent storage facility was sized considering the need for 
weekly operation of the power plant which implies that the absorption column follows 
the power plant operation and the desorption column operates at nominal load (74 % of 
nominal base-load) and the storage facility has enough capacity to store the both lean 
and rich forms of the MDEA solvent. Figure 4 presents the time variations of solvent 
storage and power plant loads in a weekly operation cycle. As it is shown, when power 
plant operates at nominal load (100 %), the rich solvent storage is gradually filling up 
and the lean solvent storage is discharged. When the power plant is operated at reduced 
loads (50 %), the process is reversed (regenerated lean solvent storage is filling up and 
rich solvent storage is discharged).  

 

 

Figure 4. Weekly variations of lean / rich solvent storages and power plant load 
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The flexible operation of decarbonized power plant implies additional capital cost for 
solvent storage capacity. This capital cost was estimated based on its size with common 
cost correlations (Smith, 2016). But the capital cost of solvent storage is totally 
compensated by reducing the size of CO2 capture unit, even further reduction of overall 
plant capital cost is achieved due to the fact the cost of liquid storage facility is lower 
than for a complex plant such as absorption – desorption cycle. Table 4 presents the 
variation of key performances in both nominal and part-load operation scenarios.  

 
Table 4. Key performance indicators for nominal and part-load operation 

Performance indicator UM Case 2 Case 2 
Gas-liquid absorption cycle size factor % 100.00 74.00 
Specific capital investment cost €/kW 2,288.00 2,140.00 
Operational & maintenance cost €/MWh 36.81 36.49 
Levelized cost of electricity €/MWh 74.90 72.25 
CO2 avoided cost €/t 37.26 33.26 

 
It can be noticed that the flexible operation of the decarbonized power plant equipped 
with solvent storage facilities has better performance than nominal case e.g., reduced 
specific investment by about 6.5 %, reduced levelized cost of electricity by about 3.5 %.  

4. Conclusions 
This paper is evaluating the flexible operation of 1,000 MW super-critical power plant 
equipped with carbon capture feature using chemical scrubbing (90 % carbon capture 
rate was used). As innovative element, the load-following power plant operation 
considers MDEA solvent storage facility in both lean and rich forms. The evaluation 
shows that dynamic operation of decarbonized power plant has significant benefits e.g., 
reducing specific investment cost (by about 6.5 %), levelized cost of electricity (by 
about 3.5 %) and CO2 capture costs (by about 10 %) compared to base-load operation.  
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Abstract 
 
Jet Fuel from the gas-to-liquid (jet fuel-GTL) process is a suitable alternative to that 
produced from conventional oil refining because of its combustion efficiency, and 
compatibility to both legacy and newly designed aircrafts engines. It contributes towards 
the diversification and expansion of fuel supply chain in the aviation industry due to its 
unique properties, as it is ultraclean releasing lower levels of Sulphur Dioxide, Nitrogen 
Oxides and particulate emissions upon burning. The State of Qatar, with its vast quantities 
of natural gas resources, can lead in the widespread adoption of jet fuel-GTL. The GTL 
technology also can contribute positively toward CO2 emission reduction through the 
integration between GTL and carbon capture and utilisation (CCU) technology, as this 
will enhance the total production of refined products and reduce CO2 emissions level. The 
concept model of integrating of CO2 product with GTL plant has been discussed in (Al-
Yaeeshi et al., 2020a)  and the results are demonstrated positively in terms of techno-
economic-environmental aspects. In fact, fuel production in Pearl GTL has prompted 
Qatar Airways (QA) to become the first commercial airliner to trial jet fuel-GTL. 
However, mainstream utilisation is challenged due to: (a) lack of availability of jet fuel-
GTL for the purpose of re-fuelling at QA’s worldwide destinations. As such, the presence 
of GTL plants is limited globally due to the availability of natural gas and the high capital 
costs for GTL plant construction; (b) volatility in jet fuel-GTL prices and the uncertainty 
in petroleum product markets. The objective of this study is to assess the techno-
economic-environmental feasibility of a novel methodological framework based on 
decentralised LNG-to-GTL processes (or hubs) at optimal locations of LNG terminals. 
The objective is to enhance the availability of jet fuel-GTL and other GTL products in 
global aviation and other transportation sectors. 
 
Keywords: Liquefied Natural Gas (LNG), Gas-To-Liquid (GTL), Jet Fuel, Aviation.  

1. Introduction 

The demand for energy is steadily increasing due to population growth and increased 
economic activity. Traditionally, crude oil has been used to satisfy various applications 
for energy in different forms such as gasoline, diesel, and kerosene (jet fuel). However, 
natural gas-based products have become increasingly competitive due to enhanced 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/B978-0-323-88506-5.50229-1



 Al-Yaeeshi and Al-Ansari 

exploration, availability and utilisation applications. Incidentally, greenhouse gas (GHG) 
emissions resulting from the utilisation of fossil fuels contribute towards global warming 
and as a result have propelled world leaders to commit to controlling the emissions 
generated from different sectors. A large portion of fossil fuel utilisation, especially oil 
derived products occurs in the transport industry which accounts for almost 66% of total 
global CO2 emissions. The aviation sector forms approximately 8% from the remaining 
16% of transportation sector globally (IEA, 2015). Global passengers have increased 
gradually from 1946-2016 reaching 3.7 billion in 2016 compared to 18 million in 1946. 
It is expected to continue to increase as networks and destinations increase especially to 
South America, China and India (Boeing, 2017). This implies that the manufacture of 
new planes is expected to increase as new routes are introduced and old models are 
replaced, where planes with a capacity of 100 seats or more are expected to increase to 
42,500 from 20,500 aircrafts by 2036 (Boeing, 2017; Airbus, 2017). Since 2012, the 
International Civil Aviation Organisation (ICAO) has pledged to reduce GHG levels. 
However, the aviation sector continues to account for 4% of total global emissions, and 
may increase to 22 % by 2050. The IATA report stipulates that as part of efforts to remain 
below 2°C in a 2030 time horizon, emission levels should not exceed 39 % of levels 
recorded in 2005, and require a decrease by 41 % levels by 2050 compared with the 
reference year 2005 (Cames et al., 2015).  
 
Several options to reduce emissions from aviation exist, including the use of alternative 
fuels and other renewable energies. One of these fuels is the jet GTL which is derived 
from the Fischer-Tropsch technology to produce a synthetic lubrication oil and synthetic 
fuel from coal, natural gas or biomass. Introducing jet fuel-GTL as an alternative aviation 
fuel is especially attractive in this region due to low natural gas prices and extraction 
costs. However further optimisation is required to enhance the cost of extraction of natural 
gas and improve the cost and efficiency of GTL technology (Ramberg et al., 2017).  Dong 
et al. (2008) demonstrate the techno-economic analysis of GTL and LNG plants are 
comparable however the LNG technology is preferable attributed that the LNG is well 
established while the GTL is in the initial stage in the commercial market. The GTL has 
intending to expand widely due to the world energy demand and its clean refined products 
that classified as environment friendly, hence that will impact LNG markets. In terms of 
enhancing production of jet fuel derived from GTL, CCU can be considered a viable CO2 

reduction approach as discussed in chapter 4. Al-Yaeeshi et al. (2020a) demonstrates the 
suitability of integrating CO2 emissions into GTL plants in order to increase production 
rates of finished products, reduce rogue CO2 emissions and to generate economic benefits. 
It is concluded that the overall process efficiency enhanced by increasing between 5-10% 
comparing with base reference of GTL plant. The objective of this study is to assess the 
techno-economic-environmental feasibility of a novel methodological framework. It 
considers decentralised LNG-to-GTL processes (or hubs) at optimal locations of LNG 
terminals promoting enhanced availability of jet fuel-GTL and other GTL products for 
the global aviation industry. Using Qatar which is rich in natural gas reserves as a case 
study, this study outlines the role of the natural gas derived fuel obtained via the gas-to-
liquid (GTL) technology in the aviation sector in comparison to conventional aviation 
fuels obtained from crude oil.  
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Case Study: Qatar  
 
The system considered comprises of an LNG supplier, Qatar Gas (QG), and various 
potential small-scale GTL plants worldwide that have been identified for the economic 
utilisation of natural gas, based on the Qatar Gas LNG customers destination zones and 
Qatar Airways (QA) flight destination zones. The integration model of CO2 with GTL 
plant discussed in chapter 4 as a case study in Qatar and can be applied globally. The 
objective of the optimisation model is to develop a profitable allocation plan for proposed 
GTL plants and contribute towards reducing GHG emissions generated from the QA fleet 
and other airlines as they travel to and from Qatar generating techno-economic-
environment benefits from all destinations. The State of Qatar is the world’s largest 
exporter of Liquefied Natural Gas (LNG), driven by demands from Asia and Europe due 
to transitions from Crude oil and Coal to Natural gas. LNG exports from Qatar will 
continue to rise as new trains are developed expanding production by 40 % to110 million 
tons. In terms of GTL, production from Qatar represent 70% of total global GTL 
production. The GTL process utilises Fischer–Tropsch technology to transform natural 
gas into synthetic liquid petroleum products which is a feedstock to other commercial 
applications and commodity markets. The national GTL output consists of an Oryx GTL 
plant commissioned in 2006 with capacity approximately 34,000 b/d. In addition, a 
second Pearl GTL plant, the largest global GTL project facility commissioned in 2011 
produces approximately 140,000 bpd of refined products (Al-Yaeeshi et al., 2020b). 
Qatar Airways is one of the world’s leading airlines, established on November 22, 1993, 
and its home, Hamad International Airport links over 150 international destinations across 
Africa, Central Asia, Europe, Far East, South Asia, Middle East, North America, South 
America and Oceania. The QA fleet consists more than 180 aircrafts and is expected to 
top 350 by 2022 (QA, 2016).  

2. Methodology 
 
The CCU application demonstrated in this study is discussed models developed by Al-
Yaeeshi et al. (2020a), and Al-Yaeeshi et al. (2020b), where utlising CO2 in GTL plant 
demonstrates a high potential in enhancing the GTL output products and contributes in 
reducing the CO2 emissions to the atmosphere from the sources. In this study, the integral 
LP formulation considers optimising the GTL plant distribution based on the availability 
of QG LNG terminal destinations, QA route destinations, high aircraft traffic airports, 
high jet fuel consumption, and LNG purchase prices. The aim is to optimise the location 
of GTL plants upon a techno-economic-environment analysis and ensure life cycle CO2 
reductions of QA and HIA from well to wheel. In order to demonstrate significant 
improvement in the QA fleet performance, it is necessary for the fuel to be available in  
most of the destinations. As the such, the system proposed maximises the overall revenue 
of the Jet fuel-GTL utilisation and promotes Qatar as a hub for jet fuel-GTL.  
The system described in Figure 1 consists of three main components, LNG terminal, GTL 
plant and distribution network. The operation starts by receiving the LNG cargo in the 
terminal where the unloading and regasification process begins. After which, the gas is 
compressed and transported by pipeline to the GTL plant where the gas is converted to 
the refined products such as Jet fuel, Gasoline and Diesel. The final stage is to transport 
the Jet fuel-GTL to the airport to refill the QA fleet and/or other aircrafts.  
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Figure 1. Model mapping the QA, LNG and GTL network. 
 
The decision variables used in the Integer LP formulation are applied to solve the binary 
optimisation case study as indicated in Figure 1. The parameters model corresponds to 
the availability of LNG products, potential of natural gas resources, g and objects of QA 
connection q at the defined countries i. Each country i has an LNG price Sᵢ and a number 
of QA flights Fᵢ from Qatar to the same destination. QA consumes conventional jet fuel 
from country i. There is a potential to locate GTL plants Pᵢ at country i to supply QA fleet 
with clean Jet fuel-GTL considering the high demand of jet fuel-GTL Ji at country i. 
However, this depends on the high demand of jet fuel in country i, hence the ratio Rᵢ is 
defined: 𝑅ᵢ ₛi     
Where Js is the total of Jet fuel consumption at country i to the Ji Jet fuel-GTL plant 
produced at the same country. 
 
The case study defines the specific GTL plant locations that will ensure a lifecycle 
reduction of CO2 during return flights to Qatar using Jet fuel-GTL. The analysis is based 
on the 42 countries that Qatar supplies with LNG (or potentially GTL), in addition to QA 
routes. The LNG volume and prices are varied between (0.1 -12.2) MT/y and ($3.5 – 
$13.5) respectively (QG, 2019; Timera, 2019), while QA flights in the same countries are 
varied between 48–8,064 flight/y with total 51,108 flights per year (QA, 2018). The total 
jet fuel volume at the defined countries is 1,8750 million BBL/y while the proposed Jet 
fuel-GTL for each country is 4.380 million BBL/y (EIA, 2016) ( The Global, 2018). A 
detailed nomenclature of model parameters is defined by set the formula to compute the 
maximum number of QA flights to determine the countries to mark the suggested GTL 
plant, hence access to clean Jet fuel-GTL for QA. Computation of the optimisation of QA 
flights is defined as;  
 
Maximise 𝐹 𝑥 ∑ 𝐹ᵢ𝑥ᵢ ᵢ  ,where n and F are the no. of countries and QA flights  
 The binary decision variables are as following; 

     𝑥ᵢ 1, 𝑖𝑓 𝐶ᵢ 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         where i=1,…..,n    

Subject to the below conditional logics constraints; 
 ∑ 𝑆ᵢ𝑥ᵢ ᵢ    $25, where S is the selling LNG price at the country i 
 ∑ 𝑃ᵢ𝑥ᵢ ᵢ   1, where P is the number of GTL plants at country i  ∑ 𝑅ᵢ𝑥ᵢ ᵢ  10% of  ∑ 𝐽ᵢᵢ ,  where R is the ratio of Jet production  
where; 𝑆ᵢ 1 , 𝑃ᵢ  1, 𝑅ᵢ  1 
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3. Results 
Table 1 indicates the optimum values for GTL plants locations when the total of QA 
flights is maximised in the defined countries based on constraints. Consequently, this 
reduces the annual rate of CO2 emissions produced by the aircraft while travelling back 
to Qatar or during its operation in the HIA. Table 2 highlights the selected countries 
selected based in the integer LP formulation. 
 
Table 1. The optimsation results.          Table 2. Country selection.   

Decision Variables Results        Ci Country Ci Country 
Number of GTL plants  8  C1 Iran C5 Spain 
Number of flights/y 30960  C2 KSA C6 UAE 
LNG ($) 24.11  C3 Kuwait C7 UK 
Ratio of jet fuel (Ri) 192.4  C4 Oman C8 USA 

The modelling results illustrated in Figure 2 demonstrates that LNG prices at country i 
have the potential to make decisions in terms of the number of GTL plants. Although 
some countries have the highest rate for jet fuel consumption and record high QA flights 
however the LNG prices are the highest comparing with others in Europe and Middle east 
specially China, Japan and South Korea. A clear benefit is achieved in terms of increasing 
jet fuel utilising QA flights generating revenues in the selected countries, whilst reducing 
CO2 emissions during return to Qatar. The total flights that benefit from the GTL plants 
exceed 60% of the total QA flights to the 42 countries resulting in emission reductions in 
the selected countries. The model indicates that the selected countries can establish a 
clean refined network consisting of LPG, and gasoline, diesel, wax to contribute 
effectively to CO2 the emission reduction whilst remaining economically and 
environmentally attractive. It is important to note that selected countries have the potential 
for further optimisation based on NG accessibility.  

Figure 2. Results of variables parameters at selected countries for placing GTL plants. 

Countries in the Gulf cooperation country (GCC) such as Kuwait, KSA, Oman, and UAE 
are located in close proximity implying that a large single GTL plant is sufficient to secure 
the airports with the required feedstock of Jet fuel-GTL. Iran also can be part of this 
supply chain despite possessing a large natural gas field, therefore implying that the list 
of GTL plants can be short listed to four. 

0

2

4

6

8

10

1

10

100

1000

Iran KSA Kuwait Oman Spain UAE UK US

N
um

be
r o

f f
lig

ht
s (

x1
03 )

LN
G

 ($
) a

nd
 R

i

Selected Countries

LNG($) Jet Ratio Number of flights

1489     



 Al-Yaeeshi and Al-Ansari 

4. Conclusion 
The growth of the global aviation sector has increased dramatically in last few decades 
thus inducing significant carbon reduction challenges in the light of stricter regulations.  
Jet fuel-GTL is an optimal alternative for currently utilised Jet fuel produced from 
conventional Oil Refinery. Going forward, the state of Qatar can utilise its long-term LNG 
contracts to begin implementing LNG-to-GTL process. The modelling and analysis 
presented in this paper considers the novelty of LNG-to-GTL technology to secure clean 
refined products especially Jet fuel-GTL at the countries that have received LNG 
shipments, whilst reducing CO2 emissions at both airports and flight routes. The approach 
demonstrates the potential economic and environment benefit for the selected countries 
to locate the GTL plants whilst considering the LNG prices, number of QA flights and 
Jet fuel ratio of proposed GTL plant to the total Jet consumption in the selected countries. 
Future work will consider a techno-economics assessment to locate the plants based on 
the CAPEX, OPEX and economic indicators such as NPV, IRR and PIR for each selected 
country.  
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Abstract 
Poor river water quality as a result of rapid urbanization has led to various disease 
outbreak and destruction of wildlife ecosystem. Although continuous water quality 
monitoring has been proposed as the immediate solution, the complexity and expensive 
nature of such system often offset its purpose. Therefore, numerous studies have been 
made to forecast water quality utilizing different machine learning algorithms. In this 
paper, a comparative study was carried out to develop an efficient water quality index 
(WQI) prediction model based on more attainable monitoring parameters. Three different 
variation of ensemble decision tree models were analysed and compared, namely: 
Random forest regression (RF), extra tree regression (ETR), and decision tree + AdaBoost 
(BTR). These models were coupled with principle component analysis (PCA) and linear 
discriminant analysis (LDA) to reduce the dimensions of the input data. The results show 
that (ETR-LDA) model outperform the other ensemble tree models with an R2 value up 
to 0.88. The ETR-LDA combination consistently score a higher R2 values even when 
trained with a much smaller input dimension (i.e. 3) resulting in a faster training time. 
This model could positively contribute towards the long-term water quality management 
effort in a cost-effective manner. 

Keywords: Water quality index, extra tree regression, linear discriminant analysis. 

1. Introduction 
Water utilized by domestic consumption and food production are primarily sourced from 
the surrounding river. Unfortunately, rapid urbanization and climate change has led to 
significant degradation in water quality which poses serious health risk (Imani et al., 
2012). Poor water quality can give rise to multitude of health diseases such as polio, 
cholera, diarrhea, or typhoid which may directly affects human (Nawaz and Ali, 2018). 
Therefore, it is very important to continuously assess and monitor the river water quality. 
However, water quality measurement requires various biological, physical and chemical 
parameters, whereby some of the parameters are difficult and time consuming to measure. 
In Malaysia, the water quality measurement performed by DOE can be categorized into 
two groups. On site measurement, in which variable such as DO, SS, pH, NH3-NL, Cl, 
Cd, Cr, Zn concentration conductivity, turbidity, and E coli can be easily recorded. 
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Whereas parameters like BOD and COD requires complex laboratory analysis and time 
consuming to calculate (5-7 days for BOD and few hours for COD) (Ahmad et al., 2016). 
The complexity and time constraints of BOD and COD measurements causes a major 
drawback in the overall WQI monitoring process, whereby it is impossible to alert the 
general public of the real-time WQI value. This has led to numerous studies being carried 
out to develop water quality prediction models based on various machine learning 
techniques. Furthermore, the size of water quality dataset fed into the machine learning 
model are often very large that it can cause enormous strain in the prediction model. High 
dimensional data could negatively impact the efficiency of the machine learning model, 
as the computational time increases exponentially with the dimensionality (Fan and Li, 
2006). Therefore, performing dimensionality reduction (DR) is extremely crucial in order 
to improve the efficiency of the machine learning model. Mangai et al. (2020) developed 
a biological oxygen demand (BOD) prediction model coupled with principal component 
analysis (PCA) and correlation-features selection (CFS). Their work shows the two 
dimensionality reduction techniques, PCA and CFS did not compromise the performance 
of the BOD prediction models. In our study, only on-site monitoring parameters were 
utilized as the input features for the WQI prediction model. Three different variations of 
decision-tree based model were analysed and compared, namely random forest regression 
(FR), extra tree regression (ETR) and decision tree regression with AdaBoost (BTR). 
Additionally, principal component analysis (PCA) and linear discriminant analysis 
(LDA) were assessed to reduce the dimensions of the water quality dataset. 

2. Methodology 
2.1. Study Area and Data Collection 

In this study, the data were collected from Malaysia’s Department of Environment (DOE) 
in the span of four years from 2014 to 2018. The historical data represents water quality 
reading from 126 different monitoring sites within two major states in Malaysia namely 
Penang and Perak with an approximate area of around 10,800 km2. The combined dataset 
has 2843 rows for 21 different parameters consisting of 4 location attributes, 3 date and 
time attributes, and 14 water quality attributes. The complete list of the water quality 
parameters can be observed from Table 1. The missing values from the dataset is 
relatively insignificant with highest observable percentage loss at only 1.20 % for WQI 
measurement and less than 1 % for all the other parameters. However, median value 
substitution was still performed to impute the missing values in order to fully utilize all 
2843 rows of data. Out of the three location attributes, the states attributes were selected 
to train the water quality prediction model. As most machine learning algorithms prefers 
to work with numerical attributes, label encoding was performed to convert categorical 
value such as the states attribute to numerical value. 

Table 1: List of input and output features for WQI prediction model. 
 

List of all measured 
parameters 

States, Basin, River, Station No, Days, Months, Years, DO (Dissolved 
Oxygen), BOD (Biochemical Oxygen Demand), COD (Chemical 
Oxygen Demand), SS (Suspended Solids), pH, NH3-NL (Ammoniacal 
Solids), Conductivity, Turbidity, Cl, Cd, Cr, Zn concentration, E coli, 
WQI (water quality index) 

Selected input 
feature 

States, Days, Months, Years, DO, SS, pH, NH3-NL, Conductivity, 
Turbidity, Cl, Cd, Cr, Zn, E coli 
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Selected output 
features 

WQI (Water Quality Index) 

 
Brief analysis on the WQI in each river basin shows that Beruas has the highest median 
WQI values at around 90, which falls under clean region of the Malaysia’s DOE water 
quality classification. The lowest median WQI values could be found in Perai river at 59 
which falls under the polluted level. The rest of the locations falls under the slightly 
polluted range with WQI median values between 60 to 80. 
 
2.2. Water Quality Index (WQI) Calculation 

Water quality index (WQI) which was first introduced by Horton (1965), is a metric that 
represent multiple different weighted water quality parameters into a single numeric 
value. The main purpose of having such metric is to simplify the process of 
communicating water quality assessment to the general public and decision makers. Eq. 
(1) below shows how WQI is calculated by DOE in Malaysia (Mamun et al., 2009): 
 

(1) 

 
Where: SIDO = Sub-index DO (% saturation); SIBOD = Sub-index BOD; SICOD = Sub-
index COD; SIAN = Sub-index NH3-N; SISS = Sub-index SS; SipH = Sub-index pH.  

As can be observed from Table 1, only on-site monitoring parameters that can be easily 
measured were selected as the model input parameters. Therefore, complex parameters 
such as BOD and COD which are time consuming to compute were excluded from the 
list of model input parameters. However, it could be observed from Table 2 that both 
BOD and COD are the third and the fourth most correlated variables towards WQI 
respectively (minus “-” sign depicts negative correlation). Excluding these parameters 
from the WQI model will inevitably affect the prediction performance. However, other 
highly correlated variables such as DO and NH3-NL would help minimize the 
performance impact. 

Table 2: Pearson’s correlation analysis between input parameters against WQI. 

Parameters DO States Days PH Months Years Cd Cr Zn 
Correlation 0.82 0.43 0.27 0.06 0.04 0.03 0.01 -0.07 -0.08 
Parameters Cl Cond Tur SS E. Coli COD BOD NH3-NL  
Correlation -0.10 -0.11 -0.12 -0.14 -0.14 -0.64 -0.64 -0.67  

 
2.3. Dimensionality Reduction 

PCA is a very popular dimensionality reduction techniques, generally it performs a set of 
linear transformation on the original dataset into a smaller number of variables while 
explaining most of the variance. The transformed variables which are also called principal 
components (PC) are sorted in a descending order, whereby PC1 has the largest 
contribution of the explained variance. The equation for principal component is depicted 
as follow (Fahmi et al., 2011): 
 

(2) 
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Where y  is the component score,  z is the component loading, x  is the measured value 
of a variable, m  is the component number, n  is the sample number, and i  is the total 
number of variables.  

On the other hand, LDA optimize the projection by preserving the discriminatory power 
of the dependent variable before transforming it into a lower dimensional space (Delac et 
al., 2005). This could be achieved as LDA seek to minimize the within class variance and 
maximize the between class variance which eventually lead to the greatest class 
discrimination. According to (Ngouna et al., 2020) water quality parameters can be 
divided into two main classes: compliant water quality and non-compliant water quality 
(which depicts water pollution). The between class scatter Sb matrix and within class 
scatter matrix Sw can be computed by eq. (3) and eq. (4) (Rupali et al., 2010): 

 (3) 
 

 (4) 
 

Where C is the number of distinct classes, Mi is the number of training samples in class 
i, ui is the mean vector in class i, Yj is the j th data of the set of samples in class i. 
 
2.4. Prediction Model 

As described in the earlier section, there are three ensemble decision tree-based regression 
models (FR, ETR, and BTR) that were analyzed and compared to predict WQI. Ensemble 
technique simply means that multiple decision trees are combined to improve the 
prediction performance. Two of the most widely known ensemble techniques are bagging 
and boosting. Bagging or bootstrap aggregation is generally performed to reduce the 
variance of the decision tree by generating multiple training dataset in parallel through 
random sampling. Each of the training set would be utilized to train their trees, resulting 
a more robust performance from averaging out the accuracy of all the trees. Boosting on 
the other hand generates series of decision trees sequentially with a goal of reducing the 
overall prediction error (Kotsiantis and Kanellopoulos, 2012). Random forest regression 
model (FR) is an example of decision tree model based on bagging technique. The 
advantages of FR compared to other machine learning models are: Robustness against 
parameters specification, powerful interactions against input variables, and tackling non-
linear properties. ETR is similar to FR, but instead of subsampling the data with 
replacement, it utilizes the entire original dataset. Additionally, rather than selecting the 
optimum splitting point, it opted for randomization. Both FR and ETR compute the final 
prediction result as the average of all the generated decision trees (Geurts at al., 2006). 
BTR on the other hand is based on boosting ensemble technique, by which the decision 
tree is boosted using AdaBoost method. It works by building series of decision tree 
regressors in which larger weight is given to sample with higher degree of errors and vice 
versa. After numerous iterations, the resulting model would have a much lower overall 
prediction error (Drucker and Harris, 1997). The dataset was randomly distributed into 
80 % of training set and 20 % of test validation set. The performance and efficiency of 
the prediction model was assessed by utilizing the R2, root mean square errors (RMSE) 
values, and training speed. 
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3. Results and Discussion 
As shown in Table 3, the WQI prediction models were initially developed and compared 
without performing any dimensionality reduction techniques. The best model accuracy 
could be observed from both ETR and BTR models with an R2 values 0.89 and RMSE 
scores of 4.632 and 4.688 respectively. FR model is not far behind at R2 values of 0.87 
and RMSE scores of 5.053. However, the efficiency of ETR is much better when 
compared to the FR model at 91 % faster training speed. This shows that ETR strategy of 
selecting random splitting point is much more efficient than that of FR. 
 
Table 3: Prediction performance of different WQI prediction models for test dataset. 

Model Dimensions Var FR ETR BTR 
R2 RMSE Speed R2 RMSE Speed R2 RMSE Speed 

Base - 1.00 0.87 5.053 1.3 s 0.89 4.632 91%>FR 
base 0.89 4.688 63%>FR 

base 

Base + 
PCA 

12 0.97 0.82 5.708 4%> FR 
base 0.86 5.151 10%> 

ETR base 0.87 4.921 3%> BTR 
base 

9 0.87 0.80 6.116 11%> 
FR base 0.82 5.780 26%> 

ETR base 0.83 5.672 8%> BTR 
base 

6 0.71 0.80 6.208 53%> 
FR base 0.82 5.856 54%> 

ETR base 0.82 5.819 51%> 
BTR base 

3 0.51 0.78 6.425 145%> 
FR base 0.79 6.323 113%> 

ETR base 0.77 6.570 135%> 
BTR base 

Base + 
LDA 

12 0.99 0.86 5.142 2%> FR 
base 0.88 4.860 10%> 

ETR base 0.88 4.811 1%> BTR 
base 

9 0.98 0.86 5.236 8%> FR 
base 0.87 4.918 31%> 

ETR base 0.87 4.887 5%> BTR 
base 

6 0.97 0.85 5.287 53%> 
FR base 0.87 5.147 62%> 

ETR base 0.86 4.929 43%> 
BTR base 

3 0.95 0.85 5.344 150%> 
FR base 0.85 5.339 127%> 

ETR base 0.85 5.396 129%> 
BTR base 

 
Dimensionality reduction techniques were then performed to reduce the input dataset to 
12, 9, 6, and 3 dimensions. In term of performance and efficiency, LDA reduced model 
consistently surpass that of PCA technique at any dimensional level. This could be 
observed from Table 3, whereby model trained with only 3-dimensional input data could 
still achieve an R2 values of up to 0.85 and RMSE as low as 5.339 compared to that of 
PCA with the highest achievable R2 values at only 0.78. The training speed for LDA 
reduced model is also much faster at up to 150 % faster compared to the respective base 
model without DR technique. This could be due to the fact that LDA has the ability to 
conserve majority of the discriminatory power from the original dataset when projecting 
the data into lower dimensional space, which allow LDA to maintain as much variance 
as possible. From Table 3, it could be observed that even at the lowest dimensional level, 
LDA could still explain 95 % of the variance in the original dataset. Whereas the 
cumulative variance explained by PCA technique dropped to as low as 51 %. Ideally, the 
final combination of prediction model and DR technique would be ETR + LDA (6-
dimensions), where there is acceptable compromise between performance and efficiency 
with an R2 values of 0.87 and 62 % faster training speed than base ETR model. After 
performing hyperparameter-tuning the performance and efficiency were further improved 
with an R2 values of 0.88 and more than double the untuned training speed at 172 % faster 
than base ETR model. 

4. Conclusion 
In this study, three different type of decision tree-based regression model (FR, ETR, and 
BTR) were compared to predict WQI. The results of our study show that each of the 
decision tree model displayed satisfactory performance with R2 values above 0.85 with 
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ETR being the most efficient model at up to 91 % faster training speed than the base FR 
model. Additionally, two dimensionality reduction techniques namely PCA and LDA 
were assessed. After performing hyperparameter-tuning, ETR + LDA (6-dimensions) was 
found to be combination with the best compromise between performance and efficiency 
with R2 values of 0.88 and 172 % faster training speed than base ETR model. By utilizing 
only on-site measurements it is possible to develop a WQI forecasting system that could 
alert the general public almost in real-time. It could potentially be a more effective 
alternative than the existing WQI monitoring system. 
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Abstract
This paper proposes a novel method for synthesis, design and innovation of sustainable
integrated processes that combines water, energy, waste treatment and carbon capture
and utilization (CCU) networks together with the overall objective to minimize carbon
emissions and wastes under uncertainty. Compared to the earlier deterministic method
(Li et al, 2020), in this method, uncertainty of parameters, CCU as well as extended
models for the process, water and energy networks have been systematically addressed
in this work. The applicability of the extended method is demonstrated through a case
study that considers the xylitol production process together with water, energy and CCU
networks. Raw material prices, product prices and demand are considered as stochastic.
The results show that the multi-network synthesis and design method is able to
determine the optimal solution with high economic benefits and zero or low carbon
emission under uncertainty for different scenarios.

Keywords: process synthesis, multi-network optimization, uncertainty, CCU

1. Introduction
Chemical processes convert selected raw materials to desired chemical products, while
requiring also utilities such as water and energy and produce wastes and greenhouse
gases emissions, thereby cause negative environmental impacts. Different sources and
generation processes of water and energy may result in different investment costs,
operating costs, carbon and pollutant chemical emissions as well as the synthesis-design
of the chemical production process. Different processes of waste treatment and carbon
capture and utilization (CCU) may also be used to reduce waste and greenhouse gases
emissions. These problems should also be considered along with the production process.
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Although some publications consider the water utilization, power integration or carbon
capture during the systematic chemical process synthesis and design, the sources of the
water and power have yet to be simultaneously considered. A framework for general
chemical process synthesis that comprehensively considers the overall water and energy
supply, waste and carbon emission is rare. In recent work proposed a framework of
multi-network problem for process synthesis-design integrated with water sub-network
and power generation sub-network (Li et al. 2020). It proves that the multi-network
optimization problem can be used to find a more sustainable alternative with low
emissions and high benefits. However, feasible solutions with zero carbon emission
usually cannot be found. In order to obtain sustainable solution with zero carbon
emission, we introduced a carbon capture and collection network to the multi-network
problem to construct an extended multi-network optimization problem. Also, for the
multi-network integration problem, since the uncertainty of any network will radiate to
other networks, when parameters such as market prices and demands change, the
optimal solution of the original model may perform poorly. To hedge against the
uncertainty (Ning et al., 2019), the MILP model of multi-network optimization problem
is extended to a stochastic mixed integer linear programming (SMILP) model.
Therefore, by setting the discrete distribution of uncertain parameters and solving the
new two-stage stochastic programming model, the sustainable alternatives with the
highest economic expectation and zero emission can be obtained. The applicability of
this extended method is demonstrated through by a realistic conceptual case study.

2. Framework and Modeling
We propose a framework together with modeling methods for integrating process, water
treatment, power generation, and CCU networks to obtain the more sustainable
alternatives with environmental constraints under uncertainty. A brief description of the
systematic framework and associated methods and tools are given below.
2.1. Framework
The framework of integration is shown in Figure 1. The new framework has four
sub-networks: chemical process, energy generation, water treatment, and CCU process.
Chemical process converts raw materials to target product. Power sub-network supplies
energy to all sub-networks. Water sub-network supplies water to other sub-networks.
The carbon dioxide generated by process, power and water sub-networks are captured
and utilized by the CCU sub-network.

Figure 1. The integration framework of four networks.
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2.2. Modeling
A superstructure-based optimization approach is employed to simultaneously synthesize
and design a chemical process coupled with the power generation, water treatment and
CCU sub-networks.
2.2.1. Superstructure
A superstructure is a visual representation to show all the feasible or allowed alternative
routes of a decision-making design problem (Quaglia et al., 2012b). The superstructure
for a process synthesis-design problem consists of columns, nodes, and arrows. They
represent the processing steps, alternative processing techniques (intervals), and
possible processing routes respectively. All sub-networks in Figure 1 will be represented
using this process step-interval network superstructure (Bertran et al., 2017).
2.2.2. Generic interval model
The generic interval model gives the general form of the mathematical model for each
interval to support the mathematical representation of the total network. As illustrated in
Figure 2, the generic interval model has 5 operating units to convert the inlet flows to
the outlet flows: a mixer, a reactor, a carbon emission calculation unit, a waste separator,
and a product separation unit.

Figure 2. Generic interval model for multi-network stochastic programming.

2.2.3. Stochastic programming model
A two-stage stochastic programming approach (Birge et al., 1997) is considered to deal
with the uncertainties of market prices of raw materials and products; and, market
demand of products. The prices of raw materials and products will affect the selection
of processes due to their different conversion and investment. On the other hand, market
demand will affect the equipment scale. Here, the selection of production processing
route and equipment scale (production capacity) are made “here-and-now” prior to the
resolution of uncertainty for each-subnetworks, whereas the production rate of each
sub-networks are made in “wait-and-see” mode after the uncertainties are revealed.

After setting the distribution of uncertain parameters, different scenarios can be 𝑗𝑠
considered. In different scenarios, the general interval model has the following forms:

Mixing 𝑔
𝑖,𝑘,𝑗𝑠
𝑀 =

𝑖𝑖
∑ 𝑓

𝑖𝑖,𝑘
𝐼𝑁 µ

𝑖,𝑖𝑖,𝑘,𝑗𝑠
(1)
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𝑓
𝑖,𝑘,𝑗𝑠
𝑀 = 𝑓

𝑖,𝑘,𝑗𝑠
𝐼𝑁 + 𝑔

𝑖,𝑘,𝑗𝑠
𝑀

(2)

Reaction 𝑓
𝑖,𝑘,𝑗𝑠
𝑅 = 𝑓

𝑖,𝑘,𝑗𝑠
𝑀 + ∑ 𝑓

𝑟𝑒𝑎𝑐𝑡,𝑘,𝑗𝑠
𝑀 θ

𝑟𝑒𝑎𝑐𝑡,𝑟,𝑘
γ

𝑖,𝑟,𝑘
𝑀𝑊

𝑖
/𝑀𝑊

𝑟𝑒𝑎𝑐𝑡
(3)

CO2 separation 𝑔
𝑘,𝑗𝑠

𝐶𝑂
2 = 𝑓

𝑐𝑜
2
,𝑘,𝑗𝑠

𝑅
(4)

Wastes separation 𝑔
𝑖,𝑘,𝑗𝑠
𝑊 = 𝑓

𝑖,𝑘,𝑗𝑠
𝑅 δ

𝑖,𝑘 (5)

𝑓
𝑖,𝑘,𝑗𝑠
𝑊 = 𝑓

𝑖,𝑘,𝑗𝑠
𝑅 − 𝑔

𝑖,𝑘,𝑗𝑠
𝑊

(6)
Product-product
separation 𝑓

𝑖,𝑘,𝑗𝑠
𝑜𝑢𝑡,𝑃 = 𝑓

𝑖,𝑘,𝑗𝑠
𝑊 σ

𝑖,𝑘 (7)

𝑓
𝑖,𝑘,𝑗𝑠
𝑜𝑢𝑡,𝑆 = 𝑓

𝑖,𝑘,𝑗𝑠
𝑊 − 𝑓

𝑖,𝑘,𝑗𝑠
𝑜𝑢𝑡,𝑃

(8)

Utility consumption 𝑔
𝑢𝑡,𝑘,𝑗𝑠
𝑈 =

𝑖
∑ β

𝑢𝑡,𝑘
1 𝑓

𝑖,𝑘,𝑗𝑠
𝐼𝑁 +

𝑖
∑ β

𝑢𝑡,𝑘
2 𝑓

𝑖,𝑘,𝑗𝑠
𝑀 +

𝑖
∑ β

𝑢𝑡,𝑘
3 𝑓

𝑖,𝑘,𝑗𝑠
𝑊 (9)

Production rate 𝑓
𝑖,𝑘,𝑗𝑠
𝑀 ≤ 𝐹

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (10)

The objective function of the multi-network optimization problem is determined as the
expectation of the total economic benefits (Eq.11). is the probability of each𝑃

𝑗𝑠
scenario. In addition, each scenario needs to meet environmental constraints (Eq.12,
Eq.13).

𝑍 =
𝑛=1

4

∑ (𝑃
𝑗𝑠

(𝑆
𝑛,𝑗𝑠
𝑃𝑅𝑂𝐷 − 𝐶

𝑛,𝑗𝑠
𝑅𝐴𝑊 − 𝐶

𝑛,𝑗𝑠
𝐶 − 𝐶

𝑛,𝑗𝑠
𝐸 − 𝐶

𝑛,𝑗𝑠
𝐻 − 𝐶

𝑛,𝑗𝑠
𝑤𝑎𝑡𝑒𝑟) − 𝐶

𝑛
𝐶𝐴𝑃/τ) (11)

𝑘
𝑛

∑ 𝑔
𝑘𝑛,𝑗𝑠

𝐶𝑂
2≤𝐶𝑂𝑁𝑆

𝑐𝑜
2

(12)

𝑖
𝑛

∑
𝑘

𝑛

∑ 𝑔
𝑖

𝑛
,𝑘

𝑛
,𝑗𝑠

𝑊 − 𝑅𝑒𝑐
𝑗𝑠

≤𝐶𝑂𝑁𝑆
𝑤𝑎𝑠𝑡𝑒

(13)

According to the above method, the SMINLP model of the multi-network optimization
problem can be formulated and then simplified into the SMILP model through big-M
method and capital piecewise linearization. Similar solution steps (Li et al. 2020) has
been followed to obtain the optimal solution.

3. Case Study
3.1. Problem definition
The production of xylitol is considered as an illustrative example in this work. The raw
material is corncob. Market price of corncob and xylitol, and market demand of xylitol
are set as uncertain parameters. In this case, the multi-network optimization problem
aims to find sustainable solutions with zero carbon emission, zero waste water emission
and highest expected economic benefits.
3.2. Superstructure representation
The sub-networks of xylitol production, water treatment and power generation in this
case follow the superstructure of previous work (Li et al. 2020). CCU sub-network is
adapted from the case study of carbon dioxide utilization (Bertran et al. 2017). The
superstructure of multi-network problem in this case is shown in Figure 3. The nodes
(intervals) in each sub-network are set up using generic interval model.
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3.3. Uncertain parameters distribution
Based on the market data collected in China, low, medium and high forecasts for prices
of corncob and xylitol, and demands of xylitol are set as uncertain parameter values.
The discrete distributions of uncertain parameters are listed in Table 1. Based on this
distribution, 27 scenarios are generated.

Table 1. distributions of uncertain parameters.
Uncertain Parameters Value Unit Probability

Price of corncob 97.5, 105, 112.5 $/t 0.30, 0.40, 0.30
Price of xylitol

Demand of xylitol
3900, 4200, 4500 $/t 0.30, 0.40, 0.30

10000, 12000, 14000 t/y 0.25, 0.5, 0.25

Figure 3. Superstructure representation of multi-network problem. a. Chemical process.
b-1. Water plant. b-2. Waste water treatment. c-1. Electricity generation. c-2. Heat

generation. d. Carbon capture and utilization.

3.4. Uncertain parameters distribution
After setting the uncertain parameter distribution, the SMILP model of multi-network
optimization is established and solved simultaneously using the CPLEX optimizer. This
model features 9,923,224 continuous variables, 10,178,711 equations and 381 binary
variables whereas the deterministic model features 368,406 continuous variables and
378,062 equations. The optimal solution is obtained after 21186 iterations with 357 s
CPU times. The results of the optimal routes are shown in Figure 4.

Synthesis and Design of Sustainable Integrated Process, Water Treatment, 
Energy Supply Networks and Carbon Utilization Networks Under Uncertainty
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Figure 4. Result of optimal routes.

The optimal solution selects catalytic hydrogenation process to produce xylitol after
hydrochloric acid hydrolysis. All waste water is deep purified and recycled. All carbon
dioxide is captured by chemical absorption method and used to produce DMC. The
optimal solution selects wind power and uses coal to produce steam. The mathematical
results of the optimal solution and listed in Table 2.

Table 2. mathematical results of the optimal solution.
Term Scenario Value Unit

Expected economic benefit - 9,542,886 $/y
Investment - 172,892,655 $

Output 1-9 10,000 t/y
10-18 12,000
19-27 14,000

CO2 capture 1-9 511,995 t/y
10-18 614,394
19-27 716,793

Steam consumption 1-9 853,325 t/y
10-18 1,023,990
19-27 1,194,655

Electricity consumption 1-9 172,566,400 kwh/y
10-18 207,079,700
19-27 241,593,000

Water consumption 1-9 2,341,356 t/y
10-18 2,809,628
19-27 3,277,899

Carbon emission - 0 t/y
Waste emission - 0 t/y

The results show that, in the face of market demand and price uncertainties, the
multi-network stochastic programming model can help to obtain the optimal processing
routes, equipment scale, and production rate for different scenarios with the highest
economic benefit expectation. With the addition of the carbon capture and utilization
sub-network, a comprehensive sustainable plan with zero carbon emissions can be
obtained. However, in order to achieve zero carbon emissions, the scale of the CCU
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sub-network is very large and leads to more investment, energy consumption and water
consumptions, indicating the need for considering CCSU.

4. Case Study
An extended framework for integrating process, water treatment, power generation, and
CCU networks has been proposed to obtain more sustainable alternatives with zero
emission. In order to obtain the optimal solution under uncertainty, the stochastic
programming of multi-network optimization problem has been implemented. The
associated new methods are successfully applied to a multi-network problem of xylitol
production under uncertainty and a sustainable optimal solution has been obtained.
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Abstract
Rapid population growth has led to an increase in the demand for energy, water and
food resources utilisation which results in environmental impacts and contributes to
resource depletion. Therefore, it is necessary to design networks using various tools
such as process integration and optimisation approaches, which have been applied to
Energy-Water-Food (EWF) nexus studies. The main objective of the study is to design a
systematic approach to capture the trade-offs between the economic and environmental
metrics of sustainable design with industrial parks. It presents a novel superstructure
and mathematical optimisation model that captures the synergies within EWF nexus
considering interplants. Moreover, novel to this study, is the exergetic approach, which
has not been previously applied to EWF nexus studies within industrial parks. The
proposed nexus superstructure is applied to an eco-industrial park including wastewater
treatment units, desalination plant, agricultural sub-systems, and a biomass gasification
process for the recycling of biomass waste. The case study includes water-energy
sources and sinks for chemical plants such as ammonia/urea and GTL processes in the
State of Qatar which are simulated using the “what’sBest” Mixed-Integer Global Solver
for Microsoft Excel by LINDO Systems Inc. Different cases with multiple optimisation
objectives are evaluated in order to capture the trade-offs between the economic and
environmental emission. Different indicators are used to assess the system resource
efficiency such as exergy efficiency and global warming potential (GWP). The main
focus is on capturing the synergic potential from utilising biomass from within the food
sector and producing the syngas which decreases the natural gas consumption in other
systems. Results of the study demonstrate clear benefits of water integration and
biomass utilisation and contribute to the reduction of resource consumption. In the best
scenario, the system demonstrates an 18 % reduction in the global warming potential,
while the total annual cost of the design is increased by almost 9 %. The exergy
efficiency of the system is enhanced reaching 53 %. 

Keywords: Biomass, Wastewater, EWF Nexus, Optimisation, Integration.
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1. Introduction

The growth in the global population affects consumption of energy, water, and food
(EWF) resources. It has been estimated that the agriculture requires an increase of
approximately 70 % in order to meet the population demand (Karan et al., 2018).
Furthermore, the agriculture system consumes 70 % of the total global freshwater
extraction, whilst food production accounts for nearly 30 % of the total energy
consumed worldwide. Incidentally, there are significant interlinkages amongst EWF
sectors, known as the ‘nexus’. The integration and optimisation of the EWF nexus can
lead to lower resource consumption and a more sustainable industry. Multiple studies
have been conducted around the EWF nexus concept, for instance, a discussion on the
decision making tools (Namany et al., 2019); a study based on a life cycle assessment
(Al-Ansari et al., 2015); risk assessment studies within geospatial applications applied
to food sectors (Haji et al., 2020); and studies on biofuels production (Alherbawi et al.,
2020). The objective of this study is to apply the EWF nexus concept to the optimisaiton
of industrial parks to support the transformation towards eco-industrial parks (EIP). The
exchange of resources and wastes amongst various plants as advocated by industrial
ecology can enhance the overall system efficiency. The majority of studies in this regard
have focused on inter-plants integration, whilst others have adopted an intra-plants
approach considering the integration of individual sectors such as energy and water.
Lovelady and El-Halwagi developed a mathematical optimisation formulation to
integrate the wastewater among number of plants (Lovelady and El-Halwagi, 2009).
Alnouri et al. generated a water superstructure considering the direct and indirect water
reuse for an EIP (Alnouri et al., 2014), where an optimisation model was developed to
solve for the most cost effective and global optimum solution. In the concept of heat
integration, different linear and non-linear programming models are proposed
intra-plant and inter-plant (Nair et al., 2018). The energy-water integration is well
studied within the EIP. Fouladi and Linke (2018) proposed an optimisation based model
for a representative superstructure considering desalination, wastewater treatment, and
cooling systems, and captures the trade-offs between the economic and environmental
dimensions of the problem. Furthermore, Ghazouani et al. formulated a new
optimisation model to integrate the mass and heat contents for multiple number of
plants. Therefore, as mentioned previously, the concept of EIP within the EWF nexus
needs to be further studied in order to explore the synergies between the two concepts
which both aim to conserve resources. As such, the main objective of this study, is to
generate and optimise a representative superstructure of EWF nexus which contributes
towards the design of eco-industrial parks. A systematic approach is developed to
search for the optimum design depending on economic and environmental objectives.

2. Network superstructure
In order to start the EWF nexus representation, a superstructure developed previously is
used. The system boundaries are defined and sub systems are added to capture all the
linkages between different sectors. In this work, some of the main sub-systems are
considered in each sector, in which their integration and optimisation result in
significant changes. The water sector consists of treatment units, desalination plants,
and production units. Energy is considered to be in the form of a combined heat and
power system, whilst the food sector includes the production of fertilisers and
agriculture activities, all of which are connected to one another on a water-energy
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sources-sinks basis. Figure 1 illustrates the systems and sub-systems of the proposed
superstructure for the EWF nexus for a single plant.

Figure 1: EWF Nexus representation systems and sub-systems

Moreover, Figure 2 captures the linkages among different sources and sinks.

Figure 2: EWF Nexus with biomass utilization

An optimisation formulation is developed using network equalities (mass and energy
balances), and inequalities (capacities, flow rates, and purities). The water network
formulation is the expansion of an existing work (Alnouri et al., 2014). The
“what’sBest” Mixed-Integer Global Solver for Microsoft Excel by LINDO Systems Inc
is used to identify the global optimum solution of the network. The main objective of
the problem is to minimise the total annual cost of the network as follows:

Minimize: C(freshwater)+C(Treatment Units)+C(Fuel)+C(Biomass Utilisation)
Subject to:

g(x,y) <0   Inequality constraints  purities, flowrates, capacities
h(x,y) = 0  Equality constraints  mass balances, energy balances
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Variables: x (continuous), y (integer)

Figure 3: Modeling Procedures

Figure 3 illustrates the modelling procedures for the work which is all in terms of
energy and water sources and sinks. Furthermore, to compare different scenarios and to
support decision makers, a sustainability weighted return on investment metric
(SWEOIM) developed by El-Halwagi (2017) is calculated using indicators such as
energy, water, and waste reductions.

3. Results and discussion

A case study including two plants (GTL and Ammonia) with selected contaminants of
TDS and TSS is solved to assess the proposed approach of EWF nexus. Water sources
and sinks flowrates are taken from Aspen HYSYS results. HYSIS is a chemical process
simulator which formulates the process mathematically. An air-stream gasification
model developed previously to generate syngas is used for biomass utilisation scenarios
(AlNouss et al., 2018).

Table 1: Simulation input data.

Flow rates (t/d) GTL Ammonia
Wastewater produced 9500 20000
Process water requirement 1625 31150

Four different cases are simulated and solved representing scenarios without any
integration, with water integration, with water/biomass integration, and finally
considering environmental objectives. In the first three cases, the optimisation objective
minimises the cost, whilst in the final case the objective considers the minimisation of
the environmental emissions. Table 2 summarises the main results from the optimisation
solver.

Table 2: Results for the four selected cases.

Cases Case 1
No
Integration

Case 2
Water
Integration

Case 3
Water-Biomass
Integration

Case 4
Environmental
Integration

Total Treated
Water

0 19855 19855 19855

Total Annual
Cost (M$/year)

566 553 553 606
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GWP
(kg CO2 eq/year)

2.98E+10 2.98E+10 2.98E+10 2.43E+10

As illustrated from the results; the water network remains the same after case 1, which
illustrates that wastewater treatment is chosen in both economic and environmental
objective functions. The results in case 3 remains as case 2, which indicates that the
biomass integration has been not selected as the optimum solution. For this reason, in
the last case the objective function is changed. It can be noticed that the total annual
cost is increased by approximately 9 %, while the global warming potential is decreased
by 18%. The GWP remains constant until the final scenario since the energy integration
is considered there by adding the sub-system which represents biomass utilisation.

Table 3 illustrates the exergy efficiency calculated for each optimisation case. It
demonstrates that the exergy efficiency has the maximum value of 53 % with the
biomass utilisation option and integrated wastewater sources.

Table 3: Exergy efficiency comparison for cases

Cases Case 1 Case 2 Case 3 Case 4

Exergy Efficiency (%) 36.3 37 37 53

Moreover, to compare the cases and to select the most sustainable option, the SWROIM
is calculated as illustrated in Table 3 below. Three different sustainability indicators are
used; energy footprint, water footprint, and food waste footprint. The weighting factor
for each indicator is varied in different scenarios to identify the best performing
solution. As it is illustrated in Table 4, the findings demonstrate that for all indicators
with different weighting factors, case 4 is selected as it has the largest SWROIM values.
Table 4: SWROIM results.

Case 1 Case 2 Case 3 Case 4

SWROIM (%) (equal weights) 29 40 40 42.69
SWROIM (%) (0.5 water, 0.25 others) 31 53 53 54
SWROIM (%) (0.5 food, 0.25 others) 24 29 29 37
SWROIM (%) (0.5 energy, 0.25 others) 32 37 37 38

4. Conclusion

There are significant interactions amongst the EWF sectors which can be integrated to
minimise consumption of resources. This study is novel as it considers an EWF Nexus
approach within eco-industrial parks. It emphasizes on biomass utilization to capture the
synergetic potential of integration of the EWF nexus concept with sustainability
dimensions as applied to industrial parks. A case study to demonstrate this is developed
accordingly and is evaluated from both economic and environmental perspectives.
Evidently, biomass utilisation is an expensive process, however it can improve the
environmental performance significantly. Finally, a sustainability metric is used to
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compare different cases and to support decision makers in identifying the most
sustainable configuration. As such, the results illustrate the significance of biomass
utilisation as it enhances the exergy efficiency reaching 53 %. Generally, this work
demonstrates the significance of the EWF nexus and its contribution towards resource
management. The next goal is to study the seasonal effect on the optimised network and
do some sensitivity analysis on different parameters. Moreover, adding more plants into
the industrial park can also results in more significant outcomes where the pareto front
curves are useful to capture the trade-offs between the economic and environmental
dimensions.
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Abstract 
Wastewater treatment plants (WWTPs) are one of the world's largest municipal-level 
electricity users. Understanding the structure of the energy cost of WWTP is a challenge 
for planners, and its calculation could result in substantial saving capacity and cost 
estimation. The wastewater contains various organic materials, and the purpose of 
WWTP is to process these parameters to the appropriate parameter level. These input 
parameters are related to the demand for electricity but are challenging to model. The 
study utilizes some of the advanced machine learning models trained on real-world data 
to predict the energy consumptions of WWTPs. Four machine learning algorithms were 
leveraged on the available dataset to identify the model of best fit. The models' 
performance is evaluated based on standard metrics of mean absolute error (MAE), and 
root mean square error (RMSE). It shows that GRU is the model of best fit and is 
recommended for further future analysis. 

Keywords: Wastewater treatment; Machine Learning; Data-Driven; Energy 
Consumption 

1. Introduction 
Wastewater treatment plants (WWTPs) may require about 1% to 3% of a country's total 
electrical energy output. Over 20% of public utilities' electrical energy consumption by 
municipalities is necessary for their operation (Capodaglio and Olsson, 2020). The energy 
requirements of water treatment and supply processes depend upon factors including the 
contamination of the water, water quality, geographical conditions, technology, and age 
of the industrial setup (Jian et al., 2014).  
Energy is consumed at all levels of treating wastewater and is considered as a principal 
contributor to WWTPs expenses; to drive the influent pump, aerated grit chamber in the 
primary process, providing air in aeration process of biological treatment. Stillwell et al. 
(2010) stated that energy efficiency measures and treatment process modifications might 
reduce their energy cost. Machine learning applications are widely explored in recent 
years to carry out operations related to WWTPs.  Guo et al. (2015) presented the study to 
predict effluent concentration in a WWTP using machine learning models.  Li et al. 
(2019) used a radial basis function (RBF) neural network to forecast energy consumption. 
In this study, machine learning algorithms are employed to estimate the energy 
consumptions from historical data. It is considered that the efficiency of WWTP is 
influenced by inflow loads, chemical oxygen demand (COD), and total nitrogen (TN). 
The available data set is trained using regression algorithms: support vector machines 
(SVM), artificial neural network (ANN), long-short term memory (LSTM), and gated 
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recurrent network (GRU). Further, error analysis has been performed to select the model 
with a minimum error corresponding to the data's best fitting. This study aims to find the 
best fitting model to estimate the approximate energy requirement for the process. This 
study assists the planner to intelligently select and utilize ML algorithms using the 
historical data of the influencing factors that can precisely model and estimate the energy 
consumption of WWTP given the influencing features. 

2. Problem statement and data description 
Given a set of historical data adapted from Li et al. (2019), each data point comprises 
influencing factors (inflow rate, COD removal, and TN removal) along with their 
subsequent energy consumption. A total of 360 data points are available over a period of 
one year. The influencing factors are the input parameters and energy consumption as an 
output parameter to develop and train the model.  
The presented study's objective is to estimate energy targets using various ML regression 
algorithms using available historical data. These models were then compared to predict 
the best model to fit the model's data better. 

3. Methodology development using machine learning algorithms  
The proposed methodology uses a comparative approach among four machine learning 
algorithms. It compares them on standard metrics to conclude the algorithm that can best 
predict the data coming from WWTPs. 
The input to RNN, LSTM, and GRU needs to be a 3D vector, typically consisting of the 
batch size, time steps, and features. Therefore, the data is segmented into a window size 
of 15 with three input features. The rolling window approach was utilized for this purpose. 
The input features were then normalized to get them within a definite range of values, 
enabling better training of the proposed models. After the datasets' preprocessing was 
completed, they were then divided into training sets (70%) and test sets(30%). The 
training datasets were used to develop the energy consumption models, and the test 
datasets were used to assess the accuracy and robustness of the developed models. The 
output predicted by the model was compared with that of the actual output on standard 
metrics of MSE and RMSE. The model that scores the least error in both the metrics was 
concluded to be the model of best fit. A graphical description of the proposed framework 
is provided in figure 1, and the machine learning models used are described in the 
following subsections. 

 
Figure 1. Proposed framework flow chart 

3.1 Feedforward Neural Network Model 
The Feedforward neural network is one of the simplest types of ANN devised. The 
information flows in the forward direction through the input layer of several hidden layers 
and a final layer of output nodes. The neurons are interconnected by weights, which form 
probability-weighted associations between input and output. The network trains itself by 
computing differences between the processed output by the network and the actual target 
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output. The network then adjusts the weights associated with each connection according 
to a set learning rate and the error values. After many such successive adjustments as the 
network loops over each time in the ANN, this way tends to produce outputs that are 
increasingly similar to the target output (results). The output from the jth node of an ANN 
is given by Eq. (1). Here 𝑂  is the output vector, 𝜎 is the activation function, 𝑤  are the 
weight vectors and 𝑥  is the output vector from the previous layer 𝑂 =  𝜎( 𝑤 𝑥 ) (1) 

For this study, an ANN with two hidden layers and one output node has been used.  
3.2 Recurrent Neural Network Model 
Recurrent Neural Networks (RNNs) are an extension of the typical Feed Forward Neural 
Networks described above, using their internal state to process variable-length input 
sequences. The RNN handles variable-length sequences by having a recurrent hidden 
state whose activation at each time is dependent on the previous time. At a given time-
step, each non-input unit calculates its current activation (output) as the nonlinear function 
of the weighted sum of all the activations of all the connected units (Lipton et al., 2015 ). 
For a given sequence X = (x1,x2, ...xn), the RNN will have activations  𝑎 And may 
optionally have an output Y = (y1, y2 …. yn), which may again be of variable length. 
Typically the activation and output of the recurrent hidden state are given by Eqs. (2) and 
(3). Where 𝑊 ,𝑊  are weight metrics and W  is the memory of the RNN that it has 
been maintaining from the previous layers.   𝑎  =   𝑔 ( 𝑊  𝑎 + 𝑊 𝑥 + 𝑏 ) (2)  𝑦  =   𝑔 ( 𝑊  𝑎 + 𝑏 ) (3) 

This study uses a model with two bidirectional RNNs and one layer of simple RNN fed 
to a dense network of five hidden layers through an attention layer.  
3.3 Long Short-Term Memory Model 
The Long-Short Term Memory (LSTM) structure was motivated by an analysis of error 
flow in existing RNNs, which found that long time lags were inaccessible to existing 
architectures because the backpropagated errors either blows up or decays exponentially. 
Unlike the recurrent unit, which computes a weighted sum of the input signal and applies 
a nonlinear function, each jth LSTM unit maintains a memory 𝑐  at time t. The output 𝑎  , 
or the activation of the LSTM unit is then given by Eq. (4),  𝑎  =  𝜏  𝑡𝑎𝑛ℎ 𝑐  (4) 

The memory cell 𝑐 is updated by partially forgetting the existing memory and adding a 
new memory content 𝑐 , as shown in Eq. (5), 𝑐 =  𝑓 𝑐 +  𝑖 𝑐′  (5) 

where the new memory content is given by, 𝑐′ =  𝑡𝑎𝑛ℎ(𝑊 𝑎 , 𝑥 + 𝑏 ) (6) 

The extent to which the existing memory is forgotten is modulated by a forget gate 𝑓  
And the degree to which the new memory content is added to the memory cell is 
modulated by an input gate 𝑖  . Thus unlike the traditional RNN, which over-writes its 
content at each step, an LSTM can regulate whether to keep the existing memory via the 
introduction of the gates, hence potentially capturing the long-term dependencies 
(Gravesa and Schmidhubera, 2005).  
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This research considers a model with two bidirectional LSTM layers and one layer of 
unidirectional LSTM, the output of which is fed to a dense network of five hidden layers.  
3.4 Gated Recurrent Unit Model 
A gated recurrent unit (GRU) was proposed by Cho et al. (2014) to make each recurrent 
unit adaptively capture dependencies of different time scales. GRU is similar to the 
LSTM, but it lacks the output gate and hence has fewer parameters. The activation  a of 
the GRU at time t is a linear interpolation between the previous activation  a  and 
the candidate activation  a′ , given by Eq. (7), where an update gate 𝜏  decides how 
much the unit updates its activation or content.   a = ( 1 − 𝜏 ) a + 𝜏 a′  (7) 

The update gate is computed by Eq .(8), as, 𝜏 =  𝜎(𝑊 𝑐 , 𝑥 + 𝑏 ) (8) 

The reset gate is computed similarly to the update gate. This procedure of taking a linear 
sum between the existing state and the newly computed state is similar to the LSTM unit. 
The GRU, however, does not have any mechanism to control the degree to which its state 
is exposed but exposes the whole state each time. GRUs approximately maintain a similar 
performance and has fewer parameters that can help suppress overfitting.  
The GRU for this study uses two bidirectional GRU layers and a unidirectional GRU 
layer passed on to a dense network with one hidden layer. 

4. Results and Discussions 
This study considers the influencing factors of inflow load, COD, and TN removal as 
feature vectors for predicting the energy consumption of the WWTP. Pearson's coefficient 
is calculated between the influencing factors and energy consumption is depicted in Table 
1. It can be observed from the results that all the influencing factors display the least 
correlation with the target vector. This limits the developed models' performance and is 
considered a persistent problem in the data-driven approaches to model WWTP 
parameters. The table also lists the statistical details of the influencing factors and energy 
consumption. 
Table 1. Details of the dataset preprocessing 

 Pearson's 
Coefficient 

Mean Standard 
Deviation 

Min Max 

Energy consumption NA 22279.12 1884.362 5.39 9.52 
Inflow load 0.391 7.642 0.624 16749 26913 
COD removal 0.324 15.128 7.969 3.24 52.2 
TN removal 0.385 1.856 0.543 0.52 3.42 

The training process is carried out using ML algorithms with the training data. Each of 
the models' accuracy and robustness was then tested with the training data on standard 
metrics like MAE and RMSE. The model that yielded the least value of both the MAE 
and RMSE metrics was declared the model of best fit. Table 2 lists out the values that 
each of the models recorded when compared to the standard metrics. 
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The ANN model recorded the maximum MAE error of 0.77 results in the input data's 
poor fitting. Improved results are obtained with RNN, LSTM, and GRU models with 
MAE errors of 0.54, 0.54, 0.43, respectively. A similar trend is observed with RMSE 
errors presenting the edge they possess in modelling sequence data. The MAE error was 
reduced by 33% and RMSE error by 22% by changing the model architecture from the 
ANN layer to GRU layers. Analogous to the error values used to compare different 
models, Figure 2. represents the plot of energy consumption with the number of days. It 
compares energy predicted by the regression models trained in this study against the 
actual energy consumption by the WWTP. Figure 2(d) shows that the GRU model 
architecture could accurately predict the energy consumption of the WWTP as it fits the 
original energy consumption curve quite accurately. A lower precision of fitting is 
observed in the plots for the other ML models. 

 
Figure 2. Energy predictions against actual energy consumption by the WWTP using (a) 
ANN, (b) RNN, (c) LSTM, (d) GRU  

It can be seen from this study that all the sequence models (RNN, LSTM, and GRU) 
record a better performance from ANNs; this is because of the architecture of the 
sequence models that allows them to remember previous inputs while predicting the 
current ones. In RNN, it is difficult for it to learn to preserve the information over many 
timestamps due to vanishing gradient, which in turn affects the updated weights. Due to 
this, the network does not learn the effect of earlier input. GRU helps overcome this 
problem by the inclusion of update and reset gates in its architecture, where each gate has 
its weights and biases. This enables a better prediction of the target variable and achieves 
better accuracy than RNN.  
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The GRU model records the least error values on both metrics. Still, there is a noticeable 
difference between the output predicted by the model of best fit with that of the actual 
data. This difference can be reduced by using better quality data. However, it is 
challenging to model such data because of its increased non-linearity. Hence, an MAE 
error of 0.43 is acceptable even in the best fit model. Also, an increased number of 
available data would help in improving the accuracy of the models. 

5. Conclusion 
The energy consumption of a WWTP is a complex function and is influenced by several 
factors. In this paper, machine learning algorithms were used to create a suitable model 
that could predict the energy consumption of WWTPs. Historical data affecting energy 
consumption was taken into consideration for developing four different models. 
Developed models were compared based on MAE and RMSE  for predicting energy 
consumption. GRU architecture gave the best results with the lowest error when tested 
on the entire dataset. The dataset's size and the data's complex characteristics became a 
significant hindrance in achieving greater accuracy. More parameters can be explored in 
future work, affecting energy consumption to predict outputs more accurately with a more 
extensive and well-correlated dataset. Also, significant developments in the model 
architecture, in terms of an ensemble model with a combination of ANNs, convolutional 
neural networks, and sequence models, will be explored as future research. 
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Abstract 
With the objective to obtain more sustainable production processes, the biorefinery 
network is integrated with traditional pulp and paper industries. A systematic framework 
with computer-aided tools consisting of synthesis, design and innovation stages has been 
applied to determine the biorefinery-integrated pulping process. An integrated network 
of succinic acid production and black liquor gasification for dimethyl ether (DME) 
production linked to an existing Soda pulping process is identified as the best option for 
increased profit, which also reduces pollutant emissions through integration of innovative 
CO2 capture and utilization (CCU) steps to form the biorefinery-integrated-Soda-pulping 
network (BIS). This paper aims at also designing a sustainable biorefinery-integrated-
Kraft-pulping network (BIK). Three integration scenarios are considered for further 
study: (I) the production of gasification-based dimethyl ether (DME); (II) the co-
production of DME and succinic acid (SA); and (III) the co-production of DME and SA 
coupled with CCU. The best scenario is found to be Scenario II, which exhibits the best 
economic performance with 74% increase in profit compared to the conventional process. 
Scenario III achieves the highest energy efficiency at 39% and improved environmental 
performance, a 65% reduction of CO2 emission compared to the conventional process, 
with only 0.7% profit reduction. The BIK option shows improved performance in terms 
of economic and environmental improvements compared to the BIS network, confirming 
that the integrated biorefinery network can transform the conventional Kraft pulping 
process to a more sustainable process with increased profit. 
 
Keywords: Biorefinery network, Process synthesis and design, Pulp and paper industries, 
Systematic framework with computer-aided tool 
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1. Introduction 
The existing infrastructure, logistics system and know-how of mature pulp and paper 
industry provide a great opportunity to commercialize the multiple-product network of 
biorefinery by transformation of low profitability of traditional pulping processes. Ekbom 
et al. (2006) studied the black liquor gasification (BLG) to produce different 
transportation fuels. Dimethyl ether (DME) production has the highest efficiency of fuel 
energy output per unit of product. Moreover, the BLG-based biofuels and chemicals 
production in a Kraft pulping process can provide significant economic returns (Larson 
et al., 2006). Fornell et al., (2013) proposed an integrated kraft pulping process-
biorefinery producing both ethanol and DME. Their results point to a feasible but 
electricity deficit system. The carbon capture is suggested but has not been considered in 
their study. 
In an earlier work, Mongkhonsiri et al., (2018), applied a superstructure-based process 
synthesis to define an optimal network of a biorefinery integrated with an existing pulp 
mill. They also performed a scenario-based sensitivity analysis to study the effect of 
product price and uncertainty. Based on the generated superstructure, the network of 
integrated succinic acid production (SA) and black liquor gasification based dimethyl 
ether production (BLG-DME) were identified to have excellent potential for improved 
profitability. As further work (Mongkhonsiri et al., 2020), the biorefinery integrated-Soda 
pulping network (BIS) was designed and evaluated in terms of energy, economics and 
environmental impacts. The results show that the BIS improves both economic and 
environmental aspects. Moreover, a CO2 capture and utilization unit (CCU) step was 
included to further reduce the environmental impact.  
This paper aims to design and evaluate the biorefinery-Kraft pulping network (BIK) 
where biochemical, biofuel and bioenergy productions are combined with an existing 
Kraft pulping process. The integrated network is rigorously simulated. Moreover, the 
Integrated network is designed for energy self-sufficiency by utilizing biomass residues 
for steam and electricity generation. The process performance is evaluated in terms of 
energy, economics, and environmental impacts. The integration of two conventional 
processes with a Tomlinson recovery boiler and a Black-Liquor-Gasification-Combined 
cycle (BLGCC) have been used for comparison. The CCU design is also applied in the 
BIK network. Three scenarios, which are extended versions of those studied previously 
(Mongkhonsiri et al.,2020) compare different types of pulping processes. 

2. Methodology 
2.1. Process Design 
Material flows for the designed network is illustrated in Figure 1. The biorefinery network 
includes SA, DME, and BGCC processes. The design aims for an energy self-sufficient 
network. Energy consumption in a Kraft pulping process is considered to provide the 
biomass fuel required in the BGCC operation. For this work, feedstocks for the BIK 
network are assumed to have different composition compared to the studied BIS network, 
which provides higher pulp yield and more BL’s organic compound but less biomass fuel. 
The performances of the networks are discussed in section 3: results and discussion. 
2.2. Process evaluation 
Process performance is evaluated in terms of economic aspects, energy consumption and 
environmental impacts, based on the rigorous simulations. The operation period is 
assumed to be 8,330 h/y and the eucalyptus feed rate is 100 kt/y. The indicator for an 
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economic efficiency is the annual profit estimated from operating and capital costs based 
on 25 years of project lifetime. The capital cost includes only the new installation of 
integrated biorefinery process without the costs for the existing Kraft pulping facility. 
The environment impacts are evaluated by net emissions of pollutants: CO2, SOx, NOx 
and PM10. The net gas emissions consider gas emissions from the processes estimated 
by emission factors (Larson et al., 2006) and the potential of gas reduction by the biomass 
utilization, the fossil-based products replacement, the diesel replacement by DME, the 
petroleum-based succinic acid and the fossil-based electricity generation based on the 
national grid of Thailand. Three different scenarios are considered. 
Scenario I: Integration of the gasification-based DME production - This scenario 
considers only the integration of the BLG, the DME production and the biomass fuel 
utilization. Since the production of succinic acid was excluded; the unbleached pulp 
product was usually sold for paper making. 
Scenario II: Integration of the DME and SA - This scenario includes the production of 
succinic acid (SA) from the unbleached pulp, together with the integrated network from 
Scenario I. The energy consumption of SA is included in the energy requirements. 
Scenario III: Integration of innovative CCU - This scenario includes the CCU as part of 
the integrated network from Scenario II. CO2 is captured from the flue gas by an existing 
Rectisol process without additional installation costs. CO2 is utilized for methanol 
synthesis by the integrated CO2 hydrogenation process. The performance of the methanol 
synthesis process has already been evaluated in terms of economic and environmental 
impacts by Frauzem (2017). The produced methanol is then supplied to the DME 
synthesis process; 30 ktons per year more of DME is acquired by the additional CO2-
utilized methanol fed to the DME synthesis process. 

3. Results and Discussion 
3.1. Economic performance 
The results of the economic assessment are reported in Table 1. The BIK network in 
Scenarios I, II and III point to profit over the conventional Kraft pulping process by 6, 
40, 39 Million US dollars, respectively. Moreover, the excess power available in all 
integrated network scenarios provide additional income from the sale of electricity; as 
well as reduction of petroleum-based dependency. The integration of DME and SA 
processes (Scenarios II and III) do highly promote profitability of the existing Kraft 
pulping process. The CCU included in Scenario III decreases the profit by around 600 
thousand US dollars per year or 1.1% compared to Scenario II. Although the integrated 
network in Scenario I yields half of the profit of Scenarios II and III, it still improves the 

 
Figure 1. Material flow of integrated biorefinery-Kraft pulping network. 
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profit over the conventional Tomlinson boiler and BLGCC processes. Although capital 
cost of CO2-utilized methanol production process and operating cost is increased by CCU 
(scenario III) comparing to scenario II, CO2 capture and DME production process is an 
existing process for BLG-DME process. Compared to stand-alone process of CO2 
utilization, the integrated network of DME production from BL gasification and CO2 
utilization could reduce capital and operating costs. 
3.2. Environmental impacts 
The environmental impacts of the BIK network are calculated in terms of net pollutants: 
CO2, SOx, NOx and PM10 emissions, reported in Table 2. The integrated DME and SA 
networks in Scenario II and the innovative CCU integration network in Scenario III 
discharge CO2 and other pollutants by around 2 times more than Scenario I. Note that the 
conventional scenarios because of succinic acid production demands higher energy. Due 
to CCU integration, Scenario III achieves the highest net CO2 emission reduction 
potential, thereby improving the potential of net CO2 reduction by about 20% compared 
to BLGCC and 140% compared to Scenario II. Both Scenarios II and III with the 
integrated SA process can significantly reduce emissions of other pollutants due to the 
larger bio-based power generation replacing fossil-based fuel. Although, Scenario I has a 
smaller potential to reduce the net CO2 than the BLGCC, it still could potentially lessen 
the total emissions of other pollutants with the produced DME substituting the use of 
diesel fuel. The net emissions of pollutants emissions for all scenarios of the BIK network 
are negative, indicating that the pollutions will be reduced in the global scale. 
3.3. Comparison with the integrated biorefinery-Soda pulping network 
The Soda pulping process has been previously considered as the receptor of the 
biorefinery-integrated network (Mongkhonsiri et al., 2020). The performance criteria of 
the BIK (Scenario I, II, III) and the BIS (Scenario IS, IIS, IIIS) networks are reported in 
Table 3. As can be seen from these results, the biorefinery concept is applicable to both 
types of pulping technology with comparable enhancement of the economic performance. 

Table 1. Economic evaluation of integrated biorefinery scenarios. 

Info/Process Unit Scenario I Scenario 
II 

Scenario 
III Tomlinson BLGCC 

Raw material cost 
Eucalyptus wood ton/y 100,000 100,000 100,000 100,000 100,000 
Wood cost $/y 2,900,000 2,900,000 2,900,000 2,900,000 2,900,000 
Purchased hog fuel ton/y 42,500 102,500 102,500 - - 
Hog fuel cost $/year 977,500 2,357,500 2,357,500 - - 
Natural gas boost MMBtu/y - - - - 15,100 
Natural gas cost $/y - - - - 30,653 
Total raw material cost $/y 3,877,500 5,257,500 5,257,500 2,900,000 2,931,653 

Biochemical products sale 
Pulp  ton/y 39,510 - - 39,510 39,510 
Pulp sale $/y 21,493,440 - - 21,493,440 21,493,440 
DME ton/y 5,920 5,920 27,500 - - 
DME sale $/y 4,025,600 4,025,600 18,700,000 - - 
Succinic acid ton/y - 17,800 17,800 - - 
Succinic acid sale $/y - 53,400,000 53,400,000 - - 
Total product income $/y 25,519,040 57,425,600 72,100,000 21,493,440 21,493,440 

Power income/cost 
Power production MWh 88,000 185,000 185,000 20,600 63,800 
Power use MWh 82,200 115,000 143,000 61,200 65,000 
Power export/import a MWh 5,800 70,000 42,000 -40,600 -1,200 
Power sale/buy $/y 580,000 7,000,000 4,200,000 -4,060,000 -120,000 
Capital cost $/y 908,000 1,950,000 2,340,000 154,676 272,797 
Operating cost $/y 908,000 3,150,000 15,270,000 154,676 272,797 

Profit $/y 20,405,540 54,068,100 53,432,500 14,223,440 17,896,787 
a Negative value means power deficit and the power from other sources is required 

1520



More biomass utilization in BIK leads to more reduction of CO2 and pollutants because 
it provides bio-based production and energy by replacing the fossil-based products. A 
reduction of 30% in the net CO2 emission is observed in Scenario II compared to Scenario 
IIS and 4% observed in Scenario III compared to Scenario IIIS. Regarding integrated CO2 
utilization, Scenario III and IIIS can reduce the net CO2 and other pollutants together with 
a drop in profit. However, Scenario IIIS shows higher profit than Scenario III because of 
higher DME production. In Scenario III, the higher sulfur content in the syngas is due to 
Na2S (used as Kraft-pulping chemical), which causes a lower flow rate of the pure CO2 
stream captured for CO2 utilization, but the amount of DME is less than in Scenario IIIS 
despite more CO2 emission. Although scenarios with integrated CCU in BIK and BIS 
shows profit drop, it could point to more benefit if a carbon tax is considered. 

4. Conclusion 
The biorefinery-integrated networks with pulping processes have been studied and 
compared with conventional stand-alone pulping processes. They point to more 
sustainable alternatives and enhance the biorefinery concept. Extension of the biorefinery 
concept has been successfully achieved through integration with the Kraft-pulping 
process. The integrated biorefinery-Kraft pulping process shows great potential for 
transformation of the conventional pulping process into a more sustainable biorefinery 
system with higher profitability, less fossil fuel dependence and less environmental 
impacts. Based on the results of this work, the biorefinery-integrated Kraft-pulping 
network has been found to be superior to the biorefinery-integrated Soda-pulping network 
in terms of economic and environmental impact considerations due to larger 
environmentally friendly activities. As extension of this work, it is suggested that energy 
and water integration be considered to further optimize and gain benefit in economics and 

Table 2 Environmental impact indicated by net CO2, SOx, NOx and PM10 

Info/Process Unit Scenario I Scenario II Scenario III Tomlinson BLGCC 
CO2 Emission 

Process CO2 emission ton/y 158,000 350,000 289,000 47,900 63,200 
CO2 from power import ton/y 0 0 0 33,300 938 
Total CO2 emission ton/y 158,000 350,000 289,000 81,200 64,138 

Air Pollutants Emission 
Total SOx emission ton/y 35.1 77.2 77.2 149 5.2 
Total NOx emission ton/y 41 90.3 90.3 50.8 34.4 
Total PM10 emission ton/y 3.07 6.76 6.76 45.05 4.51 

CO2 Reduction 
Grid power production 
replacement  ton/y 72,200 151,000 151,000 16,900 52,300 

Diesel replacement by DME ton/y 3,320 3,320 6,150 - - 
Petro-based SA replacement ton/y - 33,600 33,600 - - 
Biomass consumption ton/y 147,000 209,000 209,000 103,000 103,000 
Total CO2 reduction ton/y 222,520 396,920 399,750 119,900 155,300 

Air Pollutants Reduction 
Total SOx reduction ton/y 354 693 732 72.2 224 
Total NOx reduction ton/y 143 184 274 8.77 27.2 
Total PM10 reduction  ton/y 87.9 172 181 17.9 55.4 

Net CO2 (Emission – Reduction) 
Net CO2 a ton/y -64,520 -46,920 -110,750 -38,700 -91,162 

Net Air Pollutants (Emission – Reduction) 
Net SOx a ton/y -318.9 -615.8 -654.6 76.8 -218.8 
Net NOx a ton/y -102 -93.7 -183.7 42.03 7.2 
Net PM10a ton/y -84.83 -165.24 -174.24 27.15 -50.89 

a Negative value means the consumption of CO2 in the process 
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environmental impacts. If considered, carbon tax could improve the profit margin of 
integrated CO2 capture and utilization processes. 
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Scenario I Scenario 
II 

Scenario 
III 

Scenario 
IS 

Scenario 
IIS 

Scenario 
IIIS 

Raw material ton/y 100,000 100,000 100,000 100,000 100,000 100,000  
$/y 2,900,000 2,900,000 2,900,000 2,300,000 2,300,000 2,300,000 

Biomass fuel ton/y 42,500 102,500 102,500 0 59,200 59,200  
$/y 977,500 2,357,500 2,357,500 0 1,360,000 1,360,000 

Pulp ton/y 39,510 - - 30,700 - -  
$/y 21,493,440 - - 9,220,000 - - 

DME ton/y 5,920 5,920 27,500 5,350 5,350 31,900  
$/y 4,025,600 4,025,600 18,700,000 3,640,000 3,640,000 21,700,000 

Succinic acid  ton/y - 17,800 17,800 - 14,700 14,700  
$/y - 53,400,000 53,400,000 - 44,400,000 44,400,000 

Power a MWh 5,800 70,000 42,000 -3,240 83,100 56,700  
$/y 580,000 7,000,000 4,200,000 -453,000 11,600,000 7,940,000 

Capital & 
operating cost $/y 1,816,000 5,100,000 17,620,000 975,000 4,024,000 18,880,000 

Profit $/y 20,400,000 54,100,000 53,400,000 9,300,000 52,000,000 51,200,000 
Net CO2 b ton/y -64,500 -46,900 -111,000 -61,300 -33,200 -107,000 
Net SOx b ton/y -319 -615 -654 -185 -561 -609 
Net NOx b ton/y -102 -93.7 -184 -101 -96.9 -207 
Net PM10 b ton/y -84.8 -165 -174 -124 -150 -161 

a Negative value means power deficit and the power from other sources is required 
b Negative value means the consumption of CO2 in the process 
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Abstract
PEM is a mature technology to produce hydrogen using fluctuated renewable energy,
but still utilization of oxygen from PEM has potential to integrate with reforming
process. In this study, we proposed biogas autothermal reforming integrated with PEM
and oxygen liquefaction system, to achieve continuous production of green hydrogen.
The optimization is conducted to evaluate specific energy consumption. Conclusively,
the proposed system produces green hydrogen of nominal 5596.7kmol/h in PEM section
and constant 964.6kmol/h in ATR section based on fluctuated energy source.

Keywords: reforming, continuous operation, liquid oxygen storage, electrolysis,
performance analysis

1. Main Text
Hydrogen is a promising energy source which has three times more heat than that of
gasoline. Both electrolysis and reforming technologies could be considered as
representative routes for hydrogen production. Integrating with renewable energy
sources like wind, solar energy and biomaterial can make hydrogen close to complete
clean fuel, the so–called “green hydrogen”.
In electrolysis, three different types of technology are studied for integrating with
Renewable energy sources: alkaline electrolysis (AEL), polymer electrolyte membranes
(PEM), and solid oxide electrolysis (SOEC). Of the technologies, PEM has fastest cold
start time of seconds, and dynamic adjustment of operation load is possible. It has fast
degradation and cost - ineffective as drawback, still it can be directly operated based on
fluctuated renewable energy source, and most studies have been focused on operating
PEM with renewable energy source. Clarke et al. (2010) proposed stand-alone
electrolyser system consisted of PEM, hydrogen storage tank and renewable energy
generator. In Barbir et al. (2005) study, grid independent and grid assisted PEM
operation is compared conclusion revealed that PEM can be directly coupled with
fluctuated energy source. However, in terms of economic feasibility, hydrogen
production with PEM have potential to be integrated with other hydrogen production
technologies as oxygen supplier.
Autothermal reforming (ATR), which is consisted of partial oxidation and steam
reforming (SMR), requires oxygen supplier for hydrogen production, still its
thermoneutral reaction is advantage compared with SMR required additional heat
supply. In Timo et al. (2017), ATR combined with SMR has 27.7% more exergetic
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efficiency than that of the SMR. Main source of inefficiency is at furnace of SMR
which supplies heat and emits flue gas.
In this study, we proposed biogas ATR plant integrated with PEM and liquid oxygen
storage plant (ATR-PEMLO) to produce hydrogen. ATR section in the proposed system
is required to be operate steadily because of high operating temperature and pressure. To
accomplish continuous oxygen supply from PEM to ATR, liquid oxygen production
process in the proposed system acts as buffer from fluctuated renewable energy sources.

2. Process description
ATR-PEMLO system is comprised of three processes: (i) PEM stack operated by direct
renewable energy source, (ii) cryogenic oxygen liquefaction system and liquid oxygen
storage tank, (iii) ATR operated with biogas and oxygen continuously supplied from
section (ii). Cold energy recovery in section (ii) and (iii) is accomplished by
multi-stream heat exchanger (MSHE). Matlab R2017b is used to simulated PEM stack
with governing equation of water electrolysis, and Aspen HYSYS V9.0 is used to
simulate proposed system. Table 1 lists operating assumptions for the proposed system
referred from Meng et al. (2008) for PEM, Sciacovelli et al. (2017) for cryogenic
oxygen liquefaction system and conventional reforming operating range.

Figure 1. Schematic diagram of ATR-PEMLO system

Table 1. Operating assumption of ATR-PEMLO system
PEM current density 6000 A/ m2

Thickness of the electrolyte membrane 50μm

PEM operating condition 80°C, 1bar

Compressor isentropic efficiency 85%

Turbine isentropic efficiency 85%

Cryogenic turbine isentropic efficiency 70%

Minimum temperature approach in MSHE 5°C
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Minimum temperature approach in heat exchanger (HEX) 10°C

Liquid oxygen storage pressure range 1 to 18bar

Pressure range of reforming operation 7 to 10bar

Temperature range of feed in reformer 100 to 500°C

Carbon to oxygen (C/O) ratio range 1 to 3

Steam to carbon (S/C) ratio range 1 to 3

2.1. PEM modeling
During the water electrolysis operation, required power and heat can be determined by
electro-chemical model.
𝐸

𝑃𝐸𝑀
= 𝐽𝑉

(1)
𝑉 = 𝑉

𝑜
+ η

𝑎𝑐𝑡,𝑎
+ η

𝑎𝑐𝑡,𝑐
+ η

𝑜ℎ𝑚
(2)
where is the reversible potential determined by Nernst equation; , are𝑉

𝑜
η

𝑎𝑐𝑡
 η

𝑜ℎ𝑚
activation overpotential of electrode, and ohmic overpotential of electrolyte,
respectively.
In constant current density, activation overpotential can be calculated from Butler –
Volmer equation expressed as;
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where is current density; is exchange current density; is the pre-exponential𝐽 𝐽

𝑜,𝑖
𝐽

𝑖
𝑟𝑒𝑓

factor; is the activation energy.𝐸
𝑎𝑐𝑡,𝑖

Heat supplied to PEM is calculated as;
𝑄

𝑃𝐸𝑀
= 𝐽

2𝐹 [𝑇∆𝑆 − 2𝐹 η
𝑎𝑐𝑡, 𝑎

+ η
𝑎𝑐𝑡, 𝑐

+ η
𝑜ℎ𝑚( )]

(5)
Where is entropy increment of water electrolysis, and second term represents heat∆𝑆
generation by irreversibility.
2.2. Cryogenic oxygen liquefaction process
Oxygen produced from PEM is sent to liquefaction section to store it as a liquid form.
Heat recovery in two-stage compressor is conducted by pumped water with two HEXs.
Thus, it enhances energy efficiency and heated water utilizes as feed in ATR section.
After compressing, modified claude process is involved to liquify oxygen by renewable
energy as electricity form. Two cryogenic turbines during MSHE produce cold energy

renewable energy
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and remained cold energy is recycled to MSHE for complete liquefaction. Stored
oxygen is continuously supplied to ATR section.

Figure 2. Cryogenic oxygen liquefaction process.

2.3. Biogas ATR process
ATR section is operated by cold energy stored in oxygen liquefaction section. High
pressure liquid oxygen is vaporized by heat exchange with biogas and enters two-stage
direct expand (DE) to meet operating condition of ATR. After reforming, high
temperature product stream is decreased under 350℃ for forward WGS reaction. This
also means that thermal exergy of product stream can effectively heat turbine inlet
temperature of DE process. Both cold energy utilization to biogas and DE process
enables the system as complete standalone process. After purification, produced
hydrogen is sent to storage facility with hydrogen from PEM section.

Figure 3. Biogas ATR process

3. Optimization of the proposed ATR-PEMLO system
To enhance energy efficiency of proposed system, the objective function is defined as
specific power consumption with design variables as following equation.

(6)
𝑃

𝑡𝑜𝑡𝑎𝑙

𝑚
𝐻

2
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where 𝑋 = (γ
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In the above variable set, is compression ratio, and is stream split ratio inγ
𝑐𝑜𝑚𝑝

χ
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liquefaction section, respectively; are inlet temperature of first and second𝑇
𝑐𝑟𝑦𝑜1
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cryogenic turbine, and and is storage temperature and pressure of liquid𝑇
𝐿𝑂

2

𝑃
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

oxygen.; is carbon to oxygen ratio, is steam to carbon ratio, and feed stream𝐶
𝑂

𝑆
𝐶

composition is determined by these variables; and are operating pressure and𝑃
𝐴𝑇𝑅

𝑇
𝐴𝑇𝑅

temperature of ATR.
Subsequently, constraints determined by operating range in Table 1 as follows:
(1) The minimum temperature approach value of all MSHE should be higher than 5.0℃.
∆𝑇

𝑚𝑖𝑛, 𝑀𝑆𝐻𝐸
> 5. 0℃

(7)
(2) The minimum temperature approach value of all HEX should be higher than 10.0℃.
∆𝑇

𝑚𝑖𝑛, 𝐻𝐸𝑋
> 5. 0℃

(8)
(3) The vapor fraction of the oxygen stream after MSHE should be lower than 1.
𝑓

𝑣𝑎𝑝, 𝑂
2

< 1. 0

(9)
(4) Because of safe operating range of oxygen storage tank and ATR, the temperature
and pressure of corresponding unit should be placed in a specific range. Furthermore,
S/C and C/O is also restricted in this study. Table 1 illustrated the constraints.

4. Result and discussion
For the optimization, fmincon in matlab which finds constrained mimimum of function
with constraints and interior- point algorithm is used to determine optimized variables.
To evaluate objective function and constraints, HYSYS and matlab is linked during
optimization procedure. Table 2 indicates the optimization results. In liquefaction
section, 341.7kmol/h of liquid oxygen is stored with cold energy by consumption of
renewable energy of 183.9kJ/mol. As a result of integration, ATR section is operated as
standalone system because of power generation from DE process and utilization of cold
energy from stored liquid oxygen.

Table 2. Optimization results for ATR-PEMLO system
Specific energy consumption for liquid oxygen 183.9kJ/mol

Liquid oxygen storage pressure and temperature 1000kPa,
-153.6°C

Liquid oxygen production rate 341.7kmol/h

Hydrogen production in PEM 5596.7kmol/h

Specific energy consumption for ATR section -1.8kJ/mol

C/O ratio 1.51

Optimization of biogas autothermal reforming integrated with PEM based on
renewable energy
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S/C ratio 2.53

Operating pressure and temperature 788kPa, 961°C

Hydrogen production in ATR 964.6kmol/h

5. Conclusions
A novel concept of continuous oxygen feed and cold energy using renewable energy,
ATR-PEMLO system, is proposed in this study. To enhance the performance of
hydrogen production, the independent variables in the entire system are optimized. As a
result, ATR -PEMLO system shows 182.1kJ/mol specific energy consumption which is
substantially low value compare to existing hydrogen production plant. Furthermore, the
proposed system has advantage because direct coupling with renewable energy source is
available without requirement of other facility to maintain energy source. By use of the
proposed system, oxygen as byproduct of PEM can be effectively utilized as reforming
agent. In conclusion, this study would contribute to efficient green hydrogen production
from fluctuated renewable energy sources without additional energy input.
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Abstract 
In recent years, electricity demand has been increasing, according to the International 
Energy Agency, the energy sector is the biggest producer of greenhouse gas emissions 
(CO2), having terrible environmental consequences. Various alternatives have been 
sought to reduce CO2 emissions, highlighting the implementation of CO2 capture and 
storage plants. In this work, it is shown an environmental and energetic analysis of a CO2 
capture plant coupled to a power plant. The analysis considered two different operating 
cases with different fuels in the power plant each case: biogas, coal, non- associated gas, 
and associated gas. The first one considers a constant fuel feed flow in the power plant. 
The second one, considers a constant energy demand. The results indicate that, for the 
first case, the fuel with the lowest environmental impact was the non-associated gas with 
2.14 kEcopoints and 1083 MJ per kg of CO2 recovered. For a constant energy demand, 
the fuel with the lowest environmental impact was the biogas with 0.57 kEcopoints and 
193 MJ per kg of CO2 recovered. For the systems here considered, those processes 
working with associated and non-associated gases remain the most efficient in terms of 
net energy produced. 
 
Keywords: CO2 Capture plant, biogas, coal, non- associated gas, associated gas. 

1. Introduction 
CO2 is produced by diverse processes including the combustion of fossil fuels to produce 
electricity. According to the International Energy Agency, the 62% of the energy 
produced globally is obtained from burning fossil fuels, of which 27% comes from 
burning coal and 35% from burning natural gases such as: biogas, non-associated gas, 
and associated gas (IEA, 2019). In this way, electricity production is considered an 
unsustainable process according to the green chemistry principles and circular economy. 
However, current policies in both developed and developing countries still consider fossil 
fuel-based energies as the main source of energy. Several solutions have been sought to 
reduce CO2 emissions, focusing on the implementation of CO2 Capture and Storage plants 
(CCS) with post-combustion technology as the best alternative due to its high efficiency 
and easy implementation to existing power plants. During the capture, there are some 
technical aspects related to the process design and operation, for example, ensure enough 
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CO2 capture, low energy requirements, low operating cost and low environmental load. 
Equally, the solvent selection for the CO2 absorption, as well the required solvent gas 
ratio plays an important role on the process design. Pointing alkanolamines as a good 
solvent due to its high effectiveness, CO2 capture also depends on the fuel used for 
electricity generation, because the flue gas composition greatly varies (Nagy, T. et al., 
2013). Due to the growth of sustainability, green chemistry, and circular economy on the 
field of design and optimization processes, there is a clear need to analyze traditional 
processes. Even more the fossil fuel-based energies processes, focusing on the case of 
CO2 capture plant coupled to power plant which it has been not reported yet. In this way, 
the intuitive benefit of CO2 capture and reuse is apparently not so clear, and an analysis 
needs to be done in a critical and systematized manner.  
In the present work, the environmental and energetic impact of coupling a CO2 capture 
plant to power plant was analyzed according to an environmental perspective. Evaluating 
not only the possibility of reducing CO2 emissions, but also turning electricity production 
in a sustainable process in accordance with the principles of green chemistry. It is 
important to highlight the environmental challenges involved to couple a CO2 capture 
plant to a power plant. So, there are no work in the literature addressing the 
implementation of a CO2 capture plant to a power plant from the perspective evaluated in 
this work. For the analysis made in this work, the use of four different fuels in the power 
plant was considered. Two operating scenarios were considered; in the first, the same fuel 
feed flow for all the plants and in the second, the same energy demand was specified. The 
design and simulation of the process plants were developed using the ASPEN Plus 
simulator, while the LCA was carried out with SimaPro software. 

2. Study Cases and Methodology 
In this work, two different scenarios of power generation plants coupled to a post-
combustion CO2 capture process are presented to analyze the environmental impact. The 
first case presents a constant fuel feed flow of 1 000 kmol/h and the second one presents 
a constant energy demand of 145 MW, each case was analyzed with the most used fossil 
fuels for power plants: biogas, coal, non-associated gas (NAG) and associated gas (AG). 
In both cases, for the simulation of the power plant coupled to a CO2 capture plant the 
ASPEN PLUS process simulator is used (see Figure 1).  

 
Figure 1. Representation of a thermoelectric power plant and the CO2 capture plant in 
post-combustion using chemical absorption with monoethanolamine 
 
For the power plant, the Peng-Robinson method is used to model the thermodynamic 
properties involved (Hasan, M. F. et al., 2012). For modeling the combustion chamber, it 
was considered the Gibbs free energy minimization by using a RGibbs block reactor. As 
operation specification it was considered a molar ratio of air to the fuel of 30: 1 with 
excess air ensuring complete combustion of each fuel and a pressure of 8 atm (Luyben, 
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2013). In first case the fuel feed flow it assigned to 1000kmol/h and for the second case 
the fuel feed flow was adjusted to achieve an energy production of 145 MW. For the 
simulation of the power plant the composition of the feed fuels was established as shown 
in Table 1. 
 
Table 1. Flue composition in molar fraction 

  CH4 C2H6 C3H8 i-C4H10 N2 CO2 
NAG 0.98 9E-3 1E-3 4E-4 4E-3 3E-3 
AG 0.93 0.026 0.017 0.01 0.017 - 
Biogas 0.8 - - - 0.015 0.185 
 C H O N S 
Coal 0.51 0.41 0.066 7E-3 4E-3 

 
The flue gases obtained in the combustion were used as the feed flow to the absorption 
tower in the CO2 capture plant. It was considered a chemical absorption using as solvent 
an aqueous solution of monoethanolamine (MEA) 30 % weight (Nagy, T., 2013). For 
modeling the absorption and regenerator columns it was considered the MESH equations 
by using a RadFrac equilibrium stage block. The reactions involved in the CO2 capture 
involve the dissociation of the components involved in the absorption reaction, it is 
necessary to use a regenerator column to achieve high CO2 recovery. For the regenerator 
column, the distillate flow and the reflux ratio were manipulated to achieve the biggest 
amount of CO2 obtained in the combustion and thus reduce CO2 emissions. For this 
reason, all the cases analyzed were standardized to a purity of 99 mol% CO2 and a 
recovery of at least 95% of the CO2 produced during the combustion. As a first step of 
the methodology applied, an optimization technique is employed to obtain the best design 
conditions for each case proposed in this work, then a LCA was made to the optimal 
design obtained in each case to analyze the environmental impact. 
 
2.1. Optimization Methodology 
For the optimization process, it was employed the stochastic optimization method of 
Differential Evolution with Tabu List (DETL) having as objective function the 
minimization of the energy requirement in the reboiler duty. The minimization of this 
objective was subject to the required recoveries and purities as is shown in Eq. 1.   

𝑀𝑖𝑛	(𝑄) = 𝑓(𝑁+,, 𝑁+., 𝑁/,, 𝑁/., 𝑅,, 𝑅., 𝐹,, 𝐹., 𝐷,, 𝐷.	)	                                (1) 
Subject to: 
 𝑦455555⃗ 	 ≥ 	𝑥455555⃗  
𝑧455555⃗ 	 ≥ 	𝑤4555555⃗  

Where NT are total number of column stages, NR is the feed stage in column, R is the 
reflux ratio, F is the distillate/bottoms flux, and D is the column diameter. Where A and 
R represent the variables corresponding to the absorber and regenerator, respectively. 
Even though conventionally the diameter is calculated according to sizing equations, the 
main reason to consider the diameter as a decision variable lays on the fact of promoting 
a well hydraulic behavior. Eventually, the calculated diameter provokes flooding effects 
on the simulations which further may slightly influence the concentration profiles and the 
total mass balance. The multi-objective minimization considered 10 continuous and 
discrete variables. The optimization problem is subject to restrictions, the first restriction 
established is to achieve high CO2 recovery, for this purpose 𝑦4"""""⃗  represents the vector of 
CO2 gases flow recovered in kg/h at the regenerator column, while 𝑥455555⃗  represents 95 % 
of the flue gases fed to the capture section. The second restriction states that the 
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optimization problem is limited to ensuring CO2 with a purity of 99 % molar, so 𝑧455555⃗   
represents the CO2 purity in molar fraction at the exit of the regenerator column and 𝑤4555555⃗  
represents a purity of 99 % molar fraction. The DETL method have shown being robust 
to optimize intensified separation systems. Srinivas & Rangaiah, (2013) showed that the 
use of some concepts of the metaheuristic tabu could improve the performance of 
differential evolution algorithm. The DETL algorithm is summarized in four steps: 
1)Initialization, 2)Mutation, 3)Crossover and 4)Selection as is shown is Figure 2. The 
implementation of this optimization was made using a hybrid platform where the DETL 
method was coded in Microsoft Excel (ME). Initially, the method proposes a vector which 
is sent to Aspen Plus by means of dynamic data exchange (DDE). In there the separation 
process was rigorously simulated. For the optimization of process routes analyzed in this 
study, the following parameters for DETL method were used: 200 individuals, 500 
generations, a tabu list of 50% of total individuals, a tabu radius of 0.0000025, 0.80 and 
0.6 for crossover and mutation fractions, respectively. 
  
2.2. Life Cycle Assessment  
One the optimal designs for each case were obtained it was applied a Life Cycle 
Assessment (LCA) to evaluate the environmental impact. According to ISO 14040, LCA 
has 4 phases: goal and scope definition, inventory analysis, impact assessment and 
interpretation. In the first one, the products to be studied shall be clearly defined in terms 
of the function that the product performs. The second, inventory analysis, involves data 
collection and calculation procedures to quantify the consumption of energy, raw 
material, air emissions, water discharges and solid wastes. The next phase is impact 
assessment, where the results of the inventory analysis are added up into environmental 
impacts using common equivalent units; for example, burning a fuel in a given process 
can be associated with effects on the impact category of global warming, which are 
measured by kilograms of CO2 equivalent. The fourth phase of an LCA is interpretation, 
where the results obtained should be analyzed to establish understandable 
recommendations and decision arguments. 

3. Results 
In this section are presented the results of the two study cases. As mentioned earlier, the 
composition of the flue gases strongly depends on the type of fuel used during the 
combustion.  
 
Table 2. Flue gas composition in molar fraction 

 Case 1 – Fuel feed flow 1 000 kmol/h Case 2 – Energy Demand 145 MW 
 Biogas Coal NAG AG Biogas Coal NAG AG 
N2 0.767 0.786 0.767 0.766 0.749 0.781 0.765 0.766 
O2 0.168 0.189 0.144 0.139 0.135 0.162 0.139 0.139 
CO2 0.029 0.024 0.030 0.034 0.052 0.053 0.033 0.034 
H2O 0.035 0.002 0.059 0.062 0.064 0.004 0.064 0.062 

 
Table 2 shows how the composition of the flue gases changes according to the fuel used 
during combustion. It is possible to observe that the CO2 concentration increases in case 
two, where a specific energy demand must be achieved. This behavior can be explained 
as to achieve energy demand it is necessary to make an adjustment in the fuel flow. In 
case 1 the lower CO2 concentration is obtained when coal is burned while the highest is 
obtained when Natural gases are burned. For case 2 is the opposite, the lower CO2 
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concentration is obtained when natural gases are burned while the highest is obtained 
when coal is burned. These variations will have a direct influence on the capture 
effectiveness, energy requirements, amount of solvent as well as the CO2 recovery (Nagy, 
T., 2013). Table 3 shows how CO2 variations affect directly on operation conditions as 
the optimum ratios of solvent to flue gas (L/G), solvent to CO2 recovered (L/CO2 REC), 
reboiler duty to CO2 recovered (QR/CO2 REC), Net Energy per CO2 recovered (EPP/CO2 

REC) and environmental impact per CO2 recovered (EI/CO2 REC). In Case 1, it is needed 
more solvent to recover CO2 in the capture process when CO2 is obtained from coal, 
moreover when CO2 is obtained from natural gasses the solvent to CO2 recovery decrees. 
This behavior is consistent with the predicted from Table 2, as coal is the fuel with the 
lowest amount of CO2 in case 1 will require more solvent during the capture and natural 
gasses will require less amount of solvent for CO2 recovery. This trend changes in case 
2, as coal and biogas are burned flue gases have a higher CO2 concentration. This will 
require less solvent for CO2 recovery. Moreover, reboiler duty in the regenerator column 
highly depends on the L/G ratio. In case 1 it is also coal the fuel that needs a higher energy 
requirement for the capture and natural gasses the fuels that require less energy. These 
results changed in Case 2, as the CO2 concentration from burning coal increases, 
effectiveness also increase. The solvent and energy requirement involved in the capture 
decreases. For the net energy of the process per CO2 recovered, in both cases the higher 
energy yield is when associated and non-associated gases are burned. Due to it is not an 
autonomous process, energy demand could be reduced, integrating heat from the 
combustion with the energy requirements of the regeneration column. 
 
Table 3. Optimal operation conditions for both scenarios 
 Case 1 – Fuel feed flow 1 000 kmol/h Case 2 – Energy Demand 145 MW 

 Biog
as Coal NAG AG Biogas Coal NAG AG 

L/G [kg/kg] 0.58 0.94 0.68 0.71 1.02 0.598 0.67 0.705 
L/CO2 REC 

[kg/kg] 13.93 27.68 15.50 13.77 13.52 7.812 13.84 13.773 

QR/CO2 REC 

[GJ/t CO2] 3.09 5.30 3.65 3.02 3.69 2.950 3.21 3.017 

EPP /CO2 REC 

[MJ/kg] 285 279 1083 990 193 311 1035 988 

EI /CO2 REC 

[Ecopoint/kg] 4.11 354.2 4.25 9.14 0.22 2.34 4.45 4.96 

 
The LCA analysis was conducted to evaluate the environmental impact during the 
generation of electricity, as well as the energetic and environmental implications of 
coupling a CO2 capture process. As is shown in Figure 3, for case 1, the fuel with the 
lowest environmental impact is the non-associated gas with 2.14 kEcopoints. This can be 
explained as in this scenario, the non-associated gas is the fuel with the highest CO2 
concentration, improving capture efficiency. Also, is the one that requires less solvent 
and less energy for capture. These factors have a direct impact on environmental analysis. 
lso, it is possible to see from Table 3 that the non-associated gas and the biogas are the 
fuels that have the lower environmental impact per kilogram of CO2 recovered. For the 
case 2, the fuel with the lowest environmental impact is the biogas, with a score of 0.57 
kEcopoints. In this case even though coal has better CO2 capture, it is observed from the 
environmental analysis which is the fuel with the worst environmental indicators. 

Integration of CO2 capture to power plants: the effect of fuel and gas 
configuration composition in process 
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Figure 2. DETL methodology  Figure 3. Environmental impact in kEcopoint. 

a) Best results for case 1, b) Best results for 
case 2 

4. Conclusions 
The implementation of the CO2 capture process in power plants has been considered the 
most mature technology to reduce flue gas emissions associated to electricity production. 
Although capture plants help to reduce the environmental footprint of CO2. However, 
before implementation it is necessary to make an analysis of the environmental 
implications that arise from the implementation, use of solvents and energy consumption. 
From the results obtained it can be concluded that the type of fuel and feed flow for power 
generation is a high weight variable during the capture process, impacting directly on 
solvent and energy requirements. As CO2 concentration increases; CO2 recovery and 
capture efficiency increases, so less solvent and energy requirements will be required 
during the capture process. Despite of the efforts in this field related to the efficiency of 
the capture process, it is essential to analyze the process considering not only the CO2 
capture as a strategy to reduce the negative effects of the power plant, but also by 
identifying new environmental effects due to the implementation of such capture process.  
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Abstract 
Renewables can be used to supply the energy required for flexible CO2 capture from 
fossil-fueled power plants, which in turn can act as an indirect energy storage to counter 
the intermittency of renewable energy. To that end, we propose a simultaneous design 
and operation scheme for the integration of renewables with dynamically varied flexible 
CO2 capture connected to a fossil power plant. We develop a mixed integer linear program 
(MILP) to determine investment decisions for the integrated system in face of its high 
capital cost and the spatio-temporal variability of renewables. We also formulate a two-
stage solution strategy to solve the resulting large-scale model by decoupling the design 
and time-dependent operational decisions. This framework is demonstrated through a 
nationwide case-study on coal power plants across the US. 
 
Keywords: Clean Energy, Renewable Integration, Simultaneous Design and Operation. 

1. Main Text 
There is a significant push to adopt carbon-neutral energy sources to fulfill rising global 
energy demands. Although renewable energy is an inherently emission-free energy 
source, its intermittency and non-dispatchability pose several challenges in integration 
with electricity grids. To maintain grid reliability, cost-intensive infrastructure 
modifications are required including the installation of large-scale energy storage and 
increased cycling operations of fossil power plants. On the other hand, CO2 capture and 
storage (CCS) can potentially reduce emissions from fossil power plants (Hasan et al., 
2012); however, the high energy requirement for CO2 capture, which can be 25–40% of 
the power plant output, restricts its widespread use. Renewables and CCS are different 
pathways for clean energy, and their limitations are traditionally addressed independently 
of each other leading to conservative integration costs and limited operational flexibility 
(Mac Dowell and Shah, 2014).  
 
In this work, we propose that the synergy between the two technologies can be leveraged 
to counter their individual challenges. To this end, we evaluate the potential of a power 
generation system that integrates a coal power plant, a solar PV, a wind farm and a post-
combustion CO2 capture unit (Figure 1). The system delivers electricity to the grid using 
either fossil fuels, renewables, or a combination of both. The exhaust flue gas from the 
coal unit is directed to the capture system for CO2 separation using a solvent-based 
absorption process. Steam is required to regenerate the solvent and can be extracted from 

 http://dx.doi.org/10.1016/B978-0-323-88506-5.50237-0

PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.



 M. S. Zantye et al.  

  

the steam turbines of the coal plant or using wind/solar generated power through an 
electric boiler. The capture system is flexible in a sense that it can dynamically vary the 
schedule and the steam demands for energy-intensive solvent regeneration, which is 
enabled via solvent storage (Zantye et al., 2019). 
 
Such localized integration of 
renewables and CO2 capture with 
existing coal plants presents several 
advantages as compared to the 
traditional grid-level integration. 
Firstly, renewable integration is 
facilitated without the need for costly 
grid modifications or the installation 
of additional transmission capacities. 
Secondly, time-varying flexible CCS 
operation using storage of the CO2-
rich solvent from absorption and the 
regenerated solvent from desorption 
improves the flexibility of the power 
plant without frequent cycling and 
steep ramping rates. CCS can utilize 
the excess renewable energy during 
off-peak demand periods, thereby keeping the power plant online for longer durations. 
Similarly, the capture operation can be turned down during peak load periods to increase 
the energy delivered to the grid. Thus, along with reducing the CO2 emissions, flexible 
CCS operation acts as a form of energy storage to accommodate renewables. 
 
The concept of renewable-assisted CO2 capture in fossil energy plants is relatively 
unexplored with the majority of the works in literature focusing primarily on the 
feasibility of the integration (Mokhtar et al., 2012). To meet the energy requirement of 
CO2 capture using renewable energy, a medium to large-scale renewable farm is required. 
However, the high investment cost of renewables and its intermittency impacts the 
economic viability of the integration. To incorporate these trade-offs in optimal decision 
making, we describe a mathematical programming-based optimization model along with 
a computationally efficient methodology to solve the large-scale problem in Section 2. 
Lastly, we present a nationwide case-study and the potential for renewable-assisted CO2 
capture from coal power plants in the US in Section 3. 

2. Model Formulation and Solution Strategy 
The problem statement is as follows: for given time-varying electricity price, solar 
radiation intensity and wind speed profiles, determine the optimal design and operational 
schedules to integrate a CO2 capture system with the coal-fired power plant and/or invest 
in a co-located renewable energy farm while maximizing the net present value (NPV) 
based on the projected costs and earnings from the overall system. The overall model 
(M0) is a large-scale mixed integer linear program (MILP) and has the general form as 
shown in Figure 2. On expansion of the general formulation M0, the design decisions x 
include: (i) the retrofit of the coal power plant with CO2 capture given by the binary 
variable 𝑏 , (ii) the installed capacities of the co-located renewable field, denoted by 

Figure 1: A schematic of the integrated system. 
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Storage for Reducing CO2 emissions from Fossil Power Plants 𝑠𝑧 , and (iii) the electric boiler capacity, designated as 𝑠𝑧 . The temporal variabilities 
in electricity price, wind speed and solar radiation are represented through deterministic 
scenarios, where 𝜔 ∈ Ω = {1, 2, … , 𝑁𝑆} denotes a scenario, and Ω is the set of all 
scenarios with hourly resolution. The objective function consists of two components: 𝑓 (𝐱) representing the negative of the total investment cost which depends on design 
decisions 𝐱 alone, as shown in Eq. (2), and 𝑓 (𝐲 , 𝐤 ) representing the scenario-
dependent operational revenue which depends on operational decisions 𝐲 . Furthermore, 𝐠( )𝐱 and 𝐡( )𝐱 are the inequality and equality constraints on system design, while 𝐠( )(𝐱, 𝐲 , 𝐤 ), 𝐡( )(𝐱, 𝐲 , 𝐤 ) and 𝐬( )(𝐱, 𝐲 , 𝐲 ) are operational constraints. 
 
The objective function of net present value, denoted by Eq. (1), is expressed as the 
difference between the system’s net yearly earnings 𝑃𝐹  discounted for the time value 
of money and the current investment cost 𝐶𝐶 . The NPV is determined assuming each 
year to be identical by using the time series data for solar radiation, wind speed and 
electricity price. This data is based on NREL studies where 30 years of data is condensed 
to a single representative or "typical" year for each location and is widely used for energy 
systems analyses. Cycling conditions on solvent storage are imposed to ensure that each 
year is identical. The discount rate 𝑟  and the project lifetime 𝑡  are considered to be 
10% and 25 years respectively. 
 
The first term in the total investment cost expression of Eq. (2) denotes the capital cost of 
the renewable technologies, the second term represents the cost of the electric boiler and 
the final term denotes the cost of the CO2 capture system. The projected annual profit 
denoted by Eq. (3) is determined as the difference between the cumulative operational 
revenue and cost over all scenarios in a year. This corresponds to the second term of the 
objective function in the general formulation M0. The operational revenue given by Eq. 
(4) includes the system’s earnings from long-term bilateral contracts with power 
distributors, participation in the spot electricity market and through the sale of the 
captured CO2 to enhanced oil recovery (EOR) fields. The cost denoted in Eq. (5) 
comprises the operating costs of the coal power plant, tax on CO2 emissions, cost of 
storing the captured CO2 and transporting to end-use sites and finally, the ramping cost 
of the coal plant. 𝑁𝑃𝑉 =  −𝐶𝐶 + 𝑃𝐹 1𝑟 − 1𝑟 (1 + 𝑟 )  

 

(1) 

𝐶𝐶 = 𝐶𝑂 𝑠𝑧∈ + 𝐶𝑂 𝑠𝑧 + 𝐶𝑂 𝑝 𝐸𝐸 + 𝑁 𝐶𝑂 𝑠𝑧 𝑏  
 

(2) 𝑃𝐹 = (1 − 𝑟 ) 𝑡 (𝑅𝑒𝑣 − 𝐶𝑜𝑠𝑡 )∈ = 𝑝 𝑓 (𝐲 , 𝐤 )∈  
 

(3) 𝑅𝑒𝑣 = 𝑝 𝜋 + 𝑃 , − 𝑝 𝜋 + 𝑀 𝜋 ∀𝜔 ∈ Ω 
 

(4) 𝐶𝑜𝑠𝑡 = 𝑃 , 𝐶 + 𝑀 𝐶 + 𝑀 𝐶 + 𝑅𝐶 ,𝑡 ∀𝜔 ∈ Ω (5) 

  
The design constraints 𝐠( )𝐱, 𝐡( )𝐱 in the general formulation translate to capacity 
constraints for the renewable technologies. The operational constraints 𝐠( )(𝐱, 𝐲 , 𝐤 ) 
and 𝐡( )(𝐱, 𝐲 , 𝐤 ) include the overall energy balance, capacity and ramping constraints 
for the coal power plant and energy balance for the CO2 capture system. The constraint 
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𝐬( )(𝐱, 𝐲 , 𝐲 ) is a time-coupling constraint, which results from the mass balance for 
solvent storage, and further complicates the formulation. 
 

 
Figure 2: The general MILP formulation, and the proposed solution strategy. 

 

The model M0, when used for large number of time points or scenarios, requires 
significant computation time to solve to determine the optimal long-term designs and 
short-term time-varying operating decisions. Therefore, we use a two-stage solution 
strategy as sketched in Figure 2. Specifically, the parameter profiles are first temporally 
aggregated using the SCENRED package (Dupacová et al., 2000) in GAMS environment. 
An example of such time aggregation is shown in Figure 2, where a yearly price profile 
with hourly resolution (8760 scenarios) is reduced to 53 scenarios while retaining a 
specified reduction accuracy of 94%. The reduced scenarios with reassigned frequencies 
are used to first solve the overall problem to obtain the optimal design decisions 𝐱. The 
design decisions are then fixed and the problem is then solved using the original, 
unreduced scenario set to determine the optimal operational policy 𝐲 . Although this 
strategy does not guarantee global optimality of the design decisions, it is effective in 
obtaining near-global solutions with a significant reduction in solution time (Arora et al., 
2019). 

3. Integration Case Study 
The framework is demonstrated by a nationwide case-study across the US, through which 
we seek to identify coal power plants where it would be beneficial to invest in the 
integrated system to reduce CO2 emissions. Data for 309 power plants with operational 
coal-based units shows a wide variation of capacities between 50 to 6000 MW, with 56% 
of the plants with capacities below 1000 MW. The CO2 emission intensities of the 
standalone coal power plants vary between 0.5-2 ton MWh−1, with the nationwide average 
being 1.11 ton MWh−1. A full year of time-series data for wind speed and solar irradiation 
is obtained from NREL’s NSRDB database. 
 
Considering projected renewable energy prices of 300 $ kW−1 and a high carbon emission 
tax of 80 $ ton−1, the optimization results indicate that investment in a solar-assisted CO2 
capture system is beneficial for nearly one-third of the power plants across the US. Figure 
4 shows the variation of the optimal co-located solar farm size. We observe a strong 
positive correlation between the co-located solar farm selection and the solar energy 
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availability represented by the capacity factor. Furthermore, the optimal PV farm size 
increases linearly with the power plant nameplate capacity, as can be seen from Figure 3a 
with the nationwide average size being 25.8% of the coal plant capacity. Figure 3b shows 
that the optimal capture system size is influenced by both the power plant nameplate 
capacity and its base-case emission intensity. The variation of the optimal levelized cost 
of electricity (LCOE) of the integrated system is displayed in Figure 4. 
 

 
Figure 3: Optimal integrated (a) PV farm sizes, (b) CO2 capture system capital costs. 

 

We observe that the optimal LCOE is less 
than 40 $ MWh−1 or the cost of a new natural 
gas combined cycle (NGCC) plant, with 
higher LCOE reduction obtained for plants 
with solar integration. Furthermore, the 
reduction in CO2 emission intensity obtained 
ranges between 87.5-91%. This indicates that 
it is economically profitable for the coal plant 
operators to invest in the integrated system as 
compared to replacing the plant with a natural 
gas unit to reduce emissions.  

Figure 5a shows the distribution of solar 
output for a representative day in summer 
based on the full model optimization results. 
To evaluate the value of the CO2 capture 
system in reducing renewable intermittency, 
we calculate the equivalent battery size 
required if the excess solar energy used in 
CO2 capture is instead stored in a battery. 
Considering the high efficiency Li-ion 
battery type with a 2025 predicted total 
project cost of 362 $ kW−1, we observe the 
required battery capital cost to be linearly 
correlated with the co-located PV farm size 
as given in Figure 5b. Furthermore, the 
average battery capital cost to handle solar 
intermittency is found to be 4.4 times the 
solar PV farm size. The CO2 capture system 
thereby avoids large investment while 
addressing renewable intermittency and directly reducing the CO2 emissions of the coal 
power plant. 

Figure 4: Nationwide integrated system 
design: (a) Selected co-located solar PV 
farms with optimal sizes, (b) Optimized 
LCOE of selected coal plants. 
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Figure 5: Equivalent battery size required to store excess solar energy. (a) Excess solar 
energy charged to battery, (b) Required battery size and capital cost for nationwide case. 

4. Conclusions 
A two-stage optimization framework using scenario-based time-aggregation was used to 
simultaneously determine the optimal design and operation decisions for clean energy. 
We found that the localized integration of renewables and CO2 capture with coal power 
plants could compensate the CO2 capture energy requirement as well as handle renewable 
energy variability. The results indicate that for a carbon tax above 80 $ ton−1 and 
renewable price below 300 $ kW−1, investment in a solar-assisted CO2 capture is 
profitable for one-third of coal plants in the US. The resulting LCOE is lower than that of 
a new NGCC plant with 87.5-91% emission reduction. Thus, the integration can prove to 
be profitable despite the large capital investment. Furthermore, the CO2 capture acts as 
an energy storage and avoids a battery investment of 4.4 times the capital cost of solar 
field to counter its intermittency. 

5. Acknowledgements 
The authors gratefully acknowledge support from U.S. Department of Energy (Grant 
number DE-FE0031771). 

References 
A. Arora, J. Li, M. S. Zantye, M. M. F. Hasan, 2019. Process design frameworks for economic 

utilization of small-scale and unconventional feedstocks. In: Computer Aided Chemical 
Engineering. Vol. 47. Elsevier, pp. 83–88. 

J. Dupacová, N. Gröwe-Kuska,W. Römisch, 2003. Scenario reduction in stochastic programming. 
Mathematical Programming 95 (3), 493–511. 

M. M. F. Hasan, R. C. Baliban, J. A. Elia, C. A. Floudas, 2012. Modeling, simulation, and 
optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. 
chemical absorption and membrane processes. Industrial & Engineering Chemistry Research 
51 (48), 15642–15664. 

N. Mac Dowell, N. Shah, 2014. Optimisation of post-combustion CO2 capture for flexible 
operation. Energy Procedia 63, 1525–1535.  

M. Mokhtar, M. T. Ali, R. Khalilpour, A. Abbas, N. Shah, A. Al Hajaj, P. Armstrong, M. Chiesa, 
S. Sgouridis, 2012. Solar-assisted post-combustion carbon capture feasibility study. Applied 
Energy 92, 668–676. 

M. S. Zantye, A. Arora, M. M. F. Hasan, 2019. Operational power plant scheduling with flexible 
carbon capture: A multistage stochastic optimization approach. Computers & Chemical 
Engineering 130, 106544. 

1540



  

Circular Economy Systems Engineering: A case 
study on the Coffee Supply Chain  
Stefanos G. Baratsasa, Efstratios N. Pistikopoulosa, Styliani Avraamidoua,*  
aTexas A&M University, 400 Bizzell St, College Station, TX 77843, United States 
*styliana@tamu.edu 

Abstract 
The current linear “take-make-waste” extractive models that have powered the 
tremendous growth of the last centuries, lead to the depletion of natural resources and 
environmental degradation. Circular Economy (CE) aims to address these impacts by 
building supply chains that are restorative, regenerative, and environmentally benign, 
through re-utilizing products and materials, using renewable energy sources, and closing 
any open loops. Process Systems Engineering (PSE) could play a critical role in this 
transition, providing the necessary analytical tools for a quantitative evaluation, and 
exploring alternative pathways for social and economic advancement. As such, we 
present here a novel framework for the modeling and optimization of CE food supply 
chains, along with a representative case study for the supply chain of coffee. First, the 
alternative pathways for the production of the desired product and the utilization of wastes 
are identified. Then, a Resource-Task-Network (RTN) representation that captures all 
these pathways is constructed. Since this analysis must be conducted holistically, a 
mixed-integer linear programming model that captures the entire supply chain, its 
objectives, and constraints is formulated, and it is solved to multi-objective optimality. 
 
Keywords: circular economy, coffee supply chain, sustainability assessment, 
superstructure optimization, resource-task-network. 

1. Introduction 
Rising populations across the world seek to improve their standards of living, placing 
huge stresses on natural resources and supply chains. Energy and operational efficiency, 
improvement in manufacturing processes, and economic growth are vital to fulfill the 
increasing demand for goods, food and services. However, they still lead to natural 
resource degradation, substantial waste generation, water contamination, and surging 
greenhouse gas emissions. Thus, economic expansion shall be combined with sustainable 
development, ensuring the advancement of our societies while preserving the 
environment.  
This requires a fundamental transformation of our economic model that promotes the 
“take-make-use-dispose-pollute” concept to a more “sustainable” one. Circular Economy 
(CE) has emerged as a potential solution for such a transition, with extreme emphasis 
being put towards improvement in reuse, remake, repair and recycling. CE aims to solve 
resource, waste, and emission challenges confronting society by creating a production -
to - consumption total supply chain that is restorative, regenerative, and environmentally 
benign (MacArthur, 2015). The goals and key characteristics of CE (Reichel et al., 2016) 
are summarized as follows: a) minimization of material losses/residuals, b) reduction of 
input and use of natural resources, c) increase in the share of renewable resources and 
energy, d) reduction of emission levels, and e) increase the value durability of products.  
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CE can contribute to all dimensions of sustainable development, although the concept is 
relatively new, and there is little scientific guidance regarding its successful 
implementation and its effective evaluation. On top of that, significant challenges for the 
decision making are created from the interconnections among the diverse supply chain 
elements, stakeholders, and regulatory environments. Therefore, a holistic systems 
engineering approach is required to quantitatively navigate and thoroughly address the 
multi-scale, multi-faceted and interconnected CE supply chains (Avraamidou et al., 
2020).  
In this work, we present the foundations of a systems engineering framework and 
quantitative decision-making tool for the analysis and trade-off optimization of 
interconnected food supply chains. The framework utilizes mixed-integer modeling to 
establish the interconnections between different stages of the circular food supply chains 
as well as multi-objective optimization to consider all CE objectives and analyze trade-
offs. The supply chain of coffee is used as a working example to illustrate the use and 
applicability of the proposed framework. 

2. Coffee Supply Chain 
Coffee is one of the most popular beverages globally with 
more than 167 million 60-kg bags of coffee being consumed 
yearly worldwide (ICO, 2020; Lombardini, 2017). The 
overall life cycle burdens of just one cup of spray dried 
soluble coffee (Humbert et al., 2009; Murthy and Naidu, 
2012) are significant, as it is shown in Figure 1.  
With the current linear supply chain model (Figure 2), only 
a small fraction of these burdens are reused or recycled, even 
though there are plenty of studies demonstrating sustainable 
alternatives (Murthy and Naidu, 2012; Chala et al., 2018; 
Blinová et al., 2017). Hence, as the coffee consumption 
increases, so does the amount of organic coffee waste and 
the amount of resources used, aggravating both the waste, 
water and energy management problems. A solution to this 
problem would be the transition to a circular supply chain (Figure 3) where renewable 
energy resources and more efficient processes will be utilized; water consumption will be 
reduced and wastewater treatment will be applied; waste generation will be minimized, 
and all wastes will be collected and utilized for the production of alternative products. 
The material flows ultimately shall be closed, while the energy flows shall be opened. 

3. CE Systems Engineering Framework 
The transition to a CE model while tackling the challenges from the multi-scale, multi-
faceted and interconnected CE supply chains require a holistic systems engineering 
approach (Avraamidou et al., 2020). Therefore, and as an initial step, we have to identify 
and assess the alternative pathways for the production of the desired product, i.e. wet or 
dry method for the production of green beans (Chala et al., 2018). Coffee husk is the main 
pre-roasting by-product from the dry processing method, while coffee pulp, mucilage and 
parchment are the by-products of the wet processing method. Silver skin is the by-product 
from roasting the green beans, and spent coffee grounds are the final by-products from 
either brewing or extraction processes. Similarly, we have to identify and assess the 
alternative pathways for the waste utilization, i.e. utilization of pulp, husk, or spent coffee  
 

Figure 1: Life cycle 
burdens of 1 cup of spray 
dried soluble coffee 
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grounds for energy production (Murthy and Naidu, 2012; Gurram et al., 2016). This 
analysis, in conjunction with feedback from experimentalists, can help towards the 
identification of sustainable CE coffee supply chain alternatives. Then, a Resource-Task-
Network (RTN) representation that incorporates all the alternative pathways is generated. 
Figure 4 illustrates such a RTN representation of the supply chain of coffee, capturing the 
sections in the production as well as in the consumption countries, the conversion 
coefficients, along with waste utilization alternatives for the production of energy.  
The next step is the formulation of a mixed-integer linear programming (MILP) model 
that reflects the entire supply chain, and includes the different objectives and constrains. 
Hence, binary variables are used for the selection or not of a process e.g. production of 
green beans through wet or dry method. Continuous variables are also defined for 
representing the amount of material used as input or output from each process as well as 
for the amount of material consumed or generated during each process. Moreover, the 
mass balances and the conversion equations are used to set the constraints.  
 

Figure 2: Simplified Linear Supply Chain of Coffee 

Figure 3: Simplified Circular Supply Chain of Coffee. Dashed lines refer to 
the energy and resource flows that return to the supply chain. 
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The final step involves a multi-objective optimization strategy to obtain trade-offs among 
multiple CE objectives, such as maximizing the energy output while minimizing the 
coffee cherries consumption, under different demand scenarios (Table 1) for the final 
products i.e. coffee beverages, instant coffee and whole beans. A variety of single or 
multi-objective functions can be optimized depending on the scenario under 
consideration. For the design of a CE supply chain, we select the objective functions by 
matching them with the CE goals and key characteristics. As such, by looking to increase 
the share of the renewable resources and energy, we will maximize the energy output of 
the supply chain, while by looking to reduce the input, we will minimize the coffee 
cherries consumption. Likewise, by targeting the reduction of natural resources, we will 
minimize the consumption of water, while the reduction of material losses and emission 
levels will be achieved through minimizing the waste generation and the CO2 emissions 
respectively. 

4. Discussion of Results 
Utilizing the framework that was described in Section 3, we generate the pareto fronts 
(Figure 5) for the multi-objective optimization problem of maximizing the total energy 
output vs minimizing the consumption of coffee cherries, under five different demand 
scenarios (Table 1). The size of a bubble represents the normalized CO2 emissions.  
Each colored line in the Figure 5 represents a different scenario. An upper bound of 
available cherries has been set at 100,000 tons for all 5 scenarios. Scenarios 1 and 2 
require certain demands to be met for all 3 final products. As expected, the higher the 
consumption of cherries, the higher the energy produced. Once the target demands are 

Figure 4: RTN of Coffee Supply Chain (Murthy and Naidu, 2012; Blinová et al., 2017; 
Ghosh and Venkatachalapathy, 2014; Braham and Bressani, 1979; Gathuo et al., 1991;
ICO, 2011) 
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met, the excessive amount of cherries is converted to whole beans, while the excessive 
amount of coffee by-product is used to produce more energy. This is because even though 
whole beans can be sold as a final product to the market, they require further processing, 
either brewing or extraction, so as to yield the end coffee drink. Thus, producing just 
whole beans is favorable in terms of energy and environmental footprint.  
 

 

Table 1: Final Coffee Products Demand Scenarios 

 Units Scenario 
1

Scenario 
2

Scenario 
3

Scenario 
4

Scenario 
5 

Whole Beans ton ≥ 2,000 ≥ 1,000 = 0 = 0 > 0 
Coffee 

Beverages ton ≥ 2,000 ≥ 1,000 > 0 = 0 = 0 

Instant Coffee ton ≥ 2,000 ≥ 1,000 = 0 ≥ 6,000 = 0 
 
 
The operating profiles of scenario 1 (with higher energy demands) are more to the left on 
the graph than those of scenario 2, because the extra demand of coffee beverages and 
instant coffee requires more brewing and extraction, which are both energy intensive 
processes. The rest of the scenarios represent instances where the demand of only one 
final product is specified. In particular, scenario 5, even rather unrealistic since it refers 
exclusively to demand of whole beans and requires further processing to produce the 
coffee drinks, it demonstrates the best-case scenario in terms of both energy and 
environmental performance. On the contrary, scenario 4, with only instant coffee as a 
deliverable, is the worst-case scenario both in terms of energy and environmental 
efficiency. Just one operating profile is produced since the optimal solution for both 

Figure 5: Pareto Analysis 
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objectives refers merely to the satisfaction of demand. Finally, in scenario 3 that describes 
the case of demand solely coming from coffee beverages, the operating profiles 
demonstrate a steeper slope in comparison to the ones from the other scenarios. This is 
attributed to the different energy and environmental benefits that coffee beverages have 
versus the other products.  

5. Conclusions 
The transition towards a circular economy model introduces a plethora of challenges. 
Here, we presented a CE systems engineering framework for the analysis and trade-off 
optimization of interconnected food supply chains. We demonstrated the effectiveness of 
the framework in analyzing different demand scenarios, considering some of the CE 
objectives simultaneously within a multi-objective optimization approach for a coffee 
supply chain case study. 
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Abstract 
Circular Economy (CE) aims to solve resource, waste, and emission challenges 
confronting society by creating a production-to-consumption total supply chain that is 
restorative, regenerative, and environmentally benign. A method for evaluating and 
comparing the “circularity” of different companies or scenarios is vital for effective 
decision making. A variety of metrics has been developed for measuring different aspects 
of CE. Despite the availability of metrics, CE has only been measured at the 
national/regional or product level with the main focus on material flows, while no metric 
is currently applicable at the company or product supply chain level. This work aims to 
address this research gap and provide i) a set of indicators and metrics with sector-specific 
dimensions, ii) a quantitative CE metric, iii) media for data visualization and analysis of 
CE indicators, and iv) an analytical tool to assess the multi-scale, multi-faceted and 
interconnected CE supply chains. Companies are able to track their transition towards 
CE, conduct temporal analysis, and compare their performance against their peers. The 
applicability and the capabilities of the developed CE methodology is demonstrated 
through a case study, where the Overall “Circularity” Index and the corresponding 
“Circularity” sub-indices of an industrial gas company are calculated over a period of 5 
years. 
Keywords: circular economy, circularity index, sustainability metric. 

1. Introduction 
The unprecedented economic development and the social advancement that occurred over 
the last centuries were inextricably linked to a “take-make-waste extractive” industrial 
model, which inevitably placed huge stresses on the natural resources and led to enormous 
environmental and socioeconomic impacts. The concept of Circular Economy (CE) has 
emerged as a potential solution to this challenging issue contributing to all dimensions 
towards sustainable development, promoting a transition to renewable energy sources, 
designing out waste and pollution, improving recycling while decoupling growth from 
the consumption of natural resources, and eventually regenerating natural systems 
(MacArthur et al., 2013). The effectiveness and the successful implementation of this 
transition on a global scale though, require systematic assessment of the alternative 
pathways and scenarios along with the development of holistic metrics to evaluate the 
different aspects of CE. A plethora of metrics have been proposed in the literature 
(Parchomenko et al., 2019; Roos Lindgreen et al., 2020; Elia et al., 2017; Cayzer et al., 
2017; Saidani et al., 2017) to measure different aspects of CE; however, they capture 
separately the micro and macro level, without covering the meso level and without 
providing a holistic approach, whereas they rather focus on material flows (Avraamidou 
et al., 2020). 
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2. Circular Economy Metric Development 
The proposed CE index takes into account a set of specific indicators and metrics based 
on the CE goals and key characteristics as well as the business sector that the company 
operates, and should not be confused with Life Cycle Assessment (LCA) which is an 
inherent attribute towards analysis, modeling, implementation and/or assessment of the 
CE (Avraamidou et al., 2020). Hence, five principal categories of indicators have been 
selected and matched with the goals and key characteristics of CE (Reichel et al., 2016) 
and are presented in Table 1. 
 

Table 1: Matching of the Principal Categories with CE Goals 

# CE Goals & Key Characteristics  Principal Categories 
of Indicators 

1 
Reduction of material losses/residuals: Waste and pollutants 
minimization through the recovery and recycle of materials 

and products. 
↔ Waste 

2 
Reduction of input and use of natural resources: The 

reduction of the stresses posed on natural resources through 
the efficient use of natural resources. 

↔ Water,  
Procurement 

3 
Increase in the share of renewable resources and energy: 
Replacement of non-renewable resources with renewable 

ones, limiting the use of virgin materials. 
↔ Energy 

4 Reduction of emission levels: The reduction in direct and 
indirect emissions / pollutants. ↔ Emissions,  

Spillages 

5 
Increase the value durability of products: Extension of 

product lifetime through the redesign of products and high-
quality recycling. 

↔ Durability 

 
An extra principal category, named “Organization” is also used for providing general 
information about a company’s business activity i.e. company’s revenue. As indicator, 
we define the information that must be measured and evaluated against a CE goal, e.g. 
total energy consumed within the company, while as metric we define the composite, 
normalized measure of an indicator against company’s level of business activity and 
productivity, e.g. total energy consumed within the company over company’s revenue. 
This is essential to capture the progress and efficacy of a company’s “circularity” year 
over year, as well as to conduct meaningful comparisons among companies (Herriott, 
2016).  
One or more indicators have been selected to evaluate the company’s performance against 
each CE goal or principal category. The indicators have been also matched with the 
Global Reporting Initiative (GRI) Standards (Global Sustainability Standards Board, 
2016), ensuring uniformity in the reported results while providing a reference guide for 
those who want to use the proposed index. Similarly, one or more metrics have been 
chosen to standardize the indicators of each category. Different indicators and metrics are 
determined for each sector of the economy, in an attempt to reflect more accurately the 
specific characteristics and attributes of each sector. Tables 2 and 3 illustrate the 
indicators and metrics respectively, that are used for the analysis of the Industrial Sector 
for all principal categories.  
The main sources of data are each company’s annual “Sustainability”, “Environmental-
Social-Governance (ESG)” and “Financial” reports. Each company’s data from multiple 
years are collected and analyzed based on the proposed indicators and metrics, so as to 
calculate the annual Overall “Circularity” index and the annual “Circularity” index for 
each principal category (sub-indices) e.g. 2019 Overall “Circularity” Index, 2019 
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“Circularity” Index for Energy. Therefore, a company’s Overall “Circularity” as well as 
its “Circularity” versus every CE goal can be tracked on annual basis, and/or against its 
peers. 
 

Table 2: CE Indicators for the Industrial Sector 
Principal 

Categories Indicators GRI Standards 
Correspondence 

Organization Revenues [million $] GRI-201-1 
Products sold within the reporting period [# of products] GRI-301-3 

Waste 
Waste generated - Hazardous [weight] GRI-306-3 

Waste generated - Non-Hazardous [weight] GRI-306-3 
Waste diverted from disposal [weight] GRI-306-4 

Water 

Water withdrawal [volume] GRI-303-3 
Fresh water discharge (<= 1,000mg/L TDS) [volume] GRI-303-4 
Other water discharge (>= 1,000mg/L TDS) [volume] GRI-303-4 

Water recycled or reused [volume] GRI-303-3 (2016) 

Procurement: 
Production & 

Packaging 

Non-renewable materials used [volume or weight] GRI-301-1 
Renewable materials used [volume or weight] GRI-301-1 

Recycled Input material used [volume or weight] GRI-301-2 
Packaging materials [# of products] reclaimed  GRI-301-3 

Energy Total energy consumed [joules or multiples] GRI-302-1 
Renewable energy consumed [joules or multiples] GRI-302-1 

GHG 
Emissions 

Direct GHG emissions (Scope 1) [tCO2e] GRI-305-1 
Energy indirect GHG emissions (Scope 2) [tCO2e] GRI-305-2 

Total use of products (Scope 3) [metric tons CO2 equivalent 
(tCO2e)] GRI-305-3 

Emissions neutralized by carbon offset projects [tCO2e] GRI-305-5 
Emissions of ozone-depleting substances (ODS) 

[metric tons of CFC-11 equivalent] GRI-305-6 

Nitrogen oxides [NOx], sulfur oxides [SOx] & other significant air 
emissions [kg or multiples] GRI-305-7 

Spillages & 
Discharges 

Volume of operational spills [volume] GRI-306-3 (2016) 
No. of operational spills [#] GRI-306-3 (2016) 

Environmental fines [$] GRI-307-1 
Notices of violation (NOVs) from spills [#] - 

Durability Average lifespan of product or packaging [years] GRI-306-2 
 

Table 3: CE Metrics for the Industrial Sector 
Principal 

Categories Metric Upper 
Bound 

Formula 
Used 

Waste 1a % of Hazardous waste over Total waste generated 100% 100%-1a 
1b % of Diverted waste over Total waste generated 100% 1b 

Water 
2a % of Recycled/reused water over Total water withdrawal 100% 2a 
2b % of Other water discharge over Total water discharge 100% 100%-2b 
2c % of Water consumed over Total water withdrawal 100% 100%-2c 

Procurement: 
Production & 

Packaging 

2d % of Recycled input materials used over Total material used 100% 2d 
2e % of Renewable material used over Total material used 100% 2e 
2f % of Reclaimed packaging materials over Total products sold 100% 2f 

Energy 3a % of Renewable energy consumed over Total energy 
consumed 100% 3a 

GHG 
Emissions 

4a Net total emissions over Revenue [tCO2e over million $] 10,000 1-4a 

4b Emissions of ODS over Revenue [metric tons of CFC-11 eq. 
over million $] 0.05 1-4b 

4c NOx, SOx, and other significant air emissions over Revenue 
[metric tons over million $] 0.5 1-4c 

Spillages & 
Discharges 4d Notices of Violation (NOVs) from Spills [#] 50 1-4d 

Durability 5a Average Lifespan of Product or Packaging [years] 20 5a 
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The target values of the Overall “Circularity” Index and its sub-indices are always 1 or 
100%; thereby the formulas used for each metric have been designed to reflect to that 
target and are shown in Table 3. For example, metric 1a that captures the percentage of 
hazardous waste over total waste generated shall be preferably zero, but since our target 
is 1 then the formula 100%-1a is used.  
The sub-index of each principal category is estimated as the weighted average of its 
metrics, using equal weights except from the GHG Emissions where the following 
weights are used: 4a - 50%, 4b - 20%, 4c - 20%, 4d - 10%. The overall index is calculated 
as the average of the sub-indices. 

3. Case Study: “Circularity” Index of an Industrial Gas Company 
The Overall “Circularity” Index along with the sub-indices of an industrial gas company, 
hereafter referred to as the “firm”, is calculated here. The data used for the subject 
calculations and analysis are taken from firms’ “Sustainability” reports (2016-2020) 
covering the period 2015-2019 (Air Products, 2016-2020). First, the annual metrics of 
each indicator are calculated using the methodology described in the previous section, 
and are summarized in Table 4. 
 

Table 4: CE Metrics of the firm (2015-2019) 
Principal 

Categories Waste Water 
Procurement: 
Production & 

Packaging 
Energy GHG Emissions Spillages & 

Discharges 
Dura-
bility 

Year 1a 1b 2a 2b 2c 2d 2e 2f 3a 4a 4b 4c 4d 5a 
2015 0.604 0.228 0.0 1.0 0.0 0.0 0.85 0.0 0.017 0.678 1.0 0.560 0.84 1.0 
2016 0.625 0.265 0.0 1.0 0.178 0.0 0.85 0.0 0.018 0.674 1.0 0.551 0.80 1.0 
2017 0.653 0.282 0.0 1.0 0.179 0.0 0.865 0.0 0.069 0.682 1.0 0.578 0.72 1.0 
2018 0.538 0.303 0.0 1.0 0.147 0.0 0.85 0.0 0.074 0.700 1.0 0.654 0.66 1.0 
2019 0.649 0.201 0.0 1.0 0.186 0.0 0.85 0.0 0.071 0.695 1.0 0.649 0.74 1.0 

 
The firm scores the maximum (100%) with regards to the durability metric (5a) 
throughout the years, since they supply most of their products in two-way bulk containers, 
semi-bulk containers or via pipelines with very long-life span. Even for small-scale 
supplies, they use returnable and reusable transportable pressure vessels with typical life 
spans of 20+ years. The energy metric (3a) demonstrated the highest improvement over 
this period (307.6%), but the renewable energy is still a tiny part of firm’s energy 
portfolio. A noticeable improvement of 15.9% was also shown in NOx/SOx emissions 
over Revenue (4c) with both parameters being improved over the years. On the contrary, 
the waste diverted as a percentage of the total waste generated (1b) and the number of 
violations from spills (4d) have deteriorated over the same period. 

4. Results 
The following figures illustrate firm’s annual “Circularity” Sub-Indices (Figure 1) and 
annual Overall “Circularity” Index (Figure 2) from 2015 to 2019, using the weights 
described in the previous sections. As it is shown, Durability is the best performing sub-
index, having reached and maintained the target over the years, while in contrast, and 
despite the improvement over the years, Energy sub-index is still at the lower end of the 
scale. Thus, an increase in firm’s renewable energy footprint will boost the firm’s 
“circularity”. GHG Emissions & Spillages sub-index also improved slightly over the 
years, having reached 75.1% of the target. Waste and Water & Procurement sub-indices 
demonstrate a mixed picture, fluctuating year over year, but both have improved, even 
slightly, over this period. Consequently, firm’s “circularity” was at the highest level in 
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2017, after two consecutive years of improvement. Then, the index was barely reduced 
by 1.2% in 2018, mainly due to a 10.1% decrease in the Waste sub-index, before a 
marginal increase of 0.5% in 2019. 
 

 

 

 

Figure 1: Firm’s “Circularity” Sub-Indices (2015-2019) 

Figure 2: Firm’s Overall “Circularity” Index (2015-2019) 
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5. Conclusions 
A quantitative CE index for assessing a company’s “circularity” has been presented, in 
an effort to accurately measure the various aspects of CE and identify potential areas of 
improvement towards the transition to a CE economic model. It is noted that various 
sector-specific indicators and metrics have been established in order to effectively and 
holistically capture all CE aspects. This enables year-over-year comparisons, 
benchmarking against peers in the industry, and identification of key areas that require 
improvement. Also, the aforementioned tool is an integral part of a CE systems 
engineering framework to quantitatively evaluate different multi-scale supply chain 
pathways, assess CE tradeoffs, and aid in informed optimal decision making. The 
capabilities and applicability of the subject methodology was demonstrated through a 
case study for a firm operating in the industrial sector. 
The proposed methodology can act as an organization’s internal CE and Sustainability 
assessment tool and will be incorporated into a web-based index calculator that is 
accessible online. As soon as the required data are available, the user will be able within 
5-minutes to i) measure firm’s “circularity”, ii) track firm’s periodic progress, iii) 
benchmark against firm’s peers, and iv) visualize the analysis online. 
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Abstract 
Environmental regulations have always been an essential component of the natural gas 
supply chain. This study explores the challenges and opportunities associated with 
replacing heavy fuel oil used for maritime transportation with relatively cleaner and green 
fuels. The economic and environmental viability of alternative bunker fuels mainly 
liquefied natural gas, Ammonia, and hydrogen, is assessed. Additionally, the entire 
supply chain of natural gas is holistically evaluated by understanding the end-user 
requirements and exploring the feasibility of further processing the transported fuel (i.e., 
LNG) into the required form. The examination of supply-demand synergies constitutes 
the novelty of this study. With the aid of linear programming, the fuel-alternatives 
mentioned above are assessed on environmental and economic levels. A multi-objective 
optimisation model is developed considering the emissions constraints imposed on ship 
operators by regulatory authorities. The mathematical model also includes the possible 
transported fuel (i.e., LNG, Ammonia, and hydrogen) where both supply and end-user 
demand are factored into the formulation with the aim of achieving optimal value in an 
environmentally benign manner. The outcome of this study demonstrates the optimal 
combinations of transported and consumed fuels. The magnitude of each bunker fuel to 
be consumed indicates the best fuel to be used while considering both economic and 
environmental aspects. According to the result obtained from the developed model, 
Ammonia seems to be the most favourable, followed by HFO, LNG, and hydrogen, 
respectively. This is mainly attributed to the high cost associated with the consumption 
of hydrogen fuel. As for the transported fuel, the model suggests that LNG should be the 
main transported fuel followed by Hydrogen and Ammonia, respectively.  

Keywords: LNG Supply Chain; Maritime Transportation; Clean Fuels; Bunker Fuels; 
Optimisation. 

1. Introduction 
In many businesses, a tradeoff is usually imposed between economic gain and 
environmental growth. Usually, a decision-maker will be in a situation that requires them 
to search for solutions/alternatives to reduce the environmental impact of their business 
yet still allow them to attain more monetary gains, thereby achieving sustainable 
development for their business. (Kumar, 2020) The shipping of hydrocarbons constitutes 
approximately 30% of the world’s growing seaborne trade. (United Nations Conference 
on Trade and Development, 2018) According to LCA studies, the primary source of the 
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environmental impact during the life cycle of a ship is the operating stage. (Kameyama, 
Hiraoka, Tauchi) Moreover, traded natural gas is expected to increase from the recorded 
25 % in 2017 to 28% of the global gas mix in 2022. (McKinsey. Global, 2018) Hence, 
efforts to reduce the environmental impact of oil and gas supply chains involve various 
measures, such as reduced flaring, process optimization, and the utilization of clean fuels, 
which have been extensively reviewed by many scholars in the fuel utilizing industries 
such as the aviation sector for over two decades. Today, policymakers and energy analysts 
worldwide believe that hydrogen has the potential to transform the world’s energy 
outlook. Nevertheless, the complete transition to hydrogen as a replacement for fossil 
fuels is hindered by technical and economic challenges. (United Nations Environment 
Program, 2006) Meanwhile, Ammonia has been considered a potential alternative energy 
storage medium. It is a high-density carbon-free hydrogen carrier, providing a practical 
and clean alternative to fossil fuels. (Valera-Medina, Xiao, Owen-Jones, David, Bowen, 
2018) A broad spectrum of applications in the industry entails the use of operation 
research to model and solve combinatorial optimization problems. Such applications 
include planning, scheduling, vehicle routing, and resource allocation. Moreover, to 
design an effective supply chain network, supply chain managers usually resort to using 
optimization modeling as it leads to determining the optimal mix of suppliers, production 
quantity/volume, and location of several facilities within the supply chain. Operation 
research practitioners normally use a modeling language to formulate and manage their 
developed mathematical models. Optimization Planning Language (OPL) is a computer-
based modeling language concerned with solving optimization problems as it provides 
algorithms for mathematical integer programming, linear programming, and quadratic 
programming. (Hillier, Lieberman, 2001) The oil and gas industry have been utilizing the 
field of operation research as a scientific approach to help support refinery operations 
management. (Antunes, Gomes, 2008) In this particular study an optimization model was 
developed to look into the logistical aspect of the LNG supply chain. The objective 
function of this model is composed of two factors: (a). Economic: encompassing cost 
associated with bunker fuel in addition to transportation cost and revenue generated from 
selling the transported fuel. (b). Environmental: encompassing emissions generated by 
bunker fuel and emissions generated throughout the life cycle of transported fuel. This is 
to be governed by several restrictions such as the production capacity of the exporter and 
the emissions limits imposed by regulatory authorities (namely for CO2, NOx, and SOx).   

2. Problem Definition 
Strategic level decisions are made when a natural resource is discovered and/or when 
producing a particular product is not as profitable as it used to be due to supply and 
demand interactions. Hence, exploring the possibility of making any particular 
modification to the pre-constructed processing facility becomes a necessary investment 
that enables the producer to maintain their position in the energy market. Also, from an 
operational perspective, ship operators are obligated to limit the emissions generated from 
their fleet in order to comply with emissions limits set by environmental regulatory 
authorities. This study is meant to address both of the aforementioned aspects while using 
the state of Qatar as a case study. Basically, the main questions to be answered by this 
study are: 1. Which bunker fuel is more economical and has the least environmental 
impact? 2. Is it more economically and environmentally viable for the state of Qatar to 
produce and ship another type of fuel instead of LNG? 3. Is there a possibility to create 
synergy between the bunker fuel consumed and the produced/transported fuel? Basically, 
the value of answering the first question lays in the fact that it will aid ship operators in 
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the fuel selection process while considering environmental and economic aspects. 
Moreover, on a strategic level, this model can be of use to decision-makers as it helps in 
evaluating current and future options for their fuel export. The model serves to assess the 
revenue gained from each Fuel and determine the strategy to be followed in terms of fuel 
production across a short and long timespan. The second question can be addressed by 
exploring the possibility of further processing natural gas into other forms of fuels 
required by customers. Lastly, the third question will examine the possibility of using the 
transported fuel as a bunker fuel, which will eliminate the need for ship bunkering and 
will significantly reduce operational costs.  
 
The remaining sections of this paper illustrate the depiction of the problem in a 
mathematical language, which is then translated into a computer-based modelling 
language in order to facilitate the process of solving the model. 

3. Mathematical Modelling  
3.1.  Governing Assumptions: 
Due to the complex nature of the problem at hand, a set of governing assumptions had to 
be put in place in order to facilitate its representation by means of a mathematical 
language. These assumptions are listed below:   
 
Table.1: A list of the pre-defined governing assumptions. 

Governing Assumptions 
1. Supplying LNG from the state of Qatar (i.e.one LNG loading port). 
2. One LNG-discharge port (Receiving terminal). 
3. Empty (return) voyages will not be considered. 
4. No partial unloading of ships. (i.e., a single loading port and a single discharge port per cargo). 
5. It is possible to have recurrent voyages (i.e., several cargos can be delivered to the same 

customer/ receiving terminal). 
6. All Ships are assumed to have the same capacity of 140,000 M3. 
7. All cargos are delivered using the operator fleet and sold at a fixed rate following a delivered 

ex-ship cargo transport system. A vessel is assumed to be available at the time of loading. (in 
this case, we need to assume an infinite fleet size). 

8. Both discharge and receiving ports are available at the time of loading/ unloading as 
unavailability of port can lead to an increase in total transportation costs as some delay 
penalties may apply. Cost of idle ships and cost of delays and demurrage costs are neglected. 

9. Fuel consumed for auxiliary system is constant and is neglected. 
10. All ship engines are assumed to be compatible with all of the suggested bunker fuels (i.e.no 

additional engine retrofitting measures are considered).  
11. Cost of receiving terminal regasification slot and canal charges are disregarded. 
12. All Ships are assumed to travel at a constant speed throughout the entire voyage. 

 
3.2. Input Parameters 
 
Table.2: Produced and Consumed Fuel related data. 

Fuel 

i 

Selling 
Price Pi 

Consumed 
Fuel Cost 𝐶  

Produced 
Fuel Cost 𝐶  

Produced 
Fuel 

Demand 𝐷  

Fuel 
Producti

on 
Capacity 

Capi 

Specific Fuel 
Consumption 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  Fuel 

Density 
Densityi 

Unit $/kg $/kg  $/kg Million 
kg/year 

Million 
kg/year Kg/km kg/m3 

1.NH3 0.275 0.25 0.225 1980000 1275 200.941 696 

2.LNG  0.385 0.35 0.315 700000000 9000 43.855 455 
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3.H2  0.88 0.80 0.72 28400000 450 3.177 71 

4.HFO  0.308 0.28 0.252 0 0 124.611 905 

 
Table.3: CO2, NOx, and SOx emissions related data.  

Emission 
Type    

(j) 
Fuel (i) 

GHG Emissions Limit (Per Voyage) 
 𝐿𝑖𝑚𝑖𝑡  Fuel GHG Emissions Factor 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐹𝑎𝑐𝑡𝑜𝑟  

1.NOx  2.SOx  3.CO2  1.NOx  2.SOx  3.CO2  

Unit Ton Ton Ton Kg/Km Kg/Km Kg/Km 
1.NH3 637 637 637 0.657277006 0 0 
2.LNG 99.4 99.4 99.4 0.061449948 0 135.0188511 

3.H2 974.4 974.4 974.4 0.011174968 0 0 
4.HFO 1267 1267 1267 4.1811 1.15×10-11 5.1×10-10 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒   : Distance between exporting port located in Qatar and port k in km 
(in this case, only one case is considered Himeiji Terminal located in Japan where the 
assumed distance is 11693.528 km). 
SpeedShip: The assumed speed is 27.87 km/hr.  
CapShip: Capacity of the ship used for transportation in m3 is assumed to be 140,000 m3. 𝑃𝑜𝑤𝑒𝑟 : Main engine power of the ship is assumed to be 15,006 KW.  
3.3. Scenario Development: 
The adopted approach of developing this model entails beginning with a very simple 
model then gradually increasing the level of complexity of the model until it nearly 
reflects the complexity of the real problem. (Hillier, Lieberman, 2001). Only the first 
scenario will be portrayed in this paper. This scenario is aimed at maximizing profit were 
bunker fuel type is independent of transported fuel type excluding receiving terminal 
regasification slot cost and canal charges. 
 
Decision Variables: 
Ni: Number of shipments delivered from fuel (i) 
Fi: Amount of fuel (i) consumed per voyage as bunker fuel in kg  
 
Parameters:  
Pi: Selling price of fuel (i) in $/kg 𝐶 : Bunker fuel cost for fuel (i) in $/kg 𝐶 : Transported fuel cost for fuel (i) in $/kg 𝐷 : Demand for fuel (i) in kg 𝐿𝑖𝑚𝑖𝑡 : Limit of GHG emissions of type (j) for fuel (i) in kg 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 : Emissions factor for GHG emissions of type (j) for fuel (i) 
Capi: Production capacity of fuel (i) in m3 
Densityi: Density of fuel (i) in kg/m3 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒   : Distance between exporting port located in Qatar and port (k) in KM 
SpeedShip: Ship speed in km/hr 
CapShip: Capacity of the ship used for transportation in Kg 𝑃𝑜𝑤𝑒𝑟 : Main engine power of the ship in kW 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  : Specific fuel consumption for Fuel (i)  
where, 𝑖 = 1,2,3,4 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝐴𝑚𝑚𝑜𝑛𝑖𝑎, 𝐿𝑁𝐺, 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛, 𝐻𝐹𝑂 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 𝑗 = 1,2,3 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑁𝑂, 𝑆𝑂𝑥, 𝐶𝑂  𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑙𝑦.  
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and Utilisation of Clean Fuels: A Review of Alternative Maritime Fuels 𝑘 = 1 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝐻𝑖𝑚𝑒𝑖𝑗𝑖 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝐽𝑎𝑝𝑎𝑛.  
 
Objective:  𝑀𝑎𝑥 ∑ (𝑃  × 𝐶𝑎𝑝 × 𝑁 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 − 𝐶 × 𝐶𝑎𝑝 × 𝑁 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 −𝐶 × 𝐹 )  ∀ 𝑖 ∈  𝑖 = 1, … ,4                                                                  eq.(1) 
 
Subject to: 𝐶𝑎𝑝 ≥ 𝐶𝑎𝑝 × 𝑁 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  ∀ 𝑖 ∈  𝑖 = 1, … ,4                                                eq.(2) 𝐶𝑎𝑝 × 0.8 ≤ 𝐶𝑎𝑝 × 𝑁 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  ∀ 𝑖 ∈  𝑖 = 1, … ,4                                      eq.(3)          𝐷 ≥ 𝐶𝑎𝑝 × 𝑁 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  ∀ 𝑖 ∈  𝑖 = 1, … ,4                                                     eq.(4) 𝑁 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒   ≤ 𝐿𝑖𝑚𝑖𝑡   ∀ 𝑖, 𝑗, 𝑘 ∈  𝑖 = 1, … ,4, 𝑗 = 1,2,3, 𝑘 = 1                                                                     eq.(5) 𝐹 ≥ 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒   𝑆𝑝𝑒𝑒𝑑⁄  ∀ 𝑖, 𝑘 ∈ 𝑖 = 1, … ,4 𝑘 = 1                                                                                          eq.(6) 
Ni, Fi, Pi, 𝐶 , 𝐶 , 𝐿𝑖𝑚𝑖𝑡 , 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 , , 𝐶𝑎𝑝 , 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒   , SpeedShip , CapShip, 𝐶 ≥ 0   ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑖 = 1, … ,4, 𝑗 = 1,2,3, 𝑘 = 1                                                                      eq.(7) 

4. Results 
Based on the given input data, the model suggests that the optimal combination of Fuel 
resulting in the best revenue to be attained is as follows: 
 

 
Figure.1: Summary of the obtained results. 

 
 

5. Conclusions 
This study presents Mixed Integer Linear Programming (MILP) as a means to provide an 
objective assessment of multiple potential maritime fuels Based on the assumed input 
data, the results imply that Ammonia is the most favourable bunker fuel given the fact 
that it is an environmentally friendly fuel which is less costly than hydrogen. Moreover, 
the results also show that the most favourable Fuel to be transported is Hydrogen, given 
its relatively high selling price. However, any turbulence in the energy market might lead 
to a change in this result. Moreover, LNG was deemed as the least favourable bunker fuel 
due to its high CO2 emissions. The use of CO2 abatement technology while consuming 
LNG as bunker fuel can lead to a significantly different result. This can be further studied 
by conducting a thorough sensitivity analysis. Results and conclusions attained from this 
model can be of value to decision-makers when good demand and price forecasts are used 
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as an input to this model. However, it should be noted that the quality of the forecasts 
used will dictate the reliability of the results obtained from this model. Future work 
involves extending the model to include a set of additional scenarios, which will, in turn, 
develop the complexity of the model.  
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Abstract 
Farming is a complex and responsive business that considers types of soils and crops, 
topography, climate, etc., while minimising inputs like land and water for an optimal 
yield. Typically, a farm to be managed involves planting, irrigation, spraying of nutrients 
and pesticides, manual inspection when looking for signals of harvesting stress or pest 
infestation, etc. When these activities are unreliable, yields of crops fluctuate so do the 
enterprise margins. However, to reach higher levels of performance, today’s agribusiness 
moves towards more sustainable and efficient operations within the so-called precision 
agriculture. From such a scenario, a process system engineering assessment is proposed 
to evaluate the impacts of industry 4.0 (I4) applications under circular economy (CE) 
concepts in the agricultural field. Particularly, we highlight drones or unmanned aerial 
vehicles as a tool in the agroindustry since numerous researchers and industries are 
designing and testing different principles and technologies that could be applied by 
replacing manpower with drones in engineering fields. A sensitivity risk analysis 
compares the I4 adoption and its CE impacts against an outdated agricultural-based 
production structure for corn production. It has been evaluated using subjective ratings 
for twenty sub-process components such as irrigation, monitoring, among others. The 
findings indicate that investments in agricultural drones’ capabilities will modify sub-
processes under CE principles, resulting in a process system re-engineering in this field. 
Agricultural drones can increase the economy of the processes coupled with 
environmentally friendly applications, whereby the impact on the social pillar of the CE 
is still debatable. 

Keywords: Precision agriculture, circular economy, industry 4.0, society 5.0. 

1. Introduction 
Modern society has gone through three previous industrial revolutions, when workloads 
were still highly labour-intensive in comparison with the ongoing high-tech societies in 
the advent of the 4th industrial revolution, so-called industry 4.0. Industries 1.0 and 2.0 
have brought human activities from focusing on hunting and agriculture (society 1.0) to 
industrial societies, when the combined inventions of mechanical movement (industry 1.0 
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and society 2.0) and electricity (industry 2.0 and society 3.0) replaced manpower from 
artesian/craft work to a mass production. Less than a century, industry 3.0 upgraded 
human activities to an extensive information age (society 4.0) of an automated and 
programmable production. Nowadays, industry 4.0 (I4) is reshaping communities into the 
so-called society 5.0 (S5) and enabling the creation of a new industrial society (within the 
augmented information age) where artificial intelligence (AI) will sense, calculate, and 
actuate to optimally support automated decision-making (Menezes et al., 2019). The I4-
S5 combination within the smartness of everything is represented by the increasingly 
connected societies that are supported by automation of things (AoT) using high-
performance computing and communication technologies in a cyber-physical system 
engine, whereby augmented information and pervasive communication technologies 
facilitate innovative industrial solutions that will completely reshape production systems.  

However, these transformational industrial societies are facing severe social, economic, 
and environmental challenges to adhere to the concepts of the so-called circular economy 
(CE) within today’s highly constrained sustainable process mandate. Moreover, the 
pressure in increasing levels of automation has been pushing the termination of a huge 
number of jobs. Therefore, such industrial societies are still not prepared for the onset of 
CE’s disruptions on well-established processes of work and ways of well-being since 
there are unbalances between I4 technologies and CE strategies to be solved. 

Nevertheless, despite the equilibrium of the I4-S5 to be determined for the next generation 
of industries and societies, the needs of improvements in the agricultural production go 
beyond economy. World population growth is expected to reach 9.7 billion in 2050 (UN, 
2019) challenges the search for increased production of crops to meet food demands 
without significant impact on the environment and society. In such direction, as a case of 
I4 in agriculture, we evaluate the impacts in the CE by using unmanned aerial vehicles 
(UAV) or agricultural drones. These apparatuses have been providing sustainable values 
in increasing crop production, monitoring plant health, and collecting vital insights of soil 
and vegetation, since the speed and accuracy these data are gathered using drones allow 
tangible improvements in farming management (Al-Ansari and Chawla, 2020). From 
such scenario, we propose a process system engineering assessment in the corn value 
chain considering a quantitative operational-risk evaluation over the application of drones 
under CE’s principles. 

2. Unmanned aerial vehicle impacts in precision agriculture  
Today’s move in academia and industry towards researching, developing, and deploying 
novel apparatuses and operations within so-called precision agriculture is modifying 
farming businesses (Menezes et al., 2020). In this field, UAV or agriculture drones are 
one of the best I4 solutions to support the next generation of agriculture as it 
revolutionises operations and reduces its environmental impacts. It becomes enormously 
popular over the last five years due to its inexpensive rapidly improving technology in 
terms of battery, motor, and scientific know-how stabilisation. Several UAV models have 
been developed over the past years varying in purpose, size, weight, and design. Each 
design has its own benefits and drawbacks based on target application usage. UAV allows 
the sensing of the physical world by capturing aerial data to generate accurate maps and 
3D models of their surroundings. By analysing these maps and 3D models, different 
industrial applications are enabling faster decisions that increase efficiency, improve 
safety, and reduce operational costs (Zhai et al., 2020). With such benefits, the UAV 
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usage rises across industries including engineering, mining, environment, agriculture, 
surveying, humanitarian, etc. 

The modern technologies in agricultural fields facilitate and generate a significant amount 
of data that can be processed remotely enabling a variety of advanced analytics and 
solving real world problems for an efficient agribusiness. Collected data is stored and 
mined using supercomputers providing the foundation for developing data-driven 
applications and solutions utilising artificial intelligence (AI). The supercomputers store 
data from multiple sources such as sensors on the ground for soil and plant analysis, 
mobile sensors or images attached on drones, and satellite imaging. The streams of data 
are the basis for extracting key operational information about soil condition, crop nutrient 
uptake, crop yield forecasting, estimation of optimum harvesting times, gas emissions for 
monitoring, and soil contamination.  

Many inputs and outputs to be considered for a precision agriculture in farming depend 
on the widespread application of I4. Traditional methods for planting, irrigation, 
inspection, spreading of pesticides, etc., can potentially waste time and resources as well 
as affect the environment negatively by misusing of soil, water, etc. These conventional 
farming activities are going to be replaced by autonomous engines to uniformly apply 
water, nutrients, and pesticides, to precisely plant the seeds within a perfect distance, and 
so forth. In terms of inspections, besides satellite imaging that became a revolutionary 
tool several years ago in the agriculture field, UAV offers an effective way to survey 
small to large scale operations, inspecting fields for signs of stress and pest infections as 
well as assessing crops management. Then, data analytics can be used to pinpoint areas 
of crop stress to determine when, where, and how much water, fertiliser, and pesticide is 
needed to sustainably produce healthy crops with upmost efficiency facilitated by I4 
capabilities.  

Considering the sustainable evolution of the industry and society, the interplaying of I4 
technologies and CE fundaments is a new frontline faced by engineering communities for 
their expansion. Although the underlying principles of CE have been included as an 
additional constraint in academia and industry since the last few decades, today’s theories 
and applications of CE are systematically encapsulated in a wider and a detailed approach. 
In the broader, the relationships among economic, environmental, and social pillars are 
being considered from now to design, operate, and control manufacturing systems and 
supply chains. Furthermore, CE’s details on re-do (or do-not) activities, behaviours, 
beliefs, etc., are transforming traditional industry and society towards their next 
generation. Hence, both CE concepts (pillars and R’s) account for the expansion of the 
sustainable industry interrelating environmental and social concerns that involve I4 
technologies within the society 5.0 (S5). Ritz et al. (2019) demonstrated that training in 
agricultural technologies in the AgTech program in France increased the profit in 
agricultural businesses among I4-trained farmers and defend that this should become a 
new prerequisite for smart farming. In such a context, we cover a case of I4 and CE 
interconnections in the agriculture industry that accesses operations and risks of I4 
adoption and impacts in the CE in a PSE assessment. 

3. Agricultural production operations and risks towards circular economy 
We consider in the I4-CE operational-risk assessment the upstream or supply side of the 
system boundary in the agribusiness value chain seen in Figure 1. Although the business 
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model describes the full range of activities comprising all steps that involve agricultural 
processes and products from harvesting to retailing, covering inbound logistics, 
operations, outbound logistics, marketing, sales, and service, we focus on the production 
step only where I4 applications under CE principles can be assessed and evaluated. 

 
Figure 1: Agribusiness value chain. 

According to Manitoba agriculture and resource development (Manitobia, 2020), the total 
cost for production of crops takes into account many setups, stocks and flows related to 
operations, fixed costs, and labour expenses. Operating costs are composed by seeds, 
treatment, fertiliser, herbicide, fungicide, insecticide, fuel, machinery operating, 
machinery lease, rental, custom, crop insurance, hail insurance, land taxes, drying costs, 
interest rate, and other minor costs. Fixed costs include land costs, machinery costs, 
storage costs. Labour cost is the hourly wage of the total number of needed labours per 
acre.  

To evaluate the impact of I4 and CE in manpower towards precision agriculture, the type 
of I4 technology used in each production step is investigated and categorised into 
unmanned aerial vehicles (UAV), manned aerial vehicles (MAV), unmanned ground 
vehicles (UGV), and manned ground vehicles (MGV). In the methodology, every 
production step, associated with each I4 adoption, is subjectively evaluated using CE’s 
detailed principles using the 9R model (refuse, rethink, reduce, reuse, repair, refurbish, 
remanufacture, repurpose, recycle, and recover), which is the extended form of the 3R on 
reduce, reuse, and recycle (Kirchherr et al., 2017). Then, the I4-CE impact in manpower 
is identified per each step, whereby labour involvement is clearly shown in land 
preparation, fertilising, irrigation, disease control, monitoring fields, and harvesting. As 
a labour-intensive industry, our proposition is to evaluate the impacts of I4 applications, 
under CE concepts, to manpower in agribusiness, in which drones participate as a 
sustainable and efficient manpower replacement tool in this field.  
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The operational-risk matrix methodology quantifies the possible risk level of each I4 
option under CE pillars (economic, environment, and social) considering I4 adoption into 
CE impact risk values of 0.1, 0.3, and 0.6 for low, medium, high risks, respectively. 
According to the department of agriculture in the United States (Dohlman, 2020; 
Harwood et al., 1999), agricultural risks that impact farming are classified into five 
categories: production, market, financial, institutional, and personal. Production risks are 
factors that affect both the quantity and quality of produced commodities. It is driven by 
the uncertain natural growth processes of crops and livestock. Market risks refer to the 
uncertain prices that producers must pay for inputs used to grow different types of 
commodities. Financial risks are related to loans, rising interest rates, restricted credit 
availability, etc. Institutional risks have a major impact on agribusiness that results from 
uncertainties surrounding government actions such as price levels, waste disposal rules, 
taxes, chemical use regulations, etc. Personal risks include job profiles, human health, 
relationships that affect the agribusiness, illness, accidents, death, divorce, and any social 
crises that can threaten the agribusiness. 

Pooling these risks in the I4-CE adoption-impact, we use the notation n for the number 
of processes, x denotes the CE pillar (economic, environment, social), P refer to the 
process itself. In the sensitivity risk analysis, the risk sum (Eq.1), its average (Eq.2) and 
the risk pooling (Eq.3) are defined to evaluate the environmental, economic, and social 
effects by adopting I4 in the agriculture processes.  

   (1),      (2),     (3) 

4. Results 
An integrated I4-CE sensitivity risk analysis against the base model has been evaluated 
based on subjective ratings for twenty agricultural subprocesses and summarised in Table 
1. The summation and averages of risks for each CE principle (Eco, Env, Soc) for all 
agricultural subprocesses are calculated and then pooled. Results show that UAV risk 
pool value is the lowest with 0.49, which is close to the theoretical minimum risk pool. 
MAV score 1.25 and UGV 1.20, both around the theoretical medium risk pool. MGV 
yield 1.44 in the direction to the theoretical high-risk pool. The theoretical minimum, 
medium, and maximum risk pool values are 0.3, 0.9, and 1.8, respectively. Some 
subprocesses are kept unrated (as zero risk) when there is no effect by the adoption of I4.   

Table 1: Summary results. 
I4 UVA MAV UGV MGV 

CE Eco Env Soc Eco Env Soc Eco Env Soc Eco Env Soc 

Risk sum  2.3 1.5 3.1 4.9 7.2 3.4 5.4 6.9 4.5 7.9 8.7 5.6 

Average  0.16 0.1 0.2 0.4 0.56 0.3 0.38 0.48 0.3 0.51 0.56 0.4 

Risk pool  0.49 1.25 1.20 1.44 
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5. Conclusion 
The results in Table 1 show that the UAV adoption promotes the most efficient utilisation 
of resources since the agricultural subprocesses will be re-executed efficiently allowing 
CE principles to be reached while maximising yields, although the effects on manpower 
would result in either replacing or reducing of it. More precision predictive and 
prescriptive analytics facilitated by agricultural drones, with the use of machine learning 
and artificial intelligence, creates results to be delivered through several channels, 
including farmers’ smartphones, farming servers, etc. Such augmented information 
enables farmers to make decisions or allows automated controls that manage drones to 
execute routine tasks such as fertiliser application, herbicide spraying, inspection, and 
monitoring in upmost efficient way. Drones facilitate fast and cheap inspections 
(descriptive and diagnostic data) for any potential issues such as lack of nutrients in 
certain areas of the land assets, indication of disease outbreaks, readiness of the crops to 
be harvested, etc. Moreover, collected data from drones can be visualised, interpreted to 
surface trends, and provide insights on the optimum solutions and segmentation of the 
tasks best carried out by either human labour or autonomous vehicles.  

Farmers are inclined to be more receptive to the use of technology which supports to meet 
sustainable and efficient production pathways without significant perturbation on 
traditional practices as well as when this is not compromising quality of life, and the 
environment. Agricultural drones have been considered to bring economic prosperity 
coupled to environmentally friendly applications, whereby the impact on social equity is 
still debatable. Although a side effect of the automation wave in precision agriculture is 
closing jobs on the upstream side (production), it generates standard manpower’s personal 
skills that will be upgraded and evolved in the so-called society 5.0 (S5).  
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Abstract 
Renewable fuels generation and the elimination of fossil-fuel reliance are an important 
part of sustainable growth. As petrochemicals are a key economic cornerstone of 
contemporary society, an impetus exists to find potential supply routes so as to maintain 
scarce resources. In addition, waste utilisation to manufacture value-added products is 
essential to mitigate emissions of greenhouse gases. Biomass, which is a neutral CO2 fuel, 
acts as a possible basis for the generation of energy and fuels. In addition, biomass 
gasification creates a syngas rich in hydrogen that can be used in the petrochemical 
industry for the production of value-added materials such as ammonia and methanol. 
Based on the existing developed biomass-treating infrastructure, incorporating large-
scale biomass value-added products into the existing petrochemical generating network 
can give significant benefits. In addition, there is high possibility to utilise other undesired 
by-products such as CO2 which exists within the same infrastructure network. In this 
research, Aspen Plus model is built based on the oxygen/steam gasification configuration 
for the production of H2-rich syngas by different feedstock available in the State of Qatar. 
The resulting syngas is used with an external combined CO2 source in the processing of 
methanol and urea. The results showed that the addition of the external CO2 source to the 
biomass gasification system could save around 3% of the emitted stream and increase the 
production of methanol and urea by around 4% and 10%, respectively. Moreover, the 
economics of the integrated system are optimised to maximise the utilisation of CO2 and 
minimise the capital and operating costs along with net environmental emissions. 

Keywords: Biomass Gasification, CO2 Utilisation, Economic Assessment, Optimisation 

1. Introduction 
Efficient utilisation of biomass, especially the landfilled waste biomass presents 
opportunities for significant reductions in global greenhouse gas (GHG) emissions, if 
used efficiently. Biomass is expected to contribute 120 to 155 exajoule (EJ) of the annual 
primary energy supply by 2050, which is substantial in comparison to the current total 
energy supply of 475 EJ (IPCC, 2011). Thermochemical conversion of biomass utilises 
catalysts and heat to convert solid materials into electric power, chemicals, or fuels. This 
is in contrast to biochemical biomass processing, that utilises microorganisms and 
enzymes for the same function. In reality, humanity has employed both thermochemical 
and biochemical methods for millennia. Interestingly, the prevalence for well over a 
century of fossil resources thermochemical conversion into energy, chemicals and 
electricity may be the cause for ignoring the thermochemical processing of biomass 
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(Zhang and Brown, 2019). Gasification offers variety of advantages as a commercial 
proven technology with a uniform intermediate product generation and diverse biomass 
feedstock options. The conversion of carbonaceous feedstock into liquid fuels has a long 
tradition of gasification. All these processes include the thermal oxidation of biomass to 
syngas at temperatures up to 1500 oC, producing a gas mixture of carbon monoxide, 
carbon dioxide, hydrogens, methane and small amounts of light hydrocarbons (National 
Academies of Sciences and Medicine, 2018). Up to 90 percent of the CO2 emitted from 
fossil fuel installations can be permanently deposited with advanced carbon capture and 
sequestration (CC&S) technologies. Efficient CC&S demonstration and introduction will 
almost remove GHG emissions and contamination related to coal, boost the atmosphere, 
health and the economy. Techniques such ocean alkalinity and soil amendment using 
biochar, bioenergy with carbon capture and storage (CCS) and direct air capture are 
instrumental to achieve this goal. CCS is considered to have some drawbacks, including 
information gaps in cost, life-cycle impacts, storage capacity and efficiency between 
production and usage. However, it remains a valuable method for minimizing CO2 
pollution that is being captured and stored (Parvez et al., 2020). The method of carbon 
capture and utilisation (CCU) is similar where CO2 is used instead of storage. As a means 
of lowering CO2 emissions and gaining economic benefits at the same time, CCU 
strategies have recently gained interest. Accordingly, carbon capture utilisation and 
storage (CCUS) technology is known to be an economically viable means of minimizing 
GHG emissions before more intensive use is made of renewable energies. By CCUS, CO2 
waste streams become feedstock of marketable product synthesis. The CO2 can be used 
as a source of carbon and an oxidant in many chemical reactions, replacing conventional 
feedstock products in the chemical, pharmaceutical, polymer and automotive industries. 
The gasification atmosphere of carbon and biomass has been used recently as complete 
or partial steam substitution. The H2/CO ratio of generated syngas can be regulated by 
the CO2 supply, which is a special feature in the use of CO2 in the atmosphere. The CCU 
techniques were studied in the production of multiple value-added materials through fixed 
network architecture. The technological and economic study revealed a possible revenue 
of $0.48 to $4.35 billion from CO2 use in the Gas-to-Liquid (GTL) process and a 
maximum revenue in the methanol processing process for 1.62 to 6 MT/y CO2 use with 
a maximum utilisation level (Al-Yaeeshi et al., 2020b; Al-Yaeeshi et al., 2020a). 
As for CO2 used as a gasifying agent in thermochemical conversion of biomass, a number 
of papers have been published but the knowledge on the basics of use of CO2 in the 
thermochemical conversion reaction or the resulting biomass-based syngas is still missing 
in the processing of useful products. In an attempt to contribute to the reduction of GHG 
and recycling of biomass waste, this study investigates the integration of CO2, which is 
primarily captured and utilised from fossil-based existing production facilities, within the 
biomass recycling and gasification plant is proposed as sustainable solution for the two 
problems. This integration can provide an added advantage for the production of 
chemicals and reducing the associated environmental impacts. In addition, the possible 
production volumes for fuel and green chemical products can also be improved, and 
potential beneficial results can thus be accomplished by addition of multiple biomass 
feedstock and refining the gasification process to yield high-quality syngas under working 
conditions, feed blending and increased parallel units. In this study, the steam/oxygen 
gasification of multiple biomass feedstock including food waste, date pits, sludge and 
manure is considered for the generation of hydrogen-rich syngas that is utilised along 
with captured CO2 in the generation of methanol and urea products. The integrated system 
is then evaluated by means of economic and environmental assessments and sensitivity 
analysis to allocate the optimal utilisation of CO2 stream. 
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2. Model development 
Advanced process models are useful to derive accurate energy efficiency and cost-
effective assessments of combined biomass gasification and CO2 utilisation routes. A 
model of biomass gasification plant should be capable of imitating true plant behaviour, 
regardless of ability. For simulating a variety of plant implementations, the commercial 
Aspen Plus platform is appropriate. The base simulation established in this study is 
focused on an steam/oxygen gasification configuration of various feedstock available in 
Qatar for the development of H2-rich product gas used in the production of methanol and 
urea with captured CO2 flows. In an earlier work to improve waste to hydrogen generation 
through the optimisation of gasification processes, the base simulation model using steam 
and oxygen was established (AlNouss et al., 2020). The base model has then been 
expanded to explore other gasification mechanisms (AlNouss et al., 2020c), to assess the 
potential integration between the gasification combined cycle and post-combustion CO2 
removal (Ghiat et al., 2020), to optimise the superstructure representation of application 
sinks and biomass sources while incorporating energy-water-food nexus approach 
(AlNouss et al., 2019a; AlNouss et al., 2019b). In this paper, the steam/oxygen 
gasification model is integrated with downstream application of methanol and urea 
production while utilising an external CO2 source to increase the production volume of 
the end products. Figure 1 illustrates the block flow diagram displaying the various 
processing steps of the integrated system. Aspen Plus simulation models are developed 
based on the assumptions of zero-dimensional simulation, neglected formation of tar with 
char is totally carbon, atmospheric operation with neglected pressure drop, steady-state 
and isothermal operation and instantaneous pyrolysis and drying. Three property 
packages, Peng Robinson with Boston-Mathias modifications, RKS-BM and NRTL are 
used to simulate the nonpolar and real species presented in the model. The multiple 
biomass feedstock with ultimate and proximate analyses presented in Table 1, is fed to 
the decomposition unit where they are converted from unconventional to conventional 
components. The impurities associated with biomass such as Ash and sulphur are 
separated before the actual gasification take place. The main carbon stream is sent to the 
gasification unit simulated as Gibbs reactor, where carbon reacts with steam and oxygen, 
at atmospheric pressure and a temperature of 850 oC, are carried out. Production lines for 
the processing of urea and methanol are further used with effluent syngas rich of H2 and 
an additional CO2 stream. 
Classified as petrochemical plants; urea and methanol are produced in a series of reaction 
and separation sections yield fertilising, anti-freeze and solvent used materials. Urea 
production line starts with biomass gasification to yield syngas that is further purified 
from water and CO2 before entering the loops of ammonia generation and urea production 
as illustrated in Figure 1.  The urea generation loop assumes a total of 80% CO2 and 
ammonia conversion to urea and a recovery of 90% for CO2 and ammonia (Urea). 
Whereas, an ammonia separation of 75% and a 7% purging of unreacted recycle H2 and 
N2 stream are assumed in the processing loop of ammonia in general with a 19 percent 
conversion from N2, and a 1:3 N2 to H2 ratio (Arora et al., 2016; Ammonia, 2. Production 
processes). The external CO2 stream is injected in the urea production loop as an addition 
to the normal CO2 utilised in the process in the ratio of 0.74:0.57 tonnes of CO2:ammonia 
to produce 1 tonne of urea (Al-Yaeeshi et al., 2020b). 
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Figure 1: Block flow diagram of the GTL process. 

On the other hand, methanol processing steps are simulated with the assumptions of a 9% 
purge of unreacted recycle gas stream and forward reaction mechanism. It utilises the 
hydrogen rich gas generated in the biomass gasification unit after removal of CO2 and 
Water impurities to achieve the compulsory (CO2+ CO):(H2-CO2) ratio of 2 as illustrated 
in Figure 1. Before entering the methanol convertor loop, a series of compressors and 
coolers bring the purified syngas to the required conditions which is then reacts with the 
external CO2 injection to yield crude methanol. Further, methanol is purified from water 
and leftover gases using light ends and heavy ends distillation columns. 
 

Table 1: Proximate and ultimate analyses of biomass feedstock as received basis. 
 Date pit  Food Waste Manure Sludge 
Mass Flowrate (t/y) 7.60x103 7.0x103 5.27x105 3.65x104 
Ultimate analyses (wt %)    

Ash 1.0 6.2 21.4 71.8 
S 0.0 0.0 0.5 0.1 
Cl 0.0 0.0 1.0 0.0 
O 37.9 37.4 31.4 5.7 
C 49.8 46.4 37.1 19.1 
H 6.8 6.9 5.1 2.3 
N 4.5 3.1 3.7 1.1 

Proximate analyses (wt %)    
Fixed carbon 17.2 7.7 13.5 19.4 
Volatile matter 81.8 86.1 65.0 8.8 
Ash 1.0 6.2 21.6 71.8 
Moisture 5.0 75.1 27.4 8.3 

LHV (dry basis) (MJ/kg) 34.07 19.12 19.40 20.50 
 

To ensure optimal viability and enforcement, it is important to ensure the feasibility of 
any downstream development route by environmental and economic assessments. The 
different production lines under review are measured from an environmental and 
economic perspectives by first quantifying the optimum injection of CO2 and calculating 
the net environmental pollution and the expense and income of the investment and 
operation. The combined economic and environmental research methods are used to 
analyse and accumulate relevant costs and pollutants of processes (AlNouss et al., 2020). 
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3. Results and discussion 
Aiming to quantify the optimal CO2 utilisation, sensitivity analysis has been conducted 
by varying the amount of CO2 injection and observing the trend of methanol and urea 
production as illustrated in Figure 2. The optimal CO2 is approximated at 14,800 and 
11,992 kg/h for the cases of methanol and urea production, respectively.  

 
Figure 2: Trends of methanol and urea production with the increase in CO2 injection. 

Following the identification of optimal CO2 injection, the material and energy balances 
associated with the optimal configurations are evaluated using Aspen Plus software. The 
results in Table 2 demonstrates higher requirement of steam in the methanol production 
route compared to the urea production line, necessary to generate the required (CO2+ 
CO):(H2-CO2) ratio along with lower oxygen requirement. 
 

Table 2: Material and energy requirements of the integrated utilisation techniques. 

 

Moreover, the techno-economic and environmental assessment has been conducted to 
benchmark the addition of CO2 to the normal production base cases. The results illustrated 
in Table 3 demonstrate an increase in the operating and capital costs with the addition of 
CO2 stream. This is justified given the higher operating capacity of the subsequent units 
and the additional utility requirement. This increase is accompanied with an increase of 
4% and 10% additional methanol and urea production for the optimal CO2 utilisation case.  
 

Table 3: The economic and environmental results of the integrated utilisation techniques. 

Parameter 
Methanol Production Urea Production 

Without 
CO2 

Optimal 
CO2 

Higher 
CO2 

Normal 
CO2 

Optimal 
CO2 

Higher 
CO2 

Total Capital Cost [$] 2.50x107 2.55x107 2.58x107 3.20x107 3.22x107 3.22x107 
Total Operating Cost [$/y] 4.42x107 4.57x107 4.68x107 3.40x107 3.42x107 3.43x107 
CO2 Utilisation [kg/h] 0  14,800  30,000  11,145  27,286   38,729  
Methanol Production [kg/h]  13,163  13,634  13,568  10,912  11,992   11,192  
Net CO2 Emissions [kg/h]  45,849  44,598  44,126  45,255  45,254   45,843  
Total Annualised Cost [$/y] 4.94x107 5.09x107 5.21x107 4.06x107 4.08x107 4.09x107 
Revenue [$/y] 5.65x107 5.85x107 5.82x107 4.78x107 5.28x107 5.08x107 
Net Profit per kg Output [$/kg] 0.062 0.064 0.052 0.076 0.113 0.096 
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Utilization technique Urea Methanol 
Circulated Combustion Heat (MW) 104.2 68.4 
Biomass Carbon content (kmol/h) 1.45 x 103 1.45 x 103 
Air (kmol/h) (95 O2,1.6 N2, 3.4 Ar) 1.00 x 103 0.80 x 103 
Steam (kmol/h) 1.64 x 103 4.00 x 103 
N2 (kmol/h) 2.37 x 102 3.73 x 102 
Syngas (kmol/h) 5.45 x 103 7.94 x 103 
H2 (kmol/h) 7.97 x 102 1.19 x 103 
CO (kmol/h) 2.66 x 102 2.20 x 102 
CO2 (kmol/h) after CO2 removal 0 2.49 x 102 
Product Mass Flow (t/y)  1.05 x 105 8.61 x 104 
Production reactor (MW) -0.17 -19.38 
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From the optimal CO2 injection results, it seems inefficient to raise the CO2 injection by 
such a large amount for a negligible increase in methanol production. However, the net 
profit per kg output has increased by 4% and 50% for the methanol and urea production 
cases at optimal CO2. In addition, a reduction in the net environmental emissions 
approximated at 3% for the case methanol production along with the fact that biomass 
and CO2 are utilised as waste streams. These changes in the economic and environmental 
results are inverted at a higher CO2 injection rates. 

4. Conclusions 
Based on the existing developed biomass-treating infrastructure, incorporating large-
scale biomass value-added products into the existing petrochemical generating network 
can contribute significant benefits. Furthermore, there is a high scope for utilising the 
same infrastructure network by-products such as CO2. In this research, the integrated 
system of the oxygen/steam gasification configuration and CO2 utilisation is evaluated 
for the generation of H2-rich syngas by different feedstock available in the State of Qatar. 
The resulting syngas is used with an external combined CO2 source in the processing of 
methanol and urea. The results showed that the addition of the external CO2 source to the 
biomass gasification system could save around 3% of the emitted stream and increase the 
production of methanol and urea by around 4% and 10%, respectively. Moreover, the 
economics of the integrated system are optimised to maximise the utilisation of CO2 and 
minimise the capital and operating costs along with net environmental emissions. 
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Abstract 
This contribution represents the synthesis of sustainable EU-27 energy supply networks, 
taking into account the production of renewable heat, alternative electricity, biofuel (first, 
second and third generation), hydrogen, food and other bio-products. A multi-period, 
mixed-integer linear programming (MILP) model is formulated, with the Sustainability 
Net Present Value (SNPV) as an objective. A gradual energy transition to 100 % 
renewable production of heat, electricity and fuels over a period of 40 years is examined. 
Efficient large-scale heat pumps, biomass cogeneration plants (CHP) and geothermal 
systems are considered for the heat generation. Taking these technologies into account, it 
is proposed that 58.2 % of renewable heat could be produced by biomass CHP plants, 
40.3 % by large-scale heat pumps and a further 1.5 % using geothermal energy. However, 
storage technologies need to be integrated into the supply network to satisfy peak 
electricity and heat demand. 

Keywords: supply network optimization, renewable energy transition, renewable 
heating, alternative electricity, biofuels 

1. Introduction 
To achieve the long-term reduction of greenhouse gas emissions and the goals of Paris 
Agreement, a major effort is required, as the consumption of renewable energy is still low 
in some sectors. At the end of 2018, the share of renewable energy in the EU in the 
transport sector was about 8.3 %, the share of renewable energy in the heating sector 
21.1 %, while the share of renewable energy in total energy in electricity generation was 
32.2% (Eurostat, 2020). Clearly, there is a large untapped potential, especially in the 
transport and heating and cooling sectors. Transition from fossil to 100 % renewable 
energy supply (Hansen et al., 2019; Bogdanov et al., 2021) requires an assessment of the 
local availability of renewable energy sources (RES), the use of appropriate renewable 
energy technologies and the system that can adequately integrate RES to meet daily, 
monthly and yearly demand (Østergaard et al., 2020). Moreover, the integration of storage 
technologies will play a very important role (Child et al., 2018). Biomass, wind, solar, 
geothermal and hydro energy are among the key resources in the transition to renewable 
production of heat, electricity and fuels. However, emphasis should also be placed on 
energy savings. There is great potential for increasing energy efficiency in the buildings, 
improving the linkages between electricity and heating systems and encourage the reuse 
of waste heat to ensure sustainable, secure and competitive energy supply at the EU level 
(European parliament, 2020). 

 http://dx.doi.org/10.1016/B978-0-323-88506-5.50243-6
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This work is an extension of the production and supply of food, fuels and electricity (Potrč 
et al., 2020) to the 100 % production and supply of heat from renewable energy sources 
by 2060. In heat production, coal and natural gas are gradually being replaced by 
alternative electricity, using efficient large-scale compression heat pumps, biomass CHP 
and geothermal energy combined with heat pumps. To the best of the authors' knowledge, 
no study has so far examined the long-term transition to 100 % renewable production and 
supply of heat, electricity and fuels at EU level without compromising food production, 
and taking into account the sustainability objective. The aim of the study is to examine 
the economic viability, environmental friendliness and social benefits of a 100 % 
renewable heat supply over the next 40 years in addition to the supply of electricity and 
fuels from renewable energy sources, and to assess the associated production capability 
of the EU. 

2. Approach to the sustainable synthesis of renewable supply networks 
The synthesis of 100 % renewable energy supply networks was based on a four-layer 
superstructure (Čuček et al., 2010). The first layer contains the potential locations of the 
resources. The second layer considers the production of electricity and heat from RES, 
together with electricity storage, pre-treatment facilities (oil extraction, drying, etc…) and 
storage of the resources that are further used for biofuel production. On the third level 
biorefineries are considered and on the fourth layer the end users (demand), including 
logistics within and between the layers. For the production of electricity, wind farms, 
solar photovoltaics (PV) and geothermal power plants (GT plant) are taken into account, 
together with biomass cogeneration technologies. Renewable heat can also be produced 
with large-scale compression heat pumps (HP) using electricity generated from renewable 
sources, and geothermal systems combined with large absorption heat pumps. In the case 
of HP, the average practical coefficient of performance (COP) has a value between 3.5 
and 4.5 (David et al., 2017), and this assumption has been used in this study. The use of 
intermittent sources (wind, solar) could be a bottleneck to meet peak electricity demand. 
Therefore, pumped hydro storage (PHS) systems with 80 % efficiency were integrated 
into the network to manage the supply at higher demand. Corn grain and wheat are 
primarily considered as raw materials for food supply, but the surplus can also be used 
for the production of biofuels, together with wheat straw, corn stover, forest residues, 
miscanthus, algae and waste cooking oil. Technologies used for the production of 
gasoline substitute (green gasoline, bioethanol), diesel substitute (FT-diesel, biodiesel), 
hydrogen and other bioproducts are: i) gasification and syngas fermentation, ii) 
gasification and catalytic synthesis of biomass, iii) Fischer Tropsch (FT) synthesis, iv) 
gasification and lignocellulosic hydrogen production, v) dry grind process and vi) 
production of biodiesel from waste cooking oil (WCO) and algal oil, with methanol or 
ethanol as catalysts (Martin and Grossmann 2013). 
The optimization was performed using multi-period mixed-integer linear programming 
(MILP) model. It should be noted that non-linear investment terms were linearized with 
piecewise linear approximation. The model considers yearly, monthly, daily and hourly 
time periods. In the case of biomass and waste availability, and demand for biofuels and 
food, monthly periods are taken into account, while wind and solar energy availability, 
electricity demand, heat demand and electricity storage are modelled on an hourly basis. 
Yearly time periods are included to assess the gradual, steadily increasing transition to 
sustainable energy systems. In the present case study, the maximization of the 
Sustainability Net Present Value (SNPV) is used as an objective (Zore et al., 2018), which 
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is composed of the Environmental NPV (NPVEco), the Economic NPV (NPVEconomic) and 
the Social NPV (NPVSocial), as described by Eq. (1). 

Economic Eco SocialSNPV NPV NPV NPV    (1) 

NPVEconomic is calculated as the sum of annual net cash flows (the sum of revenues and 
salvage value reduced by expenditures and investments) over the project lifetime, with 
each annual net cash flow discounted to the present time. NPVEco is defined as the 
difference between eco-benefits and eco-costs, where the burdening and unburdening 
effects of raw materials, waste, technologies, transport, energy, products and additional 
land use are determined using the eco-cost coefficients (Delft, 2016). NPVSocial is 
determined as the sum of the social security contributions paid by newly employed 
workers and employers, and social unburdening effect from the creation of new jobs, 
reduced by the social costs incurred by the social support provided by the state and the 
company to the employees. The model includes energy and mass balances, conversion 
and production constraints, economic, environmental, and social constraints, and 
constraints on investment, pretreatment, operating, storage, and transportation costs. The 
restrictions for the model are also the area in each zone for food, biofuel, heat and 
electricity production, minimum and maximum capacities for facilities and storage, and 
maximum allowable distances between source sites, production facilities, and demand 
sites. Best available renewable heating technologies have been selected to be used and 
their specifications (costs, capacities, lifetime) were taken from (IRENA, 2013). All 
different kinds of data on the total area of each zone, yields per hectare and the availability 
of intermittent sources in each zone, conversion factors, costs and prices, demand 
(Eurostat, 2020), coordinates of each zone, coefficients used to determine the environmental 
impact, wages, transport losses, etc., were inserted into the optimisation model in a data-
independent form, allowing the model to be applied to other large-scale case studies. 

3. EU-27 case study 
The methodology is applied to the European Union case study, in which the EU is divided 
into 47 zones. Larger Member States are divided into several zones to take account of 
differences in the availability of resources within a country. To achieve 100 % renewable 
energy supply, the following gradual transition is assumed: a) for 2020, the current share 
of renewable energy in electricity, heat and fuel production in each Member State is 
optimized, b) by 2040, a minimum of 50 % renewable energy should be achieved in each 
sector, c) by 2050, 75 % renewable energy should be produced, and d) 100 % renewable 
energy supply must be achieved in all sectors by 2060. Gradual electrification of the 
transport sector is assumed, up to 50 % by 2060, leading to increased demand for 
renewable electricity. The share of nuclear energy in total electricity generation is 
assumed to gradually decrease from the current 26 % to 15 % by 2060. The multi-period 
model that synthesizes sustainable renewable energy supply networks is formulated in 
GAMS modelling interface (version 27.2.0) and consists of 4,619,882 single equations, 
146,827,714 single variables, and 25,286 discrete variables. The model is solved in about 
10 hours with the Gurobi solver on the HPC server DL580 G9 CTO (4 processors - 32 
core, Intel® Xeon® CPU E5-4627 v2 @ 3.30 GHz, 768 GB RAM). 

3.1 Results and discussions 
The main optimization results are presented in Table 1 and show the dynamics of the use of 
different technologies from 2020 to 2060, where the demand for renewable energy will 
increase from the current share to 100 %. The main technologies proposed for heat 
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generation in the early years are large-scale heat pumps (HP) (73 % of renewable energy 
demand), that use the surplus electricity from wind turbines and solar photovoltaic systems. 
The share of heat produced from biomass CHP is increasing over the years; for 2040, when 
the heat sector must reach 50 % renewable energy, 27.7 % of renewable energy needs will 
be covered by biomass CHP, while for the 100 % transition, it is proposed to produce 58.2 
% of renewable heat using biomass CHP and 40.3 % from HP. In addition, it is proposed 
that 1.5 % of heat should be generated by geothermal systems using HP to increase the 
temperature of the heat. Wind farms are the most promising technology for alternative 
electricity generation, producing 64.1 % of the total renewable electricity demand in 2060. 
The share of solar PV will increase with the growing demand for renewable electricity, 
reaching 31.3 % when a complete transition is required. Small parts of the RES electricity 
demand are covered by biomass CHP and geothermal systems (4.6 %). 
Table 1. Main results of the transition towards 100 % renewable energy production by 2060. 

Items  Year 2020 Year 2040 Year 2060 
Heat (renewable energy target, %) 22.1 50.0 100.0 
 Large HP (TWh/y) 872 (73.0 %) 1,955 (72.3 %) 2,179 (40.3 %) 
 Biomass CHP (TWh/y) 323 (27.0 %) 749 (27.7 %) 3,147 (58.2 %) 
 Geothermal+HP ( TWh/y ) / / 81 (1.5 %) 
Electricity (renewable target, %) 34.1 50.0 100.0 
 Wind farm (TWh/y) 965 (97.3 %) 1,405 (78.7 %) 2,493 (64.1 %) 
 Solar PV (TWh/y) 10 (1.0 %) 337 (18.9 %) 1,217 (31.3 %) 
 Biomass CHP (TWh/y) 17 (1.7 %) 43 (2.4 %) 167 (4.3 %) 
 GT plant (TWh/y) / / 12 (0.3 %) 
Biofuel (share in transport sector, %) 8.9 30.0 50.0 
 Bioethanol (kt/y) 8,483 (43.1 %) 25,398 (35.7 %) 49,088 (41.4 %) 
 Green gasoline (kt/y) 1,358 (6.9 %) 10,173 (14.3 %) 10,173 (8.6 %) 
 Biodiesel (kt/y) 9,841 (50.0 %) 10,600 (14.9 %) 13,280 (11.2 %) 
 FT-diesel (kt/y) / 24,971 (35.1 %) 46,005 (38.8 %) 

NPVSustainability (1.0∙106 €) / 2,979,482 8,378,409 

Area used (% of total) 11.10 12.90 24.86 

 

With 50 % electrification of the transport sector expected by 2060, the demand for 
biofuels is expected to reach half of today’s consumption of diesel and gasoline. Biodiesel 
is proposed as a diesel substitute in the near future, while for the long-term transition, it 
is proposed to produce FT-diesel in larger quantities. On the other hand, bioethanol is 
proposed as the most suitable replacement for fossil-based petrol in the coming years. 
Note that the use of wheat and corn and the associated production of first-generation 
bioethanol was not selected due to competition with the food supply chain. The results 
showed that the sustainability NPV increases over the years and amounts to 8,378,409 
M€ by 2060, with the environmental and economic pillars making the highest 
contribution to the overall sustainability. Compared to our previous model, which 
considers the production of fuel and electricity from RES, the value of SNPV has almost 
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doubled due to the integration of heat into the renewable energy supply network. It should 
be noted that the integration of the energy storage system into the network has 
significantly contributed to this. The results indicate that it is economically advantageous 
to store excess electricity (most of the surplus electricity is generated at night and at 
weekends) using pumped hydro storage plants, and feed it back into the grid when 
demand for electricity and the selling price of the electricity are higher. The area dedicated 
to the production of food, renewable fuels, electricity and heat will increase over the 
years. To achieve 100 % renewable energy supply within the EU, almost 25 % of the total 
area is used, twice as much as is needed to meet 50 % of demand. Figure 1 shows the 
distribution of renewable heat generation between 2020 and 2060. For the first year 
(Figure 1a, optimized current demand), mainly large-scale HPs are proposed; in each zone 
it is proposed that the surplus electricity generated by intermittent sources is used for heat 
production. In addition, biomass CHP plants are proposed mainly in Finland and to a 
lesser extent also in Slovakia, Bulgaria, Spain, Estonia and Lithuania, as these zones have 
higher availability of forest residues compared to other sources. 

 
Figure 1. Distribution of renewable heat generation within EU-27 for: a) year 2020, b) year 2040 -
-50 % renewable heat target, and c) year 2060 - 100 % renewable heat target. 
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For the year 2040 (Figure 1b), when renewable heat will have to cover 50 % of heat 
demand, higher capacities at existing sites are proposed. For the 100 % renewable heat 
supply (Figure 1c), biomass CHP plants are proposed to be installed additionally in 
Finland, Slovenia, Portugal, central Spain, France, northern Italy, Czech Republic, 
Romania, Poland and Germany. Geothermal systems are also suggested in Hungary, 
Romania and southern Germany. The production of renewable heat using large HP is 
proposed to be used in all zones in all periods considered. 

4. Conclusions 
A multi-period MILP model for the synthesis of sustainable renewable energy supply 
networks has been developed. Efficient renewable energy sources are considered, such as 
biomass, waste, residues, geothermal energy and intermittent sources (solar and wind 
energy). The results show under which conditions it would be possible to generate 
renewable heat in addition to renewable fuels and electricity within the EU in order to 
reach the zero-carbon emissions target. The most promising solution in the first years are 
large-scale heat pumps using an excess of alternative electricity, while in the following 
years biomass CHP plants will be very important for achieving the 100 % transition to 
renewable heat supply; it is proposed to achieve 58.2 % of renewable heat supply by 
biomass cogeneration plants and 40.3 % by large compression heat pumps. However, in 
order to achieve a complete supply of renewable energy in the electricity, heating and 
cooling and transport sectors, a large part of the area would have to be dedicated (almost 
25 % of the total area). As we cannot afford to double the area dedicated to the renewable 
energy production, the emphasis should be oriented toward increasing energy efficiency, 
e.g. through cross-sectoral energy integration. The study will be further expanded to 
include uncertainties in costs, prices, yields, efficiencies, readiness of technologies, and 
other uncertainty issues to obtain an even more realistic design. 
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Abstract 
In this work, we address a simultaneous optimization and heat integration of a macroalgae 
biorefinery based on a previous study. As regards heat integration, it considers 
minimization of heat exchanging total annual cost, assuming isothermal mixing of the 
streams and overall heat balance within each stage. The resulting MINLP model has 1236 
continuous variables, 339 binary variables and 1338 constraints. Hot and cold utilities 
were 43 % reduced signifying 53 % of savings. Moreover, it favored the environmental 
aspects of the process which disregarded though it may be, we consider it crucial. 
 

Keywords: brown macroalgae, heat integration, MINLP. 

1. Introduction 
Macroalgae or seaweeds are photoautotrophic multicellular organisms grouped according 
to their photosynthetic pigments in green (Chlorophyta), red (Rhodophyta) and brown 
(Phaeophyta) algae. The main current applications of macroalgae, with a global market 
of USD 6 billion per year (FAO, 2018), are human food, hydrocolloids production 
(alginates, agar and carrageenans), fertilizers, biomass for fuel and wastewater treatment 
(Casoni et al. 2020).  
 
The need of green processes has led to the study of the suitability of macroalgae as 
feedstock for sustainable production of fuels, chemicals, and materials within an 
integrated biorefinery concept (e.g. Ingle et al. 2018, Casoni et al. 2020). With 4867 km 
of coastline and the appropriate climatic conditions for macroalgae growth, Argentine 
Patagonia constitutes a key place for the macroalgae-based sustainable industry 
development. 
In this work, we propose a mixed-integer nonlinear programming (MINLP) model for the 
optimization and heat integration (Nemet et al., 2020) of a macroalgae-based biorefinery 
based on two Argentinean brown algae (Macrocystis pyrifera and Lessonia sp.) to 
produce sustainable production of chemicals, materials, and biofuels. To our best 
knowledge, this specific kind of biorefineries have not been deeply studied. Therefore, 
incorporating heat integration aspects, contributes to constitute a useful model to evaluate 
the viability of brown macroalgae biorefineries. 
 
Process Description 
The proposed framework is based on a macroalgae-based biorefinery model developed in 
an early study (Casoni et al., 2020) which has been extended to handle and address heat 
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integration aspects. The optimum pathway was the production of isosorbide dinitrate from 
M. pyrifera depicted in Figure 1. 
 

 
Figure 1. From top to bottom: Section 1, 2 and 3 showing the optimum pathway for the 
production of isosorbide dinitrate from M. pyrifera.    
 
The process begins with drying the macroalgae up to obtain 20 % of moisture in the unit 
DR, followed by a press unit (PR) for macroalgae milling. Then, the process stream is 
heated up to 120 °C before feeding it into the reactor RC1 where the biomass is 
hydrolyzed. Afterward, the resulting stream is cooled down to 25 °C and filtered in FL1 
separating the hydrolyzed solid and an aqueous stream containing hydrolyzed sugars. The 
hydrolyzed solid is fed into an anaerobic digestor (AD), which is associated with a CHP 
unit to produce heat and electric power. Besides, AD produces fertilizers as by-products. 
The outgoing stream of FL1, constituted by aqueous sugar, is fed into the reactor RC2 
where is mixed with calcium carbonate (in a 0.043:1 calcium carbonate-to-acid ratio) to 
neutralize the remaining acid. After that, the stream is filtered in FL2 to recover the 
calcium carbonate, which is redirected to RC2. Finally, the process stream is fed into a 
column containing a polymeric ionic exchange resin (IEC unit) to isolated sorbitol (70 
wt.% aqueous solution). From the top of this column, a stream containing other sugars is 
considered as waste while the bottom one is led to section two: isosorbide production. 
Sorbitol stream from the first section is preheated up to 150 °C and enters to distillation 
column (DS1) to obtain pure sorbitol. The resulting stream is fed into the reactor RC4 
and is mixed with sulfated zirconium as a catalyst in a 0.02:1 catalyst-to-sorbitol ratio. 
The sulfated zirconium is obtained in reactor RC3 by mixing zirconium with sulfuric acid 
(98 wt.%) in a 25:1 zirconium-to-acid ratio. Then this stream is calcinated in the furnace 
FR1 to obtain the catalyst, which is led to reactor RC4. RC4 outlet stream is cooled down 
to 120 °C and then is filtered in FL3 to separate the catalyst that is calcinated and 
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regenerated into FR2 and led back to RC4. The process stream outgoing FL3 unit, which 
contains isosorbide and other impurities, enters reactor RC5 where xylene is added in a 
9.61:1 xylene-to-isosorbide ratio for impurity precipitation which are removed within 
centrifuge CN1. The outlet stream is heated up to 144 °C and fed into distillation column 
DS2. The top stream containing gaseous xylene is cooled down to 120 °C and redirected 
to reactor RC5. The bottom stream that is composed by isosorbide is cooled down to 25 
°C and sent to section three as substrate of the final products: Isosorbide dinitrate (ISDN). 
This final section begins with diluting isosorbide with water in a 3.267:1 isosorbide-to-
water ratio and cooling this stream down to 50 °C. Afterward, the main stream enters to 
reactor RC6 where isosorbide reacts with a mixture of nitric (63 wt.%) and sulfuric acid 
(98 wt.%) in a 7.315:1 sulfuric acid-to-nitric acid ratio. Acids are added to RC6 
considering a 1.36:1 sulfuric acid-to-isosorbide ratio. The RC6 outlet stream is fed into 
RC7, where water is added to precipitate isosorbide dinitrate. The water is added in a 
0.197:1 isosorbide dinitrate-to-water ratio. The resulting stream is filtered to recover 
isosorbide dinitrate while water is recirculated to RC7. The isosorbide dinitrate stream is 
heated up to 40 °C and mixed with ethanol in a 1.15:1 ethanol-to-isosorbide dinitrate ratio 
within the reactor RC8. Once this step is completed, the stream is filtered recirculating 
ethanol to RC8 and obtaining the final product.   

2. Mathematical modeling 
Firstly, the process units are modeled using mass and energy balances, equipment design 
equations, capital cost correlations, integer constraints and a process sustainability metric 
(RePSIM) is set as the objective function and maximized. Secondly, heat integration and 
the optimal heat exchanger network is performed using a modified SYNHEAT (Yee & 
Grossmann, 1990). In this sense, a new optimization problem is solved simultaneously 
with the heat exchanger network synthesis. 
 
3.1 Mass balances 
 
Non-reactive units mass balances are formulated as follows: 
 𝑓 , =  𝑓 , ∀𝜃 ∈ 𝜗 ∀𝑗 ∈ 𝐽  

(1) 

where 𝑓 ,  is component 𝑗 mass flowrate from the inlet stream 𝑘 to unit 𝜃 in kg/h and 𝑓 ,  
represents component  𝑗 mass flowrate from unit 𝜃 to outlet stream 𝑟 in kg/h.  
Reactive units mass balances are formulated as Eq. (2) describes.  
 𝑓 , = 𝑓 , + 𝜉 , . 𝐶 . 𝑓 , ∀ 𝜃 ∈ 𝜗′ ∀ 𝑟 ∈ 𝑅 ∀ 𝑗∈ 𝐽  ∀ 𝑠ℎ ∈ 𝑆𝐻

 
(2) 

 
where 𝑓 ,  is the mass flowrate of component 𝑗 from reactive unit 𝜃 to outlet stream 𝑟 in 
kg/h. 𝑓 ,  is component 𝑗 mass flowrate from the inlet stream 𝑘 to unit 𝜃 in kg/h. 𝑠ℎ 
represents the limiting reactant while 𝐶  is the conversion of the limiting reactant for 
reaction ℎ. 𝜉 ,  denotes the mass coefficient between 𝑗 and 𝑠ℎ in kg/kg, which is positive 
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for products and negative for reactants. Finally, 𝑓 ,  is the component 𝑠ℎ mass flowrate 
from the inlet stream 𝑘 to unit 𝜃 in kg/h. 
 
3.2 Energy balances 
 
Linear relationships are assumed for energy consumption. In this sense, thermal and 
electrical energy consumption are calculated as follows: 
 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 𝑄= 𝑓 ,  .  ℎ − 𝑓 , .  ℎ      

                        ∀ 𝜃 ∈ 𝜗 ∪ 𝜗′
 

 
(3) 

where 𝑄  corresponds to the heat exchanged in unit 𝜃  in kJ/h, ℎ  and  ℎ   correspond to 
the enthalpies of inlet and outlet streams 𝐾 and 𝑅 of unit  𝜃. 𝑓 ,  and 𝑓 ,  are the mass 
flowrates entering and leaving unit 𝜃 in kg/h.  
 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 𝐸𝐶 = 𝐸𝐶𝑅 . 𝑓 ,   

                                                 ∀ 𝜃 ∈ 𝜗 ∪ 𝜗′ 
 

 
(4) 

where 𝐸𝐶  represents electrical energy consumption in kJ/h, 𝐸𝐶𝑅  is the energy 
consumption ratio per unit of mass flowrate relative to unit 𝜃 in kJ/kg.   
 
3.3 Integer and mixed integer constraints  
 
Potential units proposed in the former superstructure (Casoni et al. 2020) are associated 
with binary variables in order to determine the optimal technological pathway. These 
variables are included in the model using propositional logic and Big M formulation, and 
are represented by inequalities as it is shown in Eq. (5). 𝑓 , − 𝐵𝑀. 𝑦 ≤ 0 ∀ 𝜃 ∈ 𝜗 ∪ 𝜗 ∀ 𝑖 ∈ 𝐼

 

 
(5) 

where 𝑓 ,  denotes the mass flowrate of component 𝑗 in stream 𝑘 of unit 𝜃 while 𝐵𝑀 is a 
large number that makes the constraint become redundant when 𝑦 = 1. On the other 
hand, the mass flowrate is forced to be null when 𝑦 = 0. It is worth mentioning that 𝐵𝑀 
choice is made considering the maximum mass flowrate involved in the corresponding 𝑖 
technological alternative. Furthermore, binary variables are involved in the heat 
exchanger network design denoting the matches between hot and cold process streams 
and utilities. 
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3.4 Design and economic constraints 
The nonlinearities of the problem appear in the equipment design equations and 
economics constraints, which were formulated following Ramos et al. (2019). 
 
3.5 Objective function 
RePSIM Eq. (6) is used as the objective function to evaluate the sustainability of the 
project. This metric aims at positive values, so that it is maximized. For further details 
please see Martin (2016).  
 𝑅𝑒𝑃𝑆𝐼𝑀 =  −𝑃 + 𝑀 + 𝐵 − 𝐹 − 𝑅𝑀 − 𝐸 − 𝑊 𝐶 − 𝐼 𝐶 + 𝐽𝑆+ 𝐹&𝐹 + 𝐹&𝐹 (6) 

 
On the other hand, heat integration of the flowsheet is performed minimizing the annual 
cost for the network as it is shown below (Biegler et al., 1997). 
 𝑁𝑒𝑡𝐶𝑜𝑠𝑡 = 𝐻𝑈 + 𝐶𝑈 + 𝐹𝐶 + 𝐴 (7) 
 
Where 𝐻𝑈  and 𝐶𝑈  are the hot and cold utility cost, respectively. 𝐹𝐶  is the 
fixed cost for heat exchanger and 𝐴  is the area cost of the exchanger. 

3. Numerical Results 
The MINLP model presented 5398 continuous variables and 13 binary variables and 5336 
constraints and it was solved with DICOPT (CONOPT and CPLEX) (Grossmann et al., 
2003). Besides, the energetic integration model possesses 1236 continuous variables, 339 
binary variables and 1338 constraints. The heat integration reduced the number of cold 
and heat utilities (Figure 2) which directly impacted on the environmental pillar of 
RePSIM. Before the heat integration, the process required 828 kW while after heat 
integration this value was 470 kW (43 % less). These results are in agreement with the 
published literature (Chong et al., 2020; Song et al., 2018), which mention a 32.1 % and 
a 42.8 % of energy reduction in a macroalgae waste biorefinery and a cellulosic 
bioethanol plant, respectively. In term of cost, this represented a 54 % of savings. As 
regard RePSIM environmental pillar, it showed an improvement of 14 %. Finally, it is 
worth noting that not only does heat integration improve economic aspects of a process, 
but it also improves the environmental one. 
    

 
Figure 2. Heat exchanger network 
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4. Conclusion 
In this work, we propose a mixed-integer nonlinear programming (MINLP) model for the 
optimization and heat integration of a macroalgae-based biorefinery to produce chemical 
compounds from brown macroalgae biomass. The heat integration was effective in 
reducing heat requirements denoting how beneficial this type of analysis results in process 
design. Future work would involve a sensitivity analysis study and waste water treatment 
in order to keep focusing on environmental aspects.   
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Abstract 

The growing interest in decarbonization promotes the spread of distributed generation 

and efficient load control approaches (demand-side management). In this framework, the 

definition of mathematical tools to tackle the integrated optimal management of energy 

resources and flexible loads is fundamental. This study addresses the optimal scheduling 

problem of a Multi-Energy System (MES) and thermal comfort management for 

buildings in a unified approach. Linearized simplified models of the buildings and district 

heating network (DHN) are included in the algorithm. The optimization can exploit 

thermal inertia of buildings and of DHN to increase the flexibility of the system. The 

proposed method is applied to a group of buildings of the Campus of University of Parma.  

 

Keywords: Multi Energy Systems, demand-side management, MILP, district heating 

network. 

1. Introduction 

The current energy transition towards more environmentally sustainable solutions has 

boosted the employment of distributed energy resources, encompassing both distributed 

generation and controllable loads. Local energy production has to cope with fluctuating 

renewable energy sources (RES) availability and therefore the need of flexible solutions 

is of major importance. The building sector shows great potential in this direction, as 

thermal mass - readily available - can be exploited to shift loads. Moreover, buildings 

represent a large fraction of final energy consumption, accounting for approximately 40% 

in Europe (Rousselot, 2018). This work addresses the concurrent optimization of the 

thermal comfort management in buildings, operation of the district heating network and 

scheduling of the Multi-Energy System (MES) supplying their electrical and thermal 

power. An extension of the MILP (Mixed Integer Linear Programming) scheduling 

problem formulation proposed by Bischi et al. (2019) for MESs is proposed, by including 

a linearized dynamic thermal model of the buildings and a simplified linearized model of 

district heating network (DHN). The formulation allows optimizing not only the operation 

of the units (unit commitment and economic dispatch) but also the profiles of thermal 

energy supplied to each building, the dynamic evolution of their indoor temperature and 
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delivery and return temperatures of the DHN. This enables the possibility of exploiting 

the heat capacity of the system to shift energy consumption and find a more economic 

operational planning for the generation units. The proposed method is applied to the 

Campus of University of Parma considering two different MES designs (supplying 

heating, cooling and electricity) and the optimized strategies are compared with the 

conventional management strategy.  

2. Problem statement 

The optimization addresses the weekly scheduling of the generators with the possibility 

to exploit the heat capacity of the buildings and of the DHN in order to increase the 

operational flexibility of the units and reduce energy consumption (or increase revenues 

from electricity sales to the grid). Constraints on indoor temperature variations are 

included in occupancy hours, to guarantee that thermal comfort is not jeopardized. The 

general operation planning problem can be formulated as follows: 

“Given:  

• a set of dispatchable generation units ℳ, with performance curves and technical 

limits;  

• a set of non-dispatchable units 𝒩𝒟;  

• a set of buildings 𝒦, with defined construction parameters;  

• forecasted electricity prices, forecasted electrical demand profile, forecasted 

occupancy profiles, forecasted outdoor air temperature and irradiance, 

determine (for each time step 𝑡 within the time horizon 𝒯):  

• the dispatchable units to be turned on and their load;  

• the power exchanged with the grid;  

• heating or cooling power supplied to buildings;  

• the buildings indoor temperature; 

• the delivery and return temperatures of the primary and secondary circuits; 

which minimizes the operating cost subject to the following constraints:  

• dynamic thermal balance of the building;  

• heating, cooling and electrical balance of the whole system;  

• technical limits of generating units;  

• thermal comfort requirements (desired temperature range within occupancy 

hours and ASHRAE dynamic comfort constraints);  

thermal propagation delay in pipes, limits on heat transfer in heat exchangers and heat 

balances across the heat distribution network. 

3. Energy system and buildings modelling 

Several studies have developed MILP models for the optimal operational planning of 

MES, where binary variables are required to include start-up/shut-down operation of 

units. However, a considerable number of papers deal separately with the energy system 

and the buildings supplied, either considering energy demand as an exogenous input or 

mainly focusing on buildings’ perspective. The decoupling of these two aspects results in 

underuse of the load shift capability of the buildings and sub-optimal performance of the 

generating units (Darivianakis et al., 2019). For this purpose, a linearized differential 

model of the building is included in the algorithm, accounting for power input, heat 

exchange through walls, air infiltration losses and the contribution of air forced 

ventilation. When dealing with the management of buildings within an energy district, 

the thermal propagation delay in pipes cannot be neglected and therefore the linearized 
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dynamics of the district heating network are included in the MILP. In the following, we 

present the main features of the model. 

 

3.1. Performance curves 

The part-load performance curves (power input - output relationship) of the generating 

units have been linearized with minor approximations (<5%), as shown in Zatti et al. 

(2018). The effect of the outdoor air temperature 𝑇𝑒𝑥𝑡 is computed for the heat pump (HP) 

and the compression chiller (CC), through a linear function whose value affects the 

different load rates independently. As a matter of fact, the power output of these units is 

multiplied to the coefficient 𝑘𝑇, resulting from the best-fit of the performance data found 

in Yu et. al (2007) and Johnson (2013): 

𝑘𝑇 = (𝑚𝑇 ⋅ 𝑇𝑒𝑥𝑡 + 𝑞𝑇) (1) 

Where: 𝑚𝑇 and 𝑞𝑇 are the coefficients of the linear best-fit. Moreover, a penalty for start-

up is included in the model as a reduction of machines useful output. To this end, we 

introduced a binary variable Δ(𝑖, 𝑡) to state whether the unit has been switched on at a 

given timestep. This variable is linked to the unit commitment binary variable 𝑧(𝑖, 𝑡) by 

a set of inequality constraints, as described by Bischi et. al. (2019).  

3.2. Building model 

The model adopted in this work is a single state grey-box, derived from Gambarotta et al. 

(2017), where the coefficients of buildings are found trough best-fit of TRNSYS white-

box model, by activating sequentially the contributions: 

𝐶𝑗

𝑑𝑇𝑗

𝑑𝑡 
= 𝑈𝐴 ⋅ (𝑇𝑒𝑥𝑡 (𝑡) − 𝑇𝑗(𝑡)) + 𝑚𝑐𝑝,𝑛𝑎𝑡 ⋅ (𝑇𝑒𝑥𝑡(𝑡) − 𝑇𝑗(𝑡)) + 𝑚𝑐𝑝,𝑓𝑜𝑟𝑐𝑒

⋅ (𝑇𝑈𝑇𝐴(𝑡) − 𝑇𝑗(𝑡))  + 𝑄𝑖𝑟𝑟(𝑡)  + 𝑄𝑜𝑐𝑐(𝑡)  + 𝑄𝑗(𝑡) 
(2) 

Where: 𝑇𝑗(𝑡) is indoor temperature, 𝑇𝑒𝑥𝑡(𝑡) is outdoor air temperature, 𝑇𝑈𝑇𝐴(𝑡) is the 

temperature of the air coming from the air treatment unit, 𝐶𝑗 is the total thermal capacity 

of the building, 𝑈𝐴 is the mean thermal transmittance of the envelope multiplied by its 

surface, 𝑚𝑐𝑝,𝑛𝑎𝑡 and 𝑚𝑐𝑝,𝑓𝑜𝑟𝑐𝑒  are respectively thermal capacity of  infiltration air and 

air forced ventilation, 𝑄𝑖𝑟𝑟(𝑡) and 𝑄𝑜𝑐𝑐(𝑡) are solar and internal gains, while 𝑄𝑗(𝑡) is heat 

supplied to end-users. In particular, 𝑇𝑗(𝑡) and 𝑄𝑗(𝑡) are the variables optimized by the 

model, in compliance with comfort requirements. In order to be implemented in the 

MILP, the differential equation is approximated using forward finite differences. We 

compared the approximated solution with the analytic one found for some test input 

profiles with a time step of 7.5 minutes (adopted for the optimization). The resulting 

absolute error in assessing the internal building temperature was lower than 0.05°C, 

sufficiently good for the purposes of the operational planning optimization. 

3.3. District heating network model 

The general scheme of DHN is depicted in Figure 1. The proposed approach can be 

applied to DHNs with radial configuration, where each building has a dedicated primary 

circuit connecting its internal secondary loop with the power generation site. The DHN 

is assumed to operate with a constant mass flow rate, while the heat transferred across the 

system is adjusted by changing the primary water delivery temperature 𝑇𝑝
𝐷 (equal for all 

buildings). Moreover, each building can decrease its input thermal power by opening the 

bypass valve of the heat exchanger. Assuming that the flow with minimum heat capacity 

rate is the primary loop during the heating season and the secondary loop in the cooling 
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season, the thermal power provided to each building j can be written as a linear function 

of the delivery temperature of the DHN (see Eq. (3)). 

Q(j, t) ≤ ε (j) ⋅ c𝑤 ⋅ ṁmin(j) ⋅ (TH
IN(j, t) − TC

IN(j, t)) (3) 

Where: 𝜀 is nominal effectiveness of the heat exchanger, 𝑐𝑤 is heat capacity of water,  

�̇�min is the mass flow rate of the fluid with minimum thermal capacity, 𝑇𝐻
𝐼𝑁(𝑗, 𝑡) is the 

inlet temperature of the hot fluid and 𝑇𝐶
𝐼𝑁(𝑗, 𝑡) is the inlet temperature of the cold fluid. 

A constraint is included in the MILP to guarantee that the minimum thermal capacity is 

always on the same side of the heat exchanger. In order to consider the delay in heat 

propagation, we related the inlet 𝑇𝑖𝑛(𝑡) and outlet 𝑇𝑜𝑢𝑡(𝑡) temperature of the pipe, 

following the approach of Dobos et al. (2014). Assuming one dimensional flow, 

neglecting heat conduction in the axial direction and heat capacity of pipes, the solution 

of the energy conservation equation in the pipes is: 

Tout(t) = T∞ + (Tin(t − Δt) − T∞) ⋅  (1 −  
4 ⋅ kp

Dp ⋅ cw ⋅ ρw  
⋅  Δt) (4) 

Where: 𝛥𝑡 is time delay, 𝜌𝑤 is water density, 𝑘𝑝 is the heat transfer coefficient between 

the pipes and the surroundings, 𝐷𝑝 is the pipe diameter, 𝑇∞ is the temperature of the 

surroundings. This equation can be employed in the MILP model as long as the time 

discretization is sufficiently tight to capture the time delay in heat propagation (i.e. the 

time resolution has to be lower than the time the water needs to reach the closest building 

from the power plant). For this purpose, we considered a time resolution of 7.5 minutes 

in the case study. 

 

Figure 1 – Scheme of the primary and secondary heating loops serving building j. 

3.4. District heating network model 

In the conventional management strategy, the thermal power provided to the buildings is 

adjusted to keep a set point of 20°C ±0.2°C during the heating season, and of 25°C ±0.2°C 

in the cooling season. The water delivery temperature of DHN is increased linearly as a 

function of the outdoor air temperature. The conventional optimization approach (without 

thermal comfort management where the heat demand profile is fixed) can be reproduced 

by imposing these binding constraints on the internal building temperatures. Instead, the 

Thermal Comfort Management (TCM) strategy, the building indoor air temperatures, the 

DHN water delivery and return temperatures and the thermal power supplied to each 

building are optimized in the MILP, in compliance with comfort requirements of the users 

during occupancy hours. In particular, we assumed that the users (students and university 

staff) accept to participate to a demand side management program, allowing a quality 

band of ±2°C around the summer and winter setpoints (18 °C-22 °C in the cold season 

and 23 °C-27 °C in the hot season). To avoid abrupt changes of temperature, ASHRAE 

standards (2004) constraints on ramps and drifts are included: the variation of temperature 

within an hour must be lower than 2.2°C, while the limit in 15 minutes is of 1.1°C. During 

non-occupancy hours, the building temperatures are free to vary outside the quality 

ranges.  
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4. Case study 

The presented method has been applied to a group of 12 buildings of Campus of 

University of Parma.The area to volume ratio of the buildings varies from 33% to 55%, 

while time-constant (the ratio between thermal capacity and dispersions) ranges from 34 

h to 158 h. Given the diversity of these features, the resulting indoor temperature profiles 

will differ between buildings. Thermal comfort requirements must be respected during 

working hours, i.e. from Monday to Friday from 8 a.m. to 6 p.m. The scenarios 

investigated encompass 3 different weeks of the year, representative of winter, mid-

season and summer. The purchase price of electricity is derived from historical data of 

2018 non-domestic users in Italian protected market (tri-hour tariff), while the purchase 

price of natural gas is defined on the basis of yearly average consumption of the university 

campus. We considered 2 different MES configurations: Design D1 features a boiler and 

a compression chiller, while design D2 comprises a HP - covering half of the heat peak - 

auxiliary boilers, a CC and PV panels. 

5. Results 

The optimizations have been formulated with Pyomo and the MILP has been solved with 

Gurobi solver. The solution of the large scale MILP (250160 continuous variables, 6725 

binary variables, 384059 constraints) needs approximately 5 hours for optimizing the 

weekly operation with a time resolution of 7.5 minutes. If the optimization horizon is 

shortened to three days, the computational time reduces to only 20 minutes. With TCM, 

the algorithm can either decide to reduce the heat requirements of buildings or to store 

heat in their mass (i.e. when there is availability of RES). Figure 2 highlights the different 

thermal behavior (in design D2) of two buildings of the campus B0 and B1, respectively 

featuring a high and a low thermal capacity. The MILP can also exploit DHN thermal 

inertia, by varying water delivery temperature. As such, this temperature rises in the 

presence of RES (Figure 2) and it drops in the rest of the day, reducing the share of excess 

PV production sold to the grid at low price (from 84% in the reference strategy to 38% 

with TCM) and increasing the HP production (Figure 3). When there is a mismatch 

between thermal demand and low electricity price periods (i.e. with the CC), TCM 

enables production shifting. Furthermore, the flexibility provided by TCM slightly 

enhances machines performance, reducing boiler switching on/off and operation at partial 

loads, and advancing chillers start up in order to benefit from lower outdoor temperature 

(mean COP improves from 3.7 to 4.2). All these sources of flexibility explained so far 

operate concurrently and positively affect the total operating costs, as shown in Table 1, 

where the savings of TCM compared to the reference scenario are outlined in three weeks 

of the year (winter, spring and summer).   

 
Figure 2. Temperature profiles (Saturday-Friday) of Design D2, in the reference strategy and with TCM. 

Right: indoor temperature profiles of buildings B0 and B1, with respectively high and low thermal capacity. 
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Figure 2. Unit commitment (Saturday-Friday) of Design D2, in the reference strategy and with TCM.  

 

Total operating costs 

  W1 W2 W3 
D1 -14.4% -48.0% -26.4% 
D2 -2.8% -21.6% -7.6% 

Table 1. Variation of total operating costs with TCM compared to the reference strategy in MES Design D1 

and D2, in three weeks of the year (W1 = winter; W2 = spring, W3 = summer) 

6. Conclusions and future works 

The presented MILP approach appears to be effective not only for operational planning, 

but also to manage comfort in buildings. Its limited computational time allows solving 

weekly basis problems with very fine time resolution. It can be easily integrated into 

rolling horizon algorithms today used for optimizing the energy management strategy of 

multi-energy systems and energy districts.  

Future extensions of the methodology may include more detailed models of the buildings 

and thermal energy comfort, as well as extending the optimization approach to cope with 

forecast uncertainty. 
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Abstract 
Coupling of reaction and extraction, along with the ability to significantly increase 
reaction yields at milder conditions, makes liquid-liquid phase transfer catalysis an 
attractive intensified solution for many industrially important processes. Although there 
has been some work in terms of mechanistic modeling, solvent selection for such 
processes has remained a largely untouched topic by academia and industry. This work 
provides a path towards a systematic solvent screening or design framework by providing 
a quantum-chemistry-based evaluation method to find suitable green solvents for toluene 
in the process of hydrogen sulfide valorization from natural gas. From a pool of eight 
candidate alternatives, three are chosen to be suitable substitutes for toluene based on 
technical, economic, and environmental measures. 
 
Keywords: green chemistry, sustainable engineering, reactive extraction, COSMO-RS, 
reaction path analysis. 

1. Introduction 
Liquid-liquid phase transfer catalysis (LL-PTC) belongs to an important class of 
intensified processes called multiphase reactive extraction. It has been reported to enable 
novel synthesis routes, higher yields, and faster reactions, while also facilitating the 
separation of certain species. Pudi et al. (2020) have shown a promising application of 
LL-PTC to offshore gas sweetening process as a replacement for the expensive and 
unsustainable triazine-based hydrogen sulfide (H2S) removal method. In that work, the 
advantage of integrating quantum chemistry and Conductor-like Screening Model for 
Real Solvents (COSMO-RS) into process design has been clearly established. However, 
the emphasis of such studies has been put mostly on catalytic and mechanistic 
considerations with little attention paid to the choice of organic solvent. Due to the 
increasingly tight regulations and strong public opinion, a thoughtful selection for 
process-efficient and sustainable solvents in industrial activities has become an 
immediate requirement for chemists and chemical engineers alike. In an effort to meet 
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this need, this work shifts the focus towards the rational selection of green solvents to 
perform the biphasic production of benzyl mercaptan (BnMer) from benzyl chloride 
(BnCl) using tetrabutylammonium bromide (QBr) as the phase transfer catalyst. The 
specific chemical system and the reactions are reported by Pudi et al. (2020).  

2. Methodology 
2.1. Computational tools 
The quantum chemistry program package, TURBOMOLE version 7.4, is employed for 
electronic structure calculations using density functional theory (DFT) and COSMO. The 
calculations are performed using the Becke-Perdew functional with the Ahlrichs basis set 
of triple-zeta valence plus polarization (BP-TZVP) to obtain the optimized structures, 
ground-state electronic energies, vibrational frequencies, thermal corrections to the free 
energy, and optimized reaction path. Based on the optimized DFT-COSMO molecular 
structures, the COSMO-RS solvation model implemented in COSMOtherm Release 19 
is used to obtain liquid-phase thermodynamic properties, such as partition coefficients 
and free energies of solvation. In addition, the ProPred toolbox in the Integrated 
Computer-Aided System (Gani et al., 1997) is used to evaluate the environmental impact 
factors. 
2.2. Solvent (pre-)selection based on published guides 
Using the immiscibility of a solvent in water as a necessary requirement for the biphasic 
system, eight potential alternatives to toluene are selected from the vast pool of solvent 
candidates assessed in the CHEM21 selection guide (Prat et al., 2015) and Sigma-
Aldrich’s Greener Solvent Alternatives: 1-butanol, 2-methyl tetrahydrofuran (2-MeTHF), 
anisole, benzyl alcohol, butyl acetate, ethyl acetate, isopropyl acetate, and methyl isobutyl 
ketone (MIBK). 
2.3. Reaction path optimization and free energies 
Based on the approximation of a locally quadratic potential energy surface, reaction path 
at each step is optimized with the sole constraint of equally spaced structures using the 
reactants and products as the path boundaries (Plessow, 2013). An initial path is generated 
using a slight variation of the linear synchronous transit method (Halgren & Lipscomb, 
1977). This iterative process is continued until one or more good initial guesses are 
obtained for the transition state (TS) optimization. Vibrational frequency analysis is 
performed on these initial guesses to find the closest approximation to the TS. This 
structure is then optimized to find the TS structure. The free energy of activation is equal 
to the free energy of reaction with the TS as the product of the reaction. Therefore, both 
free energies are calculated using the same procedure as reported by Hellweg and Eckert 
(2017). 
2.4. Environmental impact 
Four environmental impact factors (EIFs) are evaluated for each solvent: human toxicity 
potential by ingestion (HTPI), human toxicity potential by exposure (HTPE), aquatic 
toxicity potential (ATP), photochemical oxidation potential (PCOP). Using Eqs. (3)-(6), 
these EIFs for a chemical j are calculated based on the properties listed in Table 2.
In the absence of experimental values for the properties, ProPred estimates them based 
on the combined group contribution and atom connectivity index method. 
index method. 

,
50
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Table 1 Environmental properties obtained from ProPred to calculate the EIFs 

Property Unit Description 

-Log(LC50)FM Log(mol/L) 50% lethal concentration for Fathead Minnow after 96 h. 

-Log(LD50) Log(mol/kg) 50% lethal oral dose for rat 

-Log(PEL) Log(mol/m3) Permissible exposure limit as defined by OSHA-TWA 

-Log(PCO)  Photochemical oxidation potential from the reaction of 
NOx and volatile organic compounds 

 
Due to the differences in units and scales, EIFs are then standardized for each impact 
category using the following equation: 

,

,

j ks

j k
k k

EIF
EIF 

    
(5) 

where µ is the mean value, σ is the standard deviation, k is the impact category, j is the 
solvent, and s stands for standardized. The standardized EIFs are then weighted and 
summed to obtain the environmental impact of each solvent as a single score (SS) as 
shown in Eq. (8). The weights are chosen based on the offshore application, thus the 
weight for ATP was set the highest. Human exposure due to handling is important, so it 
followed closely, and photochemical smog is placed for a lower scaling. 

, , , ,
2 3 4

j PCOP j HTPI j HTPE j ATP

s s s s
jSS EIF EIF EIF EIF   

 (6) 

3. Results and Discussion 
Choosing the best solvent for a specific application depends on several different factors, 
such as process performance, ease of product recovery, price, and environmental impact. 
For example, the initial selection criterion of water immiscibility among the green solvent 
candidates reported by the selection guides allows for higher yield, higher selectivity, etc., 
conforming to the advantages of a biphasic system in terms of process performance 
(Ma̧kosza & Fedoryński, 2003). In this context, the solvents are evaluated based on 
several important screening criteria relevant to the specific chemical system under 
consideration: partition behavior, reaction energy barrier, reaction free energy, organic 
product separation, solvent price, and environmental impact. 
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Figure 1 Partition coefficients (organic/aqueous) of the three catalyst species in all solvents 

In LL-PTC, the partition behavior of the reactants, products, and the catalyst species is an 
important consideration. Partition coefficients for all the species are calculated in 
COSMOtherm with a value greater than 1 implying a preference for the organic phase 
and a value less than 1 implying a preference for the aqueous phase. A good organic 
solvent would result in high partition coefficients for BnCl and BnMer. Since all the 
considered solvents exhibit this behavior, this becomes irrelevant for screening. Proper 
partition behavior of the active and inactive catalyst forms is crucial for an efficient and 
effective LL-PTC. The active catalyst form, tetrabutylammonium hydrogen sulfide 
(QSH), must transfer to the organic phase to form BnMer, while the inactive catalyst 
forms, QBr and tetrabutylammonium chloride (QCl), must simultaneously transfer to the 
aqueous phase to form QSH. Ideally, the partition coefficient of QSH should be greater 
than 1 while that of QBr and QCl should be less than 1. Figure 1 shows (in log-scale) how 
the solvent candidates affect the partition coefficients of the three catalyst forms. All the 
three species have high partition coefficients in 1-butanol, 2-MeTHF, and benzyl alcohol, 
making them less favorable in terms of process performance. On the other hand, ethyl 
acetate, butyl acetate, and anisole cause the desired partition behavior. 
 
Faster kinetics lead to a smaller reactor volume, while better thermodynamic favorability 
results in higher yield. The free energies of activation and reaction are a measure of 
kinetics and thermodynamic favorability, respectively. Figure 2 shows that, except for 1-
butanol and benzyl alcohol, all the candidates result in an improved reaction performance 
in comparison to toluene with 3.4–7.8 % reduction in the reaction energy barrier. The two 
solvents with much poorer reaction kinetics also exhibit less favorable thermodynamics. 
 
Ease of product recovery affects both the economics and the total environmental footprint 
of the process. Organic solvents with lower volatilities and higher boiling points 
correspond to lower emissions of volatile organic components. However, such solvents 
require a more expensive product recovery since the most common method for product 
recovery is distillation or evaporation of the solvent. In terms of the specific chemical 

0 1 100

Toluene

1-butanol

2-MeTHF

Anisole

Benzyl alcohol

Butyl acetate

Ethyl acetate

Isopropyle acetate

MIBK

Partition Coefficient (POA)

QSH

QCl

QBr

1596



Towards a Rational, Quantum-Chemistry-Based Selection and Screening  
of Green Solvents for Liquid-Liquid Phase Transfer Catalysis  

system under study, the boiling point of BnMer is 195 °C. Therefore, an easier product 
recovery requires the boiling point of the solvent to be lower to a satisfactory extent. 
However, it can’t be too low since the reaction temperature is about 60 °C. Figure 3 shows 
that anisole, benzyl alcohol, and butyl acetate make bad candidates due to their high 
boiling points, while 2-MeTHF and ethyl acetate pose a slight risk since their boiling 
points are higher than the reaction temperature only by about 20 °C. 

 
Figure 2 Free energies of activation and reaction in all the considered solvents 

 
Figure 3 Comparison of toluene against the selected alternatives in terms of their environmental 
impact single scores (broken down by category), prices, and boiling points 

Figure 3 also compares the prices and environmental impact scores (SS) of all the 
solvents. Although there is no considerable difference in the prices of the solvents, 
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environmental impact varies quite widely among the candidates. Anisole and butyl 
acetate have worse single scores than toluene, making them the only candidates that 
cannot be considered “greener” substitutes for this process. Ethyl acetate and isopropyl 
acetate perform significantly better than the other alternatives. Considering all the 
screening factors, ethyl acetate comes out as the best solvent with isopropyl acetate and 
MIBK doing quite well to warrant a further look into their capability to replace toluene. 

4. Conclusion 
Solvents are a major source of energy usage and waste generation in many chemical, 
biochemical, and petrochemical processes, including LL-PTC. In previous works, LL-
PTC has been shown to substantially improve the economics and sustainability of 
offshore natural gas sweetening processes by replacing the existing triazine-based H2S 
removal. In this work, the process is further improved by providing a quantum-chemistry-
based screening method to find and evaluate green and sustainable alternatives to toluene 
in terms of technical, economic, and environmental factors. Based on the results, the three 
best solvents to replace toluene are ethyl acetate, isopropyl acetate, and MIBK. This work 
paves the way for a more systematic, optimization-based solvent screening or design 
framework in the future. 
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Abstract 
Validated mathematical models were studied applying a multivariate analysis of relevant 
outputs in a wastewater treatment plant. Monte-Carlo based simulations permit to obtain 
enough responses of the outputs when varying relevant inputs. Uncertainty is 
incorporated into the flow rates of wastewater and the wind velocity. Results show the 
strengths and limitations of the models as well as the impact towards the reduction of H2S. The dynamic variability is captured using a covariance analysis at different time 
intervals. 

Keywords: hydrogen sulfide, mathematical modelling, parameter sensitivity. 

1. Introduction 
Wastewater treatment plants (WWTP) generate unpleasant odors due to the biological 
degradation of organic waste. The main influential compound is hydrogen sulfide (H2S), 
and it has the potential to provoke the corrosion of wastewater infrastructure, odor 
nuisance in the community and possible health impact on the personnel. H2S emissions 
are easily perceived by the human olfactory system because it detects odors at low 
concentrations over short time intervals. Growing environmental awareness and the 
search of better quality of life in urban areas drives the role of environmental control 
agencies. New policies or the revision of existing ones intend increase the control of odor 
emissions. In this sense, mathematical models developed for estimating the emission rates 
of WWTP, represent important decision-making tools when adequately exploited 
(Santos, et al.,2009)  

Mathematical models require the definition of parameters and initial conditions for 
achieving a solution. Nevertheless, this information is not always available or there is a 
degree of uncertainty due to natural variations, measurement errors or simply the inability 
of measuring. Uncertainty and multivariate analyses permit to realistically assess the 
inherent variations of processes (Marino et al., 2008; Salas et al., 2007; Gonzalez, et al., 
2020) 

In this work, four validated models are studied applying a dynamic multivariate analysis 
in a WWTP. Initially, a Monte-Carlo based simulation permits to obtain samples of the 
outputs when changing five inputs. Uncertainty is incorporated to the flow rate of 
wastewater and the wind velocity. The results permit to observe the strengths and 
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limitations of the models as well as the impact towards the reduction of H2S. Finally, the 
dynamic variations are captured using a covariance analysis at different time intervals. 

2. Background 
2.1. System description 

The studied system corresponds to the experimental WWTP introduced by (Santos, et 
al.,2009). This unit treats the wastewater of a town in Brazil, with a fixed daily flow. It 
consists of a pumping, screening and grit removal station, an upward flow anaerobic 
sludge mantle reactor (UASB), three secondary biofilters (BF) and a tertiary biofilter, UV 
disinfection and sludge drying beds as illustrated in Figure 1. Regarding the mathematical 
model, (Santos, et al.,2009) proposed that the WWTP is treated as an homogeneous 
reactor, regardless the fluid flow and the mass transfer responsible of the distribution of 
the pollutant (H2S) concentration inside. The H2S can be accumulated, can passed through 
the reactor, or be affected by any of the following removal mechanism; volatilization of 
the wastewater-atmosphere interface, stripping because the diffusion into air bubbles, 
biodegradation, adsorption of solid particles or biomass, absorption for insoluble liquids 
and by chemical oxidation due to reactor aeration. 

Figure 1: Experimental WWTP. Source: (Santos, et al.,2009) 

2.2. Mathematical Model 

The mathematical model under study (Corsi et al., 1992; Santos, et al.,2009) considers 
the WWTP as a single isothermal continuous stirred tank reactor. In this sense, the model 
is obtained through the mass balance of H2S. Here, [H2S] represents the contaminant 
concentration after being mixed with the fluid inside the unit. The balance provides the 
initial value as a model: Find the function [H2S]: [0, +∞) →  ℝ  such that 𝑉 𝑑[H2S]𝑑𝑡 (𝑡) = 𝑄 [H2S] − [H2S](𝑡) + 𝑅 [H2S](𝑡); 𝜽∈ ; ∀𝑡 ∈ (0, +∞) (1) 

subject to an initial condition [H2S]  (at 𝑡 = 0) that represents the contaminant 
concentration in the liquid phase entering the unit. Here, 𝑉 is the volume of the unit, and 𝑄 is the sewage flow rate. 𝑅  represents the constitutive relationship corresponding to the 𝑖-th removal mechanism that belongs to the set 𝐼 = 𝑣, 𝑠, 𝑏, 𝑎𝑑, 𝑎𝑏, 𝑞 , where 𝑣 is the 
volatilization, 𝑠 is the stripping, 𝑏 is the biodegradation, 𝑎𝑑 is the adsorption, 𝑎𝑏 is the 
absorption, and 𝑞 is the chemical oxidation. On the other hand, 𝜽  is a vector contains the 
parameters corresponding to the 𝑖-th removal mechanism, which has as many components 
as parameters appear in 𝑅 . These relationships are taken from (Santos, et al.,2009). 

Table 1 enlists the expressions of the chemical removal mechanisms that provide the four 
different mathematical models. Here, 𝑘 is the specific rate, 𝑘  is the constant for oxidation 
of H2S, 𝑘  is the constant for oxidation of HS , 𝐾  is the first dissociation constant for 
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H2S, [O ], [S] and [H ] are the oxygen, sulfur and hydrogen concentrations respectively, 
and 𝑇 is the temperature in ℃. The model described in Eq. 1, together with each removal 
mechanism, is re-scaled and simplified using dimensionless variables and parameters. 
This provides an adequate handling of the model from the numerical perspective without 
the effects due to the scale differences. Also, it helps the multivariate analysis on the 
physical parameters. 

Chemical removal mechanisms 𝑹𝒒 Source −𝑉𝑘[S] . [O ] .  (Jolley et al., 1985) −𝑉𝑘[S] . [O ] .  (Wilmot et al., 1988) −𝑉𝑘[S] . [O ] . [S] (Buisman et al., 1990) − 𝑘 [H ] + 𝑘 𝐾[H ] + 𝐾 [S] . [O ] . 1.06( ) (Nielsen et al., 2004) 

Table 1: Mathematical expressions for the chemical removal mechanisms. 

3. Multivariate analysis for a wastewater treatment plant 
For a better insight regarding the dynamics of the aforementioned models, Monte-Carlo 
based simulations are carried out. First, the relationship between the operational variables 
and the outputs of the models is studied in order to identify those with greater influence 
on key variables. Second, we perform an analysis including uncertainty at the operational 
level by varying the possible disturbances of the WWTP, i.e., the wind velocity and the 
inlet wastewater flow rate. The proposed model-centric framework for the analysis of the 
different options for wastewater treatment are developed in a Python environment 
because it allows a versatile implementation. Libraries such as Numpy, SciPy, Pandas, 
Matplotlib and Seaborn facilitate obtaining and analyzing the results. 

3.1. Monte-Carlo based analysis 

To explore particularities of the relationships between the variables involved in the 
different models, Monte-Carlo based simulations are carried out. We generate a total of 
random uniform 1,000 samples varying the initial values of the following five variables: 
the gas phase temperature (T Gas Phase), the liquid phase temperature (Liq Phase), the 
level of pH, oxygen concentration ([O ]), and the concentration of sulphur ([S]). The 
ranges of the initial values used in each variable are T Gas Phase ∈ [17.8, 29.8], T Liq Phase ∈ [13.7, 21.5], pH ∈ [6.9, 7.5], [O ] ∈ [0.1, 8.5], [S] ∈ [5, 300]. The 
simulation of the models were run using the solve_ivp function available in the library 
module scipy.integrate. The variables and the parameters are properly dimensionless re-
scaled, and the simulations run until the dimensionless time of 5.0. This value of time is 
chosen because the exploratory space of the process variables do not exhibit significant 
variation on its dynamics. 

Once the results are obtained, a multivariate analysis of the output is performed by 
selecting the time steps 𝑡 =  1, 2, … , 5. In this analysis, we look for insights about the 
relationship between the five operational variables and the reduction of the concentration 
of H2S through the time stepping. Correlation matrices between the process variables for 
each model output are obtained at each time step. The dynamic multivariate analysis 
permits to observe the influence of certain variables along the dynamic process 
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simulation, and to determine which of these variables has a greater influence in the 
outputs. 

3.2. Dynamic uncertainty analysis 

In this study, uncertainty was incorporated to variables that appear to perform as 
disturbances and influence the dynamic response of the system. While the operational 
variables are set as T Gas Phase =  23.8, T Liq Phase = 17.6, pH = 7.2, [O ] = 4.3, 
and [S] = 152.5, the disturbances, including uncertainty, correspond to the wind velocity 
(Wind V) and the inlet wastewater flow rate (Flux). An uncertainty class of 25% is 
considered as reasonable based on (Sin et al., 2009). Thus, Wind V = 4.025 25% and Flux =  5.5 10 25%. A total of 2,000 samples are randomly uniform generated. 

4. Results 
4.1. Monte-Carlo based analysis 

For the multivariate analysis, 1,000 simulations run for each of the chemical oxidation 
removal models. The concentration value of H2S for each operational variable is obtained 
at each of the chosen time steps. 

Figure 2 portrays a series of the plots for the most significant variables, [O ] and [S] for 
the model using the chemical removal model by (Jolley et al., 1985) at the times 𝑡 =1, 2, … , 5. The plots indicate a very strong inverse correlation between the [O ] and the 
concentration of [H2S] in each time step, and a direct inverse correlation between [S] and [H2S]. 

Figure 2: Relationship between [H2S] and [O ] (upper plots) and the [S] (lower plots) at the 
dimensionless time steps 1.0, 2.0, … , 5.0, using the chemical oxidation removal model by (Jolley et 
al., 1985). 

Table 2 enlists the correlation values between the operational variables at each time step 
for each chemical oxidation removal model. The values greater or equal to 0.1 are 
boldfaced. Figure 3 depicts graphically the information given in Table 2. These results 
permit to identify the variables that have more influence in the reduction of [H2S] when 
using a particular chemical removal model. For the utilization of the chemical removal 
model given by (Buisman et al., 1990) the variable [O ] and the output [H2S], in each 
time step, show a strong inverse correlation (∼ −0.78) while [S] and the output [H2S], in 
each time step, exhibit a very weak direct correlation. Regarding the use of the model 
given by (Wilmot et al., 1988) the scenario is similar, excluding that the correlation of [H2S] with [O ] becomes weaker while the correlation with [S] stronger. When using the 
model by (Jolley et al., 1985) the trend is similar to the first one. The correlation gets 
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inversely stronger (∼ −0.96) with respect to [O ] and directly weaker with [S]. Finally, 
regarding the model introduced by (Nielsen et al., 2004) the results show that the only 
significant variable in the output is the T Gas Phase, which depicts a very strong inverse 
correlation with [H2S]. 

Figure 3: Correlation matrix between parameters values of T Gas Phase, T Liq Phase, pH, [O ], [S] 
and the dimensionless time steps 1.0, 2.0, … , 5.0; for each of the different models used for oxidation 
chemical removal. 

Table 2: Correlation values between the values of parameters of the T Gas Phase, T Liq Phase, pH, [O ], [S] and the dimensionless time steps 1.0, 2.0, … , 5.0; for each of the different models used for 
oxidation chemical removal. 

4.2. Dynamic uncertainty analysis 

The uncertainty analysis aims to capture the dynamics of the outputs when incorporating 
variability to process inputs. Figure 4 depicts the results of stochastic simulations, using 
the four models and by varying 25% the wind velocity and the wastewater inlet flow. 
The plots show the minimum and maximum values. The darker region corresponds to the 
percentiles 25 and 75. The results of the simulations show that by varying 25% the inputs 
a maximum variation of the [H2S] of 2.73%, 3.06%, 2.66%, 2.66%, for the simulations 
using the chemical oxidation removal models of (Buisman et al., 1990), (Jolley et al., 
1985), (Wilmot et al., 1988) and (Nielsen et al., 2004), respectively. 

5. Conclusions 
A model-centric framework permits to exploit the capabilities of mathematical 
representations of dynamic systems. In this work, a WWTP was studied in detail using 
different modelling approaches towards the reduction of H2S emissions. Depending on 
the final application or available data, the modeller could select a suitable system. The 
main influential variables correspond to the oxygen concentration, sulfur concentration, 
and the gas temperature. The oxygen concentration appears to be a reasonable control 
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variable through the aeration mode, capable of reducing the H2S emissions. Additionally, 
the analysis under uncertainty with the selected class portrays important information 
regarding possible dynamic variations in the outputs. The output variations could be 
significant to the process and require special attention, specially when satisfying quality 
standards is desired. In terms of decision-making this provides insightful guidance to 
select the modelling strategy as well as further considerations for an adequate design and 
operation. 

Figure 4: Plots of [H2S] with the variation of the wind velocity and the inlet flux for each of the 
different models used for oxidation chemical removal. 
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Abstract 
This study aims to develop and evaluate new gas-to-liquid technologies for production 
liquid fuels, such as methanol, synthetic fuels, and dimethyl ether, using industrial residue 
gases. To resolve global energy and environmental issues, the upcycling of a coke oven 
gas (COG) which contains high-caloric chemicals of CH4, CO, H2 to value-added 
chemicals is one of the most promising strategies. In achieving the goal, we first 
developed for the upcycling processes of the residue gases to value-added chemicals and 
fuels (e.g., methanol, dimethyl ether, and Fischer-Tropsch fuels) through the gas-to-liquid 
framework. The COG-to-fuel processes involve three sub-processes: gas pre-treating, 
liquid fuels synthesis, and separation. In particular, the combined steam and CO2 
reforming (CSCR) was adopted to reform COG into H2 and CO which is further adjusted 
to the optimal ratio for target products before entering the following synthesis stage. Here, 
the H2/CO ratio of 2 is useful for methanol synthesis and Fischer-Tropsch synthesis while 
the ratio of 1 is better for dimethyl ether synthesis. We then developed process models 
using Aspen Plus simulator and performed a techno-economic evaluation to obtained 
technical (mass and energy flows) and economic (capital and operating costs) parameters. 
As a result, we identified the most energy-efficient, economic, and eco-friendly gas-to-
fuel process under different market scenarios such as chemical prices and CO2 reduction 
policies.  

Keywords: Gas-to-liquid, Coke-oven gas, Methanol, Fischer-Tropsch, Dimethyl ether, 
Technoeconomic. 

1. Introduction 
The depletion of conventional energy resources, the growth of energy demand and 
climate change are the critical energy and environmental issues. To resolve such issues, 
many alternative technological routes for energy products from alternative feedstocks 
have been investigated. Recently, the reuse of industrial residue gas (e.g., coke-oven gas, 
Lintz-Donawitz) for heating or fuel products have received a lot of attention. A number 
of studies have been found for the upcycling of residue gases to high value-added 
chemicals and fuels (Kim el at, 2020). Therein, coke-oven gas (COG), which is one of 
the residue gases from the iron and steel making industry with high-caloric chemicals of 
CH4, CO, H2 can be utilized as a raw material for chemicals and fuels. In this study, we 
developed and evaluated the upcycling processes of coke-oven gas (COG) to liquid fuels 
such as methanol, dimethyl ether, and Fischer-Tropsch fuels through the gas-to-liquid 
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framework. The COG-to-fuel processes were firstly developed with three main sections 
of combined steam and CO2 reforming for syngas, fuel synthesis, and separation. Therein, 
the combined steam and CO2 reforming (CSCR) is flexible to adjust H2/CO ratio for the 
specific following fuel synthesis (the ratio of 2 for methanol synthesis and Fischer-
Tropsch synthesis, and 1 for dimethyl ether synthesis). We then evaluated a techno-
economic (e.g., carbon and energy efficiency, unit production cost) and environmental 
performance (net CO2eq emission). Consequently, the most energy-efficient, economic, 
and eco-friendly fuel production process were identified with the insight of major cost- 
and energy-drivers of COG-to-fuels to provide practical R&D targets and strategies. 

2. Process simulation and analysis method 
2.1. Process development 

In this study, three process models were developed using Aspen Plus V10.0 according to 
the targeted products: COG-to-MeOH, COG-to-DME, and COG-to-FT. The proposed 
gas-to-fuel processes include three main stages of: 1) the pre-processing of a raw gas for 
syngas production, 2) synthesis to liquid fuels from syngas, and 3) separation and 
purification. Firstly, the combined steam and CO2 reforming (CSCR) was adopted to 
reform CH4 in COG into H2 and CO, in which the H2/CO ratio is flexible by adjusting the 
competitive steam reforming and CO2 reforming reactions. Particularly, the methanol 
synthesis and Fischer-Tropsch synthesis prefers the syngas ratio of 2, while the 
favourable ratio between H2 and CO for maximizing the dimethyl ether synthesis is 
assumed to be 1. The produced syngas is then fed into a reactor for the targeted fuels 
(MeOH, DME, or FT fuel): 

● Methanol synthesis: catalyst of Cu/Zn/Al/Zr, at 250 °C, 50 bar (Do et al., 2019) 
● Dimethyl ether synthesis: bi-function catalytic of CuO/ZnO/Al2O3 and γ-Al2O3, at 

260 °C, 50 bar (Mevawala et al., 2017) 
● Fischer-Tropsch synthesis: Ni/CaO/A2O3, at 210 °C, 38 bar (Han et al., 2019) 

In the separation section, the outlet stream from reactors was cooled and separated the 
main product while the unreacted gas was recycled. For COG-to-MeOH, the simple flash 
tank and distillation was used to separate MeOH from water and recycle unreacted CO, 
H2, CO2. In COG-to-DME, the Restisol absorption unit was firstly operated to separate 
CO2, which is produced together with DME. Then, the distillation column was used to 
purify DME from a small by-product MeOH. Finally, the flash tank and distillation were 
also adopted in COG-to-FT to separate liquid fuels (e.g., gasoline, diesel, and wax), from 
the water and light gas (sent to the reformer).  

2.2. Analysis method 

The COG-to-fuel processes were evaluated the techno-economic and environmental 
performance using many criteria. Firstly, the carbon efficiency (CEF) and energy 
efficiency (EEF) show how much carbon and energy were captured and utilized in the 
produced fuels (Do et al., 2020) as formulated in Eqs. (1) and (2). 

  (%) 100
  

Carbon in productCEF
Carbon in feed

  (1) 
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  (%) 100
  

Heat of productEEF
Heat of feed Utility

 
  

(2) 

For economic analysis, unit production cost (UPC) was calculated for fuels as expressed 
in Eq. (3). Here, the total production cost includes the capital expenditures (CAPEX) and 
operating expenses (OPEX) (Do el at, 2020). The environmental performance of 
processes is performed in net CO2 equivalent emission (NEC) which is expressed as the 
amount of CO2 equivalent (CO2eq) emit per unit of produced fuel, as presented in Eq. (4).  

($ / )
  

CAPEX OPEXUPC kg
Amount of product




 
(3) 

  -  ( / )
  

Direct emission Indirect emission Feed InventoryNCE kg kg
Amount of product



 

(4) 

3. Techno-economic analysis 
3.1. Process simulation and technical performance 
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Figure 1. Block diagram with carbon efficiency and energy efficiency of COG-to-fuel processes 

The process simulation of MeOH, DME, and FT fuel production was targeted to operate 
with the same feed rate (1,047 kmol/h of COG) and additional CO2 and water, which are 
at different rates for adjusting the optimal syngas ratio, corresponding to the capacity of 
158, 114, and 51 kt/y. Figure 1 presents the simplified block diagram with the mass and 
energy flows of each process as well as the carbon and energy efficiency. As shown in 
Figure 1, MeOH and DME production processes show relative high CEF of 85% and 88% 
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respectively, while the DME and FT fuel production routes was analysed to show high 
energy efficient of 78% and 70%, respectively.  

3.2. Unit production cost  

In the economic evaluation, the fuel production plants were assumed at annual 8,000-
hours operability, 20 years of plant-life, and 8% of interest rate. The other assumptions 
and parameters for material and utility are presented in Table 1. Based on the obtained 
mass and energy flow information, the capital and operating costs were estimated using 
Aspen Process Economic Analyzer. The total production cost and UPC of fuels were 
estimated and presented in Table 2. The COG-to-MeOH is the highest expense plant. But 
due to the highest production rate (114 kt/y) compared to COG-to-DME and COG-to-FT 
plants, the MeOH production plant results in the lowest UPC for MeOH (0.46 $/kg). To 
compare three different types of fuels, the UPC was further estimated into the unit of 
energy as gasoline gallon equivalent ($/GGE). Consequently, the DME production 
process performs the lowest UPC at 1.92 $/GGE.  

Table 1. Assumption of raw material and utility price and CO2eq inventory 

 Unit price CO2eq inventory 
Coke-oven gas 2.5 $/MMBTU 2.05 kgCO2eq/MMBTU 
CO2  35 $/ton 1.00 kgCO2eq/kg 
Process water  1 $/ton 0 kgCO2eq/kg 
Cooling water  0.03 $/ton 0 kgCO2eq/kg 
Electricity  0.07 $/kWh 0.62 kgCO2eq/kWh 
Fired heat 0.03 $/kWh 0.34 kgCO2eq/kWh 
High pressure steam  14.5 $/ton 0.19 kgCO2eq/kWh 
Low pressure steam  10.5 $/ton 0.19 kgCO2eq/kWh 
Refrigeration  0.067 $/kWh 1.50 kgCO2eq/kWh 

 

0.52 0.52
1.190.38 0.38

0.58
1.26

0.88

1.642.34
1.92

3.57

0.00

0.30

0.60

0.90

1.20

1.50

0.00

1.00

2.00

3.00

4.00

5.00

 MeOH  DME  FT fuel

Un
it 

pr
od

uc
tio

n 
co

st
 ($

/k
g)

Un
it 

pr
od

uc
tio

n 
co

st
 ($

/G
G

E)

CAPEX Raw materia l
Util ity Fixed operating cost
UPC ($/kg)  

Figure 2. Breakdown of fuel unit production cost 
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Table 2. Total production cost and unit production cost of fuels 

 COG-to-MeOH COG-to-DME COG-to-FT 
Capital expenditure (M$/year) 
(CAPEX=DC+IDC+WC) 16,169,041 15,548,946 22,866,501 
Direct plan cost (DC) 9,441,496 9,079,408 13,352,307 
Indirect plant cost (IDC) 4,816,310 4,631,601 6,811,298 
Working capital (WC) 1,911,234 1,837,937 2,702,896 
    
Operating expenditure (M$/year) 
(OPEX=VOC+FOC) 56,277,886 42,300,327 45,620,557 
Variable operating cost (VOC) 50,928,699 38,129,049 42,443,363 
Raw material (RM) 11,892,086 11,481,053 11,059,361 
     COG 7,902,695 7,902,695 7,902,695 
     CO2 3,761,020 3,501,092 2,916,526 
     Process water 228,371 77,266 240,140 
Utility (UT) 39,036,614 26,647,996 31,384,002 
     Cooling water 3,580,254 2,090,380 3,175,849 
     Electricity 6,358,806 6,109,776 4,141,934 
     Fired heat 20,820,159 13,048,426 21,369,119 
     High-pressure steam 0 2,192,372 1,136,703 
     Low-pressure steam 1,473,290 0 0 
     Refrigeration 6,804,105 3,207,042 1,560,397 
Fixed operating cost (FOC) 5,349,187 4,171,278 3,177,194 
Total production cost (M$/year) 72,446,927 57,849,272 68,487,058 
Main Product MeOH DME FT fuel 
Capacity (kg/y) 158,341,168 114,267,039 50,633,972 
UPC ($/kg) 0.46 0.51 1.35 
Capacity (GGE/y) 30,946,586 30,125,292 19,160,394 
UPC ($/GGE) 2.34 1.92 3.57 

Figure 2 presents the cost breakdown of the three fuel production plants with CAPEX, 
raw material cost, utility cost, and fixed operating cost. The lowest UPC of the DME 
production plant is primarily due to the lower utility cost which is the dominant 
component at around 45% over the others. Then, CAPEX is the second largest factor with 
27-33% of UPC, followed by raw material cost at 16-20%. There are opportunities to 
lowering UPC of fuel with lower utility and raw material cost. Since COG feedstock is 
one of industrial residue gases, it is potential to receive incentive at zero cost. 

3.3. Net CO2eq emission 
Table 3. Environmental performance of COG-to-fuels 

 
 COG-to-
MeOH  

 COG-to-
DME  

 COG-to-
FT  

Feed inventory (kgCO2eq/kgfuel) 0.72 0.93 1.77 
Indirect CO2eq emission 
(kgCO2eq/kgfuel) 2.49 2.03 5.12 
Direct CO2eq emission (kgCO2eq/kgfuel) 0.01 0.09 0.05 
NCE (kgCO2eq/kgfuel) 1.78 1.19 3.40 

 
The net CO2eq emission estimated to one unit of fuels as presented in Table 3. The indirect 
emission is the largest contribution to NCEs, which corresponds to the high consumption 
of utility in the processes. COG-to-DME process emits lower CO2eq during its operation 
over COG-to-MeOH and COG-to-FT.  
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4. Conclusions 
This study proposed new residue gas upcycling processes, and evaluated the technical, 
economic and environmental capability for the MeOH, DME, and FT fuel production. 
The COG-to-DME process achieved the highest technical metrics at 88% carbon 
efficiency, 78% of energy efficiency with the lowest cost at 1.92 $/GGE, and the best 
environmental performance with NCE at 1.19 score. In addition, the major cost- and 
energy-drivers of COG-to-fuels was identified through the techno-economic evaluation. 
The strategy to lower utility cost and residue gas price is very helpful to achieve improved 
economic benefits of COG-to-fuels processes. As a future work, the sensitivity analysis 
using various scenarios, such as different market prices and CO2 tax, can be performed to 
determine the debottleneck strategies. 

Acknowledgment 
This work was supported by… 

References 
S. Kim, J. Kim, 2020, The optimal carbon and hydrogen balance for methanol production from 

coke oven gas and Linz-Donawitz gas: Process development and techno-economic analysis, 
Fuel, 266. 

J. Kim, T. A. Johnson, J. E. Miller, E. B. Stechel, C.T. Maravelias, 2012,  Fuel production from 
CO2 using solar-thermal energy: System level analysis. Energy Environ. Sci. 5, 8417–8429. 

T. N. Do, J. Kim, 2019, Process development and techno-economic evaluation of methanol 
production by direct CO2 hydrogenation using solar-thermal energy, J CO2 Util, 33, 461-472 

C. Mevawala, Y. Jiang, D. Bhattacharyya, 2017, Plant-wide modeling and analysis of the shale gas 
to dimethyl ether (DME) process via direct and indirect synthesis routes. Appl. Energy 204, 
163–180. 

S. Han, S. Kim, Y. T. Kim, G. Kim, J. Kim, 2019, Optimization-based assessment framework for 
carbon utilization strategies: Energy production from coke oven gas, Energy Convers Manag, 
187, 1–14.  

T. N. Do, J. Kim, 2020, Green C2-C4 hydrocarbon production through direct CO2 hydrogenation 
with renewable hydrogen: Process development and techno-economic analysis. Energy Convers 
Manag, 214, 112866. 

1610



  

Multi-Objective Optimization of Lignocellulosic 
Ethanol Production Based on Regional Land and 
Water Availability 
Rashi Dhanraja, Varun Punnathanama, Yogendra Shastri a,* 

aIndian Institute of Technology Bombay, Mumbai 400076, India 
yshastri@che.iitb.ac.in  

Abstract 
The production design for lignocellulosic biofuels should incorporate both 
environmental and economic objective. This work suggests a multi-objective 
optimization model design for ethanol production, which includes the economic goal 
balanced by limited regional land and water availability. The allocation of agricultural 
land to selected crops is the key decision variable. The model has four objectives, 
namely, minimization of ethanol cost, minimization of the water footprint of ethanol, 
minimization of irrigation water and maximization of farmers’ profit. The resulting 
multi-objective mixed-integer linear programming problem was applied to a case study 
of 33 districts in Maharashtra, India. Results indicated a significant trade-off between 
ethanol cost and irrigation water requirement. Sorghum, wheat, and cotton were the 
prominent crops recommended by the model. Ethanol cost varied from ₹ 47/L ($0.63/L) 
to ₹ 81/L ($ 1.10/L), while water footprint varied from 674 L/L to 301 L/L, irrigation 
water varied from 43 m3/ha to 2768 m3/ha, and farmers’ profit from ₹ 21059/ha ($ 
281/ha) to ₹ 4,770 /ha ($ 64.51/ha). 
 
Keywords: Optimization, lignocellulosic biofuels, land availability, water availability. 

1. Introduction 
The annual surplus agricultural residue produce in India is approximately 234.5 million 
Mg (Hiloidhari et al., 2014). The potential in India to produce lignocellulosic bio-fuels 
by using agricultural residue has been studied in context with socio-economic impact 
(Purohit and Dhar, 2018). The studies of lignocellulosic biofuel were further extended 
to include environmental impact. Formulation of multi-objective optimization problems 
gives a better understanding of the trade-off between environmental and economic 
impact (Mandade and Shastri, 2019). The agricultural phase in the life cycle of biofuel 
is an important phase in land use and water footprint. The land and water resource 
availability are limited, thus incorporating them in the life cycle assessment of bio-fuel 
production could give better understanding of the long-term sustainability of bio-fuel 
production. However, the water footprint of agricultural residue does not give the actual 
water withdrawal in the region; similarly, the economic interest of bio-refinery is not 
enough. Thus, water consumed by crops and the economic interest of farmers has to be 
considered in agricultural planning. This work formulates a mixed-integer linear 
programming (MILP) problem considering four objectives and regional water 
availability constraints. The four objectives of the model are based on the factors 
mentioned above. The bio-refinery model considered in this work was developed earlier 
in the literature (Punnathanam and Shastri, 2020), and has been modified so that the 
model would suggest an optimum agricultural pattern. Water consumed at the 
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biorefinery is negligible compared to water consumed during the agricultural phase, and 
thus has been neglected. The article is arranged as follows. The second section details 
the optimization problem formulation. The third section describes the case study, 
followed by results and discussion in Section 4, and conclusion in Section 5. 
 

2. Modeling framework 
The scope of the model has been represented in the schematics in Figure 1.  The model 
considers the balance between water consumed by crops and the regional availability of 
water during different seasons, as well as the economic aspect of ethanol production and 
agriculture. The time period is 1 year, and the water availability varies with the season; 
thus, the time period was divided into three seasons: kharif, rabi and zaid (summer) 
season. The constraints of the model are bio-fuel demand, and regional availability of 
land and water resources. These constraints are discussed in detail later. Rainfall and 
groundwater were the only sources of water considered in the model, while surface 
water was excluded. 

 
Figure 1: Schematics representing the scope of the model. 

 
The water balance was done at district level (equivalent to a county). The crop water 
requirement (CWR) was calculated before the formulation of the model. CROPWAT 
8.0, model developed by FAO (Clarke et al., 2000) was used for calculation of CWR.  
Rain is the primary source of water for crops, in case the rainwater is not sufficient 
irrigation is used to meet the water requirement. The part of rainfall consumed by crops 
is effective rainfall, rest of the rainwater either percolates deep in the ground or flows 
away as runoff (Allen, R. G. et al., 1998). The groundwater is replenished every year 
through rainfall and seepage to the canal, reservoir and dams. The groundwater 
recharged through sources other than rainwater was considered constant in the model. 
Data on soil moisture, runoff and groundwater recharge was obtained from the 
WaterBalance app developed by PoCRA moisture (Wankhade et al., 2019). It was 
assumed that the groundwater recharge water from one district doesn’t flow to another 
district. Recharge from agricultural land was the only recharge considered in this work. 
The data generated for crop water requirement from CROPWAT 8.0 and groundwater 
recharge data from Waterbalance was used in the optimization model. The optimization 
model formulation is depicted in Subsection 2.1. 
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2.1 Optimization model formulation 
The mixed-integer linear programming problem was formulated to solve the multi-
objective optimization problem in General Algebraic Modelling System (GAMS) 
version 24.9.2  and solved using the CPLEX® MILP solver (Robichaud, 2010). This 
section discusses the constraints, decision variable and the objective functions of the 
model.  
 
2.1.1 Constraints and decision variable   
The primary decision variable in this model is ( , , )x i j k , which the agricultural land is 
allocated to crops. Here index i , j , and k denotes the location of farm, crops and 
season, respectively. The first constraint in the model is ethanol demand. The ethanol 
demand is calculated by multiplying population of the region under study with per 
capita petrol consumption and the percentage blending of petrol with ethanol. The 
amount of agricultural residue converted to ethanol is denoted by Re ( , , )Bs j k l , where 
index l  indicates the location of bio-refinery. 

Here, ( , )DE k l  is the ethanol demand in of a bio-refinery at the location l , during the 

season k . ( )CE j  is the volume (L) of ethanol produced per unit mass (t) of feedstock. 
The constraint on land allocation is formulated as follows: 
 

Here, ( , )LA i k  is agricultural land available in the district i  during the season k . The 
agricultural land available in a district is used for growing vegetables and fruits as well. 
Thus, ( , )FA i k  the is introduce in the equation. ( , )FA i k   Is fraction of total 
agricultural land allocated to crops. The water availability varies with the season, so 
does the water demand as crops are planted in different seasons and have different 
growth period. To capture this trend, water balance is done for different seasons. The 
water balance during kharif season is as follows: 
 

 ( , , ) ( , , ) ( , )(1 ) ( , , ) ( , , )n n n n n
j j

ER i j k x i j k R i k GWR i j k x i j k        (3) 
Here, ( , , )nER i j k  is the rainwater consumed by crop j  in the district i during the 

kharif season ( )nk , the subscript n  denotes kharif. The rainwater is represented by

( , )nR i k , here   represents the fraction of runoff, while ( , , )nGWR i j k  is the 
groundwater recharge. The groundwater balance is shown in Eq. (4) 
 

( , , ) ( , , ) ( , ) ( , )n n n s
j

IR i j k x i j k GW i k N i k     (4) 

( , ) Re ( , , ) ( , , ) ( )D B C
j

E k l s j k l x i j k E j   (1) 

( , , ) ( , ) ( , ) ,L F
j

x i j k A i k A i k i k   (2) 
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Here, ( , , )nIR i j k , is irrigation water required by crops during the kharif season, 

( , )nGW i k , is the groundwater available is kharif season. The groundwater which was 
not used during the kharif season and the groundwater recharge were passed down to 
the consecutive season. Here, ( , )sN i k    represents the water passed down from season 
before kharif season. Similarly, water balance is done for rabi and zaid seasons.  
 
 2.1.2. Multi-Objective optimization  
There are four objectives in this multi-objective optimization model. The first objective 
is minimization of ethanol cost, and is formulated as follows: 
 

, ,

Min ( , , )C E
i j k

J C i j k    ( 5) 

Here, ( , , )EC i j k  is the cost of ethanol production. Cost of ethanol includes the cost of 
residue, cost of transport, cost of ethanol production process and storage cost. The 
objective of maximization of profit earned by farmers is formulated as follows. 
 

, ,

Max ( , , )P F
i j k

J P i j k   (6) 

The profit earned by farmers ( , , )FP i j k   the difference between the price of agricultural 
product and residue to the cost of cultivation. The third objective, minimization of water 
footprint of ethanol, is formulated as follow: 
 

, ,

Min ( , , )WF R
i j k

J WF i j k   (7) 

Here, ( , , )RWF i j k  is the water footprint of ethanol produced from different agricultural 
residue. The fourth objective, minimization of irrigation water consumption is 
formulated as follows: 
 

, ,

Min ( , , ) ( , , )IR
i j k

J IR i j k x i j k  (8) 

Here, ( , , )IR i j k  is the irrigation water required by the crop j  in m3/ha, which is 
multiplied by land allocated to the crop.  The multi-objective optimization was solved 
using the   -constraint method. In this method except for one objective function, all the 
objective functions are formulated as constraints, as shown in Eq. (9). 

1

2

3

Min 

Subject to     

                    

                   

                 C

P

WF

IR

J

J

J

J













 (9) 
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Here, 1 , 2 , and 3  are the bound set on various objective functions. This single 
objective optimization problem is solved for various combinations of these bounds to 
obtain the trade-offs between different objective functions. 

3. Case study of Maharashtra, India 
The model was applied to the 33 districts of Maharashtra state (Mumbai city, Mumbai 
Suburban and Palghar districts were excluded from the study). The Maharashtra state 
has intensive water demand from the agricultural sector and suffers from water scarcity 
(Aayog et al., 2017). The crops chosen for the study were sugarcane, wheat, rice, cotton, 
and sorghum. The groundwater recharge data for the Solapur district was calibrated for 
different crops. Based on the data for the Solapur district, the correlation between 
rainfall and groundwater recharge was obtained using the linear regression method. This 
correlation was used for all districts. Results are discussed in Section 4. 

4. Result and discussion  
The model was run for each single-objective optimization followed by multi-objective 
optimization. For each single-objective optimization run, the number of constraints is 
37,894, variables are 37,063, and the binary variables are 33. The values of the water 
footprint of biofuel, farmer’s profit and irrigation water obtained from single-objective 
optimization runs was used to obtain the 20 values of 1 , 2 , and 3 .Thus, 8,000 
independent single-objective optimization problems are solved to get the Pareto-front of 
multi-objective optimization. In order to make it easy to understand the results of the 
multi-objective optimization, the trade-off between irrigation water requirement and 
farmer’s profit was explained at water footprint bound to various values. The model 
gave feasible solution for water footprints ranging from 674.28 to 398.24 L/L. 
 

 
Figure 2. Plots of trade-offs between irrigation water utilization, farmers' profit and 

ethanol cost when water footprint  674.28 L/L 
 

In this paper, we had discussed the Pareto-front when water footprint was bound to 
674.28 L/L, as shown in Figure 2. The irrigation water was minimum at point A1, 
farmer’s profit was maximum at point A2, and the ethanol cost was minimum at A3.  
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When the irrigation water requirement was minimum, 17% and 12% more land was 
allocated to sorghum than what was allocated when the farmer’s profit was maximum 
and the ethanol cost was minimum, respectively. The profit earned by farmers depends 
on several factors such as the cost of cultivation, the price of the main product, as well 
as the price of residue. Wheat stalk and sorghum grain have relatively high prices, and 
thus wheat and sorghum accounted for about 28% and 47% of the total agricultural land 
utilized at point A2. The land was allocated to cotton to minimize the ethanol cost, but 
the cotton stalk is not enough to meet ethanol demand; thus, wheat stalk and sorghum 
stalk are used in the biorefinery. Wheat stalk reduces ethanol cost, while sorghum 
allows groundwater recharge, which passes down to the consecutive season, thus 
providing water for wheat production.  
 
5. Conclusion 
 
Amongst all the crops model showed favourability towards sorghum, stress on 
groundwater was less, also, ethanol yield and cost of sorghum stalk are moderate. The 
incorporation of regional water and land resource availability gave a better 
understanding of energy and water nexus. The model showed economic benefits earned 
by farmers comes at the cost of water stress in the region; thus, a balance has to be 
created between the two. The challenges associpated with land allocation could further 
be studied by including flow across the district and surface water in the model. 
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Abstract 
Around the world, 70% of the NG gasification volume of LNG regasification terminal is 
processed through ORV. First principle-based modeling studies have been conducted to 
improve the heat exchange efficiency and optimize the operation, but ORV is equipment 
in which the heat transfer coefficient is irregular according to time and space, and it 
undergoes a complex modeling process. In this study, FNN, LSTM, and AutoML-based 
modeling that predicts dynamic changes in NG and seawater discharged temperatures 
according to changing operating condition in ORV using actual operation data were 
performed to confirm the effectiveness of data-based modeling for complex systems. The 
MSE-based prediction accuracy was insignificant between LSTM and AutoML, and FNN 
showed twice the error in prediction. The performance of AutoML was superior to the 
manually developed FNN, and the training time took 27 times longer than the LSTM, but 
the total time required for model development was 1/25, which demonstrates the 
possibility of automated model design using AutoML, without manual intervention. The 
prediction of the NG and seawater discharge temperatures using LSTM and AutoML 
showed an error of less than 0.5K. The real-time optimization of the amount of LNG 
vaporization that can be processed through ORV in winter is performed with the LSTM 
model. It is possible to additionally process 19.7% of LNG compared to the previous 
operation, and by the effect of reducing operation cost, it is suggested that the optimal 
operation guideline of ORV can be provided using the developed dynamic prediction 
model. 
 
Keywords: Machine learning, dynamic modeling, operations decision support, AutoML. 

1. Introduction 
The open rack vaporizer (ORV) of the LNG regasification process uses seawater as a heat 
source and is the most widely used due to its advantages such as low operating cost, ease 
of maintenance, and safety. In winter, however, when seawater temperature is below 5℃, 
which is the minimum requirement for ORV operation, a submerged combustion 
vaporizer (SCV) with a high operating cost is used to achieve the target NG production. 
If real-time optimization for more amount of LNG that can be vaporized through ORV in 
winter is possible, it reduces process operating cost by minimizing the use of SCV. 

First principle-based modeling studies have been performed to improve the heat exchange 
efficiency of ORV and optimize the operating parameters. Wang et al. (2013) and Jin et 
al. (2014) performed heat exchange modeling reflecting the icing phenomenon of the tube 
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surface to present Super ORV design standards. Cheng et al. (2019) modeled the heat 
exchange phenomena to present the criteria for ORV design and analyzed the effect of 
operating parameters. However, first principle-based heat exchange modeling in ORV 
experiences a complex process because of the phenomenon of freezing seawater on the 
tube surface by -160℃ LNG flowing and forming an irregular film on the tube surface, 
resulting in irregular heat transfer coefficients according to time and location. 

In the case of a complex system, the first principle model contains many number of 
equations for high accuracy, which makes it tough to predict promptly and accurately. 
However, an artificial neural network, which reflects nonlinearity and has a low 
computational load, with the desired level of accuracy (Singh et al. 2013). 

In this study, we developed a prediction model based on Feed-forward neural network 
(FNN), Long short-term memory (LSTM), and AutoML that predicts dynamic changes 
in NG and seawater discharge temperatures using actual operation data. The purpose of 
this study is to evaluate the feasibility of selecting an algorithm suitable for processing 
time series data by comparing the performance, including AutoML, automatically 
generating an optimal machine learning model for field engineers who are non-data 
science experts. Through real-time optimization of more amount of LNG vaporization 
that can be processed with ORV based on the suggested predictive model, especially for 
winter when the minimum operating conditions of ORV are not satisfied, we evaluate the 
applicability of the dynamic prediction model to reduce the operating cost of the LNG 
regasification process and provide operations decision support. 

 
Figure 1. Onshore LNG regasification process (adapted from D'alessandro et al. 2016). 

Table 1. Dynamic modeling results of FNN, LSTM and AutoML. 

 Number of 
datasets 

Network structure (L: LSTM layer, 
B: batch normalization layer) 

Number of 
parameters 

Test 
MSE 

Training 
time (s) 

FNN 1 320(input)-30-B-30-B-10(output) 10,990 0.000315 117 
 2 320(input)-30-B-30-B-10(output) 10,990 0.000485 109 
 3 320(input)-30-B-30-B-10(output) 10,990 0.000263 111 
 4 320(input)-30-B-30-B-10(output) 10,990 0.000315 108 
 5 320(input)-30-B-30-B-10(output) 10,990 0.000624 111 
 Average   0.000400 111 
LSTM 1 8(input)-4L-50-B-10(output) 1,068 0.000187 296 
 2 8(input)-4L-50-B-10(output) 1,068 0.000183 300 
 3 8(input)-4L-50-B-10(output) 1,068 0.000211 299 
 4 8(input)-4L-50-B-10(output) 1,068 0.000218 283 
 5 8(input)-4L-50-B-10(output) 1,068 0.000236 273 
 Average   0.000207 290 
AutoML 5 320(input)-256-32-64-10(output) 93,803 0.000253 7,918 
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2. LNG Regasification Process 
Onshore LNG regasification process is a process of producing and supplying NG, the 
final product, by receiving LNG from an LNG carrier and storing it in a cryogenic liquid 
state and then vaporizing LNG through a vaporizer. Figure 1 is a diagram of the LNG 
regasification process. Various dynamic modelings of the widely used ORV based on 
artificial neural networks are performed during this research. 

3. Dynamic Modeling Using ANN 
3.1. LNG Regasification Process Dataset 
Real operation data were obtained for the LNG regasification process. A prediction model 
was constructed using a data set with a total of eight features, such as seawater flow rate, 
LNG flow rate, incoming seawater temperature, discharge seawater temperature, LNG 
temperature, NG temperature, seawater pressure, and NG pressure. 

3.2. Data Preprocessing 
As data preprocessing, Min-Max normalization was performed to obtain the effect of 
reducing the prediction error and training time, and for the objective performance 
evaluation of the developed model, the entire data set was applied k-fold cross validation, 
a method of repeating training and validation by dividing into k of the same size. In this 
study, model training and validation were repeated 5 times (k=5). 

3.3. Dynamic Modeling 
The proposed ORV dynamics prediction model consists of 8 input variables and 2 output 
variables. Using process data in 40 time steps, from the past (t=-39) to the present (t=0), 
a model was designed to predict the dynamic changes of the future 5 time steps (t=1,...,5) 
of the discharge NG and seawater temperatures, which are constrained by environmental 
and process factors, according to changes in ORV seawater flow rate, seawater 
temperature, and LNG flow rate. 
A network was constructed using Pytorch 1.5.0, and data were trained using GPGPU 
processors. FNN, LSTM and AutoML were applied, and the optimal values of the 
hyperparameters were determined using grid search method, which is the process of 
searching through a manually specified subset. 

3.4. Deep Neural Network Modeling 
To find the optimal network structure of the FNN, the initial structure was set as 
epoch=500, batch size=250, learning rate=0.1, and number of neurons=100. The optimal 
values were determined in the order of the number of hidden layers, the number of 
neurons in each layer, batch size, learning rate, and epoch. For LSTM, the initial structure 
was set to epoch=300, batch size=250, learning rate=0.1, hidden dimension=10, and 
number of neurons=50. The optimal values were determined in the order of the number 

 
Figure 3. MSE according to the output sequence. 

 
Figure 2. Model performance of FNN, LSTM 
and AutoML. 

Process Using 
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of LSTM layers, hidden dimension, number of neurons, batch size, learning rate, and 
epoch. Table 1 shows the results of FNN and LSTM modeling for five datasets. 

3.5. AutoML 
Automatic design of a machine learning model using AutoML was performed. An 
automatic model generated by using the AutoKeras Python library (developed by Texas 
A&M University) has 3 hidden layers, and the total number of neurons is 352 (256-32-
64), which is about 6 times more than the previous FNN model. Since the process of 
finding the optimal structure by Bayesian optimization is included, the training required 
7918 seconds, which is 27 times longer than LSTM, but the test MSE showed better 
performance than the FNN with 0.000253. Table 1 shows the proposed structure by 
AutoML. 

4. Performance of Dynamic Prediction Models 
4.1. Model Performance Comparison 
For the performance evaluation of the optimal FNN, LSTM and, AutoML, the test MSEs 
were compared. In the case of FNN, the average MSE was 0.000400, for LSTM, 
0.000207, for AutoML, 0.000253. Figure 2 shows the model performances of FNN, 
LSTM and, AutoML. Figure 3 shows the prediction performance according to the future 
time step: LSTM performs the best with the lowest error in all predictions, more suitable 
for predicting process time series data. The performance of AutoML was superior 
compared to the FNN model, and especially the total development time was reduced to 
1/25 compared to the LSTM model with a complex structure that required more than a 
week of work. Development of predictive models using AutoML only required domain 
knowledge at the level that can be designed by field engineers and shows similar 
performance to models designed by experts, thus the model development using AutoML 
was concluded as applicable. 

 
Figure 4. Prediction results of (a) FNN, (b) LSTM and (c) AutoML. 

 
Figure 5. Result for real-time optimization of LNG flow rate. 
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4.2. Prediction Results 
The real operation data were applied to the FNN, LSTM, and AutoML models to compare 
the prediction results. Figure 4 shows the prediction results for time step 2400 to 3100. 
FNN showed an error of 0-2.5K, LSTM of 0-0.42K, and AutoML of 0-0.38K. The 
prediction error of FNN was small, but it did not reflect the trend of the actual data. The 
model proposed through LSTM and AutoML well reflected the trend of actual data; and 
data-based modeling was outstanding for complex systems, which is smaller than the 
prediction error (0-6K) of the first principle-based ORV model proposed by Su et al. 
(2014). 

5. Application of Developed Dynamic Model 
5.1. Real-time Optimization 
To present a guide for manual operation, especially for winter, the maximum amount of 
LNG that can be vaporized through ORV is calculated in real-time while effectively 
satisfying the constraints, to confirm the effect of reducing operating cost using the 
predictive model. The real-time optimization of the amount of LNG that can be processed 
through ORV was performed by the following equations. 

max  (1) 

s.t.  (2) 

  (3) 

  (4) 

  (5) 

where xi is the LNG flow rate in ORV at the time i, n is the total operating time, Tsw is 
seawater temperature, F(x) is the output value of the prediction model. 

The objective function, Eq. (1), is to maximize the average flow rate of LNG while 
satisfying all the constraints. The discharged NG temperature should always be higher 
than 1℃, which is the design condition of ORV. In the case of discharged seawater that 
is released to the sea after use, a constraint on the temperature difference between intake 
and drainage is enforced due to the influence of the marine ecosystem. For constraints, 
Eqs. (2)-(5), the discharged NG temperature was set to higher than 2℃, and the 
discharged seawater temperature and the temperature difference were set to more than 
0.5℃, below 5℃. 

5.2. Scenario: Reduction in LNG flow rate under 5℃ of seawater 
When the temperature of seawater decreases, the current (table-based) operation method 
excessively decreases the LNG flow rate to satisfy the constraints, as a result, the NG and 
seawater discharge temperatures rapidly increase. By performing real-time optimization 
through the LSTM model, it was intended to prevent a rapid rise in the discharged 
temperatures of NG and seawater and to avoid excessive LNG flow rate reduction. Figure 
5 shows the results of real-time optimization. The LNG flow rate that can be processed 
through ORV increased by 19.7% per hour from the previous average of 296.62 to 355.19 
m3/h. It vaporizes 24 tons of additional LNG per hour; operation cost of $216 per hour 
can be reduced by maximizing the use of ORV instead of SCV usage. 
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6. Conclusions 
To overcome the weaknesses of first principle modeling of ORV, complicated and 
requiring a lot of time, we developed a prediction model based on FNN, LSTM, and 
AutoML using real operation data. The test MSE of the LSTM model showed the best 
performance of 0.000207, and the AutoML-based model of 0.000253, which was higher 
than the FNN model of 0.0004. Besides the process of finding the optimal model through 
Bayesian optimization, it took 7918.42 seconds to train, but when comparing the time 
taken to manually develop the entire model with the LSTM through the complex 
modeling process, the whole design time demand was greatly reduced to 1/25. AutoML-
based modeling requires domain knowledge only at the level of field engineers and shows 
similar performance to the models developed by experts, proposing that AutoML is 
effective in practical application. 
In the actual data prediction, the FNN showed an error of less than 3K. The LSTM and 
AutoML models indicate high accuracy with an error of less than 0.5K, and the data-
based model showed superior prediction accuracy compared to the first principle-based 
model. The LSTM model with high accuracy was used to predict the maximum amount 
of LNG vaporization in real-time within the range that satisfies the constraints of the NG 
and seawater discharge temperatures in winter. By real-time optimization of the LNG 
flow rate in ORV, it improved by 19.7%, and operating cost of $216 per hour can be 
reduced by decreasing the SCV usage. Accordingly, by recommending the maximum 
LNG flow rate in real-time, the possibility of supporting the operations decision using the 
predictive models was validated. 
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Abstract 
The increasing energy demand for mobility services and the growing concern about 
global warming have become significant drivers for these services’ decarbonisation. In 
this regard, the production and use of fuels obtained from just water, air and renewable 
energies instead of conventional fossil fuels have caught much attention within the 
research community. Recently, nitrogen-based e-fuels have been praised for their 
potential to satisfy mobility and transportation services with a reduced carbon footprint 
compared to their carbon-based analogues, given their carbon-neutral nature. To evaluate 
this hypothesis, we conducted a location-based, techno-economic and cradle-to-grave 
environmental assessment for solar methanol (MeOH) and ammonia (NH3) based on an 
optimisation model. Methanol and ammonia were considered for this study due to their 
relative ease of manufacture and lower production costs than complex fuels, e.g., FT-
fuels, and the growing interest in using them as transportation fuels. From this analysis, 
we concluded that ammonia could have similar production costs, ca., 300 USD/GJ, but 
better environmental performance than methanol regarding global warming potential 
(GWP) and the three endpoint impact categories of the ReciPe 2016 LCA damage model, 
i.e., human health, ecosystems and resources. These results are highly dependent on the 
hydrogen storage options available; their costs and carbon footprints.  

Keywords: e-fuels, techno-economic assessment, life-cycle assessment, optimisation, 
carbon and nitrogen-based fuels 

1. Introduction 
The non-renewable nature of fossil fuels and the increasing demand for energy services, 
especially for power generation, heating, transportation, and rural energy services, have 
contributed to the depletion of oil reserves and global warming and its underlying effects. 
Recent studies (Dominković et al., 2018; Brynolf et al., 2018) affirm that the transport 
sector accounts for more than 20% of worldwide greenhouse gas emissions mainly due 
to the consumption of petroleum-derived fuels. Given the importance of sustainably 
meeting current and future demand for mobility services, recent research has focused on 
solutions that promote renewables’ increasing utilisation. In this regard, e-fuels, i.e., fuels 
produced from carbon (Brynolf et al., 2018) or nitrogen (Ganzer and Mac Dowell, 2020) 
feedstocks, and "green" hydrogen, emerge as promising alternatives to tackle the 
environmental problems associated to the use of fossil fuels. As global warming is a 
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leading environmental concern, the study of carbon-based e-fuels has been prioritised 
owing to the possibility of employing atmospheric CO2 as carbon feedstock. However, 
the potential of nitrogen-based e-fuels in deep decarbonisation scenarios may have been 
underestimated, given the carbon-neutral nature of these kinds of fuels. In this context, 
we conduct a thorough techno-economic and environmental evaluation of carbon and 
nitrogen-based e-fuels aimed at decarbonising the road transportation sector. Our 
assessment framework includes a broad range of tools, including process modelling and 
optimisation, heat integration, net production cost (NPC) calculation and cradle-to-grave 
LCAs. This framework was applied for the continuous production of MeOH and NH3 in 
London, considering the hourly-based solar radiation of 2018, and targeting the same 
amount of energy output from both e-fuels. Based on the model results, we found that the 
production and utilisation of MeOH as fuel would have less environmental impacts than 
NH3, even though their production costs are approximately the same. However, when we 
neglected the environmental impacts associated with the H2 storage, i.e., composite tanks, 
it was noted that NH3 performed better than MeOH in all the environmental impact 
categories assessed. Summing up, we have shown the importance of including a detailed 
assessment of the intermittency of renewable energies and the corresponding energy 
storage means when evaluating the economic and environmental performance of e-fuels, 
which is often underestimated in this kind of studies.  

2. Methodology 
2.1. Model description 
To evaluate the production of e-methanol (MeOH) and e-ammonia (NH3), we followed 
the framework proposed by Ganzer and Mac Dowell (2020). This model takes the 
fluctuating nature of solar energy into account and allows determining the minimum net 
production cost (NPC) of the e-fuels based on optimal production routes, equipment 
sizing, heat integration and energy storage levels of chemicals and electricity. The 
implementation and solution of this MILP model were made via GAMS 32.1.0 with 
CPLEX 12.10.0.0 as the solver. We run this model for London with the hourly-based PV 
capacity factors taken from renewables.ninja for 2018. 
2.2. Economic assessment 
For the economic assessment, the total cost only includes the CAPEX of the processes 
and the storage options given that the cost of utilities, i.e., heating, cooling and electricity, 
raw materials, i.e., solar radiation, water and air, and labour costs could be considered 
negligible based on this model approach. The NPCs of the e-fuels were estimated 
considering the working capital to be 10% of the total capital investment (TCI); an interest 
rate of 10%, a plant lifetime of 20 years and an annual operation of 8600 h. 
2.3. Environmental assessment 
The environmental assessment was implemented in Simapro v9.0 interfacing with 
Ecoinvent 3.5, based on a cradle-to-grave approach and the life cycle impact model 
ReCiPe 2016, as described in a previous publication (Freire Ordóñez and Guillén-
Gosálbez, 2020). The foreground system’s LCA inventories were obtained from the 
model of Ganzer and Mac Dowell (2020) while the background data, i.e., subprocesses 
involved in the provision of raw materials and utilities to the main processes, was 
retrieved from Ecoinvent. The composite tanks required to store H2 were modelled based 
on the work of Benitez, et al. (2021), the Li-ion (LFP) batteries for the electricity storage 
according to (Majeau-Bettez et al., 2011), and the utilisation-phase emissions of both e-
fuels based on the study of (Al-Breiki and Bicer, 2021). 
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3. Results and Discussion 
The optimal production routes for the given conditions are shown in Fig. 1 and Fig. 2. 

 
Fig. 1. NH3 production process from solar electrolytic H2 and N2 from air separation. Only a cooling 
utility, i.e., cooling water, is required after heat integration 

 
Fig. 2. MeOH production process from solar electrolytic H2 and CO2 from direct air capture (DAC) 
using the Climeworks technology. This production route includes the electrocatalytic reduction of 
CO2 to formic acid (FA). A heating utility, i.e., H2-to-heat, and a cooling utility, i.e., cooling water, 
are required after heat integration. 
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Fig. 3. NPC of the studied e-fuels, including all process and storage equipment required for the 
continuous operation of the chemical plant, compared with fossil petrol (BAU) + bio-energy with 
carbon capture and storage (BECCS) (Natural Resources Canada, 2014; Drax Group plc, 2020). 
Neither duty rate nor VAT is included in the given figure for fossil petrol. BECCS is regarded at 
the moment as the most mature carbon removal technology (IEA, 2020) 

Fig. 3 shows the cost breakdown of the production routes of each e-fuel, while the 
required sizes of each subprocess are detailed in Table 1. It can be seen that both e-fuels 
have similar NPCs on an energy basis, ca., 300 USD/GJ, and that the major contributors 
to the production costs are the solar PV and the H2 storage processes. A large storage 
capacity for H2 is required to guarantee the chemical plants’ continuous operation due to 
the low level of solar radiation in London compared to other regions. Therefore, it is 
advisable to explore different energy alternatives, e.g., wind power, depending on the 
production plants’ location. It can be seen that, currently, the NPC of the studied e-fuels 
is approximately 30-fold higher than that of the BAU, when they are compared under the 
same cost basis, i.e., excluding any taxes, tariffs or fees, added after the production stage. 
If direct offsetting of petrol CO2 emissions via BECCS is considered, the NPC difference 
between the e-fuels and BAU would be about 20 fold. 
Table 1. Process design required for the continuous operation of the chemical plant 

 Process NH3 MeOH  
PV [GW] 2.24 2.19 
Battery storage [MWh] 40.43 204.85 
H2 electrolyser [tonne-H2/h] 17.60 17.92
H2 storage [tonne-H2] 4611.67 3077.11 
FA electrolyser [tonne-FA/h]   57.61 
FA storage [kt-FA] 99.79
DAC-CW [#modules]   9832.00 
ASU [tonne-N2/h] 16.61   
H2 to heat [MW] 102.59 
Direct MeOH synthesis [tonne-MeOH/h]     
MeOH synthesis from FA [tonne-MeOH/h]   18.70 
NH3 synthesis [tonne-NH3/h] 20.00   
Cooling water (MW) 18.14 16.36 
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Fig. 4. ReCiPe 2016 LCIA per GJ of e-fuels: Cradle-to-grave results for GWP and endpoint impact 
categories, including environmental impacts and corresponding breakdowns. 

As shown in Fig. 4, most environmental impacts come from H2 storage. This is explained 
by the large storage capacity needed, and the complexity and energy-intensive nature of 
the processes required to manufacture carbon fibre. This fibre is the main component of 
the composite tanks used to store H2 gas (Benitez et al., 2021). Nevertheless, the 
production and utilisation of NH3 might be a viable alternative over MeOH, if the costs 
and environmental impacts of H2 storage are minimum or negligible (see Fig. 5), e.g., if 
H2 is stored in salt caverns (Sørensen and Spazzafumo, 2018). 
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Fig. 5. ReCiPe 2016 LCIA per GJ of e-fuels: Cradle-to-grave results for GWP and endpoint impact 
categories, when the environmental impacts of H2 storage in composite tanks are omitted.  
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4. Conclusion 
In this work, we have performed a comparative techno-economic and environmental 
assessment of two representative carbon and nitrogen-based e-fuels, i.e., MeOH and NH3, 
to evaluate the hypothesis that the production and utilisation of carbon-containing e-fuels 
have a higher carbon footprint than their nitrogen-based analogues when delivering the 
same amount of energy output. This hypothesis was proven to be not always correct since 
the production costs and environmental burdens associated with the e-fuels strongly 
depend on the steady-state plant’s location, which has a marked effect on the design 
capacity of the storage means for chemicals and electricity. Based on our results for 
London in 2018, it was concluded that the composite tanks required to store H2 for the 
continuous operation of the chemical plant were, in aggregate terms, major economic and 
environmental contributors of both solar e-fuels. This fact might not hold for other 
locations with different energy potentials. Furthermore, it was shown that conventional 
petrol is still substantially cheaper than both e-fuels, even when considering BECCS to 
offset its fossil CO2 emissions. It means that significant cost reductions and technology 
improvements are still pending for e-fuels to be widely deployed. 
This analysis demonstrated the importance of a location-based approach for this kind of 
studies and the need to keep investing in R&D to lower equipment costs and find 
alternative storage options that allow not only reducing the production costs but also the 
associated harmful impacts of e-fuels. 
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Abstract 
Electrical vehicles’ (EV) deployment as an alternative eco-friendly transport solution has 
become a promising initiative worldwide to reduce greenhouse gas emissions and fossil 
fuel depletion. This fact triggers the need to roll out fast-charging stations to fulfill daily 
road charging demand. Securing the power requirement for those stations has become a 
significant challenge that would cause substantial load increase on the existing electricity 
generation system and distribution infrastructure if supplied from the conventional 
resources. Hence, grid-independent charging stations with renewable energy sources 
(RES) and multiple energy storage systems has become an alternative solution to 
overcome the raised challenge. This paper aims to assess the implementation of a stand-
alone fast charging station technically and economically in the State of Qatar comprising 
of a wind turbine (WT), concentrated photovoltaic (CPV) system and a bio-generator as 
RES along with various storage systems. The proposed design is built, modelled, and 
simulated using Hybrid Optimization System for Electric Renewable (HOMER) software 
to determine the optimal techno-economic configuration to fast charge 50 EVs daily in a 
reliable manner. Predefined constraints such as space limitation, stochastic nature of EV 
demand, and site-specific metrological conditions are considered. Multiple sizing 
portfolios of incorporated subsystems are evaluated through simulation. Sensitivity 
analysis is used to evaluate the impact of selected decision variable values such as the 
WT height where the generated analytical results are compared from the technical and 
economic perspectives. The results show that a stand-alone micropower system 
consisting of 450 kW CPV, 250 kW WT with 60 m hub height, 100 kW bio generator, 
and 324 kWh batteries is the optimal configuration with minimal 2.378 million dollars 
net present cost (NPC), 0.284 $/kWh cost of energy (COE) and 0.02 % unmet demand. 
 
Keywords: Hydrogen, electrolyzer, fuel cell, clean energy, HOMER. 

1. Introduction 
The rising interest in clean energy and EV deployment increases the electricity demand 
to fulfil the associated charging power requirements causing generation fluctuations and 
grid tension in case it is supplied from the grid. Consequently, leading to political 
instability, economic variability, and environmental degradation in case conventional 
generation methods are used to supply the additional demand required. This made 
securing the needed power supply independently from the grid and based on renewable 
energies a global interest and motivation. 
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Many studies have investigated renewable energy utilization for power generation while 
others on electric mobility (Mazzeo, 2019). The combined research of employing stand-
alone RES to supply electrical power for fast EV charging station has been insufficiently 
considered, and further research on grid-independent EV charging stations is required 
(Mehrjerdi, 2019). 

In commitment to its long-term national sustainable development strategy, Qatar has 
embarked on the “Green Car Initiative” in 2017 (The Peninsula Qatar, 2017) to stimulate 
on the adoption of EVs to achieve 4 % share of its local share by 2020 (Qana, 2017). To 
fulfil EVs charging demand, it was declared that 400 EV charging stations would be 
accessible by the same year (Kumar, 2019). 

Since the number of registered vehicles in Qatar in 2017 was 1.5 million and the average 
annual increase is 12 % (CEIC, 2019), the total number of vehicles will reach 2.7 million 
in 2022, out of which 100,000 shall be EVs. This fact raises the need to devise reliable 
nonhydrocarbon-based micropower systems to supply those charging stations with the 
necessary power without impacting or expanding the existing grid infrastructure. 

2. Methodology 
In this study, a micropower system which was designed and thermodynamically evaluated 
using Engineering Equation Solver (EES) program (Klein, 2018) in a previous study by 
the authors (Al Wahedi and Bicer, 2020a) is built using HOMER model from the National 
Renewable Energy Laboratory (NREL) (HOMER, 2018). The resources of the associated 
RES incorporated in the proposed design along with forecasted EV demand are modeled. 
Sensitivity analysis based on selected variables along with various parameters and sizing 
options for selected components are considered in the simulation process. HOMER Pro 
simulation and optimization results are analyzed thoroughly where multiple optimal 
configurations are investigated and compared to select the overall optimal design 
configuration and sizing based on predefined technical and economic decision criteria. 

3. System description 
Since Qatar is located in the Sun Belt region with plenty of annual solar irradiation, CPV 
solar system is selected as one of the two main RES for generating electricity. WT is 
selected as the second main RES since, based on the literature review the application of 
small to medium-size WTs is feasible to generate energy in Qatar (Moghbelli et al., 2011). 
Bio generator, electrolyzer, chemical storage tank, H2, and NH3 fuel cells (FC), DC/AC 
converter, and battery storage system (BSS) are the remaining components of the 
proposed stand-alone design. 

Load-following (LF) and cycle-charging (CC) strategies are assessed for charging the 
incorporated BSS. In the former strategy, the battery system is charged by renewable 
sources but not by the incorporated bio generator. While in the latter strategy, the bio 
generator serves both the load and storage battery charging. 

While H2 is produced and stored in a tank on site, NH3 is produced off site and stored in 
a tank on site in the proposed system. 

The proposed design is built in HOMER and illustrated in Figure 1. 
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Figure 1: Proposed system configuration 

 
Table 1 indicates the parameters to be investigated for each component in the design. Few 
components have predefined parameters, others have a range of parameters to be 
investigated, and others are determined by HOMER optimizer. 

Table 1: Components and parameters investigated in the study 

Component Parameter Remarks 

CPV 450 kWp 
Determined using PVSyst (PVsyst, 

2018) software based on space 
limitation of 1,500 m2 

WT 250 kW Determined considering space 
limitation and WT blade dimensions 

H2 and NH3 FCs 50 kW / 100 kW Both sizes are simulated for each 
FC 

BSS and Converter - Calculated and selected by HOMER 
Optimizer 

Bio Generator 50 kW, 100 kW and Auto size Auto size is calculated and selected 
by HOMER Optimizer 

Electrolyzer 50 kW / 100 kW Both sizes are simulated 
Chemical storage tank 50 kg / 100 kg Both sizes are simulated 
BSS charging strategy LF / CC Both strategies are simulated 
WT Hub Height 40 m, 50 m, 60 m Sensitivity analysis is carried out 

4. Load profile and resources input modeling 
Considering 20 % of the total EVs will need on-the-road fast charging service and the 
average energy required by each EV is about 35 kWh, the daily demand from a single 
charging station is estimated to be 1,750 kWh (Al Wahedi and Bicer, 2020b). The daily 
EV demand profile from the study (Bayram et al., 2016) is used here, after extrapolating 
the data using probability density function to represent 50 EVs daily demand. To model 
the demand more realistically, 10 % day-to-day and 20 % timestep randomness is added 
to the EV load data to represent 10 % daily variance and 20 % monthly variance. Figure 
2 illustrates the daily and seasonal stochastic EV demand profile in HOMER. 
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(a)       (b) 

Figure 2: EV demand generated by HOMER (a) daily and (b) seasonal 

For the specific site selected in Qatar, the average monthly Solar Global Horizontal 
Irradiance (GHI), clearness index, and wind speed data are obtained from NASA 
Prediction of Worldwide Energy Resources (POWER) database included in HOMER Pro 
software, which is illustrated in Figure 3.  

 
 

  
(a)                                                   (b) 

Figure 3: (a) Average monthly Solar GHI, clearness index, and (b) Wind speed at 
selected location in Qatar 

The GHI data is for over 22 years from July 1983 to June 2005, and wind speed data is 
for over 30 years from January 1984 to December 2013 measured at 50 m height. 

The economic analysis in HOMER is determined by assessing the life-cycle cost of a 
system, which is represented by calculating the NPC and COE of each configuration. 
Each component’s costs within the project lifetime are reflected in Table 2 where 
electrolyzer and FCs costs are obtained from (Energy, 2015) and (Monterey Gardiner, 
2014), respectively. Moreover, 5.7 % discount rate and 0.55 % inflation rate are used in 
this study (Bank, 2021). 

Table 2: Life cycle cost of main components 

Component Capital 
Cost ($) 

Replacement 
Cost ($) 

O&M 
Cost ($) 

Fuel Cost 
($/L) Lifetime 

1 kW CPV 1,000 300 25/y - 25 y 
250 kW WT 250,000 250,000 1,000/y - 25 y 

1 kW NH3 FC 3,000 1,500 0.010/h - 5,000 h 
1 kW H2 FC 3,000 1,500 0.010/h - 5,000 h 

1 kWh Li-ion Battery 300 300 10/y - 15 y 
1 kW Converter 300 300 - - 15 y 

1 kW Bio Generator 200 200 0.030/h 0.50 15,000 h 
  1 kW Electrolyzer 380 95 20/y - 7 y 
1 kg H2 storage tank 700 700 - - 25 y 
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5. Simulation and optimization results 
The proposed stand-alone design is configured and simulated in HOMER Pro to identify 
the optimal configuration from the technical and economic perspectives. Based on the 
earlier predefined parameters such as components’ sizes, WT hub’s height, and battery 
charging strategy, all feasible options are simulated in HOMER Pro to determine the 
optimal configuration based on multiple decision criteria. Accordingly, 68,520 solutions 
are simulated, out of which 45,048 were found feasible while 20,400 were found 
infeasible due to capacity shortage constraint where the required capacity is found 
relatively more than the actual capacity that the system can deliver. For each WT hub 
height sensitivity case, nine different optimal configurations are identified with detailed 
associated parameters and components’ sizing. 

For each WT hub height, the best configuration of each of the three suggested bio-
generator capacities are listed in Table 3, along with associated components’ capacities 
and parameters. Techno-economic analysis is carried out by comparing NPC, COE and 
unmet demand among all the nine selected scenarios. As a result, 60 m WT height with 
100 kW bio-generator and associated components and parameters scenario is found as the 
optimal configuration with minimum NPC and COE. 

Table 3: Technical and cost analysis of selected optimization results  
WT 
Hub 

Hight 
(m) 

Bio 
Gen 
(kW) 

H2 
FC 

(kW) 

NH3 
FC 

(kW) 

Li-Ion 
Battery 
(kWh) 

Electro_ 
lyzer 
(kW) 

H2 
Storage 

Tank 
(kg)

Conv_ 
erter 
(kW) 

Dispatch 
NPC 

(Million 
$) 

COE 
($) 

Unmet 
load 
(%) 

40 
100 50 50 344 50 50 226 CC 2.217 0.225 0.03 
500 50 50 709 50 50 281 LF 2.373 0.241 0.00 
50 50 50 817 50 50 272 CC 2.485 0.252 0.04 

50 
100 50 50 342 50 50 229 CC 2.206 0.224 0.03 
500 50 50 740 50 50 273 LF 2.341 0.238 0.00 
50 50 50 810 50 50 264 CC 2.464 0.250 0.04 

60 
100 50 50 324 50 50 253 CC 2.191 0.223 0.02 
500 50 50 729 50 50 281 LF 2.323 0.236 0.00 
50 50 50 810 50 50 253 CC 2.455 0.249 0.03 

 
The total monthly electricity generated by the proposed configuration is illustrated in 
Figure 4, where WT, CPV, bio generator, and FC contributions are 41 %, 37 %, 17 %, 
and 5 %, respectively. 
 

 
Figure 4: Monthly electricity production by the source in the optimal configuration 

6. Conclusions 
A techno-economic assessment is carried out in this study with HOMER Pro simulation 
software to model, simulate and optimize the proposed grid-dependent micropower 
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system consisting of multiple renewable sources and storage options to fast charging 
50 EVs per day in the State of Qatar. Among many simulated feasible configurations, a 
system comprising of 450 kW CPV, 250 kW with 60 m height WT, 100 kW bio 
generator, 324 kWh batteries, 50 kg H2 storage tank and 50 kW electrolyzer, H2 FC and 
NH3 FC is identified as the optimal configuration with 2.378 million dollars NPC, 
0.284 $/kWh COE and 0.02 % unmet demand where WT, CPV, bio generator and FC 
electricity contribution are found 41 %, 37 %, 17 %, and 5 %, respectively. 
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Abstract 
This work proposes a simultaneous approach for the synthesis and design optimization of 
refrigeration cycles integrated with heat exchanger networks. The methodology includes 
a novel refrigeration cycle superstructure capable of reproducing a wide range of cycle 
architectures, and an effective solution algorithm (based on the decomposition of the 
problem on two levels) to tackle the challenging Mixed-Integer Nonlinear Program. In 
addition to optimizing the cycle and heat exchanger network structure, the methodology 
can optimize cycle pressures and temperatures (including superheating and subcooling 
degree of the working fluid). The application to a literature case study indicates that the 
proposed approach yields solutions that are considerably better in terms of economic than 
those published in the literature. 
 
Keywords: Refrigeration Cycle Optimization, HEN Synthesis, MINLP, Heat Integration. 

1. Introduction 
The design of a refrigeration cycle represents a challenging task, mainly due to the wide 
range of designs and working fluid alternatives, resulting from the evolution of this 
technology during the last 100 years. All these possible alternatives have been developed 
to meet the needs of different applications, such as industrial refrigeration, heat pumps 
for industrial waste heat recovery and cryogenic applications like natural gas liquefaction. 
Thus, the optimal design of refrigeration cycles calls for the development of systematic 
optimization approaches capable of exploring all the alternative configurations and 
finding the best trade-off between cost and performance. 

Many authors in the literature have addressed the optimization of refrigeration cycles, but 
to the best of the author’s knowledge, only a few have considered a combination of 
technical, thermodynamic, and economic parameters in the process. In the study by 
Wallerand et al. (2018), a comprehensive literature review can be found, considering all 
the studies from the seventies. The main approaches adopted for optimization are Pressure 
and Temperature optimization approach and Synthesis approach. In the first one, a case-
related structure is developed in an ad-hoc fashion, and then optimization is performed 
only on continuous variables since the structure is fixed. The second approach generates 
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the optimal structure together with the optimal operating conditions. This can be achieved 
by replicating multiple times a basic structure, or by selecting portions of a very general 
superstructure (synthesis based on reduction). 

None of the approaches reported in the literature combines all the main optimization 
targets in one method, considering compression refrigeration cycle structure, heat 
exchanger network (HEN) structure, thermodynamic and economics. In contrast, the 
objective of this work is to develop a model that is able to consider all the alternatives 
available for compression refrigeration, and select the best ones for the selected purpose. 
In particular, the model considers: 

� All the main configurations for the compression refrigeration cycles. 

� The optimal configuration of the HEN: not only the general structure of the 
cycle, but also the heat integration is optimized, which means coupling in the 
best possible way hot and cold streams to guarantee a required refrigeration duty 
(and if necessary heating too). 

� The optimization of thermodynamic properties, selecting optimal temperatures 
and pressures for condensations and evaporations, optimal heat exchange 
temperatures, and selecting the optimal values for all the technical solutions. 

2. Problem Statement and Methodology 
The problem addressed in this work can be summarized as follows. 

“Given a set of hot and cold process streams with given mass flow rates, inlet and outlet 
temperatures, and a set of possible hot/cold utility systems (e.g., boilers, cooling water), 
and the superstructure of possible reverse Rankine cycle configurations, determine the 
optimal selection of utility systems, the design of the reverse Rankine cycle (selection of 
pressure levels, mass flow rates of each utility stream, temperatures at inlets and outlets 
of the evaporator/condenser/intercoolers, etc.), the HEN between process–process as well 
as process-utility, process-cycle and cycle–utility streams, minimizing the Total Annual 
Cost (TAC, sum of annualized capital cost and yearly operating costs) of the overall 
system (utility systems, reverse Rankine cycle and HEN)”. 

The optimization of the Refrigeration Cycle and HEN is performed together with the 
thermodynamic and economic optimization with a synthesis approach based on a very 
general cycle superstructure containing all the major technological solutions from which 
the best configuration is selected. The superstructure is built as a series of headers 
representing the thermodynamic conditions (i.e., points in the p-h diagram), connected by 
streams and components, i.e., valves, compressors, and heat exchangers (HXs). This 
structure is then combined with a HEN superstructure and optimized minimizing TAC. 
The procedure also selects the optimal thermodynamic properties of all the streams and 
components. The problem is modelled and solved in GAMS. 
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3. Reverse Rankine Cycle and HEN Superstructures 

 
Figure 1. General Compression Refrigeration Cycle Superstructure with 3 Pressure Levels and 

corresponding p-h Diagram 

The cycle superstructure (shown in Figure 1) is obtained by considering the most 
promising cycle schemes. For the sake of simplicity, Figure 1 shows a superstructure with 
up to 3 pressure levels, although this number can be easily increased. Indeed, in the test 
case, a superstructure with up to seven levels of condensation and evaporation is 
considered. The superstructure can model simple compression refrigeration cycles, 
compression refrigeration cycles with double throttling, multiple compression 
intercooling options (HXs, vapor mixing intercoolers and direct contact coolers), multiple 
condensation and evaporation levels, cascade refrigeration cycles (by replicating more 
than once the superstructure), liquid sub-cooling and vapor super-heating. 

The corresponding p-h diagram is shown in the bottom part of Figure 1. Please notice that 
the p-h points reported in the diagram are optimized by the algorithm. 

As for the HEN superstructure, the proposed optimization uses the SYNHEAT 
superstructure by Yee and Grossmann (1990) to optimize the HEN synthesis. Following 
the successful approach of Martelli et al. (2017) and Elsido et al. (2019), the streams of 
the reverse Rankine cycle are included in the HEN in all stages and the overall structure 
obtained is optimized as a large scale nonconvex MixedInteger Nonlinear Programming 
model (MINLP). 
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4. Optimization Approach 
The optimization problem resulting from combining the superstructure of the Reverse 
Rankine Cycle with the HEN synthesis is a nonconvex MINLP. It features binary 
variables for cycle components selection and HXs activation, and continuous variables 
for thermal power, areas, HEN stage temperatures, compressors power, mass flow rates 
of streams. The nonlinearities are bilinear products in energy balances (miTi,j,k, where mi 
is the mass flow rate of cycle stream i and Ti,j,k is the HEN stage temperature), HXs areas 
calculation depending on the mean temperature difference (LMTD), economy of scale 
law in the capital cost of equipment units (compressors and HXs), products between mass 
flow rates and enthalpies of streams in energy balances, and functions h(p, T) linking 
enthalpies h with temperature T and pressure p (or pressure and entropy for the 
compressor discharge stream) of each header. These functions h(p, T) are evaluated using 
the “Extrinsic Functions” developed by Manassaldi et al. (2019) and implementing the 
Peng Robinson Equation of state. The isentropic efficiency definition was used to 
calculate the properties of the compressors outlets. Comparison with REFPROP indicates 
that the error incurred in the use of the Peng Robinson Equation of state in evaluating the 
enthalpies of the headers is lower than 1%, which is acceptable for the optimization 
purposes of this work. 

Preliminary computational tests indicate that the nonlinear and nonconvex MINLP cannot 
be solved with general purpose MINLP solvers, such as BARON. Thus, a decomposition 
approach has been developed by adapting the bilevel decomposition approach proposed 
by Elsido et al. (2019) for cases with fixed header p and T (i.e., fixed h). The adapted 
decomposition algorithm is shown in Figure 2. The initialization consists in guessing 
starting values of the headers pressures and temperatures, and then solving the problem 
with fixed header p and T using the same sequential initialization approach of Elsido et 
al. (2019). Then, the bilevel algorithm starts with a linearized version of the problem 
(Mixed-Integer Linear Program, MILP) in which header enthalpies are fixed, but the 
capital cost functions are piecewise linearized, the area-LMTD relations are linearized 
using first-order Taylor approximation, and the bilinear terms miTi,j,k are linearized using 
the McCormick relaxation. Although of large scale, the MILP can be solved with 
commercially available solvers (CPLEX in our case). Once solved, the binary variables 
are fixed (fixing the HEN and Refrigeration cycle structure), and the lower level program 
optimizes the continuous variables (including headers pressures and temperatures) by 
solving a nonconvex Nonlinear Program (NLP). Due to the lack of the explicit algebraic 
expressions in the Extrinsic Functions used for h(p, T), a solver with global convergence 
guarantee (like BARON) cannot be used for the NLP subproblem. Thus MSNLP (Multi 
Start Non-Linear Programming) is chosen to tackle the NLP subproblem (the risk of 
finding a local minimum is mitigated by considering multiple starting points). After the 
NLP is solved, the MINLP is linearized again around the newly found solution to derive 
an updated master level MILP for the subsequent iteration. “Nested integer cuts” (Elsido 
et al. 2019) are added to the master level MILP to exclude already found binary solutions. 

Since p and T of headers are fixed in the master level problem, its solution cannot be 
considered as a lower bound (useful for deriving an optimality gap and stopping 
criterion). Thus, as stopping criterion of the bilevel algorithm, we considered the 
condition of no solution improvement for 20 consecutive iterations. 
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Figure 2. Schematic approach to the MINLP problem in the variable-headers optimization, 

adapted from Elsido et al. (2019) 

5. Case Study and Results 
The proposed approach was applied to Example E2 by Grossmann and Shelton (1986), 
where the synthesis and optimization of the refrigeration cycle is performed including 
two hot and two cold streams to be integrated in the HEN. The objective function is the 
Total Annual Cost (TAC) including both capital and operating costs. The bilevel 
decomposition algorithm converged in 33 iterations with a total computational time of 
14480 s. The main results are summarized in Table 1, 2 and the optimized cycle and HEN 
structures are reported in Figure 3.  

The results indicate major improvements in terms of economics (TAC), Coefficient of 
Performance (COP), and cycle simplicity (2 evaporation levels with 2 direct contact 
coolers and a total of 8 HXs vs. 2 evaporation levels, 4 intercoolers and 5 direct contact 
coolers with a total of 12 HXs of the reference solution). The key advantage of the 
proposed approach compared to the one adopted in Grossmann and Shelton (1986), is the 
possibility of optimizing the heat transfer temperature differences and the cycle pressure 
levels (this enables using more efficient heat integration options), the higher flexibility of 
the cycle superstructure (including more intercooling/throttling options) and the 
capability of considering simultaneously capital and operating costs.  

Table 1. Main Results of Test Case Optimization 

Reference TAC (k€/yr) Optimized TAC (k€/yr) Improvement  
142,2 107,6 24,30% 

Reference COP  Optimized COP Improvement  
5,73 9,59 67,36% 

Table 2. Components of the TAC  

 Reference Cost (k$/yr) Optimized Cost (k$/yr) 
Ann. CAPEX HEN 30,814 40,832 
Ann. CAPEX COMP 57,135 27,011 
Elect. purch. Cost 31,461 15,625 
Steam import cost 22,822 24,147 
TAC 142,232 107,615 
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Figure 3. (A) Reference solution by Shelton and Grossmann (1986) and (B) optimized structure 

6. Conclusions 
The results of the test case show that the proposed approach is a very promising tool for 
the design of efficient and cost-effective refrigeration cycles. This is due to its capabilities 
of: (i) of integrating a flexible cycle superstructure with the HEN superstructure, (ii) 
optimizing cycle pressures and temperatures, (iii) considering both capital and operating 
costs in rigorous way, (iv) relying on an efficient (although without guaranteed global 
convergence) MINLP decomposition algorithm. 

Future developments of the methodology will focus on the development of globally 
convergent decomposition algorithms. 
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Abstract 
A macroscopic graphical targeting approach based on the C-H-O ternary diagram is 
proposed for the synthesis of waste-to-chemicals systems. Sustainability metrics are also 
considered to gain insight into the process efficiency and resource utilization. The process 
targets together with the sustainability metrics enable the screening, evaluation and 
comparison of various process routes. A case study for the conceptual design of a waste-
to-DME facility is considered. The process includes waste gasification and DME 
synthesis. The DME production process has two main process targets, one based on the 
indirect synthesis route and the direct synthesis route, which require a syngas platform 
with compositions of H2/CO = 1 and H2/CO = 2 respectively. To achieve the syngas target 
required for the direct DME synthesis route, a mixture of H2O and CO2 or H2O and O2 is 
required as gasifying agents. A simplified input-output diagram of the overall waste-to- 
DME process was developed based on the process targets for the waste gasification and 
the direct DME synthesis process. The carbon efficiency, atom economy and global 
warming potential (GWP) is calculated. An additional source of hydrogen is required to 
achieve the syngas composition target for the indirect DME synthesis route (i.e. H2/CO = 
2). Introducing methane (from landfill gas) to the process results in a substantially higher 
carbon efficiency. 

Keywords: waste biorefineries, sustainability, process synthesis, MSW, circular (bio) 
economy 

1. Introduction 
The rapidly growing consumption and commensurate depletion of the world’s natural 
resources as well as the production of large volumes of waste has raised concerns 
regarding the sustainability of the current linear economy model. A shift to a circular 
economy model has been proposed to substantially improve resource efficiency and 
reduce consumption of fresh resources (Maina et al., 2017).  

The valorisation of municipal solid waste (MSW) is an important aspect of a circular 
bioeconomy. In 2016, more than 2 billion tons of waste was generated with an increase 
of 70% to 3.4 billion tons in 2050 predicted (Kaza et al., 2018). Typical disposal methods 
like landfilling are no longer viable options due to stringent policies, limited space and 
environmental and health issues. The organic fraction of MSW (OFMSW) is the most 
abundant fraction of MSW (about 50 - 60%). The OFMSW has a relatively high carbon 
content (38- 51%) and calorific value (14-20 MJ/kg) (Campuzano and Gonzalez-
Martinez, 2016). Waste biorefineries or waste-to-chemicals, that employ the OFMSW, 
play an important role in sustainably converting low-value streams to high value products 
(Carus & Dammer, 2018) and achieving a circular bioeconomy. 
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Thus, it is imperative to develop methodologies for the conceptual design of efficient and 
sustainable waste biorefineries that produce fuels, chemicals and other products. Insight-
based approaches are useful to simplify the complexity of the waste biorefinery design 
problem, provide a fundamental understanding of design issues and identify holistic 
targets for processes (Kokossis et al., 2015). Tay et al. (2011) proposed a graphical 
approach, based on the C-H-O ternary diagram, for a gasification-based biorefinery to 
determine the syngas equilibrium composition. This study extends the use of the C-H-O 
ternary to waste biorefineries and presents a holistic approach to determine targets for the 
overall process that incorporate the downstream processes.   

2. Modelling framework 
Consider a waste biorefinery that converts Refuse Derived Fuel (RDF) into dimethyl ether 
(DME). Although the study presents an analysis for DME as the final product, any other 
product that contains carbon, hydrogen and oxygen can be analysed in a similar fashion. 
DME is used as an example to illustrate the methodology and may not represent the “best” 
product to produce from waste. However, the C-H-O ternary diagram (or the Van 
Krevelen diagram) may be applied to provide insights into which product should be 
produced based on carbon efficiency (Patel, 2015).  

Since the system consist of inputs and outputs that consist mainly of carbon (C), hydrogen 
(H) and oxygen (O) atoms, a C-H-O ternary diagram is convenient graphical tool to 
synthesise and analyse processes at the conceptual design level (Tay et al., 2011; Litheko, 
2017). For example, waste feedstock can be expressed as CxHyOz, where x-z represent 
the atomic number of carbon (C), hydrogen (H), and oxygen (O) respectively, which can 
be obtained from the ultimate analysis of the feed material. The minor components of 
biomass such as nitrogen and sulphur are not considered. Possible process inputs for the 
biorefinery include RDF, H2O, CO2, and O2. In this study, RDF has been specified with 
a chemical formula of CH1.569O0.541 (Onel et al., 2014). The thermodynamics properties 
of RDF are given as a function of composition according to the correlations developed 
for biomass (Peduzzi et al., 2016). By utilising the lever arm rule, the material balance 
targets for a process can be determined. By incorporating the first and second laws of 
thermodynamics, energy and work targets can also be obtained (Patel, 2015).  

The overall material balance for the process can be written as follows: 

a CH1.569O0.541 + b H2O + c O2 + d CO2 - 1C2H6O = 0                                                 (1) 

where a, b, c and d are the respective amounts of biomass, water, O2 and CO2 required (if 
the coefficient is positive) or produced (if the coefficient is negative) in the process for 
converting RDF into 1 mole of DME.  

The process targets for the waste-to-DME process are assessed using sustainability 
metrics to determine the efficiency and/or the environmental performance of this process. 
Carbon efficiency, atom economy and global warming potential (GWP) in terms of CO2 
equivalence (Eq. (2)) are used to assess the process. Other sustainability metrics may also 
be applied to the process targets. For example, the WAR algorithm, inherent safety index 
and economic potential could be used to assess the process targets (Zeng et al., 2012). 𝐶𝑂  Equivalent = ∑ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎𝑖𝑟 × 𝐺𝑊𝑃                                                (2a) 

Atom Economy = Mass of desired product
Total mass of feed

                                                                               (2b) 
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Carbon Efficiency = Moles of C in desired product
Moles of C in feed

                                                               (2c) 

The process targets developed represent an early-stage design of a waste biorefinery. 
These targets can be used to complement and enhance further detailed optimisation 
studies as well as detailed techno-economic and sustainability assessments (for example, 
life cycle analysis).  

3. Results and Discussion 
3.1. Process targets for overall system 

The process target of the waste-to-DME process is represented on the C-H-O ternary 
diagram (Figure 1). The feed (input) line connects RDF and the H2O/O2 co-feed stream, 
while the product line joins CO2 and DME. The reactant and product lines intersect at 
Point M which designates the target mixture of reactants (RDF, O2 and H2O) and products 
(DME and CO2).  

Figure 1. Material balance for the overall RDF-to-DME process  

The overall material balance for the waste biorefinery process is 
2.862 CH1.569O0.541 + 0.754 H2O + 0.211 O2 ⇒ C2H6O + 0.862 CO2                                   (3) 

It is clear from Eq. (3) that producing 1 mole of DME from RDF requires oxygen and 
water as feed material. In addition, the process does not require an energy input (ΔH=0) 
and it is thermodynamically feasible (ΔG <0). The process target show that the atom 
economy and carbon efficiency for the RDF-to-DME process are 55% and 70% 
respectively. The process also emits 0.825 tons CO2 per ton of DME. The atom economy 
shows that just over half of the RDF fed to the process will be converted to DME. The 
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carbon efficiency indicates that of the carbon introduced to the process, 30% ends up as 
carbon dioxide. 
3.2. Process targets for sub-systems 

The overall waste-to-DME process involves two main processes - gasification and DME 
synthesis. DME can be produced via two process routes represented by the following 
material balance equations (Azizi et al., 2014):   

Direct DME synthesis:   3H2 + 3CO ⟹ 1C2H6O + CO2  
Indirect DME synthesis:   4H2 + 2CO ⟹ 1C2H6O + H2O  

The required syngas composition is H2/CO =1 for the direct route and H2/CO = 2 for the 
indirect route. 

Gasification of the RDF to produce syngas requires a gasifying medium, typically steam, 
oxygen, CO2 or a combination of these. The C-H-O ternary diagram can be used to 
determine the process targets for the gasification process in which RDF is gasified using 
different gasifying agents to produce H2 and CO as syngas product.  

The input and output of the gasification process are plotted on the C-H-O ternary diagram 
(Figure 2). A product line is drawn by connecting the gasification products, i.e. H2 and 
CO. The required syngas targets for the direct route (H2/CO =1) and the indirect route 
(H2/CO = 2) are plotted based on their atomic composition as M1 and M2 respectively.  

           (a)                                                                                            (b) 
Figure 2. Evaluation of waste gasification (a) gasifying agents and (b) co-gasifying agents on a C-
H-O ternary diagram  

Feed lines that connect RDF with the three possible individual gasifying agents, i.e. H2O, 
CO2 and O2 are drawn. These lines intersect the product line at points P, Q and R which 
represent syngas produced when RDF is gasified with H2O, O2 and CO2 respectively. The 
gasifying agent that results in a gas composition that is on or closest to either M1 or M2 
is considered optimum. From Figure 2, none of the points from the three gasifying agents 
is located on either M1 or M2. This means that gasifying RDF with H2O, O2 or CO2 
individually cannot produce syngas that is exactly H2/CO = 1 or H2/CO = 2. Therefore, 
the syngas compositions produced from the three individual gasifying agents do not meet 
the requirements for the intended downstream application.  
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Evaluation  

It can, however, be deduced from Figure 2 that it is feasible to produce syngas with H2/CO 
=1 by co-feeding H2O with either CO2 or O2. Co-feeding H2O with either CO2 or O2 shifts 
Point P toward M1. However, producing a syngas composition of H2/CO = 2 from the 
gasification of RDF using any combination of the gasifying agents is infeasible. All 
possible co-feed streams of H2O with CO2 (H2O/CO2) and H2O with O2 (H2O/O2) are 
represented by lines that connect H2O and CO2 as well as H2O and O2 respectively. The 
optimum co-feed streams for the RDF gasification are determined by drawing a feed line 
from RDF point through the target syngas composition, M1. The feed line intersects the 
two co-feed stream lines at points labelled X and Y (Figure 2b). The two points represent 
the optimum co-feed streams that produce the target syngas composition of H2/CO = 1. 
Point X represents the co-feed stream of H2O with CO2 whereas Y represents the co-feed 
stream of H2O with O2. By identifying the atomic species of X and Y and using the lever 
arm rule on the C-H-O ternary diagram, the material balance of the two process targets 
can be determined. 

The overall RDF-to-DME process integrates the gasification process and the direct DME 
synthesis process. Integrating the two gasification process targets with the DME synthesis 
process, results in the following material balances: 

3 CH1.569O0.541 + 0.647 H2O + 0.365 O2 ⟹ C2H6O + CO2                                           (4a) 

2.674 CH1.569O0.541 + 0.902 H2O + 0.326 CO2 ⟹ C2H6O + CO2                                 (4b) 

The process that involves RDF gasification with H2O and O2 (Eq. 4a) is exothermic 
(ΔH=-70.2 kJ/mol). The excess heat can either be used for other purposes or is lost to the 
environment. On the other hand, the process involving the gasification of RDF with H2O 
and CO2 (Eq. 4b) requires additional energy (ΔH= 95.9 kJ/mol). For the process to be 
energy self-sufficient, the required energy can be supplied through combustion of 
additional RDF. This would result in obtaining the overall target given by Eq. 3.  

As shown in Figure 2a, producing syngas with a H2/CO = 2 for the downstream indirect 
DME synthesis is infeasible from RDF gasification with all three oxidants (i.e. H2O, O2 
and CO2) as well as their combinations. The syngas platform is deficient in H2 and 
therefore a hydrogen source is required to produce the syngas composition target of 
H2/CO = 2. Methane (which can be obtained from biogas or landfill gas) can be 
introduced into the process as a source of hydrogen. The optimum amount of methane 
that meets the required gasification target composition is specified from the C-H-O 
diagram. Thus, the overall process targets of the RDF-to-DME through the indirect DME 
synthesis is giving by 

0.802 CH1.569O0.541 + 0.271 H2O + 1.05 CH +0.148 CO  ⟹ 1C2H6O         (5)  

Eq. 5 has a carbon efficiency and atom economy of 100% and CO2 is utilised as a feed 
and is not emitted from the process.  

4. Conclusions 

A targeting approach based on the C-H-O ternary diagram and laws of thermodynamics 
is presented for a waste-to- chemicals systems. The C-H-O ternary diagram is a powerful 
graphical tool that enable quick and insightful for representing of the overall material 
balance targets for waste-to-chemical processes. Various process configurations can be 
considered by varying process parameters and these configurations can be rapidly 
evaluated by applying sustainability metrics such as carbon efficiency and atom economy. 
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A case study for the conceptual design of a waste-to-DME facility was considered. An 
overall material balance target is obtained that is energy self-sufficient. The carbon 
efficiency, atom economy and global warming potential (GWP) is calculated. 
Furthermore, ways of obtaining the overall target are explored by considering a process 
that includes waste gasification and DME synthesis. The DME production process has 
two main process targets, one based on the indirect synthesis route and the direct synthesis 
route, which require syngas platform with compositions of H2/CO = 1 and H2/CO = 2 
respectively. To achieve the syngas target required for the direct DME synthesis route 
(H2/CO = 1), a mixture of H2O/O2 or H2O/CO2 can be utilised. The requirements of these 
gasifying agents can easily be determined from the C-H-O diagram. An additional source 
of hydrogen is required to achieve the syngas composition target for the indirect DME 
synthesis route (i.e. H2/CO = 2). Introducing methane (from landfill gas) into the process 
results in a substantially higher carbon efficiency and atom economy  
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Abstract
Liquid organic hydrogen carriers (LOHCs) can be used for long-term storage and
long-distance transport of hydrogen. Here, hydrogen (H2) is loaded into the organic
molecule through a hydrogenation process and then unloaded through the reverse
process (dehydrogenation). These organic molecules allow hydrogen to be handled at
ambient conditions and transported using the existing crude oil-based infrastructure.
In the present work, the system toluene-methylcyclohexane was identified as being one
of the most promising LOHCs. Simulations for the hydrogenation and dehydrogenation
processes were performed in Aspen Plus® for a 50 ktonne H2/year capacity. To increase
the detail and reliability of the results, both reactions were modelled using kinetic laws
and by-product formation was considered. The processes were optimized through heat
integration, which enabled up to 60% savings of hot utilities. An economic analysis was
held, from which the break-even price of hydrogen loading and release was found to be
equal to 1.9 $/kg-H2.

Keywords: Hydrogen storage, Liquid organic hydrogen carrier, Toluene, Process
integration, Techno-economic analysis.

1. Introduction
Public pressure has increased over the years to seek alternatives for fossil-based fuels
and products while mitigating the adverse effects of climate change. Renewable
energies have been contributing decisively to the decarbonization of power systems, but
intermittencies associated with these energy sources have hindered their deeper
incorporation into the energy mix. In this context, low-carbon hydrogen (green or blue)
can play a key role as a clean energy vector because it can be stored and transported in
many ways (e.g., liquified, pure or blended gas, and reversibly bonded with liquid or
solid compounds), and deployed as a fuel or as a chemical. However, using hydrogen as
an energy vector also faces important challenges, particularly those associated with
long-distance transport and long-term storage due to its rather low volumetric energy
density and extreme volatility (Usman, 2010). Recently, liquid organic hydrogen
carriers (LOHCs) have been screened for hydrogen transport and storage. The concept,
depicted in Figure 1, involves a two-step cycle: loading (hydrogenation) and release
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(dehydrogenation). The efficiency of these two steps and the inherent aspects of the
LOHCs supply chains affect the final delivery costs of hydrogen decisively.
The chemical compounds receiving more attention for hydrogen transport include
naphthalene, formic acid, methanol, N-ethylcarbazole, toluene, and dibenzyltoluene.
The toxicity of naphthalene, decomposition reactions of N-ethylcarbazole, and the slow
kinetics of hydrogenation and dehydrogenation reactions associated with formic acid
and methanol still limit the adoption of these compounds as LOHCs. Contrarily, recent
results of techno-economic analyzes for toluene and dibenzyltoluene cases have shown
they are economically viable for the long-range transport of hydrogen (e.g., Niermann et
al., 2019). However, these studies do not consider the mechanisms involved in
hydrogenation and dehydrogenation reactions, neither the occurring side reactions,
particularly in dehydrogenation. Furthermore, simplified models were used to design
most unit operations involved, preventing optimization studies from being conducted.

Figure 1: Two-way LOHC concept for hydrogen transportation.

This work reports ongoing research where various LOHCs are being screened for
long-distance transport and storage of H2. Here, the competitiveness of toluene as a
LOHC is addressed, where hydrogenation and corresponding methylcyclohexane
(MCH) dehydrogenation processes are analyzed. Kinetic models of the main reactions
were used, and side reactions were considered to model the hydrogenation and
dehydrogenation reactions with detail. The separation subsystems for the LOHC
recovery and hydrogen purification were designed and operating conditions established
using flowsheet optimization to minimize costs.
Next, the hydrogenation and dehydrogenation processes involved are described, and the
modelling framework used for the techno-economic analysis presented (Section 2). In
Sections 3 and 4, we show preliminary process simulation results using Aspen Plus®

and the economic analysis. The paper closes in Section 5 with the final remarks.

2. Process overview and modelling
The toluene hydrogenation and methylcyclohexane (MCH) dehydrogenation processes,
as simulated in Aspen Plus®, are represented in Figure 2 and Figure 3, respectively.
Peng-Robinson equation-of-state was used as the thermodynamic model because both
processes involve hydrocarbons and are operated at moderate and high pressure. For the
toluene hydrogenation reaction (C7H8 + 3H2 → C7H14) a non-commercial supported
nickel catalyst (Ni/Al2O3) was selected from (Lindfors & Salmi, 1993), for which a
kinetic law was derived for the range 120-200 °C:
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dehydrogenation reaction, a single-site Langmuir-Hinshelwood kinetic model was
developed for platinum supported catalyst (Pt/Al2O3) based on (Usman, 2010):
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Here, subscript T represent toluene; H, hydrogen; and M, methylcyclohexane. At the
conditions of MCH dehydrogenation (340-460 °C), the major side reactions reported
include the formation of benzene (C6H6), xylene isomers (C8H10) and methane (CH4):
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For the abovementioned catalytic system, no kinetic data is available for reactions (8)
and (9), but the observed reaction conversions were approximately 8.3E-4 and 2.7E-3,
respectively (Usman, 2010).
Kinetic models were used to plot isobaric plots of single-pass conversion against
temperature and adiabatic plots to determine the appropriate catalyst loadings and
reaction conditions. Thus, the hydrogenation reaction was set to 30 bar and 170 ºC,
using a hydrogen molar excess equal to 6 and catalyst loading of 3065 kg, which led to
a conversion equal to 99.98%. As for the dehydrogenation, the reaction occurred at
ambient pressure and 450 ºC, with a catalyst loading equal to 17000 kg, enabling
97.34% conversion. The fixed-bed reactors were simulated with a plug-flow reactor
model (RPlug) in which the main reaction occurred and, for the dehydrogenation
process, the side-reactions were modelled using the RStoic model (Aspen Technology,
Inc., 2001).
Two scenarios of hydrogen compression in the toluene hydrogenation process were here
considered: (i) compression from ambient conditions up to 30 bar; and (ii) hydrogen
feeding at 70 °C and 30 bar, typical conditions at which it leaves the electrolyzer (David
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et al., 2019). In scenario (i), the multi-compression section was designed by minimizing
the energy consumption where per-stage compression ratios are adjusted, and the exit
gas temperatures maintained below 204 °C to avoid exceeding equipment constraints
(Luyben, 2011). Intercoolers were only used for the first two stages, as the excess heat
from the last stage was used to vaporize the toluene feed. After the reactor, a distillation
column, D101, is used to recover the unreacted toluene and the hydrogen excess. This
equipment was initially designed using approximate methods to estimate the number of
theoretical stages and feed stages and later optimized to minimize energy consumption
using RadFrac rigorous distillation model (Aspen Technology, Inc., 2001).
In the MCH dehydrogenation process, H2 is recovered by flashing the product stream
and compressing it to the pressure swing adsorption (PSA) unit to obtain a hydrogen
stream within fuel cell specifications (>99.97 mol%). Intercoolers and flash units are
added to recover the hydrocarbon condensates and pre-concentrate H2. The off-gas
stream from the PSA containing the non-recovered hydrogen was recycled to the
compression area feed, and a purge added to the accumulation of impurities. The purge
stream feeds a burner unit which supplies heat to the reactor inlet stream.
Toluene, on the other hand, is recovered from the flash liquid stream through a
three-distillation column scheme, which was required due to the close boiling points
between toluene, MCH, benzene and xylene and also due to the high amount of MCH
present in this stream. The first column, CD201, obtains the bulk of the toluene product
stream and the second, which receives the distillate stream from the first column and the
effluent stream from the PSA unit, separates the light contaminants (benzene and MCH)
from the remaining toluene. Finally, the third column, CD203, was added to remove
benzene from the MCH stream, which, in turn, is recycled to the reactor.

3. Process simulation results
The results for a delivery rate of 50 ktonne/year of H2 and 8000 h of annual operation
are now presented. In the hydrogenation process, a virtually complete reaction enables a
simple purification scheme using a 7-stage distillation column, which operates at 25 bar
with a reflux ratio equal to 0.175. This equipment was adjusted so that the minimum
amount of MCH was contained in the recycle stream. The distillate from D101 removes
most of the MCH, but still, 2.3% of MCH is recycled with hydrogen, which has a minor
impact on the reaction rate, as expected from equations (1-3).
As for the dehydrogenation process, the analysis confirms the need for further
purification, so that more concentrated product streams can be obtained, as both streams
209 and 216 only have 97.2 wt% hydrogen and 71.9 wt% toluene, respectively. The
PSA scheme was well-suited for the hydrogen purification as the final product stream is
within specifications. Regarding the toluene purification scheme, vacuum conditions
were applied in all columns to facilitate the separation, while the operating pressure was
estimated so that the temperature in the overhead condensers is not lower than 50 °C, to
allow cooling water to be used (Turton et al., 2008). The molar reflux ratio (RR) and
distillate do feed ratio (DF) parameters were determined through optimization. RR
varied between 18 and 25 and DF between 0.1 and 0.15 in columns CD201-CD203. The
number of theoretical stages in CD201 was 20, in CD202 was 12, and in CD203 was 10.
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Figure 2: Toluene hydrogenation process.

Figure 3: Methylcyclohexane dehydrogenation process.

Globally, 1.38 % of MCH in the feed and 0.03% of the toluene exiting R201 are lost in
the purification process. This purification scheme can be improved using other
purification methods such as extractive distillation for benzene-toluene-xylene mixtures
(Kim, 2016).

4. Heat integration and economical analysis
Heat integration was conducted for both processes using Aspen Energy Analyzer®. The
minimum temperature difference (ΔTmin) assumed was 5 ºC. The optimal heat exchanger
network (HEN) enabled a 63% reduction of the hot utility consumption in the
hydrogenation process while increasing the number of heat exchangers (HEs) from 8 to
18 and the total area from 3948 m2 to 8067 m2. In the dehydrogenation, a 58% reduction
of hot utility consumption was achieved, and the number of HEs increased from 15 to
23, as well as the total area from 17690 m2 to 26270 m2. The economical analysis was
performed using the CapCost tool, and it estimates the fixed capital cost and total
manufacturing cost of all plants previously simulated, according to the method
developed by (Turton et al., 2008). The results are summarized in Table 1.

Table 1: Summary of fixed capital cost and utilities expenses.

Hydrogenation Dehydrogenation
Consumption (kWh/kg-H2) Scenario (i) Scenario (ii)

Electrical 2.24 0.119 1.40

Heat 1.05 3.36 15.9

Total 3.29 3.48 17.3

CAPEX (M$) 60.4 4.54 78.3

Long-distance hydrogen delivery using liquid organic hydrogen carriers (LOHC) 1651     
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As the compressors account for 80% of the capital costs in scenario (i), it is already
expected that the fixed capital costs scenario (ii) is drastically lower. Nevertheless, for
the same reason, the decrease in the number of heat exchangers available for heat
integration leads to an increase in heat consumption, which offsets the decrease in
electrical consumption. The energy consumptions reported here for the toluene
hydrogenation process in both scenarios (3.29-3.48 kWh/kg-H2) are higher than
0.47 kWh/kg-H2 estimated from (Niermann et al., 2019). This difference can be
explained by the fact that in (Niermann et al., 2019) the hydrogenation reaction is taken
to occur at the liquid phase and solvent recovery was not considered. For the
dehydrogenation process, the total energy consumptions here reported (17.3
kWh/kg-H2) is slightly lower than 17.85 kWh/kg-H2 from Niermann et al., (2019).
When considering both processes, the total operating costs obtained of H2 loading and
release was 1.3 $/kg-H2, and the total capital investment equal to 146.3 M$, giving an
estimated break-even price of 1.9 $/kg-H2.

5. Conclusions
In this paper, the hydrogenation and dehydrogenation process of the toluene-MCH
system was simulated using kinetic laws to model the reaction, which increased the
results reliability. For the toluene hydrogenation process, two scenarios were presented,
and it was found that even though the absence of a compression zone significantly
reduces the fixed capital cost, the utility cost is still maintained due to the decrease in
the number of heat exchangers which heat can be integrated. As for the dehydrogenation
process, the complex purification scheme leads to a significant increase in utilities and
fixed capital costs compared to the hydrogenation. Additionally, the heat requirements
of the reactor also contribute to the heat consumption increase. When comparing to the
literature results, improvement opportunities were identified towards the purification
scheme.
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Abstract 
The ceramic industry is a sector within process industry associated to a high energy 
intensity which is owe to the operation of thermal processes such as firing, drying, spray 
drying and boiling. These processes are associated to high thermal energy losses (waste 
heat). As such, the adoption of waste heat recovery (WHR) technologies and strategies 
may reveal as an excellent opportunity to improve the energy efficiency of ceramic plants 
by improving the operation of these thermal processes. In practice, such may be 
performed by applying principles of process integration through assessing the waste heat 
potential of all the plant material streams and furtherly elaborate a plan to use this waste 
heat in the several different processes. In this work, it will be assessed the energy 
efficiency improvement potential associated to the implementation of a WHR strategy in 
a case-study ceramic plant. Such is carried out by modelling and simulate the plant and 
the WHR strategy using the Modelica language. Through the simulation of the developed 
model the techno-economic assessment, it was possible to accomplish the viability of the 
conceptualized project, with 3508 MWh/year of energy savings corresponding to 0.2 
years of payback time. 

Keywords: energy efficiency, waste heat recovery, process integration, ceramic industry, 
Modelica. 

1. Introduction 
Waste heat recovery (WHR) is a set of measures with a high potential to improve energy 
efficiency in industry. Industrial thermal processes are associated to high energy demands 
and in consequence to considerable thermal energy losses (roughly representing 20 - 50 
% of total energy consumption), being estimated the existence of a total 300 TWh/year 
waste heat potential in the European industry (Castro Oliveira et al., 2019). 
The WHR strategy includes the selection of the most favourable WHR technologies, the 
application of process integration and energy system optimisation principles, taking into 
account the objective to reduce energy inputs by making use of some  material streams, 
namely  the outlet ones with considerable waste heat potential. 
The ceramic industry is a high energy intensive sector. Such is due to the operation of 
energy intensive processes, such as firing (kilns), drying and spray drying. Some of the 
most implemented WHR technologies within the ceramic industry are air-gas heat 
exchangers to preheat the combustion air at the entrance of combustion-based processes 
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Organic Rankine Cycle (ORC) to produce electric energy and hot air recycling (from the 
cooling zone of kilns). 
In this work, it will be assessed the energy efficiency improvement potential associated 
to the implementation of a WHR strategy in a case-study. Such will be performed by the 
assembling of a ceramic plant model (developed in the Modelica language) to simulate 
the implementation of a WHR strategy. 

2. Modelling of Thermal Processes and Process Integration 
The case-study is about a ceramic sanitaryware manufacturing plant, in which the most 
prominent thermal processes include 2 tunnel kilns, 1 intermittent kiln, 2 dryers and 4 hot 
water boilers. These are combustion-based processes using natural gas as fuel. It currently 
exists an interest to reduce the fuel consumption of the tunnel kilns and the boilers. As 
such, a new WHR strategy will be proposed, considering principles of process integration. 
2.1. Conceptualization of the Study 
This process integration study emerged within the scope of the study of industrial system 
retrofitting, in which most recent technologies are set to be implemented to improve the 
operation of the plant through the rationalization of the use of its resources such as energy 
and water. In this case, such is performed by integrating WHR technologies to improve 
the plant’s overall energy efficiency. The result of such implementation is the 
conceptualization of a heat integration system, which encompasses the plant’s thermal 
processes and the interdependencies which are created through the implementation of 
WHR technologies (such as in this case the recovery of the kiln’s exhaust gas stream to 
be directed to two water-gas heat exchangers). 
To perform a study on heat integration, several methodologies exist, such as pinch 
analysis, exergy analysis, use of heuristics and linear programming. This work uses a 
methodology based on numerical modelling: custom models for the plant’s thermal 
processes are created and the system is created through the assembling of several 
component models. In practice, this methodology allows the conceptualization of new 
systems inserted within the operation of the plant processes (the simulation of the 
occurring phenomena in real time). The models for the thermal processes (tunnel kiln and 
boilers) and the whole system were created using the Modelica language. Two custom 
model were developed for the tunnel kiln and the boiler using adapting the source code 
present in the open-source ThermoPower Modelica library (Politecnico di Milano). 
This work emerged on the scope of the objectives of the European Green Deal and the 
EU 2050 long-term strategy, namely on the strategy for energy system integration. In 
specific, it dwells with the first pillar of this strategy, which is the requirement to improve 
the circularity of the energy systems. The implementation of energy recovery approached 
in this work is in this sense a contribution to the promotion of circular economy in 
industry. 
2.2. Case-study characterization and model 
The conceptualized WHR strategy encompasses 1 tunnel kiln and 2 of the boilers of the 
plant. For the tunnel kiln, it is implemented the hot air recycling from the cooling zones 
to the combustion chambers, while for the two boilers two water-gas heat exchangers 
(economisers) are implemented for each one respectively, recovering the waste heat from 
the tunnel kiln exhaust gases to preheat the inlet water stream at both boilers. The 
conceptualized system is represented in Fig. 1. 
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Fig. 1. Conceptualized heat integration system: (1) Tunnel kiln and its (2) exhaust gas 
chimney, (3) combustion chamber inlet, (4) cooling air inlet, (5) hot air chimney, (6) Boiler 
1, (7) Boiler 2 and (8) Heat exchangers (Tunnel kiln scheme adapted from Dudam (2009)) 

The thermal process models were assembled considering the mass and enthalpy balances 
of a tunnel kiln and a boiler, respectively. In both cases, the total supplied heat (𝑞  
(kJ/h)) may be calculated considering the fuel’s lower heating value (𝐿𝐻𝑉), attending to 
equation (1). For the case in which more than one heat source exists to supply thermal 
energy to the kiln, it is necessary to consider an additional heat parcel (𝑞  (kJ/h)), 
as described by equation (2). In the case of the tunnel kiln, such corresponds to additional 
thermal energy contained in the combustion air stream (𝑞 ,  (kJ/h)), as 
described by equation (3). In the case of the boiler, such corresponds to additional thermal 
energy contained in the inlet water stream (𝑞 ,  (kJ/h)), as described by 
equation (4).  𝑞 𝑀 , 𝐿𝐻𝑉 (1) 𝑞 𝑀 𝐿𝐻𝑉 𝑞  (2) 𝑞 , 𝑀 . 𝐶 , . 𝑇 . 𝑇 . ,  (3) 𝑞 , 𝑀 𝐶 , 𝑇 𝑇 ,  (4) 

Where the variables above have the following meaning: 𝑀 ,  – Baseline case fuel 
mass flow rate (kg/h), 𝑀  – Fuel mass flow rate (kg/h), 𝑀 .  – Combustion air 
flow rate (kg/h), 𝐶 , .  – Air heat capacity (kJ/(ºC.kg)), 𝑇 .  – Combustion Air 
Inlet Temperature at the tunnel kiln (ºC), 𝑇 . ,  – Baseline case Combustion Air 
Inlet Temperature (ºC), 𝑀  – Water mass flow rate (kg/h), 𝐶 ,  – Water heat 
capacity (kJ/(ºC.kg)), 𝑇  – Water inlet temperature at the boiler (ºC), 𝑇 ,  – 
Baseline case Water Inlet Temperature (ºC). 

The tunnel kiln model was assembled to allow the coupling of a PID controller, which 
controls the recycled air flow rate by receiving a set-point of the combustion air inlet 
temperature at the combustion chambers, thus simulating the recycling of hot air from the 
cooling zone of the kiln as a part of the total combustion air.  
A set of assumptions were considered in the performance of the whole modelling: 

•  In respect to the tunnel kiln model, the air-to-fuel ratio is constant (not variating 
according to different conditions), as well as the enthalpy allocated to the 
ceramic product, the enthalpy allocated to the cooling air stream and heat losses; 

•  The ambient temperature is 25 ºC and the ambient pressure is 1 bar; 
•  Pressure losses in the system are negligible. 
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The model created using OpenModelica 1.14.1, an open source distribution of Modelica, 
for the plant and the proposed WHR strategy is presented in Fig. 2. 

 
Fig. 2. Model for the ceramic plant and proposed WHR strategy: (1) Tunnel kiln, (2) 
Boiler 1, (3) Boiler 2, (4) PID Controllers, (5) Water-gas heat exchangers 
2.3. Simulation Results and Model Validation 

The model conceptualized for both components and plants are developed in a basis of 
dynamic simulation, although the simulation performed for the purpose of model 
validation was carried out in a steady state perspective – the simulation values tend to 
stabilize at a certain point of the simulation attaining constant values. The simulation 
results, real pant values and the respective deviations are presented in table 1. 

Table 1. Simulation Results and Deviations from real plant values 

Variable Simulation Value Real Plant Value Deviation (%) 

Flow rate of Exhaust 
Gases (Tunnel Kiln) 14455 14455 0.00 

Temperature of Exhaust 
Gases (Tunnel Kiln) 159.4 159.3 0.09 

Temperature of Hot Air 
(Tunnel Kiln) 93.0 93.73 0.79 

Temperature of Hot 
Water (Boiler 1) 95.0 95.0 0.03 

Temperature of Hot 
Water (Boiler 2) 95.0 95.0 0.03 

Based on the results presented in table 1, it is possible to verify that the simulation results 
are overall consistent with the real plant measured data (the deviations for all the key 
parameters are lower than 1%). 
2.4. Formulation of the Optimisation Problem 
The process integration proposal may be adjusted to optimal operational conditions 
through the assessment of all the operational requirements needed to be considered and 
the energy consumption by thermal processes. This adjustment of operational conditions 
may be formulated as a simplified optimisation problem. 
In the proposed optimisation problem, the constraints consist in limiting values for mass 
flow rates and temperatures of the exhaust gas and hot air streams. The hot air at the outlet 
of the tunnel kilns (the hot air that is purged to the environment and it is not recovered to 
the combustion chamber of the kiln) has associated minimum flow rate values, which is 
the hot air flow rate which have been recovered in the base case (5524.8 kg/h). Moreover, 
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as the exhaust gas must not be cooled down to the dew point temperature of the exhaust 
gas. Therefore, the exhaust gas stream obtain by the mixture of both kilns exhaust gas 
streams must be above  25 ºC (a minimum temperature value). The objective-function is 
the minimization of fuel consumption (natural gas) in the tunnel kiln and boilers. The 
decision variable is the temperature of the combustion air stream at the inlet of the tunnel 
kiln (the set-point at the PID controller), which was set to 200ºC. The decision variable 
is adjusted to achieve the objective while respecting the operational requirements. The 
mathematical formulation for the described optimization problem is presented in table 2. 

Table 2. Mathematical formulation for the optimization problem 
 Minimum Value Variable Maximum Value 

Decision Variable 25ºC 𝑇 .  200ºC 
 

Constraints 
𝑀 ≤ 5524.8 𝑘𝑔/ℎ 𝑇 , > 25.0º𝐶 

Objective-Function 𝑚𝑖𝑛 𝑀  

The implemented control system assisted on the implementation of the optimisation 
procedure (the decision variables are the PID associated controlled variables). Such 
allows the input of different values for the decision variable considering its variation with 
time, which is only possible since OpenModelica is dynamic simulation-based software. 
Due to the adopted steady state perspective adopted, the whole analysis performed for the 
techno-economic assessment is the minimum fuel consumption scenario. 

3. Techno-economic assessment 
The techno-economic assessment performed considers a simple payback, not considering 
an inflation rate of the capital costs associated to the technologies. As the system 
retrofitting approached in this work is essentially conceptualized in an energy efficiency 
improvement perspective, the overall aim is to optimise the associated plant energy costs. 
The capital expenditures, in its turn, correspond to the project overall investment cost 
(which includes the acquisition of ducts for the transportation of hot air, two water-gas 
heat exchangers and ducts for the transportation of the exhaust gases of the kilns). These 
are minimized in order to reduce the payback time associated to the implementation, 
although the values for the investment costs were fixed (considering the data from the 
catalogues of the technologies’ manufacturers). 
The results for fuel savings obtained by the solving of the optimisation problem are 
presented in table 3. The savings were determined considering the natural gas price for 
Portugal of 13.28 €/GJ for industrial applications (INE-I.P./DGEG, 2018). The 
determination of payback time associated to the implementation of the proposed WHR 
strategy is presented in table 4. The calculation of this parameter was performed 
considering the results for the fuel savings obtained in the simulation and the total 
investment cost. 

Table 3. Results for fuel savings 
 Initial Case 

(kg/h) 
Improved Case 

(kg/h) 
Energy savings 

(MWh/year) 
Savings (1000 

€/year) 
Kiln 1 103.5 81.4 2159 103.2 

Boiler 1 10.95 4.21 659 31.5 
Boiler 2 10.95 3.95 684 32.7 

Total  3508 167.4 
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Table 4. Techno-economic assessment 
Equipment Investment Cost (€) Savings (1000 

€/year) 
Payback Period 

(years) 
Air Ducts 1754 

167.4 0.2 Exhaust Gas Ducts 7700 
Two water-gas heat 

exchangers 25415 

Considering the payback time in which a measure is considered economically viable 
within the context of the European industry (2 – 3 years), the proposed WHR strategy 
may be considered highly economically viable. 

4. Conclusions 
The case-study analysed and assessed in this paper is inserted in a Portuguese ceramic 
plant. It is a plant with a high thermal energy consumption, with few implemented WHR 
strategies, currently existing an interest to reduce the fuel consumption of tunnel kilns 
and hot water boilers. In this sense, it was proposed and assessed the implementation of 
a new WHR strategy which included the hot air recycling from the cooling zone of the 
kilns and the installation of two water-gas heat exchangers. 
Such study was performed by creating a model of the plant and WHR strategy using the 
Modelica language. The developed model was validated by comparing the simulation 
results with real plant measured data. It is verified that the simulation values are consistent 
with real values. 
In a strategic perspective, this study revealed the significance of the use of a simulation 
tool for energy system-based decision making. In a technical perspective, it allowed to 
assess the viability associated to the project of heat integration system, having been 
obtained results of optimisation adding two water-gas heat exchangers, with a low 
payback time of 0.2 years. 
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Abstract 
One way of simultaneously minimising the use of fresh resources and pollution reduction 
is the practice of industrial and urban symbiosis, implementing Circular Economy. In the 
current work, it has been shown that the circularity rate alone is not a sufficient criterion 
to achieve resource and footprint minimisation. It is necessary to evaluate the cost and 
the footprints in a combined way. The formulated conceptual model allows the evaluation 
of the trends of the total cost, water and Greenhouse gas footprints. The provided case 
study clearly demonstrates the usefulness of the model in evaluating the trade-offs 
between the considered process characteristics, showing a 10 % difference between the 
optimal circularity rates for Water footprint minimisation and cost minimisation. 
Keywords: Resource Integration, Resource Recovery, Industrial-Urban Symbiosis, 
Network Optimisation 

1. Introduction  
Resource recovery and reuse methods have been developed to cope with the problems of 
resource depletion and pollution of the environment. The main categories include Circular 
Economy (CE) (Hartley et al., 2020), Industrial Symbiosis (IS) (Domenech et al., 2019) 
and Process Integration (PI) (Klemeš, 2013). The conservation of energy and materials 
(Klemeš, 2013) is the most effective strategy to achieve sustainability, making the task of 
fresh resource supply easier. Fan et al. (2019) reviewed the methods for energy saving 
and pollution reduction, identifying the synergy between CE, resource, utility, and waste 
management as the route to make this strategy economically viable. The European 
Commission adopted a new Circular Economy Action Plan (EC, 2020) and policy 
recommendations (Hartley et al., 2020) from the Life Cycle perspective, and a set of new 
targets (Morseletto, 2020) were proposed to facilitate the transition to a CE. 

IS (Domenech et al., 2019) is a practical way to implement CE by sharing resources – 
materials, energy, water. A good example is the application of urban and industrial 
symbiosis for formulating a cross-industry network of multiple supply chains (Tseng 
et al., 2018) and fundamentally the Total Eco-Site Integration (Fan et al., 2021). 
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Many circularity indicators are available (Saidani et al., 2019). They can be applied to a 
multitude of contexts, ranging from multiple chemical species evaluation and up to 
regional or global system boundaries. A standardised metric for characterisation is the 
“Circular Material Use Rate” (CMU), officially employed by Eurostat (2018), defined as 
the fraction of reused materials from the total material use. 

Material circularity reflects only one of the key dimensions in industrial and urban 
symbiosis systems. The energy dimension is also crucial, often prompting the energy-
water nexus (Ahmad et al., 2020) or multi-tier interactions (Wang et al., 2019) to be 
considered as a whole. The importance of energy is in driving all involved processes– 
thermally, chemically, electrically and mechanically. In assessing the energy inputs and 
efficiency, it is necessary to account for the energy forms– heat and power, and the 
entropy generation, especially by mixing. This consideration leads to the use of exergy 
(Selicati et al., 2020) as the unifying criterion. Recent research has used exergy to evaluate 
the efficiency of material recovery from Cd-Te photovoltaic modules (Abadías Llamas et 
al., 2020) and evaluation of the exergy efficiency of biogas upgrading processes (Vilardi 
et al., 2020). A key principle is the use of embodied exergy and the linked embodied 
emissions for evaluating the process performance (Almeida et al., 2017). Circularity alone 
cannot be used as an ultimate indicator of sustainability. Environmental footprints 
(Holmatov et al., 2019) are also needed to quantify the impacts of both inputs and outputs. 

Industrial and urban symbiosis systems have degrees of freedom for making design and 
operating decisions, while footprints and cost are used as performance criteria. The 
reviewed state of the art shows the trend to use cost, footprints or exergy alone, and in 
some cases cost and exergy have been used together, leaving exergy input as an auxiliary 
screening tool. This leaves a research gap – the use of all three criteria simultaneously for 
evaluating the sustainability of the symbiosis systems against the degree of circularity. 
The current work presents a model optimising industrial-urban symbiosis system by 
minimising the cost and the footprints (Čuček et al., 2012) against the circularity. 

 
Figure 1. Concept Map of urban symbiosis waste reuse system 

2. System representation, model and evaluation method 
The symbiosis system can be seen as a set of paths from waste supply locations to 
demands for products and resources, which compete with the delivery of products from 
fresh resources (Figure 1). Each path includes different unit operations with varying 
efficiency. The processing paths also require fresh resources – energy, water, other 
materials, but they are often less intensive than the resource demands for new products. 
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The circularity is represented by the Total Circularity Index (TCI), which is the weighted 
sum of the CMU and a new circularity indicator – the Circular Exergy Use rate (CEU): 𝑇𝐶𝐼 = 𝜔 × 𝐶𝑀𝑈 + 𝜔 × 𝐶𝐸𝑈; 𝐶𝐸𝑈 =  (1) 

CEU is defined (Eq.1) as the fraction of the exergy supplied from resource recycling and 
the overall exergy demands. The weights ω1 and ω2 are user specifications, modelling the 
importance of the material and exergy supply for each case. The model, summarised in 
(Eq.2), uses the material, energy and exergy balances, evaluating Total Annualised Cost 
(TAC) Greenhouse Gas (GHGFP) and Water Footprints (WFP). Additional constraints 
are stemming from the upper and the lower bounds on the stream flowrates. The 
optimisation variables include the flowrates of the recycle streams and those of the fresh 
resource supplies. The optimisations are run with three variants: minimising TAC, 
maximising GHGFP saving and maximising WFP saving. 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑇𝐴𝐶  𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝐺𝐻𝐺𝐹𝑃   𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑊𝐹𝑃  (2)
s.t. 𝑇𝐴𝐶 = 𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + 𝑓 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡  
 𝐺𝐻𝐺𝐹𝑃 = 𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑠 − 𝑓 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 − 𝑓 𝑟𝑒𝑐𝑦𝑐𝑙𝑒  
 𝑊𝐹𝑃 = 𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑠 − 𝑓 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 − 𝑓 𝑟𝑒𝑐𝑦𝑐𝑙𝑒  
 Mass balances; Energy balances; Exergy balances 

3. Case study 
The system in Figure 1 has been evaluated on a set of sampling points of the TCI, running 
the optimisation model for each of the variants in Eq.2. The product demands and utilities 
prices are in Table 1, MSW properties in Table 2, where Degradable Organic Carbon is 
denoted as DOC. The maximum MSW flowrate is 137 kg/h. The unit operation 
characteristics and the cost data are shown in Table 3. The nitrogen content of the 
recycling compost is 30% (Fan et al., 2019). Table 4 provides the GHG factors, and Table 
5 – the WFP factors. 

Table 1. The data of the demands and utilities prices 

Demands/Utilities Demands value Utilities Price 

Power 60 kW 0.052 €/kWh 
N-fertiliser  38 kg/h 0.133 €/kg 
Paper 27 kg/h 0.033 €/kg 
Plastic 29 kg/h 0.178 €/kg 
Glass 6 kg/h 0.039 €/kg
Metal 5 kg/h 0.199 €/kg 
Textile 10 kg/h 0.039 €/kg 

Table 2. MSW properties 
Sorting Composition, % LHV, MJ/kg Carbon Content, % DOCF, % 
Food waste 41.1 5.26 42.61 64 
Plastic 22.2 5.38 60.93 0 
Paper 20.9 3.08 37.37 37 
Textile 7.7 2.48 60.42 0 
Glass 3.6 0.00 0.00 0 
Garden waste 2.5 0.48 41.47 23 
Metal 2.0 0.00 0.00 0 
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Table 3. Efficiencies, conversion factors and Cost data of the involved processes 

Processes xeff, 
% UCC, €/kg UOC, €/kg Operating time, h/y 

Incineration 30 0.020 0.026 7,008 
Landfill gas 
reovery 8.16 0.001 0.027 8,640 

Composting 60 0.005 0.010 7,008 
Recycling 70 0.002 0.030 7,008
Landfill - 0.005 0.106 8,640 

Table 4. GHG emission data of Waste-to-energy and landfill 

Path type Process Recycled 
Commodity GHG 

Virgin-based 
Manufacturing GHG 

Waste-to-energy Incineration 386 kg CO2eq/t 1.13 kg CO2eq/kWh 
LFGRS 0.631 kg CO2eq/t 1.13 kg CO2eq/kWh 

Landfill Landfill 568 kg CO2eq/t - 
Path type Process GHG mitigation

Waste-to-
material 

Composting 3,600 kg/t N 
Recycling paper 565 kg CO2eq/t 
Recycling plastic 396 kg CO2eq/t
Recycling glass 159 kg CO2eq/t 
Recycling metal  3,205 kg CO2eq/t 
Recycling textile 230 kg CO2eq/t

Table 5. WFP emission data of Waste-to-energy 

Process Recycled Commodity 
WFP Virgin-based Manufacturing WFP 

Incineration 0.7 m3/MWh 3.2 m3/MWh 
Landfill gas 2.4 m3/MWh 3.2 m3/MWh 
Composting 0.5 m3/t 4,997.8 m3/t 
Composting 0.3 m3/t 4,414.7 m3/t 
Recycling paper 68.64×10-3 m3/t 5,272.5 m3/t 
Recycling 
plastic 0.237×10-3 m3/t 276.8 m3/t 

Recycling glass 65×10-6 m3/t 0.4 m3/t
Recycling metal  65×10-6 m3/t 52.2 m3/t 
Recycling 
textile 0.237×10-3 m3/t 206.5 m3/t 

Landfill 1.2×10-6 m3/t - 

The TAC evaluation results are shown in Figure 2. Figure 3 shows in part (a) the variation 
of the GHG and the exergy input, and part (b) plots the WFP. The TAC curve features a 
minimum at TCI=0.465 (1) / TAC= 84.5 k€/y. The GHG emission trend implies that 
higher circularity rate is, the better. The WFP curve has a maximum for TCI= 0.353 (1) 
and WFP saving 827 k(m3/y). The reason for this is that for TCI ≥ 0.3, for increasing the 
CMU values, secondary resources are redirected from energy generation because the 
WFP saving for material recycling is higher than for energy generation which is also more 
costly. These discrepancies provide information to decision-makers for the approximate 

1662



Targeting and Optimisation of Industrial and Urban Symbiosis for  
Circular Economy   

cost (≈0.6 €/m3) of reduction of water pollution (by reducing circularity a little) or of the 
environmental cost of attaining the cost optimum. However, it should be noted that the 
reduced circularity also reduces the GHG savings, in addition to increasing the TAC. 

  
(a) The complete curve (b) TCI [0.4, 0.543] 

Figure 2. TAC variation with the circularity rate 

 
(a) GHG emission reduction (with exergy) (b) WFPs reduction 

Figure 3. GHG and WFPs emission reduction as functions of the circularity rate 

4. Conclusions 
The current work presents a conceptual model for evaluating the sustainability of 
industrial-urban symbiosis systems. The proposed model captures the key circularity rate 
criteria – adding the definitions of CEU and TCI to CMU, followed by a combined 
evaluation of the TAC, GHGFP and WFP reductions, and total exergy input. The case 
study demonstrates the usefulness of the proposed conceptual model for evaluating the 
optimal circularity rate. It also reveals that besides not coinciding with the TAC trend 
(WFP optimum is ≈10 % higher TAC than the cost optimum), the emission reduction 
trends can be adversarial to each other, pointing to the need for improved modelling in 
the future. Such an improvement is to add a monetary representation of the footprints and 
join them to the TAC, leading to the concept of Eco-Cost as the objective function. 
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Abstract 
Biomass gasification is one of the most promising solution for producing clean electricity. 
This technology option can reduce the use of fossil fuels and limit the exhaust CO2 
emissions in atmosphere. Moreover, by integrating different CO2 separation technologies, 
the biomass gasification power plant is considered to have negative CO2 emissions due 
to the CO2 absorption during its growth. In this study, the physical absorption process 
deep eutectic solvent (DES) was used to retain the CO2 from syngas. Subsequently, the 
treated synthesis gas was used in a gas turbine (ITG) plant. The flue gases expanded in 
the gas turbine were introduced into the heat recovery steam generator (HRSG) for steam 
production and utilization in a steam turbine for mechanical work and subsequent power 
generation. The biomass (poplar) gasification process was analysed for different air 
equivalent ratio (ER). The highest lower heating value of the synthesis gas was obtained 
for ER = 0.2. In the case of CO2 capture based on DES, a thermal energy consumption of 
1 GJ/tCO2 was determined, this represents an electrical energy consumption of 0.4 
GJ/tCO2. In terms of electricity production, for a syngas flow rate of 20 t/h, the maximum 
power obtained was of 10.8 MW, and the net cycle efficiency of 30 %. 

Keywords: Biomass gasification, DES-based CO2 capture, Energy integration 

1. Introduction 
The biomass gasification with CCS (Carbon Capture and Storage) can be promising 
solution to reduce the carbon dioxide emissions (C. Dinca et.al, 2018). The biomass is 
considered a energy source with neutral CO2 emissions. The biomass gasification with 
CO2 capture generates the negative emissions, therefore it could decrease the level of 
carbon dioxide emissions in atmosphere on the long-term (J. Kemper, 2017). The CO2 
capture technology was studied intensively in the last decade to reduce the negative 
impact after integration into an energy or industrial process. Thus, it is needed to develop 
new solvents with higher CO2 absorption capacity, solvents that requires lower thermal 
energy for regeneration, and with a lower corrosivity, comparative with the conventional 
amines. Several researchers studied primary, secondary, tertiary amines and amine blends 
in order to improve the performances concerning the CO2 absorption capacity and to 
reduce the thermal energy consumption (C. Dinca, 2016). Also, it is observed that primary 
and secondary amines have a higher rate of reaction and higher energy consumption than 
the tertiary ones that need a lower amount of thermal energy for regeneration due to the 
carbonate and bicarbonate ions form during the hydrolysis of CO2 in the absorption 
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process (K. Goto et.al, 2013). Deep eutectic solvents (DES) are the promising alternative 
for CO2 separation, can replace the conventional chemical solvent based on amines. DES 
has many advantages, like as: the thermal energy needed for regeneration is lower 
compared to amines, due to the physical absorption of carbon dioxide; due to the low 
vapour pressure, the amount lost in the absorption and desorption process is smaller; DES 
degradation occurs at temperatures higher than 300 °C, no reactions with other impurities 
from flue gases, and are not corrosive; DES preparation allows the design of absorbents 
with specific properties for CO2 separation. DES still have some drawbacks to integrating 
at a large scale for CO2 separation, such as the difficult production process and the 
expensive raw material price (R.J. Isaifan and A. Amhamed, 2018). The aim of this study 
consists of the biomass gasification with CO2 capture pre-combustion based on DES and 
syngas utilization for energy produce.  

2. Gasification process 
Gasification process consists of transforming of solid fuel in gaseous fuel, rich in H2, in 
the presence of an oxidizing agent (air, oxygen, steam or mixtures of these). The main 
reactions that occur in the gasification process are presented by Equation 1-8. 

2
1  ( 111 / )
2

C O CO MJ kmol                 (1)

2 2
1  ( 283 / )
2

C O CO MJ kmol                 (2)

2 2 2
1  ( 242 / )
2

H O H O MJ kmol                 (3)

2 2  (   , 131 / )C H O CO H water gas reaction MJ kmol              (4) 

2 2  (  , 172 / )C CO CO boudouard reaction MJ kmol                      (5) 

2 42  (  , 75 / )C H CH methanation reaction MJ kmol               (6) 

2 2 2+H  (    , 41 / )CO H O CO water gas shift reaction MJ kmol              (7)

4 2 2+3H  (   min  , 206 / )CH H O CO steam methane refor g reaction MJ kmol         (8) 
The type of biomass used in this study was wood biomass – poplar. The biomass dry 
composition is presented in Table 1. The initial moisture content is of 6.35 %, and the 
oxygen content was determined by difference. The lower heating value (LHV) of biomass 
is 16,760 kJ/kg. 
Table 1. Biomass composition 

C [%] H [%] N [%] S [%] O [%] Ash [%] 
50.94 6.34 1.81 0.1 40.562 0.248 

The gasification process simulation was carried out in the specialized software Chemcad.  
The Peng Robinson thermodynamic model was used in the gasification and power 
generation process. The oxidizing agent used in the gasification process was pure air. ER 
represents the ratio of the actual air amount introduced into the gasification reactor and 
the stoichiometric air amount. The maximum volume fraction of H2 was obtained for ER 
= 0.4. The concentration of methane in the syngas decreases with a larger amount of air 
introduced the gasification reactor, and the CO concentration increases due to the 
combustion reactions (Figure 1). The lower heating value of the syngas decreases with 
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increasing the ER ratio, due to the decrease of CH4 concentration. The heat energy 
contained by the syngas was determined as the product of the lower heating value and the 
syngas mass flow. Thus, even if the lower heating value has a descending allure, the 
thermal energy contained by the syngas has a maximum value for ER ratio of 0.4 (Figures 
2). After the biomass gasification, the water gas shift reaction (WGS) and the syngas 
treatment, the carbon dioxide from syngas is separated by physical absorption used DES. 
The syngas composition considered for CO2 separation is the one for that the highest 
value of the H2/CO ratio was obtained. Thus, the syngas considered for the CO2 separation 
has the following volumetric composition: H2 = 27 %, CH4 = 1 %, N2 = 46 %, CO = 4 %, 
CO2 = 22 %. 

 
Figure 1. Syngas composition Figure 2. LHV and thermal energy content  

3. CO2 capture process 
The CO2 separation process based on DES is described in the Figure 3. It can be observed 
that the process is similar to the separation process based amines, with the difference that 
in the case of use DES-amines, the absorption process can takes place at higher pressures 
(>2 bar, the pressure of the absorption process for amine is the atmospheric pressure) . In 
this study, the thermal energy for DES regeneration rich in CO2, was determined by 
calculation based the model described by Y. Zhang et.al, 2016. The absorption pressure 
was considered of 1.013 bar to reduce the electric energy needed for the syngas 
compression, and the absorption temperature of 25 °C. The desorption pressure was 
considered of 1.013 bar and the desorption temperature of 50 °C. Due to the desorption 
temperature, the thermal energy consumption for solvent regeneration was resulted of 1 
GJ/tCO2, this is equivalence of 0.4 GJ/tCO2 electric energy consumption, for CO2 capture 
efficiency of 90 %. In the Figure 4, the thermal energy consumption is presented for DES, 
monoethanolamine and diethanolamine. The purity of dry CO2 is more than 98 mol %. 
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Figure 3. Schematic diagram of CO2 separation process 
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Figure 4. Thermal energy consumption for solvent regeneration 

4. Energy production 
The schematic diagram of the energy production chain is presented in Figure 5. The 
syngas composition used for energy production is presented in Table 2 before and after 
CO2 capture process integration. Syngas obtained after gasification process was used to 
produce electric energy in 4 cases. Cases studied are:  
- Case 1: Gas turbine (GT) without CO2 capture process;  
- Case 2: GT with pre-combustion CO2 capture;  
- Case 3: GT with pre-combustion CO2 capture and recovery a part of the flue gases 

heat to preheat the air-syngas mixture before entering GT;  
- Case 4: GT with pre-combustion CO2 capture, recovery the heat of the flue gases to 

use in the steam turbine (ST), and preheat the air-syngas mixture.  
The efficiency process of the energy produced was determined with the following 
relationship: 

GT ST C R
process

s s

P P P P
Ef

m LHV
  




             (1) 

where: TGP  - gas turbine power, in kW; STP  - steam turbine power, in kW; CP  - air 
compressor power, in kW; RP  - regeneration solvent power, in kW; sm - syngas flow, in 
kg/h; sLHV  - lower heating value of syngas, in kJ/kg. 
In order to maximize the energy produced, several parameters were varied, such as the 
air flow introduced into the combustion chamber (CC). It was determined the optimum 
temperature for that the maximum power is obtained and the maximum efficiency of the 
combustion process. For example, in the Case 1, when the syngas is used without CO2 
capture process, for a temperature of 1,200 °C, air flow of 40,000 kg/h is needed to 
produce 10.8 MW. In the Case 2, when syngas is used after CO2 capture process, for a 
temperature of 1,200 °C in the combustion chamber, the air flow introduced was 50,000 
kg/h, and the power produced was of 11.8 MW. 
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Figure 5. Biomass gasification with CO2 capture process pre-combustion 

Table 2. Syngas composition before and after CO2 capture process 
Composition (vol. %) Before CO2 capture (vol. %) After CO2 capture (vol. %) 

H2 27 35 
CH4 1 1.2 
N2 46 57 
CO 4 5 
CO2 22 2.8 

LHV (kJ/kg) 3,480 5,442 

Further, it was analysed the process efficiency for a constant temperature in the 
combustion chamber, of 1,200 °C (Figure 6). Thus, with the heat recovery system 
integration of the flue gases significant improvements are known regarding the cycle 
efficiency. The optimal case, when it was obtained the higher process efficiency, it is 
Case 4 (integrated gasification combined cycle with CO2 capture). Another important 
advantage of the CO2 capture process integration consists in the amount of carbon dioxide 
emitted into the atmosphere with the flue gases resulting from the process. It can be 
observed that after the capture process integration the concentration of CO2 in the flue 
gases decreases significantly, respectively from a percentage of 11 %, in the case of using 
of the syngas without CO2 capture, to a maximum of 2 % for the cases when is integrated 
the CO2 capture process (Figure 7). In Figures 8, there are shown the results obtained if 
the power is maintained constant. It can be observed, in terms of process efficiency, as in 
the previously hypothesis, the Case 4 has the highest efficiency, and the Case 2, the lowest 
efficiency. In Figure 9 is presented a comparative analysis of the process efficiency 
according to the type of solvent used for the CO2 capture. The DES-based CO2 capture is 
the most efficient solution due to the the lower amount of thermal energy required for 
solvent regeneration. 

 
Figure 6. Process efficiency Figure 7. CO2 concentration in flue gases 
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Figure 8. Process efficiency Figure 9. Comparative analysis of process 

efficiency 

5. Conclusions 
The biomass gasification with CO2 separation process is a solution to produce thermal 
and electric energy with low emissions of carbon dioxide. The low heating value of the 
syngas obtained after air gasification process was of 3,480 kJ/kg before CO2 capture, for 
an equivalent ratio of 0.4, and of 5,442 kJ/kg after CO2 pre-combustion capture process 
integration. The thermal energy consumption for DES regeneration was obtained of 1 
GJ/tCO2, much lower than amines (MEA, DEA). In terms of the power produced, the 
combined cycle (gas turbine-steam turbine) with CO2 pre-combustion capture and 
recovery heat flue gases system was optimum. In this case, it was obtained the maximum 
power produced. 
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Abstract 
In this study, the energy efficiency of a novel integrated process including recovery of 
natural gas liquids (NGL), natural gas liquefaction and nitrogen removal unit (NRU) is 
investigated. This study designs a prevailing single column NRU, considered as the 
base case and a double-column NRU integrated processes in conjugation with boil-off 
gas (BOG) generation in the various process steps after acid gas removal unit. The BOG 
generated and nitrogen rich waste stream are utilized as fuel gas (FG) for gas turbine to 
generate power. A simulation based optimization paradigm deploying particle swarm 
optimization algorithm is implemented to minimize the specific power requirement with 
consideration of higher heating value (HHV) of LNG product, NGL Reid vapor 
pressure (RVP), Wobbe index (WI) and pressure of FG. The parity between FG heating 
value and fuel requirements ensures efficient and self-sustained LNG plant. The optimal 
process parameter and specific power requirement for the single column NRU 
conventional and double column NRU integrated process are compared. 
 
Keywords: LNG, Nitrogen removal, integrated process design, Boil-off gas 

1. Introduction 

Natural gas (NG), owing to favorable heating values, relatively low fuel costs and 
significantly reduced emission of carbon dioxide and a negligible amount of CO, NOx, 
SOx and particulate as compared to combustion of oil and coal makes it a lucrative 
option to be the bridge between renewables and non-renewables. Practical storage and 
transport of NG as liquefied natural gas (LNG) is viable by liquefaction at 112 K, to 
reduce the volume occupied by methane by more than 600 times at ambient pressure.  
The literature covers the progress in designing of efficient LNG liquefaction process 
and sheds light on potential improvements in specific energy requirement by the 
integration of LNG liquefaction, NGL recovery and NRU. (Ghorbani et al., 2016) With 
increasing concerns of climate changes, the BOG generation minimization and handling 
become of paramount importance to ensure LNG supply chain has reduced carbon 
footprints and detrimental impact on immediate surroundings. Although many studies 
are addressing the two aforementioned problems exclusively, to the best of our 
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knowledge there is no literature painting a holistic picture of existent LNG plant by 
incorporating an integrated LNG liquefaction, NGL recovery and multi-column NRU 
process with BOG generation at various process step accounting for the fuel gas. (Lee et 
al., 2019) The various process constraints on the HHV of LNG product, NGL RVP, WI 
and pressure of FG and parity between FG heating value and fuel requirements ensuring 
optimal and self-sustained LNG plant, remains briefly addressed in the literature. 
 
This study aims to analyse and improve the energy efficiency of process steps after acid 
gas removal unit (AGRU) in an existent baseload LNG plant. This study carries out 
optimization and design of a prevailing single column NRU and a double-column NRU 
process, both integrating LNG liquefaction, NGL recovery and NRU processes in 
conjugation with BOG generation in the various process steps after AGRU. Particle 
Swarm Optimization (PSO) algorithm was implemented to minimize specific power 
requirement with consideration of LNG HHV, NGL RVP, and fuel gas WI and pressure 
and fuel gas generation-requirement balance. (Kennedy & Eberhart, 1995) Further, the 
optimized results of single column NRU conventional and double column NRU 
integrated processes are compared and results discussed. 

2. Process Description  
2.1. Single Column NRU conventional process design 
Figure 1 illustrates integrated liquefaction, NGL recovery and one column NRU system, 
with an SMR cycle, regarded as the single-column NRU conventional system and the 
base case for comparing the improved system proposed in this study. The top product of 
NGL column after liquefaction makes the feed for the NRU column operating at 2 Bar 
pressure. The vapour fraction of reboiler stream controls the purity and recovery of 
methane in LNG product stream. The bottom product of NRU column in pumped to 6 
Bar and flashed in the storage tank. The BOG generated in the storage tank and the 
nitrogen rich waste stream is compressed and used as fuel gas. A single mixed 
refrigeration cycle provides the requisite cold energy for liquefaction. The retrieval of 
cold energy from the BOG stream and nitrogen rich waste stream in a multi stream heat 
exchanger (MSHE) before compression, provide additional cold energy and improve the 
efficiency of the process. 

 
Figure 1 Schematic diagram of single column NRU conventional process 
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2.2 Double column NRU integrated process design 
Figure 2 shows the double-column NRU process. The process along with integrated 
liquefaction and NGL recovery comprises of one high-pressure (HP) column and one 
low-pressure (LP) column in NRU. The compressed feed after AGRU is cooled and 
throttled before entering the NGL recovery column. The top product of HP NRU 
column enriched in nitrogen, divided into two streams in SPLIT-1 & 2 provide reflux to 
both HP and LP NRU columns after compression, splitting and cooling. A part of the 
bottom product of HP NRU column (SPLIT-3) contributes towards fuel gas requirement 
after Joule-Thomson expansion to 20 Bar and cold energy retrieval in MSHE. The feed 
to LP NRU column comprises of a part of the top product stream of HP NRU column. 
The HP and LP column operate at 26.8 and 5.3 Bar respectively. The bottom liquid 
stream from LP NRU is pumped to 56 Bar before sub-cooling and flashing to 2 Bar 
pressure. The BOG due to vapor displacement, HP flashing and heat leaks in STR-
TANK and top product of LP-NRU column, after cold energy recovery in MAIN-
MSHE and three-stage compression to 20 Bar, contribute to the fuel gas requirement. 

3. Solution procedure 
Simulation based optimization paradigm was deployed to find the optimal operating 
parameter of the processes. Aspen Hysys V.10 simulated each random design generated 
by PSO algorithm coded in MATLAB. A simulation-based optimization framework 
combining the accurate and fast thermodynamic calculation performed in Aspen Hysys 
and rigorous optimization algorithm implemented on an external platform like 
MATLAB can provide an accurate value for the decision variables while ensuring the 
constraints are met and specific power minimized. (Hamedi et al 2019) The connection 
between MATLAB and Hysys established through component object model in ActiveX, 
allows direct two-way communication between Hysys and MATLAB. The process and 
stream data calculated in Hysys are sent to MATLAB, which performs optimization, 
levies constraints on variables, and sends back the values of calculated variables. This 
section further discusses the decision variables and constraints for the conventional and 
two-column NRU integrated design, which is optimized using PSO to find the minimum 
specific energy requirement for both cases. 

 
Figure 2 Schematic diagram of double column NRU integrated process 
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3.1 Single column NRU conventional process optimization 
 
The major energy consumer in single-column NRU conventional process is the four-
stage SMR cycle compressors. The three-stage compression of fuel gas streams 
generated by NRU column and BOG at the export terminal also contribute towards the 
energy requirements of the process. The feed compressor, SMR cycle pumps and LNG 
pump are other contributors towards energy consumption. The objective is to find the 
minimum specific energy requirement, calculated by dividing total energy consumption 
by LNG production in mega long tonnes per annum (Mty).  
Total power consumption by User 2 = WFEED-COM + ƩI=compressor (WMR-COM-I + WFG-1-COM-I 
+ WFG-2-COM-I) + ƩI=pump (WPMP-I)                                                                                     (1) 
Objective function, specific power consumption 
= [Total power consumption by User 2] / [PRODUCT LNG mass flow rate]               (2) 
W denotes power consumption by the compressor or pump descripted in the subscript. 
The single column NRU conventional process consists of 15 decision variables. The 
NGL recovery column operates at a fixed pressure of 54.7 Bar, hence the feed, reboiler 
and reflux temperature are the working variable to ensure the NGL flowrate and RVP 
specifications are met. The fuel requirement of plant before and including AGRU and 
post AGRU process are regarded as User 1 and User 2 fuel requirements respectively. 
The User 1 fuel requirement is considered same for both cases studies. The total fuel 
requirement for the process design takes into account the User 1(fuel requirement before 
AGRU) and User 2 fuel requirements. 
Total fuel requirement = User 1 fuel requirement + User 2 fuel requirement                (3)       
User 2 fuel requirement = Total power consumption by User 2 / 0.3                            (4)                               
The fuel requirement of process is satiated by the fuel gas stream available at 20 Bar. 
Total fuel generated = (Low heating value of FG)* (Molar flow of FG)                       (5)                        
The following specifications acting as constraints for the process: 
LNG product High heating value ≥ 39.86 MJ/m3                                                           (6)                                                
NGL molar flowrate ≥ 702 kmol/h                                                                             (7)                                                     
NGL RVP ≤ 23.9 Bar                                                                                                 (8) 
Wobbe index of fuel gas ≥ 30 MJ/m3                                                                             (9)       
Minimum temperature approach in MSHE ≥ 2 K                                                         (10)     
Total fuel requirement / Total fuel generated ≥ 0.99                                                    (11)                                                 
Total fuel requirement / Total fuel generated ≤ 1                                                         (12)                        
The two inequality constraints (11) & (12), relax the equality constraint for fuel balance.  
 
3.2 Double column NRU integrated process optimization 
 
The double-column NRU integrated process has four compressors SMR cycle, 
contributing to major energy consumption and one expander at HP-NRU feed column, 
producing some energy. The NGL recovery column operated at a pressure similar to 
that of conventional design delineated in the previous section, hence the feed, reboiler 
and reflux temperatures of NGL recovery column are working variable to ensure NGL 
flowrate and RVP specification are met. The objective is to find minimum specific 
energy requirement containing 27 decision variables. 
Total power consumption by User 2 = WFEED-COM + ƩI=compressor (WMR-COM-I + WFG-1-COM-I 
+ WFG-2-COM-I) + ƩI=pump (WPMP-I) - WEXP                                                                       (13) 
Objective function, specific power consumption 
= [Total power consumption by User 2] / [PRODUCT LNG mass flow rate]             (14) 
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Development and optimization of an energy efficient and self-sustained  
integrated process for nitrogen removal for baseload LNG plant  

The product specification and process constraints levied for the conventional process 
listed in section 3.1 (Equation 3-12) are active for double-column NRU integrated 
process optimization as well.           

4. Results  
The four-stage compression in SMR cycle is the major contributor towards the power 
requirement with 99.42 and 97.27 MW for single-column NRU conventional and 
double column NRU integrated process, respectively. This power requirement reduction 
results from lower entropy generation and lowered compression pressure. The fuel gas 
generated for the process design comprises of the nitrogen-rich waste stream from NRU 
column and BOG at low pressure and require compression. The double-column NRU 
integrated process has additional fuel gas stream sourced from the bottom stream of HP 
NRU column at high pressure. This leads to a reduction in FG compression power 
requirements by 56% and the absolute values are 9.64 and 4.24 MW respectively for 
single-column NRU conventional and double column NRU integrated process 
respectively.  
 
Table 1 summarizes the values of parameters and constraints of the two process designs 
with fuel gas generation to satiate the process energy requirement. The NGL stream 
conditions are similar for the two process designs. The LNG product feed flow rate for 
the double column NRU integrated process increases by 4.8% as compared to the 
conventional case for the same feed flow rate. The total power requirement of the 

Table 1       
Summary of results and specific power consumption 

    

Single column 
NRU 

conventional 
design 

Double column 
NRU 

integrated design 

LNG Product mass flow rate (Mty) 3.308 3.324 
Pressure (Bar) 1.2 1.2 
Temperature (K) 113.3 113.2 
Nitrogen content (mol %) 0.34 0.28 
LHV (MJ/m3) 36.2 36.2 
HHV (MJ/m3) 39.8 39.8 

NGL Molar flow rate (kmol/h) 703 702.5 
Pressure (Bar) 54.87 54.87 
Temperature (K) 314.8 327.8 
RVP (Bar) 23.9 23.8 

Fuel Gas Molar flow rate (kmol/h) 3815 3712 
Pressure (Bar) 20 20 
Temperature (K) 298 298 
Wobbee index (MJ/m3 ) 30.78 30.36 

Heat 
Exchanger 
Energy 
Calculation 

MTA (K) 2 2 
Power requirement (MW) 109.6 104.3 
User 1 fuel requirement (MW)  210 210 
User 2 fuel requirement (MW) 365.3 347.6 
Total fuel requirement (MW) 575.3 557.6 
Total fuel generated (MW) 579.4 558.4 
Required/Generated fuel  0.993 0.999 

Specific power requirement (MW/Mty) 33.13 31.3 
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double-column NRU integrated process witnesses a 4.8% reduction as compared to the 
single-column NRU conventional process. This reduction of power and fuel gas 
requirements lead to a reduction in required FG flow rate and higher LNG production 
for the former. The rigorous simulation-based optimization ensures the ratio of required 
and generated fuel value to be closer to unity. The objective function i.e. specific power 
consumptions are 33.13 and 31.13 MW/Mty for single-column NRU conventional and 
double-column NRU integrated process respectively. The decrease in optimal objective 
value can be attributed to a reduction in total power requirement and increase in LNG 
production.  

5. Conclusions  
The prevailing single column NRU conventional and double column NRU integrated 
processes are simulated, optimized and compared. The double column NRU integrated 
process shows a 5.5% reduction in specific power requirement as compared to the base 
case. This reduction in specific power requirement is attributed to lower power 
requirement leading to reduced fuel gas requirement and increased LNG production. 
The double column NRU integrated process witnesses a 16-kilo tonnes (long) per 
annum increase in production. The power required for SMR compression and fuel gas 
compression reduced by 2.1% and 56.1% as compared to the base case. The SPLIT-3 in 
double column NRU integrated process diverts 3.1% molar flow of HP-NRU bottom 
product to MAIN-MSHE for cold energy retrieval before utilising as fuel gas at high 
pressure, hence reducing the FG compression requirement. The high operating pressure 
of LP-NRU as compared to conventional design further contributes to the reduction in 
FG compression requirements.    
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Abstract 
The aviation industry requires to reduce its carbon emissions. To do so, the fuel needs 

to be renewable-based as much as possible and have low life cycle emissions, hence be 
sustainable. Gas-to-Liquid (GTL) process through Fischer-Tropsch (FT) synthesis can be 
used to make aviation fuel. This process can be made more sustainable by lowering its 
carbon emissions. The addition of renewable power to the GTL process is investigated 
with the aim of reducing its CO2 emissions. Two promising designs are considered which 
have very low CO2 emissions: 1- Using Autothermal Reformer (ATR) to produce syngas 
and Solid Oxide Electrolysis Cell (SOEC) to produce H2 and O2; and 2- Production of 
syngas through electrically heated Steam Methane Reformer (E-SMR). In both designs, 
the addition of renewable power significantly reduces carbon emissions and increases 
carbon efficiency which means increased production for the same amount of natural gas 
feed. By assessing the two designs based on FT production, carbon efficiency, and FT 
catalyst volume, it is a better choice to add renewable power to the SOEC (case1) rather 
than using it in an E-SMR (case 2). These designs are considered in order to help us safely 
transit to a low-carbon society.  

Keywords: Fischer-Tropsch synthesis, Renewable power integration, Low-carbon fuels, 
Low-emission Gas-To-Liquid process, Green Hydrogen.    

1. Introduction 
In order to reach the goals of the Paris Agreement (United Nations 2015) and the aims of 
the United Nations’ Sustainable Development Goals (United Nations 2019), current 
industrial processes are required to move towards reducing their carbon emissions and 
hence becoming more sustainable. Decarbonizing the aviation industry is hard as there 
are few equivalent alternatives to kerosene and jet fuel, mainly because a fuel with high 
energy density is required. Fischer-Tropsch process produces a wide range of 
hydrocarbons including kerosene and jet fuel. Thus, liquid fuel production through this 
process is the focus of many investigations (Hillestad et al. 2018). Integration of 
renewable energy into chemical processes results in both increased production of 
chemicals and simultaneous reduction of CO2 emissions (Agrawal et al. 2007). Hillestad 
et al. (2018) demonstrated that the carbon efficiency of a biomass to liquid (BTL) process 
can be increased by adding renewable power in the form of  hydrogen  and  oxygen  
through  electrolysis. The conversion of H2 and CO2 to liquid fuels via Power-to-Liquid 
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(PTL) processes is gaining attention (Dieterich et al. 2020). Van Bavel et al. (2020) 
proposed  the  hybrid  “GTL-PTL”  process where CO2 and renewable H2 are co-
processed with natural gas to produce liquid fuel. Wismann et al. (2019) used electricity 
to drive the SMR reaction in an electrically heated wash-coated catalytic structure. As a 
result, the catalyst effectiveness factor is increased, production of side products is limited 
and a 100 fold volume reduction compared to a conventional SMR is observed (Wismann 
et al. 2019). In this paper, two options in reducing carbon emissions in the GTL process 
are investigated. Renewable power (from wind, solar, etc.) is integrated in both cases. As 
a result, the carbon emissions of both processes are considerably reduced. Moreover, with 
continued decline of cost of renewable power,  these novel designs are considered to be 
cost competitive with the existing designs (Ostadi et al. 2015) in the future carbon-
constrained world.    

2. Process modelling 
The specifications of natural gas feed are shown in Table 1. Aspen HYSYS V10 is used 
to simulate the process with Peng-Robinson as the thermodynamic model in this study.  

Table 1: Specifications of the natural gas feed 

Temperature [°C] 50 
Pressure [bar] 30 
Flow [MMscfd] 120.2 
Molar flow [kmol/h] 6000
Mass flow [t/h] 104.7 
Mole fraction   
CH4 0.95
C2H6 0.02 
C3H8 0.015 
n-C4H10 0.01
n-C5H12 0.005 

2.1  Syngas production 

For the syngas production step, two main reformer types are considered: Autothermal 
Reforming (ATR) and electrically-heated Steam-Methane Reforming (E-SMR). These 
units are modelled as Gibbs reactors within the process simulator. To avoid coke 
formation in the reformer, a pre-reformer is used.  Pre-reforming is done adiabatically at 
420 °C. In both cases, the produced syngas is almost inert-free, due to avoiding the use of 
air in the reforming step. Therefore, there is no need for a costly Air Separation Unit 
(ASU) or a membrane unit to produce oxygen (Ostadi and Hillestad 2017).  

2.2  Fischer-Tropsch Synthesis  

The main products of FTS are paraffins (or alkanes) (Eq. 1) and olefins (or alkenes) (Eq. 
2). The polymerization reactions taking place are hydrogenation of CO to form n-
paraffins, 1-olefins, and oxygenates. Oxygenates are formed in small amounts and 
therefore are neglected here. 

                             𝑛CO + (2𝑛 + 1)H  → C H  + 𝑛H O            n = 1, 2, … , ∞      (1)              𝑛CO + 2𝑛H  → C H  + 𝑛H O                            n = 2, 3, … , ∞     (2) 
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In order to account for product distribution, a variable chain growth factor, α, is applied. 
This factor is greatly affected by H2/CO ratio at the reaction site on the catalyst (Ostadi, 
Rytter, and Hillestad 2016). It is shown that under-stoichiometric H2/CO is desirable for 
selectivity to higher hydrocarbons as a result of suppression of methane and light 
hydrocarbon formation (Ostadi et al. 2016). The H2/CO selected here is 2.0 which is 
slightly below the stoichiometric ratio. With H2/CO being lower than the consumption 
ratio, it decreases as the reaction proceeds. Therefore, hydrogen addition is required to 
avoid an exceedingly low H2/CO ratio. This is done by the addition of hydrogen between 
FT stages. The Fischer-Tropsch synthesis is staged in 3 stages, with product withdrawal 
and hydrogen addition between the stages. This enables a high conversion of syngas and 
high selectivity to heavier hydrocarbons. Once-through conversion in each FT stage is 
limited to 60 % to have the maximum C5+ selectivity and also preserve catalyst lifetime 
(Schanke et al. 2001). Slurry bubble-column FT reactors used in this study are modelled 
as a completely stirred tank reactor (CSTR). Details of the reactor and kinetic models are 
provided in Hillestad et. al (2018). The syngas has a pressure of about 26 bar prior to the 
first FT stage and a temperature of 210 °C at the feed to all FT stages.  

3. Considered cases 
3.1 Case 1: ATR with SOEC 
 
Natural gas is pre-reformed and then reformed in an Autothermal Reformer (ATR) to 
produce syngas. The block flow diagram is shown in Figure 1. Renewable power is used 
in SOEC to split steam into H2 and O2 (Hillestad et al. 2018). Oxygen from the SOEC is 
used in ATR as the oxidant to keep the ATR outlet temperature at 1050 °C and therefore 
the produced syngas is inert-free. As a result, the majority of the tail gas (90 %) is recycled 
to ATR which increases the carbon efficiency of the process. Carbon efficiency is defined 
as the amount of the feed carbon ending up in the products. The rest of the tail gas is sent 
to the fired heater to provide heat for the steam to SOEC. 

 
Figure 1: Block Flow Diagram of Case 1- ATR with SOEC 
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3.2 Case 2: Electrically heated SMR; E-SMR 
 
In this case, renewable power derives the SMR reaction in an E-SMR. The block flow 
diagram is shown in Figure 2. The steam to carbon (S/C) ratio before the SMR is set to 
2.0 which is a reasonable value considering the cocking potential in the reformer. Natural 
gas is pre-reformed and heated to 500 °C prior to the SMR. The electric power input to 
the SMR is high enough to keep the SMR temperature at 850 ◦C. The H2/CO ratio at the 
SMR outlet is high (> 3) which is more than the stoichiometric consumption ratio in FT 
process that is slightly above 2.0, as mentioned before.  Therefore, part of H2 needs to be 
separated to have the desired H2/CO ratio prior to FT stages. Palladium membrane is used 
in this design to separate H2. The temperature prior to the membrane needs to be at least 
300°C (Bredesen et al. 2011). There will also be excess H2 in the process which can be 
used for product upgrading, provide extra heat in the fired heater or can be exported. In 
this design, 85% of the tail gas is recycled to the SMR. 
 

 
Figure 2: Block Flow Diagram of Case 2- E-SMR 

3. Results 
As mentioned earlier, in E-SMR case (case 2), excess H2 is produced. In order to have a 
fair comparison between cases, the same excess H2 is produced in both cases.  Moreover, 
the same once-through conversion in three FT stages (i.e. 94 %) is used. The overall plant 
results in both cases are shown in By assuming the density of syncrude (C5+) to be 800 
kg/m3, the CO2 emissions per liter syncrude produced are 0.20 and 0.43 kg CO2/Lsyncrude 
for case 1 and case 2, respectively. Comparing to the previous designs which had a CO2 
emission of 1.57 kg CO2/Lsyncrude (Ostadi et al. 2015; Ostadi and Hillestad 2016), case 1 
and case 2 show 8 and 4 times less process emissions per liter syncrude produced, 
respectively.  

Table 2. Carbon efficiency is considerably improved compared to the previous designs 
(Ostadi et al. 2015), from around 60% in previous designs to above 84 % and 91 %. The 
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power consumption in case 1 is slightly lower than case 2, while the FT production is 
higher. With the carbon efficiency being higher in case 1, this also indicates that the CO2 
emissions are lower in case 1. Moreover, the required FT catalyst volume is lower in case 
1. The main reason for these differences is related to the higher reforming temperature 
used in ATR (case 1) than in the E-SMR (case 2) which are 1050 ◦C and 850 ◦C, 
respectively. The reforming temperature affects the CO2 concentration out of the reformer 
which in case 1 and case 2 are 6% and 11%, respectively. Based on these results, it is a 
better choice to add renewable power to the SOEC rather than utilizing it in E-SMR.  By 
assuming the density of syncrude (C5+) to be 800 kg/m3, the CO2 emissions per liter 
syncrude produced are 0.20 and 0.43 kg CO2/Lsyncrude for case 1 and case 2, respectively. 
Comparing to the previous designs which had a CO2 emission of 1.57 kg CO2/Lsyncrude 
(Ostadi et al. 2015; Ostadi and Hillestad 2016), case 1 and case 2 show 8 and 4 times less 
process emissions per liter syncrude produced, respectively.  

Table 2: Overall plant results in both cases 

 Case 1-SOEC Case 2-ESMR 
Electric power usage (MW) 633 635 
FT production (t/h) 86.8 79.9 
Carbon efficiency [%] 91.6 83.7 
CO conversion per pass [%] 93.6 93.8 
FT Catalyst volume [m3]   1910 2680 
Excess H2 production (kmol/h) 7908 7880 
CO2 emission of the process (kg CO2/Lsyncrude) 0.2 0.43 
 

To get a better picture of the amount of heating and cooling required in the proposed 
processes, the energy composite curves for both cases are shown in Figure 3.  In case 1, 
Figure 3a, there is a requirement for 85 MW of external heating and there is 492 MW of 
excess heat. In case 2, Figure 3b, the external heating and cooling requirements are 68 
MW and 635 MW, respectively. The horizontal hot line at 210 °C represents the steam 
generated during cooling of the FT reactors. As can be observed, in both processes a large 
amount of excess heat is available mainly below 200 °C which can be utilized for 
preheating or be upgraded via heat pumps. Compared to the amount of extra heat required, 
there is a minor need for external heating in both designs, which can be supplied by 
changing important operating variables or combusting part of the excess hydrogen.   

 

  
Figure 3: a) Composite curves for case 1; b) Composite curves for case 2 
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4. Conclusions 
Two GTL designs with very low CO2 emissions are presented and compared. In these 
designs, there is no need for a costly ASU or a membrane unit to produce oxygen. The 
generated syngas in both cases is almost inert-free because of avoiding the use of air, 
therefore allowing most of the FT tail gas to be recycled to the reformers. Adding 
renewable power increases the carbon efficiency and thus synthetic hydrocarbon 
production in both cases. Provided that cheap renewable power is available, it is a better 
choice to add power to the GTL process through SOEC (case1) rather than using it in an 
E-SMR (case2).  
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Abstract 
The environmental benefits of switching to biomass-based feedstock have been 
demonstrated in numerous life cycle assessment (LCA) studies. Currently, most LCA 
research follows the process LCA approach, which is inevitably subject to missing flows 
and truncation errors. Hybridization methods have been developed to reduce truncation 
error by incorporating the economic input-output model into the traditional process LCA. 
In this work, the tiered and integrated hybrid LCA, along with their double-counting 
elimination methods, are applied to five different biomass-based chemical productions. 
The results demonstrate the effectiveness of the hybrid LCA in eliminating truncation 
error and the significance of hybridization method selection. 

Keywords: Hybrid LCA, Double counting elimination, Biomass 

1. Introduction 
There is a growing interest in utilizing biomass feedstocks to replace traditional fossil-
based chemical production (Athaley et al. 2019). The feedstock of the process itself does 
not guarantee a greener production than the conventional oil-based ones. Since the utility 
usage and other chemical demands could differ significantly, the conclusion should only 
be drawn after the comparative life cycle assessment (LCA). 

Two common LCA methodologies are process LCA and Economic Input-Output LCA 
(EIO-LCA), which suffer from the truncation error and aggregation error, respectively 
(Pomponi and Lenzen 2018). Many hybridization techniques are developed to take 
advantage of the process LCA’s accuracy and the EIO-LCA’s completeness (Crawford 
et al. 2018). Under various scenarios of data availability, different hybrid LCA 
methodologies use the input-output table (Yang et al. 2017) that reflects the interactions 
between different industries to estimate missing activities in the supply chain. These 
strategies will ensure a more complete system boundary than the process LCA.  

The tiered hybrid and integrated hybrid LCA are the most common choices for 
hybridization in the literature (Crawford et al. 2018). The matrix formulation of these two 
methods is described in Section 2. This work assesses the current hybrid LCA methods 
through case studies of biomass-based p-Xylene productions and lignin-based pressure-
sensitive adhesive (PSA) production with two fractionation alternatives in Section 4. 
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2. Process LCA and Hybrid LCA 
The matrix representation of the intermediary flow exchanges within different unit 
processes is well suited for LCA, especially in large systems with recycling loops 
(Heijungs and Suh 2002). In this framework, the element aij (row i, column j) of the 
technological matrix, Ap, represents the physical amount of raw material i used in process 
j. The environmental impacts are calculated from equation (1), where the fp represents the 
final demand, I is the identity matrix, and Bp is the environmental intervention matrix that 
connects the productions with emissions.  

g = Bp·( I − Ap )−1· f p
 (1) 

Similarly, the environmental impacts of the EIO-LCA model are calculated by equation 
(2). The main difference between these two methods is that the input-output direct 
requirement matrix AIO and its corresponding input-output environmental intervention 
matrix BIO are used instead of Ap and Bp. Moreover, each element in AIO represents the 
monetary flow spent on different economic sectors, rather than the physical flow in Ap. 

g = BIO·(I − AIO )−1· fIO
  (2) 

The tiered and integrated hybrid LCA are the most common choices for process-based 
hybridization. In equation (3), missing flows in the final demand of process LCA are 
supplemented by input-output elements in the tiered hybrid LCA (Crawford et al. 2018). 
Alvarez-Gaitan et al. defined the depth of interface between the input-output and process 
models and used this to include additional elements in fIO. (Alvarez-Gaitan et al. 2013).  

g = Bp·( I − Ap )−1· f p + BIO·(I − AIO )−1· fIO
  (3) 

The integrated hybrid LCA includes the interactions between the process system and the 
economy (Suh 2004). These interactions are captured in equation (4) by the upstream cut-
off matrix Cu and downstream cut-off matrix Cd (which is often set to null) (Perkins and 
Suh 2019). Many double-counting elimination methods are developed, among which the 
binary correction (Agez et al. 2020) and SSM correction are discussed in this paper 
(Strømman and Solli 2008). If a process is already covered in Ap, the binary correction 
method will set its corresponding economic sector in Cu to zero. The SSM correction 
further eliminates the elements in Cu if some flows are known to be complete. To account 
for uncertainty in the completeness of the background database, three scenarios (min, 
base, and max) on which sectors are already included in process LCA (Acquaye et al. 
2011) are considered in the SSM correction.  

g = Bp BIO( )· I − Ap 0

−Cu I − AIO

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

·
f p

0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (4) 

3. Methodologies 
Process simulations of p-Xylene (Athaley et al. 2019) and pressure-sensitive adhesive 
production are simulated using Aspen Plus v11. Yields from literature and experiments 
are used for reactor modeling. Missing physical property data are estimated by regression 
of experimental data and the group contribution method. Cradle-to-gate analysis is 
performed including the manufacturing stage of chemical products and emissions 
associated with the upstream raw materials and utility production. The functional unit is 
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selected as 1 kg of p-Xylene or PSA produced. Raw material and utility usages are 
collected from the simulation and utilized in the traditional process LCA. The background 
data for the process LCA are obtained from the Ecoinvent v3.3 database (Wernet et al. 
2016), while the USEEIO including 388 economic sectors is chosen as the economic 
input-output model (Yang et al. 2017) for hybridization. TRACI 2.1 method is used in 
the USEEIO model for impact assessment; the environmental metrics include global 
warming potential (GWP), ozone depletion, acidification, eutrophication, respiratory 
effects, smog, human carcinogenics and non carcinogenics effects. GWP is one of the 
most used indices for LCA and is chosen in this study. The environmental impacts of the 
lignin production from black liquor are calculated from the life cycle inventory of Bernier 
et al. (Bernier et al. 2013). Multi-functionality is treated as follows: mass allocation of 
the environmental impacts is chosen for p-Xylene productions when furfural is the 
byproduct, while the generated electricity in p-Xylene production and biofuel in PSA 
production are treated as avoided burdens. 

4. Case Study Results: Bio-based Chemical Production 
4.1. Descriptions of Bio-based p-Xylene and Pressure-Sensitive Adhesive Production 

Two hydrolysis technologies for biomass-based p-Xylene production are discussed in this 
work: the concentrated acid (CA) (Weydahl 2014) and molten salt hydrate (MSH) 
hydrolysis (Sadula et al. 2017). Glucose and xylose from the hydrolysis are used to 
produce p-Xylene and furfural, as shown in Figure 1 (Athaley et al. 2019). The humins 
and lignin byproducts are incinerated to provide electricity and steam. One particular 
MSH hydrolysis scenario that is unable to sell the excess electricity from the power 
generation section to the grid is also considered and referred to as ‘MSH no grid.’ 

 
Figure 1: Process flow diagram of biomass-based p-Xylene production 

The two alternatives for PSA production are illustrated in Figure 2. Using either glycerin 
or methanol as the solvent, lignin is depolymerized into a mixture of phenolics. Glycerin 
and methanol serve as the hydrogen donors for reductive catalytical fractionation, but 
typical processes using methanol or other low molecular weight alcohols employ 
hydrogen gas at high pressure (40 bar) to facilitate improved hydrogenation. Moreover, 
the glycerin fractionation process benefits from reactive distillation as the products are 
more volatile than the solvent. Unlike the pressurized methanol fractionation process, the 
glycerin process does not require cooling prior to separations and thus exhibits lower 
utility usage than the methanol fractionation process. Next, methacrylic anhydride 
(MAAH) functionalizes the phenolics with the help of 4-dimethylaminopyridine 
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(DMAP). After neutralization, monomers are polymerized with butyl acrylate (BA) by 
reversible addition-fragmentation chain-transfer polymerization in anisole with 
azobisisobutyronitrile (AIBN) as the initiator to produce the copolymer (PSA).  

 
Figure 2: Process flow diagram of lignin-based pressure-sensitive adhesive (PSA) production 

4.2. Truncation Errors in the Process LCA 

The truncation errors in the process LCA comes from cutting off missing flows during 
the boundary selection. The extent of cut-off differs from case to case in process LCA 
studies, posing challenges to comparing different alternatives. The hybrid LCA has a 
more complete system boundary than the process LCA because it expands the system 
boundary by including previously missing upstream flows. It is often used to calibrate the 
truncation error in the process LCA (Mattila et al. 2010). 
Table 1: Estimated truncation error (GWP) of process LCA based on hybrid LCA results 

p-Xylene production PSA production 
Estimated truncation 

Error (%) 
MSH MSH  

(no grid) 
CA Methanol 

Fractionation 
Glycerin 

Fractionation 
Tiered hybrid 5.9 4.0 4.1 9.9 9.3 
Binary-Integrated 14.6 13.0 12.6 26.6 21.4 
SSM (min) 6.4 5.6 0.5 12.6 11.7 
SSM (base) 6.7 5.9 0.9 13.7 12.1 
SSM (max) 10.0 8.9 5.1 17.9 14.8 

In Table 1, the truncation error estimated from missing upstreams varies based on the 
choices of hybridization methods and different technologies. For instance, glycerin 
fractionation for PSA production has a much higher estimated truncation error than the 
CA p-Xylene production. This is because many chemicals used in the PSA production 
processes are not captured well by the process LCA background database and need to be 
supplemented by the input-output analysis in the hybrid LCA. A high truncation error is 
an indicator of the original process LCA model's incompleteness, which encourages the 
use of hybrid LCA to replace the process LCA when comparing different alternatives. 

The binary integrated hybridization estimates the highest truncation error among all 
methods as it removes the least amount of elements to avoid double-counting. The SSM 
correction is more conservative and acknowledges that irrelevant economic activities 
should be excluded in estimating missing flows. The minimum case of SSM only includes 
sectors highly probable to be neglected in the process database, while the maximum case 
accounts for all potential contributing sectors. These scenarios remove double-counting 
to different extents, reflecting the practitioner's confidence in the process LCA database. 
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The truncation errors vary by different magnitudes for different LCA metrics beyond 
carbon footprint. For instance, using the binary corrected integrated hybrid LCA as the 
reference, the truncation errors of PSA range from 0.11% (human non-carcinogenic 
effects) to 74.11% (ozone depletion). 

4.3. Different Choices of LCA Methodologies in Comparative LCA 

 
Figure 3: Effects of different hybridization methods on LCA results (Left: 1kg biomass-based p-
Xylene production; Right: 1 kg lignin-based pressure-sensitive adhesive (PSA) production) 

Figure 3 shows that the MSH process of p-Xylene production without selling electricity 
to the grid has a lower global warming potential than the CA process according to the 
process LCA, tiered hybrid LCA, and binary corrected integrated hybrid LCA. After 
further eliminating double-counting by SSM corrections, the MSH process without 
selling electricity to the grid behaves similarly or even worse than the CA process. This 
comparison illustrates that the choice of hybridization method could lead to contradicting 
results. It is beneficial to choose SSM corrected integrated hybrid LCA for its flexibility. 
However, this method requires the practitioners to use their prior knowledge on the 
process and database to decide on the irrelevant economic activities. Tiered hybrid LCA 
should be applied if accurate technoeconomic analysis is available. If no extra information 
is available, the binary corrected integrated hybridization is the only option. Since the 
truncation errors for similar processes are very close, the binary corrected hybrid LCA 
and tiered hybrid LCA will still lead to reliable results in most cases. For example, 
glycerin fractionation outperforms methanol fractionation in PSA production, and the 
MSH process that sells the extra electricity to the grid behaves better than the CA p-
Xylene process in all and hybrid LCA or even process LCA comparisons.  

5. Conclusions 
Both tiered and integrated hybrid LCA methods are applied in this work to achieve a more 
complete system boundary than traditional process LCA by incorporating the input-
output model. In cases where the process LCA database does not sufficiently capture 
some inputs, the truncation error is effectively reduced through hybridization. Although 
different LCA methodologies generate similar results for the same process, the 
comparison between many technology alternatives could be affected by the hybridization 
method selection, as shown in Section 4.3. One limitation of the hybrid LCA, as with 
most of the current process LCA and EIO-LCA studies, is the model's static and linear 
nature, limiting its ability to assess future scenarios and significant changes (Yang and 
Heijungs 2019). Future studies should include more dynamic technological development 
features and consider the economy's complexity by nonlinear models. 

0 1 2 3 4 5

Traditional
Process LCA

Tiered hybrid

Binary-Integrated

SSM (min)

SSM (base)

SSM (max)

GWP (kg CO2 eq / kg p-xylene)

Different Hybrid Methods for p-Xylene Production

CA MSH (no grid) MSH

0 2 4 6 8 10 12 14 16 18

Traditional
Process LCA

Tiered hybrid

Binary-Integrated

SSM (min)

SSM (base)

SSM (max)

GWP (kg CO2 eq / kg PSA)

Different Hybrid Methods for PSA Production

Methanol fractionation Glycerin fractionation

1687     Comparative study of different hybrid life cycle assessment methodologies
Applied to biomass-based chemical production



 A. Firstauthor et al. 

Acknowledgement 
The authors are grateful for financial support from the National Science Foundation (NSF 
GCR CMMI 1934887) and U.S. Department of Energy's RAPID Manufacturing Institute 
for Process Intensification (DE-EE000788-7.6). 

References 
Acquaye, A. A., Wiedmann, T., Feng, K., Crawford, R. H., Barrett, J., Kuylenstierna, J., Duffy, A. 

P., Koh, S. C. L. and McQueen-Mason, S., 2011, Identification of ‘Carbon Hot-Spots’ and 
Quantification of GHG Intensities in the Biodiesel Supply Chain Using Hybrid LCA and 
Structural Path Analysis. Environmental Science & Technology 45(6): 2471-2478. 

Agez, M., Majeau-Bettez, G., Margni, M., Strømman, A. H. and Samson, R., 2020, Lifting the veil 
on the correction of double counting incidents in hybrid life cycle assessment. Journal of 
Industrial Ecology 24(3): 517-533. 

Alvarez-Gaitan, J. P., Peters, G. M., Rowley, H. V., Moore, S. and Short, M. D., 2013, A hybrid 
life cycle assessment of water treatment chemicals: an Australian experience. The 
International Journal of Life Cycle Assessment 18(7): 1291-1301. 

Athaley, A., Annam, P., Saha, B. and Ierapetritou, M., 2019, Techno-economic and life cycle 
analysis of different types of hydrolysis process for the production of p-Xylene. Computers 
& Chemical Engineering 121: 685-695. 

Athaley, A., Saha, B. and Ierapetritou, M., 2019, Biomass-based chemical production using techno-
economic and life cycle analysis. AIChE Journal 65(9): e16660. 

Bernier, E., Lavigne, C. and Robidoux, P. Y., 2013, Life cycle assessment of kraft lignin for 
polymer applications. The International Journal of Life Cycle Assessment 18(2): 520-528. 

Crawford, R. H., Bontinck, P.-A., Stephan, A., Wiedmann, T. and Yu, M., 2018, Hybrid life cycle 
inventory methods – A review. Journal of Cleaner Production 172: 1273-1288. 

Heijungs, R. and Suh, S. 2002. The Computational Structure of Life Cycle Assessment. 
Mattila, T. J., Pakarinen, S. and Sokka, L., 2010, Quantifying the Total Environmental Impacts of 

an Industrial Symbiosis - a Comparison of Process-, Hybrid and Input−Output Life Cycle 
Assessment. Environmental Science & Technology 44(11): 4309-4314. 

Perkins, J. and Suh, S., 2019, Uncertainty Implications of Hybrid Approach in LCA: Precision 
versus Accuracy. Environmental Science & Technology 53(7): 3681-3688. 

Pomponi, F. and Lenzen, M., 2018, Hybrid life cycle assessment (LCA) will likely yield more 
accurate results than process-based LCA. Journal of Cleaner Production 176: 210-215. 

Sadula, S., Oesterling, O., Nardone, A., Dinkelacker, B. and Saha, B., 2017, One-pot integrated 
processing of biopolymers to furfurals in molten salt hydrate: understanding synergy in 
acidity. Green Chemistry 19(16): 3888-3898. 

Strømman, A. H. and Solli, C., 2008, Applying Leontief's Price Model to Estimate Missing 
Elements in Hybrid Life Cycle Inventories. Journal of Industrial Ecology 12(1): 26-33. 

Suh, S., 2004, Functions, commodities and environmental impacts in an ecological–economic 
model. Ecological Economics 48(4): 451-467. 

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. and Weidema, B., 2016, The 
ecoinvent database version 3 (part I): overview and methodology. The International Journal 
of Life Cycle Assessment 21(9): 1218-1230. 

Weydahl, K. R. (2014). Process for the production of alcohol. United States, WEYLAND AS. 
Yang, Y. and Heijungs, R., 2019, Moving from completing system boundaries to more realistic 

modeling of the economy in life cycle assessment. The International Journal of Life Cycle 
Assessment 24(2): 211-218. 

Yang, Y., Ingwersen, W. W., Hawkins, T. R., Srocka, M. and Meyer, D. E., 2017, USEEIO: A new 
and transparent United States environmentally-extended input-output model. Journal of 
Cleaner Production 158: 308-318. 

 
 

1688



  

Optimising the energy, water and food nexus node 
to support decision making for sustainable food 
security in Risky Environments   
Maryam Haji,a Rajesh Govindan,b Tareq Al-Ansari a,b 
aDivision of Sustainable Development, College of Science and Engineering, Hamad Bin 
Khalifa University, Qatar Foundation, Doha - Qatar 
bDivision of Engineering Management and Decision Sciences, College of Science and 
Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha – Qatar  

Abstract 
As the population continues to rise, the need for energy, water and food (EWF) resources 
are increasing in parallel. Accordingly, the EWF nexus has received considerable 
attention in previous years as a means to manage resources given the inherent 
interlinkages between them. The objective of this study is to expand on geospatial nexus 
approaches to support decision-making for EWF resources in non-resilience 
environments. A simple linear optimization model is applied to a geospatial 
representation of decentralised EWF systems to enhance the EWF nexus node approach 
and analysis of resilience. The methodology is applied to hydroponic greenhouses in 
Qatar, where the water is the core factor that affects the overall efficiency and AHP risk 
level. Thus, the optimization model introduces a new EWF node that operates at minimum 
cost whilst reducing the AHP risk level of existing EWF nodes. The objective function of 
the optimisation model accounts for three cost components; the cost of groundwater 
transportation, pumping and desalination, that is subjected to certain constraints; one 
constraint is suggested for the new EWF node to select a low risk area, hence ensuring 
low operating costs; three constraints assigned to identify a location for the new EWF 
node that will minimise risks of the three existing nodes, hence, reducing high AHP value 
of three farms; and the last constraint used to select one node only at an optimal location. 
The result demonstrates that with the allocation of a new EWF nexus node at an optimal 
location to be the main source of water supply, the risk level for all three existing nodes 
will reduce tremendously.  
 
Keywords: Decentralization, Resource Management, EWF Nexus, Optimisation. 

1. Introduction 
In modern society, there are concerns related to the availability and accessibility of 
energy, water and food (EWF) resources. Hence, the EWF nexus approach to resource 
management has  been heavily explored in the literature in recent years since its 
introduction in Bonn Conference (2011), to support resource management across these 
sectors whilst considering the inter-linkages between them (Al-Ansari et al., 2014; 2015). 
Recently, numerous scholars, academics and politicians have suggested various 
approaches to tackle uncertainties within EWF using different types of optimisation 
techniques and other intelligence algorithms (Li & Singh, 2019). Numerous studies 
demonstrated that computational modelling is an important way of quantifying WEF 
interactions and fostering sustainable decision-making (Bieber et al., 2018). It has been 
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considered as influential tool due to the ability in addressing resource optimisation 
problems with various objectives and combining several management features, goals and 
constraints into one system. Stamou & Rutschmann (2018) optimised energy, water and 
food resources using the parameterization-simulation-optimisation method, which is 
based on the WEF Nexus approach and by considering their related existence and 
interrelationships. The authors aimed to promote understanding of changes by decision 
makers as a consequence of the altered management policies through analysing the 
interchanges between hydropower and competing irrigating goals and to make water 
supply management more effective in the Nile region. The proposed Pareto optimisation 
based on WEF nexus method can be used to optimise water management with similar 
issues and at the same time having various goals. Additionally, Niu et al. (2019) suggested 
a linear objective linear fractional programming to model the interactions between WEA 
nexus. This study provides overall insights into agriculture and the management of water 
resources in arid areas and provides a new approach to tackle the complicated dynamic 
WEA nexus through a modelling technique. In general, mathematical modelling and other 
optimisation techniques have been primarily used to improve the overall food systems 
performance. Moreover, an integrated resource modelling with an EWF Nexus 
framework demonstrates useful results in a multi-objective and stochastic optimisation as 
they can cope with the complexities of Nexus related issues. As such, Namany et al., 
(2018) suggested an optimum energy-water mix model to reduce environmental burdens 
and costs related to food production in the State of Qatar. Specifically, the research 
evaluated the allocation of energy and water resources using a game-theoretical 
modelling approach, and by focusing on the impact that natural gas prices on the 
stochasticity of the market and competition in the power-generation business. Lately, Haji 
et al. (2020) introduced the EWF Node to describe the decentralisation of interconnected 
EWF Nexus systems. The study utilised the EWF nexus node, where every node 
represented a food sector sub-system that are influenced by external risks, such as 
climatic, water and soil factors. Then, spatial risk factors were gathered, digitalised, and 
incorporated into a single geo-processing framework from various data sources focused 
on the food industry, allowing the visualisation as well as the further processing of risks. 
Thus, a composite geospatial risk maps for the different food production scenarios were 
then generated using an analytical hierarchy process (AHP). Consequently, this study 
builds on recent work reported by Haji et al. (2020), expanding the geospatial Nexus 
framework developed to support decision-making within EWF Nexus, especially in 
hazardous non resilience environments, in order to reduce the effect of various risk 
factors, thus improving the national adaptability of EWF systems. This is achieved by 
integrating the computational modelling and optimisation approaches within the EWF 
nexus node. 
 

2. Linear programming optimisation framework for EWF Nexus 
Supporting objectives for sustainable food security in risky environments in this study is  
performed by means of a simple linear programming optimisation on the composite 
geospatial risk map for the hydroponic greenhouse case reported by Haji et al. (2020), 
which is the current state of Qatar’s agriculture farms. To this point, the current state of 
existing nodes (four hydroponic greenhouses) has been detailed and analysed. Briefly, 
the risks were defined based on the chosen food sector. Thus, the main risk factors that 
have an impact on greenhouses in general are categorised into three: climate (temperature, 
humidity and solar radiation), water (groundwater depth, salinity, recharge rate and pH) 
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and soil factor (As and Fe concentration). However, since this study considers a 
hydroponic greenhouse, then the soil indicators are removed from the assessment. Then, 
a comparison between each indicator for the particular criterion is made in pair by 
classifying which of these indicators were extremely critical and by how much. The 
preferences are expressed on a semantical scale from 1 to 9, where 1 denotes equal 
importance between the two indicators, and the value 9 implies that first indicator is 9 
times more critical than the second indicator. Finally, using the importance percentage of 
each factor from AHP, a composite geospatial risk map representing is generated from 
GIS. Thus, the primary purpose of the optimisation in this study is to minimise the risk 
of existing nodes located in high-risk areas. Figure 1 illustrates that 3 out of 4 existing 
nodes are located in high-risk areas, and includes Al Safwa, Global and AGRICO farms 
with a risk level of 28.91, 22.60 and 24.29 respectively. The objective of this optimisation 
is to allocate a new EWF node at an optimal location, which will operate at minimum 
cost, whilst minimising the risk of existing nodes especially those located in high risk 
areas. Hence, the three main cost components are considered in this case study. The first 
component is the cost to transport groundwater from new to existing EWF nodes. The 
second component is the cost associated with pumping groundwater to the surface, and 
the final component is the cost of desalinating pumped water having certain groundwater 
salinity. The decision variables comprise of 3 parameters, including the transportation 
and the groundwater variables, which are elaborated in Table 1. The optimal decisions of 
the selected variables will minimise the operating cost of the new node locating at the 
optimal location and overall risk of existing nodes. The mathematical formulation for the 
optimisation model is presented below, where spatial (distance) and economic related 
data are used to run the optimisation model, along with weights associated with each risk 
factor. Since the optimisation process involves many decision variables and various 
calculation steps; then, a computer model such as Excel Solver is valuable in performing 
these steps, and to solve the optimisation formulation by ensuring that all functions and 
variables are sufficiently expressed. In terms of the spatial and temporal scales, the 
proposed approach will vary under various geographical characteristics and will differ 
over different seasons. In this study, the optimisation model is applied for hydroponic 
greenhouse distributed within the State of Qatar for Summer season data. 
 

Table 1: Mathematical formulation for the optimisation model. 

Objective Function: 

𝑴𝒊𝒏 𝑪𝒐𝒔𝒕 = 𝒅𝒊𝒋𝑪𝑻𝒙𝒊𝟑
𝒋 𝟏

𝟐𝟖
𝒊 𝟏 + 𝑫𝒑𝒊𝑪𝑷𝒙𝒊𝟐𝟖

𝒊 𝟏 + 𝑺𝒊𝑪𝑫𝒙𝒊𝟐𝟖
𝒊 𝟏  

Identifies the optimal distance and 
groundwater characteristics that minimises the 
total operating cost of the new EWF node that 
will supply the required water demands to the 
existing EWF nodes. 

Subject to: 𝒙𝒊(𝒘𝒔𝑺𝒊 + 𝒘𝒑𝒉𝒑𝑯𝒊 + 𝒘𝒓𝒓𝑹𝑹𝒊 + 𝒘𝒅𝑫𝒑𝒊 + 𝒘𝒕𝑻𝒊 + 𝒘𝒉𝑯𝒊𝟐𝟖
𝒊 𝟏 + 𝒘𝒔𝒓𝑺𝑹𝒊) ≤ 𝟏𝟕 

This constraint is suggested for the new EWF 
node in order to select a low-risk location with 
an AHP value less than 17, hence ensuring low 
operating cost 

𝒙𝒊 (𝒘𝒔𝑺𝒊 + 𝒘𝒑𝒉𝒑𝑯𝒊 + 𝒘𝒓𝒓𝑹𝑹𝒊 + 𝒘𝒅𝑫𝒑𝒊) + 𝒘𝒕𝑻𝟏 + 𝒘𝒉𝑯𝟏𝟐𝟖
𝒊 𝟏 + 𝒘𝒔𝒓𝑺𝑹𝟏 ≤ 𝟐𝟖. 𝟗𝟏𝟎𝟎 

This constraint is assigned in order to identify 
a location for the new EWF node that will 
minimise risks of the existing node; thus, 
reducing the high AHP value of Al Safwa 
Farm to a value less than 28.91 

𝒙𝒊 (𝒘𝒔𝑺𝒊 + 𝒘𝒑𝒉𝒑𝑯𝒊 + 𝒘𝒓𝒓𝑹𝑹𝒊 + 𝒘𝒅𝑫𝒑𝒊) + 𝒘𝒕𝑻𝟐 + 𝒘𝒉𝑯𝟐𝟐𝟖
𝒊 𝟏 + 𝒘𝒔𝒓𝑺𝑹𝟐 ≤ 𝟐𝟐. 𝟔𝟎𝟑𝟗 

This constraint is assigned in order to identify 
a location for the new EWF node that will 
minimise risks of the existing node; thus, 
reducing the high AHP value of Global Farm 
to a value less than 22.60 
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𝒙𝒊 (𝒘𝒔𝑺𝒊 + 𝒘𝒑𝒉𝒑𝑯𝒊 + 𝒘𝒓𝒓𝑹𝑹𝒊 + 𝒘𝒅𝑫𝒑𝒊) + 𝒘𝒕𝑻𝟑 + 𝒘𝒉𝑯𝟑𝟐𝟖
𝒊 𝟏 + 𝒘𝒔𝒓𝑺𝑹𝟑 ≤ 𝟐𝟒. 𝟐𝟗𝟓𝟕 

This constraint is assigned in order to identify 
a location for the new EWF node that will 
minimise risks of the existing node; thus, 
reducing the high AHP value of AGRICO 
Farm to a value less than 24.29 𝒙𝒊 = 𝟏𝟐𝟖

𝒊 𝟏  This constraint used so as to select one node 
only at an optimal location 𝒅𝒊𝒋, 𝑫𝒑𝒊, 𝑺𝒊, 𝒙𝒊 ≥ 𝟎 It implies that all decision variables must be 
strictly positive.  

 
The optimisation begins with the initialisation of the database, including the distance and 
cost matrix between new and existing EWF nodes, the groundwater salinity value and the 
cost associated to desalinate such salinity level, in addition to the groundwater depth value 
along with the cost associated with pumping groundwater. It is then followed by the 
simulation steps to calculate the operating cost of the initial data. The SAIC farm is 
excluded from the analysis; as it is the only farm located in a low-risk area. However, in 
order to calculate the capacity of the new RO desalination plant, it is assumed that the 
same RO characteristics installed in the SAIC farm is applied to the new EWF node. 
Currently, SAIC farm has two RO plants with a total capacity of 1070 m3/day that fulfilled 
10,223 L/kg/year of water requirements for hydroponic farming, in addition to other water 
requirements within the farm. Hence, the new node should have an RO plant with an 
approximate unit size of 19,000 m3/day, in order to satisfy the three existing farm total 
water requirements, which is equivalent to 176,091.25 L/kg/year. However, by 
considering new EWF node water requirements satisfaction, the total capacity of the new 
RO plant is assumed to be 24,000 m3/day. Furthermore, the electricity consumption for 
RO desalination with a unit size of 24,000 m3/day is almost 2.10 kWh/m3 for brackish 
water with a salinity of approximately 5000 ppm (Manju & Sagar, 2017). Noting that the 
groundwater salinity in Qatar varies between 2206.12 and 5639.81 ppm, and the 
subsequent energy required in order to desalinate using RO desalination will range from 
0.93 to 2.37 kWh/m3. Hence, the cost of desalinating groundwater using the RO 
desalination process is approximately between 1467.12 $ and 9588 $; where the rate 
associated with electricity consumption for productive farms in the State of Qatar is 1.68 
QAR/kWh (KAHRAMAA, 2020). The other cost component in the objective function is 
the transportation cost, a previous study demonstrated that the approximate cost is 0.061 
$/m3 per 100 km to transport water, thus it is equivalent to 0.00061 $/m3/km (Zhou & 
Tol, 2005). Therefore, the distance between the new node and the existing node is 
calculated using the distance formula. Finally, the operating cost of lifting groundwater 
to the surface using an electrical motor is 0.1780 $/kWh, where 2.725 kWh is required 
for pumping groundwater per each meter (Robinson, 2002). Thus, the groundwater 
pumping costs at various locations were then calculated. Ultimately, all the previous data 
for the minimisation of the objective function and set of constraints required to perform 
optimisation are inserted into Excel Solver, where Simplex LP is used. 

3. Geospatial optimisation model application 
A simple linear optimisation is conducted to determine the optimal location for the new 
EWF node to be allocated and established. The chosen location minimised the risk of 
existing EWF nodes whilst operating at minimal operating costs. In this study, hydroponic 
greenhouses represent the food element of the nexus, where the water is the core factor 
that affects the overall efficiency and AHP risk level. Thus, the objective of the 
optimisation is to identify a location for new EWF nodes, with better water quality; in 
order to reduce the operational cost, such as the cost of pumping and desalinating 
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groundwater, and hence supply good water quality to existing EWF node to reduce their 
overall risk. Figure 1 illustrates the optimal node with respect to 28 potential nodes. 
Although the potential EWF nodes are distributed randomly, including high risk area, the 
four constraints assigned to the optimisation model contribute to enhancing its ability to 
select optimal EWF nodes located at low-risk areas with better groundwater quality. 
Moreover, outcomes from the linear programming optimisation validated the trade-offs 
between cost components. Though, the location of the new node (north-east) is slightly 
far from existing nodes, which implies a larger transportation cost. However, the location 
with better groundwater salinity and less depth is selected. This demonstrates that through 
the allocation of a new node in an optimal location, the risk of existing nodes decreased 
tremendously. Initially, Al Sawfa, Global and Agrico farms are located in high-risk areas 
indicating poor water qualities with an AHP risk value of 28.1, 22.6 and 24.3 respectively. 
However, with the allocation of a new EWF nexus node to be the main source of water 
supply, the risk level reduces to approximately 10 for all three existing nodes. Therefore, 
the optimisation result proves the necessity to use groundwater with improved qualities 
within EWF nodes. 

 
Figure 1: The location of the optimal selected EWF node corresponding to the 4 hydroponic farms 
and 28 potential nodes. 

4. Conclusion 
This study implements a simple linear optimisation model to introduce a new EWF node 
that will reduce the AHP risk level of existing EWF nodes. The objective function of the 
optimisation model accounts for three cost components; the cost of groundwater 
transportation, pumping and desalination. Hence, by running the optimisation model into 
an excel solver, a location in the north-east of Qatar is selected as an optimal location in 
order to allocate the new EWF node, which will operate at the least cost whilst reducing 
the AHP risk of three existing nodes. In conclusion, the approach of EWF nexus node 
deployed in this study can be utilised to reflect various farming industries that have 
different spatial and temporal characteristics. For instance, a dairy, fodder or combined 
farm are affected by various geospatial risk factor, thus it can be analysed using the same 
approach. Evidently, the geospatial optimisation of EWF nexus node is promising as it 
classifies nodes that are performing well in a methodological risk analysis, thus paving 
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the way for further optimization and decision-making with a view to reducing the effects 
of risk factors, and therefore, improving the national resilience of the EWF systems. 
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Abstract 
In response to climate change concerns, there has been an increasing global commitment 
to reduce carbon dioxide emissions. Circular economy pillars have been proposed as a 
means to conserve resources, limit emissions and maintain sustainable revenue streams. 
Most CO2 emissions stem from stationary sources, which are largely due to industrial 
processes (IPCC, 2005).  In an attempt to reduce these emissions, there has been an 
increased focus on carbon capture utilization and storage solutions, e.g. integrating carbon 
dioxide in industrial parks to create value-added products. Ahmed et al. (2020) introduced 
a method that can represent any resource, material or energy, within a cluster to identify 
integration potential. In this work, we utilize the mixed integer linear program to 
synthesize waste reuse clusters at zero carbon footprint. The work mainly assesses the 
potential benefits of utilizing waste resources such as CO2 emissions, free resources such 
as seawater (H2O and its minerals), air (N2, and O2) and sunlight as an energy source to 
produce various value-added products to create carbon neutral industrial parks. This 
attempt demonstrates circular economy values on an industrial park level by conserving 
fresh resources, maximizing reuse of materials and creating valuable products. The 
system studied was able to generate profits while adhering to emission and material 
constraints. 

Keywords: Climate Mitigation, Renewable Energy, Water Reuse, Optimization, 
Integration  

1. Introduction 
In recent years, there has been an alarming increase in greenhouse gases in the 
atmosphere, the most notable of these gases being carbon dioxide (CO2). Thus, there is 
an urgent to need to minimize these emissions and alleviate the climate change concerns 
that result from them, identified as one of the United Nations Sustainable Development 
Goals for 2030. One possible solution for CO2 reduction is the generation of energy from 
renewable sources (such as solar or wind power) in place of non-renewable sources such 
as through burning fossil fuel with a large CO2 footprint. Another way to reduce CO2 
emissions is through carbon capture and utilization (CCUS) systems. This involves the 
capture and use of CO2 from emissions in order to produce value-added products. Both 
of these methods are being studied extensively to determine their applicability in industry. 
The concept of an eco-industrial park (EIP) where sustainable practices are incorporated 
into industrial processes can be used to achieve sustainable development goals. An EIP, 
as defined by Côté and Hall (1995) is “an industrial system which conserves natural and 
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economic resources; reduces production, material, energy, insurance and treatments costs 
and liabilities; improves operating efficiency, quality, worker health and public image; 
and provides opportunities for income generation from use and sale of wasted materials.” 
The principle governing the operation of EIPs is industrial-ecology, where they operate 
much like natural systems in which resources are conserved or reused (Valenzuela-
Venegas, 2016), while also gaining economic, environmental, and social benefits that 
would be otherwise be unachievable by a stand-alone facility.  

Numerous works have been applied to promote sustainability through material 
integration. This includes research by Lovelady and El-Halwagi (2009), whose work 
presented an approach to water integration in industrial parks through optimization. Al-
Mohannadi and Linke (2016) uses optimization to integrate CO2 in industrial parks. 
Alnouri et al. (2018) established a brine management water integration approach though 
a mathematical modeling program. El-Halwagi et al. (2003) developed a procedure to 
minimize the amount of fresh feed required for a source sink system using a set of linear 
algebraic equations modeling the mass balance of fresh feed and contaminants. While 
these works all focused on one aspect of integration, multiple resources must be integrated 
to achieve maximum reduction in CO2 emissions. Ahmed et al. (2020) developed an 
optimization-based mixed integer linear program (MILP) for this purpose. The 
representation allows the exchange of any resource, material or energy within a cluster. 
Thus, this work uses the Ahmed et al. (2020) resource integration model to design a 
profitable carbon neutral industrial park from natural sources (seawater, air, sunlight, and 
CO2). The aim is to use material and energy integration to have the same the amount of 
CO2 emitted from the park as that entering the park. 

2. Methodology 
The methodology used in this work to achieve the objective involves multiple steps. First, 
the inputs in to the city are defined, then a database of possible reactions and processes to 
convert the raw materials is created. Finally, the resource integration model is applied to 
optimize for maximum profit while meeting the emission constraint. As seawater and air 
are inputs to the cluster, various desalination and air separation technologies were 
assessed to choose that which was best suited for the application. Next, a number of 
processes were chosen as potential candidates to be selected as part of the EIP. An ideal 
candidate is one that can utilize the raw materials or products produced by other plants, 
is profitable, and is feasible in the geographical location of the industrial cluster. A 
database was created containing the mass balances, energy requirements, capital costs, 
and operating costs. In addition, other relevant information for each of the specified 
candidate plants such as material and utility prices and market sizes, were also included. 
The candidate city was then optimized using the resource integration model. This gives 
specified optimal operational capacities for each plant and determined the connections 
between them. The model used was developed by Ahmed et al. (2020) and the system 
equations can be found in their work. The model constraints were the minimum and 
maximum possible capacities and the allowable inputs. 

Max Profit = f (Resources flows) 
g(x1, x2, …, xn) ≤ 0 
h(x1, x2, …, xn) = 0 
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3. Case Study 
The approach developed here is applied to a case study where the objective is to design 
an EIP that is carbon neutral and profitable as illustrated in Figure 1. 

 
Figure 1: Illustration of the case study objective 

Through the process selection phase, 12 candidate plants were determined. These include 
production units for hydrogen (H2), ammonia (NH3), sodium chloride (NaCl), formalin 
(CH2O), methanol (CH3OH), soda ash (Na2CO3), urea (CH4N2O), nitric acid (HNO3), and 
sodium bicarbonate (NaHCO3), along with a seawater reverse osmosis (SWRO) unit, an 
air separation unit (ASU) that gives oxygen (O2) and nitrogen (N2). Of these, the CH3OH, 
NaHCO3 and CH4N2O units have their own carbon capture units since they release 
emissions. A sequestration unit is also present to store any pure CO2 that is not converted. 
The capital cost requirement or CAPEX parameter for each of the units was calculated by 
assuming a reasonable maximum capacity limit and an operational life of 20 years 
utilizing the CAPEX estimation techniques found in Peters et al. (2002). Table 1 lists 
these calculated CAPEX parameters along with the maximum allowed capacities. 

Table 1: Selected processes, their reference products and CAPEX parameters 

Process Reference Product 
(RP) 

CAPEX Parameter 
($/ton RP) 

Maximum Allowed 
Capacity (t/y) 

Sequestration CO2 20.00 120,000 
SWRO H2O 0.02 800,000 
H2 Production H2 779.00 100,000 
Air Separation O2 7.70 500,000 
NH3 Production  NH3 20.00 200,000 
CC Unit CO2 8.00 20,000 
NaCl Production NaCl 5.65 200,000 
CH2O Production CH2O 52.88 200,000 
CH3OH Production CH3OH 14.67 200,000 
Na2CO3 Production Na2CO3 140.56* 200,000 
CH4N2O Production CH4N2O 7.53 200,000 
HNO3 Production HNO3 5.30 200,000 
NaHCO3 Production NaHCO3 27.46 50,000 

*It should be noted that the Na2CO3 unit is assumed to produce sodium hydroxide (NaOH) needed 
for its own consumption and the capital and operating expenses for this production are reflected in 
the Na2CO3 CAPEX parameter. This NaOH production does not require any additional imports 
into the cluster. 
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The mass and utility resource parameters for these processes were obtained through mass 
and energy balances performed on data obtained from an extensive literature review. A 
negative parameter indicates that the resource is utilized in the process while a positive 
parameter indicates that it is an output of the process. The parameters used for the ASU, 
sequestration and production units for H2, NH3, CH3OH and CH4N2O were taken from 
Ahmed et al. (2020), while the parameters for the capture units were calculated using the 
capture units in their work as a basis. Data for the SWRO and NaCl production units were 
obtained from Nayar et al. (2019). The data for the CH2O unit was obtained from Millar 
and Collins (2017) and Bahmanpour et al. (2014). For Na2CO3, NaHCO3 and HNO3, the 
data was collected from Yusuf et al. (2019), Lee et al. (2019) and Wiesenberger (2001). 
The resource parameters for the remaining units are summarized in Table 2 where all 
parameters are given in t/t RP except for electricity and cooling water parameters which 
are given in kWh/t RP and m3/t RP respectively. 

Table 2: Selected processes and their process parameters 

SWRO Sodium Chloride Formalin 
Brine  1.41 Brine  -59.31 Air -1.17 
Seawater  -2.41 NaCl 1.00 Emissions* 0.84 
H2O 1.00 Wastes* 54.16 CH2O 1.00 
Electricity -2.53 H2O 4.15 CH3OH -0.42 
  Electricity -102.00 H2O -0.25 
    CW -42.00 
    Electricity -49.00 
Soda Ash Nitric Acid Sodium Bicarbonate 
CO2 -0.66 Air -4.48 CO2 -1.02 
Na2CO3 1.00 NH3 -0.28 Emissions* 4.49 
NaOH -0.35 Emissions* 3.96 N2 -3.97 
Wastes* 0.02 HNO3 1.00 Na2CO3 -1.59 
Wastewater 0.83 H2O -0.20 NaHCO3 1.00 
H2O -0.83 CW -105.00 Wastes* 0.91 
CW -37.52 Electricity -8.50 Wastewater 3.90 
Electricity -23.24 LP Steam -0.05 H2O -3.72 
  HP Steam 0.80 Electricity -78.91 
    LP Steam  -0.30 
    Process Water -0.25 

Emissions* refers to the emissions from a production unit, Emissions** refers to fugitive emissions 
from the capture units, and Wastes* refers to process wastes from a unit. 

Constraints were set to only allow seawater, air, and imported CO2 into the cluster, while 
the RP material outputs can be sold. Energy requirements for the cluster are met by 
utilizing solar energy through a photo-voltaic system that is built outside the cluster and 
low-pressure (LP) steam obtained from geothermal sources. 50,000 tpy of CO2 is 
imported into the system while no constraint is placed on the imported energy. The limit 
for the seawater and air feeds are restricted by the maximum capacity limits of the SWRO 
unit and the ASU. The utility prices for electricity, cooling water and LP steam were 
obtained from Ahmed et al. (2020) along with the prices of NH3, O2, and H2O. The prices 
for HNO3 and N2 was obtained from Intratec (Intratec, 2019), while those of Na2CO3 and 
NaCl were obtained from Lee et al. (2019) and Nayar et al. (2019) respectively.  

The EIPs determined for these cases are shown below where both networks activate the 
same candidate plants with the exception of the soda ash plant which is only activated 
when there is a CO2 import. The activated units are represented by the white blocks while 
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those in grey are inactive. The solid lines show the material flows into and out of the 
cluster while the dashed lines show the exchange of resources within the cluster. Scenario 
1 was able to achieve 100% utilization of all the CO2 imported into the system at no cost 
making the cluster carbon-negative while achieving a profit of $178 M/y (with selling 
nitrogen) and $113 M/y (without selling nitrogen). Scenario 2 achieves a profit of $171 
M/y (with selling nitrogen) and $109 M/y (without selling nitrogen). The capital costs of 
scenario 1 and 2 are $805 M and $716 M respectively.  
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Figure 2: Scenario 1 - Industrial cluster design with CO2 import 

Methanol 
Production*

Sequestration

Seawater 
Reverse 
Osmosis

331,950 tpy

Air Separation 
Unit

342,945 tpy

Ammonia 
Production
198,230 tpy

Soda Ash 
Production

Sodium 
Chloride 

Production
7,892 tpy

Hydrogen 
Production
36,078 tpy

Sodium 
Bicarbonate 
Production*

Formalin 
Production

Urea 
Production*

Nitric Acid 
Production
200,000 tpy

Seawater
800,000 tpy

Air
2,380,952 tpy Nitric Acid

200,000 tpy

Ammonia
142,230 tpy

Nitrogen
953,134 tpy

Sodium Chloride
7,892 tpy

Oxygen
631,568 tpy

Without CO2 Import

 
Figure 3: Scenario 2 - Industrial cluster design without CO2 import 

It was observed that a profitable carbon-neutral EIP is possible even with CO2 as input. 
In fact, the importing pure CO2 increased the profit. It should also be noted that this profit 
is achieved when the production capacities of the hydrogen and ammonia units were 
decreased. This was due to the ability to convert CO2 with water and sodium chloride to 
produce soda ash. This observation encourages the expansion of the case to include more 
CO2 converting processes for future work. 
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4. Conclusion 
The profitability and environmental performance of an industrial clusters whose sole 
material inputs were seawater and air were investigated through the use of a MILP tool. 
Two scenarios were modelled, one with and the other without an import of CO2, that 
activated the same units with the exception of the soda ash plant when CO2 was allowed 
into the cluster. The soda ash plant serves as a sink for the CO2, thereby generating 
considerable profits of $178 M/y and $113 M/y, with and without selling nitrogen, while 
achieving a carbon-negative system. Multiple scenarios can be further studied to analyze 
the impact that environmental restrictions have on profitability. 
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Abstract 
The need to use clean sources for producing electricity has been a great topic of discussion 
in recent years. Many countries have begun to take advantage of solar energy through the 
production of solar panels for electric power generation. In addition, knowing people's 
preferences allows predicting their behavior to propose better planning at macroscopic 
level. This work presents a mathematical programming model to address the conduct of 
people. The objective is to know their inclinations using the matching law, which involves 
the actions of users through different scenarios considering economic incentives and 
punishments. It includes a strategic planning of the production and distribution of solar 
grade silicon that is used for the construction of solar panels to meet the demand of 
electricity in the residential sector of Mexico as a case study. Process intensification was 
used to enhance different ways to obtain solar grade silicon such as an Intensified 
Fluidized Bed Reactor and a hybrid, which is a combination of Siemens and conventional 
FBR processes. Also, the Siemens process was considered the most common process to 
produce silicon. Results show that the difference between the analyzed scenarios lies in 
the behavior of people while profit maintains constant.  

Keywords: Matching Law, Solar Grade Silicon, Strategic Planning, Process 
Intensification, Economic Incentives. 

1. Introduction 
In recent decades, photovoltaic systems have evolved and have been adapted to various 
applications of daily life. That way, large-scale manufacturing of photovoltaic cells 
capable of providing energy has become economically viable. It is important to produce 
large amounts of polysilicon due to the high demand by the solar sector. The production 
of polysilicon from quartz consists of two main stages: obtaining metallurgical grade 
silicon and purifying it to transform it into solar grade silicon (Ranjan et al., 2011). 
Attention has been drawn to update processes to obtain this component in order to achieve 
not only cost reduction but also improving safety of the process. Due to the exceeding 
cost of photovoltaic panels, it is necessary to look for alternatives in order to reduce the 
production cost of the solar grade silicon (SiSG). The photovoltaic industry relies on high-
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purity silicon produced in the Siemens process; however, it requires a high power 
consumption. Another process is the Fluidized Bed Reactor that saves between 80-90 
percent of the energy consumed compared to the Siemens process (Jiao et al., 2011) but 
the operating conditions are more difficult to achieve. Different alternatives have been 
proposed, one of them is an intensified FBR’s process by substituting the conventional 
reactors and separation zone with a reactive distillation column to improve the chemical 
conversion. An additional alternative process is based on both, the Siemens and the 
conventional FBR attempting to reduce the use of raw material (Ramírez-Márquez et al., 
2018). 

The behavior of the population under various circumstances has not been addressed in a 
proper way. Considering the human behavior is especially important due to the high 
dependence of the energy system on it, this because the demand for each type of energy 
depends on the preference of the end user (population). Matching law is a mathematical 
approach that describes the relationship between the relative rate of response and the 
relative rate of reward in the face of a concurrent stimulus; from this law and respecting 
what is established, it is possible to give different interpretations and use it under diverse 
scenarios (Herrnstein, 1961). This way, in this paper is proposed a mathematical model 
that involves behavior through matching law and planning a supply chain of an important 
value-added compound. 

The main difference with other works is that the planning of photovoltaic systems has not 
considered users in the system, they only included ways to evaluate costs or improve the 
processes but not to consider how the decision of a person could affect the whole system. 
Also, it has not been studied the behavior of the population through the matching law 
together with the strategic planning of solar grade silicon (SiSG). The use of matching law 
is related to the economic flow of incentives and penalties that will influence the 
consumer's decision to select the type of solar panel to use depending on the addressed 
case. Matching law provides a good tool to model consumer response to incentives. This 
allows optimizing the supply chain and planning of poly-silicon used to yield solar panels 
involving producers, government and end-users. 

2. Problem statement 
The addressed problem seeks to meet the demands of electric power of the residential 
sector. One of the main limitations is the production and distribution of the raw material 
to produce solar grade silicon, which can be implemented through the Siemens processes, 
intensified FBR Union Carbide and a combination of both (Hybrid).  

Matching law is adapted in a mathematical optimization model and the problem consists 
in determining the preference of the end user at a maximum profit. In the presented case 
study, the Government is the decision maker because it is responsible to pay incentives 
or implement economic punishments. The considered perspective is to study the effect of 
the government over producers and consumers. There are different studied scenarios, 
where it is intended to analyze those perspectives. The consumer can choose between two 
options: (a) use solar panels interconnected to the network, (b) use isolated solar panels. 
The final decision will be influenced by the incentives and punishments that the 
government will provide. Following those ideas, the behavior can be predicted. 
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3. Optimization model 
The proposed mathematical model is based on the superstructure shown in Figure 1, 
which represents the problem to be addressed and involves all the possibilities to solve it. 
It considers the raw material available for using in different cities of the country. The raw 
material is transported to the different processes to produce solar grade silicon (Siemens, 
intensified FBR Union Carbide and Hybrid). This raw material must meet the 
compositions requirements for its processing. Once the SiSG is obtained, it is used to 
produce solar panels isolated or solar panels interconnected to the existing network and 
will subsequently be used to meet the electricity demand of the country's residential 
sector. 

 
Figure 1. Proposed superstructure. 

3.1. Problem behavior 

Eq. (1) is used to calculate economic incentives (rewards, R1pis,t) and economic 
punishments (P1pis,t). The producer is asked to propose a certain amount that he considers 
he can meet, knowing that by meeting that amount he will obtain an economic incentive, 
but if he does not meet it, he will be financially punished. In this way, both the stakeholder 
and the producer are involved. It is necessary to involve the receiver in stablishing the 
targets to assure that they will try their very best in order to achieve the production target 
and earn the incentives but also they need to be aware of their limits and do not propose 
more than they can do, that is why punishments are also included. Pis-ppis,t represents the 
number of panels proposed by the CEO of the company or the final user, according to the 
case. Those are the panels that CEO/user mean to achieve, it is a hypothetical situation 
because that number represents the number of panels that is easy to use for them but also 
the number must be reliable and achievable. They commit to reach the number and based 
on that the incentives/punishments are calculated. Pis-ocpis,t is the target quantity of solar 
panels established by the stakeholder. IER1 is the base economic incentive that can be 
obtained. uis, xis and vis are required parameters.  

YR1Apis,t will be activated if the number of produced panels is equal to the number of 
proposed panels. The reward is the base economic incentive and there is no punishment. 
YR1Bpis,t will be activated if the number of produced panels is greater than the proposed 
panels. The reward will be greater than the base economic incentive and there is no 
punishment. YR1Cpis,t will be activated if the number of produced panels is lower than the 
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proposed panels. There is no reward, and the punishment will be greater than the base 
economic incentive. 

                (1) 

The equation of matching law developed by Borrero and Vollmer (2002) was adapted to 
the current problem statement (Eq.(2) and Eq. (3)).  

                       (2) 

                       (3) 

The response rates B1 and B2 are reflected with the flow of money in the case of isolated 
and interconnected to the network solar panels: 

                           (4) 

                          (5) 

3.2. Objective function 

The considered objective function corresponds to maximize the profit, which is calculated 
through the sale of SiSG minus all costs involved in the production and transport of the 
raw material and the different processes to obtain silicon, as well as rewards and 
punishments related to using solar panels: 

                       (6) 

4. Case study 
The case study is applied in Mexico. The raw material must be transported from its 
production point of the different plants to the silicon production plants for either the 
Siemens, the intensified FBR or the Hybrid process. It is necessary to meet the required 
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compositions for each process. For the installation of solar panels, 20 cities are selected 
which represent the cities where entrepreneurship is being promoted in the country. The 
contemplated time horizon is 30 years divided in periods of a year. According to the 
current consumption of electric energy, the necessary solar panels are determined if the 
total demand is covered, and his way the basis for subsequent calculations is obtained. 
Solar panels of 270 W are used. Different scenarios were proposed. 

Scenario A: Government pays economic incentives and implements economic 
punishments to the CEO. Scenario B: CEO pays economic incentives to the final user. 
Scenario C: Government pays economic incentives and implements economic 
punishments to the CEO at the same time that CEO pays economic incentives to the final 
user. Under this background, it was determined the preference of population between 
isolated or interconnected solar panels. 

5. Results 
The profit obtained in scenario A is 7.9188 x 108 $/y. Silicon production is mainly 
satisfied from the hybrid process (70.1%). Siemens process has the lowest cost but also 
the lowest silicon production rate. Intensified FBR has the highest cost but a large 
production. On the other hand, the hybrid process has the largest production rate with the 
middle production cost compared with the other two. It was shown that the Hybrid process 
is the most cost-effective one. 

The values B1 and B2 represent the flow of money that is directed to each option 
considered, it means that where there is greater flow of money is the largest number of 
households that select that type of panel. In scenario A, results show that population is 
more inclined to use panels interconnected to the grid to produce electricity and to meet 
the demand for residential sector (Figure 2). Only Tlaxcala and Monterrey received 
economic punishments. Results in scenario B show a greater profit (7.9223 x·108 $/y) 
than scenario A (7.9188·x 108 $/y), because scenario B does not consider economic 
punishment although the incentives granted are lower than the incentives given by 
government in scenario A. Profit in scenario C is 7.9214·x 108 $/y and in 40% of the 
cities, more than 50% of the users prefer to install isolated panels. In scenario A, 25% of 
the cities prefer isolated panels. In contrast, in scenario B, all cities prefer to install 
interconnected panels. 

It should be noted that in the addressed case study there were analyzed various scenarios 
to see how the whole system will react under different targets proposed by different 
entities and the presented scenarios are only cases to show the applicability of the 
proposed approach. This work is the first attempt to understand the relationship with 
matching law and planning under the fixed parameters.  

6. Conclusions 
This work has presented a mathematical optimization model capable of involving the 
conduct of people with the planning for the construction of solar panels isolated and 
interconnected with the network. The proposed approach has been tested in a national 
case study in Mexico, taking into account the greater profit and preference towards the 
solar panels of the involved users.  

By using the matching law to study the human behaviour, it is possible to predict 
preferences of population. Also, it can be created hypothetical scenarios to understand the 
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main factors that change the final decision of the user and to help the stakeholder to decide 
according to their objectives and interests. 

In the presented case study, the profit remains similar between scenarios A, B and C 
(7.9188 x·108, 7.9223·x 108 and 7.9214·x 108 $/y). However, the difference lies in the 
behaviour of the users, the preference for which they lean. Using models that predict 
behavior makes possible to control or manipulate the response expected from consumers 
under various established situations. The proposed model is general, and it can be applied 
to different case studies by making the appropriate changes in the involved parameters. 

 

 
Figure 2. Selection of type of solar panel for each dwelling in each municipality considered. 
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Abstract
Supply chain management is an interconnected problem that requires the coordination
of various decisions and elements across long-term (i.e., supply chain structure),
medium-term (i.e., production planning), and short-term (i.e., production scheduling)
operations. Traditionally, decision-making strategies for such problems follow a
sequential approach where longer-term decisions are made first and implemented at
lower levels, accordingly. However, there are shared variables across different decision
layers of the supply chain that are dictating the feasibility and optimality of the overall
supply chain performance. Multi-level programming offers a holistic approach that
explicitly accounts for this inherent hierarchy and interconnectivity between supply
chain elements, however, requires more rigorous solution strategies as they are strongly
NP-hard. In this work, we use the DOMINO framework, a data-driven optimization
algorithm initially developed to solve single-leader single-follower bi-level
mixed-integer optimization problems, and further develop it to address integrated
planning and scheduling formulations with multiple follower lower-level problems,
which has not received extensive attention in the open literature. By sampling for the
production targets over a pre-specified planning horizon, DOMINO deterministically
solves the scheduling problem at each planning period per sample, while accounting for
the total cost of planning, inventories, and demand satisfaction. This input-output data is
then passed onto a data-driven optimizer to recover a guaranteed feasible, near-optimal
solution to the integrated planning and scheduling problem. We show the applicability
of the proposed approach for the solution of a two-product planning and scheduling case
study.

Keywords: Integrated planning and scheduling, bi-level programming, data-driven
optimization, mixed-integer optimization.

1. Introduction
Planning and scheduling belong to different levels of supply chain management, yet
their coordination is essential for feasible decision making. The former determines the
production targets by observing the market considerations (i.e., product demands),
whereas the latter decides on the sequencing of tasks and their respective assignment to
specific units such that the production targets set by the planning level are met.

Typically, these planning and scheduling problems are solved sequentially: initially, the
planning level decides on the production targets of finished goods by observing the
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demand profiles for the products; later, the production targets are set for the scheduling
problem, and the respective optimal schedules are calculated. However, such a
sequential approach, where the planning decisions are solely based on the product
demand profiles are optimistic estimates and may lead to infeasible schedules
(Grossmann, 2005). In other words, the process of converting raw materials to finished
goods cannot be realized within the given capacity of the scheduling level. Henceforth,
the production target set by the planning level cannot be met, and consequently, the
demand is not satisfied. This interconnected network of decision making requires an
integrated approach where the interdependencies among planning and scheduling levels
need to be addressed simultaneously to achieve globally optimal solutions (Maravelias
and Sung, 2009).

Bi-level programming enables the integration of planning and scheduling levels and
creates holistic models that explicitly account for the inherent hierarchy between
different levels of the supply chain. Unfortunately, many algorithmic difficulties arise
when solving bi-level programming problems including, NP-hardness, nonconvexity,
and discontinuity, even in the most simplistic formulations (Sinha et al., 2018).
Especially the mixed-integer formulations in the scheduling level prohibit the use of the
KKT transformation at the lower level, creating a necessity to tackle these problems
with an algorithmic approach that can guarantee feasibility to bi-level formulations. An
approach based on multi-parametric programming has been proposed to address this
(Avraamidou and Pistikopoulos, 2018), but it cannot handle a relatively high number of
variables. Recently, the DOMINO algorithm is introduced as a data-driven methodology
for solving constrained bi-level mixed-integer nonlinear programming (B-MINLP)
problems with a higher number of variables and a feasibility guarantee (Beykal et al.,
2020). In this work, our goal is to (1) further advance the DOMINO framework for
solving integrated planning and scheduling problems with multiple followers; and, (2)
utilize this framework to provide guaranteed feasible solutions to integrated supply
chain management problems.

2. The DOMINO Algorithm and its Extension to Multi-Follower
Systems
DOMINO is a data-driven optimization algorithm that is tailored to solve single-leader
single-follower constrained B-MINLP problems by approximating them as single-level
grey-box optimization problems through series of sampling, optimization, and surrogate
modeling steps (Beykal et al., 2020). It postulates candidate sampling points for the
upper-level decision variables and solves the lower-level problem deterministically to
global optimality at each sampling point. The collected input-output data is then passed
onto a data-driven optimization step where the solver retrieves the optimal solution of
the bi-level program. DOMINO ensures the feasibility of a candidate solution by
evaluating the constraint violations of grey-box constraints and the optimality of the
lower-level problem. If these two conditions are satisfied, the candidate solution is
deemed a guaranteed feasible solution of the bi-level program. Previously, DOMINO is
shown to locate near-optimal solutions to varying types of single-follower bi-level
programming problems in series of benchmark problems (Beykal et al., 2020) and a
case study (Avraamidou et al., 2018).

In the case of integrated planning and scheduling problems, the lower-level problem is
composed of multiple scheduling problems (i.e., multiple followers) that need to be
solved sequentially over the entire planning horizon. For that reason, the DOMINO
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algorithm cannot be directly implemented, and a subroutine needs to be devised to
collect the input-output data. The production targets for the planning horizon are the
upper-level decision variables, which are used to create the input data for the sampling
stage. To account for the multi-follower nature of the lower-level problem, these input
production targets will be fixed at the scheduling level and the schedules for each
planning period will be solved sequentially while accounting for the inventories and
production cost per period. Finally, the total cost of planning will be calculated from the
total inventory and production cost across the planning horizon and this value will serve
as the output information that is required to be minimized in the data-driven
optimization stage.

3. Case Study for Bi-level Production Planning and Scheduling
The computational case study for the bi-level production planning and scheduling
problem is adapted from Li and Ierapetritou (2009) with an implementation of the
continuous-time formulation of Example 2 (Ierapetritou and Floudas, 1998) at the
lower-level scheduling problem. An overview of this bi-level program is provided in
Eq. (1).

  𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 
𝑠. 𝑡.    𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑛𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠
        𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝐸𝑎𝑐ℎ 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑃𝑒𝑟𝑖𝑜𝑑  
          𝑠. 𝑡.     𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(1)

3.1. The Upper-Level Problem: Planning Model

The planning level objective minimizes the total inventory and production cost over the
entire planning horizon. The decision variables for the bi-level program are the
production targets ( ) of the desired products (i.e., states ) per planning period𝑃𝑟𝑑

𝑠
𝑡 𝑠∈𝑆

𝑃
𝑡

. The inventory accounting is performed at every planning period using Eq. (2), where
is the inventory level of the product state at the end of planning period , is𝐼𝑛𝑣

𝑠
𝑡 𝑠 𝑡 𝑃𝑟𝑑

𝑠
𝑡

the production level of the product state in the planning period , and is the𝑠 𝑡 𝐷𝑚𝑑
𝑠
𝑡

demand level for the product state in the planning period .𝑠 𝑡

𝐼𝑛𝑣
𝑠
𝑡 = 𝐼𝑛𝑣

𝑠
𝑡−1 + 𝑃𝑟𝑑

𝑠
𝑡 − 𝐷𝑚𝑑

𝑠
𝑡    ∀𝑠∈𝑆

𝑝
, 𝑡 (2)

If the inventory becomes negative at any period, the minimum inventory of each
product is calculated, and all respective inventories are penalized by adding this
minimum level of inventory. Also, the total amount of products given by the production
target, and the inventory level at the beginning of each planning period should be
greater than or equal to the demand to satisfy the need. The planning horizon is set to be
7 days, and the demand for the two products is assumed to be known for the entire
week. Besides, the planning problem is assumed to be cyclic where the last day
production target should meet the last day demand and produce the 1st day inventory of
the next planning cycle. The upper-level problem contains 14 production target
constraints, 14 demand constraints, and 28 positive variables (14 inventory and 14
decision variables). The upper bound on the decision variables is set to be 80-unit
materials per product per planning period.
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3.2. The Lower-Level Problem: Scheduling Model

In the selected case study, the scheduling problem (Figure 1) considers the production of
two products through three reaction steps, a heating step, and a separation step. Three
feed and four intermediate components are considered in the production schedule. The
scheduling formulation considers material balances, allocation, capacity, storage,
duration, time horizon, and sequence constraints (Ierapetritou and Floudas, 1998). To
guarantee feasibility to the integrated multi-follower problem, a constraint on the final
states of the products is added to ensure the production targets set by the upper-level
problem are met at the scheduling level. The objective function of the scheduling
problem minimizes the fixed cost of operating tasks in units, as well as the variable cost
coming from handling raw materials, intermediates, and final products within the
process. The lower-level problem contains 285 continuous variables, 160 binary
variables, and 712 constraints. The detailed model equations and parameters can be
provided upon request.

Figure 1 State-task network of the scheduling case study. Adapted from Ierapetritou and Floudas
(1998).

3.3. Other Considerations for the Problem Formulation

The integrated bi-level mixed-integer program is solved for two cases: (1) assuming
linear inventory and production cost, leading to an LP-MILP bi-level problem; and, (2)
assuming cubic inventory cost at the planning level and quadratic production cost at the
scheduling level, creating an NLP-MIQP problem. Compared to other bi-level
optimization algorithms, DOMINO allows us to solve highly nonlinear systems using
its data-driven optimization strategy and retrieve guaranteed feasible near-optimal
solutions (Beykal et al., 2020). Specifically, this capability of DOMINO is
advantageous because the nonlinear objective functions allow for a more realistic
estimate of the variable cost in the integrated planning and scheduling formulation, as
linear cost estimates are approximations of the nonlinear behavior. Also, the inclusion of
the nonlinear terms in the bi-level formulation yields a very challenging optimization
problem which the exact methods like multi-parametric programming cannot address.
Data-driven evolutionary algorithms can handle nonlinearities but they fail to provide
guaranteed feasible solutions.

To assess the consistency and accuracy of the DOMINO algorithm in finding the best
solution for the integrated planning and scheduling problem, the algorithm is randomly
executed 10 times with the NOMAD algorithm (Le Digabel, 2011) chosen as the
data-driven optimizer. The results retrieved from DOMINO are presented in the next
section.
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4. Results
4.1. LP-MILP Solution

The best solution of the 10 random runs for the LP-MILP integrated planning and
scheduling formulation is summarized in Figure 2. The results show that the demand for
both products is satisfied over the 7-day planning period where the corresponding
production targets are met with globally optimal schedules. We also observe that at the
start of the planning period (Day 1), the system produces more than the minimum
required level to sustain the inventory levels for Product 1 whereas a lower production
target is set for Product 2 and the remaining demand is supplemented from the starting
inventory. On Day 2, both production targets are relatively higher than the demand. This
higher level of production enables Product 1 to sustain its starting inventory levels
whereas Product 2 makes up for the lost inventory on Day 1. Later, when peak demand
is expected on Day 4 for both products, the production target is supplemented with this
accumulated inventory to satisfy the demand. On Day 6 as the demand is lower, the
production can meet this demand without requiring any extra supply from the inventory.
On the final day of the planning period, the production levels are increased to satisfy the
7th day demand as well as to produce the starting inventory of the 1st day of the next
planning cycle.

Figure 2 Demand, production, and starting inventory profiles for (A) Product 1; and (B) Product 2.

The results of the other 9 random cases also showed very consistent production and
inventory levels in Days 3-7 for Product 1 and in Days 4-5, 7 for Product 2. Some
variability is observed in the early days of the week where in one instance a
significantly higher production is observed for Day 1 for both products which led to no
production in Day 2, essentially pushing the system to spend the accumulated inventory
more quickly than the best solution. In the other two instances, Day 1 production is
observed to be zero where the system relied on having a higher start inventory by
producing more at the end of the planning period when the demand is lower.
Nonetheless, the final cost objective value for all runs was within 0.0386 standard±
error and all final solutions were guaranteed feasible with globally optimal schedules.
4.2. NLP-MIQP Solution

The best solution of the 10 random runs for the NLP-MIQP formulation is summarized
in Figure 3. The nonlinear integrated planning and scheduling results show very similar
production and starting inventory profiles to the LP-MILP case study where the demand
is satisfied for the entire planning horizon of 7 days with a globally optimal lower-level
solution. Only on Day 7, a slightly higher starting inventory level is observed for
Product 1 because the production target of the prior day is higher in the NLP-MIQP
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solution. Furthermore, the DOMINO solution is very consistent across all runs for the
NLP-MIQP formulation. For Product 1, we observe that the same starting inventory and
production levels are determined for Days 1-5 whereas a slight deviation is observed for
Days 6 and 7. For Product 2, some variability is observed at the start and end of the
planning period, but the production and inventory levels are consistent for Days 3 and 4.
The consistency of the solutions is also reflected in the final objective values where for
all runs the objective value was within 0.1465 standard error.±

5. Conclusions and Future Work
In this work, we present a data-driven approach to solve bi-level multi-follower
mixed-integer formulations of integrated planning and scheduling problems. By
extending the DOMINO algorithm to solve multi-follower bi-level optimization
problems and utilizing the data-driven and deterministic optimization capabilities of this
framework, we solve the integrated problems to guaranteed feasibility. For all the tested
cases, DOMINO identified solutions that meet the product demand and have globally
optimal schedules at the lower level, which ensures meeting the production targets,
DOMINO also found consistent feasible solutions for both the linear and nonlinear
formulations. In the future, the results of the linear formulation will be compared to the
deterministic algorithm developed by Avraamidou and Pistikopoulos, 2019. This
research was funded by the U.S. National Institutes of Health (NIH) grant P42
ES027704.

Figure 3 Demand, production, and starting inventory profiles for (A) Product 1; and (B)
Product 2 in the NLP-MIQP solution. The error bars indicate the minimum and
maximum deviation observed across all runs with respect to the best-found solution.

References
S. Avraamidou, B. Beykal, IPE. Pistikopoulos, EN. Pistikopoulos, 2018, A Hierarchical

Food-Energy-Water Nexus (FEW-N) Decision-Making Approach for Land Use Optimization,
Computer Aided Chemical Engineering 44, 1885-1890.

S. Avraamidou, E. N. Pistikopoulos, 2018, A novel algorithm for the global solution of
mixed-integer bi-level multi-follower problems and its application to Planning & Scheduling
integration, 2018 European Control Conference (ECC), Limassol, 2018, pp. 1056-1061.

S. Avraamidou, E. N. Pistikopoulos, 2019, A Multi-Parametric optimization approach for bilevel
mixed-integer linear and quadratic programming problems, Computers & Chemical
Engineering, 125, 98-113.

B. Beykal, S. Avraamidou, IPE. Pistikopoulos, M. Onel, EN. Pistikopoulos, 2020, DOMINO:
Data-driven Optimization of bi-level Mixed-Integer NOnlinear Problems, Journal of Global
Optimization, 78, 1-36.

1712



Bi-level Mixed-Integer Data-Driven Optimization of Integrated Planning and
Scheduling Problems

IE. Grossmann, 2005, Enterprise-wide Optimization: A New Frontier in Process Systems
Engineering, AIChE Journal, 51, 7,  1846-1857.

MG. Ierapetritou, CA. Floudas, 1998, Effective Continuous-Time Formulation for Short-Term
Scheduling. 1. Multipurpose Batch Processes, Industrial & Engineering Chemistry Research,
37, 11, 4341–4359.

S. Le Digabel, 2011, Algorithm 909: NOMAD: Nonlinear Optimization with the MADS
Algorithm. ACM Transactions on Mathematical Software, 37(4), 44.

Z. Li, MG. Ierapetritou, 2009, Integrated Production Planning and Scheduling Using a
Decomposition Framework, Chemical Engineering Science, 64, 3585-3597.

CT. Maravelias, C. Sung, 2009, Integration of Production Planning and Scheduling: Overview,
Challenges and Opportunities, Computers & Chemical Engineering, 33, 1919-1930.

A. Sinha, P. Malo, K. Deb, 2018, A Review on Bilevel Optimization: From Classical to
Evolutionary Approaches and Applications, IEEE Transactions on Evolutionary Computation,
22, 2, 276-295.

1713     





A Prospective Approach in the Design of Lignin-

Based Products Supply Chains 

Brunelle Marche,a* Javier A. Arrieta-Escobar,a Vincent Boly,a Juan C. Solarte-

Toro,b Carlos A. Cardona Alzateb 

aERPI (Équipe de Recherche des Processus Innovatifs), Université de Lorraine, 8 rue 

Bastien Lepage, 54000 Nancy Cedex, France   

bInstituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, 

Universidad Nacional de Colombia, Manizales, Caldas, Zip Code: 170003, Colombia.  

brunelle.marche@univ-lorraine.fr  

1. Abstract 

On a global scale, the main usages of wood are energy production and materials.  Wood 

chemistry offers a broad range of potential outlets, and the whole supply chain around it. 

The latter is made up of a set of actors (suppliers, producers, etc.), processes and financial, 

informational and material flows. Designing the supply chain is therefore a complex 

activity. It is therefore important to determine the different variables that will influence 

the design of the supply chain. From this perspective, this research focuses on the 

valorization of the lignin fraction, by addressing the various aspects of the development 

of new products and by determining the variables that will impact the design and 

implementation of the future supply chain.  

Keywords: supply chain, prospective analysis, lignin. 

2. Context 

Nowadays, oil consumption accounts for 90% of the energy consumed and alternatives 

to replace oil are still poorly developed. In France, for example, renewable energies 

(hydraulic, wind, solar, geothermal or biomass energy) account for 10% of energy 

consumption (Arion et al. 2018). The increasing scarcity of oil could therefore require a 

reconsideration of the entire energy supply chains and stimulate the exploitation and 

development of innovative products from natural renewable resources, like 

lignocellulosic biomass. Nevertheless, the success of these new products and their supply 

chains will depend on technological progress and cost control (de Cherisey 2015). It is 

therefore necessary to anticipate and design the product, the process and the supply chain 

jointly (Hilletofth et al. 2010; Sharifi et al. 2006; Primus 2017). At any given moment, 

the supply chain can be characterized by its actors, processes, flows, and the value it 

generates described by its structure and operating dynamics (Marche et al. 2017). In 

general, the pathways considered to develop products derived from lignocellulosics 

include the following elements: biomass cultivation, storage, and treatment plants 

(biorefineries); intermediate product storage; final product production plants, and demand 

centers. Raw materials and intermediate products circulate between the elements (Panteli 

et al. 2017; 2018). However, this structure depends on the decisions of each actor, which 
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are interdependent, but also on collective decisions. Therefore, this research is a holistic 

and prospective approach in order to anticipate the design of future lignin supply chains.  

3. Research approach 

To better understand the influence of the variables on the future supply chains, as well as 

the effects of the decisions of the actors involved, a prospective analysis was carried out 

using the MICMAC (Cross Impact Matrix and Multiplication Applied to Ranking)  

method. This method has already been used in prospective supply chain design 

approaches (Attri et Grover 2017; Agarwal, Tyagi, et Garg 2021). It allows a systematic 

identification of the key variables determining the evolution of the supply chain 

and examining the combinations of hypotheses that can be excluded a priori (Elmsalmi 

and Hachicha 2014). Based on the influence/dependence plan, it is possible to identify 9 

areas, as shown in Figure 1.  

 

 

 

 

 

 

Figure 1: Zones of the influence/dependence plan 

A confrontation with 8 experts made it possible to identify 29 variables, which 

have a higher impact on the future supply chain design. Then, these experts evaluated the 

impact of each variable on all other variables (0: no impact; 1: low impact; 2: medium 

impact; 3: high impact; 4: potential impact). According to these assessment, the 

MICMAC method classifies variables into four typologies (Godet and Durance 2011): 

• Input variables: They are explanatory of the system under study, and condition 

the overall dynamics. They guide and explain the development of the system.  

• Relay variables: They are inherently unstable. They play a central role in the 

dynamics of the system and are the main issues at s take. Any action on them will 

have repercussions on the other variables and a feedback effect on themselves. 

• Output variables: Their behaviour can be explained by analysing (or acting on) 

the input and relay variables. They are the variables most dependent on others. 

• Excluded variables: They have little impact on the system, either because their 

inertia does not alter the dynamics of the system, or because of their reduced 

connection with it and develop relatively autonomously. 

Three types of analyses were carried out: (i) unweighted analysis and considering the 

pool of experts in the panel (ii) analysis with a weighting of the self-rated level of 

expertise (1: low expertise; 5: high expertise), and (iii) analysis with a weighting of 

the level of expertise (same scale) evaluated by the researchers.  
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4. Results 

The different analyses made it possible to identify 7 variables on which there is a 

consensus among all the stakeholders. A strong trend may emerge for certain variables 

but for the majority, it seems impossible to determine the type of each variable. On the 

basis of the representation of Figure 1, it is possible to position the variables more 

accurately, as shown in Table 1.  

Table 1. Variables classification 

Variable I R O E I/E I/R O/R 
No 

trend 

1. Minimal scale of processability   X      
2. Diversification of raw materials      X   
3. Added value of final product   X      
4. Sales volume of final products       X  
5. Transformation cost   X      
6. Source configuration X        
7. Pre-treatment capacity   X      
8. "Purity" of the lignin    X     
9. Lignocellulosic source prices        X 
10. Availability of lignin        X 
11. Production capacity       X  
12. Sales price of lignin   X      
13. Cost of the final product   X      
14. Price of energy     X    
15. Geographical location X        
16. Technological maturity X        
17. Type of products        X 
18. Type of wood X        
19. Supply risk        X 
20. Weight of suppliers        X 
21. Type of processes  X       
22. Weight of biorefineries       X  

23. Potential competition        X 
24. Quality of wood    X     
25. Pedological & climatic variables    X     
26. Shape and structure of the tree    X     
27. Type of solvents   X      
28. Environmental impact of products   X      
29. Presence of alternatives products X        

 

Thus, Table 1 presents the classification of the 29 variables, as follows: 

• Dominant trend for one of the typologies (more than 70% of identical answers 

from the experts): zone 1, 2, 3 and 4; 

• Dominant trend for two typologies (more than 70% for the two majority 

typologies): zones 5, 6, 7 and 8; 

• No dominant typology (total disagreement between the experts or the two 

majority typologies below 70%): zone 9. 
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4.1. Input variables 

Our qualitative analysis characterizes the following variables as input variables: the 

source configuration; geographical location; Technological maturity; wood type; and the 

presence of alternative products. The source configuration, the geographic location, and 

the wood type are all related to lignin and its suppliers are globally dispersed, so their 

activities depend on the raw material available to them. The lignin source and their 

locations will have a direct impact on the choice of biorefinery according to their specialty 

or proximity. Technological maturity refers to the degree of completion of a technology 

with a view to making it available on the market. It is a measure of whether the technology 

is capable of delivering the expected services and quality of service under real operating 

conditions. This variable is particularly important in our study, as lignosulphonates, Kraft 

or soda lignins are obtained from mature and mastered technologies, but organosolv 

lignins are rather emerging. Thus, the technological maturity being classified as an input 

variable seems relevant, as the choice of technology will condition the supply chain 

(production capacity, supply capacity, type of suppliers, etc.). The presence of alternative 

products plays a key role in the supply chain if one considers supply chains competing 

with each other, the alternative product chains will condition the functioning of the future 

supply chain being created. Indeed, if the innovative product arrives in a highly 

competitive market, the supply chain must make its place and adopt a more aggressive 

behavior or develop a particular strategy, turned towards the customer's demand. In the 

case of the future supply chain, it should compete with similar petroleum-based product 

chains. These products are omnipresent on the market, the future supply chain must 

therefore adapt its strategy to gain market share. 

4.2. Relay variables 

The type of process was the only variable classified as relay. It plays an important role in 

the creation of the future supply chain for the product, as it characterizes the biorefineries 

that will be involved in the supply chain. The choice of a process for obtaining lignin will 

lead to other decisions in terms of the supply chain, related to the output variables.  

4.3. Output variables 

The output variables are the result of the decisions taken within the supply chain. In our 

study these are the minimum scale of processability, the added value of the final product, 

its transformation cost, pre-treatment capacity, selling price of lignin, cost of the final 

product, type of solvents and environmental impact of the product.  

4.4. Excluded variables 

Some variables were excluded as these are considered to be less influential or not very 

dependent. Variables directly related to the growing condition of the plants (wood quality, 

pedological and climatic variables and wood form/structure) were considered as having 

no impact on the creation of the future supply chain. The "purity” of lignin, on the other 

hand, could be considered as a strong trend. This means that it could have an impact on 

the supply chain in the future. Indeed, lignins exhibit different properties according to the 

process chosen and therefore. Probably in the future, the purity of lignin could become 

an important variable in the supply chain, because it would condition the processes to be 

favored to obtain lignin-based products with very precise and differentiating properties. 

 B. Marche et al. 1718



A Prospective Approach in the Design of Lignin-Based Products Supply Chains 

4.5. Input/Excluded variables 

Energy prices and weight of suppliers are classified as input/excluded (zone 5) variables 

in the supply chain. The energy price variable can be very influential depending on the 

location one wishes to set up the supply chain in. Indeed, in order to minimize energy 

costs, it is in the interest of companies to deploy their supply chain in countries where 

energy is easily accessible and at affordable costs. 

4.6. Input/Relay variables 

The diversification of the raw material is found to be in the zone 6 of the Figure 1. This 

variable can cause the type of processes/solvents used to change, if the lignin composition 

goes beyond the established limits. In this case, suppliers of different types of wood can 

gain weight along the supply chain. 

4.7. Output/Relay variables 

In the zone 7 we found the volume of sales of final products, production capacity and 

weight of biorefineries. For example, the volume of sales of final products can be 

considered as a relay variable before the product launch on the market because it can be 

difficult to assess how customers will welcome the new product. Once the supply chain 

has been set up, the volume of sales becomes a known variable and is the result of 

decisions taken within the supply chain. Similarly, before the future supply chain is set 

up, it may be possible to assess the production capacity of the supply chain and the 

processing costs based on the individual capacities of each stakeholder and the costs 

generated. However, it may be difficult to estimate the evolution of demand once the 

product is launched, and thus to ensure that the supply chain has the capacity to keep up 

with changes in demand and to manage processing costs when changing the scale of 

production. 

4.8. Dissensus 

Several variables remain unclassified (zone 9) for several reasons. Firstly, when the four 

typologies are proposed by the experts, as it was the case for the price of lignocellulosic 

sources, the availability of different types of lignin, and the weight of suppliers. Secondly, 

when the experts' visions are antagonistic (input variable for some VS result variables for 

others). This is the case for the variables type of products and presence of alternative 

products. For the weight of biorefineries or the supply risk there was a slight trend towards 

relay variables, but it was not confirmed by all the experts. No trend emerged for the 

potential competition. Note that our qualitative analysis did not characterise any of the 

variables of the supply chain as outcome/excluded variables (zone 8). 

 

The MICMAC analysis underlines that the supply chain created is influenced by relay 

variables, making it unstable. In order to anticipate and facilitate its creation, it is 

necessary for the stakeholders of the supply chain to be able to "control" the impacts of 

these variables. The relay variable clearly identified for this is the type of process, whose 

importance was illustrated in a parallel study using poplar as a basis for producing a range 

of products in a sustainable way thanks under the biorefinery concept (Solarte-Toro et al. 

2020). 
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5. Conclusions 

The study of the supply chain for a lignin-based product highlighted the complexity of 

setting up a supply chain.  The mobilization of experts was an important step to describe 

the future supply chain scenarios that could support the industrialization of a lignin-based 

product. However, the analysis of the results underlines the difficulty for individuals to 

project themselves in a situation where the system, in this case the supply chain, does not 

yet exist. How can the sales volume of the future product be estimated? How can the 

weight of the players be assessed? Several questions arise. It is therefore necessary to 

develop a maximum number of scenarios to anticipate all possible situations. The choice 

of the lignin extraction process seems to be a relevant basis for developing different 

scenarios, as it has a direct impact on sales volumes, prices, production capacities and the 

location of biorefineries, which will give information on the type of wood or on energy 

prices. 
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Abstract 
During the last decades, design under uncertainty has become one of the key aspects in 
the Process Systems Engineering with widely spread applications to technological and 
economic aspects. In particular, the supply chain design is seeing a constantly increasing 
interest and flexibility could be an added value of critical importance for the supply chain 
management domain. The purpose of this research work is then to define a thorough 
procedure able to describe flexibility in the operational research domain taking advantage 
of established indicators. The most commonly used deterministic and stochastic 
flexibility indices are then adapted to the traveling salesman problem, an NP-hard 
problem in combinatorial optimization, widely studied in theoretical computer science 
and operations research. It can be seen as the most general problem formulation in this 
field and as a preliminary test before extending the flexibility assessment to more specific 
applications. According to existing methodologies for chemical processes, the economic 
and flexibility analyses have been coupled over a certain flexibility range. This approach 
resulted in a correlation between flexibility and costs represented by the total traveling 
distance. Moreover, the additional costs vs. flexibility trend can be plotted both for both 
the indicators showing analogies and differences with respect to the results previously 
obtained for chemical processes. In conclusion, the methodology provided a useful tool 
to quantify the parameter deviations that can be withstood keeping the solution feasible. 
The combined costs-flexibility graphical representation allows a more conscious decision 
and could be further exploited in more specific applications such as the supply chain 
network design. 

Keywords: flexibility, supply chain, operational research, travelling salesman problem. 

1. Introduction 
With the increasing interest toward the replacement of the conventional sources of energy 
by renewables and the need to deal with the fluctuating market demand, operational 
research and the supply management in particular belong to the research fields in the 
process system engineering domain for which the flexibility assessment is of critical 
importance. 

Design under uncertainty represents a useful and reliable tool mainly used for process 
unit design during the last decades by means of a thoroughly defined procedure and 
dedicated flexibility indices (Di Pretoro et al. (2019)). In the last years, some articles 
focusing on supply chain design under uncertainty have been proposed in literature as 
well (Govindan et al. (2017)). However, this is a more recent application field and they 
aim at the analysis of specific case study by considering different scenarios and uncertain 
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parameters without providing a detailed procedure of general validity in analogy with the 
processes related research works. 

The Traveling Salesman Problem (TSP) can be seen as the most basic formulation of 
operational research problem. It was first mathematically formulated by Hamilton and 
Kirkman in the 1800s and mathematically considered in 1930 by Flood for the solution 
of the bus routing problem. 

It is a NP-hard problem and, in its decision version it is also NP complete, i.e. it could be 
solved in polynomial time on a deterministic Turing machine. The exact algorithm to 
solve this problem implies the calculation of all permutations with a running time lying 
within a polynomial factor O(n!) as a consequence, where n represents the number of 
cities. Therefore it is evident that this approach can be employed for problems involving 
a small number of cities only (Applegate et al. (2006)). 

For this reason, heuristic algorithms or specific cases analysis are often used to provide a 
reliable approximation of the optimal solution in a reasonable time. The application of 
several optimization methodologies such as branch-and-bound, branch-and-cut, dynamic 
programming, Lin-Kernighan heuristic, ant-colony optimization, genetic algorithm etc. 
have been proposed during the last century in order to effectively approximate the optimal 
solution with good results both from the accuracy and from the computational effort 
perspectives for case studies of practical interest. 

The purpose of this research work is then to adapt the well-established flexibility 
assessment procedure employed for process equipment to the TSP in order to analyse the 
impact of input parameters uncertainties on the optimal solution and the corresponding 
additional distance to be travelled. Moreover, this analysis is extended to uncertainties 
weighted with respect to their likelihood by means of the stochastic flexibility index in 
order to find the probability corresponding to the different optimal pathways and provide 
a more reliable tool. 

The obtained results, of general validity, could be then applied to more complex 
operational research problem by adding the desired constraints and weight functions in 
order to have a design procedure for each specific supply chain management case study. 

Further details about flexibility analysis and the TSP under uncertainty case study as well 
as a thorough description of the design procedure are discussed in the following sections. 

2. Flexibility assessment 
Flexibility assessment is a powerful tool usually employed in process engineering in order 
to assess the ability of a system to accommodate a set of uncertain parameters. This 
property can be effectively quantified by means the several flexibility indices proposed 
in literature during the last decades. 

In particular, two main categories of indices can be distinguished, namely deterministic 
and stochastic. The difference between them is that the former evaluates the magnitude 
of the maximum disturbance load that can be withstood by the system without becoming 
infeasible while the latter accounts for the deviation likelihood as well and evaluates the 
probability that a given set of uncertain parameters is accommodated or, equivalently, the 
percentage of accommodated perturbations. 
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Salesman Problem   

 
Figure 1 - Deterministic (left) vs stochastic (right) flexibility indices 

The geometrical representation of both the indices typologies is reported in Figure 1. 

Among the deterministic flexibility indices, the most used by far is the one proposed by 
Swaney and Grossmann (1985) that is the solution of the optimization problem: 𝐹 max 𝛿 (1) 𝑠. 𝑡. max∈ minmax∈ 𝑓 𝑑, 𝑧, 𝜃 0 (2) 

where θ refers to the uncertain variables, d to the design parameters, z to the control 
variables and finally δ is the scaling factor of the hyperrectangle 𝑇 𝛿 𝜃: 𝜃 𝛿 ⋅ Δ𝜃 𝜃 𝜃 𝛿 ⋅ Δ𝜃  (3) 

represented in Figure 1 (left). 

On the other hand, the most frequently used stochastic flexibility index was defined by 
Pistikopoulos and Mazzuchi (1990). Given the uncertain parameters Probability 
Distribution Function P(θ), the Stochastic Flexibility (SF) is evaluated as: 

𝑆𝐹 𝑃, 𝜃 ⋅ 𝑑𝜃 (4) 

where ψ is the feasible domain boundary. Differently from the FSG index, the value of SF 
is bounded between 0 and 1 and might have a non-zero value in correspondence of the 
nominal operating conditions. 

In this research work both the indices will be used and compared in order to provide a 
complete overview of the TSP flexibility analysis. Although the results concerning the 
SF index depend on the selected PDF for the uncertain parameters, the proposed 
methodology has a general validity and can be applied to whatever probability function. 

3. The TSP under uncertainty case study 
“Given a set of cities along with the cost of travel between each pair of them, the traveling 
salesman problem is to find the cheapest way of visiting all the cities and returning to the 
starting point” is the standard formulation of the TSP. 
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Figure 2 – The TSP case study (left) and sensitivity analysis results (right) 

In this study, a set of n cities is generated randomly while the starting point is fixed at the 
center of the 2D space. In order to show the results with a 3D plot two uncertain 
parameters have been selected, namely the distances between the starting point and the 
closest (L1) and furthest (L2) cities respectively since they have been detected as the most 
critical points affecting the length and the shape of the optimal traveling path. 

The results discussed in this paper refer to a case study with n = 10 whose general scheme 
is shown in Figure 2 (left). This value for n allows the solution of the TSP with a 
computational time of the order of seconds by means of the exact algorithm and does not 
restrain the general validity of the proposed procedure. The study of other optimization 
algorithms does not serve the purpose of this research. 

The distances L1 and L2 uncertain interval for the deterministic flexibility analysis was 
set equal to [Li-1.5, Li+1.5]. On the other hand, for the stochastic flexibility analysis, a 
Gaussian PDF was used by setting μi = Li and σi = 0.5 so that the 99.7 % of the deviations 
fall within the uncertain interval. 

4. Results 
The flexibility assessment was then performed by using the exact algorithm to solve the 
TSP case study. Hundreds of runs with ten random cities were performed to estimate an 
average computational time of about 6 minutes for a 31x31 discretized domain. 

The sensitivity analysis results for the presented case study are shown in Figure 2 (right). 
As it can be noticed, the reason lying behind the relatively high computational time is the 
impossibility to perform the deterministic flexibility assessment by means of the vertex 
analysis since the traveling distance is not a quasi-convex function in the uncertain 
domain. Thus, all the points on the perimeter of the hyperrectangle should be evaluated 
to assess the flexibility index. This irregular trend can be explained by the fact that not 
only the length but also the shape of the optimal path can change for some values of the 
uncertain parameters deviations. 

In fact, in Figure 2 (left) it can be noticed that, if points 5 and 10 are displaced over the 
uncertain domain, the shortest path (red dotted line) takes a different shape with respect 
to the optimal path under nominal operating conditions (the blue dashed line). 
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Figure 3 – Deterministic (left) and stochastic (right) flexibility assessment results 

The results obtained for both the deterministic and stochastic flexibility analysis are then 
presented and discussed here below in the corresponding section. 

4.1. Deterministic Flexibility Assessment 

The flexibility analysis performed with the FSG index results in an original trend worth to 
be analysed in detail. After an expected initial linear growth, deviations in the interval 
[0.3 0.5] have a lower impact on the travel path. The slope change of the trend is the 
indicator proving that the optimal traveling sequence between the ten cities has changed. 
This flexibility index behaviour can be also detected in Figure 2 – right  where it 
corresponds to the optimal trajectory represented by the dashed line. After that, for more 
relevant deviations (yellow region in Figure 2 - right) the cost function restarts increasing 
again but with a lower slope with respect to the beginning. 

In addition, from the sensitivity analysis results, it can be detected that the deviation Δdclose 
of the closest point (i.e. point 10) affects the results in a much more relevant way than the 
furthest one Δdfar and results to be the most critical parameter for the expectations 
concerning the travelling distance under uncertainty. 

4.2. Stochastic Flexibility Assessment 

The additional travel distance vs. SF index trend (Figure 3 - right) results show a couple 
of analogies with the main features obtained for the process units with the same PDF, 
namely a non-zero value in correspondence of the nominal operating conditions and an 
asymptotical behaviour towards SF=1. The first phenomenon is due to the fact that the 
travel path under nominal operating conditions already overestimates the value obtained 
for a given set of perturbed conditions, while the second one is a consequence of the 
residual probability and summation constraint of the PDF. 

However, some relevant difference are worth to be remarked for the SF index as well. 
First of all a faster initial increase is observed due to the relatively limited deviation range 
included in an expected traveling additional distance lower than 6.65 %. On the other 
hand, an accumulation of points in the proximity of the same value can be observed even 
before approaching the vertical asymptote. In analogy with the FSG results, this behaviour 
is somehow explained by the fact that an additional distance of 6.65 % already includes 
the majority of the possible deviations, with poor margins of improvement whether a 
higher value was taken into account. 
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5. Conclusions 
The application of the flexibility assessment to the TSP case study was successfully 
achieved. The outlined procedure allows to estimate the additional travel distance with 
respect to nominal operating conditions as a function of the expected deviation magnitude 
or the withstood deviation likelihood. 

Differently from flexible process equipment, where an additional flexibility usually 
corresponds to a proportional oversizing, in the TSP case study the change in the optimal 
traveling path form causes some discontinuities in the derivative of the travel distance vs 
flexibility plot. On the other hand, the definition of the stochastic flexibility index implies 
that, for a given travel distance value, the feasible domain might result by the combination 
of topological regions in the uncertain domain that are not connected. 

However, in both cases the obtained results allow a deeper understanding of the optimal 
results and provide a useful decisional tool and the associated graphical representation. 
Nonetheless, the proposed procedure could be used in the reverse way: for a given data 
set, the flexibility analysis is performed by considering uncertain one city position at a 
time in order to detect which is the most critical one for the optimality of the solution. 

In future works travel cost functions between each pair of cities and further constraining 
conditions could be included in order to be able to characterise each specific supply chain 
management problem and find the associated solution under uncertainty. 
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Abstract 
In this work, the scheduling problem of continuous make-and-pack industries is 
considered. A continuous precedence-based MILP model is proposed for multistage 
continuous processes, considering flexible intermediate storage. Extending previously 
proposed precedence-based MILP models, multiple campaigns of the same recipe can be 
stored simultaneously in a storage tank. Explicit resource constraints related to the 
generation and recycling of byproduct are introduced, to achieve a better utilization of the 
available resources. Several case studies, inspired by a large-scale consumer goods 
industry have been solved, to illustrate the applicability of the proposed frameworks. It is 
illustrated that good quality schedules are obtained in reasonable solution times. 

Keywords: scheduling optimisation, MILP, make-and-pack, continuous processes 

1. Introduction 
Within the current climate of business globalization, modern process industries have to 
produce a plethora of final products that can address the needs and demand of multiple 
customers. Hence, scheduling optimization is becoming a vital process and decision-
makers tend to exploit recent advances in computer-aided optimization methods 
(Harjunkoski et al., 2014). Nowadays, several companies from various industrial sectors, 
such as food and beverages, pharmaceuticals, chemicals and fast-moving consumer goods 
(FMCGs), have adopted make-and-pack production processes. Due to variable 
production rates, a challenge typically met in continuous make-and-pack processes is the 
necessity to synchronize the production rates of consecutive stages (Klanke et al., 2020). 
Thus, continuous stages are often decoupled by deploying intermediate storage vessels 
(Méndez and Cerdá, 2002). Furthermore, product-dependent changeovers, mainly 
occurred by cleaning operations, have to be minimized to increase the productivity of 
production facilities. In cases when cleaning with water can affect the quality of products, 
an undesirable amount of byproduct waste is generated between two consecutive 
campaigns. Usually, the byproducts can be recycled into the next production campaigns. 
This industrial policy is typically met in liquid detergents industries. (Elekidis et al., 
2019). 

2. Problem statement 
The scheduling problem under consideration has been inspired by a continuous make-
and-pack process of a real-life, large-scale consumer goods industry (Elekidis, 
Corominas, and Georgiadis, 2019). Several intermediate products are produced through 
a continuous formulation stage (stage 1), while a plethora of final products is processed 
in the packing stage (stage 2), to satisfy multiple customer orders. Due to the different 
production rates of the two stages, a varying production bottleneck can be detected in 
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both stages depending on the specific product characteristics. To overcome this limitation 
and to achieve a better synchronization between the two stages, flexible intermediate 
buffer tanks are utilized. If an intermediate product is temporally stored in an intermediate 
vessel both stages operate at their maximum speed. Otherwise, the production rate is 
determined by the slowest stage. Furthermore, multiple changeovers take place between 
consecutive production campaigns due to the necessary cleaning operations. However, 
cleaning with water is not allowed, since water can affect the quality of the products, 
while the generation of an undesirable amount of foam also occurs. Under these 
circumstances, cleaning is implemented by generating an amount of byproduct waste. 
According to industrial policies, the waste can be temporally stored in tanks and it can 
then be recycled and utilized into the next intermediate products. The plant layout is also 
depicted in Figure 1. 

 
Figure 1 Plant layout 

3. MILP model 
A continuous-time, precedence-based, MILP model for continuous make-and-pack 
processes is proposed, considering intermediate storage tanks. The model consists of 
assignment, timing and sequencing constraints, similar to relevant frameworks (Elekidis 
et al. 2019). Mass balance constraints for the storage vessels are also imposed based on 
the framework of Méndez and Cerdá, (2002). Immediate precedence variables are used 
for sequencing operations in the processing units, while general precedence variables are 
utilized to define the sequence of storage operations. In comparison with discrete-time 
formulations, only a binary variable is introduced for handling the mass balance 
constraints. This auxiliary binary variable defines if the packing operation of a product 
order starts before or after the completion of its formulation process.  
In the MILP model of Méndez and Cerdá (2002), it is assumed that each product can be 
stored in a vessel only if the packing operations of the previously stored products have 
been completed. However, this assumption is not in full agreement with industrial 
practice, since product orders produced by the same intermediate could potentially share 
the same storage tank. The proposed MILP model differs from the model of Méndez and 
Cerdá, (2002), since by integrating additional mass balance constraints and introducing a 
new set of auxiliary binary variables, multiple production orders, produced by the same 
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intermediate product type, are allowed to be stored in the same storage tank 
simultaneously. 
The synchronisation of stages is achieved via proper timing constraints. An intermediate 
product can either be temporarily stored into a buffer tank or routed directly to a packing 
line, bypassing the storage vessels. Timing constraints guarantee that if a product 
bypasses the storage tank, the process of the two stages will start simultaneously. 
Additionally, efficient resource-constraints, related to generation and recycling of 
byproduct waste are proposed to consider potential benefits by their utilization in the 
plant. The main objective is the minimization of the total cost, taking into account the 
costs of changeovers, the idle time, the processing time and the cost of the generated 
byproduct waste. 

3.1. Mass balance constraints for product orders produced by the same intermediate 
product type (recipe) 
 
Production campaigns which are made by the same intermediate product, can be stored 
simultaneously in the same buffer tank for some period of time. Due to the varying 
production rates, a production bottleneck can be posed in both stages depending on the 
specific product features. To prevent the overloading of storage vessels, mass balance 
constraints have to be enforced at two time points for each product. The first time point 
corresponds to the end of each formulation operation while the second one corresponds 
to the starting time of each packing operation (Méndez and Cerdá, 2002). Extending the 
work of Méndez and Cerdá (2002), a new set of auxiliary binary variables is introduced 
to accurately handle mass balance constraints. In case multiple intermediate campaigns 
are stored simultaneously at the same storage tanks, the proposed binary variables define 
if an operation (formulation or packing process) starts before or after the time point under 
consideration. The new binary variables are determined via a set of big-M constraints. 
The total stored amount at a specific time point is defined as the total inserted amount 
minus the total amount exported from the buffer tank. The inserted and exported amounts 
are efficiently defined via a set of big-M constraints. It should be noted that the vast 
majority of scheduling approaches for make-and-pack processes rely on discrete-time 
formulations to handle material balances around storage equipment thus, resulting in 
computationally intractable models. 
3.2. Modelling of byproducts 
 
In scheduling problem under consideration, a set of product orders 𝑖 ∈ 𝐼 is allocated to a 
set of production units 𝑗 ∈ 𝐽 , at each production stage 𝑠 ∈ 𝑆. A subset of units j is able to 
process product order 𝑖, (𝑗 ∈ 𝐽𝐼 ) at stage s (𝑗 ∈ 𝐽𝑆 ). Additionally, a subset of processing 
units 𝑗 ∈ 𝐽 is able to process product orders 𝑖, given by subset 𝐼𝐽 . The maximum 
production rate of each product 𝑖, at stage 𝑠, is given by the parameter 𝑟 , . 
The vast majority of product-dependent changeovers, usually take place among the 
production of consecutive production campaigns, 𝑖 and 𝑖′, are related to cleaning 
operations. In liquid detergents industries, a significant amount of waste is generated 
during the changeover time, 𝑛 , , which can be recycled into the next production 
campaigns if the quality of products is not affected. Each processing unit 𝑗 of formulation 
stage (𝑗 ∈  𝐽𝑆 ),  is connected with a dedicated storage vessel, in which the generated 
waste can be temporarily stored. Since the capacity of byproduct vessels have to be fully 
satisfied, a set of mass balance constraints are introduced, without utilising further binary 
variables or considering any discretisation of time. 
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𝑂 = 𝐿𝐼 +     𝑋 , , 𝑛 , 𝑟 ,∈  ∩ ∩∈ ∶ − 𝑊 ∀ 𝑖 ∈ 𝐼 (1) 

𝐿𝐼 ≥ 𝑂 − 𝑑𝑚  1 − 𝑋 , ,∈  ∩ ∩ ∀ 𝑖 ∈ 𝐼, 𝑖 ∈ 𝐼 ∶ 𝑖 ≠ 𝑖  
(2) 

𝐿𝐼 ≤ 𝑂 + 𝑑𝑚  1 − 𝑋 , ,∈  ∩ ∩ ∀𝑖 ∈ 𝐼, 𝑖 ∈ 𝐼 ∶ 𝑖 ≠ 𝑖  
(3) 

𝐿𝐼 ≤ 𝑖𝑤  𝑌 ,  +  𝑑𝑚 𝑋 , ,∈  ∶ ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑆 ∩ 𝐽𝐼 ) (4) 

𝐿𝐼 ≥ 𝑖𝑤  𝑌 , − 𝑑𝑚 𝑋 , ,∈   ∶ ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑆 ∩ 𝐽𝐼 ) (5) 

𝑊 ≤ 𝑑𝑚 𝑎           ∀ 𝑖 ∈ 𝐼 (6) 𝑊 ≤ 𝐿     ∀ 𝑖 ∈ 𝐼 (7) 𝑂 ≤  𝑐𝑝  𝑌 ,         ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑆 ∩ 𝐽𝐼 ) (8) 𝑅𝑊 ≥ 𝑂 − 𝑐𝑝  1 − 𝑌 , − 𝑐𝑝 𝑋 , ,∈ ∶ ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑆 ∩ 𝐽𝐼 ) (9) 

 
The accumulated amount of byproduct 𝑂  is calculated at the end of each changeover. 
According to mass balance constraints (1), the variable 𝑂  is equal to the previously 
accumulated byproduct amount 𝐿𝐼 , plus the waste generated by the cleaning operations 
that take place (𝑛 , 𝑟 , ), minus the recycled amount during the production of product 𝑖, 𝑊 . In particular, it is assumed that during the changeover time 𝑛 , , between two 
consecutive campaigns 𝑖 and 𝑖′, the production rate of byproduct is equal to the maximum 
production rate of campaign 𝑖′ (𝑟 , ). According to constraints (2) and (3), if product 𝑖′ is 
produced immediately before product 𝑖, (𝑋 , , = 1), the accumulated byproduct is equal 
to variable 𝑂 . Constraints (4) and (5) ensure that the accumulated amount of byproduct 
at the beginning of the first campaign (𝑋 , , = 0), is either equal to zero or equal to the 
initial byproduct (𝑖𝑤 ) only if the product 𝑖 is allocated at unit 𝑗 (𝑌 , = 1). The demand 
parameter, 𝑑𝑚  plays the role of the big-M value in constraints (4) and (5). The maximum 
percentage that can be recycled is expressed by the parameter 𝑎 . Constraints (8) ensures 
that the stored amount of byproduct, will not surpass the related capacity (𝑐𝑝 ) of each 
tank. The remained amount of waste 𝑅𝑊  at the end of the time horizon, is equal to the 
generated waste of the last production campaign 𝑂  of each unit.  

4. Application studies 
In order to evaluate the efficiency and applicability of the proposed MILP model, 4 case 
studies are considered. They include 3 formulation lines, 3 packing lines and two 
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intermediate storage tanks. Due to the large number of final products, the decomposition 
algorithm of Elekidis et al. (2019), is utilized to solve the large-scale MILP model. To 
assess the benefits of the intermediate storage tanks, two case studies have been solved, 
with (decoupled layout) and without (coupled layout) the utilization of intermediate 
storage tanks. The minimization of total operational time is the main objective. The results 
are summarized in Table 1. It is illustrated that the utilization of flexible intermediate 
buffer tanks leads to a better synchronization of the production stages resulting in 
increased productivity. In particular, depending on the case study, the productivity gain 
ranges within 4.43% (case 2) and 17.29% (case 1). 
Furthermore, the case studies have been also solved considering the minimization of total 
cost. Near-optimal solutions are obtained within a total CPU time of 3600s, while a zero-
optimality gap is achieved at each iteration. Results are summarized in Table 2. The 
individual costs represent relative monetary units (rmu) and they are also presented in 
Table 2. It is observed that the biggest percentage of the total cost, reflects the idle time 
as it valued by 30 rmu/h. Although the percentage of the changeover cost is gradually 
decreased in larger cases, from 17% (case 1) to 8% (case 4), the percentage of idle time 
cost is steadily increased, from 47% (case 1) to 77% (case 4). 

 
Figure 2 Total produced and recycled amount in each case 

 

Table 1 Comparison of the total operational time of the two layouts 

 Products Coupled 
layout* 

Decoupled  
 layout* 

Difference 
(hours)* 

Productivity gain 
 (%) 

Case 1 20 186.63 225.63 39.00 17.29% 
Case 2 50 355.34 371.82 16.48 4.43% 
Case 3 70 422.14 442.70 20.55 4.64% 

Case 4 100 596.23 680.88 84.64 12.43% 
*the values represent the total operational time of all production units of both stages in hours 
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Table 2 Results for larger problem instances – Cost distribution 

 Products TC* COC* ITC* PTC* WC* 

Case 1 20 1301 221 (17%) 614 (47%) 385 (30%) 79 (6%) 

Case 2 50 1999 231 (12%) 1224 (61%) 470 (24%) 72 (4%) 

Case 3 70 3505 299 (9%) 2592 (74%) 541 (15%) 72 (2%) 
Case 4 100 5455 422 (8%) 4193 (77%) 757 (14%) 82 (2%) 

*TC=Total cost, COC=Changeover cost, ITC=idle time cost, PTC=processing time cost, WC=waste cost 
** COC= 10 rmu/h, ITC= 30 rmu/h, PTC= 1 rmu /h, WC= 0.5 rmu /kg 

 
Figure 2 shows, the total produced amount and the amount of recycles as well, for each 
case. It is illustrated that the byproduct recycles constitute a significant percentage of the 
total produced amount, which ranges from 6.1% (Case 3) to 7.57% (Case 4). Hence, it is 
evident that the utilization of this recycling policy and the consideration of the proposed 
byproduct constraints lead to better utilization of raw materials and a significant reduction 
of material cost. 

5. Conclusions 
In this work a precedence-based MILP model, for the scheduling of continuous, make-
and-pack industries is presented. The utilization of intermediate buffers can provide a 
better synchronization between the two production stages. The integration of byproduct 
recycling constraints leads to a better use of the available raw materials and to a 
significant reduction of waste. The proposed MILP model can constitute the basis of an 
optimization tool to assist decision-makers with rigorous scheduling solutions under a 
dynamic environment. 
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Abstract 
A plethora of contributions have appeared in the literature over the past decade in the area 
of production planning of a single machine with sequence-dependent changeovers. Most 
of them, however, deal with the deterministic optimization model where all the 
parameters are considered known, which render optimal schedules, sub-optimal, or even 
infeasible in practice. In this paper, we first develop a new deterministic model based on 
a hybrid discrete- and continuous-time mixed-integer linear programming model for the 
production scheduling of a single machine with sequence-dependent changeovers. The 
proposed model (i) considers a time interval in which the processing machine is 
unavailable due to some maintenance jobs, and (ii) monitors inventory levels over shorter 
time scales, rather than at the end of predefined long-term periods. Then, the robust 
counterpart of the deterministic model is devised using the Γ-robustness approach that 
considers uncertainty in processing and changeover times. The objective is to find robust 
production schedules such that the sum of holding and changeover costs is minimized. 
We demonstrate the performance of the proposed model with a real-world case study. 

Keywords: Scheduling, Changeovers, Robust optimization, Uncertainty. 

1. Introduction 
Scheduling is an important planning function in the process industries and lies at the very 
heart of the performance of manufacturing (Stood, 1996). It is a highly dynamic process 
and is characterized by a high level of uncertainty, such as raw material availability, 
prices, machine reliability, processing times, and client demand, which vary with respect 
to time and are often subject to unexpected deviations (Li and Ierapetritou,2008; 
Georgiadis et al. 2019). Two primary methods to address scheduling under uncertainty 
are stochastic programming and robust optimization (Grossmann et al. 2016). In the 
former (Birge and Louveaux, 2011), the uncertainty is modeled through several scenarios, 
using probability distributions, which is often difficult to describe in practice. Another 
drawback is that the number of scenarios increases exponentially with the number of 
uncertain parameters, which limits the application of this approach to solve practical 
problems. Robust optimization (Bertsimas and Sim 2004), on the other hand, defines an 
uncertainty set of possible realizations of the uncertain parameters and selects a solution 
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that can cope best with the various realizations, while keeping the problem tractable. The 
other advantage of robust optimization is that it only requires defining bounds for 
uncertain parameters, rather than their probability distribution.  

There is a plethora of publications that have addressed the production scheduling of a 
single machine with sequence-dependent changeovers (Gupta and Magnusson, 2005; Liu 
et al., 2008; Mostafaei et al., 2020). Compared to its deterministic counterpart, the 
literature on the robust optimization of the single machine scheduling problem is still very 
scarce. To this end, this paper develops a novel robust optimization model for single 
machine scheduling with sequence-dependent changeovers (SMSSDC) to generate 
reliable solutions that are immunized against uncertainty. The contributions of this work 
are twofold: First, we develop a continuous-time mixed-integer linear programming 
(MILP) formulation using generalized disjunctive programming (Castro and Grossmann, 
2012; Mostafaei and Harjunkoski, 2020) for SMSSDC that allows us to (i) consider the 
machine unavailability during the time horizon, (ii) monitor the inventory over shorter 
time windows, and (iii) meet customer demands over multiple intermediate due dates. 
Second, by means of the Γ-robustness approach, the proposed deterministic MILP model 
is extended to a robust counterpart propose schedules that are immunized against 
variability in processing and changeover times. The reason why we select the Γ-
robustness approach is that it keeps the problem tractable and does not change the 
structure of the original problem, meaning that meaning that if the deterministic model is 
an MILP, its robust counterpart will also be an MILP 

2. Problem statement 
We focus on the production scheduling of a single machine, where a set of products 𝑝 should be manufactured during a time horizon of duration 𝐻. The aim is to find the 
optimal sequence of production so that the costs related to backorder, changeover, and 
inventory are minimized. Given are the following: [𝑣 , 𝑣 ]: minimum and maximum 
production size during every process run; 𝜌 : processing time of one unit of product 𝑝; 𝜎 , ´, 𝑐 , : changeover time and cost; 𝜏 : absolute time of period 𝑡; 𝑑 ,  : the product 
demand for product 𝑝 at time period 𝑡; [𝑆 , 𝐸 ] idle time interval for the machine.  

3. Deterministic optimization model  
Here we present a deterministic MILP model for SMSSDC that is derived from 
generalized disjunctive programming (GDP). The model involves three sets: (i) 
production runs 𝑟, 𝑟′ ∈ 𝑅 = {1,2, … , |𝑅|}, in which a run 𝑟 should always be performed 
after the completion of run 𝑟 − 1; (ii) set of products 𝑝, 𝑝′ ∈ 𝑃; (iii) set of time 
periods 𝑡, 𝑡′ ∈ 𝑇. Note that the cardinality of set 𝑅 is a tuning parameter, and to find the 
optimal solution, we start with an initial guess for |𝑅| and keep increasing it until no 
improvement is observed in the objective function. 
3.1. Allocation and product size 
First, let us define the binary variable 𝑋 ,  denoting that the production run 𝑟 ∈ 𝑅 
processes product 𝑝 ∈ 𝑃, whenever 𝑋 , = 1. The exclusive OR (∨) in disjunction below 
states that exactly one product can be processed in the machine during each run. The size 
of product 𝑝 processed in the machine during the run 𝑟 (𝑉 , ) is restricted to the interval 
[𝑣 , 𝑣 ]. The duration of run 𝑟 (𝐿 ) processing product 𝑝 is a function of 𝑉 ,  and the 
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processing time of one unit of product 𝑝. The convex hull reformulation of the disjunction 
leads to the equations (1)-(3).  ⋁  ∈  𝑋 ,  𝑣 ≤ 𝑉 ,≤ 𝑣 𝐿 = 𝜌 𝑉 ,    ∀𝑟 ⟹ ∑ ∈ 𝑋 , = 1 ∀𝑟  (1) 𝑣 , 𝑋 , ≤ 𝑉 , ≤ 𝑣 , 𝑋 , ∀𝑝, 𝑟 (2) 𝐿 = ∑ ∈ 𝜌 𝑉 ,  ∀𝑟 (3) 

3.2. Changeover times and costs 
Changeover times and costs occur when two different products 𝑝 and 𝑝´are processed in 
two consecutive runs 𝑟 − 1 and 𝑟(𝑟 ≥ 2). The changeovers are often associated with 
changing the operating conditions or with the cleaning of the machine. If the continuous 
variables 𝐶𝑇  and 𝐶𝐶  are the changeover time and cost at the start of run 𝑟, respectively, 
we have the following Eqs. (4)-(7). Note that the binary variable  𝑋 , ´,  (= 1 if the 
changeover 𝑝 − 𝑝´ occurs at the start of run 𝑟) can be treated as a 0-1 continuous variable. 𝑋 , ∧ 𝑋 ´, ⟹ 𝑋 , ´,    ∀𝑝, 𝑝´, 𝑟 ⟹ 𝑋 , ´, + 1 ≥ 𝑋 , + 𝑋 ´,   ∀𝑝, 𝑝, 𝑟 (4) ⋁  ∈  ⋁  ´∈  𝑋 , ´,  𝐶𝑇= 𝜎 , ´ 𝐶𝐶= 𝑐𝑐 , ´     ∀𝑟≥ 2 

 ∑ , ´∈ 𝑋 , ´, = 1   ∀𝑟 ≥ 2 (5) ⟹ 𝐶𝑇 = ∑ , ´∈ 𝜎 , ´𝑋 , ´,      ∀𝑟 ≥2 
(6) 

 𝐶𝐶 = ∑ , ´∈ 𝑐𝑐 , ´𝑋 , ´,      ∀𝑟 ≥2 
(7) 

3.3. Sequencing production runs 
Let continuous variable 𝐶  be the completion time of production run 𝑟. The beginning of 
the production run 𝑟 should not be before the end of the completion of 𝑟 − 1 plus the 
changeover time at the start of run 𝑟. Furthermore, the completion of each run is always 
inferior to the time horizon length (𝐻): (𝐶 + 𝐿 ) + 𝐶𝐻 ≤ 𝐶 ≤ 𝐻    ∀𝑟 (8) 

3.4. An unavailable time interval due to maintenance jobs 
Let us assume that the machine should be stopped during the time interval [𝑆 , 𝐸 ] 
due to, e.g., maintenance. The binary variable 𝑊  is equal to one if the production run 𝑟 
is completed during the time interval [0, 𝑆 ], i.e., earlier than time 𝑆 . If 𝑊 = 1, 
then (i) the previous run 𝑟 − 1 must be completed in the same interval too (𝑊 = 1), 
and (ii) the completion time of run 𝑟 (𝐶 ) must less than or equal to 𝑆 . Notice the 
inclusive OR (∨) since multiple runs can end before the time 𝑆 . 𝑊 ⟹ 𝑊     ∀𝑟 ≥ 2 ⟹ 𝑊 ≤ 𝑊     ∀𝑟 ≥ 2 (9) ⋁ ∈ 𝑊  𝐶 ≤ 𝑆   ⟹ ∑ ∈ 𝑊 ≥ 1    (10) 𝐶 ≤ 𝑆 + 𝐻 − 𝑆 (1 − 𝑊 ) ∀𝑟 (11) 
Now let the binary variable 𝑊  be 1 if run 𝑟 is the last one completed during the time 
interval [0, 𝑆 ]. If 𝑊 = 1 then (i) 𝑊 = 1 and 𝑊 = 0, meaning that run 𝑟 ends 
earlier than time 𝑆  (𝑊 = 1) whereas the completion of run 𝑟 + 1 is after time 𝑆 (𝑊 = 0), and (ii) the starting time of run 𝑟 + 1 should be after the maintenance 
interval 𝑆 , 𝐸 , i.e., after time 𝐸 . Notice the exclusive OR (∨) since only one 
run can be the last one completed before time 𝑆 . We have thus the following 
conditions. 𝑊 ∧ ¬𝑊 ⟹ 𝑊     ∀𝑟 ⟹ 𝑊 ≥ 𝑊 − 𝑊 ∀𝑟     (12) ⟹ ∑ ∈ 𝑊 = 1    (13) 
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⋁  ∈  𝑊  𝐶 − 𝐿≥ 𝐸    ∀𝑟 𝐶 − 𝐿 ≥ 𝐸 𝑊 ∀𝑟 (14) 

3.5. Meeting demand and inventory level 
Let the binary variable 𝑌 , indicate if the production run 𝑟 completes during period 𝑡. If 𝑌 , = 1, it should be imposed 𝜏 ≤ 𝐶 ≤ 𝜏 , where 𝜏  is the absolute time of period 𝑡. 
Notice that the disjunction in (23) is exclusive, meaning that each production run 𝑟 should 
be completed in exactly one of the periods. ⋁  ∈  𝑌 ,  � ≤ 𝐶≤ 𝜏    ∀𝑟 ⟹ ∑ ∈ 𝑌 , = 1   ∀𝑟 (15) ∑ ∈ 𝜏 𝑌 , ≤ 𝐶 ≤ ∑ ∈ 𝜏 𝑌 ,     ∀𝑟 

(16) 

Now, let us introduce the binary variable 𝑌 , , indicating that run 𝑟 is the last one 
completed in the period 𝑡. If 𝑌 , = 1 and 𝑌  , = 0, the run 𝑟 is the last one that ends in 
period 𝑡 (𝑌 , = 1). Note that 𝑌 ,  can take one for only one run 𝑟 during each period 𝑡, as imposed in (18). 𝑌 , ∧ ¬𝑌  , ⟹ 𝑌 ,     ∀𝑡, 𝑟 ⟹ 𝑌 , ≥ 𝑌 , − 𝑌 , ∀𝑟, 𝑡     (17) ⋁  ∈  𝑌 ,   ∀𝑡 ⟹ ∑ ∈ 𝑌 , = 1   ∀𝑡 (18) 

If 𝑌 , = 1 and to meet product demands, the amount of product 𝑝 sent to customers 
during period 𝑡 computed through the continuous variable 𝐶𝑃 , ´ should be as large as 𝑑 ,  . Otherwise, the backorder demand (𝐵𝐶 , ) will cause penalty costs (e.g., customer 
dissatisfaction). Note that 𝐵𝐶 ,  on the right-hand side of Eq. (19) indicates the shortage 
of product 𝑝 to the customers during the period 𝑡 − 1 to be tardily met at period 𝑡. ∑ ´∈ 𝐶𝑃 , ´ + 𝐵𝐶 , − 𝐵𝐶 , ≥ ∑ ´∈ 𝑌 , 𝑑 , ´ ∀𝑝, 𝑡, 𝑟   (19) 

Let 𝐼𝑃 ,  be a continuous variable denoting the inventory level of product 𝑝 at the end of 
run 𝑟. The stock of product 𝑝 is increased by the production of the product and decreased 
by sending it to local customers. Note that at the start time of the planning horizon, the 
initial inventory of product 𝑝 is known i.e., 𝑖𝑝 . To prevent stock overloading and empty 
conditions, 𝐼𝑃 ,  should lie within the feasible range, as imposed in Eq. (21). 𝐼𝑃 , = 𝐼𝑃 , + 𝑉 , − 𝐶𝑃 , ∀𝑝, 𝑟   (20) 𝑖𝑝 ≤ 𝐼𝑃 , ≤ 𝑖𝑝 (21) 

3.6. Objective function 
The objective is to minimize the backorder, inventory, and changeover costs. 𝑧 = ∑ ∈ ∑ ∈ 𝑐𝑏 , 𝐵𝐶 , + ∑ ∈ ∑ ∈ 𝑐𝑖𝑝 𝐼𝑃 , +∑ ∈   𝐶𝐶    (22) 

4. Robust counterpart 
4.1. Changeover time 

Let us assume that the changeover times, represented by 𝜎 , ´, are subject to uncertainty, 
and thus are represented by the random variable 𝜎 , ´ with support given by the interval 𝜎 , ´ ∈ [𝜎 , ´ − 𝜎 , ´,  𝜎 , ´ + 𝜎 , ´]. We follow the approach in Bertsimas and Sim (2004) 
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in which we would like to immunize constraint (6). For that, first notice that can be 
equivalently rewritten as: ∑ ∈   𝐶𝑇 ≥ ∑ ∈  ∑ , ´∈ 𝜎 , ´𝑋 , ´,       (23) 

Constraint (23) can then be restated in a robust sense, as ∑ ∈   𝐶𝑇 ≥ ∑ ∈  ∑ , ´∈ 𝜎 , ´𝑋 , ´, + 𝛷(𝛤)      (24) 

where Φ(Γ) is the protection term defined as 𝛷(𝛤) = ∑ ∈   ∑ , ´∈ 𝜎 , ´𝑋 , ´, × 𝑍 , ´,       (25) 

subject to:   ∑ ∈   ∑ , ´∈ 𝑍 , ´, ≤ 𝛤 (𝐹)  (26)                      0 ≤ 𝑍 , ´, ≤ 1 𝑄 , ´, ∀𝑝, 𝑝´, 𝑟 (27) 

The terms in brackets represent the associated dual variables, used to state the equivalent 
dual formulation (28)-(30) for (25)-(27), which is given by 𝛷(𝛤) = + ∑ ∈   ∑ , ´∈ 𝑄 , ´,       (28) 

subject to:   𝐹 + 𝑄 , ´, ≥ 𝜎 , ´𝑋 , ´, ∀𝑝, 𝑝´, 𝑟 (29)  𝐹, 𝑄 , ´, ≥ 0 (30) 
The robust counterpart can be stated by replacing (6) with the following set of constraints ∑ ∈   𝐶𝑇 ≥ ∑ ∈  ∑ , ´∈ 𝜎 , ´𝑋 , ´, + 𝛤𝐹 +∑ ∈   ∑ , ´∈ 𝑄 , ´,       

(31) 

𝐶𝑇 ≥ ∑ , ´∈ 𝜎 , ´𝑋 , ´,      ∀𝑟 ≥ 2 (32) 𝐹 + 𝑄 , ´, ≥ 𝜎 , ´𝑋 , ´, ∀𝑝, 𝑝´, 𝑟 (33) 

4.2. Processing time  

In a similar vein, let us assume that the processing time 𝜌  is represented by a random 
variable 𝜌  with support [𝜌 − 𝜌 , 𝜌 + 𝜌 ]. Following the same reasoning as in §4.1, the 
robust counterpart considering protection in the processing time can be thus obtained by 
replacing (3) with the following constraints: ∑ ∈  𝐿 ≥ ∑ ∈  ∑ ∈ 𝜌 𝑉 , + 𝛤′𝐹′ + ∑ ∈ ∑ ∈ 𝑄′ ,       (34) 𝐿 ≥ ∑ ∈ 𝜌 𝑉 ,    ∀𝑟 (35) 𝐹′ + 𝑄′ , ≥ 𝜌 𝑉 , ∀𝑝, 𝑟 (36) 

5. Real-world case study 
The proposed deterministic and robust approaches for SMSSDC are applied to a real-
world paper machine that was obtained by slightly modifying Example 1 previously 
studied by Mostafaei et al. (2020). The aim is to meet customer demands of P4120, P6170, 
P740, P840, P980, P13218, P1451, P1545, P1840, and P2083 (with the subscripts indicating the 
number of paper reels to be produced during a time horizon of 11 days) at minimum 
backorder and changeover costs. It is assumed that: (i) the paper machine should be 
stopped for 12 hours during the time interval [100, 112] h, and (ii) backorder has a unit 
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cost of 200 $, one hour changeover has a fixed cost of 100 $, (iii) the processing and 
changeover times are uncertain parameters and have variability in [𝜌 − 0.02, 𝜌 + 0.02] 
and [𝜎 , ´ − 0.1,  𝜎 , ´ + 0.1], respectively.   
The example was solved on a Quad 1.60 GHz Intel Core i5-8365, 16 GB RAM Laptop 
using GAMS/CPLEX with 8 parallel threads as the MILP solver. Figure 1 shows the 
Gantt chart for the deterministic model and its robust counterpart (with 𝛤, 𝛤 = 1). The 
deterministic model corresponded to a cost of $166.47 was solved in 20.15s while the 
robust model with the objective function of $6514.30 was solved in 364.12 s. As can see 
from the figure, the production sequence is slightly different, and some products cannot 
be produced when processing and changeover times are subject to uncertainty. For 
example, product 18 it not produced in the robust model. 
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Figure 1: Solutions found for the case study 

6. Conclusions 
This paper has presented a continuous-time optimization formulation for the short-term 
scheduling of a single machine with sequence-dependent changeovers. We first 
developed a deterministic MILP model derived from GDP that considers the machine 
unavailability during the time horizon, and customer demands on multiple due dates. 
Then we derived the robust counterpart of the model using the Γ-robustness approach to 
tackle uncertain processing and changeover times. We validated the proposed model 
using a real-world case study from the paper-making industry, and a robust schedule for 
production scheduling of 11 days was successfully found in a reasonable CPU time. 
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Abstract 
Increase in the cost of process water and stringent environmental norms result in the 
requirement for water reducing technologies in process industries. Batch processes have 
been widely used in process industry (such as pharmaceuticals, fine and specialty 
chemicals, etc.) as batch processing is appropriate to produce a specialized low amount 
of production and is flexible to adjust according to the dynamism of the market. In 
recent years, significant research efforts are made to minimize resources such as energy 
and water in batch processes. Optimizing the storage requirement is an essential aspect 
while considering capital investment and space availability.  

This paper focuses on minimizing freshwater and storage requirement simultaneously. 
In this paper, a mathematical formulation is proposed to solve the proposed bi-
objectives problem. The primary objective of this work is to generate a Pareto optimal 
front for these two objectives via using a ϵ-constraint method. The proposed linear 
programming formulation includes demand satisfaction, source availability and quality 
constraints. The trade-off between storage and resource requirements is captured 
through a Pareto optimal front. This Pareto optimal front facilitates decision-makers to 
select an appropriate operating point as per suitability. 

Keywords: Batch process, Storage capacity, Resource minimization, Pareto optimal 
front, Water Allocation Network. 

1. Introduction 
The batch process is utilized for production of specialized products in several industries 
such as food, pharmaceutical, fine chemical, etc. Impurity concentration and time are 
two important constraints for resource recovery in operation of a batch process. 
Mathematical optimization and physical-insight based techniques are used to minimize 
freshwater and storage requirements in industries (Wang and Smith, 1994). Earlier, 
Majozi (2005) presented a continuous-time model for minimizing wastewater and 
freshwater with or without central water storage facilities in batch process. As water is 
essentially required in several operations of the process industry, so freshwater needs to 
be used efficiently which reduces the discharge of wastewater (Shenoy and 
Bandyopadhyay, 2007). Later, Gouws and Majozi (2008) presented the effect of several 
storages for wastewater reduction in batch process. It is reported that the optimization of 
the storage requirement is an essential aspect upon considering capital investment and 
space scarcity. Similarly, Gouws et al. (2010) reviewed and compared various 
methodologies of water minimization for batch processes in process industries. 
Mitigation of water footprint is important for enhancing profitability and reducing 
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environmental degradation; hence, optimization of water resources for industrial 
processes is essential for water management (Begatin et al., 2014). Similarly, 
Chaturvedi and Bandyopadhyay (2014) examined a model for optimal production 
scheduling and usage of freshwater. The trade-off between freshwater minimization and 
production maximization is presented via Pareto optimal front. Later, Adekola and 
Majozi (2017) presented a mathematical model for optimization of batch production and 
minimization of wastewater for a static mass load problem simultaneously. The 
minimization of wastewater is attained by exploring the order of jobs in a unit. The 
results depict that water utilization is minimized via suitable selection of jobs 
arrangements in a unit. Later, Hesran et al. (2019) studied waste minimization 
techniques for waste minimization. Recently, Duhbaci et al. (2020) reviewed water 
minimization approach via a mathematical programming in industrial process.  

Earlier, Chaturvedi and Bandyopadhyay (2012) presented a pinch analysis-based 
approach to target minimum storage capacity and maximum freshwater requirement for 
a Water Allocation Network (WAN) in batch process. In this work, trade-off between 
storage capacity and freshwater requirement is captured by solving a mathematical 
programming optimization model. The proposed algorithm can be applied to any fixed 
flow rate and fixed scheduled batch process involving single or multiple qualities. The 
proposed linear programming formulation includes demand satisfaction, source 
availability and quality constraints. 

2. Problem Statement 
The general problem statement for minimizing freshwater and storage requirements for 
WAN in a batch process is as follows: 

• For a fixed time interval (Tk), a set of internal sources (MsTk) is provided. A 
known flow rate FsiTk is produced by each source which have a concentration 
of impurity as qsiTk. 

• For a fixed time interval (Tk), a set of internal demands (MdTk) is given. A 
known minimum flow rate (FdjTk) is required with concentration of impurity as 
qdjTk. 

• The freshwater flowrate requirement is FwjTk with concentration of qwjTk.  

Objective: Overall aim of this work is to minimize freshwater and storage requirements 
in process industry. Primary objective of the proposed model is to generate a Pareto 
optimal front by varying storage limit. Pareto optimal front accounts for a trade-off 
between freshwater and storage capacity requirement in batch process. For generating 
points of Para optimality, ε-constraint technique (Mavrotas, 2009) is implemented in the 
model. The model is evaluated for a single objective and another objective is stated as 
inequality constraint. The minimum storage requirement is fixed at a specified value 
and added as a constraint. 

3. Mathematical Formulations 
Let xij depicts the transfer of flow from ith source to jth demand. From the conservation 
principle, the equation for demand constraint is given by Eq. (1). The concentration of 
every stream and freshwater is equal to concentration of the demand which is shown in 
Eq. (2). The release of water from sources should be lesser than the limit of source in 
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any time interval. Eq. (3) presents inequality constraint for the ith source in a time 
interval.  𝑥 𝐹 𝐹                                                                                                   1  

𝑞 ∗ 𝑥 𝑞 ∗ 𝐹 𝑞 ∗ 𝐹                                                         2  

𝑥 𝐹                                                                                                                    3  

Eq. (4) represents minimizing objective function for storage requirement (Z1): 𝑍 𝑥                                                                                                                          4  

Eq. (5) represents minimizing objective function for freshwater requirement (Z2): 𝑍 𝐹                                                                                                                        5  

These modeling equations are solved for minimizing freshwater and storage 
requirements in a WAN. The trade-off between storage and resource requirement are 
captured through the Pareto optimal front. The Pareto optimal front facilitates decision-
makers to select an appropriate operating point as per its suitability. 

4. Illustrative Example 
For a batch process operation, considering a batch WAN. Table 1 (Chaturvedi and 
Bandyopadhyay, 2012) shows flow-rate and concentration of streams in batch WAN.  

 
Figure 1: Schematic diagram of the Water Allocation Network. 
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Table 1: Demand and source availability in different time intervals  
               (Chaturvedi and Bandyopadhyay, 2012) 

Source 
Flow 
rate 
(t/h) 

Conc. 
(ppm) 

Duration 
(h) Demand 

Flow 
rate 
(t/h)

Conc. 
(ppm) 

Duration 
(h) 

S1 5 25 0.0-1.0 D1 10 0 0.0-3.0 
S2 5 15 0.0-1.0 D2 40 27.5 1.0-2.0 
S3 10 40 1.0-3.0 D3 5 15 1.0-3.0
S4 50 30 1.0-2.0 D4 5 25 2.0-3.0 
S5 50 10 3.0-4.0 D5 20 5 3.0-4.0 

 
Table 2: Time-interval wise flow and their concentration for the WAN problem         
              (Chaturvedi and Bandyopadhyay, 2012) 

T1(0.0-1.0) h T2(0.1-2.0) h T3(2.0-3.0) h T4(3.0-4.0) h 
Flow 

(t) 
Conc. 
(ppm) 

Flow 
(t) 

Conc. 
(ppm) 

Flow 
(t) 

Conc. 
(ppm) 

Flow 
(t) 

Conc. 
(ppm) 

25 5 10 40 10 40 50 10 
15 5 50 30 -5 25 -20 5 
0 -10 -40 27.5 -5 15 

 -5 15 -10 0 
 -10 0 

 
The streams are segregated in four time intervals as shown in Table 2. Figure 1 shows 
schematic diagram of sources and demands presence in several time intervals. Based on 
data of sources and demands of Table 2, the optimization problem is solved using 
GAMS with CPLEX solver for linear programming. A Pareto optimal front is generated 
between storage and freshwater requirement. This optimality front is generated by using 
ϵ-constraint method. The ϵ-constraint methodology provides the non-dominated solution 
for proposed mathematical model for minimizing freshwater and storage requirements 
in WAN. 
In ϵ-constraint method, bi-objective model is solved for an objective function and 
another objective is expressed in form of an inequality constraint. For this inequality 
condition, maximum storage capacity is fixed at a certain value which is added as a 
constraint. For generating other optimal points, methodology is repeated with scalarly 
placed variations on storage requirement. The mathematical model is solved as linear 
programming model. The developed model is solved for minimizing freshwater and 
storage requirements. Thus, trade-offs between storage capacity and freshwater 
requirements are determined for WAN which is represented as Pareto optimal front in 
Figure 2.  
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Figure 2: Pareto optimal front for bi-objective problem 

As storage capacity increases from zero to 5 ton (t), fresh water requirement decreases 
from 50.833 t to 47.70 t. With further increase in storage capacity from 5t to 10 t, 
freshwater requirement decreases up to 45.833 t. A constant fresh water requirement is 
observed upon further increase in storage capacity. Thus, target value for minimum 
freshwater requirement is obtained to be 45.833 t and maximum required storage 
capacity is obtained to be 10 t. Note that, this targeted value equates with the problem 
discussed in Chaturvedi and Bandyopadhyay (2012). The developed model provides a 
trade-off between two objectives via Pareto-optimal front.                                                                                                 

5. Conclusions 
This paper focuses on minimizing bi-objectives problem of freshwater and storage 
requirements simultaneously. A mathematical model is developed to solve this bi-
objectives problem and a Pareto optimal front is generated by using ϵ-constraint 
methodology. The proposed methodology can be applied to any fixed flow rate and 
fixed scheduled batch process involving single or multiple qualities. The proposed 
linear programming model includes demand satisfaction, source availability and quality 
constraints. The trade-off between storage and resource requirements are captured 
through a Pareto optimal front. For generating points of Para optimality, ε-constraint 
technique is implemented in the model. The model is evaluated for a single objective 
and another objective is stated as inequality constraint. This Pareto optimal front 
facilitates decision makers to select an appropriate operating point as per its suitability. 

Nomenclatures 𝑥  Transfer of flow from ith source to jth demand 

FdjTk Flow rate requirement of jth internal demand in Tk time interval 

FsiTk Flow rate of ith internal source in Tk time interval 

FwjTk Freshwater flow rate of jth internal demand in Tk time interval 

MdTk Set of internal demands in Tk time interval 

MsTk Set of internal sources in Tk time interval 
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qdjTk Impurity concentration of ith internal source in Tk time interval 

qsiTk Impurity concentration of ith internal source in Tk time interval 

qwjTk Freshwater concentration of jth internal demand in Tk time interval 

Tk Time interval 

Z1 Minimizing objective function for storage requirement 

Z2 Minimizing objective function for freshwater requirement 
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Abstract 
In this work, we demonstrate the applicability and efficiency of hybrid quantum 
computing (QC) based techniques for solving large-scale batch scheduling problems. 
We propose a novel solution approach that integrates classical and quantum techniques 
to overcome their individual shortcomings. The hybrid solution framework allows us to 
take advantage of the complementary strengths of the two methods. We demonstrate the 
use of this hybrid approach in developing efficient solution algorithm for an intractable 
batch scheduling problem formulated as mixed-integer fractional program. We then 
propose a novel QC-based parametric decomposition algorithm for solving large-scale 
batch scheduling problems. The performance and efficiency of the developed hybrid 
models and methods are validated by performing several computational experiments 
and comparing the obtained computational results with those of the state-of-the-art 
classical off-the-shelf optimization solvers.. 
 
Keywords: Quantum computing, batch scheduling, hybrid techniques, optimization  

1. Introduction 
Scheduling is a critical issue in systems operations and has a major impact on the 
productivity of a system. Complex scheduling problems span a wide variety of areas, 
espeically in the chemical process industries (Kallrath, 2002). Analytical approaches 
based on mathematical programming are plagued by the computational complexity of 
scheduling problems and may demonstrate exponential time complexity (Aytug et al., 
1994). While heuristic and hybrid heuristic methods (Chu et al., 2013) can be used to 
solve large-scale problems in a reasonable time, they tend to trade off optimality for 
speed. Therefore, there arises a need to develop novel solution approaches capable of 
overcoming limitations of current solution approaches carried out on classical 
computers for complex scheduling problems. 

The ability of quantum computing (QC) to offer large speed advantages over classical 
methods (Nielsen and Chuang, 2010) has proven to be a powerful tool in solving 
optimization problems (Martonosi and Roetteler, 2019), as QC becomes commercially 
available (Mohseni et al., 2017). There are a number of QC applications in process 
systems engineering (Ajagekar and You, 2020). For detailed preliminaries on QC-based 
computational optimization, specifically adiabatic quantum optimization, we refer 
interested readers to theoretical background in (Kadowaki and Nishimori, 1998) and 
practical implementation in process systems optimization (Ajagekar and You, 2019) and 
power systems scheduling (Lau et al., 2009). The goal of this paper is to demonstrate 
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the applicability and efficiency of hybrid QC-based techniques for solving large-scale 
scheduling problems, building upon previous work by Ajagekar et al. (2020). To 
overcome the shortcomings of the purely classical and purely quantum approaches, we 
propose novel solution methods that integrate both approaches by decomposing the 
problem into smaller subproblems. The hybrid solution framework allows us to take 
advantage of the complementary strengths of the two methods. We demonstrate the use 
of this hybrid approach to developing efficient algorithms for an intractable scheduling 
problem, the multi-purpose batch scheduling problem.  

2. Quantum Computing Background 
Quantum computing, which follows the rules of quantum mechanics, has emerged as 
the next frontier in computation. Analogous to the bit in classical computers, the 
quantum bit (qubit) is the fundamental unit of information in quantum computers. This 
work is restricted to quantum annealing-based computers, which are purposefully built 
for discrete optimization applications. Quantum annealing uses quantum fluctuations to 
tunnel through local minima and converge to an optimal state (Kadowaki and 
Nishimori, 1998). The advantage of the quantum annealing model is that it uses 
quantum fluctuations to efficiently find the minimum-energy state of the Hamiltonian, 
which corresponds to the objective function in the context of an optimization problem. 
The annealing process begins by initializing the system to the lowest-energy state of the 
initial Hamiltonian, which means that all qubits are in a superposition of 0 and 1. 
Throughout the quantum annealing process, the influence of the initial Hamiltonian is 
reduced, and a user-defined problem Hamiltonian is introduced. Quantum fluctuations 
are used to evolve the system towards the lowest-energy eigenstate of the problem 
Hamiltonian as shown in Figure 1a, which represents the solution to the optimization 
problem (Kadowaki and Nishimori, 1998). 

 
Figure 1. a) Quantum annealing and b) Chimera graph on the quantum processing unit 

State-of-the art implementations of quantum annealing are available from D-Wave 
Systems, which provides cloud access to users. The D-Wave system solves problems 
that are formulated as a quadratic unconstrained binary optimization (QUBO) model. A 
QUBO model can be represented by a graph, where the nodes represent the binary 
variables, and the edges represent the connections between these variables. On the D-
Wave quantum processing unit (QPU), this graph maps to another graph where the 
nodes are qubits and the edges are internal couplers that connect the qubits. This lattice 
of interconnected qubits forms a topological structure known as the Chimera graph as 
shown in Figure1b. Solving a problem on the QC system involves embedding graph of 
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problem QUBO on the QPU, performing quantum annealing to return the lowest-energy 
solutions of the problem Hamiltonian before returning the unembedded solution. 

3. Multi-purpose Batch Process Scheduling 
A significant scheduling problem that is typical in batch manufacturing is the multi-
purpose batch scheduling problem. This operational problem pertains to determining the 
optimal batch sizes, the assignment of tasks to equipment resources, and the sequence of 
tasks on each equipment unit. In this paper, we consider a Resource Task Network 
(RTN)-based formulation (Castro et al., 2001) with a fractional objective, as in You et 
al. (2009). To solve the mixed-integer fractional programming (MIFP) model of the 
multi-purpose batch scheduling problem efficiently, we propose a novel approach that 
integrates a hybrid QC-MILP decomposition strategy (Ajagekar et al., 2020) with an 
inexact parametric algorithm, which was developed for general MIFP problems (Zhong 
and You, 2014). Consider a version of the RTN-based continuous-time batch scheduling 
problem modified to have a fractional objective. The binary variables of this model are 
Wsin, Wfin, and R2rn. Wsin indicates whether task i starts at time point n. At time point n, 
Wfin, and R2rn indicate whether task i finishes and whether equipment resource r is being 
utilized. The problem also has six continuous variables. Bsin and Bfin represent the batch 
size of task i as it starts and finishes at time point n, respectively. R1rn is the amount of 
material resource r at time point n. Tn is the time corresponding to time point n, and H is 
the variable scheduling horizon, or make-span, of the network. The objective (1) 
describes the maximization of profit per unit time, which calls for the MIFP formulation 
presented here. 
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1 0, NT T H        (13) 
2 0rNR r E         (14) 

, , , 1 , , 0 , ,in in in rn nBs Bf Bp R T H i T r M n           (15) 
 , , 2 0,1 , ,in in rnWs Wf R i T r E n           (16) 

Constraints (2)-(4) are batch size constraints. Constraint (5) models the logical 
relationship between Bsin, Bfin, and Bpin for a given task. Constraint (6) enforces 
required demand by the end of the scheduling horizon. Eq. (7) expresses the mass 
balance of chemical resources, where  and  represent rates of consumption and 
generation of resource r by task i, respectively. Eq. (8) enforces the storage capacity 
limitation. The equipment unit eq. (9) does not allow an equipment unit to be utilized by 
more than one task at any time, where Ir is the set of tasks that utilize equipment unit 
resource r. The timing eq. (10) ensures that the processing time of tasks on each 
equipment unit is not greater than the duration between two consecutive time points. Eq. 
(11) expresses that tasks that have started must finish. Eq. (12) prevents tasks from 
finishing at the first time point and does not permit tasks from starting at the end of the 
scheduling horizon. Eq. (13) and (14) represent the initial and final conditions at end of 
scheduling horizon. To solve the MIFP model of the multi-purpose batch scheduling 
problem efficiently, we propose a novel approach that integrates a hybrid QC-MILP 
decomposition strategy with an inexact parametric algorithm, which was developed for 
general MIFP problems (Zhong and You, 2014). 
3.1. Hybrid QC-MIFP Parametric Decomposition Algorithm 

We propose a novel algorithm that integrates hybrid QC-based decomposition with a 
computationally efficient parametric method (Zhong and You, 2014). We first discuss 
the QC-based decomposition and further show how to integrate it with the parametric 
algorithm. Consider the simplified problem that results from replacing the fractional 
objective in (1) by the linear objective:  max 1r rN rr M

price R init 


   , where  
is a penalty parameter that is initialized to zero and is iteratively updated. We introduce 
a hybrid QC-MILP decomposition method that efficiently solves this MILP scheduling 
problem formed by replacing fractional objective with the above linear objective, in two 
phases. The first phase determines the start times, finish times, and batch sizes of tasks 
that optimize the objective function. The second phase balances equipment unit 
resources and searches for an optimal schedule on each unit such that the start times, 
finish times, and batch sizes determined in the first phase are feasible. The main idea is 
that if the equipment resources cannot be balanced, then the partial solution returned 
from the first phase is infeasible. Linear objective, constraints (2)-(8), and constraints 
(10)-(13) form the relaxed MILP that is optimized in phase one of this hybrid strategy. 
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Constraints (9) and (14) are concerned with balancing equipment unit resources and are 
reduced to the QC step shown in (17). During each iteration, the relaxed MILP problem 
is solved using the classical deterministic solver Gurobi to return partial optimal 
solutions. The second phase involves taking in partial optimal solutions and solving the 
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QC step on a quantum processor to search for a feasible schedule. If the QC step returns 
an infeasible solution, integer cuts are added to the relaxed MILP. This process is 
repeated iteratively until the QC step returns a feasible schedule or the relaxed MILP 
problem is proven infeasible. If the QC step returns a feasible schedule, this schedule is 
returned as the optimal solution for the batch scheduling problem. Each r for which the 
task scheduling W is infeasible, could be identified. The assignment for these specific 
tasks can then be excluded. This is accomplished by adding an integer cut. To tackle the 
intractability stemming from the fractional objective of the multi-purpose batch 
scheduling problem, we integrate a hybrid QC-based decomposition with an efficient 
parametric algorithm. To initialize the algorithm, the dynamic parameter  should be set 
to zero, and a tolerance value must be defined. During each iteration, the parametric 
MILP problem is solved using the hybrid QC-MILP decomposition method described 
above. If the MILP is infeasible, the hybrid QC-MIFP parametric decomposition 
algorithm stops, and the original batch scheduling problem is infeasible. The algorithm 
updates  to take the value of the last computed fractional objective, and it moves on to 
the next iteration. Convergence is achieved when the absolute difference between the 
fractional objective and  is lower than the tolerance level. 

         Table 1. Computational results of the batch scheduling problem 

Tasks Time 
points 

BARON v20.4 Hybrid QC-MIFP parametric 
decomposition method 

 Time (s) Max obj. Time (s) Max obj. Iterations 
8 5 11.7 155.7 2.0 155.7 6 

12 5 21.0 141.3 2.7 145.0 6 
18 8 4,080 311.6 7.4 311.6 10 
22 10 5,298 174.4 13.0 183.3 14 
40 20 --a --a 279 95.1 111 
52 25 --a --a 861 197.5 66 

a. Run time exceeds 24 h 
3.2. Computational Results 

To illustrate the effectiveness of the proposed hybrid QC-MIFP parametric 
decomposition method, we carry out computational experiments with batch scheduling 
problems of various sizes, which were taken from Dow Chemical originally (Wassic et 
al., 2012). A RTN as reported in Chu et al. (2013) was used for modelling the batch 
scheduling problem. This MIFP problem can be solved using the general-purpose 
MINLP solvers BARON v20.4 on a classical computer. BARON is a robust global 
optimization solver and consistently demonstrates fast performance on benchmarks. 
Comparing the computational times and objective values reported in Table 1, the hybrid 
parametric algorithm obtains near-optimal solutions within reasonable computation 
times. The performance of BARON v20.4 deteriorates beyond problems with 18 tasks, 
and it takes more than a day without returning any feasible solution for problems with 
more than 40 tasks. BARON is unable to yield solutions for large-scale problems with 
24 hours of computation time. The hybrid QC-MIFP parametric decomposition method, 
on the other hand, obtains high quality solutions for problems with 52 tasks in under 
900 seconds. The proposed hybrid QC-MIFP parametric decomposition method not 
only performs competitively against state-of-the-art MINLP solvers for small-scale 
scheduling problems, but also dominates classical solvers for medium and large-scale 
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batch scheduling problems. Based on the computational times observed for several 
batch scheduling problem instances, the hybrid QC-MIFP parametric decomposition 
method demonstrates better scalability than BARON. Due to its computational 
advantage and its high-quality solutions, the hybrid QC-MIFP decomposition method is 
expected to yield economic advantage for multi-purpose batch scheduling problem. 

4. Conclusions 
In this paper, we proposed hybrid QC-based optimization methods for solving large-
scale batch scheduling problems. The proposed algorithms exploited the complementary 
strengths of established classical computing methods and novel QC-based solution 
strategies. For the multi-purpose batch scheduling problem, we proposed a novel 
algorithm that integrates a hybrid QC-MILP decomposition method with a fractional 
parametric algorithm. Computational results showed that the proposed hybrid QC-based 
solution strategies were orders of magnitude faster than state-of-the-art MINLP solvers. 
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Abstract 

An integrated framework for building a virtual replica of business transactional processes 
in supply chains is presented. The framework consists of two main components: a 
simulation module and an optimization module. Business processes are modeled as 
networks of queues through which requests (internal or external to the enterprise) can 
flow. The digital replica of the business processes creates value by providing a simulation 
platform upon which to: 1) test optimization strategies, 2) forecast potential delays in 
requests based on the current state of the real process and the historical data, 3) identify 
and mitigate bottlenecks, and 4) provide more accurate fulfillment dates to customers. 
The optimization can be performed offline or in real-time in a feed-back loop as the 
simulation is being executed. As an integrated simulation and optimization environment, 
the framework bridges and extends the literature in business process simulation and 
business process optimization, building upon previous work by the authors that was 
restricted to only business process scheduling in static deterministic environments. A case 
study is presented in which three mathematical programming models and a greedy 
heuristic are compared. A sensitivity study shows the value in using simulation to mitigate 
operational bottlenecks. 

Keywords: Business process optimization, digital supply chain, order-to-cash, digital 
twin 

1. Introduction 
Optimization of supply chains provides significant value to enterprises that seek to reduce 
costs, increase customer satisfaction, and streamline operations. For this optimization to 
be achieved, each of the areas in the supply chain need to be improved. These areas 
include those governed by material flows, financial flows, and information flows. 
Inefficiencies in any of these areas affect all other areas in the supply chain. Traditionally, 
work in supply chain optimization has focused on the physical processes that are governed 
by material flows. This work has been led by the Operations Research community 
(Pourhejazy and Kwon, 2016). However, the transactional business processes that are 
governed by information flows have received limited attention in supply chain 
optimization. Previous work by the authors has shown the potential in applying 
scheduling models from the chemical process industry to improve the operation of 
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business processes (Perez et al., 2021, 2020). However, this work was limited to perfect 
information systems that ignore the stochastic nature of the transactional flows and future 
customer demands in the supply chain. Although not applied in the context of supply 
chain, relevant work includes that of workflow scheduling of cloud-based systems from 
the computer science and systems community. Both heuristic and mathematical 
programming approaches are presented in a handful of works in this field (Cai et al., 2016; 
Hoenisch et al., 2016; Li et al., 2018). However, these works are limited to static 
deterministic systems. To improve the applicability of scheduling models in supply chain 
business process optimization, the authors present a business process digital twin for 
supply chain. Although the digital twin is general for other business processes, it is 
presented in the context of the order-to-cash process. 

2. Methods 
The proposed digital twin uses a queuing network representation of the order-to-cash 
processes as shown in Figure 1. From a manufacturing perspective, the business process 
queueing network is represented as a multi-stage batch plant, where customer orders are 
analogous to batches. Discrete event simulation is used to model orders flowing through 
the process. Each processing stage or transaction on an order is represented as a service 
node with an unknown service time that is sampled from a known probability distribution, 
which can be determined from real process data. At these service nodes, one or more 
resources can be made available to perform the necessary transactions. Resources can be 
shared between transactions as well. Thus, each transaction has a queue, with one or more 
service nodes representing the resource used. As the simulation marches forward in time, 
optimization events can be triggered at discrete intervals, or when certain conditions 
occur. A snapshot of the system state is sent to an optimization algorithm that schedules 
active orders and assigns the resources involved in the process transactions. The resulting 
schedule sequences are translated into order priorities for each queue in the network. 
These priorities are returned to the discrete event simulation to reorganize the positions 
of the orders in each of the active queues. Since the optimization is an event in the 
simulation, the computational time spent performing the scheduling is accounted for in 
the duration of the optimization event. The simulation does not pause for the optimization 
to occur, but keeps marching forward in time, allowing for a more realistic 
implementation of optimization in the business process environment. Furthermore, the 
optimization frequency and solution time plays an important role in the simulation-
optimization integration. 

The digital twin framework is developed in the Julia programming language (v1.5), which 
brings the advantages of using several simulation and optimization libraries available 
within the Julia environment. As an integrated platform, the framework reduces the need 
for creating interfaces between different programming languages, GUIs, and databases 
required for simulation and optimization. The framework is designed such that 
transactional processes of any scale and complexity can be modeled by it. It is general in 
that it allows building simulation and optimization models for business processes based 
on four key inputs: 1) the network structure of the activities in the business process, 2) 
the assignment of resources to activities, 3) the resource capacities, and 4) the 
probabilistic distributions of the processing times for each activity or task. These 
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processing times can be specific to the resource type, order type, and/or customer. Making 
modifications to the underlying business process structure or parameters is relatively easy 
to make. As a unified system, any changes are automatically translated to the queueing 
network structure for simulation and the mixed-integer programming (MIP) models for 
optimization.  
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Figure 1. Queueing network representation for a business process 

Two scheduling paradigms are used for optimization within the framework: a continuous-
time general precedence model (Méndez and Cerdá, 2003) and discrete-time task network 
models. The latter include the Resource-Task Network (Pantelides, 1994) and the State-
Task Network (Kondili et al., 1993). As discussed in another work by the authors, the 
general precedence model provides the benefits of reduced model sizes and temporal 
accuracy, whereas the task network models provide the benefits of reduced solution times 
for large systems due to tight model relaxations (Perez et al., 2021). As an alternative to 
mathematical optimization, a greedy heuristic is also provided, in which the order 
sequencing in the queueing network is determined by the order price, where orders that 
bring in higher revenue take priority. The benefit of using optimization over heuristics is 
that the mathematical models capture the different features in the system (e.g., order 
prices, backlog penalties, processing times, and due dates) to yield a holistic view when 
assigning order priorities. 

3. Case Study 
The digital twin is applied to an extended order-to-cash process with 11 steps as shown 
in Figure 2. Transactional steps (1-5, 7-9, and 11) are processed by a single agent with 
processing times sampled from a uniform distribution in the 15-30 min time range. The 
goods loading step (6) can be processed by one of two agents with processing times 
sampled uniformly from the 1-2 hr. range. The goods transportation step (10) has four 
available agents with processing times sampled uniformly from the 8-24 hr. range. 10 
orders enter the system with arrival times occurring randomly within the first 28 hrs. 
Order due dates are set at random, ensuring that all orders are given at least the average 
total processing time between their arrival times and due dates. Order sales revenues vary 
from $0-1K with a backlog penalty of 30% for late orders. 

Queue re-prioritizing is performed at hourly intervals in the simulation. A time limit of 
10 min is placed on the optimization algorithms, which are solved using CPLEX 20.1 on 
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a 2.11 GHz, 24 GB RAM, Intel i7 PC. The case study is run under two modes: 
deterministic and stochastic. The difference between the two is that the stochastic mode 
samples transaction times from the processing time distributions, whereas the 
deterministic mode uses the average values of such distributions. However, both modes 
are stochastic in the sense that, at any time in the simulation, future orders are unknown. 
Six operating models are compared: FIFO (first-in, first-out), Greedy Priority Heuristic, 
GP (General Precedence), D-RTN (Discrete-time Resource-Task Network), D-STN 
(Discrete-time State-Task Network), and PI (Perfect Information). The FIFO mode 
represents a simulation without any queue priority optimization. The greedy priority 
heuristic mode assigns order priorities in each queue according to the order value. The PI 
mode is an offline optimization that yields a tight upper bound on the total revenue 
possible when all information about present and future orders is known beforehand. 
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Figure 2. Order-to-cash process structure for case study 

3.1. Deterministic Mode 
Table 1 shows the normalized total revenues for each of the simulation modes when 
processing times are deterministic. The results show that performing no queue 
optimization yields the lowest total revenue. On the other hand, the greedy priority 
heuristic and the mathematical programming models produce a 57% and 105% 
improvement relative to the FIFO system, respectively. The superior performance of the 
MIP models (GP, D-RTN, and D-STN) relative to the greedy heuristic results from the 
fact that the assignment of order priorities in the queues is not based solely on the order 
prices. Instead, the MIP models provide a mathematical description of the system that 
accounts for processing times, backlog penalties, resource availabilities and due dates. 
The total revenue of the MIP models is 15% below the highest possible revenue (i.e., the 
perfect information model). As the optimization frequency increases, the gap in the total 
revenue with respect to the perfect information model is expected to decrease. The total 
revenue from the perfect information model serves to highlight the potential gains of 
having accurate demand forecasting. In terms of on-time order fulfillment, the MIP 
models process 5 orders on time, which is a 25% improvement with respect to the FIFO 
system. Despite its improved revenue relative to the FIFO mode, the heuristic does not 
improve the number of orders fulfilled on time. The results from the MIP models show 
that using mathematical optimization can improve not just the total revenue by prioritizing 
which orders to focus on, but can also increase the order fulfillment rate in the system. 
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Table 1. Results for each simulation mode with deterministic task durations 

Simulation Mode FIFO Heuristic MIP PI
Cumulative Revenue 1.16 1.82 2.37 2.79
On-time Fulfillment 40% 40% 50% 80% 

3.2. Stochastic Mode 
Table 2 shows the results from 100 simulations in the stochastic environment. For 
comparison purposes, a unique random seed is used for each of the 100 runs with all 
simulation modes having the same seed in each run. The results show an average revenue 
increase on the order of 10% for the MIP models and 16% for the heuristic, relative to the 
FIFO system. The 95% confidence intervals correspond to a 4-6% uncertainty in the 
average revenues obtained. The number of simulations required is dictated by the allowed 
error tolerance. For a 10% tolerance, approximately 30 simulations would be required. 
For a 2% tolerance, the number of required simulations is in the 500-800 range. The MIP 
models suffer in environments with task durations that exhibit significant variance, as is 
the case with the uniform distributions used here. The deterministic models rely on the 
mean processing times, which results in a mismatch between the mathematical models 
and the simulations when the task durations are uncertain. However, as the variability in 
the processing time distributions becomes less pronounced, the MIP models should begin 
to outperform the Heuristic, as was observed in the deterministic case. 

Table 2. Results for simulation models in a stochastic environment (95% confidence) 

Sim. Mode FIFO Heuristic GP D-RTN D-STN 
Cum. Rev. 1.74 ± 0.10 2.01 ± 0.09 1.92 ± 0.10 1.89 ± 0.10 1.90 ± 0.11 
On-time 47 ± 2% 51 ± 2% 50 ± 2% 51 ± 2% 50 ± 2% 

4. Sensitivity Analysis 
Besides serving as a testing ground for optimization strategies, the digital twin provides 
a framework upon which to identify bottlenecks and test design alternatives to mitigate 
these bottlenecks in a computationally inexpensive way. In the case study above, a major 
bottleneck is the lack of agents to perform transactional steps. A sensitivity study is 
performed in which the number of transactional agents is increased from 1 to 4. Table 3 
shows that if the number of agents available for transactional events is doubled from the 
single agent in the original case study, the total revenue can be increased on average by 
36% without any queue optimization. The on-time order fulfillment rate increases by 20 
points. Further additions of agents do not result in increments that are statistically 
significant. It should be noted that performing the simulations in Julia is computationally 
inexpensive, with run times of less than 0.2 seconds for each simulation in this case. 

Table 3. FIFO Results as the number of transactional agents increases (95% confidence) 

Number of Agents 1 2 3 4 
Cumulative Revenue 1.74 ± 0.10 2.37 ± 0.09 2.44 ± 0.08 2.44 ± 0.08 
On-time Fulfillment 47 ± 2% 67 ± 2% 71 ± 3% 71 ± 3% 

A Digital Twin Framework for Business Transactional Processes in Supply
 Chains
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5. Conclusions 
A simulation-optimization framework for supply chain transactional processes is 
presented. Optimization via mixed-integer linear programming is coupled in a feedback 
loop to a discrete event simulation of the process, which is modeled as a queueing 
network. The feedback loop assigns priorities to orders in each queue in the network. A 
greedy prioritization heuristic is compared against three mathematical optimization 
models in a case study. Two simulation modes are used, a deterministic and a stochastic 
mode. In the latter, the processing times for transactions are sampled from probability 
distributions. Under the deterministic scenario, the MIP models outperforms the heuristic 
by 30%, doubling the total revenue of the un-optimized FIFO system. Under the 
stochastic scenario with large uncertainty in the processing times, the heuristic slightly 
outperforms the MIP models, which are limited due to their deterministic representation. 
A sensitivity study is also presented to illustrate the value of using discrete event 
simulation to identify and mitigate bottlenecks in business process operations. Future 
work includes extending the MIP models to better respond to uncertainty in transaction 
times, while maintaining model tractability when executing the simulations. Reducing the 
uncertainty in the processing times by incorporating supply chain business rules is also 
expected to improve the performance of the mathematical programming models. Overall, 
the digital twin framework presented has promise in paving the way for industrial 
applications where business processes execute a very large number of transactions. 
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Abstract
Optimum energy utilization and constraint release of greenhouse gases are essential
considerations in any production process. This challenge is generally observed in large
energy extensive plants or processes involving fossil fuel combustion. Diesel engines
are widely used to convert some of the chemical energy, contained by the diesel fuel, to
mechanical energy through combustion. This mechanical energy can be converted into
electrical energy using an alternator. Researchers claim that using alternate fuels having
similar chemical properties or using foreign fuel as a fractional substance with diesel in
these engines could result in a significant reduction in emissions or can alter the
concentration of different pollutants. In this study, a methodology is suggested to create
a feasible design space for operation with capped emission limits and energy
consumption. A data-driven machine learning approach is implemented to classify
feasible data points from the data set to create design space. Further, optimization is
performed in the defined region to address an optimization problem associated with
constrained energy and emission limits.

Keywords: Energy Consumption, Electricity Production, Machine Learning, Emissions;

1. Introduction
Energy consumption and emissions of harmful gases are of increasing concern in the
world, and alternative options are continuously being explored having a reduced effect
on the environment. Traditional electricity production process principally depends upon
critically limited fossil fuels. The process of electricity generation by means of these
fuels, several poisonous by-products adversely affect the conservation of natural
eco-system.
Diesel engines are mainly used for decentralized power generation. The major drawback
of these engines is the emanation of harmful gases. However, various studies claim that
using other similar fuels or dual-fuel (using foreign fuel as partial substance) in these
engines can significantly affect the emissions and can produce power from a few
kilowatts up to several hundred kilowatts. R. Uma et al. (2004), stated that dual-fuel
operation reduces NOx and SO2 emission without increasing particulate emission at the
expense of an increase in carbon monoxide emission. Saleh (2008) studied the effect of
variation in LPG composition on emissions and performance in a dual fuel (LPG-diesel)
diesel engine. B.B. Sahoo et al. (2012) discussed the effect of H2: CO ratio in syngas on
the performance of a dual fuel diesel engine operation. H. Ambaria (2017) elucidated
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performance and emission characteristics of a small diesel engine run in dual-fuel
(diesel-biogas) mode. An appropriate trade-off between the operating diesel engine on
different fuel mode will result in balanced emissions and energy consumption.
To address this challenge, support vector machines (SVM), a machine learning tool is
adopted to classify feasible data from the data set in order to define a design space to
operate the engine with constrained objective limits to produce electricity. The model
can be used to classify the data from the embedded dataset and considered to be more
reliable as it encompasses a data-driven approach. The aim of this paper is to obtain a
design space for constrained energy consumption and different emission limits. The
study is based on emission and energy consumption characteristics of the electricity
generation system using a diesel engine. The proposed methodology is explained using
literature example. The diesel engine can be operated in two different modes i.e. diesel
alone and dual fuel (diesel-producer gas). In order to operate similar engines parallelly
in two different modes, a design space is created using an SVM classifier. This will
assist the planner to make decisions in a defined area and to optimize several objectives
within the calculated predefined area using classifier algebraic equation.

2. Problem statement
Given a set of historical/simulated data with varying target load of diesel engine
operated using different fuels. Each targeted load will have its respective specific energy
consumption (SEC) and emission information of different gases as by-products. The
energy consumption and emission of different harmful gases vary with different load
conditions.
The aim of the model is to project the feasible region satisfying the capped limits of
energy consumption and emissions of gases onto the space of production targets.
Additionally, to generate an algebraic equation to attain objective-based optimization in
the feasible region.

3. Methodology
To identify the feasible design space for the presented problem, support vector
classification (SVC) technique is used. It attempts to find an optimal hyperplane or a
sequence of hyperplanes in high dimension space that separates one class from those of
the other class. The ideology for the classification is that the hyperplane has the largest
distance from the nearest training data points in each class conducts a good separation
and, in general, the larger the margin, lower the generalisation error of the classifier.
Given training vectors xi ∈ ℝP, i = 1,2….k in two classes, and a vector O ∈ {-1,1}k, the
goal is to find w ∈ ℝ and b ∈ ℝ such that the prediction given by sign(wTɸ(x)+b) is
correct for most samples. Support Vector Classification (SVC) solves the following
primal problem (Eqs. 1-3):
1
2  𝑤𝑇𝑤 + 𝐶

𝑖=1

𝑘

∑ Ԑ
𝑖
   ;  𝑠. 𝑡.   (1)

𝑂
𝑖
(𝑤𝑇ɸ(𝑥) + 𝑏)≥1 − Ԑ

𝑖
(2)

Ԑ
𝑖
≥0,  ∀𝑖 (3)

Intuitively, to maximize the margin (by minimizing ||w ||2=wTw), while incurring a
penalty when a sample is misclassified or within the margin boundary. Ideally, the
equation (wTɸ(x)+b) ≥1 would be true for all data, which indicates a perfect𝑂

𝑖
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prediction. The problems are usually not always perfectly separable with a hyperplane,
so some samples are allowed to be at a distance  from their correct margin boundary.'Ԑ

𝑖
'

The penalty term ‘C’ controls the strength of this penalty, and as a result, acts as an
inverse regularization parameter. The dual of the primal problem (Eqs. 4-6) is:
1
2  δ𝑇𝑄δ − 𝑒𝑇δ;  𝑠. 𝑡. (4)

𝑂𝑇δ = 0 (5)
0≤δ

𝑖
≤𝐶,   ∀𝑖 (6)

where ‘e’ is the vector of all ones, and ‘Q’ is a (k×k) positive semidefinite matrix
, where is the kernel. The terms are𝑄

𝑢𝑣
= 𝑧

𝑢
𝑧

𝑣
𝐾(𝑥

𝑢
, 𝑥

𝑣
) 𝐾 𝑥

𝑢
, 𝑥

𝑣( ) = ɸ(𝑥
𝑢
)𝑇ɸ(𝑥

𝑣
) δ

𝑖
called the dual coefficients, and they are upper-bounded by ‘C’. This dual representation
highlights the fact that training vectors are implicitly mapped into a higher dimensional
space by the function . Commonly used kernel functions are the linear kernel, 'ɸ'
polynomial kernel, radial basis function kernel (RBF) kernel with bandwidth and
sigmoid kernel.
Once the optimization problem is solved, the output of decision function for a given
sample ‘x’ becomes:

𝑢∈𝑆𝑉
∑ 𝑧

𝑢
δ

𝑖
𝐾 𝑥

𝑢
, 𝑥( ) + 𝑏 (7)

The sum of the support vectors will be of the samples that lie within the margin because
the dual coefficients are zero for the other samples. This classification using SVM is
performed and practised in Python 3.0 using the library scikit-learn (Pedregosa, 2011) to
process input data and to classify them on the basis of feasibility.

4. Case Study
To clarify the methodology, a case study is adapted from R. Uma et al. (2004). Biomass
feedstocks are available in huge amounts in rural areas and could be an appropriate
option for decentralized power generation using biomass gasifier-based systems.
Producer gas from a biomass gasifier can be used either as a partial substitute for diesel
in diesel engines or can be used alone in a gas engine. The mixture is known as dual
fuel and considered as another fueling option to produce electricity. It is also assumed
that the mixing ratio is fixed in dual fuel.
Table 1. Concentration of pollutants and SEC from diesel engine in diesel alone and
dual fuel mode

Parameter
Load
10 kW 20 kW 30 kW 40 kW
Single Dual Single Dual Single Dual Single Dual

CO (ppm) 175.6 656 219 669 284.3 710.6 320.6 922.3
SO2 (ppm) 4.234 1.167 5.4 1.234 7.367 1.667 9.834 2.167
SEC (MJ/kW) 22.8 34 15.5 18 14.0 15 13.1 16
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dual fuel exhaust, whereas, CO concentration improves at partial load condition. This
suggests the need for a lower load limit for dual fuel operation. It can also be observed
from the data that dual-fuel operation reduces SO2 emissions. The SEC increases with
decreasing load both in diesel alone and dual-fuel mode. This implies the considerable
efficiency loss at the low-load condition. In dual fuel mode, SEC is greater than the
diesel-only mode throughout the load condition tested. Increased SEC indicates a
decrease in the efficiency of the dual-fuel mode, which could be caused by a decrease in
the heating value of the producer gas-air mixture, a decrease in the gas pressure entering
the air inlet and a decrease in the flame velocity. Due to contradictory performance of
diesel engine for different parameters, it is suggested to operate diesel engine in both
models parallelly with a cap over aggregate emission and energy consumption to
generate a cumulative load.
A set of historical data could be useful and more accurate, however, for this study
simulated data is used to train the classification model. Simulated data comprises
combinations of the load to be produced by operating diesel engine in two different
modes and is obtained by interpolating four load points (Table 1) using non-linear
regression. A data set of 150 random production combination is generated and divided
into two categories; feasible (-1) if the characteristics (emissions and energy
consumption) are below the capped value for the selected combination output target,
otherwise infeasible (1). Further, the input data is trained using SVC to classify the data
on the basis of feasibility and to predict a feasible region in production space.

The diesel engine system consists of a turbocharged, four-stroke I.C. engine coupled
with an alternator. Table 2 describes the concentration of pollutants and SEC in diesel
alone engine for four different load conditions. It is being observed that the emission of
carbon monoxide (CO) in the dual fuel mode is greater than that of CO in the diesel
mode alone. It indicates incomplete combustion results in the high CO content in the

1764



A Data-Driven Approach to Plan Electricity Production from Diesel Engines wi
Constrained Parameters

Figure 1. Performance of SVC in predicting the feasible region for (a) energy
consumption, (b) CO, (c) SO2, (d) overall (•: feasible points, ▼: infeasible points).
Figure 1 depicts the feasible region (area having feasible points) for production under
specified limits. In Figure 1(a), a line is generated using SVC which separates the
feasible data points. The criteria for the classification is that the total energy consumed
by two engines operated on two different modes should be less than 850 MJ. Similarly,
Figure 1(b) presents the feasible area lies on the left side of the generated line for SO2
concentration to be less than 10 ppm. In the same way, data points are separated in a
region with production combinations producing emission less than 1000 ppm (Figure
1(c)). Linear kernel function is used with SVC to classify input data because these data
points are linearly separable in scatter plot. All the data points which resulted to be
infeasible for any criteria are clustered and assigned as infeasible for overall
performance. Further, a design space is obtained encompassing all the limitations over
parameters, the generated curve for classifying feasible space is shown in Figure 1(d). It
is generated using RBF kernel function in SVC, a hyperplane is created by mapping the
data points to a higher dimension, in order to make non-linear classification possible.
Table 2 summarizes the prediction result of additional 100 points generated by the
model. Precision can be seen as a measure of a classifier’s exactness; recall is a measure
of the classifier’s completeness. The F1 score is a weighted harmonic mean of precision
and recalls such that the best score is 1.0 and the worst is 0, support is the number of
actual occurrences of the class in the specified dataset.
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Table 2.  Results for the case study
Precision Recal

l
F1-score Support

Feasible (-1) 0.90 1 0.95 65
Infeasible (1) 1 0.8 0.89 35
Accuracy 0.93 100
Macro avg 0.95 0.90 0.92 100
Weighted avg 0.94 0.93 0.93 100
This study will assist the planner to plan the generation of electricity within the
specified limits or following the government norms. An algebraic equation can also be
created using the fitted model parameters, i.e. support vectors, coefficients. Using this
equation several objectives can be attained in the feasible design space. An example is
performed to maximize diesel production can be solved using Eq. (8) as objective and
Eqs. (9)-(10) as constraints.
𝑃

𝐷
+  𝑃

𝐷𝐹 (8)

𝑢∈𝑆𝑉
∑ 𝑧

𝑢
δ

𝑖
𝑒𝑥𝑝 (− γ‖𝑥

𝑢
− 𝑃‖) + 𝑏≤0 (9)

𝑃
𝐷

,  𝑃
𝐷𝐹

 ≤40 (10)

Here, P is the vector of production targets, P = { } i.e. production using𝑃
𝐷

, 𝑃
𝐷𝐹

diesel-only mode and dual-fuel mode. be the parameter for RBF kernel function andγ
is the set of support vectors used to design classification boundary.𝑥

𝑢

The resultant NLP model using support vectors from the trained model is solved using
GAMS/CONOPT solver. The maximum aggregate production in the feasible region is
approximately calculated to be 64.1 kW ( ). To𝑃

𝐷
= 32. 16 𝑘𝑊, 𝑃

𝐷𝐹
=  31. 94 𝑘𝑊

generate this load, 893.94 MJ of energy is required with the resultant concentration of
pollutants as 998 ppm CO and 9.7 ppm SO2.

5. Conclusion
With an objective to produce electricity from diesel engine under capped emission and
energy consumption, a data-driven approach is proposed. The methodology is based on
classification of feasible data points using SVC and to create a design space for feasible
production combinations. The proposed study is supported by a case study to use a
mixture of producer gas and diesel as dual fuel. In order to operate two engines with
two different fuel (diesel and dual-fuel) parallelly, a design space is created for
production combination from each mode. Parameters like total CO, SO2, and total
energy consumption were considered and capped below a certain value. For individual
parameters, the data was linearly separable and for the overall classification, RBF kernel
was used to classify nonlinear data and are demonstrated graphically. Optimization is
also performed in the feasible area to calculate maximum production satisfying capped
parameters. In future work, the methodology can be implemented to other combinations
for dual fuel and can be extended to scheduling and planning to satisfy the continuous
electricity demand.
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Abstract
In this work, we propose a decomposition strategy to solve a large-scale MILP model
that seeks to optimize the monthly schedule of the Omsk lubricant plant. The proposed
algorithm consists of sequential solutions of two sub-problems. First, we solve a relaxed
sub-problem where the integer variables representing the amount of packed lubes and
their inventories are treated as positive continuous variables. The solution of the first
approximate problem provides decisions on feedstock purchases and daily capacities of
the continuous process units that produce oil components from vacuum residues and
distillates. In the second stage, we solve the full-space sub-problem with the fixed
values of the process capacities and utilization of the raw materials. By comparing with
rigorous solution of the problem we demonstrate numerical efficiency of the method.
The proposed algorithm provides near optimal solutions with significant reductions in
CPU time as compared with the rigorous solution.

Keywords: scheduling, MILP, relaxation, refinery management.

1. Introduction
Plant-wide planning and scheduling systems play a crucial role in achieving greater
profitability for oil companies. Since 2016 Gazprom-neft, a leader in the Russian oil
business, has been developing own in-house optimization solutions for its refineries and
lubricant plants located in Omsk and Moscow. Such planning and scheduling modules
linking together will eventually compose a unified environment for supporting a
decision-making process across the company’s supply chain.

In this work, we describe one of the modules -- the monthly scheduling problem of
process activities within the Omsk lubricant plant. In a hierarchical planning process,
the production plan is cascaded down to a more detailed production schedule (Hadidi et
al., 2012). The aim of a scheduling phase is to construct the optimal sequence of
production tasks, such that:

- all decisions made on the first planning stage (i.e., capacities of production units,
monthly volumes of supplies, customers’ orders to deliver) should be executed
with minimal deviations,

- product deliveries should be done according to the customer rating system,

- several large-capacity production units must be uniformly loaded during a month,
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- blending operations must be sequenced with the minimal number of switches
between incompatible oils to prevent unnecessary cleaning operations and
generation of low-value oil mixtures,

- allocation of oil inventories to the tanks should be also done taking into acount
compatibility with preceding tank content.

Such scheduling task is formulated as a discrete-time MILP model which main
equations are described in Section 2 of the paper. To reduce the computational burden
associated with solution of the resulted large-scale MILP we develop a decomposition
strategy, which consist of sequential solutions of two sub-problems. Details of our
solution approach can be found in Section 3. Computational performance of the
proposed algorithm is demonstrated by the case study of the Omsk lubricant plant in
Section 4.

2. Discrete-time mathematical formulation
The scheduling model formulated as an MILP includes material balance equations,
capacity constraints for every production unit and mixer, production plan limitations,
and specific constraints setting preferable delivery days according to a product priority,
uniform daily loads of certain production units and penalizing objective function when
preparations or storing of incompatible products occur at the same mixer or tank.

The overall mass balance is determined for every stream s in a day p of a month. Thus,
for every stream s its purchases supplys,p and initial inventories (inventorys for the first
day of a month or stocks,p-1 for other days) must be equal to the amount produced or
consumed at production units (processs,p) plus the amount delivered to customers
(demands,p) and stored in tanks or warehouses (stocks,p):

𝑠𝑢𝑝𝑝𝑙𝑦
𝑠,𝑝
+ 𝑠𝑡𝑜𝑐𝑘

𝑠,𝑝−1
+ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑠,𝑝
− 𝑑𝑒𝑚𝑎𝑛𝑑

𝑠,𝑝
− 𝑠𝑡𝑜𝑐𝑘

𝑠,𝑝
= 0 ∀𝑠 (1)

𝑠𝑢𝑝𝑝𝑙𝑦
𝑠,𝑝
+ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦

𝑠
+ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑠,𝑝
− 𝑑𝑒𝑚𝑎𝑛𝑑

𝑠,𝑝
− 𝑠𝑡𝑜𝑐𝑘

𝑠,𝑝
= 0 ∀ (2)

The mass balance equations for the packed oils and greases (denoted as the subset of
streams PSs) are represented by Eqs. 3-4. The only difference from Eqs. 1-2 is that the
amount of the packed lubes stored (stockpacks,p) and the amount delivered to customers
(demandpacks,p) have integer nature since they are counted in pieces:

𝑠𝑡𝑜𝑐𝑘𝑝𝑎𝑐𝑘
𝑠,𝑝−1

+ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
𝑠,𝑝
− 𝑑𝑒𝑚𝑎𝑛𝑑𝑝𝑎𝑐𝑘

𝑠,𝑝
− 𝑠𝑡𝑜𝑐𝑘𝑝𝑎𝑐𝑘

𝑠,𝑝
= 0 ∀ (3)

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
𝑠
+ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑠,𝑝
− 𝑑𝑒𝑚𝑎𝑛𝑑𝑝𝑎𝑐𝑘

𝑠,𝑝
− 𝑠𝑡𝑜𝑐𝑘𝑝𝑎𝑐𝑘

𝑠,𝑝
= 0 ∀𝑠 (4)

The amount of stream s produced or consumed in a plant (processs,p) is calculated from
the daily loads of operating modes m (modeloadm,p) and the material balance coefficients
processcoeffs,m of a corresponding stream in an operating mode m:

𝑝𝑟𝑜𝑐𝑒𝑠𝑠
𝑠,𝑝
=

𝑚
∑𝑚𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑚,𝑝
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑐𝑜𝑒𝑓𝑓

𝑠,𝑚
 ∀𝑠, 𝑝 (5)

The material balance coefficients processcoeffs,m have a negative sign for the streams
that are consumed in an operating mode m and a positive sign for the streams produced
in this operating mode.
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The daily loads of operating modes modeloadm,p are limited by the minimum and
maximum daily capacities (capminm and capmaxm) associated with a corresponding
mode m:

𝑢𝑠𝑒𝑐𝑎𝑝
𝑚,𝑝
𝑐𝑎𝑝𝑚𝑖𝑛

𝑚
 ≤𝑚𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑚,𝑝
≤𝑢𝑠𝑒𝑐𝑎𝑝

𝑚,𝑝
𝑐𝑎𝑝𝑚𝑎𝑥

𝑚
 ∀𝑚, 𝑝 (6)

The binary variable usecapm,p takes the value of 1 if a mode m is used in a day p and 0
otherwise.

The sum of all daily loads modeloadm,p over all days p should not deviate from a
monthly value monthcapm that was obtained during a planning phase:

𝑝
∑𝑚𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑚,𝑝
= 𝑚𝑜𝑛𝑡ℎ𝑐𝑎𝑝

𝑚
+ 𝐷𝑐𝑎𝑝

𝑚
𝑝𝑙𝑢𝑠 − 𝐷𝑐𝑎𝑝

𝑚
𝑚𝑖𝑛𝑢𝑠 ∀𝑚 (7)

The slack variables Dcapplus
m and Dcapminus

m are incorporated in the model to guarantee
finding feasible solution (Mendez at al., 2006). In Eqs. 8-10 similar slack variables are
used to penalize deviations from the monthly supply and demand requirements:

𝑝
∑ 𝑠𝑢𝑝𝑝𝑙𝑦

𝑠,𝑝
= 𝑚𝑜𝑛𝑡ℎ𝑠𝑢𝑝𝑝𝑙𝑦

𝑠
+ 𝐷𝑠𝑢𝑝𝑝𝑙𝑦

𝑠
𝑝𝑙𝑢𝑠 − 𝐷𝑠𝑢𝑝𝑝𝑙𝑦

𝑠
𝑚𝑖𝑛𝑢𝑠 ∀𝑠 (8)

𝑝
∑ 𝑑𝑒𝑚𝑎𝑛𝑑

𝑠,𝑝
= 𝑚𝑜𝑛𝑡ℎ𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
+ 𝐷𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
𝑝𝑙𝑢𝑠 − 𝐷𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
𝑚𝑖𝑛𝑢𝑠 ∀ (9)

𝑝
∑ 𝑑𝑒𝑚𝑎𝑛𝑑𝑝𝑎𝑐𝑘

𝑠,𝑝
= 𝑚𝑜𝑛𝑡ℎ𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
+ 𝐷𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
𝑝𝑙𝑢𝑠 − 𝐷𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
𝑚𝑖𝑛𝑢 (10)

The binary variable usecapm,p is used to restrict number of switches from one operating
mode to another one assigned to the same process unit during the same day p at the
same production unit u:

𝑚∈𝑀𝑈
𝑢

∑ 𝑢𝑠𝑒𝑐𝑎𝑝
𝑚,𝑝

≤ 𝑠𝑤𝑖𝑡𝑐ℎ𝑚𝑎𝑥
𝑢
 ∀𝑢, 𝑝

(11)

where MUu is a subset of operating modes m which can be executed at a process unit u.
The amount of oil s that can be prepared in a mixer b (VOb,s,p in Eq. 12) is limited by the
volume restrictions of a mixer b:

𝑉𝑚𝑖𝑛
𝑏
𝑢𝑠𝑒𝑚𝑖𝑥

𝑏,𝑠,𝑝
≤𝑉𝑂

𝑏,𝑠,𝑝
≤𝑉𝑚𝑎𝑥

𝑏
𝑢𝑠𝑒𝑚𝑖𝑥

𝑏,𝑠,𝑝
 ∀𝑏, 𝑝, 𝑠∈𝐵𝑆

𝑏

(12)

In Eq. 12 the subset BSb represents the only oils s that can be prepared in a mixer b. The
binary variable usemixb,s,p is 1 then an oil s is mixed in a blender b during a day p and 0
otherwise. It is used to count the number of blending operations at a mixer b during a
day p and to restrict it by the maximum allowable number of blending operations NBOb:

𝑠∈𝐵𝑆
𝑏

∑ 𝑢𝑠𝑒𝑚𝑖𝑥
𝑏,𝑠,𝑝

≤𝑁𝐵𝑂
𝑏
 ∀𝑏, 𝑝

(13)
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The binary variables Xb,s,s’,p denotes an occurrence of preparing two incompatible oils s
and s’ at the same blender b during period p. Another binary variable Yb,s,s’,p is equal to 1
if a blender b prepares an oils s in a current period p and an incompatible oil s’ during
the next period p+1. Such logical variables are used to count all occurrence of blending
of incompatible oils at the same blender and penalizes such schedule, because shifts to
incompatible products causes additional cleaning operations and generation of
low-value oils:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑙𝑒𝑎𝑛 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑜𝑠𝑡𝑐𝑙𝑒𝑎𝑛 
𝑏,𝑠≠𝑠',𝑝

∑ 𝑋
𝑏,𝑠,𝑠',𝑝

+
𝑏,𝑠≠𝑠',𝑝<𝑃

∑ 𝑌
𝑏,𝑠,𝑠',𝑝( ) (14)

The aforementioned binary variables Xb,s,s’,p and Yb,s,s’,p are derived from the binary
variable usemixb,s,p using the procedures of disjunctive programming that translate
logical expressions to inequality constraints (Grossmann, 2009). In the interest of
brevity, detailed definitions of Xb,s,s’,p and Yb,s,s’,p are not presented here.

Slack positive variables from Eqs. 7-10 are used to compute penalties for deviating from
a production plan for a given month:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠𝑢𝑝𝑝𝑙𝑦 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑜𝑠𝑡𝑠𝑢𝑝𝑝𝑙𝑦 
𝑠
∑ 𝐷𝑠𝑢𝑝𝑝𝑙𝑦

𝑠
𝑝𝑙𝑢𝑠 + 𝐷𝑠𝑢𝑝𝑝𝑙𝑦

𝑠
𝑚𝑖𝑛𝑢𝑠( ) (15)

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑎𝑝 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑜𝑠𝑡𝑐𝑎𝑝 
𝑚
∑ 𝐷𝑐𝑎𝑝

𝑚
𝑝𝑙𝑢𝑠 + 𝐷𝑐𝑎𝑝

𝑚
𝑚𝑖𝑛𝑢𝑠( ) (16)

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑜𝑠𝑡𝑑𝑒𝑚𝑎𝑛𝑑 
𝑠
∑ 𝐷𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
𝑝𝑙𝑢𝑠 + 𝐷𝑑𝑒𝑚𝑎𝑛𝑑

𝑠
𝑚𝑖𝑛( (17)

Every product item has its own priority according to ABC analysis (Gudehus and
Kotzab, 2009). The products with a mark “A” should be prepared and delivered during
the first days of three decads in which a month is divided. The “C” products should be
delivered during the last days of 10-day periods, and “B” has no preferable days of
delivery. It is modeled using the bonus coefficients coeffs,p

bonus. For products s with “A”
rating, parameter coeffs,p

bonus has the highest value for the first day p of every decad and
monotonically decreases till the first day of the next 10-day interval. The bonus
coefficients for the “C” lubes are constructed in a similar way with the only difference
that they reach their maximum values at the last days of every decad. The values of
coeffs,p

bonus for “B” items do not vary depending on a day p. Using these bonus
coefficients, we compute the bonus part of the objective function:

𝑏𝑜𝑛𝑢𝑠𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝑠,𝑝
∑ 𝑑𝑒𝑚𝑎𝑛𝑑

𝑠,𝑝
𝑐𝑜𝑒𝑓𝑓

𝑠,𝑝
𝑏𝑜𝑛𝑢𝑠 + 𝑑𝑒𝑚𝑎𝑛𝑑𝑝𝑎𝑐𝑘

𝑠,𝑝
𝑐𝑜𝑒𝑓𝑓

𝑠,𝑝
𝑏𝑜𝑛𝑢𝑠( ) (18)

The objective function obj to be maximized is formulated as follows:

𝑜𝑏𝑗 = 𝑏𝑜𝑛𝑢𝑠𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦  − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑙𝑒𝑎𝑛 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑑𝑒𝑚𝑎𝑛𝑑  − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠𝑢 (19)

3. Solution strategy
The MILP model includes variables of different nature. The complexity of this
formulation is mainly given by the integer variable demandpacks,p representing amount
of packed oils and greases. Our solution strategy exploits the fact that the relaxation of
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these integer variables does not greatly affect the production and supply schedule. The
overall MILP model can therefore be decomposed into a pair of the smaller
sub-problems that are solved sequentially.
We first construct the approximate sub-model by relaxation of the integer variables
demandpacks,p and stockpacks,p. After solving the first sub-problem, we fix the values of
the binary variables defining the optimal production schedule, i.e. the binary variable
usecapmp denoting selection of a particular operational mode m in a day p and the binary
variable usemixs,b,p representing a usage of a blender b for preparing a product s. Finally
we solve the second sub-model in which variables demandpacks,p and stockpacks,p have
their original integer nature and the values of the binary variables usecapmp and
usemixersb are fixed at the values from the solution of the first relaxed sub-model.

4. Case study
The structure of the Omsk lubricant plant is depicted in Figure 1. The plant involves a
continuous processing of vacuum residues and distillates into oil components and batch
operations of blending and packing. Vacuum residues from the Omsk refinery are
separated from asphaltenes at three propane-deasphalting units. Two aromatics
extraction units remove aromatic hydrocarbons from deasphalted oils and refinery oils
cuts, thus producing dearomatized oils called “raffinates”. Finally, base oils are
generated at 3 dewaxing units after removing dissolved long chain paraffines. By
blending these base oils with various additives, the desired properties of lubricants are
achieved. Special mixers and tanks conduct blending operations, and final products are
delivered to customers by either rail cars or trucks. The Omsk lubricant plant has its
own 13 packing lines that can fill oils and greases into 43 different types of packings.
Most of these packings are manufactured using own extruders and injection molding
machines.

Figure 1. Structure of the Omsk lubricant plant

The mathematical model also includes several tank farms and storages. In total, there
are 86 process units with 1404 different operating modes, 31 mixers, 216 tanks and 12
storages.

The model was written in GAMS 32.2 (McCarl et al., 2016) and solved with the MILP
solver CPLEX 12 on a desktop PC with Intel Core I5-6500, 3.2 GHz and 8Gb of RAM.
The dataset of process coefficients, supply and demand constraints used in the case
study corresponds to the actual plant conditions at the beginning of August 2020. The
original full-space model (i.e., without any relaxation of the integer variables) comprises
2,754,281 equations with 2,899,767 variables. 405,950 of the model variables are
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discrete. The relaxed sub-problem, which we solve first according to the proposed
strategy, contains 58,962 discrete variables less than the original problem.
To compare the numerical performance of our relaxation strategy and the computational
results of solving the full-space model, we first attempted to solve the original
scheduling MILP problem allowing the solver to use as much time, CPU and RAM
resources as needed to close the optimality gap to zero. Unfortunately, after 2h and 19
minutes a memory issue interrupted the solving process at the integer solution with
objective equal to -586,341,137 and the best bound of -562,994,661. The optimality gap
was therefore 3.98%. The best bound we found during solving the full-space model is
later used to assess the tightness of the solution of the proposed relaxation method.

Both sub-problems involved in our method were successfully solved without numerical
issues in 506 seconds. Solving of the first approximate sub-problem with the relaxed
integer variables took 343 seconds whereas the second sub-problem with the fixed
production schedule was solved in 163 seconds provided the integer solution with the
objective of -565,120,963. Thus, the proposed algorithm was able to find the better
optimal solution with the optimality gap of 0.38% significantly faster than the rigorous
solution of the original full-space MILP model.

5. Conclusions
In this work, we describe how the relaxation of integer variables can be exploited to
effectively solve the large scheduling problems. The proposed algorithm involves
sequential solution of the approximate sub-model constructed by relaxing integer
variables representing delivery decisions and the second sub-problem that receives a
production schedule from the solution of the first sub-model. The capabilities of the
proposed method were shown through a case study of the Omsk lubricant plant. The
proposed algorithm provides near optimal solutions with significant reductions in CPU
time as compared with the rigorous solution.
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Abstract 
This paper addresses the design of the hydrogen supply chain (HSC) with a focus on the 
its decentralization degree. For this purpose, the superstructure used for HSC modelling 
is split into six echelons, i.e., primary energy source, H2 production, conditioning and 
centralized storage, distribution, conditioning and decentralized storage, final usage. The 
originality of this work is also the diversification of H2 production, conditioning and 
distribution methods for the H2 supply both for the industry and mobility sectors. The 
problem is formulated in a mono-optimization framework, where the total cost of the 
HSC is minimized. The model involves a multi-period (2020-2040) mixed-integer linear 
programming (MILP) formulation that is implemented in the General Algebraic 
Modelling System (GAMS) environment, using CPLEX as a solver. The optimization 
results highlight some significant applications of the developed methodological 
framework. The assessment of the decentralization degree of the system, the 
diversification of the final H2 demand, the share between liquid and compressed gaseous 
form are some of the Key Performance Indicators (KPIs) that can characterize a scenario. 
The scalability and replicability of the tool indeed allow to make forecasts on different 
geographical and temporal scales. 
 
Keywords: hydrogen supply chain, multi-period optimization, mixed integer linear 
programming, GAMS, decentralization. 

1. Introduction 
The deployment of a hydrogen infrastructure constitutes one of the most challenging tasks 
due to the complexity and large spectrum of energy sources and technological bricks 
involved (e.g. water electrolysis technologies, liquid or gaseous conditioning and 
transport of H2, Hydrogen Refuelling Station (HRS) options) serving a multitude of end 
uses. In this paper, the structure of the energy supply chain is studied with an innovative 
vision based on “think global, act local”, rather than “think local, act local” (Devine-
Wright, 2013), emphasizing the decentralization degree of the hydrogen supply chain 
(HSC). 
The pioneering work carried out by (Almansoori and Shah, 2006) has been followed by 
almost 15 years of active research in the field (Talebian et al., 2019).  This work enlarges 
the scope of previous studies by considering the possibility for one production site to 
simultaneously satisfy different hydrogen demands coming from industry and mobility 
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via the development of a superstructure that can embed a large set of technological bricks 
for the construction of the HSC.  
Following this introduction, the problem formulation and the key points of the 
methodology will be presented. A case-study will then be analysed with the most relevant 
results. Finally, the conclusions and critical analysis of the model will be highlighted, thus 
opening perspectives in terms of methodology and scenario definition. 
The main text can start here. Next paragraphs should start with heading “Els-
1storderheading”  

2. Text 
2.1. Main assumptions 
A great challenge for modern day energy systems models is to capture the high degree of 
variability and complexity that exists in energy systems and represent the involved 
technologies. Several formulations have been developed including simulation vs. 
optimisation, top-down vs. bottom-up (e.g. MARKAL) (Pfenninger et al., 2014). The core 
innovation of this work lies in the modelling of the HSC with a spatial and temporal 
resolution adapted for addressing: 
• the discretization of a territory into grids, each grid being characterized by 
demands targeting industry and mobility markets;  
• the simultaneous satisfaction of both demands; 
• various technical solutions for H2 logistics, i.e. gaseous and liquid, 
corresponding to the final conditions of usage in industry or mobility (i.e., pressure level); 
• interconnection between grids in order to valorise the energy produced from one 
grid to another grid (primary energy sources);  

The skeleton of the model was taken from the works developed by (De-León Almaraz et 
al., 2014; Guilarte and Azzaro-Pantel, 2020). This work aims to show all the different 
solutions and scenarios that can be implemented in the extended tool. No investment cost 
has been considered for the HRS on the industrial site which suggests that the structure 
already exists. The advanced model focuses mainly on two KPIs, on the one hand, the 
diversification of the energy source, status and utilization of hydrogen, and on the other 
hand, the centralization degree of the production and storage facilities. The replicability 
and scalability of the tool make it flexible and usable for any type of scenario. 

The problem is presented as a multi-period mono-optimization model in which the time 
slots are divided into 4 periods “t” of 5 years “n” each. The investment costs related to H2 
technologies are reduced at the beginning of each period due to a learning rate factor. 
Furthermore, the investment costs are involved only at the beginning of each period (i.e. 
end of year 0,5,10,15). The parameters of the years belonging to the same period, 
including the H2 demand have been kept constant, except for the costs, which are 
discounted as explained in Eq. (3). The model aims finally to minimize the yearly cost of 
HSC. 
In line with the majority of the works analysed in the literature, this formulation of the 
HSC design problem is based on a mixed-integer-linear-programming (MILP) approach. 
The model is developed in the General Algebraic Modelling System (GAMS) 
environment, using the CPLEX solver in a computer with Intel® Core™ i5-6200U 
processor with CPU @ 2.30GHz and 16GB RAM. A comprehensive explanation of all 
the parameters, formulas and constraints can be found in (De-León Almaraz et al., 2014; 
Guilarte and Azzaro-Pantel, 2020). 
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decarbonised hydrogen supply chain with multiple end uses  

The design of the HSC is represented by a 6-echelon superstructure: primary energy 
source, hydrogen production, conditioning and centralized storage, distribution, 
conditioning and decentralized storage, final usage. A schematic view (Fig. 1) gives 
additional information on the energy sources and technologies that have been analysed in 
this work. Two options for H2 production have been considered, i.e., electrolysis powered 
by renewable electricity sources (RES) (or by the grid if RES is not sufficient) or by 
Steam Methane Reforming (SMR). 

 
Figure 1: Definition of the H2 supply chain superstructure 

The discretization of the territory allows each area (the so-called grid) to be represented 
with its own characteristics (e.g. availability of RES, different H2 demands, etc.). 
Furthermore, all possible exchanges between grids, both internal and external to the 
system have been considered (Fig. 2): primary energy sources can be imported/exported 
from any grid and/or bought from a source outside the system; the H2 produced, including 
the one produced on-site, can be transported to any grid where it will be conditioned and 
made ready for end-use (i.e. mobility or industry).  
 

 
Figure 2: Interconnection between the grids of the HSC superstructure 
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2.2. H2 and primary energy sources mass balance 
The new mass balance constraint is shown in Eq. (1): the totalH2 production (PT) in all 
”g” grids, independently of its form ”i” (i.e. compressed or liquid) and of the size of the 
plant ”j” (i.e. centralized or on-site production), must satisfy the different H2 demands 
(DT) ”k” (i.e. mobility and industry) in each “g” grid. 
 𝑃𝑇  =  𝐷𝑇  ∀ 𝑖, 𝑗, 𝑔, 𝑘 (1) 

 
The calculation of the primary energy costs (ESC, €/day) is composed of two parts. The 
former considers the costs of the energy present in the territory including the 
transportation costs, whereas the latter considers the costs due to the purchase of energy 
from an off-grid source.  
 
2.3. Economic parameters  
The investment cost of the facilities (FCC) (see Eq. (2)) includes the facility capital costs 
(i.e. production ”p” (PCC), storage ”s” (SCC) and fuelling station “f” (FSCC)) 
respectively for the installed number of each facility (i.e. number of production plants 
(NP), storages (NS) and refuelling stations (NFS)). All these factors are then divided by 
a learning factor (LearnF) to consider cost reduction of some technologies with mass 
production and market penetration (e.g. electrolyzers). The facility capital costs and the 
learning factor are defined at the beginning of each period “t”. 
 𝐹𝐶𝐶 = ∑  𝑃𝐶𝐶 𝑁𝑃 + 𝑆𝐶𝐶 𝑁𝑆 +𝐹𝑆𝐶𝐶 𝑁𝐹𝑆    ∀ 𝑡   

(2) 

  

2.4. Actualization factor 
All the economic variables (e.g. PCC) are discounted to year ”n” see Eq. (3), where ”i” 
is the discount rate. 𝑃𝐶𝐶 = 𝑃𝐶𝐶 1(1 + 𝑖)  ∀ 𝑛  (3) 

2.5. Optimization variable 
The total cost (TCTotal) as expressed in Eq. (4), representing the costs of the whole HSC 
over the timeframe analysed, is the objective function to be minimized. The TCTotal 
consists of the sum of investment costs for facilities and transportation means (TCC) and 
the sum of the total yearly operating costs (TOC) that are discounted (see Eq. (3)). 𝑇𝐶𝑇𝑜𝑡𝑎𝑙 = (𝐹𝐶𝐶 +  𝑇𝐶𝐶 ) + ∑ 𝑇𝑂𝐶   (4) 

3. Case study 
As a first case study for the validation of the model, the deployment of the HSC in the 
Occitania region in France was analysed considering the availability of energy sources 
and the H2 demand as presented in (De-León Almaraz et al., 2014). The Occitania 
territory was discretized into 8 grids and in this scenario, the H2 demand for industry and 
mobility has been set as an equal level corresponding to 23.5 tons per day (t/d) of H2 at 

1778



  

the beginning of the study and progressively increasing up to roughly 600 t/d at the fourth 
period. 

4. Results 
Two important KPIs of the HSC design have been further analysed, i.e., the 
decentralization degree and the share between compressed and liquid H2. Due to the 
increasing demand for H2 in the Occitania Region, the model has to make trade-offs 
between centralized and decentralized H2 production, mitigating the cost between 
production and distribution logistics. Starting in period 1 with 100% of H2 produced on a 
decentralized basis, more than 50% of the production becomes centralized at the end of 
period 4 as shown in Figure 3 (a). This can be explained by the scaling effect on the 
investment cost of H2 production technologies that reduces the H2 production cost. 
Nevertheless, this should be in contradiction with the reduced CO2 footprint of H2 that 
was not yet considered in the first scenario. 

 
Figure 3: KPI analysis, centralized vs. decentralized (a) and CH2 (compressed gas) vs. LH2 

(cryogenic liquid) (b) 
 
Another result of the model concerns the mode of H2 distribution, i.e. either as compressed 
gas (CH2) or as cryogenic liquid (LH2) (Figure 3 (b)). Despite the higher energy density 
of LH2 allowing the distribution of larger volumes of H2, the investment and operating 
costs for liquefaction and cryogenic tankers remain prohibitive over the fourth periods. 
CH2 distribution is preferred because of the good share between centralized and 
decentralized production which reduces distribution distances. However, other issues 
have to be considered such as the availability of space for the storage of gaseous H2 
compared liquid H2. It is interesting highlight that the solution with liquid H2 is not 
considered for a centralized solution because of the currently high investment and 
operating costs of LH2 vessels. Nevertheless, the bulk and footprint of the solution cannot 
be ignored. Road transportation is mainly dependent on the available H2. In the first 2 
periods, only tanker trucks are considered, while in the last period there is a higher number 
of tube trailers (14), even though the amount of H2 that the tanker trucks (8) transport is 
higher (71% LH2 vs. 29% CH2).  
HSC investment costs supporting the development of H2 in the Occitania region integrate 
the contribution of H2 production plants, centralized storage with conditioning and 
transportation modes, decentralized storage and refuelling stations as shown in Figure 4 
(a). Around 54% of the investment costs of the HSC are related to centralized storage, 
conditioning and distribution due the development of centralized production plants over 
the fourth time periods. Concerning operating and maintenance costs, the cost of 
electricity and natural gas needed for the production of H2 represents the main operating 
costs (76.7%) as shown in Figure 4 (b). 

Centralised vs. decentralised production and storage: optimal design of a 
decarbonised hydrogen supply chain with multiple end uses  
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Figure 4: Share of the investment (a) and maintenance costs (b) 

 
5. Conclusions 
The model developed for the optimization of hydrogen supply chains was used for the 
case of the Occitania region. The optimal design of HSC was implemented on the basis 
of total cost minimization and some KPIs such as the decentralization degree of the 
production and storage plants or the share between liquid and compressed hydrogen. The 
model is scalable and replicable to forecast and understand where, how and in which 
conditions the H2 market will evolve. The methodology can be further improved with a 
multi-objective analysis, including the minimization of CO2 emissions to assess the trade-
offs between low-carbon technologies (electrolysis powered by renewable electricity or 
SMR with CCS, Carbon Capture and Sequestion) as well as the scale-up effect of large-
size electrolyzers which is a key driver for cost reduction. Furthermore, few technology 
solutions such us H2 pipelines or hydrogen importing from another region, could also be 
implemented. 
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Abstract 
This contribution addresses the optimal design and operation of a reverse supply chain 
of empty agrochemical containers. The problem is tackled by means of a multi-period 
MILP model, which relies on a superstructure that includes all the potential/existing 
collection centers and possible/existing plastic treatment plants, as well as the farms. Its 
decisions involve selecting the new facilities, their sizes, and installation periods, along 
with the operation of the facilities and the material flows among the various nodes in 
each planning period. A realistic case study has been solved under several scenarios in 
order to analyze the model scalability and to test its response to changing conditions. 

Keywords: Reverse Logistics, Supply Chain Design, Empty Agrochemical Containers. 

1. Introduction 
In recent years, reverse logistics has become a field of importance for many 
organizations due to growing environmental concerns, legislation, corporate social 
responsibility and sustainable competitiveness (Agrawal et al., 2015). The importance 
increases significantly when the products handled are harmful to the health of people, 
animals, and the environment, and must be treated in a special way prior to disposal or 
recovery. Reverse logistics refers to the process of planning, implementing and 
controlling backward flows of raw materials, in-process inventory, packaging and 
finished goods, from a manufacturing, distribution or use point, to a point of recovery or 
point of proper disposal (Dekker et al., 2004). The definition of reverse logistics has 
been changing over time and widening its scope with the interest of researchers. The 
number of scientific publications related to the field has steadily grown during last 
decade (Govindan et al., 2014), showing the attention that the subject entails. However, 
regarding the reverse supply chains of empty agrochemical containers, few 
contributions have been found. Recently, Sorichetti et al. (2018) reported a preliminary 
approach to address the design of the reverse network of empty agrochemical containers 
in a region of Buenos Aires, Argentina. Various aspects of relevance are not taken into 
account, such as the operation and installation costs of facilities and the transportation 
from farms to collection centers. The optimal configuration of the reverse supply chain 
network of empty agrochemical containers is a challenging problem that deserves 
attention and will be addressed in the remaining sections of this contribution, which is 
organized as follows. The mathematical model is presented in Section 2. In Section 3, a 
realistic case-study, which allowed testing the formulation, is described. Computational 
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results associated with various scenarios are also presented. The contribution ends with 
concluding remarks and a summary of future work. 

2. Mathematical Programming Formulation 
The multi-period mixed-integer linear programming (MILP) model presented in this 
section allows making the following decisions: (i) the number and location of collection 
centers – intermediate points for collecting containers – , as well as plastic treatment 
plants to be built, (ii) the time period in which each facility will be installed and the 
ones in which it will operate, (iii) the capacities of the various storage and processing 
facilities, (iv) for each time period, which are the flows of materials between farms, 
which generate the containers, and the collection/treatment points, as well as the flows 
between collection centers and plastic treatment plants, with the goal of minimizing the 
total actual discounted cost of the network. 
2.1. Sets/indices 
F/f farms 
J/j collection centers 
P/p plastic treatment plants
Ji/ Pi subset of collection centers/treatment plants that are already installed at 

the beginning of the planning horizon  
M/m set of available sizes of collection centers 
N/n set of available sizes of treatment plants 
T/t, t´ time periods  
2.2. Parameters gft number of containers to be generated by farm f during period t  
dfj/dfp/djp distance between the different types of nodes 
km

min/kn
min      minimum capacity of a collection center/treatment plant of size m/n 

km
max/kn

max     maximum capacity of a collection center/treatment plant of size m/n 
nt j /nt p number of time periods required by a new collection center/treatment 

plant to start operating from the period it is installed cf j/c f p/c jp transportation cost per distance unit between the different nodes  
ir interest rate 
fcm/fcn fixed cost of operation of a collection center/treatment plant of size m/n 
vc variable production cost of plastic treatment plants  
ccm

j /ccn
p construction cost of a collection center/treatment plant of size m/n, 

including the cost of infrastructure and in the case of treatment plants, 
the equipment cost. 

cap loading capacity of the trucks that travel between collection centers and 
treatment plants 

nfft number of trips required to transport the total generation of containers 
of farm f during period t 

nmax max (nt j ; nt p) number of periods that must be considered previous to 
the beginning of the planning horizon for the installation of facilities 

2.3. Binary variables  
Yjt /Ypt        equal to one if collection center j/treatment plant p operates in period t 
Ijmt/Ipnt        equal to one if collection center j of size m/treatment plant p of size n is 

installed in period t 
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2.4. Positive variables  
Sfjt/Sfpt/Sjpt number of containers sent between nodes of different type in period t 

2.5. Equations 
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Eq. (1) prescribes that all the containers generated by a farm in a certain period, must be 
sent to a collection center and/or a treatment plant in the same planning period. In turn, 
Eq. (2) states that all the containers that are received by a collection center in a given 
period must be sent to a plastic treatment plant in the same period. Expression (3) 
assures that a collection center can operate in a certain period only if it has been 
installed in a previous one. Expression (4) forces treatment plants to obey the same 
restriction. Expressions (5) and (6) force every facility to be installed at most once with 
a unique size. According to Expressions (7) to (10), the number of containers sent to a 
given collection center/treatment plant in each period should not overpass the maximum 
storage capacity corresponding to the installed size. Following analogous ideas, the 
minimum capacity of each collection center or plastic treatment plant to be installed is 
given by expressions (11) and (12), respectively. Eq. (13) comprises the different costs 
involved in the design and operation of the logistics network in each period of the 
planning horizon. In order to determine how much future projected cash flows are worth 
at present, these cost components are affected by an annual interest rate, according to 
the multi-period total discounted cost formula given by Expression (14). 

3. Computational Results 
The model has been implemented in GAMS 23.6, running on an Intel Core i8 computer, 
with 3.4 GHz, 8 GB of RAM, and using CPLEX as a solver.  As shown in Table 1, a 
base case (Case 1) has been initially tackled. It takes into account a super-structure 
composed of 300 farms, 20 potential collection centers, 8 potential treatment plants and 
no existing facilities that are already installed. Two different capacity modules for 
collection centers and treatment plants have been allowed for. The planning horizon 
considers 5 years of operation, plus an initial year for the installation of the first 
facilities. Thus, during the initial year the system does not operate, but the required 
facilities are being built. This base case has been extended to test the scalability of the 
model, analyzing different dimension scenarios presented in Table 1. In a second stage, 
the sensitivity of the formulation to parameter disturbances has been assessed, analyzing 
the scenarios presented in Table 2, which consider the same super-structure as the base 
case. All the model instances were run to optimality and the obtained results are 
presented in Table 3. 
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Table 1. Dimensionality of some of the analyzed scenarios. 

 Farms Collection centers/ 
available sizes 

Treatment  
Plants/available sizes 

Periods 

Case 1 300 20/2 8/2 5 
Case 2 450 20/2 8/2 5 
Case 3 600 20/2 8/2 5 
Case 4 300 20/2 8/2 10 
Case 5 300 20/3 8/3 5 

Table 2. Scenarios associated with perturbations of the base case parameters. 

      Disturbed parameter    Disturbance type 
Case 6 Containers generation Gradual decrease from period 3 onwards 
Case 7 Transportation costs 10% increase 
Case 8 Transportation costs 20% increase 
Case 9 Installation costs 10% increase 
Case 10 Installation costs 20% increase 

Table 3. Computational results corresponding to the analyzed scenarios. 

 Total 
variables 

Binary 
variables 

Total 
constraints 

Objective 
Function 

CPUs 
 

Centers/
plants 

Case 1 54,447 504 2,799 1,513,663.31 717 7/2 
Case 2 77,647 504 3,549 2,288,839.52 1,670 3/4 
Case 3 102,847 504 4,299 2,833,478.15 3,459 3/4 
Case 4 96,152 870 5,444 2,307,106.48 487* 9/4 
Case 5 52,615 672 2,799 1,238,574.16 1,880 7/1 
Case 6 54,447 504 2,799 1,478,809.46 1,301 7/2 
Case 7 54,447 504 2,799 1,542,416.85 608 7/2 
Case 8 54,447 504 2,799 1,571,170.39 410 7/2 
Case 9 54,447 504 2,799 1,618,496.74 883 7/2 
Case 10 54,447 504 2,799 1,723,330.16 1,208 7/2 
*Base Case solution taken for the five initial periods 

As shown in Table 3, the optimal solution of Case 1 comprises seven collection centers 
and two treatment plants, which are all installed before the start of the planning horizon 
and operate during all the periods. Two collection centers are of the smallest size, 
allowing a maximum capacity of 5,000 containers per period, while the remaining five 
double this capacity. Regarding treatment plants, one small and one large are chosen, 
with a maximum capacity of 60,000 and 100,000 empty containers, respectively. The 
solutions of Cases 2 and 3, which correspond to an increase in the number of farms, 
comprise 3 collection centers and 4 treatment plants. All the treatment plants associated 
with the solution of Case 2 have the smallest size, while two small and two large 
correspond to Case 3. In both situations, two collection centers are installed with the 
highest capacity. A comparison of these results reveals that the effect of managing a 
greater number of farms is to increase the investment in treatment plants, allowing more 
direct shipments to them. Case 4 takes into account the same superstructure as Case 1, 
but doubles the length of the planning horizon. This scenario has been tackled with two 
different solution approaches. The first one considers the solution obtained in Case 1 as 
given, and extends the horizon to evaluate potential new facilities. In this case, the 
optimal solution has been found in only 487 s. The second approach does not resort to 
any initial network and the 10 periods are taken altogether. A solution with a gap of 
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10% has been reached in 2,530 s. The solution obtained is the same in both cases; it 
comprises 12 facilities: 9 collection centers and 3 treatment plants. A comparison of the 
solutions corresponding to Cases 1 and 4 shows that the effect of having a longer 
planning horizon is to increase the investment in the installation of facilities. The aim is 
to reduce transportation costs along a longer planning period, that otherwise would have 
been much higher. Whereas Case 1 solution has installation (59.15%) and transportation 
(19%) costs as the main components, the solution of Case 4 has the following cost 
participation: installation (61.42%) and transportation (11%). Case 5 also considers the 
same superstructure as Case 1, but allows three different capacity modules for collection 
centers and treatment plants, instead of two. The obtained solution includes 7 collection 
centers and only one treatment plant of the largest size, with a capacity of 200,000 
containers per period. With respect to the sizes of collection centers, only one has the 
smallest capacity and four are installed with the largest size (20,000 containers per 
period). These results indicate that, when larger facility sizes are allowed, economies of 
scale are taken advantage of. Case 6 considers a reduction in the number of empty 
containers starting from period 3. The solution reports the same initial network as Case 
1, but starting periods 4 and 5 two collection centers stop operating in order to cope 
with the reduction of empty containers to be handled. As seen in Table 2, Cases 7 to 10 
take into account different increments in the installation and operation costs with respect 
to Case 1. Since the increases are not significant, the obtained networks remain the same 
as in Case 1 and only augment the value of their objective function. Finally, Table 3 
reveals that the proposed model always exhibits a satisfactory computational behavior. 

4. Conclusions and future work 
An MILP model for a multi-period reverse logistics network design problem has been 
presented, taking into account several realistic features. The model has been applied to 
the case of empty agrochemical containers and has been tested under various scenarios, 
exhibiting a very good computational behavior. The proposed approach can be easily 
adapted to address other recyclable waste collection systems (electronic and electric 
devices, household plastic waste, cardboard and paper, etc.) having two tiers: collection 
centers and disposal/recycling facilities. The incorporation of environmental and social 
objectives, in addition to the economic ones, will be considered in the future. Further 
testing will be done to better study scalability and sensitivity issues. 
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Abstract
Global LNG trade continues to grow owing to increasing energy demand, especially
from the Asia-Pacific region. However, the trade of LNG has inherent vulnerabilities
that can eventually manifest as disruptions. Typical consequences of disruptions include
excess or shortfall of inventory, and plant shutdown, all of which can significantly
impact profit. In this paper, we seek to develop a systematic methodology that can be
used by an LNG receiving terminal to mitigate the effects of disruptions. We develop an
agent-based dynamic model of the LNG supply chain and use it to systematically design
operational interventions that can ameliorate the adverse consequences of disruptions.
As a case study, we focus on a sudden decrease in demand. The disruption is managed
through fire sales of a product. We demonstrate that a key parameter in this rectification
strategy, the fire sale price, can be systematically determined using the proposed
agent-based model.

Keywords: LNG supply chain, Agent-based model, disruptions management,
rectification strategies.

1. Introduction
Supply Chains are highly interlinked networks that involve a set of companies
collaborating with one another for the timely delivery of products to end customers.
Given the complexity of interactions, supply chains are susceptible to various
disruptions that can inhibit the routine and systematic operations, leading to overall
inefficient performance. There is always a trade-off to consider while designing for the
reliable and unhindered operation of any supply chain (SC). This trade-off can either
choose the right location of sourcing raw-materials, the best mode of transport for safe
and faster delivery to the buyer, and the understanding of the internal operational
processes to deliver the right products at the right place and at the right time. While
nearby sourcing can always be a better option considering shorter lead times, resource
constraints largely inhibit the development of proximate SC networks. Most present-day
supply chains are globalized mainly due to increased customer demands, high
competitiveness, improved communication, and reduced transit times leading to a
highly interlinked and complex SC. With the increased dependence on imports, the SC
becomes vulnerable to disruptions.

The LNG SC involves NG extraction and liquefaction at an export terminal,
transportation through LNG carriers, and receiving and regasification at an import
terminal. The receiving terminal is attached to a regasification plant that sells natural
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gas (called Regasified LNG) in large quantities through conventional gas pipelines or in
small quantities (called Retail-LNG) through road or rail-based virtual pipelines to
various customers. Some receiving terminals also cater to maritime customers like
FSRUs and LNG cooling services; this product is called Reload-LNG. The material
flow diagram in a typical LNG supply chain is depicted in Figure 1.

Figure 1. Overview of LNG Supply Chain

1.1. LNG Supply Chain Disruptions
Each section of the supply chain is exposed to various disruptions. Disruptions in LNG
supply can happen due to political/economic situations, unplanned maintenance, or
strikes at the liquefaction terminal. Marine transport of LNG can be affected by strait
closure, marine accidents, piracy, and other exogenous factors like hurricanes, tsunami,
etc., leading to either delay or loss of shipment. Unexpected orders or order
cancellations by customers can also perturb the normal operation of the supply chain.

While an exhaustive description of real-world instances of LNG supply chain
disruptions is beyond the scope of this work, the present glut in the global supply of
LNG and the fall in demand due to the covid-19 pandemic is a good instance that
illustrates the potential effects of supply-demand disruptions. As an example, Indian
LNG import terminals were forced to declare force majeure as their customers shut
down operations owing to a nation-wide lockdown (Jaganathan, 2020). Such abnormal
situations can lead to major financial implications and motivate a systematic approach
to disruption management.
1.2. Literature review
Significant research has been conducted on techniques for managing disruptions in
supply chains. Most of them involve qualitative reasoning, relying on expert opinions to
manage disruptions (Urciuoli et al., 2014). Only a few quantitative studies have reported
quantitative methods such as simulation and modeling. An integrated procedure to
handle disruptions in a supply chain was developed by (Behdani et al., 2012), consisting
of separate pre-disruption and post-disruption considerations. The pre-disruption steps
involve risk identification, risk quantification, risk evaluation & treatment, and risk
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monitoring. The post disruption steps involve disruption detection, reaction, recovery,
and learning. A survey of the literature suggests that there is very limited research on
post-disruption recovery procedures. Also, managing the ripple effect arising from low
frequency-high impact disruptions has attracted limited attention. Based on the
modeling paradigm, approaches for modeling disruptions can be classified into
optimization-based, simulation-based, control-theory based (Dolgui et al., 2018)
schemes. Given the limited research towards managing disruptions in LNG supply
chains, in this paper, we propose an agent-based dynamic simulation for disruption
management in the LNG SC.

We consider a major LNG receiving terminal in India to test the effectiveness of our
approach. We take up a case study of an unexpected decrease in RLNG demand and
study its impact on the receiving terminal. We devise rectification strategies to
counteract the effect of the disruption and as well provide insights on a key decision
parameter involving the recovery action that will lead to economic benefits for the focal
company. The rest of the paper is organized as follows. Section 2 gives an overview of
the agent-based modeling technique. An application of the developed model is analyzed
with an illustrative case study in section 3. Finally, section 4 provides some concluding
remarks and future areas of research.

2. Agent-Based Model of LNG Supply Chain
Agent-based modeling is a widely used technique used to capture the various entities
and their interactions in the supply chain. An agent is described as any entity that can
make decisions, initiate or perform activities, manage resources, and interact with other
agents in the system. Each agent has a set of behavioral attributes. The heterogeneous
nature of the supply chain makes agent-based modeling a suitable simulation paradigm
to capture the various dynamics inherent in the system.

We have developed a dynamic simulation model of the LNG SC. Eight distinct agents
interact, exchange information and make decisions leading to the overall operations of
the supply chain. The various entities in the supply chain, including LNG supplier, LNG
carrier, receiving terminal, and customers, are modeled as agents that interact with one
another. The various internal departments of the LNG receiving terminal, which is the
entity in focus in this study, including the sales, operations, procurement, and jetty, are
also modeled as rational, self-interested decision-making agents. The sales agent keeps
track of customer demands, the operations agent oversees the regasification process, the
procurement agent makes decisions regarding when to procure LNG and the requisite
quantity, and the jetty agent oversees the cargo unloading. We implemented the
agent-based model using AnyLogic® Simulation Modelling Tool, version 8.6.0
(AnyLogic, 2020)

We performed the simulations for the normal operation of the LNG supply chain using
the parameters listed in Table 1. The overall simulation horizon is 365 days with each
time tick corresponding to an hour of operations. The demands for the various products
are stochastic and drawn from normal distributions with a standard deviation of 5% of
the nominal value. Various KPIs, including profit, customer satisfaction index, capacity
utilization, number of unloaded cargos, and demurrage period, are calculated for each
run of the simulation. Due to the stochastic nature of the demand and disruptions, we
use Monte Carlo simulation to arrive at statistically significant results. All results are
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reported as average over 1000 runs of the simulation. The computational time for
conducting a set of Monte Carlo simulations is 60 minutes. For the normal operation,
the receiving terminal makes a profit of $798 million, with 242 cargos procured
annually.

Table 1. LNG SC Simulation Parameters

Parameter Value

Simulation Horizon (days) 365

Demand Cycle (days) 7

LNG Procurement Cost ($/MMBtu) 4.16

Nominal Product Demand (103 m3)
[RLNG  Retail-LNG  Reload-LNG]

[647     6      70]

Product Sales Price ($/MMBtu)
[RLNG  Retail-LNG  Reload-LNG]

[5.0  10.0  5.43]

The LNG supply chain is subjected to a number of disruptions. We used the HAZOP
analysis based approach proposed by (Adhitya et al., 2009) to identify the possible
sources of deviation from normal operations, their causes, and consequences. The study
requires the development of a comprehensive supply chain flow diagram and analyzing
the activities of each agent. Each activity involves performing a sequence of tasks that
can be subject to deviations. Each deviation is generated using a set of guidewords. For
example, the sales department collates product demand from various customers. Any
deviation from the nominal demand towards a "high" or "low" (guidewords) value can
have consequences on the receiving terminal leading to "low" or "high" storage tank
inventory. This can further propagate both upstream and downstream of the supply
chain, as illustrated below. We then analyze the existing safeguards available that can
help the SC recover from the deviation (for example, safety stocks). If the safeguards
are inadequate, we propose additional mitigative actions to manage the disruption, as
illustrated next using a demand disruption case study.

3. Demand Disruption Case Study
Consider the case of a significant decrease in demand of RLNG by 75% due to
exogenous factors affecting the customers' businesses for a long duration (average of 6
months). This leads to challenges to the supply chain, specifically related to LNG
inventory. The existing inventory management policy of the terminal uses the traditional
fixed reorder level (ROL) based replenishment strategy. This policy works well during
normal conditions where the demand is close to the nominal values. Here, we seek to
evaluate its suitability during demand decrease disruptions. Various disruption scenarios
are generated stochastically with both the time of disruption initiation and the total
duration of disruption sampled from a uniform distribution (Behdani et al., 2019).
During each disrupted case, when the RLNG demand reduces drastically, there is a
supply-demand mismatch due to the underlying ROL-based LNG procurement policy.
As the quantity of LNG procured is aligned with the nominal situation, it is much
greater than the actual customer demand during the period of the disruption.
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Consequently, there is an issue of inadequate ullage space in the receiving terminal.
This causes a ripple effect when LNG carriers arrive at the terminal for unloading and
are forced to wait until the inventory in the LNG storage tanks falls to a level sufficient
for the unloading of the cargo. This leads to demurrage charges and a continuous
domino effect on all subsequent LNG carriers.

Our simulation studies of this scenario reveal that the decrease in demand would lead to
a reduction of profit for the terminal to $536 million (a decrease of $260 million) due to
the demand decrease. However, the loss is exacerbated by $2.2 million due to
demurrage charges. While little can be done about the exogeneous demand disruption,
the impact due to demurrage can be tackled by triggering a suitable rectification strategy
when the terminal becomes aware of the demand reduction. Among the various options,
we chose the RLNG fire sale as a possible rectification strategy. In this rectification
strategy, the receiving terminal sells the excess LNG inventory at a very low price
(called the fire-sale price) to facilitate smooth unloading of arriving cargo. To evaluate
the economic implications of this, we performed a simulation-based study by varying
the key decision parameter, i.e., the RLNG fire-sale price, to identify the point of
economic break-even. If the fire-sale of the RLNG is possible at any price above this
break-even price, the terminal will make a higher profit compared to the unrectified
case. By evaluating the entire supply chain performance for various RLNG fire-sale
prices, we arrive at the break-even plot depicted in Figure 2. It can be concluded that at
any RLNG fire sale price above $3.52/MMBtu, the terminal will be economically
better-off. For instance, at an RLNG fire-sale price of $3.75/MMBtu, the demurrage
dropped drastically by 98%, as shown in Table 2. The mean profit with the rectification
increases by $4 million as compared to the unmanaged case.

Figure 2. Effect of RLNG Fire Sales price on mean profit
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Unrectified Rectified

Overall Profit (Million
$)

798 (± 7.27) 536 (± 13.76) 540 (± 10.7)

Demurrage (h) - 658 (± 209.05) 11 (± 20.1)

RLNG Fire Sales
Quantity (103 m3)

- - 628 (± 45)

4. Concluding Remarks
This paper addresses the management of disruptions in LNG supply chains using an
agent-based dynamic simulation technique. The model can be used to design
rectification strategies that can be triggered when a disruption occurs in the supply
chain. Various disruptions that can occur in the LNG supply chain are demand decrease,
demand increase, reduction in production, and transportation delay. We have focused on
an RLNG demand decrease case study in this paper. The consequences of this disruption
are increased waiting time of LNG carriers, which can be ameliorated by RLNG fire
sales to prevent a tank ullage shortfall. This recovery strategy requires the determination
of a break-even price for the fire sales of RLNG. If the LNG terminal is able to find new
customers willing to buy RLNG above this break-even price, the resulting profit would
be higher compared to the unrectified case. Our simulations show that, against a normal
RLNG sales price of $5/MMBtu, fire-sales at any price higher than $ 3.52/MMBtu
would be advantageous to the LNG terminal. Similar insights for designing rectification
strategies for other disruptions can be obtained using the proposed agent-based model.
This work did not consider various operational aspects of the LNG regasification plant
tanks, such as boil-off gas generation, which can play an important role in terminal
operations. These would be incorporated in the future. Further, we plan to include
strategic mitigative actions like additional buffer stock, capacity expansion, and
multiple sourcing in our future development.
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Abstract
The world has witnessed an increase in the level of investments for renewable energy
technologies in the past decade mainly owing to the pressure for mitigating greenhouse
gas (GHG) emissions, whilst addressing the issue of climate change. According to
recent statistics, global investments edged up by 2 % in 2019 to $301.7 billion, taking
the value of cumulative investments since 2004 to $3.5 trillion, which has been
attributed to the falling costs of solar and wind technologies. With the commissioning of
additional capacities from renewable energy sources each year, there is a growing need
for managing the associated risks and uncertainties from the perspective of different
stakeholders throughout the planning, development and operational phases. Renewable
energy sources entail considerable technological and financial risks exposure,
depending on the location where the technologies are implemented, and thus needs to be
managed using techniques that would provide both the quantification of risks and
optimal decisions that lead to risk mitigation. The objective of the proposed research is
to develop a probabilistic framework which broadly includes: (a) statistical modelling of
financial risks - such as variability of revenue due to electricity price, demand
fluctuations, generation costs, or other market conditions; and (b) evaluating options
that maximise the stakeholders’ utility/reward functions, or minimise risks, for a given
technology mix. This research demonstrates the implementation of binomial lattice
model in real options analysis (ROA) for the valuation of investments on diversified
energy portfolios. The framework is applied to analyse the impact of risks and
uncertainties on capital budgeting decisions relating to project size (expand or contract);
project life and timing (initiation, deferment or abandon); and project operation
(flexibility in the technology mix) for scenarios involving large-scale deployment of
renewable energy sources.

Keywords: Binomial lattice model, Cogeneration, Real options analysis, Renewable
energy, Risk management.

1. Introduction
Investment in the renewable energy sector continues to increase globally for the
fulfilment of the Paris Agreement obligation of sustaining global temperature rise to
well below 2 degrees Celsius. The amount of renewable energy provision in 2019 was
the highest recorded at 184 GW of which 118 GW was through solar energy and 61 GW
through wind turbines. This can primarily be attributed to the ever decreasing levelised
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cost of energy (LCOE) for both solar and wind technologies due to continuous
technology improvements and economies of scale. The current LCOE levels for solar
and wind energies are lower by 83 % and 50 %, when compared to the last decade
(FS-UNEP, 2020). Prior to committing to a project, investors need to evaluate all the
associated risks in terms of risk probability and impact. Some risks are intolerable
leading to a no investment decision and some to the other extreme are very low impact
and are ignored entirely. However, the majority of risks fall in the middle where a
formal evaluation is required to determine what is acceptable and what is not. Risk
mitigation measures are usually implemented to reduce the risk level or to eliminate it
altogether at a premium that need to be factored into the project overall cost. In the
energy domain, fluctuations of fossil fuel, carbon and electricity market prices cause
undesirable uncertainty that impacts future investment predictions and, in general, a
portfolio of production technologies are mixed together to mitigate the risk and lower
the overall impact. For large power projects, project economics and investment
decisions are typically based on metrics such as the net present value (NPV) and the
discounted cash flow (DCF). These metrics are well suited and have been long
established for the conventional power projects. Recently, real options methods gained
wide spread and are considered more appropriate for renewable energy projects where
project flexibilities such as flexible project designs and flexible investment timings are
possible during the planning phase.

Several studies were conducted previously to either address the weaknesses of
traditional project assessment tools using basic ROA methodology or propose improved
ROA techniques. Yang and Blyth (2007) developed a computational model to address
the impacts of climate change policy including energy and carbon price uncertainties on
power projects investment using ROA. Stochastic variables were used to map volatile
energy and carbon prices and optimisation techniques were developed to search for the
best time to invest. The model was applied on twelve case studies all with satisfactory
results. The aim of the model is to assist policy stakeholders in the process of
decision-making and critical comparison of the effects of different policy designs, and
the impacts of climate change policy and market uncertainty on power project
investments. Martinez-Cesena and Mutale (2011) employed an advanced real options
methodology for the renewable energy generation projects. The scheme was
implemented on a simplified hydropower plant as a case study in which the results
demonstrated higher expected profits compared to conventional investment assessment
tools. Santos et al. (2014) proposed a case study for a small hydropower plant where a
comparison between traditional project evaluation methods and ROA was conducted.
The analysis involved the development of real options and investment decision
flexibilities based on ROA using the binomial decision tree. The results show that when
the traditional methods support an immediate investment decision, ROA provides more
flexibility to the investor in terms of project re-evaluation or redefinition of the project
strategy. Pringles et al. (2020) applied ROA to determine the value of investment
deferral while awaiting favourable market conditions in terms of system acquisition
costs. Some of the conducive flexibilities that were valued are site location/relocation,
network accessibility and regulatory policies. A stochastic valuation framework based
on the least square Monte Carlo method was developed and applied to a proposed
photovoltaics (PV) facility where site relocation and alternative tariff schemes were the
more attracting options.
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Based on the review above, the majority of the analyses focus on policy changes or
uncertainties in fuel and carbon prices. Also, integrated power and water production
facilities, co- and polygeneration in general, don’t receive the same attention as single
output facilities which are usually less complex with a lower risk profile. The aim of
this paper is to develop a statistical based risk framework for the economic evaluation of
integrated electricity and water cogeneration facilities to identify potential future
expansion options where electricity market prices are uncertain in an unregulated
electricity market.

2. Methodology
The integrated facility configurations are based on proposals previously made by
Al-Obaidli et al. (2019, 2020) for a utility-scale production of electric power and
freshwater. A base configuration and 4 expansion options are selected and presented in
Figure 1. The base configuration is composed of: natural gas combined-cycle gas
turbine (CCGT) for power generation and seawater desalination based on the multistage
flash (MSF) process. Two additional technologies are considered: PV and seawater
reverse-osmosis (SWRO). The base plant capacities are 500 MW for power and 100
km3d-1 for water and the expansion capacities are the same except for the PV farm
which has a higher capacity (1385 MW) due to the lower plant efficiency and the
requirement to maintain the same level of energy throughput for an impartial assessment
of the 4 options.

Figure 1. Facility block diagram of base configuration and expansion options.
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The NPV is determined using:

𝑁𝑃𝑉 =− 𝐶𝑎𝑝𝑒𝑥 + ∑ 𝑅𝑒𝑣−𝑂𝑝𝑒𝑥

(1+𝑑)𝑇
(1)

where Capex is the total capital expenditure for each expansion option, Rev is the
annual revenue, Opex is the total operating expenditure, d is the discount rate, and T is
the facility lifetime. For the power block, the gas section is composed of multiple
H-class combined-cycle turbines in a typical 1×1×1 configuration. The PV farm is fitted
with a single-axis tracking system. In this case, battery storage was not considered due
to the nature of the power mix and the operating philosophy since CCGT and PV are
mixed to supply base and peak demands based on weather conditions and seasonality.
For the water block, typical MSF and SWRO configurations suitable for the
Middle-East region are used. The financial parameters for each of the production
technologies are listed in Table 1. The discount factor and facility lifetime are estimated
at 10 % and 25 years and the capacity factors for CCGT and PV are 67.4 % and 24.3 %,
respectively.

Table 1. Financial parameters for the production technologies.

CCGT PV MSF SWRO

Capex ($/kW, $/m3d-1) 1,084 1,313 2,100 1,500

Fixed Opex ($/kW, $/m3d-1) 14.10 15.25 79.20 140.30

Variable Opex ($/kWh, $/m3) 2.55 - 30.80 89.70

Source: EIA (2020) and World Bank Group (2019).

A binomial lattice model is developed for each of the options and is based on the
exponential Brownian motion using the electricity market price as the stochastic
variable:

δ𝑆
𝑆 = 𝑒µ δ𝑡( )+σε δ𝑡 (2)

where μ is the price escalation rate and σ is the market price volatility. The asset value
based on the deterministic NPV of each option is escalated across 6-time steps where
each of the steps is equivalent to 2.08 years. At the end of the 6th step, equivalent to 12.5
years or half facility lifetime, the option is to be exercised in a European-like options
system. The payoff value is compared across different market price evolutions and the
decision to expand or not to expand is based on the difference between the escalated
asset value and the payoff. The payoff values are then discounted across all evolution
branches from step 6 back to the starting point resulting in the extended NPV for each
option. The extended NPVs and the option values are then compared to identify the rank
of the options from most attractive to least.
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3. Results and Discussion
The binomial lattice model evolution was first applied to expansion option 1 which
resulted in the binary tree depicted in Figure 2. At time step 0, deterministic NPV of the
option is escalated through 6-time steps using different price escalation rates based on
Equation 2. The upper branches represent higher escalation rates compared to the lower
branches. As shown in Figure 2, expansion option 1 offers more positive results at
multiple branches of electricity market price evolutions at half facility lifetime. This
provides an incentive for a more likely “Expand” decision with a predicted payoff value
of around $45.6 billion at the highest anticipated price escalation branch. Also, the
extended NPV at $5.1 billion provides another indication regarding the feasibility of
this particular option.

Figure 2. Binomial lattice model evolution and valuation (expansion option 1).

Evolution and valuation of the other 3 expansion options is also applied and similar to
expansion option 1, the results in general are positive with the exception of PV based
expansion options (2 and 3) where price escalation evolution must lean towards the
higher escalation rate branches for the options to become feasible. A positive option
value does not necessarily mean that the option is feasible as both sides of the tree
should be investigated together with current price escalation rates at the facility half
lifetime, when a decision must take place. Furthermore, the extended NPV for all of the
options together with the option values are presented in Figure 3. An informed decision
is possible once all the options are properly ranked from the most feasible to the least
based on current market data.
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Figure 3. Comparison of extended NPV and option value for all expansion options.

The poor financial performance of renewable energy technologies can be attributed to
the higher initial capital costs compared to conventional technologies. Moreover, the
lower plant efficiencies that are characteristic to renewable energy technologies also
amplify the financial gap especially when a persistent energy throughput is in demand.
From a pure financial perspective, CCGT technology is privileged when compared to
PV and for water MSF process is slightly better than SWRO. In order to overcome these
shortcomings with renewable energy technologies, additional criteria must be included
in the assessment such as natural gas and carbon market price fluctuations.

4. Conclusions
Future expansion pathways for existing CCGT-MSF electricity and water production
facility were evaluated using ROA. A discretised binomial lattice model was developed
for 4 possible configurations composed of CCGT, PV, MSF and SWRO technologies.
The results show that all of the options were feasible at half the existing facility lifetime
with expansion option 1 providing more attractive financial results across various future
electricity market price scenarios. Since only a single risk factor was considered in this
study, renewable energy-based systems might have been at a disadvantage due to the
higher capital costs and the lower throughput owing to the inherent lower energy
efficiencies. Future work will focus on the introduction of variability in other risk
factors including but not limited to natural gas and carbon market prices and the
application of Bayesian based methods.
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Abstract
In this work, we address a problem of optimal production and distribution planning of
industrial gas supply chains and the associated truck allocation. Two different optimi-
sation models, a multi-objective optimisation (MOO) model and a mixed integer linear
fractional programming (MILFP) model, are developed. The proposed models simul-
taneously determine the purchasing schedule for raw material, transportation schedule,
network structure of supply chains, and optimal allocation of truck resources. To solve
the problem, we employ the ε-constraint method for the MOO model, while a literature
approach based on the Dinkelbach algorithm is adopted for the MILFP model as a solu-
tion method. Finally, an industrial case study is presented to demonstrate the applicability
of the proposed optimisation models.

Keywords: Mixed-integer linear fractional programming, multi-objective optimisation,
integrated supply chain planning, vehicle allocation

1. Introduction

Industrial gas supply chains involve domestic and/or international transportation sys-
tems between multi-site production plants, intermediate storage locations and several
customers (Chima, 2007). Consequently, a large portion of supply chain costs come
from transportation, and improving transportation efficiency has become increasingly im-
portant to improve overall profitability. Transportation efficiency can be improved by
optimally allocating vehicle resources. Furthermore, there is a need for considering not
only the transportation efficiency but also the economic performance, such as total cost
or profit, in an integrated manner. There are existing works in literature, which address
the production and distribution planning for the gas industry. Campbell and Savelsbergh
(2004) addressed combined vehicle routing with scheduling problems for industrial gas
distribution, and more recently by Dong et al. (2014). Concerning the integrated produc-
tion and distribution planning, Marchetti et al. (2014) developed a mixed integer linear
programming (MILP) model which coordinates production and distribution decisions.
The production model considers plants operating at various production modes, while the
distribution model accounts for a combined vehicle routing and inventory management.
You et al. (2011) developed an MILP model accounts for planning decision of tank sizing
at customer locations, inventory and truck routing decisions of industrial gas supply chain
simultaneously. Zhang et al. (2017) proposed an MILP model and an iterative heuris-
tic approach for the multi-scale production routing problem which combine production,
distribution, and inventory decisions. Additionally, Lee et al. (2020) developed an MILP
model which integrates supply contracts, production and transportation scheduling, and
inventory management. They also proposed a relaxation approach to tackle computational
limitation when dealing with large-size problems.
However, to the best our knowledge, none of works has considered the issue on improving
transportation efficiency. In this work, we investigate a problem for the production and
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distribution planning involving truck allocation of industrial gas supply chains, with total
cost and total number of allocated truck resources as objectives. The aim is to develop
optimisation frameworks which integrate the decision on the truck allocation into our pre-
vious model (Lee et al., 2020), and to adopt two solution approaches for the developed
models; ε-constraint method and Dinkelbach algorithm.

2. Problem Statement

This work addresses the integrated optimisation of the industrial gas supply chains, in-
cluding the production and distribution planning, and truck allocation. Figure 1 shows
the network of the industrial gas supply chains considered in this work. On the produc-
tion side, each plant purchases raw material from an external supplier and transform into
liquid product at high purity. This liquid product can also be purchased from third-party
suppliers. On the distribution side, the customer demand is satisfied through two primary
transportation modes. The trucks deliver the product from plants, depots, and third parties
to customers, whereas the rail-cars transport the product from plants and third parties to
depots.

Figure 1: Network of industrial gas supply chains

Overall, the optimisation problem is described as follows:

Given (a) maximum available supply of raw material and purchasing cost; (b) plant loca-
tion, production capacity, and production cost; (c) third party location, maximum purchas-
ing amount from third party, and related cost; (d) unit outsourcing cost (e) initial, mini-
mum, and maximum inventories; (f) loading capacities, available quantities, and transfer
unit costs for both rail-car and truck; (g) total number of available truck resources.

Determine (a) production schedule; (b) purchasing schedule of raw material and product
from external suppliers; (c) product allocation; (d) rail-car schedule; (e) allocation of
truck resources to plants, depots, and third parties.

so as to (a) minimise total cost; (b) minimise total number of allocated truck resources.

3. Mathematical Frameworks

In this section, brief outlines of two different optimisation models are presented based on
our previous work (Lee et al., 2020).

3.1. MOO model

Firstly, we formulate the problem as an MOO model, which comes with two objective
functions. The first objective, total cost which is comprised of raw material cost, produc-
tion cost, plant start-up cost, third party cost, truck cost, rail-car cost, and outsourcing
cost, is minimised:

min TCtotal (1)

TCtotal = TCraw +TCprod +TCst +TCthird +TCrail +TCtruck +TCos (2)
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The second objective considers the minimisation of total number of truck resources allo-
cated to plants, depots, and third parties:

min NT total (3)

NT total = ∑
i

NT new
i +∑

j
NT new

j +∑
m

NT new
m (4)

where NT new
i , NT new

j and NT new
m are the number of allocated trucks to each plant i, depot

j, and third party m, respectively.

Inventory mass balance. Inventory of each customer k in time period t is given by:

Ikt = Ik,t−1 |t>1 +Iini
k |t=1 +∑

i
Qtruck

ikt +∑
j

Qtruck
jkt +∑

m
Qtruck

mkt +Qos
kt −Dkt ∀k, t (5)

The inventory at the end of time period t (Ikt ) is equal to the inventory at previous time
period (Ik,t−1) plus incoming product delivered by trucks from any plants, depots, and
third parties (∑i Qtruck

ikt , ∑ j Qtruck
jkt , ∑m Qtruck

mkt ) plus outsourcing product (Qos
kt ), which can

be used when existing plants and third parties can not satisfy customer demand, minus
customer demand (Dkt ). Here, the initial inventory is defined by Iini

k . The similar equation
returns to plant i and depot j for inventory mass balance of each plant and each depot (Iit
and I jt ).

Truck constraint. The formulation to limit both the total product amount delivered and
total travel time performed by trucks during each period follows our previous work (Lee
et al., 2020):

∑
k

γQtruck
ikt

CAPi
θik ≤ NT new

i ∆t ∀i, t (6)

Here, the summation of the delivery amount/capacity ratio (QT
ikt/CAPi) multiplied by

the duration of the round-trip between the plant and customer (θik), estimates the to-
tal travel time executed by trucks during the period. The γ multiplied to the delivery
amount/capacity ratio is the tuning parameter to avoid underestimating the total travel
time. The total travel time is restricted by the length of each time period (∆t ) and the
number of allocated trucks at each location (NT new

i ).

3.2. MILFP model

In MILFP model, the objectives are formulated as a fractional objective function:

min
TCtotal

AURtotal (7)

As we minimise both objectives, total cost and total number of trucks, we can not directly
adopt one of them as a denominator. Here, we introduce the overall truck utilisation rate
(AURtotal) as a denominator, which is maximised as the total number trucks is minimised.

Overall truck utilisation rate. The overall truck utilisation rate is calculated by:

AURtotal =
∑i URi +∑ j UR j +∑m URm

∑i Xi +∑ j X j +∑m Xm
(8)

where URi, UR j and URm are the truck utilisation rates for truck resources which are
allocated at each plant, depot and third party. The binary variables, Xi, X j and Xm, are 1
when at least one truck is allocated to each plant, depot and third party.

Eq. (8) includes the bilinear term; thus, it is linearised with an auxiliary variable, a big-M
value, and additional constraints:

AURtotal =
q

∑
l=1

TURl

l
(9)
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q

∑
l

TURl = ∑
i

URi +∑
j

UR j +∑
m

URm (10)

∑
i

Xi +∑
j

X j +∑
m

Xm =
q

∑
l

l ·Yl (11)

q

∑
l

Yl = 1 (12)

TURl ≤M ·Yl ∀l = 1, ...,q (13)

where Yl is the binary variable to express the integer variable in the denominator of eq. (8)
by its decimal representation. q is the maximum value of the number of plants, depots,
and third parities which have at least one truck resource. i.e., q is the total number of
plants, depots, and third parties considered in the problem.

Truck utilisation rate. The truck utilisation rate at each plant i during a given planning
horizon is calculated by:

URi = 100 · (∑k ∑t γ Qtruck
ikt

CAPi NT new
i

θik)/T ∀i (14)

where T is the number of time periods. As eq.(14) also includes the bilinear term, it is
linearised by the linearisation scheme applied in eqs.(9)-(13). For the truck utilisation
rates at each depot and third party (UR j and URm), the similar equation and linearisation
scheme are adopted.
Finally, the total number of allocated trucks is limited by the maximum number of avail-
able truck resources:

∑
i

NT new
i +∑

j
NT new

j +∑
m

NT new
m ≤ NT max (15)

4. Solution Approaches

4.1. ε-constraint method

To solve the developed MOO model, we employ the ε-constraint method (Haimes, 1971),
where one of objectives is kept as an objective function and the other objective is consid-
ered as a constraint. The MOO model is transformed as follows:

min TCtotal

s.t. NT total ≤ ε;
Eqs. (2),(4)− (6);
Supply chain production and distribution planning constraints.

Here, ε is the user-defined upper bound for the total number of allocated truck resources.

4.2. Dinkelbach algorithm

For the MILFP model, we implement the Dinkelbach algorithm (Liu et al., 2014), which
iteratively solve an MILP model given below:

min TCtotal− f ·AURtotal (16)
s.t. Eqs. (2),(5)− (6),(9)− (13),(15);

Linearisation constraints for the truck utilisation rates;
Supply chain production and distribution planning constraints.

The procedure of the Dinkelbach algorithm implemented for the problem is as follows:
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Step 1. initialise f ;

Step 2. solve the MILP model (16), and denote the optimal solution as TCtotal∗ and
AURtotal∗;

Step 3. If | f − TCtotal∗

AURtotal∗ |/| f | ≤ δ (stopping criteria), the optimal solution for the MILFP

model is TCtotal∗/AURtotal∗; otherwise, update f = TCtotal∗/AURtotal∗, and go to
Step 2.

5. Case study and Results

To demonstrate the applicability of the developed models, an industrial case study is con-
ducted. The supply chain network considered for the case study consists of total 30+
of plants, depots, and third parties, 700+ customers, 300+ rail-cars, and 100+ trucks. A
planning horizon is one month and it is divided into 30 days.
The developed models are implemented using Gurobi 9.0.0 in GAMS 30.3 on Intel 3.60
GHz, 32.0 GB RAM computer. For the MOO model, the optimality gap is set to 1%, while
98% of optimality gap and 0.01 of stopping criteria (δ ) are set for the MILFP model.
Firstly, we solve the problem with the developed MOO model by fixing ε to 7 values
between 50 and 80 of the total number of allocated truck resources. The resulting MOO
model includes 137,268 equations, 160,146 continuous variables, and 5,415 discrete vari-
ables. The entire process to get Pareto optimal solutions with different values of ε takes
3,575 s CPU time.

Figure 2: Pareto optimal solutions obtained from the MOO model

Figure 2 shows the optimal solutions and the piecewise linear approximation of the Pareto
curve, together with the overall truck utilisation rate calculated by eq.(4) using obtained
optimal values. The total cost remains relatively stable when the total number of trucks is
decreased from 80 to 65, while the total cost is increased significantly as the total number
of trucks is reduced from 55 to 50. We can also see that the overall truck utilisation rate
is improved as the total number of truck resources is decreased. Furthermore, we can find
a “good choice" solution marked with a blue circle, which dramatically reduces the total
number of trucks and improves the overall truck utilisation rate with only a small increase
in total cost.
Secondly, we solve the problem with the proposed MILFP model using the Dinkelbach
algorithm. The model consists of 141,389 equations, 160,511 continuous variables, and
5,777 discrete variables, and it takes 1,914 s CPU time to gain an optimal solution. The
red point shown in figure 2 is the optimal solution, and the point lies on the “good choice”
solution which was identified by comparing the Pareto optimal solutions obtained from
the MOO model. This result reveals that the proposed MILFP model can find an optimal
solution, which is evaluated as the "good choice" solution by the MOO model. Figure
3 presents the number of allocated trucks at each plant and the cost breakdown gained
from the MILFP model. As observed, the number of allocated trucks to each plant varies,
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and the number lies on the values between 1 to 7. The result of cost breakdown shows
that truck cost accounts for the highest percentage of total cost (41%), followed by raw
material cost (26%) and production cost. The outsourcing cost and plant start-up cost
show the lowest percentages of the total cost (2% and 1%, respectively).

Figure 3: (A) The number of allocated truck resources and (B) the breakdown of the total
cost obtained from the MILFP model

6. Conclusions

This work has addressed a problem of optimal production and distribution planning in-
volving truck allocation for industrial gas supply chains, through the development of two
different optimisation model; the MOO model and the MILFP model. The models have
considered both economic performance (i.e. total cost) and truck efficiency simultane-
ously. To solve the MOO model, we applied the ε-constraint method, whereas the Dinkel-
bach algorithm was employed as a solution method for the MILFP model. The proposed
models successfully solved an industrial case study. The results from the MOO model
showed the trade-off between total cost and the total number of trucks. The decision-
makers can select their preferred planning from the obtained Pareto optimal solutions.
Finally, the MILFP model found a ”good choice” optimal solution, which was identified
by examining optimal solutions gained from the MOO model.
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Abstract 
Demand Response (DR) programs with the goal of maintaining the electricity grid’s 
generation-load balance and ensuring transmission reliability have been on the rise in the 
last few decades. Services such as load shifting and curtailment have become 
economically attractive alternatives for large end-users with flexible operation. Different 
ways exist for providing these services, one of them being the Day-Ahead (DA) bidding 
as a generator in the energy or ancillary services market. In this work, we propose an 
optimization-based framework for performing DA bidding of load curtailment services, 
specifically in the context of large-scale central chiller plants with Thermal Energy 
Storage (TES) used for District Cooling. The framework integrates the two problems of 
real-time load shifting and day-ahead load curtailment bidding. Using the proposed 
framework, we evaluate the techno-economic feasibility of providing load curtailment 
services. The case-study is performed with real data from the central chilled water plant 
located on the campus of the University of California, Davis. Simulation results of the 
closed-loop implementation provide insights into the potential benefits from providing 
load curtailment. 
 
Keywords: Demand Response, Load Curtailment, Process Scheduling, Energy Systems, 
HVAC. 

1. Introduction 
With the advent of deregulated electricity markets in the last few decades, there has been 
a push for increasing competitiveness in the generation and consumption of electrical 
energy. Unlike traditional commodities, electricity exhibits a few unique characteristics; 
among the most important are its continuous generation and delivery as opposed to batch-
wise, and the need to balance generation and demand on a second-by-second basis. In the 
case that there is such an imbalance, or the transmission capacity exceeds its limit, there 
is a high risk of blackout followed by a restoring process that could take up to days 
(Kirschen and Strbac, 2019). To help mitigate these issues, system operators have been 
intensifying the use of Demand Response (DR) services, which have become especially 
useful to offset the impact of growing renewable penetration. From 2017 to 2018, 
participation of DR services in wholesale markets in the US increased by approximately 
8 percent, while the California Independent System Operator (CAISO) had the greatest 
increase on a regional basis (FERC, 2019). The most common types of DR services 
include load shifting, load curtailment and the dispatching of controllable distributed 
generation systems.  
The topic of load curtailment has been addressed in the literature mostly from the power 
generator or provider’s perspective (e.g., Tsimopoulos and Georgiadis, 2019), which 
frequently makes use of oversimplified models for the consumer side (Zhang and 
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Grossmann, 2016). However, more recently the user’s perspective has been addressed 
more heavily in the literature. Vujanic et al. (2012) considered the flexible schedule of 
cement milling plants using robust optimization. The provision of load curtailment was 
treated as a preliminary step in which the jobs having flexible starting times were selected 
arbitrarily. Zhang and Hug (2015) proposed a day-ahead bidding strategy using stochastic 
programming for aluminum smelters participating in both energy and spinning reserve 
markets. The continuous scheduling problem was solved daily and generated bidding 
curves for both markets for the following day. Zhang et al. (2015) assessed the benefits 
of adding cryogenic energy storage to air separation plants, including the provision of 
spinning reserve in ancillary services (AS) markets. The scheduling problem was solved 
weekly and uncertainty was assumed to arise mainly from the spinning reserve demand, 
which was addressed using robust optimization. Zhang et al. (2016) extended the work 
by considering recourse decisions using adjustable robust optimization. In these works, it 
was assumed that the reserve provider is rewarded based on the accepted bids, even if no 
actual dispatch is required. The authors highlighted the existing trade-off between load 
shifting and curtailment, favored by a low and high level of plant utilization, respectively. 
More recently, Chalendar et al. (2019) proposed a planning approach for bidding load 
reduction in the form of long-term capacity for HVAC plants. The bids are submitted 25 
days before the start of each month, which results in a planning problem with long-term 
horizon and uncertain forecasts. 
Most works in the literature address the open-loop schedule and consider bids that are 
either submitted a long time in advance or are valid for a long time into the future (week 
or month). The shorter-time interactions between load shifting and curtailment, specially 
under closed-loop operation, thus, remain mostly unexplored. In this work, we develop a 
framework for assessing the provision of load-curtailment services through bidding in a 
DA market, either energy or AS, specifically for large-scale central chilled water plants 
with TES used for District Cooling. The optimal load curtailment bidding problem is 
solved once every day and calculates the magnitude and duration of the load curtailment 
for the following day. In contrast, load-shifting is performed hourly and generates the 
production profiles that minimize the operating cost and implements the accepted 
curtailment bids. Emphasis is given on the following features: (i) the integration of the 
load curtailment bidding with real-time load shifting; (ii) the derivation of results from 
the closed-loop implementation of the framework, as opposed to the open-loop; (iii) the 
modeling of a large-scale chilled water plant using real operational data; and (iv) the 
consideration of DR programs that allow demand resources to bid as generators in the 
DA market. 

2. Methodology 
This paper considers the central chiller plant located on the campus of the University of 
California, Davis. The university has two separate plants at different locations, referred 
to here as plant 1 (P1) and 2 (P2). Plant 2 contains a TES tank with a maximum capacity 
of 5 million gallons of water. Each plant has four centrifugal chillers, all of them in 
parallel except for chillers 7 and 8 in Plant 2. The chillers have different maximum 
cooling capacities varying between 2,000 and 2,500 ton , adding up to a total of 18,000 
ton maximum cooling capacity. The water inside the TES tank is distributed into two 
layers, a bottom layer of cooler water (supply) and a top layer with warmer water (return), 
separated by a thermocline. In addition, the tank operates full of water at all times. An 
important constraint particular to this system is that only the chillers at Plant 2 are allowed 
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to charge the TES tank, due to the configuration of the distribution system. A simplified 
representation of this system is presented in Figure 1. 

 
Figure 1. A schematic of UC Davis central chilled water plant (left); CAISO seasonal average 
day-ahead energy prices in 2019 (right). 

The campus participates in the wholesale energy market from CAISO under a DA 
program, in which hourly electricity prices for a period of 24 h of the next day (from 
00:00 to 23:00) are supplied to the customer one day ahead at 13:00. It is assumed that 
the real-time rate is equivalent to the DA price. The seasonal-average DA prices from 
CAISO in 2019 are also shown in Figure 1. In addition to the participation in the 
wholesale energy market for purchasing electricity, in this work we consider that the 
resource can also offer load curtailment capability as a generator in a DA market, either 
as energy or AS (e.g., spinning or non-spinning reserve). Bidding in the energy DA 
market as a generator provides an economic incentive to the user when the prices for 
purchasing and providing energy are settled using different node regions. Since the 
market prices vary considerably according to the location and system operator, here we 
focus on the unifying feature regarding the timing of the DA program. In the case of 
CAISO, bids for load curtailment are submitted before 10:00 on the day before the 
operating day. The market results are known at 13:00, along with the DA energy 
purchasing prices for the following day. This means that at the moment the bid is made, 
the prices for both services (load shifting and curtailment) are not known. Here we assume 
that the baseline (normal energy consumption profile without curtailment) is calculated 
by solving the optimal scheduling problem without load curtailment, instead of statistical 
historical averages. Real examples of economic-based DR programs include CAISO’s 
Proxy Demand Resource (PDR), NYISO’s Day-Ahead Demand Response Program 
(DADRP), and ISONE’s Price-Responsive Demand (PRD). 

2.1. Optimization Framework 

The optimal load-shifting (LS) problem is formulated as follows:  

min 𝜓 + 𝜓 + 𝜓∈   (1) s. t. 𝜓 = 𝑃 ,∈ 𝐶   (2) 
 𝑃 , = 𝛽 + 𝛽 𝑇 + 𝛽 𝑇 𝑦 , + 𝛽 𝑄 ,   (3) 
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 𝑆𝑇 = 𝑆𝑇 + 𝑄 ,∈ − 𝐷   (4) 

 𝑄 ,∈ = 𝐷   (5) 
 𝐷 + 𝐷 = 𝐷   (6) 
 𝑦 , 𝑄 , ≤ 𝑄 , ≤ 𝑦 , 𝑄 , , 𝑆𝑇 ≤ 𝑆𝑇 ≤ 𝑆𝑇 , 𝑃 , ≤ 𝑃   (7) 

where the parameters (both known and forecasted) include the electricity price 𝐶 , the 
chilled water supply and return temperatures 𝑇  and 𝑇 , the wetbulb temperature 𝑇 , 
the campus cooling demand 𝐷 , and the upper and lower bounds. Decision variables 
include the cooling load of chiller 𝑐 at time 𝑡, 𝑄 , , the on-off status 𝑦 , , the power 
consumption 𝑃 , , the storage level in cooling load equivalent 𝑆𝑇 , the portion of total 
demand supplied by plants 𝑃  and 𝑃 , 𝐷  and 𝐷 , the operating cost 𝜓  and the 
penalties for switching and constraint relaxation 𝜓  and 𝜓  (omitted in the model). A 
time horizon of 48 hours was employed.  
The load-curtailment (LC) problem is formulated as follows, in addition to Eqs. (2)-(7): min 𝜓 − 𝜓∈   (8) s. t. 𝜓 = 𝑃 𝐶   (9) 

 𝜓 = 𝑃 𝐶   (10) 
 𝑃 = 𝑃 − 𝑃 + 𝑃   (11) 
 𝑃 = 𝑃 ,∈   (12) 
 𝑦 𝑃 , ≤ 𝑃 ≤ 𝑦 𝑃 , , 𝑦 𝑃 , ≤ 𝑃 ≤ 𝑦 𝑃 ,  (13) 
 𝑦 + 𝑦 ≤ 1  (14) 

where 𝐶  is the price/reward for load curtailment, 𝑃  is an auxiliary variable that is 
fixed as the baseline during the bidding period, 𝑃  and 𝑃  denote the negative and 
positive deviations from the baseline (only negative deviations are rewarded as load 
curtailment), 𝑃  is the effective power consumption after applying the negative and 
positive deviations, and 𝜓  and 𝜓  denote the economic cost and gain from load 
shifting and curtailment. Binary variables 𝑦  and 𝑦  and Eq. (14) are employed to avoid 
increasing both 𝑃  and 𝑃  by the same amount. 

2.2. Integration 

To effectively integrate the solution of the two problems, we can divide the time horizon 
of problem (LC) into three periods. In the first period, from 09:00 to 23:00 of the current 
day (first 15 hours), the problem reduces to a regular (LS), in which the bids from the 
previous day are implemented (setting an upper limit for power consumption) and load 
shifting is performed with the remaining load. The load deviation variables 𝑃  and 𝑃  
are set to zero by adjusting their lower and upper bounds in Eq. (13), making the effective 
power consumption 𝑃  equal to 𝑃 , both free decision variables. This step is important 
because it will determine the available storage at the beginning of the next day, which in 
turn determines the available load curtailment capacity for bidding. In the second period, 
from 00:00 to 23:00 of the following day (next 24 hours), the time and magnitude of the 
load curtailment bids for the following day are calculated. Prices are unknown and must 
be forecasted, and the base power consumption 𝑃  is fixed and set equal to the baseline 
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previously calculated by solving the (LS) problem. The load deviation variables 𝑃  and 𝑃  are now allowed to vary freely by relaxing their upper and lower limits. The third 
period consists of the consecutive time steps. If a time horizon of 48 h is used, this period 
corresponds to the last 9 hours. This additional step is important to diminish the effect of 
the finite horizon approximation or the associated terminal constraint on the generated 
schedule or bids, e.g., to avoid storage depletion by the end of the following day, which 
could incur in demand and curtailment constraint violations. For this period, one can 
either solve a pure (LS) problem, in which case the problem becomes analogous to the 
first period, or also consider load curtailment bids, in which case the problem becomes 
analogous to the second period. The integration of the solution of problem (LC) into (LS) 
is easily done by enforcing upper bounds on the power consumption 𝑃  in Eq. (7). 

3. Case-Study Results 
As a case-study, we generate and implement load curtailment bids for an average week 
from summer 2019. Seasonal average profiles were generated for DA electricity cost and 
building cooling demand, as shown in Figure 2. We assume that the load curtailment 
incentive 𝐶  has a magnitude proportional to the DA energy purchase cost (e.g., 10%), 
and that it only assumes a nonzero value during peak hours (e.g., 12 highest values in 
each day), as is typically the case for reserve prices. Furthermore, the price profiles are 
assumed to be known ahead of time for this analysis.  

Figure 2. Energy prices and cooling demand (top), and power consumption profile with and 
without load curtailment (bottom). 

Power utilization profiles are shown in Figure 2 for two cases; the first considering only 
load shifting and the second integrating load shifting and curtailment. It can be observed 
that most of the economic gains derive from the load shifting, while the curtailment 
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algorithm implements finer corrections to maximize the curtailment rewards. Providing 
load curtailment reduced the operating cost by approximately 2% considering a reward 
profile with a magnitude of 10% of the DA energy price. Naturally, the extent of the 
achievable economic gains will depend on the local cost profile and may or may not 
suggest the provision of load curtailment services. It can also be observed that periods 
with a higher level of plant utilization (i.e., higher power consumption) do not necessarily 
correspond to higher curtailment when performed together with load shifting. This can be 
attributed to the fact that the load shifting algorithm acts first by assigning the bulk of 
power consumption to low-cost regions, which in turn provide low to zero rewards for 
curtailing. 

4. Conclusions 
In this work, we presented a framework for the optimization of load-curtailment services 
in the DA market for large-scale central chilled water plants with TES. The framework 
integrates the DA bidding of load curtailment with real-time load shifting, and addresses 
closed-loop implementation. The results of a case-study demonstrated the potential 
benefits of providing load curtailment services, and provided insights into the interactions 
between load shifting and curtailment when implemented in a closed-loop fashion. Future 
research will focus on using real prices from DR programs, analyzing how price and 
demand forecasts and storage size affect the potential load curtailment benefits, and 
assessing the impact of aggregating loads. 
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Abstract 
With today’s rapid growth of human populations along with environmental concerns 
worldwide, it becomes increasingly difficult to meet future requirements for food, 
specifically in meat production systems (fish, poultry, cattle, etc.), to satisfy protein 
dietary demands of humans. The necessity of increasing the production of food, in both 
quantity and quality aspects, pressures the utilisation of natural resources (fresh water, 
land, etc.) and other inputs (as fertilisers) to fulfill demands of higher yields and improved 
properties of crops and livestock. Therefore, it is important to develop a sustainable model 
or framework integrated to the state-of-the-art technologies that helps to satisfy efficient 
use of natural resources in a consistent path by addressing food security issues without 
compromising food quality and the environment. To achieve sustainable processes within 
such limited resource world, the agri-food sector must move towards zero waste 
generation or at least minimise environmental impacts by (1) creating value in the agri-
food manufacturing and supply chains and (2) recovering resources from by-products if 
techno-economically viable. Furthermore, considering novel technologies from the 
industry 4.0 (I40) age, it can be reached by efficient utilisation of resources via 
optimisation and integration of processes of production management among agri-food 
producers, traders, retailers, etc. Towards sustainable development in agri-food systems 
and supply chains, every operation must focus on closing loops to reduce, reuse, and 
recycle of material, energy, etc., without losing quality, within the concepts of the so-
called circular economy (CE). These food supply chains, and agriculture productions can 
be improved using I40 solutions, yielding optimal operations, higher amounts of food, 
better quality of products, among others. An example in the poultry production and 
market is given considering interconnections of the triple of supply chain resilience, 
industry 4.0 and sustainability.  

Keywords: Food supply chain, poultry market, industry 4.0, sustainability, resilience. 

http://dx.doi.org/10.1016/B978-0-323-88506-5.50281-3

PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.



 A. H. A Mohamed et al. 

  

1. Introduction 
Industry 4.0, supply chain resilience and sustainability have rapidly become strategic 
milestones for various industries, as they play into the competitive advantage of the chains 
and their overall efficiency. The three mentioned frameworks address the topics of 
sustainable processes in excellence and exchange value transformation between the two 
ends of the chain. Supply chain resilience (SCR) is an assessment of how prepared the 
chain would be for sudden disruptions. Supply chains must be designed to incorporate 
event readiness, provide an efficient and effective response, and be capable of recovering 
to their original state or even better post the disruptive event (Ponomarov and Holcomb, 
2009). Industry 4.0 (I40) is identified as the framework that allows artificial autonomous 
machines to inspect, model, and visualise critical decisions based on mass data, wirelessly 
fed through electronic collectors that are distributed across the value chain. Moreover, 
this I40 element permits intelligent data-based decision-making to be done rigorously 
while considering the impact of the decision on the totality of the supply chain. This is 
achieved by using internet-of-things (IoT), radio frequency identification (RFID) 
technologies, big data and data analytics, advanced robotics, cloud computing, etc.  

On the other hand, sustainability (SUS) focusses on the utilisation of current resources 
and assets to meet the demands of the present while accommodating the future 
generations’ ability to do the same (Brandenburg and Rebs, 2015). Additionally, 
sustainability is the accountability measure of the negative externalities caused by the 
chain on the environment, society, and economy in the present and the future under the 
so-called circular economy fundaments. Luthra and Mangla (2018) discuss the criticality 
of incorporating sustainability factors in the decision-making environment. They foresee 
that the framework’s exclusion of those variables will intensify the damage of ecological 
imbalances like resource over-consumption, global warming, climate change problems 
and energy requirements for supply chains as their demand grows. Therefore, the design 
of a model that balances the efforts spent on the three frameworks would be the best 
approach for the business, consumer, and environment.  

This work evaluates one major food supply chain that is found in the poultry industry. 
The significance of such study lies in the inevitable increasing demand of food due to the 
ever-growing human population. This continuously increasing demand pressures 
governments to ensure the availability of sufficient supplies through imports and local 
production, without damaging the source of their natural biological ecosystems. 
Assessing the relationship between supply chain resilience (SCR), industry 4.0 (I40), and 
sustainability (SUS) throughout the value chain of the poultry products will allow for a 
holistic analysis of the critical parameters in this specific market (Wang et al., 2018). As 
an example of the optimisation element of the I40, Menezes et al. (2020) consider a 
poultry production planning for both feed (ration, vitamins, etc.) and number of animals 
(from the hatchery) to be placed into appropriate cages for their proper growth. The 
animals are assigned to unit-places modelled as batch-processes with limited capacity and 
variate time-of-growing of the livestock batches. How the I40 elements can assist in the 
reduction of bottlenecks throughout a chain will define how such novel states of 
technologies may impact SCR and SUS in the chains. Various processes in the food 
supply chains are interlinked, allowing for some multi-dimensional surpluses with 
minimal improvements. 
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2. Supply chain resilience and sustainability connections 
Many researchers have addressed the connection between sustainability and supply chain 
resilience, as they seek to understand how external and internal disruptions would impact 
a sustainable supply chain and how quickly can it recover to normal state. Derissen et al. 
(2011) affirmed that there are four possible relationships between the two frameworks: 
a) resilience of the system is necessary, but not sufficient, for sustainability; b) resilience 
of the system is sufficient, but not necessary, for sustainability; c) resilience of the system 
is neither necessary nor sufficient for sustainability; and d) resilience of the system is 
both necessary and sufficient for sustainability. Fahimnia et al. (2015) conducted an in-
depth trade-off analysis between the supply chain costs incurred while minimizing 
environmental degradation. They found that when it comes to lean versus green 
directions, not all lean interventions at the planning level will result in a greener chain 
and that a flexible chain (resilient chain) is the most efficient alternative to balancing the 
focus on greenness and leanness. 

Mari et al. (2014) tested the relationship between sustainability and resilience through a 
network design and optimisation. Differently to Azevedo et al. (2013) who assigned an 
index for the ecosillient relationship and Fahimnia et al. (2015) with their trade-off 
analysis approach, they created a multi-objective programming model that optimises 
sustainability (SUS) through carbon emission reduction and resilience through location-
specific risks at each node in the network. Taking into consideration other conflicting 
goals like supply chain costs, carbon emissions and disruption costs, this research will 
attempt to use the different previously addressed models for well-rounded relationship 
testing. 

This study will shed the light on various links and opportunities on the ability to retain 
mutual utility from the two far ends of the chain as the chain converges towards the 
equilibrium balance of prioritizing each framework. If the suppliers’ ability to transfer 
value through their chains becomes highly responsive and visible through industry 4.0 
components, then it would enhance the chains’ absorption ability to external disruptions. 
This in turn would increase the resilience of the chain. The strategic strength of a more 
resilient chain will allow for better matching of supply and demand. In an ideal theoretical 
space, where a perfect match between supply and demand occurs, the reduction of food 
waste while meeting the nutritional demands of the consumers, can be reached. The 
sustainability value could be reflected when industry 4.0 systems consider the present and 
future tensions caused on the external environment of a supply chain. With a valid link 
between the frameworks, firms can focus on the optimization of resources, which will be 
travel in a sustainable efficient network. Eventually this would accommodate for the 
present and the future, without any decrease in retained utility of the firm and society. In 
other words, the ideal match between supply and demand could be more attainable as the 
supply chain management moves towards the equilibrium between all frameworks. 

3. Interplaying of food supply chain resilience, industry 4.0 and 
sustainability 
This research targets on using the previously developed concepts, metrics, indices, and 
models to calculate the impact factor of industry 4.0 (I40) integration on supply chain 
resilience (SCR) and sustainability (SUS). Most of the studies discuss thoroughly each 
framework exclusively as a major strategic focus, then propose one or multiple directions 
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for supply chain managements to consider. Some of the researchers suggest the link 
between resilience and sustainability is due to the implicit benefits between the two terms. 
However, a thorough comparative study that addresses the concept of a resilient 
sustainable supply chain with industry 4.0 integrated components (in short, RSSC4.0) has 
not been conducted in the food sector. The goal of this research is to (1) validate the 
triangular connection between the frameworks, (2) conceptualise the benefits and 
limitations of adopting RSSC4.0 in the supply chain operations. Firstly, contributing to 
the introduction of the concept of interplay between the three studied frameworks, and 
the business value of taking the strategic directions to reach the equilibrium. Secondly, 
contributing to an in-depth study of how industry 4.0 integration can solve or ease various 
bottlenecks in food supply chains. This would allow for enhanced, sustainable, and 
resilient networks that satisfy their fiduciary duties to all their stakeholders. The points to 
be raised in the SCR-I40-SUS triple as show in Figure 1 to be applied in the food industry 
or more precisely in the poultry market are: 

• Visualize the supply network design of a farm-to-fork poultry firm.  

• Identify and extract the critical parameters that cause bottlenecks for each 
process across the chain. 

• Identify industry 4.0 technologies that can resolve or ease the bottlenecks. 

• Compare the previously address models like the ecosillient index of the supply 
chains before and after the industry 4.0 integration. 

• Divide the impacts of the industry 4.0 integration to two categories: 

• Direct or indirect impact demonstrated on the resilience score (R) 

• Direct or indirect impact demonstrated on the sustainability score (S) 

• Express through the findings the future implications and trends of the study of 
RSSC4.0. 

 
Figure 1. Supply chain resilience (SCR), industry 4.0 (I40) and sustainability (SUS) triple. 

4. Poultry market value chain   
As an example, we consider in the analyses of segment of the poultry supply network, 
where farms regularly place orders to suppliers of feed (like corn) to satisfy chickens’ 
nutritional needs. The selection of the supplier is based on the ideal balance between 
pricing, quantity, and quality of the feed to ensure that the standard food conversion rate 
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(FCR) is met the livestock production in the farmyards. Variables that allow farms to 
decide on the quantity and quality of the feed would be mass inputted in cloud-based 
machine, which would be analysed and the resulted information would be shared to: 

(1) allow cameras or other optical-verification technologies to flag the rating of the quality 
of the feed when an order is received for quality assurance. 

(2) optimise the order point thresholds by balancing the increase of FCR obtained with a 
higher quality feed, allowing for a reduced quantity ordered and variable cost per chicken. 

(3) allow for a swift well-rounded decision on the procurement selection that is most ideal 
for the farm’s sort and long-term needs. 

This cloud-based system would be integrated with the remainder of the information 
flowing through the network possibly assisting in an optimised decision elsewhere in the 
network. If all farms aim to optimise the balance of variables in their procurement 
selection, it will allow the feed suppliers to focus on the metrics that they require if made 
public to them, which enhances the suppliers’ ability to categorise farms based on their 
quality needs and direct existent and future products to the farms with a high likelihood 
of acceptance.  

With the implementation of some of I40 components in the poultry market for a 
sustainable supply chain in Figure 2, the total SCR of the feed procurement process will 
increase through helping the two-ends effectively predict the versatility of each other’s 
demand and supply patterns. Furthermore, by enhancing their cooperation and data 
visibility, an efficient production schedule will be made, reducing the amount of waste 
and pollution caused by unnecessary oversupply of poultry feed, enhancing the supply’s 
network SUS and circularity. Similar practices could be implemented on agribusiness 
value chain yielding optimal operations, higher amounts of food, better quality of 
products, among others. 

 
Figure 2. Poultry market components for a sustainable supply chain. 

Interplaying of food supply chain resilience, industry 4.0 and sustainability in
the poultry market   
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5. Conclusion 
The improvements and changes that could be done to the current processes in the poultry 
production industry using the triple SCR-I40-SUS framework could enhance the value 
added from farm-to-fork to the businesses, governments, people, environment, and 
economy. The matching of supply and demand is the fundamental goal for each player in 
the supply network as it enhances their short-term profitability and long-term financial 
security. I40 would support in attaining that ideal matched point of supply and demand, 
while also allowing the firms in the network to consider other environmental, social, and 
economic impacts that could be easily overlooked when decisions are focused on short-
term outcomes. The future objectives of this study would be to identity an ideal 
equilibrium point or optimisation model to balance the benefit and cost of a RSSC4.0 
focused supply network. 
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Abstract 
An integrated biofuel supply chain (SC) system, from field to product, has the potential 
to help fuels from second generation bioenergy crops become competitive with fossil 
fuels and grain-based fuels. Landscape design, deciding where to plant bioenergy crops 
and how to manage that land, has been shown to improve the environmental impact of 
farm-scale biomass production (including soil carbon sequestration) but has been studied 
largely separately from biofuel supply chain network design (SCND). This paper 
proposes methods for the spatially explicit and simultaneous optimization of landscape 
design and SCND to explore their economic and environmental tradeoffs. Field scale data 
methods are described, key constraints for a two-stage stochastic mixed-integer linear 
model are introduced, and results from a realistic case study in southern MI, USA are 
presented that show economic and environmental benefits from the proposed approach. 
 
Keywords: Mixed-integer Stochastic Programming, Biofuels, Landscape Design 

1. Introduction 
Efficient design and operation of cellulosic biofuel production systems are crucial factors 
for the future scale up and competitiveness of renewable fuels (Puigjaner et al., 2015). In 
the context of biofuel production, mathematical programming methods such as mixed-
integer linear programming (MILP) and stochastic programming can simultaneously 
account for tradeoffs between decisions needing to be made under uncertainty that span 
a range of both time and spatial scales. Researchers have applied a variety of techniques 
to the biofuel supply chain network design (SCND) problem. Osmani and Zhang (2013) 
developed an optimization model that considers supply chain (SC) strategic and tactical 
decisions at the county level and the minimization of total cost. Ng et al. (2018) presented 
a high-resolution SC model for corn stover with preprocessing depots (referred to 
subsequently as depots) and demonstrated that the spatial distribution of biomass 
influences the optimal SC configuration and operation. Gao and You (2017) presented a 
modelling framework that optimized the SC environmental impact in addition to the 
economic impact through a functional-unit-based life cycle approach under uncertainty. 

One of the primary ways cellulosic crops achieve sustainability is through soil organic 
carbon (SOC) sequestration (Gelfand et al., 2013). Both biomass yield and SOC 
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sequestration potential depend on where in the landscape a specific crop is established. 
The term ‘landscape design’ refers to the process of choosing where in the landscape to 
establish crops and how to manage that land to achieve a specific goal. Some recent 
studies applied optimization techniques to landscape design, usually with environmental 
objectives that consider SOC sequestration. Cobuloglu and Büyüktahtakin (2017) 
developed a two-stage stochastic MILP model for landscape design around a fixed 
biorefinery that makes crop establishment decisions, considers environmental objectives, 
and analyses the competition between food and fuel. Field et al. (2018) simulated crop 
growth at different management conditions on lands around a fixed biorefinery and 
‘optimized’ the landscape design by aggregating the lowest cost and greenhouse gas 
(GHG) parcels to meet a specific demand. Nguyen et al. (2019) developed a high-
resolution MIP model that includes crop establishment and management decisions to 
optimize a set of environmental objectives around a pre-existing biorefinery.  

The SCND problem and the landscape design problem have been studied largely 
separately in the literature. Landscape design studies typically do not make strategic or 
tactical SCND decisions (e.g., facility location, inventory planning) and SCND studies 
assume fixed crop locations and availability. Integrating these two aspects of biofuel 
production by including crop location and management as decision variables, rather than 
parameters as in most SC studies, offers an opportunity to optimize their spatially explicit 
tradeoffs and provide a tool for decision makers to design holistically sustainable systems. 

In this paper we present methods for integrating the biofuel SCND and landscape design 
problems. In section 2 we present methods for gathering necessary high-resolution data, 
flexible spatially explicit model features, and selected model equations for landscape 
design. In section 3 we report results from a case study in southern MI, USA over a range 
of model instances at varying levels of detail. Finally, in section 4 we present conclusions 
and discuss application opportunities for the integrated model. 

2. Spatially explicit two-stage stochastic model 

2.1. Model Parameters and Data Methodology 

Spatially explicit environmental and economic interactions among many of the SCND 
and landscape design decisions motivate the integration of high-resolution data sources 
with optimization models that can capture those tradeoffs. For example, the landscape 
design decision of where to plant crops will affect, among other things, both the SOC 
sequestration and the transportation cost.  

Because yield and SOC sequestration potential is highly field specific, we model the 
available land for planting biomass on the field level and choose lands with United States 
Department of Agriculture Land Capability Classifications (LCC) V-VIII in southern 
Michigan, USA as our study area; although any set of geographically identifiable fields 
are compatible with the model equations presented in section 2.2.   

Field-specific SALUS biogeochemical crop model simulations are used to obtain yield 
and SOC sequestration data for switchgrass grown on the available land (Basso et al., 
2006). SALUS uses a daily time step approach to simulate crop growth and harvest 
including the flows of carbon and nitrogen. Simulations were performed over thirty years 
(1989 – 2018) with the stand re-planted every ten years at two levels of nitrogen 
fertilization (0, 50 kgN/ha) for each of the ~40,000 fields within our study area. SALUS 
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accounts for local weather at a 4 x 4 km resolution and, with thirty years of simulation, 
provides an estimate of the spatially explicit year-to-year uncertainty in biomass yield.  

The two-stage stochastic model is solved for a representative year. Establishment years 
for which crop yields are artificially low are removed and uncertainty scenarios are 
sampled from the remaining 24 simulation years. The sampled yield years are taken as 
uncertainty scenarios 𝑠 ∈ 𝑆 with an equal probability of occurring.  

As the number fields within the study area grows, large model instances are unable to be 
solved in a reasonable amount of time. To maintain tractability of the integrated model 
while still accounting for the uneven distribution of biomass yield and the spatially 
explicit nature of landscape design, we introduce a gridded approximation. A grid of user 
defined resolution is overlaid on the study area. Grid cells containing no fields are 
discarded. The yield and SOC sequestration of fields within a cell are aggregated and the 
location of the new ‘harvesting site’ is defined as the yield-weighted average location of 
the fields it contains. Finer grid resolutions better approximate the uneven distribution of 
yield and SOC sequestration but lead to instances that are computationally difficult. 

2.2. Integrated Landscape Design and SCND Model 

To integrate the SCND and landscape design problems, we propose a spatially explicit 
two-stage stochastic model. The SC structure largely follows the deterministic approach 
of Ng et al. (2018) with extensions for the stochastic biomass yield uncertainty. 
Compounds 𝑖 ∈ 𝐼 move through the SC according to material balance and capacity 
constraints defined over the harvesting sites, depots, and biorefineries with second-stage 
operational decisions made for a representative year divided into time periods 𝑡 ∈ 𝑇.  

Extending the work of Ng et al. (2018), we introduce a set of landscape design constraints 
to model crop establishment at high-resolution harvesting sites (from the gridded 
approximation) in addition to land management decisions that affect biomass yield and 
SOC outcomes. The binary variable 𝑊 , ,  is equal to one if crop 𝑖 ∈ 𝐼  is planted at 
harvesting site 𝑗 ∈ 𝐽 using discrete management (e.g., harvest method, tillage method)  𝑟 ∈ 𝑅 . Eq. (1) enforces no more than one crop may be established at each harvesting 
site and only one discrete management option may be chosen. A combination of discrete 
management options can be considered if each element of 𝑅  is taken as a unique 
combination of discrete management options. ∑ 𝑊 , ,, ≤ 1 ∀ 𝑗  (1) 

Landscape design decisions also involve continuous land management considerations 
(e.g., N-level, residue removal rate). Because the yield and environmental responses to 
land management are often non-linear, we introduce non-negative Special Ordered Set II 
(SOS2) variables to approximate the response to management as linear combinations of 
the available simulated data points for each field described in section 2.1. SOS2 variables 
are an ordered set of variables such that no more than two may be non-zero and they must 
be adjacent. SOS2 variables 𝑍 , , ,  are defined for each feedstock, harvesting site, 
discrete management option, and continuous management data point 𝑟 ∈ 𝑅 (SOS2 on 
index 𝑟). Eq. (2) enforces the constraint that the SOS2 variables must sum to one if the 
harvesting site is selected for crop establishment and zero otherwise. ∑ 𝑍 , , , = 𝑊 , , ∀ 𝑖 ∈ 𝐼 , 𝑗, 𝑟   (2) 
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Eq. (3) constrains the yield 𝑌 , , ,  of crop 𝑖 at each harvesting site 𝑗 at each time period 𝑡 
and uncertainty scenario 𝑠 to the linear combination of the SOS2 variables, the simulated 
yield potential 𝛼 , , , , ,  (Mg/ha) from SALUS, and the area for establishment 𝜎  (ha). 𝑌 , , , =  ∑ 𝑍 , , , 𝜎 𝛼 , , , , ,, ∀ 𝑖 ∈ 𝐼 , 𝑗, 𝑡, 𝑠  (3) 𝐷 = ∑ 𝜒 𝑍 , , ,, , ∀ 𝑗, 𝑟   (4) 

The level of continuous management 𝐷  at each harvesting site is given by Eq. (4), where 𝜒  are the levels of the continuous management option at each data point 𝑟 ∈ 𝑅. A two-
stage stochastic formulation is implemented to account for the year-to-year uncertainty in 
biomass yields. Because the SCND decisions involving facility locations, technology 
selection, and capacity are capitally intensive and difficult to change, model solutions 
should behave well in expectation over the lifetime of the SC in the face of the uncertain 
biomass yields which are influenced by variations in local weather, soil quality, and 
farming practices. The SC specific first stage decisions are biorefinery and depot location, 
technology, and capacity. The landscape design specific first stage decisions are crop 
establishment location and management level. Second stage decisions made after the 
realization of uncertainty include the SC operational decisions (inventory, shipment, and 
production management) and the landscape design decision, harvest amount. The 
optimization objective is the minimization of the expected value of the total annualized 
cost, 𝑇𝐴𝐶, of biofuel production defined by Eq. (5). 𝑇𝐴𝐶 = 𝐶 + ∑ 𝑝 𝐶 + 𝐶 + 𝐶 + 𝐶 + 𝐶 − 𝐶 + 𝐶 ) (5) 

where 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶  are the capital cost, feedstock cost, 
production cost, inventory cost, transportation cost, shortfall from unmet demand, and 
revenue from by-products respectively; 𝑝  represents the probability for uncertainty 
scenario 𝑠 to occur; and 𝐶  defines the cost of landscape design (Eq. (6)) 𝐶 =  ∑ 𝜆 𝐻 , , ,  , , + ∑ 𝐷 𝜌 𝜎 + ∑ 𝜙 , 𝑊 , , 𝜎, , ∀ 𝑠  (6) 

which includes the per-ton cost 𝜆  for harvesting biomass 𝐻 , , , , the per-unit cost of 
continuous land management 𝜌, and the annualized per-area cost 𝜙 ,  of establishing and 
managing a crop. Finally, 𝐶 defines the environmental impact of the landscape design 
and SCND on a cost basis by using the social cost of carbon (SCC) ($/MgCO2e). We 
model the emissions from transportation, production, and landscape activities (𝐺𝑇 ). 
The spatially explicit modelling approach described in section 2.1 allows us to include 
field-level SOC sequestration as negative landscape emissions (Eq. (7)). 𝐺𝑇 =  ∑ 𝑊 , , 𝜎 𝐺𝐻𝐺, ,  + ∑ 𝐻 , , , 𝐺𝐻𝐺, , + ∑ 𝜎 𝐷 𝐺𝐻𝐺 − ∑ 𝜎 𝐺𝐻𝐺 , , , 𝑍 , , ,, , , ∀𝑠  (7) 

𝐺𝐻𝐺  is the per-area emissions from establishing and harvesting crops, 𝐺𝐻𝐺 is the 
per-ton emissions from harvest operations, 𝐺𝐻𝐺  is the per-unit emissions from 
continuous land management, and 𝐺𝐻𝐺 , , ,  is the potential for sequestering SOC at a 
harvesting site under management options 𝑟 and 𝑟 . A baseline value of 50 $/MgCO2e is 
used for the SCC (Tol, 2011), but by adjusting from the base value, a decision maker can 
determine how much emphasis to put on reducing emissions versus SC specific costs. 
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3. Case study results 
To demonstrate the capabilities of the combined SCND and landscape design model and 
the methods used to integrate the two, we present the results of a case study located in 
southern MI, USA. Figure 1. displays the configuration of a detailed instance considering 
5 uncertainty scenarios randomly sampled from the simulated years described in section 
2.1, a spatial resolution of 4 x 4 km, and considering nitrogen fertilization 0 – 50 kgN/ha.  

 
Figure 1. Optimal first-stage decisions for an instance considering 5 uncertainty scenarios and a 4 
x 4 km grid resolution. Large centralized biorefinery and 13 depots located far from the refinery. 

The model solution finds a large centralized biorefinery with 13 depots located far from 
the refinery. Landscape design, including crop establishment locations and fertilization, 
is driven by both the proximity to the refinery and depots and the SOC sequestration 
potential at each harvesting site. Computational results for instances at different spatial 
resolutions and number of uncertainty scenarios are detailed in Table 1. Implementation 
is with GAMS 32.2 solved via CPLEX 12.10 on 2.4 GHz Linux cluster machines with a 
time limit of 24 hours. Each row represents the average of 10 runs with different 
uncertainty scenario samples. High-resolution instances with many scenarios are difficult 
to solve to optimality. The value of the stochastic solution (VSS) is reported in Table 1. 
for instances able to be solved to a 1% optimality gap. The VSS represents the benefit to 
the objective value re-evaluated over the course of 10 years with first-stage decisions 
from solving the stochastic solution as opposed to a solution assuming the biomass yield 
at each field is that field’s average yield. Table 1. also shows the average percent decrease 
of total annualized emissions (MgCO2e) from the corresponding county level instance.  

4. Conclusions 
The spatially explicit and stochastic methods described in section 2 contribute to 
capturing the effect of landscape scale decisions on the SC outcomes to find solutions that 
perform well in expectation compared to the average information case. Instances with a 
higher spatial resolution lead to solutions with much better environmental performance 
largely due to better control of crop establishment, leading to higher SOC sequestration. 
The high-resolution instances rely on the availability of high-resolution and realistic data. 
The data methodology combining field-level crop model simulations with a gridded 
approximation enables tractable simultaneous landscape design and SCND optimization. 
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Table 1. Computational results for model instances at resolutions: county – 16 km2 and uncertainty 
scenarios 1 – 12. Each row is the average 10 model runs for that number of scenarios. 

# of Scenarios Resolution Soln. time (s) Gap VSS ($) GHG Benefit 

1 

County 64 1% 

N/A 

0% 
400 94 1% -103% 
100 316 1% -125% 
16 6,281 1% -151% 

3 

County 406 1% 1.05 E7 0% 
400 779 1% 1.02 E7 -138% 
100 5,232 1% 1.67 E7 -151% 
16 64,336 1% 1.48 E7 -155% 

5 

County 1,204 1% 9.88 E6 0% 
400 2,447 1% 1.32 E7 -136% 
100 25,071 1% 2.04 E7 -128% 
16 86,400 15% N/A -142% 

12 

County 13,333 1% 1.46 E7 0% 
400 39,838 1% 1.58 E7 -180% 
100 68,517 9% 2.07 E7 -182% 
16 86,400 40% N/A N/A 

An integrated landscape and SCND model paves the way for impactful system level 
analyses. The model generality, features, and data methodology allow for future analysis 
of SCND outcomes resulting from inputs such as alternative definitions of marginal land, 
uncertainty associated with future climate, and coarse regional study areas as well as 
small field-level systems through the flexible spatial approach. Insights will aid decision 
makers in designing efficient, cohesive, and sustainable field-to-product systems.  
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Abstract 
Natural gas is expected to grow faster than oil or coal with predictions that it will be the 
leading primary fuel between 2020 and 2030. Technically, there are a number of ways to 
monetize the natural gas resource depending for example on the resource location, 
quantity, and quality. Beside the conventional way of transferring natural gas through 
pipelines, other options considered promising include: liquefied natural gas (LNG), 
compressed natural gas (CNG), gas to solid (GTS), gas to wire (GTW), gas to liquids 
(GTL) and gas to commodity (GtC). The utilization ways vary as being physical 
compression and mixing process like the case of LNG, CNG, and GTS or chemical 
conversion process like the case of GTL. Some of these utilization options are described 
as mature, while others are developing or prospective options that need more investment. 
In this study, the gas to methanol option is explored considering the methanol to gasoline 
(MTG) production route and compared to GTL process and products. The objective of 
this work is to conduct rigorous simulation models for two NG utilization routes namely, 
GTL and MTG in order to help the decision-maker in gas processing industry. Given a 
natural gas feedstock, it is desired to assess economically and environmentally the two 
production routes of gasoline product. In addition, the study aims to investigate the 
comparative and sensitivity analyses to incorporate the sustainability perspectives 
between GTL and MTG production routes. The results indicate a higher overall yield for 
the MTG process with a net economic value of around $568 per tonne of gasoline 
produced and 0.2 tonne of CO2-e emitted per tonne of product. Furthermore, increasing 
the percentage of methanol being processed to gasoline indicates to have more net 
economic profitability but with increased amounts of CO2 emissions. These results 
indicate the significance of MTG process and can be further studied to identify the 
optimal percentage of methanol being processed to gasoline as a trade-off between 
economic and environmental benefits. 

Keywords: MTG, GTL, Process simulation, Techno-economic-enviro, Natural gas 

1. Introduction 
Fossil fuels are dominating the major energy sources worldwide and serve as the prime 
feedstock in the production of a wide variety of chemicals. Reserves of natural gas are 
larger than other fossil-based fuels; coal and oil. However, with the significant depletion 
of fossil-based sources and the increasing demand for energy, especially liquid fuels, 
there is a critical need to establish alternative routes that archive higher sustainability in 
the generation of liquid fuels. Conversion of natural gas to liquid fuels through what is 
known as gas to liquid (GTL) process is technically mature and considered economically 
promising for large-scale production. Alternatively, liquid fuels generation through 
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methanol production route known as methanol to gasoline (MTG) is considered a feasible 
pathway. Methanol can be generated through reforming of natural gas to produce syngas 
intermediate. The first discovery of MTG technology was in 1970’s by ExxonMobil in 
which zeolite catalysts were used due to their well-defined structure,  acidity and surface 
areas (Li et al., 2015). After that, MTG process has received significant interest from 
industry and research. Most of the previous studies in literature focused on analysing a 
single natural gas conversion pathway and less attention was given to comparative studies 
that present the trade-offs between the different routes to support decision making. Aspen 
Plus process simulation along with published data were used to establish a basis for the 
techno-economic analysis of shale gas-to-methanol production. The results of the techno-
economic analysis demonstrate that production of methanol from shale gas would be 
profitable for a broad range of methanol selling prices and shale gas costs. For example, 
a desirable 31% ROI is achieved for a methanol selling price of $2.00/gal and shale gas 
price of $3.50/kSCF (Ehlinger et al., 2013). Sequential process simulation and 
optimization techniques were implemented through a developed framework to natural gas 
processing and production networks, consisting of LNG, GTL, and methanol facilities. 
Initially, a steady state simulation using Aspen Plus software was used to determine 
accurately mass and energy balances, operating conditions, and equipment specification. 
Several benefits obtained by simulating the network, for example, determining accurate 
product yields and feed-gas requirements, capital and operating cost estimates linked to 
plant capacities, environmental impacts in terms of quantified emissions. The yields and 
costs obtained from the simulation are then used as inputs for the optimization step. The 
formulated linear programming (LP) optimization model with the objective function set 
to maximize profitability, evaluates the processing and production network over a wide 
range of forecasted economic changes (i.e. product prices) (Al-Sobhi and Elkamel, 2015). 
The same has been also applied in other studies to support the techno-economic decision 
making in process synthesis such as the different LNG liquefaction process routes 
(AlNouss et al., 2018) and to assess sustainability of production pathways (Al-Sobhi and 
AlNouss, 2018). The objective of this research proposal is to address and identify ways 
to increase the value of NG resource in Qatar by considering more utilization option such 
as methanol to gasoline (MTG) process. The MTG option is explored considering the 
methanol to gasoline (MTG) production route and compared to GTL process and 
products. The novelty of this approach is the economic and environmental comparison of 
two different routes for generating the same final product that is originating from the same 
energy source. This can be achieved by considering rigorous simulation and advanced 
mathematical optimization models while taking into account market information (i.e., 
supply and demand curves, product prices) for liquid fuels and methanol products. This 
presents a comparative analysis framework which benefits addressing the grand 
challenges currently facing Qatar and any NG-rich county worldwide through identifying 
the potential downstream value-added products to be generated and the right investment 
decisions.  It is worth mentioning that the developed framework can be applied to 
different processing sectors such as oil refining, petrochemical, etc. One of the main 
expected outcomes of this study is to present a state-of-the-art NG processing and 
production planning tool to help the decision maker to assess the current monetization 
and identify any emerging/potential technologies to be considered to improve the 
economic portfolio of the country. 
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2. Model development 
The application and implementation of integrated simulation-optimization approach 
proved to be helpful in utilizing the data from process simulation to deliver decision 
outcomes through optimization models. This study focuses on the assessment and the 
comparative analysis of synthesis gasoline produced from GTL and MTG processes. GTL 
is a process that convert natural gas into more valuable liquid products such as gasoline. 
It has three major steps; reforming of natural gas to produce syngas, Fischer-Tropsch (FT) 
synthesis to generate liquid fuels, and lastly, product upgrading to refine the generated 
products into different cuts. Natural gas reforming is reaction of the feed with oxygen and 
steam to produce H2 and CO. Auto-thermal reforming (ATR) is selected in this study to 
be the method of syngas production since it has the ability to control large-scale 
production rates. ATR is endothermic reaction utilizing both oxygen and steam, and has 
the most suitable hydrogen to carbon monoxide ratio for cobalt-based catalyst operation 
(Iandoli and Kjelstrup, 2007). Air separation unit is utilized in the process to provide the 
required oxygen for syngas production unit. Hydrogen to carbon monoxide ratio (H2:CO) 
is a significant parameter in GTL process, and it can be adjusted by water gas shift 
reaction to obtain the optimum ratio for the process. For cobalt-based catalyst process the 
ratio should be between 1.8:2.1 and in this study its equal to 2.1 (Steynberg et al., 1999). 
The produced syngas is then fed into FT reactor to convert it into long-chain hydrocarbons 
which are upgraded using hydrocracked into more valuable products such as naphtha, 
gasoline, kerosene, and wax. The final step of the GTL process is to refine the generated 
liquid fuels through series of distillation columns into the different cuts by means of 
difference in boiling points. Figure 1 illustrates the block flow diagram of the process. 
 

 
Figure 1: Block flow diagram of the GTL process. 

Methanol to gasoline conversion is a modern process for generating gasoline from natural 
gas and it is considered as an alternative route to GTL process. The process starts by 
converting natural gas to syngas (CO and H2) in the presence of steam, then converting 
this syngas into methanol followed by MTG. MTG process normally take place into two 
steps, first methanol is transformed into a mixture of dimethyl-ether (DME) and water 
with some unreacted methanol over a non-zeolitic catalyst usually. Secondly, this mixture 
is introduced into a zeolite catalyst to be converted to gasoline. This process was 
developed in the early 1970 by Mobile and it was commercialized later, and now other 
technologies are introduced in the area of MTG such as Topsoe integrated gasoline 
synthesis (TIGS) (Galadima and Muraza, 2015). Figure 2 illustrates the block flow 
diagram of the MTG process. 
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Figure 2: Block flow diagram of the MTG process. 

The steady state simulation of the GTL and MTG process flowsheets is carried out using 
Aspen HYSYS software and taking into account the feed specifications presented in 
Table 1. The simulated flowsheets have been then analysed from technical, environmental 
and economic perspectives. Aspen Process Economic Analyzer and Aspen Process 
Energy Analyzer have been used to estimate the capital and operating costs of the two 
models along with the environmental emissions in terms of CO2 equivalent. Moreover, a 
sensitivity analysis has been applied on MTG process to study the effect of changing the 
NG feed flowrate on the generated gasoline product and the associated CO2 emissions. 
Another sensitivity analysis has been applied on GTL process to the effect of chain 
growth probability (α) on the products distribution according to Anderson-Schulz-Flory 
model.  
Table 1: Feed specifications for the GTL and MTG models. 

Parameter GTL MTG 
NG molar flowrate (kmol/h) 37540 37540 
NG Composition (mol%) 

Methane 92% 92% 
Ethane 3% 3% 
Nitrogen 5% 5% 

NG feed Temperature (oC) 500 345 
NG feed Pressure (bar) 25 30 
Air to NG molar ratio 0.60 
Air Temperature (oC) 144 
Air Pressure (bar) 25 
Air Composition (mol%) 

Nitrogen 6% 
Oxygen 94% 

Steam to NG molar ratio 0.20 3.00 
Steam Temperature (oC) 500 345 
Steam Pressure (bar) 25 30 

3. Results and discussion 
The results of the techno-economic and environmental study demonstrate a higher overall 
product yield for MTG compared to GTL process with a higher net profit per product and 
CO2 emissions. The detailed results of the two models are presented in Table 2. The raw 
material costs are calculated based on a NG feed price of $137.2 per and the total product 
sales are calculated following a liquid fuels price of $775.4 per tonne. The product 
distribution in GTL process is generated at an α value of 0.75 following Anderson-Schulz-
Flory equation. The product distribution  indicate a high share for gasoline with more 
than 50% followed by Naphtha 25%, Kerosene 22.5% and wax 1%. Whereas, the product 
in MTG process is totally gasoline with an overall yield of around 11% compared to 6% 
in the case of GTL process. The capital and operating costs are higher in the MTG process 
compared to the GTL process which was compensated by the higher production yield and 
sale. The raw material cost is the same for both cases as the same amount of NG is utilized. 
As a result, the net profit per product is higher for MTG process with $568 per tonne of 
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product compared to $558 for the GTL case. Similarity, the CO2 emissions per product 
for MTG process is lower with 0.2 tonne of CO2 -e emitted per product compared to 1 for 
the GTL process. 
Table 2: Summary of the main results for GTL and MTG processes. 

Parameter GTL MTG 
Liquid fuels product (kmol/h) 2151.43 4121.50 
Liquid fuels product (tonne/y) 3.77x106 4.20 x106 

Product distribution (wt%) 

25.1% Naphtha 
51.1% Gasoline 
22.5% Kerosene 

1.3% Wax 

100% gasoline 

Product yield 6% 11% 
Total capital cost ($) 2.20 x108 4.62 x108 
Total operating cost ($/y) 4.48 x106 7.26 x106 
Total raw materials cost ($/y) 7.70 x108 7.70 x108 
Total product sales ($/y) 2.92 x109 3.25 x109 
Total annualized cost ($/y) 8.20 x108 8.72 x108 
Net profit ($/y) 2.10 x109 2.38 x109 
Net profit per product ($/T product) 558.10 567.55 
CO2 emissions (T CO2-e/h) 433.07 93.45 
CO2 emissions per product (T CO2-e/T product) 1.0 0.2 

 
The distribution of the liquid fuels generated from the GTL process are highly affected 
by the characteristics of the FT reactor and α probability following Anderson-Schulz-
Flory equation (Al-Yaeeshi et al., 2019). The effect of α on the products distribution has 
been studied to determine the trend of gasoline production. Figure 3 demonstrate that the 
gasoline production increases with the increase in α until a certain peak point at around 
0.75 which beyond the trend decreases. The curves of kerosene and wax indicate an 
increasing trends in general while the trend of Naphtha production decreases with the 
increase in α. 

 
Figure 3: Effect of chain growth probability (α) on the products distribution of the GTL process. 

Similarly, the effect of changing the NG feed flowrate on the generated gasoline product 
and the associated CO2 emissions has been studied for MTG and GTL processes. The 
trends presentenced in Figure 4 indicate an increasing gasoline production and CO2 

emissions with the increase in NG feed. This increasing trend become less signification 
after 60,000 kmol/h of NG feed. 
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Figure 4: Effect of NG feed flowrate on the gasoline product and the associated CO2 emissions. 

4. Conclusions 
The importance of transportation fuels is growing rapidly while the downstream 
investment in its production indicates critical operational costs. Hence, there is a need to 
establish alternative routes that archive higher sustainability in the generation of liquid 
fuels from fossil fuels. This study investigates the methanol to gasoline (MTG) 
production route as a GTL process alternative. The objective is to conduct rigorous 
simulation models for two NG utilization routes namely, GTL and MTG in order to help 
the decision-maker in gas processing industry. The results indicate a higher overall yield 
for the MTG process with a net economic value of around $568 per tonne of gasoline 
produced and 0.2 tonne of CO2 -e emitted per tonne of product. As a future work, the 
optimal percentage of methanol being processed to gasoline can be investigated as a trade-
off between economic and environmental benefits. 
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Abstract
The main goals of retrofitting strategies are focused on addressing fundamental
improvements in energy, environmental, and cost performance. This paper presents a
novel formulation model aimed at determining optimal configurations for integrating a
multi-energy type system to the process industries. The design and operation tasks are
posed in mathematical terms as a bi-criteria mixed-integer linear programming problem
(bi-MILP) that seeks to maximize the net present value (NPV) of the process supply
chain while minimizing its environmental impact. Hence, the major contribution is the
adoption of a mathematical approach to capture the cause-effect relationship between
material/energy consumption/demand and the associated environmental impacts. The
model capability is validated through a case study based on the Argentinean sugar cane
industry and the benefits of integration are demonstrated.

Keywords: Retrofitting, MO optimization, sustainability, energy integration.

1. Introduction
Optimization strategies should be improved within the framework of industrial
symbiosis systems to meet sustainability goals. Besides, the development of sustainable
design and planning models for the process industries has strongly stimulated academia
during the last three decades. Hence, the main goals of retrofitting strategies are focused
on addressing fundamental improvements in energy, environmental, and cost
performance. These strategies can be implemented in different levels as a unit, process
segment, and overall system. For the case of process industries, the following
challenges must be addressed (i) The integration of material/energy strategies in process
industries; (ii) The integration of economic and environmental aspects within the
framework of supply chain management; (iii) The development of efficient retrofit
techniques to production processes. These challenges can be tackled by adopting a
holistic systems-based analysis. Such an approach is supposed to propose an integrated
solution by minimizing the global impact while considering feasibility constraints
introduced by universal physical laws and current regulations. Particularly,
multi-objective optimization is applied to the sustainable design and planning of a wide
variety of industrial systems (Grossmann and Guillén-Gosálbez, 2010; Arora, 2012).
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Subsequently, the incorporation of environmental concerns in SCs optimization models
leads to Green Supply Chain Management. Hence, an approach has gained wider
interest in recent years about combining mathematical programming and life cycle
assessment and economic performance of the network. For instance, (Sabio et al., 2014)
proposed an integrated LCA model via multi-objective mathematical programming to
demonstrate that the combination of optimization techniques and LCA provides a
powerful tool for balancing the environmental and economic performance of the
production system.
However, very few types of approaches have been addressed multi-objective
optimization of an integrated material/energy supply chain with considering economic
and environmental impact factors. Hence, a general model that simultaneously
optimizes the economic and environmental benefits of single-energy resource
integration in process industries, particularly, exploiting bioenergy to run the production
process, is the novelty proposed through this work. The proposed MILP model extends
the traditional multi-objective approaches by considering the energy cogeneration, as a
particular case, and its impact on the conflicting objectives of the whole system.

2. Problem statement
The production network retrofitting considers both its economic performance and the
environmental impact (see Fig. 1). The network contains a set of raw materials and
energy suppliers, production system utilizing various technologies, storage facilities,
and final markets. For a more sustainable option, a penalty cost is assigned to the
landfill. A standard high-level network is considered to determine the mathematical
formulation, encompassing material resources that play the role of suppliers.

Fig. 1. Integrated energy/material SC Network

The network also includes process industries with different production technologies,
acting as raw material consumers along with potential sites for storage technologies.
The goal is to identify the best design and planning decisions about the system
configuration and operation in terms of economic performance along with the
environmental impacts.
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3. Mathematical Model
The following equations formulate the network shown in Fig.1. In particular, mass and
energy balances, as well as capacity constraints for each part of the network, are next
described. A mixed-integer linear programming model is used to optimize sustainable
supply chains. The proposed MILP is extended from the model introduced by (Mele et
al., 2011). The emissions and wastes generated during the production tasks are
considered in the model formulation. Any excess of energy can also be marketed.
3.1. Material balances and constraints
The mass balance for each potential site is defined by Eq.1. Hence, for each material
type , the initial inventory maintains in region from the previous period𝑖 𝑆𝑇

𝑖,𝑠,𝑔,𝑡−1
𝑔

plus purchased raw material , the total produced material and input material𝑃𝑈
𝑖,𝑔,𝑡

𝑃𝑇
𝑖,𝑔,𝑡

flow rate is equal to the current inventory added to delivered product𝑄
𝑖,𝑙,𝑔,𝑔',𝑡

𝑆𝑇
𝑖,𝑠,𝑔,𝑡

plus the output material flow , and generated waste .𝐷𝑇
𝑖,𝑔,𝑡

𝑄
𝑖,𝑙,𝑔,𝑔',𝑡

𝑊
𝑖,𝑔,𝑡

𝑠∈𝐼𝑆(𝑖,𝑠)
∑ 𝑆𝑇

𝑖,𝑠,𝑔,𝑡−1
+ 𝑃𝑇

𝑖,𝑔,𝑡
+ 𝑃𝑈

𝑖,𝑔,𝑡
+

𝑙∈(𝑖,𝑙)
∑

𝑔'≠𝑔

∑ 𝑄
𝑖,𝑙,𝑔',𝑔,𝑡

=

(1)
𝑠∈𝐼𝑆(𝑖,𝑠)

∑ 𝑆𝑇
𝑖,𝑠,𝑔,𝑡

+ 𝐷𝑇
𝑖,𝑔,𝑡

+
𝑙∈(𝑖,𝑙)

∑
𝑔'≠𝑔

∑ 𝑄
𝑖,𝑙,𝑔,𝑔',𝑡

+ 𝑊
𝑖,𝑔,𝑡

        ∀𝑖, 𝑔, 𝑡

3.2. Energy balances and constraints
Due to single source energy generation, total energy demand is defined as follows:

(2)
𝑒𝑖
∑[𝐸𝑛𝐼𝐽

𝑒𝑖,𝑔,𝑡
×𝐸𝑓𝐼𝐽

𝑒𝑖
] +

𝑒𝑥
∑[𝐸𝑛𝑋𝐽

𝑒𝑥,𝑔,𝑡
×𝐸𝑓𝑋𝐽

𝑒𝑥
] = 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑

𝑔,𝑡
     ∀𝑔, 𝑡

Here, it is assumed that different types of energy are generated internally and purchased
from external resources, reflected by and indices, respectively. The total amount of𝑒𝑖 𝑒𝑥
energy demand of a process plant located in region is equal to the𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑

𝑔,𝑡
𝑔

summation of all different types of energy flows , generated inside the system,𝐸𝑛𝐼𝐽
𝑒𝑖,𝑔,𝑡

plus the total energy flow that comes from the external resources . The𝐸𝑛𝑋𝐽
𝑒𝑥,𝑔,𝑡

conversion efficiencies between energy resources and the process plant are represented
by and .𝐸𝑓𝑋𝐽

𝑒𝑥
𝐸𝑓𝐼𝐽

𝑒𝑖

3.3. Objective functions
The model includes two objective functions, being the Net present Value (NPV) as the
economic objective function whereas the environmental impact quantified regarding the
Life Cycle Assessment (LCA) principles. The NPV can be determined from the
discounted cash flows ( ) generated in each of the time intervals in which the total𝐶𝐹

𝑡
time horizon is divided, updated according to the interest rate ( )𝑖𝑟

(3)𝑁𝑃𝑉 =
𝑡
∑

𝐶𝐹
𝑡

(1+𝑖𝑟)𝑡−1

In the current application, the total environmental damage is simplified to only consider
the Global Warming Potential, through the GWP100 metric and calculated through the
summation of damages could be caused in each stage of SC: the production of the main
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feedstock GWPPU, the manufacturing and storage tasks GWPPE, and the transportation
of materials between regions GWPQ. Hence,

(4)𝐷𝐴𝑀 = 𝐺𝑊𝑃𝑃𝑈 + 𝐺𝑊𝑃𝑃𝐸 + 𝐺𝑊𝑃𝑄

(5)𝐺𝑊𝑃𝑃𝑈 = 𝐺𝑊𝑃100𝑃𝑈×
𝑖

∑
𝑔
∑

𝑡
∑ 𝑃𝑈

𝑖,𝑔,𝑡

(6)𝐺𝑊𝑃𝑃𝐸 =
𝑖

∑
𝑝
∑

𝑔
∑

𝑡
∑ 𝐺𝑊𝑃100𝑃𝐸

𝑝
× 𝑃𝐸

𝑖,𝑝,𝑔,𝑡

(7)𝐺𝑊𝑃𝑄 =
𝑖

∑
𝑙

∑
𝑔
∑

𝑔'
∑

𝑡
∑ 𝐺𝑊𝑃100𝑄

𝑙
× 𝐸𝐿

𝑔,𝑔'
× 𝑄

𝑖,𝑙,𝑔,𝑔',𝑡

Here, , , and represent the heat absorbed by any 𝐺𝑊𝑃100𝑃𝑈 𝐺𝑊𝑃100𝑃𝐸
𝑝

𝐺𝑊𝑃100𝑄
𝑙

greenhouse gas (as a multiple of the heat that would be absorbed by the same mass of
carbon dioxide) in the atmosphere by the feedstock production, main products
operations and material transportation process, respectively. The environmental impact,
as an objective function, is defined through the variable DAM as an environmental
metric to be minimized.

𝐷𝐴𝑀 = 𝐺𝑊𝑃𝑃𝑈 +  𝐺𝑊𝑃𝑃𝐸 + 𝐺𝑊𝑃𝑄 (8)

3.4. Multi-objective equations
The mathematical model presented herein capitalizes on the mixed-integer linear
programming (MILP) formulation and seeks to optimize simultaneously the NPV and
DAM objectives described in the bi-dimensional objective function as presented in
model . The overall bi-MILP formulation can be expressed briefly as follow:

(9)𝑀( )         

s.t. constraints 1-7

(10)𝑥 ∈ 𝑅,  𝑋 ∈ 0, 1{ } ,  𝑁 ∈ 𝑍+ 

Note that, despite being the work by Mele et al. (2011) the basic model, particularly in
those equations regarding production, it is extended to consider the energy section to
amplify solutions borders and create more opportunities to make more flexible
decisions.

4. Case Study: Retrofitting of integrated Sugar-bioethanol SCs
The proposed formulation is illustrated through its application to a case study based on
the sugar-bioethanol industry of Argentina. The country is divided into 24 regions with
associated ethanol, raw and white sugar demands. We use the data in Mele et al. (2011).
4.1. Cogeneration power plant
Cogeneration power plant is considered as a single source of energy generation to
produce two types of energy (heat and electricity). It is assumed that the energy output
per ton of sugarcane is 66 and the minimum energy generation coefficient is𝑘𝑊/𝑡
equal to 1. It is also assumed that the capacity of the power plant is 50 , and power𝐺𝑊
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generation is available continuously for 7800 hours annually. On the basis of IEA
(2010), the estimated installation costs of the cogeneration plant is 800 .€

𝑘𝑊

5. Results
Regarding the aim of proposing a quantitative tool, we target at determining the optimal
integration of renewable technologies to meet the energy (in this particular case
electricity) demand in order to produce the main products (particularly sugar and
ethanol) and cover the market demand over 12 months and during 4 years of planning
horizon. The bi-criteria model was written in GAMS and solved with the MILP solver
CPLEX 12.9 on an Intel® Core™ i7-3770 Octa-core Processor 3.40 GHz and 7.88 GB
of RAM. The results include the environmental sustainability of the network to illustrate
the environmental impacts minimization simultaneously with maximization of NPV. It
takes approximately 1200 seconds to identify the global optimum in every instance. 12
Pareto points were generated, as shown in Fig. 1, in which nadir and utopia points have
been also included.

Fig. 1. Pareto set of solutions NPV vs GWP100

The decision on the optimum configuration of the system mainly depends on its local
resource (energy/raw material) availability and the installation and operational costs. In
this, the SC consists of three sugar mills and five distilleries. In the maximal NPV
solution, all the production plants are implemented in 10 regions, 4 of them having
sugarcane plantations. This optimality comes from the raw material availability and
stability regarding climatic conditions during a year. There are cogeneration power
plants in 4 regions that have the most sugarcane plantation capacity. The installed
production technologies and the number of the power plants can be seen in Table 1 for
both cases of maximal NPV and the minimal GWP100.

Table.1 Output data for the two extreme solutions
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Table 2. Regional Installed power capacity (kW) of power plant

Region G13
(Salta)

G16
(Tucumán)

G17
(Jujuy)

G18
(Santa Fe)

Cogeneration
power plants 2.5 2.5 58.6 378.8

Hence, they are autonomously able to provide their energy demand and Tucumán (G16)
sells its exceeded energy to the grid. The results assure that for all demand levels, an
energy surplus of 10% to 40% especially in lower demands create possibilities to
market it. Hence, regions with constant climatic condition such G16, G17 and G18 may
implement cogeneration plants and so advantage results in a high contribution of residue
to energy in the energy/material SC and as it has the most effective share of 60% in the
integrated energy/material SC and the NPV improves to 43% than stand-alone system.

6. Conclusions
In this work, we introduced a general model to optimize an integrated energy/material
SC with economic and environmental concerns. The model includes four segments of
equations: material production, energy generation and integrated energy/material
equations and objective function. It is aimed to show the quantitative profitability of
integration for both economic and environmental issues.
The model has been validated in a country size case study of Argentinean sugar cane
industry that is considered 24 regions of Argentina as potential sites. For this case,
several system configurations proposed and analyzed the exploitation benefits of
renewable energies to generate different energy types required in a production process
system.
Compared to Mele et al. (2011) work as an initial model, by considering a single type
energy provider as an internal resource, the economic criteria represented by NPV, is
increased 20% in a deterministic condition (Morakabatchiankar et al., 2017).
Furthermore, by developing the model to a multi type energy generation, results show
an increase of 43% in NPV. In the particular case study, not only we can satisfy the
internal energy demand to produce main products that can satisfy 97% , 37% and 40%
of the whole country demands for ethanol, white sugar and raw sugar respectively, but
also there is generated 64 GWh of exceeded energy to sell.
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Abstract 
The rising share of renewable energy sources in power supply and the shut-down of 
conventional power plants lead to a need for new providers of balancing power. Balancing-
power could be newly provided by the flexibilization of decentralized energy systems. In this 
contribution, we propose flexibility-expansion planning for decentralized energy systems to 
account for investments in additional units for flexibilization. Flexibility-expansion planning 
leads to a stochastic optimization model for optimal investment decisions towards increased 
operational flexibility. The stochastic optimization model consists of a design optimization 
and a two-stage stochastic program. In a case study, the method is applied to a decentralized 
energy system participating in the German tertiary balancing-power market. Savings of up to 
5.9 % can be achieved with additional investments in heat storage. Thus, flexibility-expansion 
planning allows operators of decentralized energy systems to optimally invest in flexible 
technologies for improved balancing-power market participation. 

Keywords: Ancilliary service, utility system, stochastic optimization, control reserve 

1. Introduction 
Balancing power settles short-term imbalances between supply and demand in the 
electricity grid. Balancing power is an ancillary service offered by electricity providers 
or consumers. Positive balancing power is provided by increasing the demand or 
decreasing the supply; negative balancing power works vice versa. Today, conventional 
power plants supply most balancing power. However, many conventional power plants 
are shut down due to political, ecological, and economic reasons. These power plants no 
longer provide balancing power, while studies show an increasing demand for balancing 
power (DENA, 2014). Hence, new balancing-power providers are needed.  
Deciding to provide balancing power is challenging due to the inherent uncertainty. 
Zhang et al. (2015) therefore use robust optimization to model the balancing-power 
market participation of an air-separation unit with cryogenic energy storage. The number 
of balancing-power requests is specified exogenously and the system is scheduled to the 
worst case of balancing-power requests. Kumbartzky et al. (2017) demonstrate savings 
for a combined-heat-and-power plant with heat storage participating in the German 
electricity and balancing-power market. Stochastic optimization is used to account for 
market uncertainties. However, the model excludes the actual request of balancing power. 
For a production system with an on-site utility system, Leenders et al. (2019) model the 
participation in the German tertiary balancing-power market. The operation of the overall 
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system is explicitly modeled if balancing power is requested. Schäfer et al. (2020) and 
Bohlayer et al. (2020) demonstrate savings from balancing-power market participation 
for an energy-intense aluminum mill and cement plant, respectively. 
However, only a few studies investigate investments in additional units to increase the 
flexibility of decentralized energy and production systems. Muche et al. (2016) optimize a 
combined-heat-and-power plant participating in the tertiary balancing-power market in 
Germany. The investment in heat storage is studied to increase flexibility. The investment 
decision itself is not part of the optimization problem and is only considered a posteriori. 
Hence, the sizing of storage is suboptimal and turns out to be non-profitable. Teichgräber and 
Brandt (2020) design a chlor-alkali electrolyzer with real-time electricity market data using 
stochastic optimization. Large differences in system design are shown depending on the shape 
and magnitude of the used market price data. The authors point out that other short-term 
markets should be considered in design optimization besides the real-time electricity market.  
Commonly, decentralized energy systems are designed only to cover exogenous demands 
of, e.g., heating, cooling, electricity. As reviewed, the balancing-power market participa-
tion is often studied for a given energy system design. Thus, the energy system is not 
designed for participation in balancing-power markets. In this work, a method is proposed 
for flexibility expansion of decentralized energy systems to increase balancing-power 
provision. The method employs a stochastic optimization model that combines long-term 
investment decisions with short-term operational decisions from participation in 
balancing-power markets. The operational model is based on Leenders et al. (2020). We 
extend this model with investment decisions and time-coupling storage equations. 

2. Flexibility-expansion planning for balancing-power markets 
The goal of flexibility-expansion planning is the optimal long-term investment for 
participation in the balancing-power market (Figure 1). Long-term investment decisions are 
considered by the design optimization. Therein, the investment in flexibility options is 
modeled to increase the flexibility of the decentralized energy system. The design optimization 
chooses the optimal capacity 𝐶𝐴𝑃  of units 𝑢 ∈ 𝑈, e.g., heat storage or electrode boiler. 
Short-term operational decisions are considered by a two-stage stochastic mixed-integer linear 
program. The stochastic program models the course of the information revelation in the 
balancing-power market and covers the uncertainty from the request of balancing power. Bids 
in the balancing-power market need to be made one day before operation. The 1st stage of the 
stochastic program models the pay-as-bid balancing-power market auction for the 
decentralized energy system. Bids in the balancing-power market consist of an amount of 
positive and negative balancing power 𝐵𝑃 , , the capacity price 𝑐𝑝 ,  and the energy price 𝑒𝑝 ,  for each request scenario 𝑠 ∈ 𝑆 and time step 𝑡 ∈ 𝑇. The capacity price is paid for the 
provision of capacity in the balancing-power market. The energy price compensates for the 
respective request of balancing power. The energy price bid is discretized as in Leenders et al. 
(2019) with a Big-M formulation to avoid nonlinearities from the bidding decision. The 2nd 
stage of the stochastic program is the scenario-dependent operation 𝑂𝑃 , ,  of the 
decentralized energy system. Since the request of balancing power is uncertain in each time 
step 𝑡 ∈ 𝑇, three request scenarios 𝑠 ∈ 𝑆 = { 𝑛𝑜 , 𝑝𝑜𝑠 , ′𝑛𝑒𝑔′} can occur with their 
probabilities 𝜔 , : no request of balancing power (′𝑛𝑜′), and request of positive or respectively 
negative balancing power (′𝑝𝑜𝑠′ / ′𝑛𝑒𝑔′). In each time step, the operation of the decentralized 
energy system depends on the request scenario for balancing power. In the scenarios ′𝑝𝑜𝑠′ / ′𝑛𝑒𝑔 ,  the produced electricity increases/descreases by the offered amount of balancing 
power 𝐵𝑃 ,  and 𝐵𝑃 , , respectively. Hence, the operation of the decentralized energy 
system 𝑂𝑃 , ,  is different for each request scenario and in each time step. 
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Figure 1: Flexibility-expansion planning combines a design optimization determining 
long-term investment decisions with a two-stage stochastic mixed-integer linear program 
for optimal operational decisions in the balancing-power market. Long-term and short-
term decision variables are listed below the figure. 

The long-term investment decisions cannot be taken independently without considering 
the short-term decisions. Hence, we combine both optimization models for long- and 
short-term decisions in the flexibility-expansion planning problem. The flexibility-
expansion planning minimizes the total annual costs 𝑇𝐴𝐶 subject to energy balances, 
storage equations, and other operational constraints of the energy system:  min 𝑇𝐴𝐶 = 𝐶𝐴𝑃𝐸𝑋 𝑂𝑃𝐸𝑋  ______________ 1  𝑠. 𝑡. 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 ∀𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 2  𝑠. 𝑡.   𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 ∀𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 3  

⁝ 

The total annualized costs 𝑇𝐴𝐶 consider annualized capital expenditures 𝐶𝐴𝑃𝐸𝑋 in newly 
installed units 𝑢 ∈ 𝑈 with capacity 𝐶𝐴𝑃  and the yearly operational expenditures 𝑂𝑃𝐸𝑋. The 
operational expenditures 𝑂𝑃𝐸𝑋 arise from the scenario-based operation of the decentralized 
energy system 𝑂𝑃 , , . At each time step 𝑡, the operational expenditures 𝑂𝑃𝐸𝑋 consider the 
costs for all three scenarios 𝑠 ∈ 𝑆 weighted with the respective request probability 𝜔 , . The 
operational expenditures 𝑂𝑃𝐸𝑋 consist of costs for gas and electricity purchase and revenues 
from the sale of electricity and the participation in the balancing-power market. 
The energy balance needs to be fulfilled for all products 𝑝 ∈ 𝑃, e.g., heating, cooling, 
electricity, in each time step 𝑡 ∈ 𝑇 and request scenario 𝑠 ∈ 𝑆. Details about the 
formulation of the operational expenditures and the energy balance formulation are given 
by Leenders et al. (2020). 
2.1. Modeling of time-coupling energy storage 
Energy storage is used to store a product in a specific time step and withdraw it at a later 
time step. Hence, energy storage couples the time steps in an optimization problem. 
Modeling energy storage in stochastic optimization increases complexity. In each time 
step, storage can operate in 3 modes, since the three request scenarios lead to different 
storage levels in general. In result, the number of possible storage levels grows with 3| |. 
Hence, the problem gets computationally intractable with already a few time steps. 
Here, we propose a method to restrict the possible storage level in each time step. To keep 
the problem tractable, we consider only one distinct storage level in the next time step. 
For this purpose, we propose two formulations based on different assumptions (Figure 2). 
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Same-storage-level formulation 
In the same-storage-level formulation, the storage is operated the same regardless of the 
request of balancing power. This formulation leads to an operational schedule of the 
decentralized energy system, which is always feasible but restricts operational flexibility. 
Storage level 𝐿𝐸𝑉 , ,  of the next time step 𝑡 1 is derived by withdrawing product 𝑂𝑈𝑇 , ,  or adding product 𝐼𝑁 , ,  to the storage level 𝐿𝐸𝑉 , ,  in time step 𝑡 𝐿𝐸𝑉 , , = 𝐿𝐸𝑉 , , ⋅ 𝜂 ∆ ⋅ 𝜂 ⋅ 𝐼𝑁 , , 1𝜂 ⋅ 𝑂𝑈𝑇 , , ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃. 4  

The storage losses 𝜂  in each time step 𝑡 are assumed to be a constant share of the storage 
level 𝐿𝐸𝑉 , , . Furthermore, constant charge and discharge efficiencies 𝜂  are assumed. 
In the same-storage-level formulation, the storage level 𝐿𝐸𝑉 , ,  is the same in each 
scenario 𝑠 ∈ 𝑆 and, thus, the operational variables for charging 𝐼𝑁 , ,  and discharging 𝑂𝑈𝑇 , ,  are the same in each scenario 𝑠 ∈ 𝑆. Hence, the storage operation has no 
recourse. However, the problem remains a two-stage stochastic optimization as the other 
units 𝑢 ∈ 𝑈 adapt to the respective scenario that materializes. 

Lowest-storage-level formulation 
In the lowest-storage-level formulation, the storage operates independently in each 
request scenario, but only the lowest storage level is considered in the next time step 𝑡1. Thereby, we avoid the exponential growth of scenarios but have to allow for 
overproduction if the storage is fully charged. The storage-level equation Eq. (4) is 
changed to an inequality: 𝐿𝐸𝑉 , , ⋅ 𝜂 ∆ ⋅ η ⋅ 𝐼𝑁 , , 1𝜂 ⋅ 𝑂𝑈𝑇 , ,  𝐿𝐸𝑉 , , ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃. 5  

In this formulation, no non-anticipativity constraints are needed for the operational 
variables 𝐼𝑁 , ,  and 𝑂𝑈𝑇 , , , but the non-anticipativity constraints for the storage level 𝐿𝐸𝑉 , ,  are kept. Each time step, the storage operates differently for each request 
scenario, but the storage level is equal to the lowest storage level. This formulation offers 
more operational flexibility of energy storage, but the energy storage might be sized too 
small in some unfavorable cases as overproduction is allowed. 
 
 
 
 

 
 
 
 
Figure 2: The scenario tree for an energy system with energy storage in stochastic optimization 
(left). The scenario tree grows exponentially due to time-coupling constraints. To keep the 
problem tractable, we propose 2 formulations (right) to reduce the information, i.e. storage level, 
considered in the next time step. 
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participation of decentralized energy systems  

3. Case study 
3.1. Description 
Flexibility-expansion planning is applied to a real-world case study of a decentralized 
energy system based on Baumgärtner et al. (2019) with 3 combined-heat-and-power 
engines (2, 2.25, 3 MW), 2 boilers (5, 2 MW), 2 absorption chillers (1.4, 0.3 MW), and 
3 compression chillers (2.2, 2.2, 1.3 MW) to cover a time-varying demand of heating, 
cooling, and electricity. Investments in heat storage and electrode boiler are considered. 
The energy system participates in the German tertiary balancing-power market while 
considering hourly fluctuating electricity and gas prices. We use market price data in the 
current balancing-power market design from 01.08.2019 to 31.07.2020. Capacity prices, 
discrete energy prices, and request probabilities are derived similarly to Leenders et al. 
(2019). The maximum amount of balancing power to be offered is set to 5 MW. Bids in 
the balancing-power market need to be the same for four hours to comply with the current 
market rules. The time-sensitive data are derived as time series of one year with an hourly 
resolution. We aggregate the time series with the TSA-module from Kotzur et al. (2018) 
using hierarchical clustering to receive one typical day with 24 time steps.  
Four cases are compared: No balancing-power market participation and no possibility to 
invest (no market), balancing-power market participation and no possibility to invest (no 
invest), balancing-power market participation and possibility to invest in an electrode 
boiler and heat storage using the same storage level formulation (same) or the lowest 
storage level formulation (flexible). All optimization problems are solved with the solver 
Gurobi on an Intel Xeon W-2155 @3.30 GHz with 128 GB RAM with an optimality gap 
of 1 % and a time limit of 7200 s. The 4 cases needed the following time to solve the 
problem to the predefined gap: 3 s (no-market), 13 s (no invest), 7200 s with a gap of 1.4 
% (same) and 7200 s with a gap of 2.0 % (flexible). 
Table 1: Expected costs (positive) and revenues (negative) for the four cases no market, no invest, 
same and flexible (upper part). Average offered amount of positive and negative balancing power 
at the typical day for the four cases no market, no invest, same and flexible (lower part). 

3.2. Results 
In the case study, flexibility-expansion planning saves 4.3 % (same) and 5.9 % (flexible) 
compared to the case no market (Table 1). Participation in the balancing-power market 
without investment saves 3.0 % compared to the case no market. Balancing-power market 
participation decreases electricity costs while gas costs increase. More electricity is 
produced to reduce electricity production upon request of negative balancing power.  
In the case same, the optimal heat storage capacity is 2.9 MWh and in the case flexible 
2.6 MWh. The smaller heat storage capacity in the case flexible than in the case same 
indicates that additional heat is not necessarily profitable to store when overproduction is 
possible. Instead of using the excess heat in other time steps, the heat storage is sized 
smaller in the case flexible than in the case same to reduce capital expenditures. Neither 
the case same nor the case flexible regard an investment in electrode boilers as beneficial. 

In 1000 € No market No invest Same Flexible 
Investment costs 0 0 12 11 
Expected gas costs 2653 2687 2790 2831 
Electricity costs 274 232 96 60 
Balancing-power market revenues 0 -81 -97 -146 
Total annual costs 2927 2838 2802 2756 
Savings 0.0 % 3.0 % 4.3 % 5.9 % 
Average positive balancing power [in MW] 0.0 0.33 0.67 2.0 
Average negative balancing power [in MW] 0.0 4.5 4.5 4.5 

1845     



 N. Nolzen et al. 

  

The decentralized energy system offers an average amount of 4.5 MW of negative 
balancing power for the cases no invest, same and flexible (Table 1). Hence, the 
decentralized energy system has sufficient flexibility to provide negative balancing 
power. The average amount of offered positive balancing power increases with heat 
storage installation from 0.33 MW in the case no invest to 0.67 MW in the case same 
(Table 1). In the case same, heat storage gives heat-controlled combined-heat-and-power 
engines more flexibility since heat production is shifted to time steps with higher 
electricity demand. In the case flexible, the average offered amount of positive balancing 
power increases to 2.0 MW, as heat storage enables the combined-heat-and-power 
engines to be even more flexible. 

4. Conclusions 
The proposed flexibility-expansion planning combines long-term investment decisions 
with short-term operational decisions in one stochastic optimization model. For the 
flexibility-expansion planning, we proposed two methods to model energy storage in a 
stochastic optimization model for balancing-power market participation. In a case study 
of a decentralized energy system, flexibility-expansion planning achieves cost savings of 
up to 5.7 %. Thereby, flexibility-expansion planning supports participation in the 
balancing-power market. 
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Abstract 
Refined products supply chain optimisation is a crucial issue in the oil industry. The task 
is to transport refined products from refineries to storage depots and retail markets 
through multiple transport modes. The optimisation of the refined products supply chain 
has been mostly based on maximising the total profit. However, each company, along 
with the supply chain, pursuits their own maximum profit. The solution obtained by the 
total chain method may not satisfy all the participants in the refined products supply chain. 
Bargains have existed between these companies, and steps are required to adjust the 
transport plan, which may affect the optimality of the plan. Also, the bargain abilities of 
these companies are different. A mixed-integer nonlinear programming (MINLP) model 
considering both cooperative game theory and transfer prices to simulate the behaviours 
of stakeholders is proposed to solve this problem of the optimal refined products 
distribution planning. Material balance, production rate, transport modes and capacities 
are developed as constraints. Nash bargaining solutions for the multi-player bargaining 
game are obtained via maximising a tailored objective function. In this way, a refined 
products distribution plan with more fair profit allocation can be obtained, and the 
bargaining ability of each participant can be considered. The model is applied to a refined 
products supply chain in China as a case study to show its validity and applicability. This 
method can also be used in the optimal planning of other refined products supply chain 
and help to enhance their performance. 

 
Keywords: Refined Products Supply Chain (RPSC), fair profit allocation, mixed-integer 
nonlinear programming (MINLP), Nash bargaining. 

1. Introduction 
As a sort of primary energy, the consumption of the refined products achieved 325.14 Mt 
in 2018, with 6% year-on-year growth in China (National Development and Reform 
Commission, 2019). Refined products supply chain (RPSC) plays an important role in 
linking refineries and retail markets. Optimisation of the RPSC is widely studied from 
many aspects to reduce the operating cost and improve efficiency (Sule et al., 2011). 
Wang et al. (2019) developed a mixed-integer linear programming (MILP) model that 
considered both RPSC distribution and new pipeline route planning to achieve the goal 
of minimising annual transport and pipeline investment costs. Lima et al. (2018) 
developed a multistage stochastic programming model for the optimal distribution of 
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refined products. Yuan et al. (2019) developed a framework that coupled a mathematical 
programming technique with the energy-economy-environment (3E) assessment method 
to quantify the impacts of pipeline network reform on the downstream oil supply chain 
of China. Zhang et al. (2019) proposed a stochastic linear programming model for the 
reliable design of the oil products supply chain. The stochastic hub disruption and the 
demand uncertainty were considered, and the effect of uncertainties on the supply chain 
design was analysed. Wang et al. (2020a) proposed a framework for reliability assessment 
of a regional RPSC under several scenarios. Yuan et al. (2020) evaluated the province- 
and region-level supply security of refined products in China by an integrated assessment 
framework. Wang et al. (2020b) developed a framework for the optimisation of 
downstream oil supply chains with emission-cost nexus using P-graph model (Friedler et 
al., 1992). 
However, the majority of companies in the supply chain pursuits their maximum profit. 
The solution obtained by the current methods may not satisfy all the participants in the 
RPSC. Bargains have existed between these companies, and steps are required to adjust 
the transport plan. In this case, it is practical to optimise the operation of RPSCs, 
considering the profit allocation. Gjerdrum et al. (2001) proposed a MILP model for fair 
and optimised profit distribution between numbers in a supply chain. Liu and 
Papageorgiou (2018) developed a MILP model framework with the consideration of fair 
profit distribution to optimise an active ingredient supply chain. Zheng et al. (2020) 
studied the fair profit allocation problem in third-party take-back waste cooking oil-to-
biodiesel supply chain, and they also compared different policy impacts on integrated and 
opening markets. In this paper, a MILP model is developed for the fair profit allocation 
of an RPSC. A Nash-bargaining solution is solved to obtain the distribution plan. Results 
of total profit maximisation and Nash-bargaining solution are compared to show how the 
proposed model can lead to a fair profit allocation between participants in the RPSC. 

2. Problem description 

 
Figure 1 Schematic diagram of an RPSC 

 
The RPSC in China has 3 echelons: refinery, storage depot, and the retail market. 
Refineries produce refined products and sale them to storage depots and retail markets. 
Storage depots purchase refined products from refineries and sale them to retail markets. 
Storage depots usually have advantages of lower transport cost. Some have pipelines link 
from the upstream and link to the downstream. Some have access to water transport. The 
unit transport prices of these two ways are lower than transport by rail and road. Retail 
markets purchase refined products from refineries and storage depots to satisfy the 
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demand. If the demand is not satisfied, a lost sale cost would be counted. The schematic 
diagram of the RPSC is shown in Figure 1. 

3. Mathematical model 
Two models are developed, one is to maximise the overall profit of the whole RPSC, and 
the other is to maximise the profit based on the fair profit allocation. In this study, Nash-
bargaining is applied to get a fair profit solution. The objective function of the Nash-
bargaining is shown as follows: 

ln ln lnI J K
i j k

i I j J k K
maximize F Pr Pr Pr

  

      (1) 

Where I
iPr , J

jPr , and K
kPr  are the profit of refinery i, storage depot j, and retail market 

k. 
The basic constraints for supply chain optimisation include material balance and capacity 
constraints. These constraints can be referred to Wang et al. (2019). 
In this model, there are three parts of profit constraints. The first is for refineries, the 
second for storage depots, and the third for retail markets. For the refineries, their profits 
are obtained according to sales revenue, depreciated investment, construction cost, 
purchasing cost of crude oil, and inventory cost. For the storage depots, their profit 
equations consist of sales revenue, refined products purchasing cost, inventory cost, and 
transport cost. For the retail markets, sales revenue, refined products purchasing cost, 
inventory cost, transport cost, and cost for lost sales make up the profit equations. 
For the cooperative bargaining mode, Nash bargaining is adopted in this model. Except 
for the basic constraints for the RPSC optimisation, following transfer price constraints 
should be modelled. 
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Where ,
I

i p
TP  is the transfer price for refined product p from refinery i, ,

J

j p
TP  is the transfer 

price for refined product p from storage depot j, ,
I

p e
TPL  and ,

J

p e
TPL  are parameters that 

indicate the transfer prices when price level e is selected for refineries and storage depots, 
, ,
I
i p eX  is a binary variable which indicates if the price level e is chosen for refined product 

p from refinery i, and , ,
J
j p eX  is a binary variable which indicates if the price level e is 

chosen for refined product p from storage depot j. Constraints (2) and (3) obtain the 
transfer prices, and constraints (4) and (5) ensure that only one price level should be 
chosen for each refinery and storage depot. 
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4. Case study 
In this section, an RPSC in East China is studied as an example. As shown in Figure 2, 
the supply chain includes refineries (represented by dot i), storage depots (represented by 
triangle j) and retail markets (represented by diamond k). Refined products can be 
transported between each individual by pipeline, railway, road, and waterway. The 
production capacities of refineries and storage capacities of storage depots are shown in 
Table 1 and Table 2. In this case, a total of 10 periods are selected as the study period; 
each period is one month long. 

 
Figure 2 Locations of facilities in the studied RPSC 

 
Table 1 Production capacities of refineries 

Refineries Petrol (kt/month) Diesel oil (kt/month) 
i1 6,250   9,500 
i2 8,500 16,500 
i3 2,600   4,900 
i4 6,600   7,850 
i5 9,000  5,700

 
Table 2 Inventory capacities of storage depots 

Storage 
depots 

Inventory capacities of petrol 
(kt) 

Inventory capacities of diesel oil 
(kt) 

j1   66.5   90.25 
j2   95 114
j3   95 171 
j4   38   58.9 
j5     3.8 53.2
j6   47.5   57.95 
j7   76   86.45 
j8 142.5 209

 
The profit allocations of different individuals are shown in Figures 3, 4 and 5. It can be 
seen from Figures 3 and 4 that in the profit allocation of refineries and storage depots, the 
effect of the Nash bargaining solution to make a fairer profit allocation is not obvious. 
This is because refineries and storage depots handle a relatively large quantity of refined 
products in the RPSC than retail markets. To satisfy the demand for retail markets, these 
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upstream facilities has to be used. Also, it can be observed that the profit allocation of 
refineries and storage depots are more related to their handling capacities. 
As shown in Figure 5, in the maximising total profit model, the profits of some individuals 
will be sacrificed to achieve the goal of maximising the profit of the whole supply chain. 
Taking retail market k17 as an example, it obtains a negative profit around –4,800×106 
CNY, but under this circumstance, the entire supply chain achieves the largest total profit. 
The distance between k17 and refineries is quite far. The solved model suggests a shortage 
in this retail market to increase total profit. In the Nash bargaining solution, the profit of 
k17 is closer to other retail markets. 
The maximising total profit model can also lead to some individuals to make more profit, 
such as k52, k53, and k54. Their profits are significantly higher than in other retail 
markets. In the Nash bargaining model, the profit allocation tends to be fair. 

 
Figure 3 Profit distribution among refineries 

 
Figure 4 Profit distribution among storage depots 

 
Figure 5 Profit distribution among retail markets 
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5. Conclusions 
This paper studies the fair profit allocation in the RPSC, and a mathematical model is 
developed. A case is studied to test the proposed method. The results of the Nash-
bargaining solution are illustrated. Results show that the Nash-bargaining solution will 
reduce the profit of markets by 19.3% compared to the integration, while a fairer profit 
allocation can be achieved. Future studies will focus on the performance evaluation of 
RPSCs, indicators including the supply rate of refined products and operating costs would 
be proposed. The sensitivity of alternative fuel prices, as well as the products purchasing, 
processing, and sale prices, should be further analysed. 
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Abstract
The decisions on synthesising a process network are often to optimise the payback
periods based on investment cost. In addition to the core investment and the cost of used
resources, the long-term reliable operation of the process is also crucial. Given available
states and technologies of the assets, this study aims to identify the long-term optimal
asset planning policy. Markov Decision Process (MDP) is a promising tool in
identifying the optimal policy under different states of the assets or equipment. The
failure probability of the unit is modelled with the ‘bathtub’ model and each of the
condition states are incorporated in the MDP. The decisions to implement the redundant
units in the process with variety of technologies are allowed. This paper applied the
MDP into an equivalent Mixed Integer Non-linear Programming (MINLP) to solve for
the optimal long-term assets decision and the maintenance policy. The applicability of
the method is tested on a real case study from Sinopec Petrochemical Plant. The capital
and expected operational cost that accounts for equipment maintenance for an infinite
time horizon are determined.

Keywords: Markov Decision Process, Asset Optimisation, Reliability, Maintenance
Planning, Mixed Integer Non-linear Programming (MINLP)

1. Introduction
The availability, reliability and maintenance planning are significant factors in the
project economics when designing the process plant in the early stage. Goel et al. (2003)
mentioned that the operating and the capital cost should be affected by the inherent
availability of the system. The recent review by Chin et al. (2020) analysed different
strategies of maintenance considering individual process plants.

Vassiliadis and Pistikopoulos (2001) derived a MINLP model with a two-step strategy
to identify optimal maintenance policies in continuous process operations. The first step
involves generating structural design based on availability threshold values and
maintenance time, while the second step involves operative-failed state-space model to
determine the optimal policies. Several studies on improving the equipment availability
can be found in Godoy et al. (2015) for hydropower or Süle et al. (2019) for
petrochemical system. industry or Andiappan et al. (2019) in biomass trigeneration
system. Ye et al. (2018) provided a general mixed-integer framework for selecting the
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standby processing units to achieve optimal availability and cost. Ye et al. (2020)
recently applied the Markov Decision Process (MDP)MDP approach in synthesising the
design optimisation, storage sizing and maintenance policy for the air separation
process.

A variety of studies using MINLP frameworks to address asset availability issue have
been proposed. However, there are still lacking system availability design considering
different asset technologies, i.e. different reliability parameters or different sizes. The
expected benefits of installing different asset technologies should be analysed by
considering their long-term effects on the system efficiency and availability. Markov
Decision Process (Bellman, 1957) is a framework that evaluates the optimal policies
under different equipment states by optimising the long-term benefits (value functions)
of each state. This method provides suggestions on actions for the equipment regardless
of the equipment initial states. This means the optimal actions determined should be
carried out for a specific equipment state to achieve expected long-term benefits.

Realising from the research gaps identified, this work aims to adapt the MDP
formulation from Ye et al. (2020) to model the system availability design. The
inspection intervals, the selection of the optimal technologies and the redundancy design
are incorporated into the MDP with MINLP formulation. The stage interdependencies
are considered within the state transitioning probability matrix.

2. Methodology
As most of the chemical processes are production systems with serial structures, a
generic serial process structure is used to evaluate the reliability of the system. Each
stage i I is dedicated to the subsystem/individual process unit with parallel units. The∈
parallel units or redundant units are used as the standby so that when the operating unit
is failed, the standby unit can be used immediately as a replacement to avoid downtime.
One of the goal of this study is to determine the optimal number of redundant
components in each stage. For each stage there are finite numbers of redundant design j

J, for which j=2 indicates there are 2 units installed in the stage. Each subsystem can∈
also be implemented with assets technology z Z that has different reliability∈
parameters, capacity or efficiency. Figure 1 shows the overall structure of the model.

Figure 1: A generic structural representation of the problem

In this work, the condition of the equipment is modelled with the ‘bathtub’ model as the
asset undergoes different period where their failure rates vary with time. As proposed by
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Barlow and Proschan (1975), the deterioration of the asset is usually distinguished into
three periods: ‘Infant’, ‘Stable’ and ‘Worn-out’.

Along with the three states as mentioned, the condition state of the equipment also
includes states ‘Stopped’ and ‘Stand-by’. These states form the finite sets of condition
states of the equipment s S. Under different states, there are finite sets of possible∈
actions a A that can be performed on the equipment: ‘None’, ’Inspect’, ’Maintain’ or∈
‘Stop’. The common approach to model asset maintenance plain using Markovian
approach is to formulate the Continuous-time Markov Decision Process. For this
approach, all of the equipment states in each stage are incorporated into the model. The
approach is comprehensive; however, the applicability is hindered by the curse of
dimensionality. Consider just two states exist for a piece of equipment: ‘Operating’ or
‘Failed’, if there are total of ‘k’ subsystems in the process, the number of available
states is 2k, and this is excluding the redundant units. If there are ‘n’ redundant units
installed in each subsystem, the problem grows exponentially huge as the number of
available states increases, as shown in Ye et al. (2020).

To overcome this issue, the MDP can be modelled in another way. The state-action
representation can be modelled with each equipment in each stage and can be linked
together with their transitioning probability, adopted from Ye et al. (2020). Figure 3
shows the state diagram for a single stage, with two redundant units installed in this
work. It is assumed that the interdependency between units is affected by the failure of
other subsystem or stage. For example, if one of the unit in any stage is failed, the other
stages are not functional as well due to the serial structure. If any redundant is used, the
stages go into ‘Standby’ state and resume to functional using the redundant equipment.

Figure 2: A state diagram MDP for a single stage, with two redundant units

3. Model formulation
The most common approach to solve a MDP is based on the Bellman Expected
Optimality equation (Bellman, 1957) using value iteration or policy iteration. As the
problem becomes complicated, these two approaches are not suitable and the problem
can be converted to an optimisation formulation. The expected long-term cost to be
minimised for the MDP is shown in Eq (1), with the constraint in Eq (2). These two
equations are the basis for equivalent optimisation model for a MDP.
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𝑖,𝑗
𝑠'( )

∀𝑖∈𝐼,  𝑗∈𝑗,  𝑠∈𝑆,   𝑎∈𝐴
(2)

The variable is the binary variable indicating the selection of redundant numbers ‘j’𝑦
𝑖,𝑗,𝑧

and technology ‘z’ for stage ‘i’;. is the capital cost for the stage ‘i’ with ‘j’𝐶𝑎𝑝
𝑖,𝑗,𝑧

numbers of redundant units using technology ‘z’. is the probability distribution ofπ
𝑖,𝑗

(𝑠)
state ‘s’ for the stage ‘i’ that is determined by the model. The variable is the𝑣

𝑖,𝑗
(𝑠)

value function of each state ‘s’ in the MDP which it represents the ‘discounted’ rewards
in state ‘s’. The rewards in this case is the maintenance cost for the system. 𝑃

𝑖,𝑗
𝑠, 𝑎, 𝑠'( )

is the state transitioning probability from state ‘s’ with action ‘a’ to state ‘s’’, where this
corresponds to the stage ‘i’ and redundant design ‘j’. is the instant rewards𝑅

𝑖,𝑗,𝑧
𝑠, 𝑎, 𝑠'( )

when transitioning from state ‘s’ to state ‘s’’ by action ‘a’, with selected asset
technology ‘z’. As the problem involves minimisation of the total cost, the instant
reward parameters are the instant maintenance cost associated with the actions. The isγ
the discount factor which is fixed at 0.1 for this work. The constraint for is fixed𝑦

𝑖,𝑗,𝑧
with Eq (3), where only one redundant design and one technology can be selected. Eq
(4) represents only one action is selected only for state ‘s’, for stage ‘i’ provided
redundant number ‘j’ is selected. is a binary variable indicating the selection of𝑥

𝑖,𝑗
𝑠, 𝑎( )

action ‘a’ in state ‘s’, for stage ‘i’ and redundant ‘j’.

𝑗∈𝐽, 𝑧∈𝑍
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𝑖,𝑗,𝑧
= 1  ∀𝑖∈𝐼 (3)
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   ∀𝑖∈𝐼, 𝑗∈𝐽,  𝑠∈𝑆 (4)

Eqs (5) to (7) below indicate the constraints for the stationary probability distribution of
the MDP, . Eq (6) is introduced as the sum of probability distribution for any stateπ

𝑖,𝑗
(𝑠)

‘s’ should exists only if the redundant unit ‘j’ and technology ‘k’ is selected.
indicates actions ‘a’ is preferred in the state ‘s’ if its value > 0. Eq (7)π

𝑖,𝑗
𝑝𝑜𝑙𝑖𝑐𝑦 𝑠, 𝑎( )

indicates the total selected policy for a single state is equal to the probability distribution
of state ‘s’.
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𝑖,𝑗
𝑠, 𝑎( )π

𝑖,𝑗

𝑝𝑜𝑙𝑖𝑐𝑦 𝑠, 𝑎( )𝑃
𝑖,𝑗

𝑠, 𝑎, 𝑠'( ) = π
𝑖,𝑗

𝑠'( ) ∀𝑖∈𝐼,  𝑗∈𝐽,  𝑠'∈𝑆 (5)

𝑠∈𝑆
∑ π

𝑖,𝑗
 𝑠( ) =

𝑧∈𝑍
∑ 𝑦

𝑖,𝑗,𝑧
  ∀𝑖∈𝐼,  𝑗∈𝐽 (6)
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The states transition probability and the instant rewards adapted from Ye et al. (2020)
are defined by Eqs (8) to (9). In this work, the maintenance cost involves a certain fixed
cost plus the downtime cost due to maintenance duration. The inspection cost is based
on fixed labour cost, and the shutdown cost is calculated with the production loss cost
due to stopping the operation. The probability from ‘stopped’ to ‘standby’ is if more
than one redundant unit is used.

𝑃
𝑖,𝑗

𝑠, 𝑎, 𝑠'( ) = {1 − 𝑒
−

𝑇
𝑖𝑛𝑓𝑎𝑛𝑡

θ( )𝑏1

    𝑖𝑓 𝑠, 𝑎, 𝑠'( ) = 𝐼𝑛𝑓𝑎𝑛𝑡, 𝑁𝑜𝑛𝑒, 𝑆𝑡𝑜𝑝𝑝𝑒𝑑( ),   𝑒
−

𝑇
𝑖𝑛(

(8)

𝑅
𝑖,𝑗

𝑠, 𝑎, 𝑠'( ) = {𝐶
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

                     𝑖𝑓 𝑎='𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛'𝑎𝑛𝑑 𝑠'≠'𝑆𝑡𝑜𝑝𝑝𝑒𝑑' 𝐶
𝑖𝑛𝑠𝑝𝑒𝑐𝑡

  (9)

4. Case study and results
The methodology is applied to a real case study from Sinopec Luoyang Petrochemical
Plant from Hu et al. (2009). It is a naptha reforming reaction system that process 2,500
t/d of refined naptha, with subsystems of reactors, heat exchangers, compressors and
pumps and absorbers. The full documentation of the maintenance records, as well as the
inspection, shutdown and maintenance cost parameters for the equipment in the plant
can be found in the reference source. The case study allows maximum of three
redundant units to be installed in each equipment position. Different technologies are
available by varying the shape parameter of the failure function by multiplying a
random number, i.e. , where is a random number between 0 and 1. The capitalµ

1
 𝑥 𝑏

2
µ

1
cost for each technology of the unit is also assumed to be varied by the equation:

, where is a random number between -0.5 and 0.5. The(1 − µ
2
) .  𝐵𝑎𝑠𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙

𝑖
µ

2
MINLP model is solved using GAMS software with random number seed generator set
as zero. The total expected optimal cost is $ 2.4 M, with long-term risk cost as $ 0.19
M/y ($ 0.25 M/y from Süle et al. (2009). The inspection intervals for each equipment
range from 2 to 4 months.

5. Conclusion
A discrete-time Markov Decision Process has been proposed to evaluate the long-term
economic benefits of different assets technologies and redundant unit allocation in a
chemical process. The discrete decisions and the inspection periods are translated to
MINLP model to optimise the long-term discounted cost. The method is tested on a real
case study from Sinopec petrochemical plant. This approach is regardless to the initial
state of the subsystem, which means that the optimal policies identified can be followed
regardless of the states of the equipment. However, the approach suffers computational
complexity due to the high number of binary variables and non-linear terms in the
transitioning probability. This might be inconvenient if quick maintenance decision is to
be made as data are updated. Future research can be focused on the linearisation or
enumeration algorithm of the structural network to reduce the binary variables during
operational optimisation, while generating multiple near-optimal solutions for industrial
practitioners. The ‘bathtub’ model also could not represent all type of equipment
accurately. Future research should consider real data-driven estimation of the failure
rate.

Markov Decision Process to Optimise Long-term Asset Maintenance and 
Technologies Investment in Chemical Industry

1857     

https://www.sciencedirect.com/science/article/pii/S0360544219309065#!


H.H. Chin et al.

Acknowledgement
The funding from the project 'Sustainable Process Integration Laboratory – SPIL funded
by EU' CZ Operational Programme Research and Development, Education, Priority1:
Strengthening capacity for quality research (Grant No.
CZ.02.1.01/0.0/0.0/15_003/0000456) is gratefully acknowledged.

6. References
R.E. Barlow, F. Proschan, 1975. Satistical theory of reliability and life testing: probability models.

Hold, Rinehart and Winston (HRW), New York, USA.

R. Bellman, 1957. A Markovian decision process. Journal of Mathematics and Mechanics, 6(5),
679-684.

H.H. Chin, P.S. Varbanov, J.J. Klemeš, M.F.D. Benjamin, R.R. Tan, 2020. Asset Maintenance
Optimisation Approaches in the Chemical and Process Industries-A Review. Chemical
Engineering Research and Design, 164, 162-194.

E. Godoy, S.J. Benz, N.J. Scenna, 2015. An optimization model for evaluating the economic
impact of availability and maintenance notions during the synthesis and design of a power
plant. Computers & Chemical Engineering, 75, 135-154.

H. Goel, J. Grievink, M. Weijnen, 2003. Integrated optimal reliable design, production, and
maintenance planning for multipurpose process plants. Computers & Chemical Engineering,
27, 11, 1543-1555.

H. Hu, G. Cheng, Y. Li, Y. Tang, 2009. Risk-based maintenance strategy and its applications in a
petrochemical reforming reaction system. Journal of Loss Prevention in the Process Industries,
22, 4, 392-397.

Z. Süle , J. Baumgartner , G. Dörgő , J. Abonyi , 2019. P-graph-based multi-objective risk
analysis and redundancy allocation in safety-critical energy systems. Energy, 179, 989-1003.

C.G. Vassiliadis, E.N. Pistikopoulos, 2001. Maintenance scheduling and process optimization
under uncertainty. Computers & Chemical Engineering, 25, 2-3, 217-236.

Y. Ye, I.E. Grossmann, J.M. Pinto, S. Ramaswamy, 2018. Markov Chain MINLP Model for
Reliability Optimization of System Design and Maintenance. 13th International Symposium on
Process System Engineering- PSE 2018, Computer Aided Chemical Engineering, July 1-5
2018, San Diego, California, USA.

Y. Ye, I.E. Grossmann, J.M. Pinto, S. Ramaswamy, 2020. Integrated optimization of design,
storage sizing, and maintenance policy as a Markov decision process considering varying
failure rates. Computers & Chemical Engineering, 142, 107052.

1858

https://www.sciencedirect.com/science/article/pii/S0360544219309065#!
https://www.sciencedirect.com/science/article/pii/S0360544219309065#!
https://www.sciencedirect.com/science/article/pii/S0360544219309065#!
https://www.sciencedirect.com/science/article/pii/S0360544219309065#!


  

Cost, environmental and exergy optimization of 
hydrogen and methane supply chains: application 
to Occitania region, France 
Eduardo Carrera, Catherine Azzaro-Pantel 
Laboratoire de Génie Chimique, Université Toulouse, CNRS, INPT, UPS, Toulouse, 
France 

Abstract 
This paper presents a methodological framework for the design of Hydrogen and Methane 
Supply Chains (HMSC), mainly focusing on Power-to-Gas (PtG) with low-carbon 
sources to spur the energy transition. The scientific objective is to perform mono and 
multi-objective optimizations of the HMSC to provide effective support for the study of 
deployment scenarios, with the Occitania region (France) as a case study. The formulation 
developed is based on a Mixed Integer Linear Programming (MILP) approach with 
augmented ε-constraint, implemented in the GAMS environment following a multi-
period approach (2035-2050). The three objectives to be minimized are the Total Annual 
Cost, the Total Global Greenhouse Gas emissions, and Total Exergy Lost/Destroyed, 
which are related to the whole HMSC over the entire period studied. The results show 
that hydrogen can be competitive with SMR with carbon rates below 270 €/tonCO2, 
whereas other drivers (i.e., ambitious policies to reduce GHG emissions) are expected for 
synthetic methane. Furthermore, coupling with other energy systems and processes is 
essential to increase the exergetic performance of HMSC. 
Keywords: Power-to-Gas, hydrogen, methanation, MILP, exergy analysis, supply chain 
optimization. 

1. Introduction 
Power-to-Gas (PtG) is a promising solution to drive the penetration of low-carbon energy 
sources into the energy mix. These systems allow the use of electrical power, and CO2 to 
produce gas (i.e., hydrogen or methane). Faced with the intermittency of renewable 
energy sources, they provide a low-carbon fuel supply and promote CO2 recovery (Götz 
et al., 2016). Despite their advantages, PtG systems face some challenges. Typical 
Levelized Cost of Energy (LCOE) values for hydrogen and methane from PtG are stated 
at 64-74 €/MWh (2.1-2.5 €/kgH2), and 95 to 150 €/MWh in 2030 (E&E consultant et al., 
2014), respectively. In this regard, other options such as Steam Methane Reforming and 
natural gas are economically more advantageous (IEA - International Energy Agency, 
2019)). In addition, the factors that favor the use of low-carbon technologies are decisive, 
since GHG emissions for SMR and natural gas are approximately 327 kgCO2-eq/MWh 
and 202 kgCO2-eq/MWh, respectively (Reiter and Lindorfer, 2015). For hydrogen 
produced from PtG, typical GHG emissions values range around 18-90 kgCO2-eq/MWh 
and 22-191 kgCO2-eq/MWh for renewable hydrogen and methane, respectively (Reiter 
and Lindorfer, 2015).  
Another issue to be addressed is the destruction and loss of exergy throughout the 
Hydrogen and Methane Supply Chains (HMSC). Exergy is destroyed or lost when a 
process is irreversible (second law of thermodynamics) or due to by-products (Dincer 
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et al., 2014). Thus, the overall exergy efficiency of the HMSC can vary considerably 
depending on the feedstock and technologies involved (Khosravi et al., 2018).  
Given the set of technologies, energy sources, and services involved, energy supply 
chains have been extensively studied, particularly for hydrogen (Li et al., 2019). 
However, only a few studies (Mesfun et al., 2017), (Bramstoft et al., 2020) consider 
simultaneously several fuel demands through PtG concepts. This issue has also been 
tackled in (Carrera Guilarte and Azzaro-Pantel, 2020) by also considering the 
geographical and logistical aspects of the entire HMSC over a multi-period horizon. Many 
researchers have carried out exergy analyses especially for power generation 
and cogeneration (Dincer et al., 2014). To the best of our knowledge, very few studies 
have been developed on the exergy analysis of a HMSC based on PtG concepts. The 
scientific objective of this study is to propose a comprehensive optimization model that 
can determine the design and deployment of an HMSC with total cost, GHG emissions 
and exergy loss as objective functions to be minimized. The main contribution of this 
study is thus to address the typical features of the HMSC (i.e., primary resources, 
production units, hydrogen transportation, storage, and refueling stations), considering 
the evolution of its configuration over time according to these different criteria. The paper 
is divided into three sections following this introduction. The methods and tools are 
presented in Section 2 with a focus on the problem formulation, presentation of the case 
study, the key points of the mathematical model for the HMSC, and the solution strategy. 
Finally, the main results (i.e., mono and multi-objective optimizations, and decision 
variables) are analyzed in Section 3, followed by the conclusions and perspectives 
presented in Section 4. 

2. Methods and tools 
2.1. Problem formulation 
The problem formulation is based on prior studies, and follows the guidelines proposed 
by (Carrera Guilarte and Azzaro-Pantel, 2020; De-León Almaraz et al., 2015). It can be 
summarized as follows: 
Given: 

- Spatio-temporal demands for hydrogen and methane, availability of feedstocks. 
- Characteristics of each technology. 

Assuming: 
- A division of the territory into grids. 
- SMR, PtG, and natural gas are used to satisfy the methane and hydrogen 

demands. 
- Direct injection of the methane produced into the natural gas network. 
- Limited availability of primary energy and CO2 sources.  
- Possibility of importing primary resources. 
- Possibility of transporting hydrogen only between grids by tanker-trucks for 

liquid hydrogen transportation.  
- A constant carbon price over the period studied. 

Determine: 
- The location, number, capacity, and rate of production, storage and transport 

units as well as of refueling stations for hydrogen and methane. 
- Transport flows between the grids. 

Subject to: 
- The satisfaction of the hydrogen and methane demands. 
- Conservation of mass and energy, and other physical laws. 
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Objectives to be minimized either separately such as: 
- Total Annual Cost. 
- GHG emissions. 
- Total Exergy Loss and Destruction. 
or with a combination through ε-constraint method. 
 

2.2. Case study 
The case study is the Region of Occitania, located in the south of France. Its energy 
transition strategy is framed within the REPOS (Positive Energy Region, in French) 
scenario (Région Occitanie / Pyrénées-Méditerranée, 2017). Hydrogen demand has been 
determined based on the expected use of fuel cell electric vehicles (FCEVs), for buses, 
private and light-good-vehicles. It corresponds to 5 TWh in 2050. The demand for 
methane includes the residential, industry, transport, and service sectors (1 TWh in 2050) 
(ADEME, 2018). A five-year period is used for time discretization (2035 to 2050). The 
territory is divided into 13 grids that correspond to the departments of this region. An 
average inter-district distance has been considered for transport purpose. Three sources 
of renewable energy have been identified, namely solar, wind, and hydro-power. 
Hydrogen is produced in the form of gas. Cryogenic storage is assumed for hydrogen with 
liquid transportation by tanker-trucks. Synthetic methane is assumed to be produced from 
hydrogen in a catalytic methanation process. Different sizes of electrolyzers, SMR, and 
catalyst reactors are considered The CO2 sources stem from methanization and 
gasification processes. The cost of electricity varies depending on the source. The natural 
gas needed to produce hydrogen by SMR or to meet part of the demand for methane is 
imported from abroad. A discount rate of 5.25% (E&E consultant et al., 2014), and an 
average constant carbon price of 270 €/𝑡𝑜𝑛  (Li et al., 2019) have been adopted 
respectively. 

2.3. Key items of model development 
The methodological framework is based on Mixed Integer Linear Programming (MILP). 
The formulation aims to satisfy the demands of both energy vectors “i” (hydrogen and 
methane), through fossil or renewable energy sources “b”, considering the potential of 
each grid “g”. The availability of energy source “e” and CO2 “c”, production of hydrogen 
“p”, storage option “s”, transport option “l”, methane production type “q”, and refueling 
stating “f” for each period “t” are taken into account. Only the key points are discussed 
below. 

2.3.1Cost objective function 
The Total Annual Cost (TAC, €) (Eq. (1) takes into account the capital cost (FCCit, 
€/year), operating cost (FOCit, €/year), the Annual Carbon Price (ACPit, €/year), the cost 
of imported natural gas (INGCit, €/year) and the discount rate ( r ): 

  















it
t

itititit

r
INGCACPMFOCMFCC

TAC
1

 (1) 

2.3.2 Environmental objective function 
The Total Greenhouse Gas emissions (TGHG, gCO2-eq) (see Eq. (2)) generated by the 
different echelons of the supply chain have been considered as the environmental impact 
objective function, with the following contributions all expressed in gCO2-eq/year:  
GHGit related to the hydrogen (HGHGit), and methane (MGHGit) production, the 
hydrogen storage (SGHGit), hydrogen transport (TGHGit), and methane import 
(IMGHGit). 
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it

ititititit IMGHGMGHGTGHGSGHGHGHGTGHG  (2) 

2.3.3.Exergy objective function 
The Total Exergy Loss and Destruction (TELD) corresponds to the exergy objective 
function (Eq. (3)). Each flow of mass and energy in the processes involved in HMSC is 
identified as a resource, product, or waste. Subsequently, the exergy destroyed and lost in 
each process was calculated considering the typical exergetic yield of each stage using 
the values presented in (Khosravi et al., 2018). The lost/destroyed exergy related to 
hydrogen (HELDit), and methane (MELDit) production, hydrogen storage (SELDit), 
hydrogen transport (TrELDit), and methane import (IMELDit) can be expressed as follows 
(all expressed in  MWh/year: 

  
it

ititititit IMELDMELDTrELDSELDHELDTELD  
(3) 

2.4. Solution strategy 
The model is solved by CPLEX 12 in the GAMS environment. An Intel Xeon E3-
1505MV6, 3.00 GHz computer with 32 GB RAM was used. A mono-objective analysis 
of each criterion (TAC, TGHG, and TELD) is first performed for a better understanding 
of the problem. A multi-objective optimization strategy with the three objective functions 
is then conducted to reach the Pareto front using the augmented ε-constraint method 
(AUGMECON)(Mavrotas, 2009). Since AUGMECON uses the lexicographical 
optimization, a priority  is established for the objective functions. In this case, TAC is 
first ranked, then TGHG, and finally TELD. The modified-TOPSIS (m-TOPSIS), a 
variant of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 
is applied to choose the best compromise configuration from the Pareto front, assigning 
equal weight to each optimization criterion. 
 

3. Results and discussion 
The optimal values of the decision variables of the mono-objective approach for each 
objective function (TAC, TGHG, and TELD), and the TOPSIS solution are presented in 
Table 1. The production, storage and transport units are installed progressively 
throughout the period. The minimization of exergy implies the absence of hydrogen 
transport, due to the large amount of exergy destroyed. The LCOE for hydrogen is 
between 130-285 €/MWh, which is the acceptable range of values to be economically 
viable (Hydrogen Europe, 2018). However, only the “min TGHG” and TOPSIS solutions 
propose methane production from methanation, where a significant reduction of CO2-eq 
emissions is imposed. For “min TAC” and “min TELD”, the methane demand is met 
through natural gas, since its cost is half that of methane produced by methanation. The 
GHG for both vectors corresponds to the range of values reported from the literature (see 
Section 1), and varies according to the energy sources used in each period. The exergy 
lost and destroyed over the period varies between 55 and 92%, mainly due to the exergetic 
yield associated with energy production (i.e., 11 and 30% for PV and wind power plants, 
respectively). The HMSC configuration in 2050 can be visualized in Figure 2. The main 
source of electricity used is solar followed by wind. Due to the capacity factor associated 
with each energy source, the HMSC is decentralized, with on-grid production of  
hydrogen and methane. Depending on the scenario and decision criteria applied, the total 
hydrogen demand is fully satisfied by electrolysis while 68% of the methane demand is 
provided by methanation and the remaining part by natural gas import. The main 
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characteristics and computational effort of the solution found by the optimization model 
are summarized in Table 2, corresponding to each mono-objective optimization and the 
TOPSIS solution chosen. 
 

Table 1. Optimization results of the HMSC 

Solutions min TAC min TGHG min TELD TOPSIS 
Year 2035 2040 2045 2050 2035 2040 2045 2050 2035 2040 2045 2050 2035 2040 2045 2050
Number of H2 production 
facilities 119 181 246 246 196 283 402 402 96 98 133 133 153 238 351 351 

Number of H2 storage 
facilities 28 42 57 57 24 32 46 46 58 58 64 64 24 32 46 46 

Number of methane 
production facilities 0 0 0 0 13 15 16 16 0 0 0 0 2 7 16 16 

Number of H2 transport units 7 8 10 14 4 4 5 6 0 0 0 0 8 12 11 12 
CH4 LCOE (€/MWh) 94.4 190 94.4 162 
H2 LCOE (€/MWh) 142 144 208 144 
CH4 GHGt (gCO2/MWh) 201 201 201 201 94.7 95.5 113 104 201 201 201 201 187 198 198 198 
H2 GHGt (gCO2/MWh) 84.9 89.2 108 150 95.9 100 99.7 103 382 384 386 387 93.3 104.7 130 154 
 φt 0.83 0.85 0.86 0.84 0.9 0.92 0.91 0.9 0.55 0.55 0.56 0.56 0.83 0.84 0.84 0.84 
Objective functions         
TAC (M€) 3158 3930 4256 3303 
TGHG (x1012gCO2-eq) 2.71 1.99 6.67 2.16 
TELD (TWh) 108 202 23 97 

 

 
Figure 2. Network structure of the HMSC in 2050 for TOPSIS solution 

 
Table 2. Computational results for the optimization 

   min TDC min TGHG min TELD TOPSIS 
Single 

variables 
Discrete 
variables 

Single 
equations CPU (s) GAP CPU 

(s) GAP CPU (s) GAP CPU (s) GAP 

98,245 23,816 814,640 7200 0.007 8 0.000 25 0.000 7200 0.008 

4. Conclusion and perspectives 
In this paper, a general methodology for the design and deployment of an HMSC was 
developed and used for a baseline case study devoted to the Occitania region in France. 
Each mono-objective minimization proposes a drastically different configuration. The 
LCOE for hydrogen and methane was obtained from the optimization strategy. The results 
show that with electricity prices close to 31 €/MWh and a carbon price below 270 euros/ 
ton CO2 , hydrogen can play an important role as an energy carrier As for synthetic 
methane, its cost remains prohibitive to play a significant role in the energy mix. The total 
satisfaction of the expected methane demand through methanation could only be justified 

Cost, environmental and exergy optimization of hydrogen and methane supply
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in a scenario of massive reduction of greenhouse gas emissions. In addition, coupling this 
PtG ecosystem with other energy systems is necessary to reduce the exergy losses (i.e., 
with the cement industry or with methanization processes).  
The methodology and the results found can be useful to enrich the decision-making 
process, especially to promote the deployment of specific technologies. The model is 
general enough to incorporate other criteria. The methodological framework paves the 
way for further extensions to other types of processes and energy vectors, creating a 
synergetic effect with other energy systems, thus exploring the scale-up potential for 
increased efficiency and cost reduction. 
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Abstract 
This paper presents a mathematical optimisation model for the planning of non-
conventional gas field development, considering multiple impurities in natural gas 
streams and uncertainties in gas quality and technological parameters. The model consists 
mainly of mass balance equations and fuzzy constraints. A modified literature example is 
presented to illustrate the proposed approach. 
 
Keywords: natural gas sweetening, mathematical programming, fuzzy optimisation. 

1. Introduction 
With growing demand for natural gas (NG) as a low-carbon energy source, developing 
non-conventional gas fields has become common in the oil and gas industry. NG streams 
produced from such fields are sour with high concentrations of CO2 and H2S, requiring 
treatment or “sweetening” before processing and downstream applications. Planning the 
development of non-conventional gas fields involves determining how much gas should 
be produced and treated at each source, and which gas sweetening technology should be 
used. Process integration techniques have been extended to address the gas field planning 
problem, which is analogous to the effluent treatment problem. 
The gas field planning problem can be solved using pinch analysis and mathematical 
programming. Foo et al. (2016) developed pinch-based graphical and optimisation 
approaches to determine the minimum extent of CO2 removal and the minimum sweet 
gas supply. Parand et al. (2018) later developed a pinch-based algebraic technique that 
overcomes the limitations of the graphical technique of Foo et al. (2016). Lee et al. (2018) 
developed a multi-period mathematical model that considers time-varying gas production 
and demand. However, none of these previous works has considered other impurities such 
as H2S in NG streams as well as uncertainties in technical and economic parameters. 
In this paper, a mathematical programming model is developed for optimal planning of 
gas field development. The formulation considers multiple impurities in NG streams, and 
incorporates fuzzy optimisation to allow for parametric uncertainties. An example is used 
to illustrate the proposed approach. 
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2. Problem Statement 
The problem addressed in this paper is formally stated as follows. Given: 
 A set of gas sources i I  (e.g. gas fields). The NG streams produced from these 

sources contain a set of impurities k K  (e.g. CO2 and H2S), and need to be treated, 
or sweetened, before proceeding to the gas processing plant (GPP). 

 A set of gas sweetening technologies jJ  (e.g. amine absorption and membrane 
separation). Each technology is characterised by its product (NG) recovery factor, 
impurity removal ratio and cost. 

The objective is to determine the optimal strategy that minimises the total operating cost 
associated with (a) gas sweetening to meet the product specifications and (b) gas transport 
for processing, while considering uncertainties in cost and performance parameters. 

3. Model Formulation 
Figure 1 shows a schematic diagram of gas sweetening at source i. The gas from source i 
can be partially treated with available gas sweetening technologies. The purified stream 
is sent to the GPP along with the bypass stream, while the reject stream may be used for 
enhanced oil recovery (EOR). Two scenarios are considered. Scenario 1 represents the 
deterministic case assuming that all cost and performance parameters are known precisely, 
while scenario 2 accounts for parametric uncertainties using fuzzy optimisation. 
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Figure 1. Schematic of Gas Sweetening 

3.1. Scenario 1: Deterministic Case 
Eq. (1) describes the flowrate balance for source i. 
 in b    ij i i

j
f f F i



   
J

I  (1) 

where in
ijf  is the inlet flowrate to the gas sweetening unit using technology j at source i; 

b
if  is the bypass flowrate of gas from source i; iF  is the available gas flowrate of source 

i. Eq. (2) states that at each source only one gas sweetening technology can be used. 
 1   ij

j
y i



  
J

I  (2) 

where ijy  is a binary variable indicating if technology j is used at source i. Eq. (3) sets an 

upper limit on in
ijf , while ensuring that no gas is treated by unused technologies ( in 0ijf   

if 0ijy  ). 

 in    ,ij i ijf F y i j   I J  (3) 
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Eqs. (4) and (5) describe the flowrate and impurity balances around the gas sweetening 
unit using technology j at source i, respectively. 
 in p r    ,ij ij ijf f f i j    I J  (4) 

 in p p r r    , ,ij ik ij ijk ij ijkf C f c f c i j k     I J K  (5) 

where p
ijf  and r

ijf  are the flowrates of the purified and reject streams, respectively; ikC  

is the concentration of impurity k in the gas from source i; p
ijkc  and r

ijkc  are the impurity 
concentrations of the purified and reject streams, respectively. 
The gas sweetening process is also characterised by the impurity removal ratio ( jkRR ) in 
Eq. (6) and the product recovery factor ( jRF ) in Eq. (7). 

  p p in 1    , ,ij ijk ij ik jkf c f C RR i j k     I J K  (6) 

 p p in1 1    ,ij ijk j ij ik
k k

f c RF f C i j
 

           
   

 
K K

I J  (7) 

Eqs. (8) and (9) impose flowrate and concentration constraints for gas processing. 
 b p GP

i ij
i i j

f f F
  

  
I I J

 (8) 

 b p p GP max    i ik ij ijk k
i i j

f C f c F C k
  

    
I I J

K  (9) 

where GPF  is the required gas processing flowrate; max
kC  is the maximum allowable 

concentrations of impurity k for gas processing. 
The objective function in this scenario is to minimise the total operating cost associated 
with gas sweetening and gas transport ( TOCf ), as given in Eq. (10). 

 in b p
TOCmin j ij i i i ij

i j i i j
f OC f TC D f D f  

    

 
   

 
  

I J I I J
 (10) 

where jOC  is the operating cost of technology j;   is the operating duration; TC  is the 
gas transport cost coefficient; iD  is the distance from source i to the GPP. 
The model for scenario 1 (Eq. (10) subject to Eqs. (1)-(9)) is a mixed integer nonlinear 
programme (MINLP) due to bilinear terms in Eqs. (5)-(7) and (9). 
3.2. Scenario 2: Planning under Uncertainties 
In this scenario, uncertainties in ikC , jOC  and jkRR  are considered and handled using 
fuzzy optimisation. For conservative (low-risk) planning, higher values of the estimated 
impurity concentration and operating cost are more desirable, as given in Eqs. (11) and 
(12). Similarly, a lower value of the estimated removal ratio is more desirable, as given 
in Eq. (13). 
  L U L    ,ik ik ik ikC C C C i k     I K  (11) 

  L U L    j j j jOC OC OC OC j     J  (12) 

  U U L    ,jk jk jk jkRR RR RR RR j k     J K  (13) 

where fuzzy parameters ikC , jOC  and jkRR  are redefined as variables; superscripts L 
and U denotes lower and upper limits, respectively;   represents the overall degree of 
satisfaction of these fuzzy constraints. The value of   ranges from 0 (unsatisfactory) to 
1 (completely satisfactory), as stated in Eq. (14). 
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 0 1   (14) 
With parametric uncertainties, the objective of minimising the total operating cost in Eq. 
(10) is reformulated as an additional fuzzy constraint in Eq. (15), which indicates that a 
low value of TOCf  is desirable. 
  U U L

TOC TOC TOC TOCf f f f    (15) 
The objective function in this scenario is to maximise the overall degree of satisfaction 
of the fuzzy constraints, as given in Eq. (16). 
 max  (16) 
The model for scenario 2 consists of Eqs. (1)-(9) and (11)-(16) and is also an MINLP. In 
the following section, a modified literature example is solved to illustrate the proposed 
approach. The MINLP models for both scenarios are implemented and solved in GAMS 
using solver BARON. Results were obtained with negligible processing time. 

4. Illustrative Example 
Table 1 shows the data for the example, which is adapted from Foo et al. (2016). A total 
of four gas fields are to be developed. The maximum allowable concentrations of CO2 
and H2S for gas processing and downstream applications (e.g. power generation) are 3% 
and 5 ppm, respectively. Amine absorption and membrane separation are available for 
gas sweetening. Table 2 shows the cost and performance parameters. It is assumed that 
the GPP is designed to process 1000 MMscfd of gas to meet the demand. The transport 
cost is taken to be 0.003 USD/MMscf/km. 
Two scenarios are analysed in this example. Scenario 1 assumes that all the parameters 
are known precisely as given in Tables 1 and 2, while scenario 2 considers uncertainties 
in CO2 concentrations, operating costs and CO2 removal ratios. 
Table 1. Data for the Gas Sweetening Example 

Source Flowrate (MMscfd) Concentration (%) Distance to GPP (km) 
CO2 H2S 

Gas field 1 300 10 0.1 400 
Gas field 2 450 20 0.2 300 
Gas field 3 500 30 0.5 350 
Gas field 4 600 35 1 150 

Table 2. Cost and Performance Data for Gas Sweetening Technologies 

Technology Operating cost 
(USD/MMscf) 

Product recovery 
factor (%) 

Removal ratio (%) 
CO2 H2S 

Amine absorption 0.4 92 90 99.9 
Membrane separation 0.7 96 95 99.99 

4.1. Results for Scenario 1 
Scenario 1 aims to minimise the total operating cost associated with gas sweetening and 
transport. Solving the corresponding MINLP model gives the minimum cost of 559,044 
USD/y. Table 3 shows the technologies used and the associated stream flowrates. Amine 
absorption is used at gas fields 1, 2 and 4 because of its lower operating cost. Membrane 
separation is needed at gas field 3 for its higher removal ratios. Gas fields 1 and 2 produce 
higher quality gases (with lower CO2 and H2S concentrations) and are fully developed; in 
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other words, the flowrates of gas produced are equal to the available amounts. Gas fields 
3 and 4 produce lower quality gases and are only partially developed. Furthermore, the 
flowrate of gas produced from field 3 is less than that from field 4 because of the longer 
distance from gas field 3 to the GPP. All the gases produced are completely treated and 
there are no bypass streams. These results may be used to determine the sizes of gas 
sweetening units and pipelines. Figure 2(a) illustrates the optimal gas sweetening system 
for scenario 1. 
Table 3. Technology Selection and Stream Flowrates for Scenario 1 

Gas field Technology Flowrate (MMscfd) 
Inlet stream Purified stream Reject stream Bypass stream 

1 Amine 300 251.124 48.876 0 
2 Amine 450 339.373 110.627 0 
3 Membrane 264.904 180.717 84.186 0 
4 Amine 366.755 228.785 137.969 0 
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(a)     (b) 
Figure 2. Gas Sweetening Systems for (a) Scenario 1 and (b) Scenario 2 

4.2. Results for Scenario 2 
In scenario 2, parametric uncertainties are considered, and the objective is to maximise 
the overall degree of satisfaction of the fuzzy constraints for a conservative, low-risk 
planning. The fuzzy ranges for the uncertain parameters in this example are given in 
Tables 4 and 5. In addition, the minimum cost of 559,044 USD/y in scenario 1 is taken 
as the lower limit for the total operating cost, while the upper limit of 752,091 USD/y is 
determined by solving the model for scenario 1 with operating cost coefficients at the 
upper limits and CO2 removal ratios at the lower limits. 
Solving the MINLP model for scenario 2 gives the maximum   value of 0.568, meaning 
that each fuzzy constraint is at least 56.8% satisfied. The total operating cost is estimated 
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at 642,484 USD/y, which corresponds to a 14.9% increase from the lower limit. Table 6 
shows the technologies used and the associated stream flowrates. Amine absorption is 
used at gas fields 1 and 3, and membrane separation at gas fields 2 and 4. Fields 1 and 2 
with higher quality gases are 98.8% and 91.6% developed, respectively. With lower 
quality gases, field 3 is only 13% developed due to its long distance to the GPP, while 
field 4 is fully developed because it is the closest to the GPP. Figure 2(b) illustrates the 
optimal gas sweetening system for scenario 2. 
Table 4. Fuzzy Limits for Impurity Concentrations 

Source CO2 concentration (%) H2S concentration (%) 
Gas field 1 9–11 0.09–0.11 
Gas field 2 18–22 0.18–0.22 
Gas field 3 27–33 0.45–0.55 
Gas field 4 31.5–38.5 0.9–1.1 

Table 5. Fuzzy Limits for Operating Costs and Removal Ratios 

Technology Operating cost (USD/MMscf) CO2 removal ratio (%) 
Amine absorption 0.4–0.48 85–90 
Membrane separation 0.7–0.84 90–95 

Table 6. Technology Selection and Stream Flowrates for Scenario 2 

Gas field Technology Flowrate (MMscfd) 
Inlet stream Purified stream Reject stream Bypass stream 

1 Amine 296.371 248.606 47.765 3.629 
2 Membrane 412.392 321.394 90.998 0 
3 Amine 65.006 43.856 21.15 0 
4 Membrane 600 382.515 217.485 0 

5. Conclusion 
A mathematical programming model for gas field development planning has been 
developed in this paper. The formulation considers multiple impurities in NG streams, 
with fuzzy constraints account for parametric uncertainties. A modified literature 
example was solved to illustrate the proposed approach. Future work will consider a more 
comprehensive energy system with hydrogen production and utilisation. 
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Abstract. 
Woody biomass has been proposed as a versatile raw material to be upgraded in energy 
vectors and value-added products. Nevertheless, most studies have focused on the 
cellulose and hemicellulose conversion reducing the potential of lignin as a value product 
that can be commercialized or upgraded. Thus, this paper aims to evaluate the influence 
of the lignin extractions process on the economic performance of a woody-based 
biorefinery addressed to produce lignin and levulinic acid as products. Kraft, Soda, and 
Organosolv extraction methods were assessed and compared. After a simulation 
procedure and economic assessment using experimental information and kinetic models 
reported in the open literature, the results show the Kraft process as the most suitable 
option to produce both lignin and levulinic acid. The simulation process results show that 
the organosolv process requires higher processing scales than Kraft and Soda processes 
to reach economic feasibility. In conclusion, the further valorization of lignin in other 
high value-added products is necessary to increase the economic performance of 
extracting lignin. Moreover, the inclusion of high added-value products such as levulinic 
acid reduces processing scale and increases the possibility of implementing this type of 
process.  
 
Keywords: Biorefineries, Lignin extraction, Process Design, Woody Biomass, Levulinic 
acid, Economic assessment.  
 
1. Introduction. 
Woody biomass has been defined as a potential raw material to be upgraded through 
either thermochemical or chemical pathways. Thermochemical processing of woody 
biomass has been preferred over other biomass sources. This renewable resource has 
some advantages related to easy handling, high energy content, and relative-high fixed 
carbon content. Indeed, woody biomass has supplied 9% of the energy consumption in 
2019. Despite the suitability of woody biomass for energy production purposes, several 
studies have focused on converting this raw material into a series of value-added products 
through the biorefinery concept. Nevertheless, most of these studies have been addressed 
to convert the cellulose and hemicellulose, leaving aside the lignin content of woody 
biomass (Solarte-Toro et al., 2021).  
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Lignin is considered the most important renewable aromatic source in the world. 
Moreover, this biopolymer can be upgraded into a series of value-added products (e.g., 
vanillin, benzene, toluene, xylene, quinones, eugenol) able to be used in the chemical, 
pharmaceutical, cosmetic, and textile industries.  Lignin isolation can be done in several 
ways, such as mechanical, chemical, physical, and enzymatic. However, the most 
common methods applied at the industrial level involves the use of chemical agents. In 
this way, extracted lignins can be classified as sulfur lignins and sulfur-free lignins, 
depending on the chemical agents used to isolate lignin. Sulfur free lignins are obtained 
through Organosolv and Soda, while sulfur lignins are obtained via Kraft and 
lignosulfonate pulping. The chemical composition of woody biomass before and after 
implementing the lignin extraction methods has been reported in the open literature (Tian 
et al., 2017). Nevertheless, few studies have been focused on the economic analysis of 
these processes. For instance, Carvajal et al. (2016) report the comparison of the stand-
alone lignin extractions processes. These authors proposed the Kraft process as the most 
economical process for lignin extraction. Even so, these authors do not include the lignin 
isolation step. Moreover, few studies have analyzed the effect of the lignin extraction 
process on the economic performance of a biorefinery. In this way, this paper aims to 
evaluate the influence of the lignin extractions process on the economic performance of 
a woody-based biorefinery addressed to produce lignin and levulinic acid as products.  
 
2. Methodology. 
 
2.1. Conceptual design and process description.  
The proposed biorefinery involves two processing stages. The first stage is related to the 
lignin extraction process. Kraft, Soda, and Organosolv processes were simulated. Kraft 
pulping conditions were active alkali 26 %, sulfidity 30 %, solid to liquid ratio 1:4, 
process temperature 172 °C, and residence time 2 hours (Przybysz et al., 2018). In 
contrast, Soda pulping was performed at 93 °C using an 8 %w/v NaOH solution. The soda 
process was simulated considering a residence time of 2 hours (Saber et al. 2020). Finally, 
the organosolv process considered a 60 %v/v ethanol solution and 1.25% w/w sulfuric 
acid solution as a catalyst. The process temperature and residence time were 180 °C and 
one h, respectively (Meng et al. 2020). For Kraft and Soda processes, the lignin recovery 
was made using CO2 and H2SO4 as precipitating agents (Öhman et al. 2013). Finally, the 
organosolv lignin recovery was made following the downstream processing described by 
Solarte-Toro et al. (2018). The levulinic acid production stage involves (i) cellulose 
degradation and (ii) glucose conversion. The cellulose degradation process was achieved 
considering a process temperature of 220 °C for 30 min at an initial cellulose loading of 
29 %w/w. The remaining solid was recycled to increase glucose concentration in the 
outlet liquid stream. Rich-glucose stream was upgraded to levulinic acid at 160°C, 5.5 
MPa, and catalyst (Amberlyst 70) loading of 0.035 kg/L (Weingarten et al., 2012a). The 
residence time was less than 3 minutes. Humins and a liquid mixture composed of 
levulinic acid, formic acid, and water are the glucose decomposition products. Humins 
are separated by filtration, and levulinic acid is purified by distillation. The distillation 
process was designed to produce a levulinic acid solution at industrial grade.  
 
2.2. Simulation procedure.  
The simulation of the three scenarios using poplar (Populus sp.) as lignocellulosic 
feedstock was done using the simulation software Aspen Plus v9.0 (Aspen Technology 
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Inc. USA). The feedstock flow rate was set at 1 t/h on a wet basis. The vapor-liquid 
equilibrium in the simulation was estimated through the gamma-phi method by selecting 
the Non-Random Two Liquids (NRTL) activity coefficient model and the Peng-Robinson 
equation of state. The thermodynamic properties of cellulose, hemicellulose, and lignin 
were specified in the simulator. Temperature-dependent properties were introduced as 
reported by the National Renewable Energy Laboratory (NREL). Besides, constant 
thermodynamic properties such as enthalpy of formation and free energy of formation 
were estimated using the equations reported by Peduzzi et al. (2016). The chemical 
characterization of raw poplar (Populus sp.) on a dry basis is given in Table 1.  
 

Table 1. Chemical characterization of poplar (Populus sp.) 
Compound Share %
Cellulose 51.10 
Hemicellulose (Xylan) 21.40 
Lignin 22.70 
Extractives 4.40 
Ash 0.40 
Moisture 45.00

 
The chemical characterizations of poplar (Populus sp.) after Kraft, Soda, and Organosolv 
processes were used to estimate the mass balances of the lignin extraction process in each 
scenario. Thus, experimental results reported in the open literature were used as input 
data. Kraft process was simulated considering the data given by Buzała et al. (2017), Soda 
process was assessed according to the yields stated by Saber et al. (2020), and Organosolv 
lignin extraction was designed involving the information reported by Meng et al. (2020). 
Lignin recovery from black liquor was simulated following the process described by 
Öhman et al. (2013). The Kraft and Soda processes flow diagrams were based on the 
schemes reported by (Carvajal et al., 2016). The Organosolv process flowsheet was based 
on the reported figure by Solarte-Toro et al. (2018). The levulinic acid production process 
was simulated in three stages. The first stage comprised the cellulose hydrolysis to 
produce glucose. The mass balances of this stage were estimated considering the 
experimental cellulose conversion reported by Weingarten et al. (2012b). The second 
stage is related to glucose dehydration. The kinetic parameters (i.e., pre-exponential 
factor and activation energy) estimated by Weingarten et al. (2012a) were introduced to 
model a continuous stirred tank reactor (CSTR) in the simulation software. The third stage 
is addressed to the levulinic acid purification by distillation. Topologic thermodynamics 
was applied to identify the best way to separate levulinic acid mixture. Shortcut methods 
were used to estimate the number of theoretical stages, reflux ratio, and distillate to feed 
ratio. Finally, the information mentioned above was used to specify the rigorous 
distillation module in Aspen Plus to estimate material and energy balances.  
 
2.3. Economic evaluation.  
The economic assessment of the proposed scenarios was done using the Aspen Process 
Economic Analyzer v9.0. This software was used to estimate the total capital investment 
(TCI) of the proposed processes. The profitability analysis was accomplished following 
the methodology reported by Towler and Sinnott (2013). The cost of raw materials, 
utilities, and labor were used as input data (see Table 2). Besides, the following conditions 
were involved in the economic analysis: (i) the straight-line depreciation method with a 
salvage value of 10% was applied, (ii) the cash flow analysis was done considering a 
corporate tax rate value of 28% and an interest rate value of 1.64%, (iii) the proposed 
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biorefineries are conceived as continuous processes working 8360 hours in a year, (iv) 
The proposed scenarios consider the creation of eight operator jobs and two supervisor 
positions,  and (v) the project lifetime was set in 10 years. Finally, all the proposed 
scenarios were compared using the net present value (NPV) and payback period (PBP) as 
economic metrics. This metrics estimation was done to assess the biorefinery profitability 
and the best extraction method to reach economic feasibility.  
 

Table 2. Input data used to estimate the cash flow of the proposed scenarios. 
Item Price Units Item Price Units 
Poplar  0.0358 USD/kg MP steam 0.0081 USD/kg 
NaOH 0.37 USD/kg Electricity  0.076 USD/kwh 
Na2S 0.95 USD/kg Operator labour 22.66 USD/h 
Ethanol 0.92 USD/L Supervisor labour 45.71 USD/h 
H2SO4 0.064 USD/kg Organosolv lignin 0.60 USD/kg 
Process water 2.95 USD/m3 Kraft lignin 0.48 USD/kg 
Cooling water 0.45 USD/m3 Soda lignin 0.51 USD/kg 
LP steam 0.0079 USD/kg Levulinic acid 8.56 USD/kg 

 
3. Results and Discussion. 
The yields of lignin and levulinic acid production are summarized in Table 3.   
 

Table 3. Production yields of lignin and levulinic acid production. 

Scenario Lignin extraction 
process 

Lignin yield 
(kg/kg db.) 

Levulinic acid yield 
(kg/kg db.) 

1 Kraft 0.276 0.229 
2 Soda 0.020 0.239 
3 Organosolv 0.244 0.216 

 
The lignin yield was estimated considering the resulting mass balances of each scenario. 
Kraft process offers a high lignin yield on a dry basis than the other options since more 
lignin can be isolated from the raw material. However, this yield is similar to the lignin 
extraction yield of the organosolv process. Indeed, both processes allow separating more 
than 80% of the lignin content in the raw material. In contrast, Soda extraction did not 
have a good mass performance since less than 10% of the lignin was isolated. This low 
extraction yield can be improved by increasing the temperature of the process. For 
instance, Lehto and Alén (2013) evaluated the lignin removal of wood chips using an 8 
% w/w NaOH solution at different temperatures. The highest lignin removal (i.e., 72.5 
%) was found at 150°C. Levulinic acid production yields are similar in all three scenarios 
since the cellulose content is not upgraded in monomeric sugars. The highest levulinic 
acid yield was obtained in scenario 2 (i.e., Soda process). Nevertheless, this value should 
be analyzed carefully since the biorefinery objective is not accomplished due to the low 
lignin production. In this way, the low yield of the lignin extraction in the Soda process 
makes the biorefinery a stand-alone process. The economic results suggest the Soda 
process as the most feasible option since the payback period is the lowest value reported 
in Table 4. Nevertheless, the low lignin production did not contribute to the process cash 
flow. Thus, the best option to upgrade woody biomass involving a lignin extraction stage 
is the Kraft process. Organosolv process did not reach economic feasibility at the 
proposed scale. Thus, a sensitivity analysis was carried out to find the Minimum 
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Processing Scale for Economic Feasibility (MPSEF) (Serna-Loaiza et al., 2018). After 
this analysis, the MPSEF of the organosolv process is about 2 t/h. Thus, higher scales are 
required to obtain positive cumulative cash over the lifetime of the project. 

 
Table 4. Economic metrics estimated using a feedstock mass flow rate of 1 t/h.  

Scenario TCI 
(M.USD*) 

PBP 
(years) 

Cumulative cash over 
the lifetime of the 
project (M.USD*) 

MPSEF 
(t/h) 

1 4.51 6.61 1.58 0.95 
2 3.55 4.04 3.67 0.89 
3 5.75 0.00 -21.61 2.00 

M.USD*: Millions of dollars.  
 
In contrast, the proposed scale gave a positive cash flow at the end of the project in 
scenarios 1 and 2. Regarding the TCI, the Soda process has the lowest value since the 
capital investment required to isolate lignin contributes less than 5 % of the TCI. This 
low share in the lignin isolation process is attributed to the low input flow to this stage 
after the Soda process. Similarly, the lignin isolation process in the Kraft process accounts 
for 20 % of the TCI. This difference is attributed to the material flow of black liquor 
obtained after the Soda and Kraft processes. Finally, the Organosolv process is the most 
expensive since this lignin extraction method involves an additional step related to the 
ethanol recovery after lignin isolation. This stage (i.e., lignin isolation + ethanol recovery) 
accounts for more than 35% of the TCI of scenario 3. Therefore, the Organosolv process 
requires higher scales to reach economic feasibility. The economic evaluation results 
allowed us to determine the effect of the lignin extraction process on the economic 
performance of a woody-based biorefinery. Indeed, the organosolv process decreases the 
economic feasibility of the process, while Soda and Kraft processes have similar positive 
behaviors. Even so, the upgrading of lignin to other high value-added products can 
increase the economic performance of the process and reduce the required raw material 
mass flow.  
 
4. Conclusions.  
 
The comparison of three methods to extract lignin was done to evaluate the effect of these 
processes on the economic performance to produce lignin and levulinic acid as products. 
The product yield obtained in the simulation procedure allows proposing Kraft and 
Organosolv processes as the best ways to isolate lignin from poplar (Populus sp.). The 
soda process requires further research to find optimal conditions to increase lignin 
extraction. Regarding the economic perspective, the Kraft process offers the best 
economic performance since high lignin and levulinic acid production yields are allowed. 
Nevertheless, the low cost of lignin compared to other possible lignin-derived products 
limits the biorefinery potential. Indeed, the production of high-valued added compounds 
such as vanillin and eugenol plus the valorization of cellulose and hemicellulose to 
platform products can boost the real implementation of woody biomass applications at 
the industrial level using feasible and reliable raw materials input.  
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Abstract 
This work focuses on the performance analysis and life cycle assessment of two BHD 
production processes from waste cooking oil coupled with a reformer. The first process 
produces hydrogen from gas flare from the oil and gas industry, while the second process 
produces hydrogen from by-product propane. It was revealed that the second process 
requires less hydrogen by 15.27%, compared to the first process. However, its heating 
and cooling utilities were 22% and 10% higher than the first process. The economic 
assessment showed that the first process has a net present value of 2.39 times higher than 
the second one. Life cycle assessment is evaluated in terms of carbon footprint and other 
environmental impacts by using LCSoft program. It was found that the carbon footprint 
released by the second process was higher than the first process by 0.45 kgCO2 eq. The 
second process was also found to have higher environmental impacts in most categories. 
Thus, it can be concluded that the first process is preferable.  

Keywords: Bio-hydrogenated diesel, Waste cooking oil, Process simulation, Economic 
assessment, Environmental assessment 

1. Introduction 
Bio-hydrogenated diesel (BHD) is considered a potential alternative energy source to 
replace petroleum diesel. The production process involves the hydrotreating of vegetable 
oil to enhance long-chained hydrocarbons. Four main reactions are involved in the process, 
which are hydrogenation, decarboxylation, decarbonylation, and hydrodeoxygenation. 
The reactions take place in a liquid phase under severe conditions (i.e., 350oC of 
temperature, 10 MPa of pressure in the presence of Ni catalyst) (Srifa et al., (2014)).  
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The gaseous by-products obtained are typically CO, CO2, methane, and propane. One 
major problem of this process is that it requires a very high hydrogen to oil ratio (1000 
Ncm3/cm3) to operate to complete the reaction (Hsu et al., 2018). It results in excessive 
unreacted hydrogen to handle and thus a high production cost.  
Many researchers were concerned with the process design and evaluated the BHD process 
under economic criteria. Cheah et al. (2017) reported that raw material cost had the 
highest impact on profitability and selling price. Furthermore, the vegetable oil price, 
hydrogen gas price, and plant capacity were sensitive to the net present value (NPV), so 
waste cooking oil was preferable. Environmental impact assessment is another essential 
issue because energy utilization and waste disposal affect the environment and human 
health. The assessment of the BHD process is typically performed through a life cycle 
assessment (LCA). Boonrod et al. (2017) studied the processing and environmental 
impacts of raw materials, including crude palm oil, palm oil fatty acid distillate, and fatty 
acid methyl ester. The results showed that fatty acid methyl ester was the most suitable 
raw material due to low GHG emission.  
 
There were only a few studies that concerned about hydrogen sources for the BHD 
production process. For example, Sungnoen et al. (2015) studied the combination of 
biodiesel, glycerol reforming and BHD process. The integrated process of 
hydroprocessing, gasification, and Fischer-Tropsch of by-product propane from 
hydroprocessing was performed for the bio-jet fuel (Alherbawi et al., 2020). However, 
none of them considered the technical, economic, and environmental aspects altogether. 
This work proposes two BHD production processes from waste cooking oil integrated 
with a reforming process. The first process produces hydrogen from a gas flare from the 
oil and gas industry, which is assumed as a waste but contains a considerable amount of 
hydrogen. The second process, however, produces hydrogen from the by-product 
propane. The best process would be considered in terms of economics and environmental 
impacts.  

2. Methodology 
The waste cooking palm oil used in this work consisted of 82.67% of triglycerides, 7.6% 
of free fatty acids, 2% of diglycerides, and 7.8% of dimers (J. Riera, and R. Codony 
(2000)). The composition of fatty acid content was following Srifa et al. (2014). The 
composition of gas flare was following Emam (2015). Simple triglyceride consisting of 
the same three fatty acids was assumed. A Non-random two-liquid model (NRTL) was 
used to predict thermodynamic properties. The sequence of unit operations in the model 
was arranged through thermodynamic properties analysis. The model simulation of both 
processes is performed by using the Aspen plus program. An economic analysis was then 
evaluated in terms of net present value (NPV), total production cost, payback period, and 
internal rate of return (IRR). Finally, the environmental impacts of both processes were 
analyzed by LCA. 
 
2.1 BHD process with gas flare reforming 
The flowsheet of the BHD process with gas flare reforming is shown in Figure 1(a). A 
gas flare from oil and gas industry is fed, together with steam, into a reformer, followed 
by a water–gas shift reactor with a temperature of 450oC. The effluent stream is sent to a 
pressure swing adsorption to obtain pure hydrogen (99.95%). It is then mixed with the 
excess hydrogen recirculated back from the process and waste cooking palm oil and enter 
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a hydrotreating reactor, operating with an H2/oil ratio of 1000 Ncm3/cm3, a pressure of 50 
bar, and a temperature of 300 oC. The product is sent to a flash separator, operating at 20 
bar and 130 oC, to separate the vapor phase (i.e., methane, propane, H2, CO, and CO2) 
and the liquid product. The separated gases are sent back to the reactor while the liquid 
product is sent to the first distillation column to remove the remaining gas and water. The 
bottom product containing the BHD is purified further in the second distillation column 
to produce the BHD with high purity (99wt% on dry basis).  
 
2.2 BHD process with propane reforming 
The flowsheet of the BHD process with propane reforming is shown in Figure 1(b). The 
configuration of this process is similar to the first process. However, the hydrogen feed 
used in this process is partly produced from the by-product propane to reduce the 
hydrogen consumption from an external source. Specifically, the gas stream from the 
flash separator is sent through an expander to reduce the pressure to 1 atm before sending 
it to a reformer. Then, it is followed by a water–gas shift reactor with a temperature of 
450oC before recirculating back to the process. 
 

 

 
 

 
Figure 1 (a) stand-alone BHD process (b) gas-flare reforming (c) BHD process with by-
product propane reforming 

3. Results and Discussions 
3.1 Process performance analysis 
The process performance was determined in terms of BHD yield, H2 consumption, and 
utility requirements. They are compared and illustrated in Table 1. The amount of waste 

(a) 

(b) 
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cooking oil feed at 56048 kg/hr and the BHD purity of 99 wt% were given for both 
processes. It can be seen that both processes provided the same yield of BHD at 75.16%. 
However, the second process could save hydrogen consumption by 15.27%, compared to 
the first process. For utility consumption, the second process used a higher heating utility 
by 22% due to the presence of the propane reforming process. Likewise, the cooling 
utility of the second process was also higher by 10% because of the larger volume of 
gases to be processed after the flash separator. 
 
Table 1 Process performance of BHD processes 

 BHD production with 
gas flare reforming 

BHD production with by-
product propane reforming 

BHD yield (%) 75.16 75.16 
H2 consumption (kg/hr) 1925 1631 
Heating utility (x 108 Btu/hr) 3.2 4.1 
Cooling utility (x 108 Btu/hr) 3.6 4.12 

 
3.2 Economic assessment 
Process data such as plant capacity, equipment sizing, amount of raw materials and 
chemicals, and utility consumptions were used to calculate the economics of the process. 
The total production cost for both BHD processes is summarized and shown in Figure 2. 
It was revealed that the raw material cost of both processes was a dominant factor of total 
production cost, taking about 82% - 90% of the total. The use of pure hydrogen as feed 
in the second process resulted in its raw material cost much higher than the first process. 
Although some hydrogen can be produced from the by-product propane, it is still not 
enough to compensate for the high cost of pure hydrogen feed (99.95%). The capital cost 
was represented in terms of the depreciation cost and, of which, about 40.56% came from 
a gas compressor. The presence of a gas compressor also required very high energy to 
operate, increasing the operating cost of the process. Another source of high energy-
intensive units included the distillation columns and the heat exchanger used for 
preheating the feeds before entering the reformer and reactor. Comparing with a stand-
alone BHD process (baseline scenario), the first process and the second process can 
reduce the cost by 18.96% and 2.75%, respectively.  
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Figure 2 Total production cost contribution of (a) BHD process with gas flare reforming
product propane(b) BHD process with by-  reforming 

The economic viability of the processes was evaluated through net present value (NPV), 
return on investment (ROI), and payback period. They were calculated and presented in 
Table 2. Noted that the plant lifetime of 10 years was assumed, and the income cash flow 
was derived from the selling price of the BHD at 1.1 $/kg. It was found that both processes 
delivered the profit when the BHD selling price was higher than the cost of the raw 
materials by approximately 1.8 times. In conclusion, the first process offered better 
economics in all aspects. The main reason is that the second process used pure hydrogen 
as an additional feed, which is very costly. Therefore, it is clear to this point that to make 
the BHD process more competitive, a low-cost hydrogen supply source is necessary. 
 
Table 2 Economic indicators of both processes 

 BHD production with gas 
flare reforming

BHD production with by-
product propane reforming 

Return on investment 0.23 0.19
NPV ($x108 /year) 3.55 1.34 
Payback period (year) 4.35 5.21 

 
 
 

(a) (b) 

3.18 x108 

$/year2.65 x108 

$/year
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3.3 Environment impact assessment 
In this section, the environmental impacts of both BHD processes were investigated by 
using LCSoft software. The gate-to-gate system boundary was assumed. In addition to 
carbon footprint, other environmental impact indicators were evaluated, namely, human 
toxicity noncarcinogenic impact (HTNC), Global warming potential (GWP), 
acidification potential (AP), human toxicity carcinogens (HTC), photochemical oxidation 
potential (PCOP), photochemical ozone formation, aquatic toxic potential (ATP), eco-
toxicological potential (ET), particulate matter, and ozone depletion potential (ODP). The 
results were normalized in the same scale and illustrated in Figure 3. It was found that the 
carbon footprint of the first and second processes was 0.77 and 1.22 kg CO2 eq., 
respectively which were higher than the baseline scenario (0.31 kg CO2 eq). The propane 
reformer was the most carbon footprint producer because it consumed the highest energy 
and released the most CO2, accounting for 37.43% of the total carbon footprint. Heat 
exchangers and distillation columns were also the primary sources of CO2. It was revealed 
that the reaction section was the main contributor to many environmental impact 
indicators in the first process. The gas flare reforming section notably contributed to 
ozone depletion potential (ODP) while, in the second process, the propane reforming 
contributed specifically to ET, HTNC, and ODP. HTNC was found to be the most 
significant environmental impact of the process. The hydrotreating section generates the 
highest amount of HTNC, followed by the separation section. The separation section, 
however, generates a relatively small amount of it. For example, in the first process, the 
HTNC generated from the hydrotreating, reforming, and separation sections were 1.5, 
0.8, and 0.1 kg toluene eq., respectively. 

4. Conclusions 

The feasibility analysis of BHD processes from waste cooking oil integrated with a 
reformer was performed. Hydrogen sources from gas flare from the oil and gas industry 
and by-product propane were considered. Both processes were analyzed based on 

 

economics and environmental impact indicators. The BHD process that used hydrogen 
from the gas flare was preferable. It consumed not only fewer utilities but also its 
economics and environmental impacts were more superior. 

 Figure 3 Environmental impacts BHD process with oil – gas reforming and BHD 
process with by-product propane reforming 
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Abstract 
Renewable aviation fuel is the most promising alternative to reduce emissions in the 
aviation sector; its production is technically feasible, but not its cost respect to fossil jet 
fuel. Then, novel pathways need to be developed. One option is the processing through a 
biorefinery scheme, where biomass is completely converted to several products. Thus, in 
this work the computer-aided design and analysis of an integrated biorefinery for the 
conversion of Jatropha curcas fruit, castor bean plant, microalgae biomass and cooking 
oil is presented; the biorefinery is planned to produce aviation biofuel and other biofuels. 
The conversion processes are modelled and simulated using Aspen Plus. The assessment 
of the biorefinery is realized through the estimation of total annual cost, released CO2 
emissions, and the net gross profit. Results indicated that biojet fuel represents 33% of 
net gross profit, with 5.52 kW invested per kW of energy delivered by the products. 

Keywords: biorefinery, biojet fuel, process simulation, Aspen Plus. 

1. Introduction 
Besides the recent challenges on human health, satisfying the energy demand is still a 
priority theme. The estimated energy requirements for 2040 will be 25% more than the 
amount required in 2019, and an increase up to 130% has been forecasted for 2050 in the 
main sectors involved in the energy consumption, such as the transport sector (BP, 2019). 
Among the transport ways, the aviation sector has presented the major growth rate, 
projecting an increase up to 40% for 2040 (Zhang et al, 2020). To achieve its sustainable 
development, the use of biojet fuel has been identified as the most appropriate strategy 
(Gutiérrez-Antonio et al, 2016). The biojet fuel can be obtained from any kind of biomass 
through different conversion routes (Gutiérrez-Antonio et al, 2020). However, its 
production is still not competitive regarding the fossil jet fuel. For this reason, research 
about novel alternatives to produce biojet fuel is highly needed. In this context, integrated 
biorefineries are considered a feasible option to produce a variety of products, including 
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chemicals, power, heat and steam from biomass (Energy, 2019). Few works about 
biorefineries to produce biojet fuel have been reported (Tongpun et al, 2019; Romero-
Izquierdo et al, 2019; Neves et al, 2020); in most of them, only one kind of biomass is 
used. Nevertheless, the use of mixtures of raw materials could help to strengthen the 
industrial implementation of the production of this biofuel. Therefore, in this work an 
integrated biorefinery scheme to produce biojet fuel is presented, using Jatropha curcas 
(JC) fruit, castor been (CB) plant, microalgae biomass (MA) and waste cooking oil 
(WCO). For this biorefinery, all the fractions of the raw materials (husk, oil, etcetera) are 
used, achieving the diversification of processes and biofuels. The computer-aided design 
of the biorefinery scheme is realized using Aspen Plus. The assessment of the scheme is 
performed through the estimation of total annual cost (TAC), the counting of CO2 
emissions, as well as the estimation of net gross profit of the products obtained. These 
estimations allow to analyse the biorefinery scheme by the use of energetic and 
environmental indicators, detecting the main opportunity areas for enhancing the scheme. 

2. Process design and simulation 
The biorefinery feedstock is defined as a mixture of JC seeds (19 wt%), CB seeds (58.5 
wt%), MA (Chlorella vulgaris) after harvesting stage (22.4 wt%), and WCO without solid 
traces (0.1 wt%). The amount of each raw material was defined based on the potential 
cultivation (Zamarripa-Colmenero et al, 2009), the productivity of microalgal strain 
(Vera-Morales et al, 2017), and the recollection data in México (Romero-Izquierdo et al, 
2019), respectively. The biorefinery was decomposed in four processing zones: oil 
extraction (Z1), press cake processing (Z2), oil conversion (Z3), and biojet fuel separation 
(Z4). The flow diagrams for Z1 and Z2 are presented in Figure 1, while in Figure 2 are 
showed the Z3 and Z4. The process starts in Z1, wherein the oil extraction is performed. 
The mechanical extraction of JC and CB seeds is carried out in two stages; heating up to 
100°C using saturated steam, and mechanical pressing by Crusher module to obtain 
vegetable oil and press cake. In the case of MA, ultrasound technology is used. The oil is 
separated from press cake using a Split module as filter. Then, 20 wt% of JC press cake 
and 20 wt% of MA press cake are fed to anaerobic digestion process (AD) in Z2. The 
degradation of biomass in AD was described by the Buswell equation (Huun-Nguyen et 
al, 2014) and performed at 55°C and 1 atm, using a RStoic reactor module. The obtained 
biogas is used to produce electricity by a gas turbine (Comp module). The JC and MA 
press cake remaining enter two separated hydrolysis and fermentation processes (SHF), 
using two consecutive reactors modelled by RStoic modules. The operating conditions of 
acid hydrolysis are 121°C, 1 bar and H2SO4 solution 1 wt%; whilst the fermentation 
reactor operates at 30°C, 1 bar with an urea-to-biomass mass ratio of 0.1 (Ho et al, 2013; 
Dimian and Sorin, 2008). Roughly 7% ethanol yield is obtained, along with other co-
products (furfural, lactic acid, succinic acid, glycerol). Ethanol is purified through 3 
distillation columns (RadFrac modules) to reach 98 % mass purity. The first column (38 
stages) separates the CO2; while in the second column the ethanol is preconcentrated until 
90% mass purity. Finally, in the last column (15 stages), glycerol is used as extractive 
entrainer to break the ethanol-water azeotrope. 70 wt% of ethanol is sent to ATJ process, 
and 30 wt% to transesterification processes. Z2 continues with the pyrolysis of CB press 
cake, modelled with the RBatch module at 623 K, using the kinetic model reported by 
Santos et al (2015). The biochar is removed by a Filter module; the condensable gases 
are the bio-oil product, whilst the non-condensable gases could be used as heating source.  
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In ATJ process, 3 reactors are modelled with RStoic modules: 1) ethanol dehydration at 
450 °C and 11.4 bar (Ristovic et al, 2017); 2) ethylene oligomerization at 120°C and 35 
bar (Heveling et al, 1998); 3) hydrogenation at 100 °C and 15 bar (Gounder et al, 2011). 

Figure 1. Flow diagram for Z1 and Z2 from Aspen Plus. 

 
Figure 2. Flow diagram for Z3 and Z4 from Aspen Plus. 

In Z3, 30 wt% of the oil flow is devoted to biodiesel production, and 70 wt% to the 
hydrotreating process. The production of biodiesel is carried out by transesterification 
reaction at 50 °C and 1 bar, using REquil modules for JC and MA, whilst RBatch modules 
are used for CB and WCO. For JC, CB and WCO the reaction uses ethanol (Abduh et al, 
2013; Nivea et al, 2006; Romero-Izquierdo et al, 2019); for MA, the methanol is the 
reactant (Farooq et al, 2016). The obtained biodiesel is a mixture of ethyl and methyl 
esters. The separation of biodiesel starts with a Decanter module at 15 °C, followed by a 
wash-column and a Flash module to remove the excess of water. Then, the methanol, 
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ethanol and glycerol are separated using 4 distillation columns, modelled by RadFrac 
modules, reaching 0.958, 0.974 and 0.857 of mass purity, respectively. In the 
hydroprocesing (HDO), modules RStoic are used for CB oil, MA oil and WCO. The HDO 
for CB oil operates at 320 °C and 80 bar (Liu et al, 2015); while it operates at 350 °C and 
50 bar for MA oil (Verma et al, 2011) and WCO (Romero-Izquierdo et al, 2019). 
Regarding to JC oil, two consecutive reactors (RPlug modules) at 80 bar are implemented, 
operating at 320 °C and 420 °C, respectively (Gutiérrez-Antonio et al, 2016). In order to 
reach 1 bar after the hydrotreatment for each oil, 4 turbines are used. After the turbines, 
the output streams from HDO are mixed with the hydrocarbons stream from ATJ process 
in Z4. This mixture is fed in a train of 3 distillation columns, modelled by the RadFrac 
module, reaching for each product 99% mass purity. In the first column (24 stages), light 
gases (C1-C4) are separated; while in the second one (38 stages), naphtha is purified 
(isoC5-C7). Finally, in third column (91 stages), biojet fuel (isoC8-C16) at top, and green 
diesel (C17-C21) at bottom are obtained. It is important to mention that sensibility 
analysis for decreasing the energy requirements were applied at separation zones (Z3 and 
Z4), varying reflux ratio and stages number. The biorefinery scheme is modelled with 
Peng-Robinson for the reactive zones, NRTL for SHF process, and BK10 for the Z4. 

3. Economic and environmental assessment 
The economic and environmental assessment for the biorefinery is realized through the 
total annual cost (TAC) and the counting of released CO2 emissions. The TAC involves 
two items: the capital cost, calculated by Aspen Economics, adding 18% and 61% due to 
contingencies, installation fees and equipment maintenance, respectively (Turton et al, 
2012); and the operating cost, which includes utilities cost (heating and cooling), raw 
material cost (JC, CB seeds, MA, hydrogen, ethanol, methanol) and additional reagents 
cost (glycerol, urea, H2SO4, etc), excluding catalyst cost and filters. The CO2 emissions 
due to the production of steam and electricity are considered, and they are calculated 
through the methodology presented by Gutiérrez-Antonio et al (2016). On the other hand, 
the gross profit is calculated with the estimated product volume from simulation results, 
and the market price of each product: light gases, naphtha, biojet fuel, green diesel, bio-
oil, bio-char (Romero-Izquierdo, 2020). These variables allow to analyse the biorefinery 
with two proposed indicators: IE, energetic indicator defined as invested energy used for 
heating, regarding to energy delivered by the products, and IA, environmental indicator 
defined as CO2 emissions regarding to total product mass obtained from the biorefinery. 

4. Results 
According to results, the biorefinery generates 1% of its electricity requirements, thus, 
81.6% of TAC is due to external power consumption. Moreover, the microalgae cost 
represents 85% of total raw materials cost. The major contributor to the TAC is the 
operating cost, whilst the capital cost represents less than 1%. In Table 1 is presented the 
TAC estimated for the biorefinery scheme. On the hand, the net gross profit estimated for 
obtained products is presented in Table 2. As it can be seen the greater contributors to the 
net gross profit are biodiesel with 37.7 % and biojet fuel with 33 %, which indicates its 
important position as useful biofuels in the market.  Regarding CO2 emissions, 6,579.44 
MTon CO2/year and 59.56 MTon CO2/year are due to steam and electricity requirements. 
Thus, 99% of total CO2 emissions are due to heating utilities. Finally, with regard IE, per 
each kW of total energy delivered by the products, 5.52 kW are invested in the processing 
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(by heating), which means that the energy investment for this biorefinery is 5.52 times 
higher than delivered energy by the products. Likewise, for IA, per each kg of total 
product mass, 1.51 ton of CO2 are released; thus, the CO2 emissions by the steam and 
electricity requirements are high, regarding to the products obtained; but the use of 
turbines to produce electricity in situ is a good strategy to diminish the total CO2 
emissions released by the processing.  

Table 1. TAC for biorefinery scheme. 

Table 2. Net gross profit from biorefinery scheme. 
Products kg/h USD/kg USD/h million USD/year 

Light gases  20,646.56   $0.46  $9,560.67 $81.265 
Naphtha  60,770.14   $0.47  $28,258.12 $240.193 
Green diesel  65,657.22   $0.96  $62,719.16 $533.112 
Biodiesel 145,322.54 $1.06 $153,999.83 $1,308.998 
Biojet fuel 224,737.68 $0.60 $134,949.04 $1,147.066 

 GJ/h USD/GJ   
Bio-oil  1,173.17   $13.78  $16,161.56 $137.373 
Bio-char  382.70   $7.38  $2,824.34 $24.006 

Total (million USD/year) $3,472.018 

5. Conclusions 
A biorefinery scheme with multiple feedstocks has been presented in this work for the 
production of biojet fuel and other biofuels. In this biorefinery, the microalgae cost 
represents 85% of the total raw materials cost, whilst the electricity cost is the major factor 
affecting the TAC (81.6%). In addition, 99% of total CO2 emissions are due to steam 
requirements. Regarding to net gross profit, 33% corresponds to biojet fuel, thus its price 
in the market occupies the second place among the biofuels obtained in this proposal. 
Finally, 5.52 kW are invested (by heating) per kW of energy delivered by the products, 
whilst 1.51 ton of CO2 per each kg of total product mass are released; thus, it is necessary 
to apply strategies to minimize the energy requirements and diminishing the CO2 
emissions. Nevertheless, this biorefinery scheme is a good alternative to produce biofuels, 
mainly biojet fuel, from the complete use of the selected biomasses.  
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Abstract 
The use of biomass has been associated mainly with the energy or biofuels. However, the 
production of high value-added products such as chemical building blocks, show a 
feasible alternative. However, the coordination of all the players within a market is 
complex because is necessary ensuring that the balance of profits generated will be greater 
than production and logistic cost, becoming an optimization problem. Therefore, we 
propose a coordination framework for managing lignocellulosic biomass from 
agricultural residues in a scalable manner by orchestrating biomass exchange, 
transportation, and transformation into value-added products, specifically: Levulinic acid 
and furfural. In the proposed framework, suppliers and consumers of biomass and derived 
products as well as transportation and technology providers bid into a coordination system 
that is operated by an independent system operator. All locations, prices for all biomass 
types and derived products are obtained by the operator by solving a dispatch problem 
that maximizes the social welfare and that balances supply and demand across a given 
geographical region. Through the coordinated framework, cleared transportation flows, 
locations and technologies involved are obtained to meet demand. The production of 
Levulinic acid was 330 Kt/year and 394 Kt/year of Furfural. Which represent 3% of 
global demand of raw materials for methyltetrahydrofuran. On the other hand, the benefit 
generated to biomass suppliers exceeds $27 million / year, which would represent an 
increase in social welfare in the area, specifically to farmers. The framework allows to 
identify guidelines of the market behaviour considering all market players, with these 
guidelines is possible propose actions to be able to project a more competitive market for 
all products and that favors all market players.   
Keywords: Coordination Framework, Agricultural Waste, Levulinic Acid, Furfural 

1. Introduction  
The concept of Biorefinery originated in the 1990’s as a result of fossil fuel shortages and 
increasing trends in the use of biomass as a renewable raw material for the production of 
non-food products (Popa and Volf, 2018). The mismanagement and disposal of 
agricultural waste represents not only a danger to the environment, but also a lost 
economic opportunity. Specifically, there are various biomass processing technologies to 
generate value-added products from organic waste such as building block chemicals, 
fuels, and electricity. Unfortunately, the economic viability of waste processing routes 
depends to a large extent on the scale, transport costs and composition of agricultural 
waste (which vary depending on waste). Moreover, decision-makers are often unaware 
of the potential uses of waste streams and, therefore, of their inherent value. Another 
obstacle associated with waste management is the lack of cost-effective alternatives to 
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collect and transport large quantities over long distances. In Mexico, government 
regulations and incentives for the use of biomass are currently in place, however, 
incentives have not been able to exceed production and logistics costs. Therefore, there 
is no waste management network that guarantees a strong market, sustained growth for 
the urban and agricultural sectors. Another important aspect is that in Mexico studies on 
the use of biomass have focused on its use to generate energy or biofuels, for example: 
Quiroz-Ramirez et.al (2017) performs a optimal planning of biomass for biobutanol 
production and Santibañez-Aguilar et .al (2019) proposes the mathematical model for 
planning the use of biomass for energy production systems, both works leaving aside the  
potential biomass use as raw material for high added value products such as Levulinic 
acid and Furfural. 
This work proposes a coordinated framework for the management of lignocellulosic 
biomass from agricultural waste (corn stover, wheat straw and sorghum stover) in a 
scalable way by organizing the exchange, distribution, transport and transformation of 
biomass into value-added bioproducts, specifically: Levulinic acid and Furfural. These 
high value-added products were selected because they are precursors of 
methyltetrahydrofuran, which is an additive that can be mixed with gasoline and that 
according to what was reported by Grand View Research (2015) has a demand of more 
than 20,000 kilo tons. The state of Guanajuato was taken as a case study, which is the 
second state in Mexico with the highest generation of agricultural waste that contribute 
10.2 % of the national generation. Within the proposed framework, biomass suppliers, 
technologies involved in processing and transport suppliers participate in a coordinated 
system that is solved by an independent system operator (ISO). The operator solves a 
dispatch problem that maximizes social welfare and balances supply and demand in a 
specific geographical area, for this, the operator obtains all the locations, the prices of 
different biomass and derived products. Coordination allows the management of complex 
constraints and interdependencies arising from the transport and physicochemical 
transformations of biomass into value-added bioproducts.  

2. Case of Study 
Ministry of Agriculture, livestock, Rural Development, Fishing and Food (SAGARPA) 
shows that Guanajuato is the second state in Mexico with the highest generation of 
agricultural, which makes it an important sample to implement the methodology of the 
coordinated framework. Of the 3,830,305 tons by year of agricultural residues, corn 
stover represents 35 %, sorghum straw 41 %, wheat straw 17 % and barley straw 7 %. So, 
for this case study, only the three most abundant types of agricultural residues were 
considered. Production data were obtained from open data from the Agri-Food and que 
Fisheries Information Service (SIAP). To obtain the amount of biomass generated per 
amount of crop, we use the radio reported by McIlveen-Wright et al. (2013) and biomass 
composition was taken within the ranges reported by Isikgor (2015). In addition, were 
used agricultural residues prices and transport cost reported by Santibañez-Aguilar et.al 
(2019). The optimization problem was formulated using 10-year data (2009-2018), each 
year was proposed as a scenario, all the scenarios were solved simultaneously. The main 
products are furfural, which is obtained from hemicellulose, obtaining 0.27 kg of furfural 
/ kg of hemicellulose, and Levulinic acid, which is obtained from cellulose, with a yield 
of 0.49 kg of Levulinic acid / kg of cellulose. These conversions were proposed based on 
what was reported in previous works by Luo et. al (2019) and Reunanen et.al (2013). 
Biorefineries location was strategically selected, the criteria for selection were: its 
proximity to roads, provision of services for industries of this type and its proximity to 
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available biomass. In each location, the implementation of agricultural waste 
transformation technologies to Furfural and Levulinic acid was proposed. Levulinic acid 
and furfural production cost was considered based on the work of Gozan et. al (2018) and 
Cai et. al (2014), where the impact of the scale economy is clearly showed, considering 
plants between 295 tonne/day and 701 tonne/day, prices of 2159 USD and USD 1430 
USD per tonne of biomass are obtained, respectively. 

3. Coordination Framework  
We consider a system that comprises a set of geographical locations (nodes) N , products 
P , suppliers  , consumers  , transportation providers  , and transformation 
(technology) providers  . Products comprise different waste stream types and derived 
products, transportation providers offer alternatives (e.g., hauling, railway, pipelines) to 
move products between locations, and technology providers offer alternatives to process 
products to produce other higher value products. 

The management system proposed is operated by an ISO that collects bidding information 
from all participants (costs, capacities, and transformation factors) to obtain optimal 
allocations of product supply, demand, transportation, and transformation services. The 
ISO determines these allocations by solving a dispatch problem that finds optimal 
transportation and transformation pathways for waste and derived products that maximize 
the social welfare and that balance supply and demand for all products across a 
geographical region. For reasons that will become apparent, this dispatch problem can be 
seen as a market clearing problem. The cleared transportation providers create a 
transportation network that connects nodes in the system that perform exchange of 
products.  An efficient management system is expected to clear suppliers and providers 
that offer services at low costs and will give preference to consumers with higher bidding 
costs. The clearing problem also aims to find prices that are used to properly remunerate 
suppliers and providers to cover their service costs and to charge consumers for the 
service provided.  

3.1. Dispatch Formulation 

Given the bidding information associated with each supplier s , consumer d , 
transportation provider f , technology   and maximum capacity of biomass s , 
demand d , transportation provider f ,  processing  the ISO solves the clearing 
problem Eq. (1) to find allocations. These allocations maximize the social welfare Eq. 
(1a) and satisfy the physical conservation laws Eq. (1b), and capacity constraints Eq. (1c)-
(1f). Maximizing the social welfare function maximizes the demand served and 
minimizes the costs of supply, transportation, and transformation. The conservation laws 
are also known as the balancing constraints or market clearing constraints. The first term 
in parenthesis is the total input flow for product p  into node n  (given by supply flows 
and transportation flows entering the node). The second term in parenthesis is the total 
output flow of product p  from node n  (given by the demand flows and transportation 
flows leaving the node). The third term is the generation/consumption rate of product p  
in all technologies located at node n . In a work published by Apoorva et al. (2019) the 
complete dispatch formulation and fundamental properties of the coordination framework 
are described.  
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4. Results 
Optimization problem includes: 51 nodes, 1277 biomass suppliers and 8 different 
products (raw materials and derived products). The 46 municipalities of the state of 
Guanajuato and their agricultural production for the period 2009-2018; four installation 
locations for conversion technologies and a single point of demand for the products 
resulting from the transformation was considered. To give an idea of the logistical 
complexity involved, the optimization problem is a linear programming problem that 
contains more than 24801 decision variables and 4860 restrictions.  
For this case study, 60% of the biomass of the state of Guanajuato was used. This would 
produce around 434 Kt/year of Levulinic acid and 487 Kt/year of Furfural. However, 
through the implementation of the coordinated framework it shows, that having an 
availability of 60% biomass, the best solution found only uses 80% of this biomass, it 
occurs because the wheat straw processing cost is affected by the scale economy. If wheat 
straw were to be considered, a bigger technology for processing should be proposed. 
Therefore, in this work, a production of 330 Kt / year of Levulinic acid and 394 Kt / year 
of Furfural was obtained, which represents 3.0% of global demand of raw materials for 
the MTHF. 
Table 1 shows the prices at which the market clears (clearing prices), these prices are 
calculated independently for each node present in the problem. As a result, we obtained 
a price range where our market still exists and all market players have benefit. In this 
case, the clearing prices for wheat straw are zero since they do not participate in the 
market. Figure 1 shows the cleared transportation flows in Guanajuato State for different 
biomass and derived products, in Figure 1c no flows appear because wheat straw does not 
participate in the market. 

Table 1. Clearing prices 
 Clearing prices

Product Theoretical Price Minimal Price Maximum Price 
Corn stover 18.33 8.18 21.01 
Sorghum straw 14.96 5.24 17.61
Wheat straw 16.66 0 0 
Furfural 1700.00 1685.71 1700.00 
Levulinic acid 11023 11008.71 11023
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Bioproducts  

 
Figure 1. Cleared transportation flows in Guanajuato State for different biomass and 
derived products: A) Corn stover, B) Sorghum Straw, C) Wheat Straw and D) Derived 
products. 
In Figure 1, not all suppliers are involved in the market, this due to process cost and 
mainly to transportation cost. The main suppliers are in municipalities near the 
biorefineries, in the center and south of the Guanjuato state. It may seem that there are 
very few suppliers involved, however it is necessary to mention that in each municipality 
there may be up to 10 corn stover suppliers and 10 sorghum stover suppliers. The 
municipalities involved in the market are: Abasolo, Acambaro, Apaseo el Alto, Celaya, 
Cortazar, Guanajuato, Irapuato, Jaral del Progreso, León, Penjamo, Pueblo Nuevo, 
Purísima del Rincon, Romita, Salamanca, Salvatierra, San Francisco del Rincon, Silao de 
la Victoria, Valle de Santiago and Villagran. The profit generated through the 
implementation of the coordinated system is 1.84E+03 million USD/year, this profit is 
large due to the price of Levulinic acid. Total revenue is 4.49E+03, this revenue is 
associated to sales. Although these results are encouraging, it is also important to mention 
that it has a direct impact on the region since the total transportation cost is 5.79 million 
USD/year, the total supply cost is 2.76E+01 million USD/year. 

5. Conclusions  
We presented a coordinated system to facilitate the management of agricultural waste in 
a scalable way by coordinating the exchange, transport, and transformation of biomass 
into value-added products. The framework operates as a coordinated marketplace under 
which waste suppliers and consumers, as well as transport and technology, provide 
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bidding services to an independent system operator. The prices of waste and derived 
products in different geographical locations are obtained by solving a dispatch problem 
that maximizes social welfare and balances products throughout the region. Coordination 
enables you to handle complex interdependencies between products and locations. We 
demonstrate that the system offers prices and allocations that satisfy the fundamental 
economic and efficiency properties expected of a competitive market. We also show that 
the proposed system provides a systematic framework for monetizing environmental 
impacts, health impacts, and remediation benefits. In addition, prices reveal the true value 
of waste streams and capture spatiotemporal variations that help prioritize areas and 
reveal the need for investment in processing technologies, transportation, facility 
relocation, and seasonal storage. The proposed geographic framework is scalable in the 
sense that it can provide open access that encourages transactions between many small 
and large players by allowing coordination with other infrastructures. Additionally, this 
coordinated framework represents a valuable contribution to the visualization of the 
market in Mexico resulting from the use of biomass to obtain building block chemicals, 
such as Levulinic acid and Furfural, since to date, the efforts made have focused in the 
production of energy and biofuels. A coordinated framework will become increasingly 
necessary as the human population grows and mobilizes, and as the availability of 
resources becomes more uncertain. 
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Abstract 

Currently, chemical processes must be designed and optimized considering multicriteria 

objectives focused on sustainable aspects. These targets can be effectively achieved via a 

systematic framework, capable to guide the users to take the best decision in terms of 

given objectives. Thus, the present work develops and implements a framework through 

four main steps that use multiple computer-aided tools and methods, linked to optimal 

indicators such as exergy loss, total annual cost and environmental factors and scores. 

The implementation of the methodology used a case study consisting of the ABE 

separation and purification scheme, using liquid-liquid extraction and conventional 

distillation techniques, as well as the evaluation of five extracting agents. The framework 

allowed to enhance the performance of all scenarios with respect the base case.   

Keywords: Sustainable process design, Exergo-economic analysis, Aspen Plus-Matlab 

Interface, Multi-Objective Genetic Algorithms, Life Cycle Impact Assessment. 

1. Introduction  

Process system engineering has been successfully applied to address various product-

process design problems present in the chemical and biochemical/biological industry, 

where the integration of computer-aided tools and systemic frameworks based on the 

optimization of processes in operational and design terms, it is usually a key factor for 

the selection of the best candidate products-processes (Gani, 2009). The current 

environmental challenges related to emissions, waste management and energy efficiency 

of the systems have motivated the search for economically feasible systems with a lower 

environmental impact, in this sense, the implementation of the exergo-economic analysis 

provides an adequate route to satisfy these targets (Akchiche et al., 2020). Additionally, 

exergo-environmental analysis has provided a useful approach for lower environmental 

impact processes design, moreover, the combination of the exergy, economic and 

environmental analysis approach in energy-intensive systems, has shown superior 
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economic and environmental benefits, compared with conventional analyses for process 

design (Li et al., 2019). Therefore, based on the current state of the art, the objective of 

this work focuses on the development and implementation of a systematic framework to 

determine a sustainable optimal process design based on exergetic, environmental and, 

economic indicators. 

2. A design and optimization framework for (bio-)chemical process based on 
sustainability aspects 

The framework for the design and optimization of (bio-)chemical processes based on 

sustainability aspects is presented in Figure 1. This framework includes four systematic 

main steps, which can be summarized as follows: 1) Problem definition, data collection, 

optimization techniques, available technology and, the review of methods and indicators 

focused on the sustainability of the product and process design. 2) Integration of 

thermodynamic aspects and rigorous systems designs through the use of commercial 

process simulator (e.g. Aspen Plus), in addition to the implementation of the model and 

sustainable multi-objective functions for optimization into a programming environment 

(e.g. Matlab), generating a simulation-optimization platform that provides a set of results 

that satisfy all problem constraints. 3) Selection of methods for the evaluation of the 

environmental impacts in process and products design, with the aim of implementing a 

better metric for the selection of sustainable processes. 4) Integration of graphical tools 

with the aim of facilitating the analysis of the results, the selection and implementation 

of the best scenario in the selected case study. 

 
Figure 1. A design and optimization framework for (bio-)chemical process based on sustainability 

aspects. 

3. Case study  
The framework was evaluated using the separation and purification of Acetone-Butanol-

Ethanol (ABE) from a fermentation broth mixture. The feed stream used in this study was 

20,393.64 kg/h with a mass composition of: Acetone (0.1116), Butanol (0.2922), Ethanol 

(0.0784), Water (0.5138), and Carbon Dioxide (0.0040). A hybrid separation process 

(liquid-liquid extraction and conventional distillation) was selected, where five extracting 

agents (EA) were evaluated.  
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4. Framework description 

4.1. Data collection and state of art update. 

The first step was to define the case study. In a previous work some authors identified the 

advantages and disadvantages in the ABE broth mixture separation and purification, 

including general characteristics of biochemical processes as: multi-production process, 

diluted products, azeotropes presence, etc. These aspects were successfully addressed by 

implementing optimal schemes based on total annual cost (TAC) and environmental 

targets, including environmental, friendlier and economic extracting agents, on the 

separation and purification schemes (SPS) (Ponce-Rocha et al., 2018). 

4.2. Design and optimization of (bio-)chemical processes based on sustainability aspects.  

Nowadays, a commercial process simulator (e.g., Aspen plus) allows process design 

using a rigorous thermodynamic description, through the determination of suitable model 

and binary interaction parameters. Once the system components were established, the 

selection of the thermodynamic models was carried out, the NRTL and Hayden 

O’Connell modification were selected to describe the liquid-vapor equilibrium, 

respectively (Morales-Espinosa et al., 2017). The SPS were carried out based on heuristic 

rules, the equipment design was done using shortcut methods, rigorous methods and, 

sensitivity analysis to improve the design of columns. The selected extracting agents to 

be evaluated were hexyl acetate (HEX), heptyl acetate (HEP), a HEX-HEP mixture, 2-

ethyl-1-hexanol (2-ETH-1-OL), and dichloromethane (DCM). Due to the volatilities of 

extracting agents, two different SPS were generated as shown in Figure 2. 

 
a) 

 

b) 

 

Figure 2.  a) DCM process configuration (ELL+3DC columns); b) HEX, HEP, HEX-HEP, and 2-

ETH-1-OL process configuration (ELL+4DC columns). 

An inherent characteristic in the optimization of chemical processes involves the presence 

of multiple objectives, unfortunately, commercial simulators lack of multi-objective 

optimization (MOO) modules. Thus, an alternative to tackle those issues have been done 

by integrating a simulation-optimization platform, using a computational interface (e.g., 

COM) into a programming environment. Regarding to the optimization part, the use of 

black-box optimization methods do not require an algebraic model for their description, 

only iterative evaluations of the process variables and conditions, therefore, multi-

objective genetic algorithms (MOGA) are an excellent tool for making this task (Muñoz 

et al., 2017).   
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4.2.1. Optimization problem formulation  

In this work the multi-objective optimization is represented as following in Equation 1:  

𝑀𝑖𝑛 
𝑥

 𝑍 = [ 𝑍𝑘(𝑥)] 𝑘 = 1, 2, … , 𝑘.   𝑠. 𝑡.   𝒉(𝑥) = 0; 𝒈(𝑥) ≤ 0 (1) 

where 𝑍 represents a vector with k-objectives functions, x is the vector of state variables 

(stages number, feed stages, reflux ratios, distillate or bottoms rates, and the inlet flow of 

the extracting agent). h(x) and g(x) are the vectors of model equality and inequality 

constraints associated with mass purities (P) and mass recoveries (R). (Equation 2-3 for 

HEX, HEP, HEP-HEX and, 2-ETH-1-OL. Equations 4-5 for DCM).  

[𝑃𝐸𝐴 , 𝑃𝐴, 𝑃𝐵 , 𝑃𝐸] ≥ [0.999, 0.950, 0.995, 0.900] 
[𝑅𝐸𝐴, 𝑅𝐴, 𝑅𝐵, 𝑅𝐸] ≥ [0.999, 0.995, 0.000,0.992] 

(2) 

(3) 

[𝑃𝐸𝐴 , 𝑃𝐴, 𝑃𝐵 , 𝑃𝐸] ≥ [0.995, 0.990, 0.995, 0.990] 
[𝑅𝐸𝐴, 𝑅𝐴, 𝑅𝐵, 𝑅𝐸] ≥ [0.980, 0.990, 0.999, 0.000] 

(4) 

(5) 

In this study, four objective functions were selected to evaluate and optimize the 

sustainable process configurations: the energy requirements, exergy losses, TAC and, the 

E factor. 

 

The energy requirements (ER) associate the ratio between total heat requirements and the 

amount of product purified in each case study, as described in Equation 6.  

𝐸𝑅 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠  [𝑀𝐽]

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 [𝑘𝑔]
 (6) 

Exergy losses (σT0) were calculated considering the total exergy losses given by the 

heating and cooling processes (Q), separation (Sep) and, concentration changes (Conc) in 

all the equipment (j) and streams processes (i) (see Equation 7). 

𝜎𝑇0 = 𝛥�̇�𝑥𝐼𝑛 − 𝛥�̇�𝑥𝑂𝑢𝑡 

𝜎𝑇0 = ∑ ∑[𝛥�̇�𝑥𝑄,𝑗 + 𝛥�̇�𝑥𝑆𝑒𝑝,𝑖 + 𝛥�̇�𝑥𝐶𝑜𝑛𝑐,𝑖]

𝑚

𝑖=1

𝑛

𝑗=1

 
(7) 

Total annual cost (TAC) illustrated in Equation (8), establishes the equipment investment 

cost and payback period (adjusted to five years), and the sum of annualized cost of 

utilities, referred to extraction agent lost, cooling and heating services. 

𝑇𝐴𝐶 =
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 
+ 𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

(8) 

The E factor (E) determinates the waste and products ratio (see Equation 9). Further, the 

streams with water composition greater than 99% (mass) were not considered as waste 

streams.  

𝐸𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑊𝑎𝑠𝑡𝑒  [𝑘𝑔]

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 [𝑘𝑔]
 (9) 
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3.2.1 Metaheuristic optimization strategy  

The generated alternatives were evaluated and optimized using a MOGA: Gamultiobj (a 

variant of NSGA-II) integrated in Matlab. Each optimization considered 50 generations, 

200 individuals, and a crossover fraction of 0.8.  

4.3. Life Cycle Impact Assessment as an additional criterion for selection of sustainable 

process.   

The life cycle analysis (LCA) evaluation has been considered as one of the most 

appropriate methodologies to estimate the environmental impacts of products and 

processes. This methodology is comprised of four main stages: definition of objective and 

scope, inventory analysis (LCI), impact evaluation or Life cycle impact assessment 

(LCIA), and interpretation of results. The LCIA methods (e.g. ReCiPe 2008) allow to 

estimate a single scores (SS) capable to describe the total environmental impact, 

providing an objective criterion for the comparison of systems with similar characteristics 

(Santos et al., 2018). 

4.4. Graphical analysis and selection of the best scenario.  

Finally, the previous results were compilated and selected according to the best SPS for 

each extracting agent using a graphical analysis to represent the four sustainable objective 

functions. 

5. Results  
The optimal results that accomplished the established constrains were selected for each 

extracting agent (EA), and subsequently, the total environmental impact was measured 

by life cycle impact assessment using ReCiPe 2008 method. Table 1 shows the most 

relevant indicators for base and optimal scenarios obtained for each solvent in MOO and 

LCIA. The best scenarios for TAC, σT0, ER, E and SSLCIA were when using 2-ETH-1-

OL, DCM, HEP, HEP and HEP, respectively. 

Table 1. Summary of results of the evaluated extracting agents. 

EA Scenario 
TAC 

[M$/year] 

σT0 

[MW] 

ER 

[MJ/kg-

ABE] 

E-factor SSLCIA 

HEX 
Base 13.63 2.99 12.93 0.51 0.28 

Optimal 10.27 2.18 9.13 0.47 0.26 

HEP 
Base 11.72 3.01 10.35 0.28 0.23 

Optimal 8.09 1.95 6.99 0.25 0.21 

HEP-

HEX 

Base (0.5-0.5) 12.49 2.93 11.14 0.35 0.24 

Optimal (0.41-0.59) 9.10 2.02 7.83 0.37 0.24 

2-ETH-1-

OL 

Base 14.88 4.04 15.52 0.79 0.31 

Optimal 7.67 1.98 8.12 0.77 0.29 

DCM 
Base 26.63 1.79 7.28 1.28 0.22 

Optimal 26.14 1.77 7.00 1.28 0.22 

Figure 3 shows the optimal sustainability indicators for each extracting agent given in 

Table 1. This graph allows a visual and clearer comparison between the optimal results 

A design and optimization framework for (bio-) chemical process based on

exergo-economic and environmental aspects    
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for each extraction agent. In this sense, the use of 

HEP as extracting agent provides the best scenario 

for separation and purification of ABE mixture under 

the selected sustainability targets.   

Furthermore, analyzing all indicators in Table 1, it is 

possible observe a major benefit in the sustainable 

indicators for each extraction agent optimal case 

(TAC, σT0, ER, and E-factor).  In addition, these 

improvements minimize or alternatively keep an 

identical environmental impact.  

Figure 3. Optimal results using the different EA. 

6. Conclusion  

The systematic steps and selected tools and methods integrated in this framework, 

allowed to improve most of indicators for each SPS. The results illustrated that the best 

SPS was found when using HEP as EA, which permitted to minimize substantially the 

TAC (31%), exergy losses (35%), energy requirements (32%), E-factor (11 %) and LCIA 

(9%) with respect to the base scenario; in addition to major sustainability benefits 

compared with the other indicator’s values reported by each EA in Table 1. Therefore, 

the process design and optimization based on sustainable indicators can be applied 

successful in (bio-) chemical and chemical processes with environmental and energetic 

problems.  
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Abstract 
This study aims to develop a systematic methodology through the combination of process 
simulation and life cycle assessment (LCA) to comprehensively evaluate biodiesel 
production from algae biomass in terms of the minimum biodiesel selling price (MBSP) 
and the environmental impacts of algae biodiesel. Downstream processing stages (lipid 
extraction with hexane, lipid refining through esterification with glycerol, and conversion 
to biodiesel with an alkali-based transesterification) were designed and simulated in 
Aspen Plus V8.8. Then, a discounted cash flow rate of return analysis was used to obtain 
the MBSP. Finally, an LCA was performed to obtain the environmental impacts of algae 
biodiesel and identify the hot-spots in the processing stages. The MBSP was found to be 
8.95 USD per gal, around 3.5 times higher than the average price of fossil diesel in 2020 
for the US. The primary energy demand (PED) and climate change (CC) impacts of algae 
biodiesel were estimated at 1.54 MJ/MJ biodiesel and 96 g CO2eq/MJ biodiesel, resulting 
27% and 2% higher, respectively, than the reference values for fossil diesel. Lipid 
extraction was identified as the hotspot of downstream processing, accounting for 47% 
of PED and 60% of CC of the process. Hexane production and evaporation losses were 
also identified as major contributors to other environmental impact categories, including 
human toxicity, eutrophication, and photochemical ozone formation. This methodology 
can be used to evaluate alternative processing options for algae biodiesel, such as using 
bio-based solvents (terpenes) for algae lipid extraction, to contribute to more sustainable 
and environmentally friendly processes. 
 
Keywords: lipid extraction, solvent selection, techno-economic analysis. 

1. Introduction 
Biofuels production from algae is a significant area of interest within the field of 
biorefining because algae offer several advantages over conventional feedstocks for 
biofuel production, including high productivity, high content of lipids, cultivation in 
saline and wastewater sources, and production of high-value coproducts. Despite these 
advantages, biofuel production from algae is not cost-competitive due to several 
challenges in the processing steps (Quinn and Davis, 2015). Among these, algae lipid 
extraction is a major bottleneck in biodiesel's commercial production, as it has a 
significant impact on the economic viability, energy consumption, and environmental 
performance of the process (Harris et al., 2018). Conventional processes for lipid 
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extraction rely on fossil-based volatile organic solvents, such as hexane, which introduce 
negative environmental impacts due to their hazardous, volatile, and flammable nature. 
Alternatives to hexane have been proposed, such as bio-based solvents (terpenes) for lipid 
extraction (Dejoye Tanzi et al., 2013). However, information is lacking about the process 
performance and sustainability of non-conventional solvents for lipid extraction. 

Techno-economic analysis combined with environmental sustainability tools, such as life 
cycle assessment (LCA), have proven to be useful for evaluating the performance and 
identifying improvement opportunities of novel processes, including biodiesel production 
from algae (DeRose et al., 2019). The minimum selling price of algae biofuels has been 
estimated and reported widely in the literature (Davis et al., 2018). Most previous LCA 
of algae biofuels focused only on the primary energy demand and climate change impacts 
without considering potential impacts related to the use of hexane in the lipid extraction 
stage, such as human toxicity and photochemical oxidation. Besides, only a few LCA 
studies (Passell et al., 2013) identified hotspots in the downstream processing of algae 
biofuels, with the objective of improving its economic and environmental performance. 
In an effort to better understand the impact of the lipid extraction stage, and particularly 
the benchmark solvent hexane, on the economic viability and environmental 
sustainability of algae biodiesel production, this study presents a systematic methodology 
that combines process simulation and life cycle assessment to provide a robust evaluation 
of the economic and environmental performance of algae biodiesel on a life cycle basis. 

2. Methodology 
The proposed methodology, illustrated in Figure 1, consists of four iterative steps: 1) 
problem definition, 2) process design and simulation, 3) economic analysis, and 4) life 
cycle assessment. Data required and outcomes of each step are included in Figure 1. The 
application of this methodology allows the identification of the hotspots in algae biodiesel 
production, which can be modified to improve the economic and environmental 
performance of the product.  
 

 
Figure 1. Proposed methodology to evaluate economics and environmental impacts of algae biodiesel 

Figure 2 shows an overview of algae biodiesel's life cycle, including the processing stages 
and its combustion. The upstream processing stages comprise algae cultivation and 
harvesting/dewatering processes. Nannochloropsis salina was selected as the algae strain 
due to its demonstrated potential for biodiesel production, known composition data (Yao 
et al., 2015), and refining and conversion kinetics data (Silva et al., 2013). It is assumed 
that the algae are cultivated in an open pond system and fed with a pure stream of CO2, 
which was assumed to be captured from a coal-fired power plant using 
monoethanolamine (MEA). Fertilisers (diammonium phosphate and ammonia) are added 
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to the cultivation ponds to support algae biomass growth. The biomass is then routed to 
the harvesting/dewatering stage, where it is concentrated from 0.5 g/L to 200 g/L with 
settling tanks and a centrifuge unit (Davis et al., 2016). The downstream processing stages 
comprise lipid extraction, refining, and conversion to biodiesel. Lipid extraction includes 
cell disruption (with a high-pressure homogeniser), extraction with the solvent hexane, 
and solvent recovery. In the lipid refining stage, the free fatty acid content of the extracted 
lipids decreases to < 1 wt% through an esterification reaction with glycerol (Silva et al., 
2013). The refined lipids are converted to biodiesel with an alkali-based 
transesterification reaction with methanol in the lipid conversion stage. An anaerobic 
digestion/combined heat and power unit (AD/CHP) is included in the flowsheet to 
generate heat and power from the waste biomass (lipid-extracted algae) and waste 
glycerol and to recover nutrients for algae cultivation in the AD effluent stream. 
 

 
Figure 2. Overview of the life cycle of algae biodiesel 

The plant's objective is the continuous production of 10,000 t y-1 of biodiesel that meets 
the quality specifications given by the ASTM D675 standard. The water content in the 
algae biomass is 80 wt%. The lipid content of the dry biomass is 30%, consisting of a 
mixture of triglycerides (85%) and free fatty acids (15%). Due to the presence of polar 
components and the nonideal thermodynamics of the liquid mixtures that need to be 
separated, the NRTL activity coefficient model is used to model phase equilibrium, and 
the Dortmund UNIFAC method is used to estimate missing binary interaction parameters. 
The lipid extraction process is modelled assuming a counter-current extraction column 
with five equilibrium stages, at 25°C and 1 atm. The solvent-to-dry feed mass ratio is 
assumed to be 5 to 1 (Davis et al., 2014). The EXTRACT block in Aspen Plus V8.8 (an 
equilibrium-stage model) is used to model the extraction process. In this model, the 
distribution coefficients are calculated with an activity coefficient model capable of 
representing two liquid phases (NRTL); adiabatic operation is assumed. The process 
design for biodiesel production from the extracted lipids proposed by Dimian and Kiss 
(2019) was adapted and used to guarantee that the biodiesel product meets the quality 
specifications. The minimum biodiesel selling price (MBSP, in USD per gal) is calculated 
using a discounted cash flow rate of return analysis, assuming a 10% internal rate of return 
(IRR) after taxes (Davis et al., 2014). Capital investment costs are estimated using the 
factorial method of cost estimation and Hand installation factors (Towler and Sinnott, 
2020). Operating costs are calculated based on the material and energy balance of the 
process obtained via the simulation. The cost of the algae biomass (Nannochloropsis 
salina) that enters the lipid extraction process is taken from Davis et al. (2016).  

The LCA is conducted according to ISO 14040/44 guidelines. The goal is to estimate the 
life cycle environmental impacts of production and combustion of biodiesel derived from 
algae, considering a "cradle-to-grave" scope, as illustrated in Figure 2. The functional unit 
is defined as "the production and combustion of one MJ of biodiesel." The inventory data 
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for the upstream processing stages are obtained from Davis et al. (2018), while those for 
the downstream processing stages are obtained from mass and energy balances resulting 
from process simulation. The emissions resulting from biodiesel combustion are obtained 
from GREET (Argonne National Laboratory, 2019). All the background data, e.g. grid 
electricity, provision of heat from natural gas, production of chemicals for upstream and 
downstream processing (MEA, fertilisers, hexane, methanol, NaOH, glycerol), and 
wastewater treatment, are sourced from the Ecoinvent database V3.5 (Ecoinvent, 2019). 
The LCA modelling is carried out in the software GaBi v9.5. The environmental impact 
categories are selected based on the recommendations of the International Reference Life 
Cycle Data System Handbook (EC-JRC, 2010) and are estimated using the ReCiPe2016 
impact assessment method (Huijbregts et al., 2017).  

3. Results and Discussion 
The minimum biodiesel selling price was estimated at 8.95 USD per gal. This value is 
around 3.5 times the average price of fossil diesel in 2020 for the US (2.55 USD per gal). 
The cost of algae biomass and hexane accounted for 76% and 2%, respectively, of the 
biodiesel price. An increase in the recovery of lipids from algae biomass, e.g. using other 
solvents with higher extraction capacity, could reduce algae biomass's required feed rate 
to achieve the desired biodiesel production, thus decreasing the biodiesel selling price. 
Besides, many by-product opportunities for lipid-extracted algae, such as the production 
of bioplastics and high value-added molecules, should be explored to improve the 
economics of the process. Primary energy demand (PED), climate change (CC), human 
toxicity (HTNC), eutrophication (FE), and photochemical ozone formation (POFE) 
impacts of algae biodiesel are 1.54 MJ/MJ, 96 g CO2-eq/MJ, 66 g 1,4-DCB-eq, 37.8 mg 
P-eq., and 0.36 g NOx-eq., respectively, with a large contribution (86% to PED, 92% to 
CC, 92% to HTNC, 96% to FE, and 39% to POFE) of the upstream processing stages. 
These stages are highly energy-intensive and involve the use of chemicals (MEA for CO2 
capture) and fertilisers (for cultivation), which explains their high contribution to the 
environmental impacts of algae biodiesel. In terms of downstream processing of algae 
biodiesel, lipid extraction is an environmental hotspot, accounting for 49% of PED, 61% 
of CC, 52% of HTNC, 56% of FE, and 97% of POFE. Figure 3 shows the individual 
contributions to the environmental impacts of the lipid extraction process. The energy 
required for the process (electricity and heat) is the main driver for PED, CC, and FE. 
Meanwhile, hexane production and evaporation losses are the main drivers for human 
toxicity and photochemical oxidation.  

                    

 
Figure 3. Individual contributions to the environmental impacts of the lipid extraction process 
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The replacement of hexane with more sustainable solvents could improve the 
environmental performance of algae biodiesel. The lipid extraction process was simulated 
using the same five-stage cascade referred to earlier, for four solvents: hexane and the 
terpenes limonene, cymene and pinene. Table 2 summarises key findings based on the 
simulation results.   
Table 1. Performance of lipid extraction process using alternative solvents (hexane and terpenes)  

Solvent 
Lipid 
recovery 
(%) 

Energy 
requirement 
(MJ/kg lipid) 

Solvent 
intensity (kg 
solv/kg lip) 

Operating 
costs (million 
USD/year) 

GHG 
emissions 
(kg CO2-eq) 

Organic 
emissions 
(kg/h) 

Hexane 99.8 7.61 0.10 22.41 635.80 19.98 
Limonene 100 10.51 0.08 28.57 880.39 0.48 
Cymene 99.7 10.26 0.08 30.00 854.77 0.48 
Pinene 96.4 11.43 0.09 26.10 922.54 0.96 

 
Figure 4 shows the results of the performance indicators of terpenes, normalised with 
respect to hexane. The health, safety and environmental (HSE) ranking of the solvents 
(hazardous: 1; problematic: 0.5, recommended: 0), obtained from the CHEM21 solvent 
selection guide (Prat et al., 2016), is also included in Figure 4. As seen, terpenes offer 
advantages over hexane in terms of HSE performance, organic emissions, and solvent 
intensity. However, terpenes have higher energy requirements, operating costs, and GHG 
emissions than hexane. Therefore, using terpenes may result in higher PED and CC 
impacts of algae biodiesel, but lower human toxicity and photochemical oxidation. In 
order to evaluate and understand these trade-offs, a full LCA of algae biodiesel using 
terpenes for lipid extraction is required. 

 
Figure 4. Comparison of performance of lipid extraction solvents [LR: Lipid recovery; TOP: Total 
operating costs; EER: Equivalent energy requirement; GWP: Global warming potential; SI: Solvent 
intensity; OE: Organic emissions; HSE: CHEM21 ranking] 

4. Conclusions 
This study presents a systematic methodology combining process simulation and life 
cycle assessment to comprehensively evaluate biodiesel production from algae biomass 
in terms of economic and environmental sustainability criteria. Lipid extraction is 
identified as the environmental hotspot of downstream processing stages due to its high 
energy consumption and the use of the solvent hexane, which is an important driver for 
eutrophication, human toxicity, and photochemical ozone formation. The evaluation of 
the use of terpenes in the lipid extraction process, applying several performance 
indicators, showed that terpenes could offer advantages in terms of HSE performance, 
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organic emissions, and solvent intensity, but higher energy requirements, operating costs, 
and GHG emissions. Future work will carry out a complete life cycle analysis of biodiesel 
production from algae biomass using bio-based solvents for lipid extraction. Also, a 
systematic methodology to screen solvents for biorefinery processes considering techno-
economic and environmental sustainability criteria on a life cycle basis will be developed. 
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Abstract
One of the most promising technologies for production of biogas from organic waste is
anaerobic digestion (AD). As the experiments related to AD are time-consuming, labour
intensive, and expensive, numerical simulations are important, because they provide a
useful tool towards developing optimized and stable AD processes. This paper focuses
on the optimization of the AD process in order to maximize biogas production from
cattle manure by determining optimal values of process parameters. For this purpose, a
modified mathematical model has been developed to simulate AD at various
temperatures and pH values by considering appropriate inhibitions, detailed pH and
temperature effects on microbial growth, and temperature dependencies of liquid-gas
mass transfer coefficients, dissociation constants, and Henry’s law coefficients. This
model was applied for the simulation of AD in a batch reactor and verified with
experimental data. By using this model in an optimization procedure, the optimal values
of pH and temperature, both acting as design variables, were determined. By engaging a
gradient-based optimizer, based on an adaptive approximation method, it was shown
that a reliable AD model can be used very efficiently in gradient-based optimization.
The optimization process proved to be efficient, stable, and starting-point-independent;
the engagement of numerical differentiation did not cause any problems. The results
show that at optimal process conditions the production of CH4 is significantly improved
in comparison to conditions often given in the literature. The results obtained confirm
the usefulness of the proposed approach, which can easily be adapted or upgraded for
complex substrates and other reactor types.

Keywords: anaerobic digestion, cattle manure, biogas, numerical simulation,
optimization.

1. Introduction
Ever increasing energy demands, depletion of fossil fuels, and waste accumulation are
the main forces for development of environmentally friendly waste-to-energy
technologies. One of the most promising technologies is the production of biogas from
animal manure (organic waste) by the anaerobic digestion (AD) process (Khalil et al.
2019; Rasapoor et al. 2020). As experiments related to AD are time-consuming, labor
intensive, and expensive, numerical simulations are important, because they provide a
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useful tool for AD process understanding and optimization (Ma et al. 2016). Till today
various more or less sophisticated mathematical AD models have been developed in
order to simulate biochemical, chemical, and physical processes by considering the
near-actual composition of both, biogas and complex substrate (Maharaj et al. 2018;
Tsapekos et al. 2018; Sun et al. 2019; Kovalovszki et al. 2020; Kegl and Kovač Kralj,
2020). These AD models are based either on ADM1, which uses the indirect Chemical
Oxygen Demand (COD) for component concentrations computation, developed by the
International Water Association (IWA) Task Group for Mathematical Modelling of
Anaerobic Digestion Processes (Batstone et al. 2002) or on the BioModel with
mass-based unit system, developed by Angelidaki et al. (1993). The objective in this
study is to: (i) develop and test a modified mathematical model, based on the BioModel,
to simulate AD at various temperature and pH values by considering appropriate
inhibitions, detailed pH and temperature effects on microbial growth, and temperature
dependencies of liquid gas mass transfer coefficients, dissociation constants, and
Henry’s law coefficients; (ii) attach a highly-efficient gradient-based optimizer and
implement a procedure to optimize the AD process conditions by utilizing numerical
differentiation; (iii) perform AD process conditions optimization from various starting
points to estimate optimization process efficiency, stability and sensitivity to possible
problems resulting from using derivatives obtained by numerical differentiation.

2. Mathematical model of anaerobic digestion
The proposed AD batch reactor model, which is presented in detail by Kegl and Kovač
Kralj (2020), is based on biochemical reactions. It consists of a system of 21 differential
equations of a microbial kinetic model and mass balance equations in the liquid,
liquid-gas and gas phases. The most important equations are presented in the following,
Eqs. (1)-(9). It must be pointed out that in the mass balance equations for insoluble cis
(gL-1) and soluble cs (gL-1) organic compounds of cattle manure, volatile fatty acids
(VFA) inhibition of the hydrolysis process is also considered, Eqs. (1)-(2). Furthermore,
for the determination of CO2 and CH4 concentration in the liquid phase, cCO2,l (gL-1) and
cCH4,l (gL-1), the liquid-gas transfer rate must be taken into consideration, Eqs. (7)-(8).

(1)

(2)

(3)
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(4)

(5)

(6)

(7)

(8)

(9)

where μbac and cbac, bac ∈ {A,AP,AB,M} are specific growth rates (day-1) and mass
concentrations (gL-1) of acidogens, propionate degrading acidogenic bacteria, butyrate
degrading acidogenic bacteria, and methanogenic bacteria; Yi/bac are yields coefficients
(g of ith component per g of bacteria cell); K0 is the non-inhibited hydrolyzed rate
constant (day-1); KI,VFA is the inhibition constant of volatile fatty acids (VFA) (gL-1); ptotal
and pw are the total and saturated vapour pressures (atm); cac, cpr, cpr, and cam are
concentrations of acetate, propionate, butyrate, and ammonia, respectively (gL-1); Vbiogas
is the volume of produced biogas (L); Vliq is the liquid volume of the reactor (L); T is the
temperature (K); R is the gas constant (atmLmol-1K-1); MCO2 and MCH4 are the molecular
masses of CO2 and CH4 (gmol-1), and rl-g,CO2 and rl-g,CH4 are dynamic liquid-gas transfer
rates of CO2 and CH4, where the liquid-gas equilibrium is reached for both gaseous
components in accordance with Henry’s law.

3. Optimization
In this optimal design problem of the AD system, the objective function g0 is defined in
such a way to promote maximal production of biogas, while the constraint functions g1
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and g2 are related to the CH4 to biogas volume ratio, Eq. (10). The defined objective
function maximizes the biogas volume, Vbiogas, without taking any consideration of the
time needed to obtain it.

, ,
(10)

The design variables are only pH value and temperature, meanwhile there are 21
response variables. The values of pH and temperature design variables were normalized
by Eq. (11).

(11)

where pHmin = 5.5 and pHmax = 8.5 are prescribed minimal and maximal pH values of the
AD process, while Tmin = 25 oC and Tmax = 65 oC are prescribed minimal and maximal
temperatures of the AD process.

Both the described mathematical model of the AD process and the optimization
algorithm were coded in the C# language. The system of differential equations was
solved by the 3th order Runge Kutta method. A gradient based approximation method
optimizer, which is well described in Kegl & Oblak, (1997), was engaged to solve the
NLP optimization problem. This method essentially generates an approximate NLP
problem in each optimization cycle. The algorithm uses the history of provided design
derivatives of the objective and constraint functions in order to enhance the quality of
the approximation. To compute the design derivatives involved in the NLP functions,
numerical derivation was used. The derivatives computation was parallelized in order to
boost computational efficiency.

4. Numerical results and discussion
First of all, the described mathematical model was already verified (Kegl & Kovač
Kralj, 2020). The needed input data for the optimization are cattle manure composition,
given in Table 1, for a bioreactor with a liquid volume of 1 L.

Table 1. Feedstock characteristics

Variable Value Variable Value Variable Value Variable Value

cis (gL-1) 30.4 cpr (gL-1) 2.3 cCO2 (gL-1) 0.0 cAP (gL-1) 0.01

cs (gL-1) 5.4 cbut (gL-1) 0.2 cCH4 (gL-1) 0.0 cAB (gL-1) 0.01

cac (gL-1) 4.5 cam (gL-1) 2.0 cA (gL-1) 0.13 cM (gL-1) 0.8

The design variable and objective function variation histories obtained during the
optimization process are presented in Figure 1 for various initial values.
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Figure 1. Optimization histories with various initial values of design variables: (a) pH,
(b) temperature, and (c) objective function

Within a maximum of 14 iterations, the minimal value of the objective function was
reached at the optimal values of pH 7.7 and temperature of 30 oC; all constraints were
fulfilled. As can be seen from Figure 1, the optimal values of these design variables are
practically the same for any initial values of pH and temperature. Moreover, the value of
the objective function after optimization is the same regardless of the chosen initial
values of design variables, Figure 1.

Figure 2 shows the: (a) formation and consumption of acetate, propionate, and butyrate,
and (b) volumes of produced gases before and after optimization. Regarding the VFA
concentrations, propionate and butyrate convert to acetate; therefore, acetate
concentration is higher than the concentration of other VFA. As we can see in Figure 2,
the concentration of acetate does not approach zero at initial state, while at the optimal
state the whole acetate is converted to CH4 and other components. With respect to the
obtained production rate of CH4, CO2, and total biogas, the total volume of biogas
produced at optimal conditions is higher by about 10% compared to initial conditions,
Figure 2. At optimal conditions, the volume of CO2 produced is decreased by about
23% with respect to initial conditions; meanwhile, the volume of the obtained CH4 is
more than 1.4 times higher than at initial conditions.

Figure 2. Acetate, propionate, and butyrate concentration (a) and gas volumes (b) before and after
optimization.

5. Conclusions
Optimization of the anaerobic digestion process of cattle manure within a batch reactor
was investigated. For this purpose, a modified mathematical model of the AD process
was developed and the obtained results were compared with the results delivered by

Optimization of biogas production from cattle manure by anaerobic digestion
using a gradient-based algorithm

1913     



existing mathematical models and with the experimental data. Both the described
mathematical model of the AD process and the optimization algorithm were coded in
the C# language to enable efficient numerical simulation. According to the numerical
results, the following conclusions can be made:

• The model can be successfully engaged as a state equation in the optimization
problem formulation and solution, where the AD conditions such as pH and
temperature can be optimized in order to maximize the biogas production; the
model can also be easily extended to describe certain processes more accurately,
without affecting the optimization procedure layout.

• The used gradient-based approximation method optimizer is an attractive tool to
solve AD process optimization problems; under the considered circumstances, it
proved to deliver a stable and starting-point-independent optimization.

• The obtained optimization results show that the optimal values of design variables,
7.7 pH and 30 oC, were reached within 14 iterations for various initial values of
design variables; this confirms that this optimization procedure is very efficient;
since the numerical derivatives computation can be easily parallelized, the CPU
times are also relatively low.
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Abstract

In this work, we study PHB direct production (without a heterotrophic step) using
Synechocystis sp PCC 6803 within a Systems Metabolic Engineering approach. We
consider a GEnome-scale Model (GEM) of the cyanobacteria, developed in previous
work, and use it to couple growth with PHB production by finding genetic interventions
(knock-outs) that make PHB production essential for growth. This is achieved by
formulating a bilevel-programming problem, in which the knock-outs are represented by
binary variables related to the genes of the GEM. After reformulation based on duality
theory, a Mixed Integer Linear Programming (MILP) problem is obtained and solved in
GAMS. A mutant that completely couples biopolymer production with growth in
Synechocystis is obtained, and its flux distributions under exponential growth conditions
are analysed by Flux Balance Analysis (FBA). Numerical results provide useful insights
on sustainable photosynthetic bioplastics production with cyanobacteria.

Keywords: MILP, cyanobacteria, PHB, metabolic modelling

1. Introduction

The growing concern on climate change and environmental plastic pollution in recent
years has led to the study of biodegradable and sustainable plastics based on biomass to
replace conventional fossil-based plastics (García Prieto et al., 2017). Besides being
produced from fossil fuels, when these polymers are incinerated, they generate carbon
dioxide (CO2) emissions that contribute to greenhouse effect, and also produce
accumulation of non-biodegradable microplastics when they are built up in continental
and marine environments and landfills (Kamravamanesh et al., 2018).

Polyhydroxyalcanoates (PHAs) are considered as an alternative to fossil-based plastics
and are accumulated by a variety of microorganisms as a carbon and energy source
(Ramos et al., 2019). Within this family, Poly(3-hydroxybutyrate) (PHB) is the most
investigated bioplastic because it presents similar characteristics to polypropylene, and
it is actually being commercially produced by heterotrophic bacteria, like Cupriavidus
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necator y Escherichia coli. However, its production is limited due to the high
production and carbon sources costs.

In this context, cyanobacteria become potential candidates for PHB production as they
can grow on atmospheric CO2, light and minimal nutrients, reducing substrate costs and
contributing to lower atmospheric CO2 concentrations. Synechocystis sp. PCC68003
(Synechocystis) is a model organism among the wide group of cyanobacteria and it has
the capacity to accumulate PHB naturally under nutrient limitation conditions (Wu et
al., 2001). One Systems Biology approach to study PHB production with Synechocystis
is coupling biopolymer production with biomass production, so that it becomes essential
for growth. This is achieved by identifying genetic interventions (knock-outs) in silico.
We consider a bilevel programming formulation (Lasry Testa et al., 2019a), that
represents these gene knock-outs through binary variables. In this work, we use this
formulation to study the possibility of coupling PHB production with growth.

2. Methods
2.1. Genome Scale Metabolic Network

We consider a GEnome-scale Model (GEM) which contains 784 reactions, divided into
reversible, irreversible and exchange reactions, and 535 metabolites (Lasry Testa et al.,
2019a). The model contains a detailed description of the photosynthesis, and it includes
both of the reactions catalyzed by the RuBisCO enzyme: Carboxylation and
photorespiration. It also contemplates the possibility of taking up carbon as CO2 and
bicarbonate (HCO3

-), and it allows for the interconversion of CO2 from intracellular
decarboxylation into HCO3

- (Nogales et al., 2012). PHB is naturally produced by
Synechocystis as a carbon and energy storage compound, along with glycogen, and it is
accumulated as an intracellular metabolite, but to analyze its production we included a
fictitious PHB excretion reaction for modelling purposes.

We consider photoautotrophic carbon limited growth conditions, to which end all
organic carbon sources, like glucose, are fixed to zero. The uptake of the other inorganic
nutrients (Nitrogen, Phosphorus) required is unrestricted. Inorganic carbon is limited
with a maximum of 3.7 mmol gDW-1 h-1, which is the maximum experimental uptake
identified for Synechocystis. The final model was turned into the GAMS Data eXchange
(GDX) format to allow the use in the GAMS (GAMS Development Corporation,
Washington, DC) environment.

2.2. Coupled growth-PHB production

To search for a mutant that couples PHB production to growth we formulated a bilevel
programming problem which searches for the minimum set of genetic interventions
needed to achieve the objective. The mathematical structure of this optimization
problem is that of a MILP with the requirement that a subset of its variables is the
solution to an "inner" LP. This inner LP, represented by constraints of Eq. (2) to Eq. (7),
can be solved by a flux state (v) which is mass balanced (constraint XX) and fulfills a
minimum growth requirement (Eq. (3)). Some reactions rates are required to be fixed at
a certain value (Eq. (4)), and constant upper and lower bounds are established for each
reaction (Eq. (6)). For the set K of candidate reactions, which are the reactions not
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essential for growth under the photoautotrophic conditions considered, these upper and
lower bounds can be set both to a value of 0, if the corresponding element in vector y is
set to 1 (Eq. (4) and Eq. (5)). This vector is a variable of the outer problem, which
requires these variables to be binary, therefore transforming the outer optimization
problem in a MILP. The inner LP objective function minimizes the flux through the
target reaction to be coupled, and a constraint on the outer problem on this value (Eq.
(1)) requires it to be greater than a minimum. The amount of interventions, represented
by the sum over this binary vector is minimized, as the outer MILP objective function.
Therefore, the inner optimization problem guarantees that a series of interventions,
represented by blocking flux through certain reactions by the outer problem, raise the
minimum value of the flux through the target reaction from 0, pointing out that in the
intervened flux space, the target reaction is essential to growth. For more detail in this
formulation refer to (Lasry Testa et al., 2019a).

(1)

(2)

(3)

(4)
(5)
(6)
(7)

(8)

This bilevel problem, reformulated into a single level MILP, was solved in GAMS
(GAMS Development Corporation, Washington, DC) in a PC with an Intel Core
i7-4790 de 3,60 GHz processor and 8 GB RAM. To evaluate the production rates of the
obtained mutants we used FBA (Savinell and Palsson, 1992).

3. Results and Discussion
We used the bilevel programming approach described to search for mutants that couple
PHB production with growth in Synechocystis. We fixed minimal PHB production (Eq.
(1)) to a value of 0.01 mmol PHB gDW-1 h-1 and minimal biomass production required
(Eq. (2)) to 0.01 h-1 to avoid a solution with zero growth rate.

With these conditions we obtained a mutant that effectively couples PHB production
with growth, for which 14 genetic interventions are required. Due to the
Gen-Protein-Reaction associations this knock-outs correspond to the deletion of 18

1919     



R. Lasry Testa et al.

reactions from the GEM. The genetic interventions to obtain the mutant are presented in
Table 1.

The mutant presents a growth rate of 0.0625 h-1 and a PHB production rate of 0.1059
mmol PHB gDW-1 h-1. The maximum growth rate of wild-type Synechocystis can be
obtained by FBA of the GEM with biomass objective function, this value is of 0.089 h-1

for the photoautotrophic conditions considered (Lasry Testa et al., 2019b), and comes
with no PHB production associated. We also obtained the maximum PHB production
possible by running a FBA with PHB production as the objective function, resulting in a
flux of 0.925 mmol PHB gDW-1 h-1 for no biomass production. Therefore, the maximum
growth rate of the mutant is a 29.7% lower than the maximum growth rate of the wild
type, and the PHB production rate represents and 11.5% of the maximum for no
biomass production.

The PHB production pathway includes a NADPH consuming reaction, so the
intervention strategy obtained is mostly related with the NADP/NADPH balance of the
cell. We see in Table 1 that the knock-outs of genes slr1755 and sll1561 avoid the
production of NADH to favour the use of other NADPH producing pathways. The gene
sll1342 codifies for the NADPH dependent glyceraldehyde-3-phosphate dehydrogenase,
that competes with PHB production. Finally, the knock-out of gene slr1239 avoids the
possibility of the interconversion of NADPH to NADH. The knock-out of slr0301 and
slr0783 favour flux to be directed down to the lower glycolysis, leading to an increase
in Acetyl-CoA with is the precursor of PHB production. Moreover, we find the
knock-out of the acetate membrane transporter (g820) that also contributes to a rise in
Acetyl-CoA production, avoiding the loss of carbon through the excretion of Acetate,
whose production has to be directed completely to Acetyl-CoA production. We also find
that in the mutant the TCA cycle is interrupted by the knock-out of gene slr0018 which
is related to the interconversion of (S)-Malate into Fumarate. As this may lead to a
Fumarate overflow, the strategy also selects the Fumarate excretion reaction as another
knock-out. The gene related to this excretion has not been identified yet, but there is
experimental evidence on the capacity of Synechocystis to excrete this metabolite to the
culture media (Du et al., 2019).

Table 1. Knock-outs required to obtain coupled growth-PHB mutant.

Genes E.C.
Number Reaction

slr1840 2.7.1.165 ATP(cyt) + D-Glycerate(cyt) → ADP(cyt) + 2-Phospho-D-glycerate(cyt)

slr1755 1.1.1.94 sn-Glycerol 3-phosphate(cyt) + NAD+(cyt) ↔ Glycerone phosphate(cyt) +
NADH(cyt) + H+(cyt)

slr1239 1.6.1.2 NADPH(cyt) + H+(cyt) + NAD+(cyt) ↔ NADP+(cyt) + H+(cyt) +
NADH(cyt)

slr0783 5.3.1.1 D-Glyceraldehyde 3-phosphate(cyt) ↔ Glycerone phosphate(cyt)

slr0301 2.7.9.2 ATP(cyt) + Pyruvate(cyt) + H2O(cyt) → AMP(cyt) +
Phosphoenolpyruvate(cyt) + Pi(cyt)

slr0214 2.1.1.37 S-Adenosyl-L-methionine(cyt) + DNA cytosine(cyt) →
S-Adenosyl-L-homocysteine(cyt) + DNA 5-methylcytosine(cyt)

slr0018 4.2.1.2 (S)-Malate(cyt) ↔ Fumarate(cyt) + H2O(cyt)
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sll1561

1.2.1.88

L-Glutamate 5-semialdehyde(cyt) + NAD+(cyt) + H2O(cyt) →
L-Glutamate(cyt) + NADH(cyt) + H+(cyt)
(S)-1-Pyrroline-5-carboxylate(cyt) + NAD+(cyt) + 2 H2O(cyt) →
L-Glutamate(cyt) + NADH(cyt) + H+(cyt)
L-1-Pyrroline-3-hydroxy-5-carboxylate(cyt) + NAD+(cyt) + 2 H2O(cyt) →
L-erythro-4-Hydroxyglutamate(cyt) + NADH(cyt) + H+(cyt)

1.5.5.2

L-Proline(cyt) + PQ(tlm) → (S)-1-Pyrroline-5-carboxylate(cyt) +
PQH2(tlm)
L-Proline(cyt) + PQ(cym) → (S)-1-Pyrroline-5-carboxylate(cyt) +
PQH2(cym)

sll1359 1.2.2.1 Formate(cyt) + 2 Ferricytochrome b1(cyt) → CO2(cyt) + 2
Ferrocytochrome b1(cyt) + 2 H+(cyt)

sll1342 1.2.1.59
D-Glyceraldehyde 3-phosphate(cyt) + Orthophosphate(cyt) +
NADP+(cyt) ← 3-Phospho-D-glyceroyl phosphate(cyt) + NADPH(cyt) +
H+(cyt)

sll0006 2.6.1.4 Glycine(cyt) + 2-Oxoglutarate(cyt) ↔ Glyoxylate(cyt) +
L-Glutamate(cyt)

slr0381 4.4.1.5 (R)-S-Lactoylglutathione(cyt) ↔ Glutathione(cyt) + Methylglyoxal(cyt)

g823 - Fumarate(cyt) → Fumarate(ext)

g820 - Acetate(cyt) → Acetate(ext)

Only for comparison purposes, we simulated the described mutant in a batch bioreactor
model that was implemented in gPROMS (PSEnterprise Ltd., 2020). The model
included equations for biomass (Eq. (9)) and PHB production (Eq. (10)) and also an
equation to account for light limitation (Eqs. (11) and (12)), a typical effect produced in
photobioreactors due to the biomass shade effect (Delpino et al., 2014).

(9)

(10)

(11)

(12)

We fixed the values of μmax and vPHB to the values previously reported for the coupled
mutant. Kext, p and Iopt were fixed to the values 1.29 L gDW-1 m-1, 0.3 m and 125 μE m-2

h-1, respectively (Laiglecia et al., 2013). We considered a biomass initial concentration
of 0.078 gDW/L and set a simulation time of 48 hours to assure that the culture was in
exponential growth phase. The model solution provides a final PHB concentration of
2.33 mmol-1 L-1 and a biomass concentration of 1.37 gDW/L. Considering the molecular
weight of the PHB monomer of 84 mg/mmol, the production is equivalent to 200.38 mg
PHB/L and the productivity results in a value of 100.19 mg PHB L-1 day-1.
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4. Conclusions
In this work we have obtained a mutant that successfully couples PHB production to
growth in Synechocystis by formulating a bilevel programming problem that identifies
gene knockouts, which are represented by binary variables. Although the number of
genetic interventions is high, CRISPR technologies (clustered regularly interspaced
short palindromic repeats) are currently being developed and applied for simultaneous
manipulation of multiple genes in cyanobacteria (Behler et al., 2018) . Numerical results
show productivity indexes od around 40% lower than the best one obtained
experimentally (Wang et al., 2018) under nutrient limitation conditions. Further studies
are needed to assess if coupled growth-production strategies are potentially suitable for
direct large-scale PHB production through photosynthesis.
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Abstract 
Monoclonal antibodies (mAbs) are an example of therapeutic biomolecules which have 
been used for treatments of cancer, autoimmune diseases and other ailments. Numerous 
mAbs are currently being given market approval and the total mAb market value is 
predicted to increase for the foreseeable future. Traditionally, mAbs are manufactured via 
secretion from mammalian cell cultures such as Chinese Hamster Ovaries (CHO) or 
myeloma cell lines e.g. GS-NS0. Technoeconomically successful bioreactor operation is 
inherently dynamic and must invariably rely on limited state measurement accessibility. 
In all cases, culture productivity and economic incentive must be ensured simultaneously, 
thus implying a pressing need for model-based elucidation of optimal operation policies. 
Dynamic simulation is an established tool in bioprocess systems engineering which can 
accelerate process intensification and scale-up, for capital and operational cost reduction. 
The present study extends uncertainty characterization beyond recently used response 
envelopes by firstly presenting dynamic simulation results for a GS-NS0 culture, and then 
performing a parametric sensitivity analysis so as to systematically deduce the impact of 
model parameters on the said key output variables which govern technoeconomic appeal. 

Keywords: Dynamic simulation; biotherapeutics; monoclonal antibodies/mAb; GS-NS0. 

1. Introduction 
Monoclonal antibodies (mAbs) encompass a wide spectrum of biotherapeutics which 
have gained great attention for their potential in cancer and autoimmune disease therapies. 
The first therapeutic mAb which received approval by the United States Food and Drug 
Administration (FDA) was muromonab-CD3 in 1986; since that historic milestone, many 
(78) more mAbs have been approved for production and commercial use, boosting the 
phenomenal mAb market growth to a valuation of $115.2 billion in 2018 (Lu et al., 2020). 
Traditionally, industrial manufacturing of mAbs at production scale requires the use of 
mammalian cell cultures in a batch or fed-batch fermentation, whose raw effluent is then 
fed to a sequence of downstream separation units (e.g. centrifugation, chromatography, 
and others) in order to isolate the active biopharmaceutical agent (Rodrigues et al., 2010). 
Acquiring a mechanistic understanding of how feed and culture media affect upstream 
metabolism is critical in order to first capture biological complexity in a tractable fashion 
and then identify viable, industrially valuable optimisation prospects (Chen et al., 2016). 
Credible modelling enables dynamic simulation and rapid technoeconomic evaluation of 
in vivo bioprocess operation policies without costly, arduous experimental campaigns, if 
validation is performed and relevance ensured (Shirahata et al., 2019; Diab et al., 2020). 
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A study published by Kiparissides et al. (2015) has employed several in silico techniques 
to quantitatively describe mAbs manufacturing from a GS-NS0 mammalian cell culture 
via batch and fed batch reactors. A novel, concise dynamic model and its parameterisation 
based on Monod kinetics has been presented but also duly validated against three batch 
mAb production experiments, each of which had considered a different feed composition. 
The purpose of the present paper is to use the same dynamic model in order to probe the 
industrial potential of GS-NS0 cells by means of an extensive local sensitivity analysis. 
Key batch reactor outputs (substrate consumption, viable cell concentration, mAb yield) 
and state sensitivities vs. parameter levels are obtained, indicating remarkable differences 
among parameters (and sometimes policies) with respect to technoeconomic projections. 

2. Dynamic model for mAb production from a GS-NS0 cell culture 
The dynamic model for GS-NS0-based mAb production of Kiparissides et al. (2015) is 
summarised in Table 1, with Monod kinetics describing all metabolic reactions occurring. 
Eqs. (1)-(3) define volume V, viable cell concentration XV and dead cell concentration XD, 
respectively. Eqs. (4)-(9) portray metabolite and product concentrations evolution for 
glucose [GLC], glutamate [GLU], ammonia [AMM], lactate [LAC], glutamine [GLN], and 
mAb [mAb], respectively. Both glucose and glutamate are assumed to be growth-limiting 
substrates, hence their combined effect modelled as additive. Of the 20 model parameters, 
18 are published (Kiparissides et al., 2015); the normalised total cell number and lag 
potential (XT,NORM and δNORM) have been computed on the basis of published data therein. 
The lag potential (δ) is a parameter describing the time required by cells for adaptation to 
the environment, before entering an exponential growth phase (Kiparissides et al., 2015). 

Table 1: Dynamic model for mAb production (Kiparissides et al., 2015). 𝑑𝑉𝑑𝑡 = 𝐹 − 𝐹  (1) 

𝑑𝑋𝑑𝑡 = (−𝑋 𝑑𝑉𝑑𝑡 + (𝜇 − 𝜇 )𝑋 𝑉 − 𝐹 𝑋 )𝑉  (2) 

𝑑𝑋𝑑𝑡 = (−𝑋 𝑑𝑉𝑑𝑡 + 𝜇 𝑋 𝑉 − 𝑘 𝑋 𝑉 − 𝐹 𝑋 )𝑉  (3) 

𝑑[𝐺𝐿𝐶]𝑑𝑡 = (−[𝐺𝐿𝐶] 𝑑𝑉𝑑𝑡 − 𝑄 𝑋 𝑉 + 𝐹 [𝐺𝐿𝐶] − 𝐹 [𝐺𝐿𝐶])𝑉  (4) 

𝑑[𝐺𝐿𝑈]𝑑𝑡 = (−[𝐺𝐿𝑈] 𝑑𝑉𝑑𝑡 − 𝑄 𝑋 𝑉 + 𝐹 [𝐺𝐿𝑈] − 𝐹 [𝐺𝐿𝑈])𝑉  (5) 

𝑑[𝐴𝑀𝑀]𝑑𝑡 = (−[𝐴𝑀𝑀] 𝑑𝑉𝑑𝑡 + 𝑄 𝑌 , 𝑋 𝑉 − 𝐹 [𝐴𝑀𝑀] )𝑉  (6) 

𝑑[𝐿𝐴𝐶]𝑑𝑡 = (−[𝐿𝐴𝐶] 𝑑𝑉𝑑𝑡 + 𝑄 𝑋 𝑉 − 𝐹 [𝐿𝐴𝐶])𝑉  (7) 𝑑[𝐺𝐿𝑁]𝑑𝑡 = 𝑄 𝑋 − 𝑄 𝑋  (8) 

𝑑[𝑚𝐴𝑏]𝑑𝑡 = (−[𝑚𝐴𝑏] 𝑑𝑉𝑑𝑡 + ( 𝜇𝑌 , + 𝑚 [𝐺𝐿𝐶]𝜇 ) − 𝐹 [𝑚𝐴𝑏])𝑉  (9) 
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3. Dynamic simulation of mAb production  
Dynamic simulation of mAb production has been performed on the basis of the foregoing 
model to validate our code vs. three published experiments (Kiparissides et al., 2016). 
Fig. 1 illustrates concentration and cell density trajectories for each of the three cases. 
The mAb maintenance term (mmAb) varies among the published three experiments, being 
6.244·10–10, 9.944·10–10 and 2.044·10–10 mg cell–1 h–1 for these Expts. 1, 2, 3 respectively. 
Furthermore, for our dynamic model validation we assume that there is no correlation 
between seeding density and ammonia yield on glutamine, hence 𝑌 ,   = YAMM,GLN. 
All published dynamic simulation results and trends have been successfully reproduced. 
Experiments with high lag times produce mAb at the lowest concentrations (Fig. 1a, 1d), 
while [mAb] production rate is a constant (albeit variant) derivative in all Expts. (Fig. 1d).  
High [mAb] productivity is correlated here with high initial viable cell concentration [XV]. 
Interestingly, the highest [mAb] production occurs for a culture inoculated with the least 
total amount of [GLU]+[GLC] substrates (Expt. 2), implying that starving the GS-NS0 
culture of nutrients may prove beneficial towards boosting cellular mAb productivity. 
Glucose oversupply may have induced excessive [LAC] (and inhibited [mAb]) production 
as by-products harm cell growth and productivity (Gagnon et al., 2011; Fan et al., 2015). 
Viable cell concentration [XV] clearly peaks earlier for lower lag potential (Fig. 1a), with 
peak magnitude increasing as a function ofg initial glutamate concentration. Finally, high 
lactate concentrations occur for high initial glucose substrate concentrations (Fig. 1b-1c). 

Figure 1: Dynamic simulation of key state variables for three published experiments. 
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4. Parametric analysis methodology 
Dynamic simulation results clearly indicate that numerous factors significantly influence 
GS-NS0 batch culture stability and performance in regard to mAb production efficiency. 
Because of this intrinsic and multi-facetted variability, the purpose of this paper is to 
conduct a (hitherto not attempted) parametric sensitivity analysis in order to establish the 
influence of model parameters on process state variables at the end of each experiment. 
The first state variable, V (Eq. 1) remains constant in all experiments and is discounted. 
Our purpose is to visualise high sensitivities (e.g. > 1) which imply that a relatively small 
parameter change (or estimation inaccuracy) induces considerable output state variable 
value variation (especially [mAb]) at batch completion (t = tf). The latter in turn signifies 
that small parameter estimation errors may snowball into gross model output errors, thus 
rendering model fidelity questionable and technoeconomic projections highly unreliable.  
The parametric sensitivity analysis relies on computing a sensitivity index (S) via Eq. (10) 
for each state (x) and parameter (P), with respective changes ∂x and ∂P (Kreyszig, 1999). 
 𝑆 = 𝜕𝑥𝑥𝜕𝑃𝑃  (10) 

 

Four different sensitivity analysis cases have been considered and computed for as many 
parametric differential variation levels, (∂P/P) = {-0.50, -0.05, 0.05, 0.50} or ±5%, ±50%. 
The sensitivity outputs (S) have been normalised in every case for visual clarity, but also 
to comparatively appreciate the relative effect of each parameter on each state variables.  
The normalised sensitivity index 𝑆̅ ,  is given by the sensitivity for state variable x and 
parameter P, Sx,P, divided by the respective maximum observed, Sx,MAX (Kreyszig, 1999). 
 𝑆̅ , = 𝑆 ,𝑆 ,  (11) 
 

The initial experimental conditions remained identical to those used in section 3. Only 
one parameter was varied at a time, meaning the sensitivity analysis was local in nature. 

5. Local parametric sensitivity analysis 
Sensitivities for six states ([mAb], [XV], [XD], [GLC], [AMM], [LAC]) are given in Fig. 2. 
A clear and remarkably consistent reversal trend emerges: for a contraction of sensitivity 
magnitude in case of negative parameter changes (–5%, –50%), we observe an expansion 
(of different magnitude) for the respective positive changes (+5%, +50%), and vice versa. 
All state variables are highly sensitivity to lag potential parameters (δNORM, kLAG, XT,NORM), 
emphasising the importance of a nutritious environment towards GS-NS0 proliferation. 
The state of highest technoeconomic interest [mAb] is sensitive to only certain parameters 
(KG,GLC, KI,LAC, YLAC,GLC, µMAX,GLC, XT,NORM) for all experiments (Fig. 2a), i.e. precisely to 
those affecting cell ability to consume glucose and/or produce lactate (Chen et al, 2012). 
Viable cell concentration [XV] is most sensitive to YLAC,GLC and KI,LAC, in agreement with 
the fact that high lactate concentration adversely affects cell growth (Gagnon et al., 2011).  
Dead cell concentration [XD] displays much lower sensitivities to most parameters, and is 
relatively insensitive to cell lysis (kLYS) compared to the lag potential parameters (Fig. 2c).  
Glucose concentration [GLC] is affected by 5 parameters (>|0.2|) (Εxpts. 2-3 differ a lot).  
Ammonia concentration [AMM] has a different sensitivity profile vs. all previous states: 
several (at least 8 of 20) parameters affect its final value, but also Expt. 2 seems to induce 
key differences vs. Expts 1+3, possibly as [AMM] rises much faster in that case (Fig. 1c). 
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Figure 2: Local sensitivity analysis for different final state variable values. 
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The high [AMM] sensitivity both to max. glutamine uptake rate (QMAX,GLN) and yield from 
glutamine consumption (YAMM,GLN) agrees with the observation that ammonia levels are 
correlated with glutamine and asparagine in mammalian cell cultures (Zhang et al., 2016).  
Lactate concentration [LAC] sensitivity to its yield from glucose consumption (YLAC,GLC) 
is high, due to its key role (and inefficiency) in glucose metabolism (Gagnon et al., 2011).  
The said parameter (YLAC,GLC ) influences lactate [LAC] a lot more than glucose [GLC] for 
all three Expts., illustrating that glycolysis can be more efficient towards securing energy. 

6. Conclusions 
Dynamic simulation and parametric sensitivity analysis of GS-NS0 culture usage for 
biotherapeutic mAbs manufacturing has been pursued on the basis of a published model. 
High target product concentration [mAb] has been correlated with high viable biomass 
availability [XV] and low initial cumulative substrate ([GLU] and [GLC]) concentrations. 
The parametric sensitivity analysis is illustrated for several key model output variables: 
from an operational viewpoint aimed at biopharmaceutical manufacturing improvements, 
GS-NS0 culture modifications decreasing YLAC,GLC, μMAX, μMAX,GLC and XT,NORM (as well as 
increasing KG,GLC and KI,LAC) are expected to boost the final target [mAb] concentration. 
Judicious substrate [GLC] provision and suppression of lactate [LAC] production over 
time emerge as key recommendations, beyond obvious (e.g. XT,NORM) conditioning needs. 
Further to bioreactor modelling, process optimisation must also consider separation units, 
so that high-fidelity submodels in the latter credibly describe their output and plant yield. 
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Abstract 
The generation of sewage sludge in the State of Qatar is increasing with the rapid growth 
of its population. Around 300,000 m3 of wet sludge is generated every year. Although the 
sludge is being treated to meet the international standards, its final disposal into landfills 
raises concerns associated with the limited land areas in the country, as well as the 
possible contamination of soil and groundwater. On the other hand, the hydrothermal 
liquefaction (HTL) technology is attracting more and more attention at the expense of 
other thermochemical waste valorisation pathways including incineration, gasification and 
pyrolysis. Since it can tolerate the high-water content of wet feedstocks, while the HTL 
biocrude has a comparable heating value to that of crude petroleum and has the potential 
to be co-processed in existing oil refineries. Therefore, this study investigates the techno-
economic aspects of an on-site biocrude production from sewage sludge at wastewater 
treatment plants in Qatar via hydrothermal liquefaction. The system is modelled using 
Aspen Plus, while an economic assessment is conducted with the aid of Aspen Process 
Economic Analyser (APEA). The results indicate a significant biocrude yield of up to 38.2 
wt.% (on dry and ash-free basis). In addition, based on the economic feasibility 
evaluation, the produced biocrude achieved a competitive minimum selling price of 52.6 
US$/bbl, which is below the past 5-year global average price of crude petroleum. As such, 
the incorporation of biocrude into the oil refining process can be a promising alternative 
for oil-refining countries, especially at times of petroleum prices hikes.  

Keywords: Qatar, Biocrude, Sewage sludge, Hydrothermal liquefaction, Treated 
sewage effluent. 

http://dx.doi.org/10.1016/B978-0-323-88506-5.50299-0

PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  
M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.



 M. Alherbawi et al. 

 

1. Introduction 
Qatar is an oil producing country and the world’s second largest exporter of natural gas 
(Britishpetroleum, 2019). Along its prominent gas facilities, two state-owned oil refineries 
operate in Qatar, which are: Qatar Petroleum Refinery that mainly processes crude 
petroleum at a capacity of 137,000 barrels per stream day (bpsd), and Laffan Refinery that 
utilises field condensate obtained from natural gas facilities with a capacity of 292,000 
bpsd (Qatarpetroleum, 2020).  
However, the country is striving to incorporate renewables into its energy mix to mitigate 
carbon emissions and prolong its petroleum reserves’ lifetime. For this purpose, several 
local feedstocks, as well as processing technologies have been investigated (Al-Ansari et 
al., 2020; Alnouss et al., 2018; Elkhalifa et al., 2019), which emphasised that municipal, 
agricultural and industrial wastes are considered as the most abundant feedstock for the 
production of alternative liquid and gaseous fuels. Meanwhile, the presence of refining 
facilities in the country and the recent ASTM certification of bio-oils’ co-processing with 
fossil crude, these factors grant an advantage to the oil-producing biomass processing 
pathways such as pyrolysis and hydrothermal liquefaction (HTL) over other technologies.  
Pyrolysis is a thermal decomposition of biomass in inert media to produce bio-oil and 
biochar at (300-700 °C). However, biomass must undergo a drying step prior to 
pyrolysis (Alherbawi et al., 2021a). In contrast, hydrothermal liquefaction is often 
utilised to decompose the high-moisture biomass using water at subcritical conditions, 
which mimics the crude petroleum formation underground (Alherbawi et al., 2020). The 
HTL process mainly produces biocrude oil which is of a better quality and with a higher 
net heating value as compared to pyrolysis oil (Peterson et al., 2008).  
Amongst the different available wet biomass in Qatar, sewage sludge can be 
considered as one of the most fitting feedstocks for HTL process due to its high 
moisture and carbon contents. As such, no additional water is required to create a 
slurry feed.  
With the rapidly growing population in Qatar, the quantity of generated sludge has 
significantly increased by 3.5 folds through 2010-2015 (MDPS, 2018), which is deemed to 
be a growing concern. Whereby, sludge treatment and disposal account for up to 50% of 
total operating costs and nearly 40% of the net GHG emissions associated to the operations 
of wastewater treatment plants (WWTPs) (Callegari and Capodaglio, 2018).  
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As such, considering alternatives to 
sludge disposal is becoming more 
urging to reduce costs and carbon 
footprint, as well as to valorise the 
sludge into value-added products.  
Currently, there are 23 WWTPs in 
Qatar as presented in Figure 1. 
However, three of them account for 
nearly 75% of total wastewater 
treatment capacity, named: Doha North 
(30%), Doha South (22%) and Doha 
West (22%). Therefore, this study 
proposes an on-site utilisation of 
sewage sludge to produce biocrude via 
HTL in Qatar. The sludge from the 
three main WWTPs is to be utilised, 
whereby, “Doha South WWTP” is 
selected as the hub to establish the 
HTL plant for being the closest to 
Qatar Petroleum (QP) refinery (~45 
km). While the sludge from the other 
two main WWTPs is transported by 
tanker trucks to the HTL plant. 
Whereas produced biocrude is 
assumed to be subsequently upgraded 
at QP refinery by co-processing with 
crude petroleum (not evaluated in this 
study). The HTL process is modelled 
using Aspen Plus® software, while an 
economic analysis is conducted to 
evaluate the feasibility of biocrude 
production with the aid of Aspen 
Process Economic Analyser (APEA).  

2. Methodology 
2.1 Model Development 
Advanced system process engineering (ASPEN PLUS V.9) is used to simulate the 
hydrothermal liquefaction process. All subsystems are simulated assuming to have 
steady-state and isothermal processes. Besides, char is assumed to comprise carbon 
only, while the nitrogen and sulfur contents of feedstock are released in the form of NH3 
and H2S respectively or as nitrogen and sulfur-containing hydrocarbons (Alherbawi et 
al., 2021b). 
Initially, the wet sludge is defined as a non-conventional component considering the 
proximate and elemental analysis adapted from a previous study by Shen et al. (2001). 
While the typical Qatari sludge’s moisture content of 82% is considered (MDPS, 2018). 

 
Figure 1: WWTPs and oil refineries in Qatar 

(Data adapted from (MDPS, 2018)). 
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No water is further added to the slurry as the solid content of sludge does not exceed 
18%. Sodium hydroxide is added to the slurry with a 1 wt.% load to enhance the 
potential of biocrude formation (Cao et al., 2017).  
The stream is then pumped to 150 bars using two consecutive pumps, then passed into a 
counter-current heat exchanger. The initial decomposition (hydrolysis) stage is simulated 
using an “RYield” aspen unit, by which the biomass is broken-down into conventional 
components using a Fortran code (Alnouss et al., 2018).  
The conventional stream is then processed into the main HTL reactor, which is 
simulated at 300 °C and 150 bars using an “RGibbs” unit, which functions following the 
principle of Gibbs free energy minimisation. The possible biocrude, gas and aqueous 
phase compositions are adapted from previous studies (Tekin et al., 2013). 
Finally, the outflow stream is fed back into the heat exchanger to recover the heat before 
separating the solid phase using a solid separator. While the remaining volatile stream is 
fed into a three-stage flash drum, yielding three phases including gas, biocrude and an 
aqueous phase. The process flow diagram is presented in Figure 2. 

 
Figure 2: Process flow diagram of HTL process. 

2.2 Economic Assessment 
Aspen Process Economic Analyser (APEA) is utilised to evaluate the economics of a 
WWTP’s on-site HTL facility in Qatar. A plant lifespan of 30 years and a start-up 
period of 6 months are considered. The plant’s feed capacity is fixed at 222,000 m3 of 
wet sludge, which roughly represents the quantity of sludge generated from the three 
main WWTPs of Qatar.  
As for capital expenses, the main HTL reactor cost is adapted from published reports 
(Zhu et al., 2014), while the costs of other smaller units (i.e., heaters, pumps, etc.) are 
evaluated by APEA based on the defined size and operating parameters. All costs are 
re-evaluated for the base year of analysis (2019) using the chemical engineering plant 
cost index (CEPCI).   
The utilities costs, sludge handling charges and wastewater discharge costs are quoted 
locally (Gulftimes, 2020; Kahrama, 2020). While the operating and maintenance costs 
are evaluated by APEA. The minimum selling price of biocrude is evaluated in ($/bbl) 
based on the traditional levelised cost of energy (LCOE) formula, with a discount rate 
of 20%: 

   
(1) 
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Where, (K) is the annualised capital expenses, (O&M) is the operating and maintenance 
costs, (R) is the raw materials prices, (d) is the discount rate, (P) is the biocrude yield 
and (t) is the plant lifespan. 

3. Results and Discussion 
3.1 Process Yield 
The model results indicate a considerable biocrude yield of 38.22 daf.% (on feed dry 
and ash-free basis), and around 14 daf.% of hydrochar as illustrated in Figure 3. In 
addition, a mixture of gases is obtained including CO2, CO, H2, CH4 and NH3, with 
carbon dioxide being the dominant gas. While the aqueous phase contains dissolved 
organics including alcohol, phenols, as well as carbon dioxide.  

 
Figure 3: HTL products composition relative to dry and ash-free feed (%).  

 
3.2 Economic Assessment 
A summary of the plant’s economic assessment is illustrated in Figure 4. The estimated 
project’s capital expenses (CAPEX) is ~13.5 M$ (million U.S. Dollars), while the annual 
operating expenses (OPEX) is 2.55 M$. The breakdown of CAPEX indicates that purchased 
equipment contribute to the biggest portion (~41%) of the cost, followed by equipment 
settings (11%). As for OPEX, the catalysts and labour costs account for the highest shares of 
30% and 26% respectively, followed by plant overhead (14%). Since the process is mostly 
operated on-site, the cost of feedstock is lowered down to only ~11% of total costs. 

 
Figure 4: Breakdown of project’s capital and operating expenses. 
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In addition, the achieved minimum selling price (MSP) of biocrude is at 52.6 $/bbl, 
which is (3-19%) below the global crude petroleum price for the base year of analysis 
(2019) as presented in Figure 5. The achieved MSP of biocrude is also slightly below 
the past 5-year average crude price of 52.9 $/bbl (Macrotrends, 2020). The main reason 
behind achieving a competitive MSP is the ‘on-site’ utilisation of sludge, which 
significantly reduces the collection and handling costs of feedstock. 

 
Figure 5: Biocrude MSP (this study) as compared to global crude prices. 

4. Conclusion 
The on-site valorisation of sewage sludge at WWTPs proved to be a promising pathway 
to produce biocrude, which can be co-processed with crude petroleum at the existing 
conventional refineries. In this study, the HTL yielded a significant biocrude 
composition while the achieved biocrude’s MSP is competitive and can feasibly replace 
portion of crude oil, which in return helps to prolong Qatar’s oil reserves lifetime and 
mitigate its carbon footprint.  
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Abstract 

The production costs of advanced biofuel options are currently higher than those of their 

fossil fuel equivalents. Capital Expenditures (CAPEX) for the production of liquid 

biofuels for road, aviation and marine transport sectors have a significant contribution to 

the overall production cost, together with the feedstock cost. It is, therefore, important to 

estimate the potential for cost reduction through R&D and experience in assembling a 

growing number of respective plants (i.e., from first-of-a kind (FOAK) to the Nth plant 

(NOAK)), which comprise a mix of established and innovative technological 

components. This could provide valuable information to stakeholders for the expected 

investment costs to meet European Commission goals in 2050. 

This study adopts a methodological framework based on the “learning curve theory” to 

estimate cost reduction as a result from the experience of technology implementation, in 

terms of numbers or capacity of units implemented. This work applies the learning theory 

as a multicomponent analysis, which requires a systematic decomposition of the entire 

production process to identify established and innovative technological components that 

can be analysed in detail using the corresponding technoeconomic data.  

The analysis showed that CAPEX reduction in the range of 10-25% could be expected to 

reach capacities corresponding to NOAK plants in 2050. To reach further CAPEX 

reduction of 40%, for example, would require higher cumulative annual growth ratesto 

achieve two orders of magnitude increase of cumulative installed capacity. This 

corresponds to hundreds of GWs or equivalently some hundreds or thousands of large-

scale plants to meet the goal of 20-25% transportation fuels consumption to be covered 

by advanced biofuels in 2050. 

Keywords: biofuels deployment, CAPEX reduction, learning curve, TRL increase. 

1. Introduction 

The implementation of processes for advanced biofuels is a multidimensional issue 

affected by a wide range of technical, economic aspects and policy aspects. According to 

the study of IEA (2020) CAPEX values of bioprocesses based on lignocellulosic biomass 

have a significant contribution to the overall production cost, similar to the feedstock cost 

(around 40% each), while other operating and maintenance costs typically cover 15%-

20% of the overall production cost. 

Considering that many of these processes have reached TRL demonstration scale (e.g. 

gasification and 2nd generation ethanol) and/or satisfactory efficiency, the scope of 

CAPEX reduction due to experience gain when shifting from the first-of-a kind (FOAK) 

to the Nth plant (NOAK) could be a driver for long term deployment making them 

competitive to fossil based equivalents, and meeting the European Commission goals of 

http://dx.doi.org/10.1016/B978-0-323-88506-5.50300-4
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13%-24% contribution of liquid biofuels in the energy consumption for transportation in 

2050 (EUROPEAN COMMISSION, 2018). 

The learning curve (LC) theory is an important tool for estimating technical change 

related to the evolution of technologies and provides a systematic link between decreasing 

production costs and cumulative volume. It has found empirical support in a wide range 

of industrial sectors and technologies. In the energy field, the experience curve concept is 

so far used mostly to describe learning for modular products, such as wind turbines 

(Junginger M, et al., 2005), and solar photovoltaic (PV) modules (Mauleón I., 2016). 

Learning effects have been also investigated for bioenergy systems (Junginger et al, 

2006), large-scale production of ethanol from sugarcane in Brazil (Goldemberg, 2003), 

the development of natural-gas-fired combined cycle power plant (Claeson Colpier and 

Cornland, 2002) and the case of renewable fuels (Detz et al, 2018). Most recently, an 

estimation of cost reduction potential of biofuels was presented by IEA (2020) using the 

LC theory from a top-down perspective based on data gathered from pilot and 

demonstration plants and interviews with experts. 

The aim of this study is to develop a transparent modular framework for the application 

of the LC methodology for advanced biofuels from a bottom-up perspective. This is 

achieved by using a systematic decomposition of the advanced fuels production paths into 

a mix of innovative and established technologies that allows for the investigation of 

potential CAPEX reduction under various scenarios of installed capacity evolution. These 

scenarios may be influenced by policy targets and market estimates and refer to both the 

process as a whole and the independent evolution of some of its technological 

components. 

2. Methodology 

2.1. The learning curve framework 

Technology learning is commonly modelled as a single factor approach to provide the 

way that production costs are reduced by a constant fraction for doubling of cumulative 

production). The single factor relationship is commonly expressed through a power-law 

function between production costs and cumulative production (Nemet 2006; Trappey et 

al., 2016) 

𝐶(𝑄𝑡) =  𝐶(𝑄0) [
𝑄𝑡

𝑄0
]−𝑏      (1) 

where Qt is the cumulative production, b is the positive learning parameter, related to the 

LR learning rate (𝐿𝑅 =  1 − 2−𝑏), C(Qt) is the unit cost of production at Qt, (i.e., 

operating cost and annualised investment cost, in the more general form),  C(Q0) and Q0 

are respectively the cost and cumulative production at an arbitrary starting point.  

The component learning approach (Ferioli et al., 2009, Upstill and Hall, 2018) extends 

the single factor model by not applying the methodology at the overall process level but 

as a sum of the costs of its individual technological components. Such an approach would 

be of importance when applying learning to biomass processes which consist of groups 

of unit operations (i.e., process components) with different maturity. In this case, the 

technology learning relationship may be expressed for each component individually, as 

follows:  

𝐶(𝑄𝑡) =  ∑ 𝐶(𝑄0𝑖) · [
𝑄𝑡

𝑄0
]−𝑏(𝑖) = 𝐶01[

𝑄𝑡1

𝑄01
]−𝑏(1) + 𝐶02[

𝑄𝑡2

𝑄02
]−𝑏(2) + ⋯ . +𝐶0𝑛[

𝑄𝑡𝑛

𝑄0𝑛
]−𝑏(𝑛)  (2) 

where b(i) is positive learning parameter for technological component i, C(Qt) is the unit 

cost of production at cumulative production Qt, Q0 is the cumulative production at an 

arbitrary starting point, C0i is the cost and Q0i is the cumulative production of component 

1938



Production of advanced biofuels using a multi-component learning 

   

i at an arbitrary starting point, and 𝑄𝑡,𝑖 = (𝑄𝑡−1,𝑖  + 𝐶𝐴𝐺𝑅 𝑖 · 𝑄𝑡−1,𝑖) · 𝐷𝐹. CAGRi is the 

cumulative annual growth rate of the corresponding technological component and DF is 

a decline factor as proposed by Detz, et al. (2018), equal to 0.98 for the particular 

calculation. 

2.2. Cost reduction methodology in the case of advanced biofuels 

The method is applied for the case of 

seven liquid biofuels (methanol, 

liquefied methane, jet fuels, diesel, 

kerosene, ethanol, butanol) 

produced from thermochemical and 

biochemical pathways. The chosen 

fuels and production technologies 

are selected as their technology 

readiness level (TRL) ranges from 6 

to 9, (Figure 1). 

 

Figure 1. Production pathways for the liquid biofuels 

of the current study 

To apply the multicomponent 

learning approach for the case of 

advanced biofuels, their production is 

modelled by a pathway consisting of 

a sequence of unit processes which 

produce the desired product and 

replace equivalent fossil-based 

products. Each pathway of biofuels 

may consist both of purely biobased 

processes which convert biomass into 

intermediate products and 

conventional parts for upgrading 

purposes. 

Figure 2. Decomposition of biobased pathway into 

unit processes for subsequent division into 

technological components (see Step 2). 

Thus, the application of the learning curve theory to assess cost reduction potential 

through learning by doing is composed of three steps. 

Step 1: The technology pathway is divided into process steps (first decomposition level 

represented by the intermediate box of Figure 2) resulting in a specific intermediate 

product (syngas, pyrolysis oil, etc.). Then, each process step is divided into components 

representing elementary technological steps (second decomposition level represented by 

the lower box of Figure 2). These components are those presented in Eq. 2. For example, 

in the case of methanol two process steps are identified in the first decomposition level 

(i.e., biomass gasification and methanol synthesis), while the decomposition of each 

process steps into technological components is presented in Table 1. This two-level 

process decomposition facilitates an efficient use of available data with respect to LR and 

CAGR values, while considering the technological maturity of the various components 

and maintaining the bottom-up nature of the proposed application of the technological 

learning framework. This is further explained in Step 2.  

Step 2: For each time point t, defined as one year starting from 2020, the specific 

investment of each technological component i, C(Qt,i), is calculated from the analysis of 

cost reduction based on the learning curve theory (Eq. 2). Regarding the selection of LR 

values, the ideal case would be that a process step contains a combination of identifiable 
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mature and less mature technological components and the LR of all component are known 

but this is not the case.  

For this reason, the next two rules 

are followed. In case of missing 

LR values for these technological 

components, mature technologies 

(e.g., conventional steps) are 

assigned by default a low LR 

value of 0.05 and less mature steps 

a higher value of 0.15 (e.g. in the 

cases of LR1, LR2, LR3 of Process 

1 in lower box of Figure 2). 

Table 1. Input values to LC method for methanol for baseline 

scenario (Zhu, et al., 2011) 

 
If, however, LR values for the entire process are available (e.g., Detz et al., (2019)) and 

LR values for mature and less mature technologies in this process step are not available,  

then the LR value for the entire process step is used and not the default LR values 

mentioned above. For example, for the case of biomass to methanol, the first rule of 

addressing LR values to mature and less mature components was applied as shown in 

Table 1; the gasifier operation in the gasification process step was considered as less 

mature and all the other components as mature technologies in conventional systems. 

Cumulative installed capacities (CIC) are defined by considering information for demo 

or pilot plants in operation in Europe or globally or values mentioned in simulation reports 

as representative for FOAK plants. For example,  CIC of 200 MW is assumed for the 

gasification step, while for the methanol synthesis step the global production capacity for 

methanol in the year 2018 is used regardless of its production as fossil or renewable(M. 

Alvarado, IHS Chem. Week, 2016, 10–11). CAGR values are generally lacking due to 

very limited and relatively very recent commercial plants in operation. CAGR values are 

defined based on scenarios depending on policy targets and estimations of the market 

evolution of the corresponding conventional fuels. The growth rate of advanced biofuels 

is subject to many uncertainties depending on current conditions for growth rates of fossil-

based demand and their future role in the transportation mix. In this work, three scenarios 

are formulated:  

The Baseline Scenario which assumes CAGR values equal to the growth rate of the 

corresponding market of the fuel, which is a conservative scenario not leading to 

“greening” of the transportation mix. Scenario A assumes marginally higher CAGR 

values than the growth rate of the corresponding market of the fuel. Thus, it does not lead 

to a significant share of the market in short- to mid-term and the corresponding “greening” 

achieved is not enough to satisfy environmental targets for the time horizon (i.e., 2030-

2050). Scenario B assumes an annual growth that is considerably bigger than the growth 

rate of the corresponding market of the fuel to an extent that it can satisfy targeted shares 

of the market in the considered time horizon. Scenario B estimates the CAGR of the 

biobased fuel to achieve 20% of the production of the respective fossil-based fuel. This 

is in agreement with the scenarios of European Commission 2018 that refer to 13%-24% 

contribution of liquid biofuels in the energy consumption for transportation in 2050 

(EUROPEAN COMMISSION, 2018). 

Step 3: By adding the values of all process components, the total specific investment cost 

of the process step is calculated and consecutively of the whole technological pathway 

(CAPEX(t)) at the time point t and therefore also at CICi(t) (or Qt,i according to Eq.2).  

Process 

steps
Technological components 

CAPEX 

(Euro 2018)

Learning 

rate (LR)

Cumulative 

installed capacity 

(CIC), (MW)

Cumulative 

annual growth 

rate (CAGR)

Gasification 

step
Air separation unit

0.0 0.05

Feed prep and drying 33.0 0.05

Gasification with tar reforming, 

heat recovery, scrubbing 44.9 0.15

Syngas cleanup & compression 84.7 0.15

Methanol 

synthesis
Methanol synthesis & purification

37.2 0.05

Steam system and power 

generation 27.7 0.05

Remainder off-site battery limits 6.5 0.05

Total CAPEX 234.0

200

57040

11%

7%
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3. Results 

CAPEX reduction for the biomass to 

methanol pathway through indirect 

gasification, according to the Baseline 

Scenario  is presented in Figure 3, showing 

the extent to which the components with the 

greater LR values present higher cost 

reduction rate. With respect to all advanced 

fuels analysed in this study based on 

Scenario A, Figure 4 shows that CAPEX 

reductions from 10-25% can be expected 

assuming only a handful of plants installed.  

Figure 3. CAPEX reduction for methanol 

synthesis 

If higher cumulative installed capacities are reached in 2050 (Scenario B, Figure 5), 

meeting the goal of 20-25% of transportation fuels consumption (to be covered by 

advanced biofuels), CAPEX reduction up to 40-50% can be expected for the new plants 

that will be built then. In this regard, it is important to remember that not all pathways 

reach similar CIC values in 2050, and thus the results should not be interpreted as a 

difference arising from the “potential to learn” or the status of the current maturity of the 

pathway. As an example, methanol and methane production via biomass gasification are 

both of similar technical maturity, the gasifier technology being the process component 

with higher technical learning potential. The reason that, in Figure 5, CAPEX of liquefied 

methane production appears to decrease faster than the methanol one is the very different 

CAGR values leading to CICs of 390 GW for liquefied gas to 53 GW of methanol. On 

the other hand, in Scenario A (Figure 4), where the CAGR values of methanol are higher 

than those of biogas, the opposite trend appears with respect to CAPEX decrease 

potential. 

 
 

Figure 4 Scope of CAPEX reduction (2020-2050) of 

advanced biofuels from lignocellulosic biomass for a 

scenario of capacity annual growth rate marginally 

higher than the current fuel demands. 

Figure 5 Scope of CAPEX reduction (2020-2050) of 

advanced biofuels from lignocellulosic biomass for a 

scenario of capacity annual growth rate meeting the 

goal of 20-25% transportation fuels consumption to be 

covered by advanced biofuels in 2050. 

4. Conclusions 

Notwithstanding the large uncertainties in the cost data, the learning curve theory can be 

useful to structure cost data, as a basis for estimating reductions as a function of installed 
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capacity. In the case of advanced biofuels, most of the technical learning is allocated in 

assembling the plants which consist, to a large extent, from mature technological 

components. It is, however, clear that substantial investment in large-scale plants is 

required in order to achieve CAPEX reduction of 40-50%, which together with favourable 

policies (e.g., access to capital, public/private partnerships, etc.) and feedstock cost 

factors, may increase the competitiveness of advanced biofuels. Two important 

methodological aspects refer to the degree of available information allowing or not a 

detailed decomposition of the pathway to process components, as well as the technical 

learning potential of these components and especially after which time point (or installed 

capacity) this can be assumed to attain near zero values. Disruptions (e.g. unforeseeable 

external events that may affect market conditions) have not been included in the 

modelling procedure. The method can become even more sophisticated by considering 

gradual or step changes in the learning parameters when a status of NOAK plant is 

reached to impose asymptotic behaviour faster and by incorporating sensitivity analysis 

for parameters of high uncertainty (e.g. LR and CAGR). It should be noted that 

technologies of advanced biofuels are only available in limited numbers. As a result, 

learning curve theory estimations cannot be based on a sufficient sample of similar 

systems. Secondly, there are very few full-scale plants available for advanced biofuel 

production on a commercial basis. This introduces significant uncertainties both in short- 

and long-term cost estimations of such plants. Additionally, if large facilities for fuel 

production are implemented, they will most likely affect the price of biomass leading to 

higher operating costs (or other market factors related with the role of biomass in the 

future energy system).  
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Abstract 
The primary management of the organic fraction of municipal solid waste (OFMSW) was 
commonly composting, landfill or incineration, while now the anaerobic digestion of 
OFMSW offers the possibility of a clean and renewable energy source. This work 
presents the modelling and simulation of an OFMSW biorefinery to produce biogas, 
fertiliser and bioethanol. The conceptual design of the biorefinery begins with an 
anaerobic digestion to degrade OFMSW and produce biogas. The resulting solid fibres 
and the effluent are sent to the subsequent stages to produce fertiliser from the solid waste 
and anhydrous bioethanol from the fermentation broth. The process simulations are based 
on an anaerobic biorefinery capable to treat 1,000 tonnes per day of OFMSW generated 
in CDMX. The main results show the yields are 73 kg ethanol, 54 kg biogas and 59 kg 
fertiliser per tonne of dry waste. 
 
Keywords: biorefinery, biofuel production, process simulation, municipal solid waste. 

1. Introduction 
The production and management of municipal solid waste (MSW) is a critical global 
problem. In general, the organic fraction of municipal solid waste (OFMSW) is a common 
name for heterogeneous waste mixtures from residential, commercial, partly industrial 
and urban areas. It is made up of different organic and inorganic fractions such as food, 
vegetables, paper and wood. Despite the variability in its composition, the OFMSW 
constitutes the highest percentage of the solid waste which can be broken down into 
simpler compounds by anaerobic microorganism (Bilgili et al., 2009). In the past decades, 
OFMSW's primary management was generally composting, landfill or incineration. 
Recently, OFMSW has become a promising candidate for energy recovery through the 
production of biofuels, such as biogas, bioethanol, biohydrogen, biodiesel, etc. 
(Campuzano and Gonzalez-Martinez, 2016). Despite the fact that several reviews have 
been published both to determine the composition (Campuzano and Gonzalez-Martinez, 
2016) as well as the challenges and opportunities of biorefineries (i.e., Sawatdeenarunat 
et al., 2016; Dahiya et al., 2018), very few studies report aspects of modelling, simulation 
and design of these biorefineries. 
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Treatment processes for an integral OFMSW harnessing can be classified into three 
groups (Nizami et al, 2017): (1) thermochemical (e.g. pyrolysis or gasification), (2) 
physicochemical (e.g. hydrolysis or transesterification), and (3) biochemical (e.g. 
anaerobic digestion or fermentation). Each treatment can generate different products of 
added value and has advantages or disadvantages depending on the raw material and 
conditions of the place or country (Tsakalova et al., 2014). In particular, anaerobic 
digestion is considered the most technologically feasible method due to its many 
advantages, as it not only serves to efficiently manage and treat a huge amount of 
OFMSW, but also acts as a convenient source of unconventional energy (Wang et al., 
2017). 
Currently Mexico City has several transfer stations, classification plants, compactor 
plants, composting plants and landfills for the management of OFMSW. Thus, in this 
work an alternative to the management of OFMSW is proposed, through the design of a 
biorefinery to process 1,000 tons of OFMSW per day generated in Mexico City. The 
products generated from the OFMSW-biorefinery are biogas, fertiliser and bioethanol. 
Modelling and simulation tools are used for the design of the plant. The biorefinery begins 
with an anaerobic digestion where biogas is produced, and then several processing stages 
are followed to produce anhydrous ethanol as the main product and fertiliser as a 
fermentation by-product.  

2. Methodology 
2.1. Biorefinery conceptual design 
The conceptual design of the biorefinery consists on seven stages, as shown in Figure 1. 
The biorefinery begins with an anaerobic digestion to degrade OFMSW and produce 
biogas. The resulting solid fibres and the effluent are sent to the subsequent stages of 
pretreatment by acid hydrolysis, saccharification by enzymatic hydrolysis, co-
fermentation of sugars (pentoses and hexoses) to ethanol, evaporation and distillation to 
concentrate the ethanol solution, and finally ethanol dehydration by adsorption with 
molecular sieves. Fertiliser is obtained as a by-product of the sugar fermentation. 
 

 
Figure 1. Conceptual design of the OFMSW-biorefinery 

 
2.2.  Implementation of the simulation models 
The process flow diagram of the biorefinery was implemented in Aspen Plus® V.10 (see 
Figure 2), considering rigorous kinetics for the anaerobic reactor (Rajendran et al., 2014) 
and stoichiometric reactions for the hydrolysis, saccharification and fermentation reactors 
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Saccharification Co-Fermentation Evaporation

Dehydration 
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Liquid 
effluent Acid 

hydrolisis
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Solid 
fiber
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(Aden et al., 2002). The thermodynamic properties of pure components and mixtures were 
estimated using the database and included methods, and the NRTL (Non-Ramdom Two 
Liquid) model was employed as thermodynamic method. 
Anaerobic digestion process of OFMSW was simulated using a model previously 
developed by Rajendran et al. (2014), which is based on the Anaerobic Digestion Model 
1 (ADM1) and was validated against a variety of lab and industrial data. A total of 46 
reactions were used in this model including inhibitions, kinetic rates, ammonia 
production, reactor volume, loading rate, and retention time. The biodigester was 
modelled in Aspen Plus as an RSTOIC block model (D-0), where hydrolysis occurs at 55 
ºC and 1 atm; together with a CSTR block model (D-1), where acidogenic, acetogenic 
and methanogenic reactions are carried out at 55 ºC and 1 atm. 
The pretreatment stage was simulated using two stoichiometric reactors (HIDROLI1, 
HIDROLI2), both operated at the same pressure and temperature conditions (190°C and 
no vapour fraction). The first reactor converts most of the hemicellulose into shorter chain 
polysaccharides through hydrolysis reactions (with 20% conversion), while the second 
reactor converts these polysaccharides into soluble sugars, mainly xylose, mannose, 
glucose, galactose and arabinose (with 92.5% conversion). Hydrolysis reactions also 
produce soluble lignin, acetic acid, and degradation products (mainly furfural and 
hydroxymethylfurfural). 
The saccharification process was simulated in a stoichiometric reactor (SACHAR), where 
enzymatic hydrolysis reactions are carried out at 1 atm and 65 ºC. The main reaction 
corresponds to the conversion of cellulose to glucose (with 90% conversion). And the co-
fermentation process was simulated in a stoichiometric reactor adding Zymomonas 
mobilis as strain for the cultivation, where the conversion of both pentoses and hexoses 
are converted into ethanol (with 97% conversion), at 1 atm and 41 ºC. 
 

 
Figure 2. Process flow diagram for OFMSW-biorefinery 
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The outlet stream from the fermenter was treated by an evaporation section to remove 
considerable amounts of components such as CO2, NH3, H2S, O2 and H2O, among others. 
Subsequently, two distillation columns (RADFRAC1, RADFRAC2) were simulated to 
concentrate the alcoholic broth near the azeotropic point. The theoretical number of 
equilibrium stages for the first column was 9, without condenser and with a molar reflux 
ratio in the reboiler of 0.23, the pressures of stages 1 and 9 were 1.53 and 1.67 atm, 
respectively. The theoretical equilibrium stages for the second rectifying column were 18, 
with molar reflux ratios of 2.3 and 0.23 for condenser and reboiler, respectively; the 
pressures of stages 1 and 18 were 1.36 and 1.63 atm, respectively. And finally, the 
distillate stream was sent to the dehydration process by adsorption with molecular sieves. 
This dehydration technology uses a zeolite bed in which the water molecules are strongly 
retained within the pores, while the ethanol molecules pass through the bed. The process 
consists of combined cycles of dehydration of ethanol and regeneration of the molecular 
sieve. The main stream reaches an ethanol purity of 99.5%, which is cooled and stored 

3. Simulation results 
For simulation purposes, the biorefinery was designed to process 1,000 t/d of wet waste, 
assuming an average OFMSW composition of Mexico City presented in Table 1, which 
was adapted from Campuzano and González-Martínez (2016). The composition and 
properties of OFMSW were implemented in Aspen Plus® using its extensive database of 
components and property estimation. 
 
Table 1. Components and mass fraction of OFMSW. 

Component Molecule Chemical formula Mass fraction 

Carbohydrates 

Cellulose C6H10O5 0.0471 

Hemicellulose C5H8O4 0.0114 

Dextrose C6H12O6 0.0234 

Starch C6H12O6 0.0381 

Protein 
Protein C4.13H25O7N3S 0.0212 

Keratin C4.39H8O2.1N 0.0127 

Lipids 

Triolein C57H104O6 0.0098 

Tripalmitate C51H98O6 0.0098 

SN-1-Palmito-2-Olein C37H70O5 0.0098 

SN-1-Palmito-2-Linolein C37H68O5 0.0098 

Lignin Lignin Inert 0.0300 

Ashes Ashes Inert 0.0739 

Humidity Water H2O 0.7030 

 

Table 2 shows the results for the main streams of each stage of the process, where it can 
be seen how OFMSW is degrading as it passes through each stage of the process. The 
biogas yield was 0.538 kg/kg of dry waste. Being the most common use of biogas for heat 
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and electricity generation. While the fertiliser yield was 0.059 kg/kg of dry waste. The 
use of biofertilisers improves the fertilization of crops compared to chemical fertilisers 
and does not compromise the yield or quality of the crops (Dahiya et al., 2018). And 
finally, the ethanol produced was 0.073 kg/kg of dry waste. This is low compared to the 
reported values of 1.15-1.5 kg ethanol/kg dry waste (Sawatdeenarunat et al., 2016). The 
main reason is due to the low carbohydrate composition of the OFMSW obtained for 
Mexico City (Table 1). It is worth mentioning that the anhydrous ethanol is a product 
with high added value, which can be used mixed with gasoline as a fuel for transportation. 
Although the product yields obtained in this work are still low compared to those obtained 
with other lignocellulosic substrates, the complex nature of this substrate must be taken 
into account. Up to now, the simulation was focused on the conceptual design, but the 
next step will be to improve the operating conditions of each stage. 

 

Table 2. Main streams for the OFMSW-biorefinery. 

Stream Stream Name Flow (t/d) Composition 

Biodigester feed DO-FEED 1,000 Given in Table 1 

Hydrolysis feed HIDRFEED 836.81 42.4% CH4, 43.6% CO2, 12.4% H2O, 0.8 % 
Ethanol, 0..7 % H2S, 0.1% others 

Saccharification 

feed 

SACCFEED 836.82 78.1% H2O, 12.4% inert, 2% C5H7NO2, 
1.4% Ethanol, 1.1% Cellulose, 0.9% 
Xylose, 0.9 % Starch, 0.5% CH3COOH, 
2.6% others 

Fermentation 
feed 

SACPROD 830.35 78.5% H2O, 12.5% inert, 2% C5H7NO2, 
2.0% Ethanol, 1.3% Glucose, 1.0% Xylose, 
0.5 % CH3COOH, 2.8% others 

Evaporation 
feed 

FERMPROD 830.78 78.5% H2O, 12.5% inert, 2.7% Ethanol, 2% 
C5H7NO2, 1.2% CO2, 0.6% CH3COOH, 
2.6% others 

Distillation feed LIQ3  816.87 79.3% H2O, 12.7% inert, 2.7% Ethanol, 2% 
C5H7NO2, 0.6% CH3COOH, 2.7% others 

Distillation feed LIQ5 0.30 90.9% H2O, 8.5% Ethanol, 0.3% 
CH3COOH, 0.3% others 

Dehydration 
feed 

LIQ8 102.98 69.2% H2O, 29.3% Ethanol, 0.4% 
CH3COOH, 1.1% others 

Biogas BIOGAS 159.77 42.4% CH4, 43.6% CO2, 12.4% H2O, 0.8 % 
Ethanol, 0.7 % H2S, 0.1% others 

Fertiliser FERTILIZER 17.59 93.5% Z. mobilis, 5.0% H2O, 1.5% others 

Ethanol ETHANOL 21.55 99.95% H2O, 0.05% Ethanol 
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4. Conclusions 
The conceptual design and simulation of a biorefinery to convert OFMSW into value-
added products have been presented as decision support for the management of OFMSW 
in Mexico City. The results show that its reuse is feasible for the production of biogas, 
bioethanol and fertiliser. An important problem for obtaining OFMSW bioproducts is 
their heterogeneity and variability in chemical composition, such that they could modify 
the results obtained. For example, when food waste is the major compound, biogas 
production would increase; while when lignocellulosic compounds predominate, the 
production of bioethanol and biofertilisers would increase. 
We are currently working on the economic evaluation, as well as on the extension of this 
conceptual design proposal to produce other value-added products, such as the production 
of biodiesel using the liquid effluent from anaerobic digestion (with algae that can also 
reduce CO2), lignin, recovery of solid waste generated in fermentation, and possible 
production of electricity by combustion of solid waste. 
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Abstract 
In this work, two different bioprocess plants are economically compared using Aspen 
Plus process simulations based on information from literature. Olive tree pruning (OTP) 
wastes are used as the raw material in the processes which are valorised through two 
different processing plants. One biorefinery scheme consists of an initial steam explosion 
pre-treatment to further obtain three final products: ethanol, xylitol and antioxidants 
(steam explosion plant = SEP). The other one consists of an organosolv (ethanol and 
water) pre-treatment operation to finally ferment glucose to ethanol, co-producing 
catechol from lignin depolymerization (organosolv plant = OP). Both plants show similar 
equipment costs (43-47 M€). However, the first plant (SEP) manufacture three marketable 
products with lower ethanol production (6364.35 m3/yr) than OP (8118 m3/yr). In 
comparison, the production of xylitol (999.36 tonne/yr) and antioxidants (1214.46 
tonne/yr) as co-products in the SEP are much higher than the catechol production (124.05 
tonne/year) in the OP. As a result, much of the organosolv resulting lignin is burned to 
produce energy. Considering all costs and incomes in both plants, the SEP would attain a 
profitability of 20%, while the OP would be -7%.  

 
Keywords: Lignocellulosic biorefinery, Organosolv, Steam explosion, Technoeconomic 
analysis.  

1. Introduction 
Currently most of the fuels obtained from biomass sources in a commercial scale come 
from corn, sugarcane, wheat and other cereals, which means that most of the biofuels are 
obtained in first generation plants. On the contrary, second generation bio-products 
obtained from lignocellulosic biomass do not compete in the human food market, being 
one of the reasons why they have attracted many attention in the last decade (Haghighi et 
al., 2013). 
In Spain, many works at different scales are being developed using olive tree pruning 
(OTP) wastes to obtain marketable products. That biomass is highly available (around  
4.5 Mtonnes of OTP are generated each year), being burned in most of the cases to obtain 
thermal energy (Manzanares et al., 2017). However, different high-value products can be 
also synthesized from OTP wastes. For instance, antioxidants from olives are highly 
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demanded bio-products by society in food and cosmetic applications. They have been 
successfully extracted (Conde et al, 2009) from OTP wastes, as well as xylose which can 
be used as raw material for the production of both xylitol (Rivas et al., 2006) and ethanol. 
Obtaining these products usually requires an initial steam explosion or organosolv pre-
treatments to separate lignin from fermentable compounds.  
On the other hand, lignin is usually burned to obtain energy. Some authors (Toledano et 
al., 2012) showed that depolymerization of OTP lignin is feasible and some valuable 
compounds can be produced (p.e. catechol). Organosolv pre-treatment has shown the best 
performance to obtain exploitable lignin. 
In this work, two biorefineries schemes are compared, both using OTP waste as raw 
material. One of the considered processes uses steam explosion as the pre-treatment 
operation, producing antioxidants, ethanol and xylitol, (lignin along with the rest of the 
organic waste will be burned to obtain thermal energy). The other plant uses organosolv 
in the pre-treatment step, producing ethanol and lignin which is further depolymerized to 
produce catechol. Aspen Plus software is used to model and simulate both plants and a 
techno-economic evaluation is carried out as shown in section 3. 

2. Materials and Methods. 
2.1. Feedstock 

The input in both plants are 96.96 tonnes of OTP wastes per day. The composition (% 
dw) is the same described by Ballesteros et al.(2011): 28.0 cellulose (as cellulose); 20.6 
hemicellulose (as xylan); 25.2 lignin; 2.1 acetic groups; 5.9 Ash (as CaO); and extractives 
with is a mixture of:  7.9 glucose, 0.1 arabinose, 0.1 mannose, 0.9 galactose, 4 mannitol 
and 3.8 antioxidant (hydroxytyrosol as the reference compound) (Conde et al. 2009). 
2.2. Process description of plant A 

In plant A, the pre-treatment has two steps; firstly, the OTP is sent to a solid-liquid 
extraction using water at 393.15 K and 5 bar. The water stream extracts 90% of extractives 
(Ballesteros et al., 2011). The remaining solid fraction is sent to a steam explosion process 
at 468.29 K and 14 bar with phosphoric acid (1%) as catalyst (Negro et al., 2014). Then 
a water insoluble solid fraction (WIS) and a liquid fraction with xylose and the 
degradation compounds as principal components (LiX), are obtained. 
The liquid fraction with the extractives is cooled down to 308.15 K and streamed to a 
liquid-liquid extraction column with ethyl acetate (EtA) at 303 K, where 90% of the 
antioxidants are extracted by EtA. Antioxidants are then separated from EtA by a non-
ionic adsorption process (Romero-García et al (2016)). All EtA is separated from water 
and other organic components by distillation and recirculated to the process, recovering 
98% of EtA. The LiX is cooled down at 323 K and mixed with Ca(OH)2 to remove furans 
and phenolic compounds. Then, it is neutralized with H2SO4. The detoxified LiX is then 
fermented at 303 K (75% of xylose is fermented to xylitol). The product is filtered to 
remove the yeast and other solids and evaporated to concentrate the xylitol at 313 K (this 
temperature avoids xylitol degradation). Xylitol is mixed with ethanol to reduce xylitol 
solubility and then purified by crystallization at 268 K (yield of 47 % whit a purtity of 
99% (Rivas et al., 2006). The WIS stream is sent to a pre-saccharification and 
simultaneous saccharification and fermentation process (PSSF) for the production of bio-
ethanol. Pre-saccharification is carried out at 323 K. Then the resulting stream is further 
cooled to 308 K and fermented to ethanol (70% of theorical yield is obtained) (Ballesteros 
et al., 2011). The resulting ethanol stream is firstly purified in a beer column which 
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increase ethanol concentration to 50 % wt, and further concentrated in a purification 
column which increase ethanol concentration to 93%. Finally, 99% ethanol is obtained 
using molecular sieves. Aqueous wastes from the process are sent to a water treatment 
system (anaerobic and aerobic processes) where methane, sludge and biogas are produced 
and finally burned to produce electricity and steam. 
  

 
Figure 1. Block diagram of the modeled plant A 

2.3. Process description of plant B 

In plant B, the pre-treatment step is carried out in an organosolv process. OTP waste is 
firstly mixed with a mixture ethanol-water (50/50 v) at 453 K and 19 bar, dissolving 76% 
of lignin and 81% of hemicellulose. From this pre-treatment step two streams are 
obtained: a liquid stream with lignin and hemicellulose dissolved in ethanol (Et-Lig), and 
a solid stream with cellulose and the remaining hemicellulose and lignin. The Et-Lig 
stream is sent to a flash separation system to evaporate part of the ethanol, which is used 
as solvent in the plant (Figure 2). The Et-Lig is blended with the water stream from the 
washing stage to reduce ethanol concentration, precipitating lignin and hemicellulose, 
which are separated by filtration. The liquid stream from filtration is sent to a distillation 
column, obtaining a mixture ethanol-water (50/50 v) which is recirculated to the process. 
From the bottom of the column, a mixture of water and the remaining organic components 
(free sugars) is sent to evaporation to concentrate the sugars, and then sent to a 
fermentation reactor to produce ethanol. The solid cake from the filtration step is fed to a 
delignification process where it is mixed with a basic water stream (NaOH, pH=12) at 
573 K. The reactions considered are those proposed in literature (Mabrouk et al. 2018) 
with a yield of 0.018 kg of catechol per kg of lignin. The outlet stream is cooled down 
and lignin is precipitated. The remaining liquid stream contains catechol and other 
hydrocarbons (oils), which is sent to a liquid-liquid extraction with EtA extracting 99% 
of catechol from acid water. The bottom stream is sent to a distillation column where 
catechol is distilled at 309 K, the remaining organics compounds are sent to power 
generation. The solid stream obtained from the organosolv process is sent to a washing 
system. It is firstly mixed with ethanol, with the objective of extracting lignin, and then 
it is washed with water to extract the remaining ethanol from solids. These solids are WIS 
which are sent to PSSF.  
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Figure 2. Block diagram of the modeled plant B 

2.4. Process modelling and economic evaluation. 

Both processes are simulated in Aspen Plus V11 software (Aspen Technology Inc, USA). 
Physical property data of cellulose, hemicelluloses, lignin and enzymes was taken from 
literature (Wooley, 1996). The non-random two liquid (NRTL) thermodynamic model 
was used in the process. Antioxidant are modelled as hydroxytyrosol, whose properties 
are calculated using the built-in property estimation models (group contribution approach 
from molecular structure). Missing binary interaction parameter are estimated using 
UNIFAC. To economically compare both plants, the Discounted Cash Flow Rate of 
Return (DCFROR) and Net Present Value (NPV) are calculated for a 15-y period with a 
cost of capital of 15%. These parameters provide a useful way of comparing the 
performance of capital for different projects. Aspen Economic Analyzer V11 (Aspen 
Technologies Inc, USA) is used to calculate equipment cost of both plants. Raw materials 
and products prices are obtained from literature (Susmozas et al. 2019) and utilities 
consumptions are calculated following the methodology available in (Sinnot & Towler 
2008).  

3. Results and Discussion. 
Table 1 shows the distribution of equipment cost, revenues and the major contributions 
of the operating costs. Plant B revenues do not compensate the estimated investment so 
the NPV is negative. In this plant, the depolymerization process accounts for the 18% of 
the equipment cost, not compensating by the revenues obtained from the production of 
catechol. The yield of catechol is quite low, just representing 0.31% of all products 
obtained on the delignification process, so most of the products obtained from 
delignification are burned to obtain thermal energy. Even more, organosolv is more 
expensive than steam explosion, because it requires more equipment to recover as much 
ethanol as possible.   
On the other hand, Plant A is estimated to be profitable, with a calculated DCFROR of 
20% and NPV at year 15 of 11.54 M€. In both plants cooling water represents the highest 
utility consumption. That makes sense considering that both plants pre-treats OTP wastes 
at high temperature and the subsequent enzymatic hydrolysis takes place below 323 K. 
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Furthermore, the biological reactors operate at constant temperature so cooling water is 
also needed.  

Table 1. Equipment cost, revenues, variable cost distribution and DCFROR 

 Plant A Plant B  
ISBL 51.95% 51.95% ISBL 
OSBL 20.78% 20.78% OSBL 

Engineering Cost 7.27% 7.27% Engineering Cost 
Contigency 10.91% 10.91% Contigency 

Total Fixed capital cost (€) 43.8 M€ 47.9 M€ Total Fixed capital cost (€) 
            Equipment Cost 

Steam Explosion 9.83% 25.59% Organosolv 
Ethanol process 18.07% 16.99% Ethanol process 

Antioxidant process 12.66% 18.69% Catechol process 
Xylitol process 13.16%   
Water treatment 17.93% 18.46% Water treatment 

Power and heat generation 28.35% 20.27% Power and heat generation 
Total (€) 24.0 M€ 24.9 M€  

            Revenues 
Ethanol 16.27% 53.31% Ethanol 
Xylitol 13.96% 1.54% Catechol 

Antioxidant 58.86%   
Electricity 10.92% 45.14% Electricity 
Total (€/yr) 22.7 M€/yr 8.8 M€/yr Total (€/yr) 

            Variable cost 
OTP 42.15% 30% OTP 

Process Water 23.29% 6.72% Process Water 
Cooling Water 11.70% 30.72% Cooling Water 
Ethyl Acetate 5.53% 23.55% NaOH 
Total (€/yr) 6.9 M€/yr 5.3 M€/yr Total (€/yr) 

             DCFROR 
 

 20% -4%  

 NPV   
 11.5 M€ -25.4 M€  

4. Conclusion 
In this work, we have compared two different OTP waste biorefinery schemes in terms 
of capital and operating costs, and potential revenues. Our results show that 
delignification is not yet a competitive route in comparison with the obtention of 
antioxidants and xylitol from OTP wastes. Current yields to catechol limit the potential 
of the delignification route (efficiency of the depolymerisation around 5%). Other high-
value products are being developed from the organosolv resulting lignin, which would 
expand the range of marketable compounds, thus increasing the competitiveness of this 
route. On the other hand, high revenues have been estimated for the case of the steam 
explosion-based plant. In that biorefinery scheme, xylitol, ethanol and antioxidants are 
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simultaneously produced. Our results show that the most economically promising route 
is the production of antioxidants from OTP through a liquid-liquid extraction process with 
ethyl acetate.  
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Abstract
This work presents solutions for the holistic utilization of lignocellulosic biomass based
on the “lignin-first” concept. Biomass is fractionated by means of γ-Valerolactone
(GVL) and Formaldehyde solvents to effectively extract and protect lignin and xylose
ingredients. The process flowsheet and simulation of a large scale biomass fractionation
technology – recently validated in laboratory scale by Shuai et al. (2016) – are
developed to test and build performance in use of energy, water and materials. The
biorefinery value chain additionally integrates chemistries for the production of
platform chemicals and biofuels (furfural, levulinic acid and lignin-aromatics), while the
C6 sugars fraction is partially converted into GVL to offset solvent losses. Finally,
energy integration and techno-economic analysis resulted in up to 6% steam savings,
1.8 MW power cogeneration and 37 Μ€/yr net revenues for the overall biorefinery.

Keywords: γ-Valerolactone (GVL), Lignin-first, Biorefineries.

1. Introduction
Biomass fractionation is challenged by the effective recovery of cellulose,
hemi-cellulose and lignin components. While organosolv technologies have been
credited to extract xylan and glucan, processing and depolymerization of lignin
structures are mostly inhibited by degradation of ether bonds and spontaneous
repolymerization of C-C bonds resulting in random structural recombination of the
polymer matrix. The limited recovery of functional lignin intermediates usually leads to
misconceptions that the lignin-rich pulp is a process-waste or low value fuel. The
technology proposed by Shuai et al. (2016) takes advantage of the “lignin-first” concept
to stabilize and protect lignin from repolymerization during processing and extraction.
The aim of this work is to face underutilization of the lignin content and test
performance of large scale lignin-first biorefineries for the production of platform
chemicals and high value biofuels.

2. Bottlenecks in lignin processing and extraction
Lignin-rich feedstocks and lignin aromatic content are underutilized due to processing
bottlenecks during biomass fractionation stages, whose goal is to separate and transform
lignin into functional units by cleavage of biopolymer bonds in between lignin polymer
chains and intramolecular bonds within polymer chains. Biomass pre-treatment
commonly takes places at relatively high temperature (>120 oC) and in strong acid or
alkaline environments (>1% wt). Under these conditions, there is a featured effect
related with cleavage of ether bonds (β-Ο-4, 4-Ο-5 etc.) in between monolignols and
repolymerization by the formation of C-C bonds due to interactions between positively
charged and electron-rich sites. This effect results in irreversible condensation of lignin
and significantly reduced yields of aromatic monomers during subsequent processing.
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The yield of desired lignin-aromatics is correlated with the ether bond content and is
enabled by the use of catalysts. The use of unprotected lignin is responsible for the
reduction of aromatic yields and the inhibition of catalytic activity due to the existence
of C-C bonds in lignin structure.
The above processing bottlenecks have an apparent negative impact on the utilization of
biomass lignin content and, thus, on process economics. This work exploits the
“lignin-first” concept – recently validated in laboratory scale by Shuai et al. (2016) – as
a practice to protect lignin and build high performance industrial scale biorefineries.

3. The “Lignin-first” concept
The implementation of lignin-first biomass fractionation aims to successfully extract
lignin by inhibiting the formation of C-C bonds during pre-treatment and to protect
lignin through the reaction system of Figure 1.a. The fractionation process utilizes a
γ-Valerolactone (GVL)-water mixture as solvent, which (a) favors selectivities towards
sugars, lignin and platform chemicals; (b) limits sugars and lignin degradation; (c)
features limited solvent degradation in the selected process conditions; and (d)
facilitates downstream separations due to properties (n.b.p. 219 οC) (Alonso et al., 2017;
Questell-Santiago et al., 2018). In addition, this work examines the use of formaldehyde
in biomass fractionation to further inhibit the formation of C-C bonds between
monolignols by reacting with newly cleaved sites.
An additional effect of formaldehyde is the protection of xylose. Another major reaction
that occurs during fractionation is the depolymerization of hemicellulose into xylose
and its degradation into furfural and humins. The formation of furfural at this stage
complicates downstream separations due to the formation of furfural-water azeotrope.
Formaldehyde protects the xylose content by the formation of diformyl-xylose (reaction
system of Figure 1.b), which is next converted into xylose by introducing an additional
intermediate reaction stage before finally upgrading xylose into furfural end-product.
The protected (by GVL and formaldehyde) lignin is next hydrogenated in presence of
Pd-Ru supported catalysts resulting in near theoretical lignin-aromatic yields of 50%,
whereas corresponding yields based on unprotected lignin are typically expected in the
range of 5-20%. Moreover, the use of GVL favors the formation of hydroxymethyls,
which in turn yield in blends suitable for biojet and biodiesel use.
GVL has been selected as the primary solvent for the depolymerization of sugars due to
its ability to deter degradation of biomass components; to effectively depolymerize
hemicellulose into xylan; to inhibit humins formation; and to dissolve solid lignin. The
latter, can be tuned by simple addition of water. The chemistry takes advantage of a
GVL-water (80-20 wt%) mixture to dissolve biomass components, while lignin
precipitation starts at higher water/GVL mass ratios (>1.5). The zeotropic GVL-water
mixture also facilitates downstream processing and separations. Considerable
improvements on the yields and quality of extracted lignin are attributed to the use of
formaldehyde (3% w/w) as co-solvent to prevent lignin condensation, to hinder the
formation of C-C linkages and to produce soluble lignin (Shuai et al., 2016). Based on
the laboratory scale efficiencies of Shuai et al. (2016), process systems engineering
methods are used to test and build performance of large scale lignin-first biorefineries.
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Figure 1. Lignin protection from GVL (a), xylose protection from formaldehyde (b)

4. Methodological steps
In this work, two alternative biorefinery scenarios have been developed for the
production of xylose-based furfural, glucose-based levulinic acid and lignin-aromatics.
The next objective is the evaluation of the effects of lignin exploitation on process
economics with a purpose to identify most profitable solutions and set the basis of an
expanded value chain. Both biorefinery cases (A & B) use GVL in biomass
fractionation, while the second case (B) additionally uses formaldehyde as co-solvent.
The biorefinery plant (Figure 2) includes 5 Units: (U200) Biomass fractionation unit;
(U300) Glucose-to-Levulinic acid unit; (U400) Xylose-to-Furfural unit; (U500)
Lignin-to-aromatics unit; and (U600) Waste Water Treatment (WWT) unit. Energy
integration and techno-economic analysis are next implemented both in contexts of each
Unit and the overall biorefinery to estimate steam savings and extract conclusions
regarding capital and operating expenses and profitability margins of each biorefinery
case.
Mass and energy balances are calculated in the basis of 10 tn/h of white birch as
feedstock, which features high lignin (18-25%) and ether (46-75%) bond contents. In
Case A, each part of biomass requires 3.2-0.8-0.04 parts of GVL-water-H2SO4 in
fractionation stage, while in Case B, 0.18 parts of formaldehyde are additionally used
per part of biomass in feed. The process flowsheets (Figure 3) and mass and energy
balances for each case (A/B) have been developed and calculated in Aspen plus (v8.6).

5. Results
5.1. Process flowsheeting and simulation
Figure 3 presents the process flowsheets of all biorefinery units (U200-U600 for Case A
& B), which are interconnected according to the process diagram of Figure 2 and
simulated as a single biorefinery plant in Aspen plus (v8.6). The simulation results are
presented in Table 1 including key input/output mass balances for each unit and case.
The process flowsheets of biomass fractionation (U200) and Xylose upgrade (U400) are
different for each Case A & B due to additional requirements in Case B, for the
recovery of formaldehyde in U200B and the conversion of diformyl-xylose into xylose
in U400B. The Units U300, U500 and U600 are the same for both Cases A and B.
Biomass fractionation (U200) is operated in a monophasic (liquid) reactor at 120 οC and
2 bar. GVL hydrolyses 81% of hemicellulose into xylose and dissolves 95% of lignin
content; 93% of cellulose is recovered as solid pulp through a two-stage centrifugation
system. The extracted lignin is next precipitated with the addition of water using a 6:1
water-GVL mixture. In Case B of U200, formaldehyde additionally reacts with the
hydroxyl content of lignin driving the stabilization of dissolved lignin, while, next,
formaldehyde is recovered through the distillation of U200B. The downstream units are
developed for the conversion of intermediate sugars and lignin into platform chemicals.
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Figure 2. Lignin-first biorefinery diagram for Cases A and B.

In U400A, the extracted xylose-GVL mixture is concentrated through evaporation,
while GVL is next recovered by means of distillation; in Case B (U400B), an
intermediate reactor is introduced to transform diformyl-xylose into xylose, which is
finally dehydrated into furfural by 90%. In U300, the cellulose-rich pulp is mixed with
pure GVL, hydrochloric acid (HCl 37 wt%) and water forming an 80:20 wt%
GVL-water mixture. Depolymerization of cellulose occurs at 150 oC and 3 bar, where
cellulose depolymerizes into glucose, glucose isomerizes into fructose and fructose is
hydrolyzed into 5-Hydroxymethylfurfural; the latter decomposes into levulinic acid and
formic acid. The overall glucose to levulinic acid yield is 55%. The levulinic-formic
acid mixture exiting the reactor is partially driven to a hydrogenation reactor for the
conversion of levulinic acid into GVL, while the rest is separated by distillation
resulting pure levulinic acid. U500 is responsible for the hydrogenation of lignin into
aromatics in presence of THF solvent. In U500B, the treatment of protected lignin (by
formaldehyde) yields in 10 parts of aromatics for each 100 parts of biomass – while in
absence of formaldehyde (Case A), the yield in U500A is only 3 parts of aromatics –
resulting in a significant impact on biorefinery economics. WWT is implemented for the
recovery of contaminated process water and anaerobic digestion (AD) of organic
residual content. U600 respectively achieves 97% and 90% water recovery in Case A &
B, while methane production by AD is respectively estimated at 193 and 247 kg/hr.
5.2. Energy and economic analysis results
Total Site integration (Pyrgakis and Kokossis, 2019) is implemented to estimate utilities,
steam savings and cogeneration targets for the overall lignin-first biorefinery. The
Grand Composite Curves of all units are developed and combined resulting in the Site
Sources and Sinks Profiles of Figure 4 for each Case A & B. The energy results of Total
Site integration analysis are summarized in Table 2.
Figure 5 presents the breakdown of materials expenses for each case highlighting the
need for less expensive biomass types. Concerning Case A, cheaper solvent alternatives
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Figure 3. Process flowsheets of biorefinery units (Cases A and B) in Aspen plus v8.6.
Table 1: Inlet and outlet mass balances [tn/hr] for each Unit and each Case A & B.

IN OUT IN OUT IN OUT IN OUT IN OUT
Units in Case A U200A U300A U400A U500A U600A

Birch 10.0
H2O 10.8 0.6 3.5 3.4 17.9
GVL 32.0 32.0

Xylose 2.3
Cellulose 4.2

Lignin 1.7
Furfural 1.2

Levulinic acid 1.1
Aromatics 0.4

Sulphuric acid 0.4
NaCL 0.1 1.1
THF 0.3

Others 0.2 0.2 0.6 1.0
Units in Case B U200B U300B U400B U500B U600B

Birch 10.0
H2O 9.2 0.7 0.3 2.2 11.0
GVL 36.4 36.4

Formaldehyde 1.8 0.5 0.9
Cellulose 4.1

Lignin 1.1
Diformyl Xylose 2.7

Furfural 1.2
Levulinic acid 1.2

Aromatics 0.9
Sulphuric acid 2.4

NaCL 0.1 3.5
THF 0.2

Others 0.2 0.3 0.6 5.4
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should be considered instead of THF for lignin upgrade, highlighting the option for
partial conversion of furfural output into THF solvent. In Case B, upgrading of lignin
attributes to 34% of material costs (including formaldehyde), while the high cost for
mineral salts results in the need for cost effective salt recovery systems. Table 2
summarizes the net revenues per product in each case. In the case of aromatics, catalytic
hydrogenation of unprotected lignin in Case A should be reconsidered due to its
negative economic impact. To the contrary, the exploitation of protected lignin in Case
B favors profits from lignin-aromatics. Levulinic acid production appears similar
economics in both cases. Finally, furfural production in Case A appears superior
economics compared to Case B; however, the milder pre-treatment with formaldehyde
in Case B preserves a higher cellulose fraction than that of Case A, which in turn yields
in larger amounts of levulinic acid. Overall, the use of formaldehyde in Case B results
in better process economics and higher net revenues than those of Case A by 34%.

6. Conclusions
The exploitation of unprotected lignin in Case A for the production of aromatics
features a large relative difference in net revenue compared with Case B. In both cases,
biomass cost is nearly half of total material expenses, thus cheaper biomass feedstocks
should be considered, while the high cost of THF solvent justifies the need for partial
conversion of furfural end-product into THF. In conclusion, the implementation of
“Lignin-first” concept in presence of formaldehyde (Case B) for the fractionation of
biomass is considered as the most profitable option.

Figure 4. Site Sources and Sinks Profiles for each biorefinery scenario (Case A & B).

Table 2: Total Site integration energy results [MW].

Case A Case B Case A Case B
HP-260 oC 6.5 9.3 Steam Savings-200 oC - 0.1
MP-150 oC 10 11 Steam Savings-150 oC 1 1.2
LP-100 oC 3.7 0.2 Power Cogeneration potential [MW]

Cooling Water 0.6 1.8 Power Cogeneration 1.4 1.8
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Figure 5. Breakdown of materials expenses (a), net revenue [M€/yr] per product (b)
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Abstract 
This work has performed Life Cycle Assessment (LCA) and Techno-Economic Analysis 
(TEA) to assess the sustainability of a novel process to convert sugarcane bagasse to lactic 
acid. Experimental results are combined with downstream process simulation using 
Aspen Plus® to generate process data. The LCA model is developed in OpenLCA, with a 
cradle-to-gate scope and 1 kg of LA as a functional unit. Ecoinvent® database is used for 
inventory, and ReCiPe Midpoint (H) methodology is chosen for impact assessment. 
Process economic approach is used to perform TEA, and the payback period and product 
costs are calculated. LCA results showed that climate change impact was 4.62 kg CO2 eq. 
per kg LA, with the pretreatment stage identified as a hotspot. TEA results showed that 
LA product cost was $3.27/kg, which reduced to $2.9/kg if bagasse was free. Recycling 
of NaOH used in pretreatment can result in environmental and economic benefits of the 
bagasse based LA process. 

Keywords: Life cycle assessment (LCA), sugarcane bagasse, lactic acid, techno-
economic assessment, waste valorization 

1. Introduction 
Sustainable valorization of industrial and agricultural wastes is of utmost importance for 
a thriving circular bioeconomy (Stegmann et al., 2020). In this context, sugarcane 
bagasse, a lignocellulosic fibrous waste generated by the sugar industry, has gained 
significance. Increasing research trends in bagasse valorization can be attributed to its 
wide availability, affordability, and vast potential to produce a multitude of products such 
as biofuels, biochar, and biochemicals (Meghana and Shastri, 2020). In India, a leading 
country in sugarcane cultivation, bagasse is burned in the boiler to meet a sugar mill’s 
energy demands. Large mills use to produce surplus electricity and sold to the grid. 
However, the valorization potential of lignocellulose resource like bagasse is not 
completely exploited in these current practices. Additionally, current handling practices 
of bagasse are not environmentally benign due to added emissions resulting from bagasse 
burning (Meghana and Shastri, 2020). Therefore, developing sustainable production 
routes that enable and utilize the lignocellulose nature of bagasse to produce value-added 
chemicals and biofuels is important.  
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Utilization of bagasse to produce lactic acid (LA), one of the platform chemicals with 
diverse applications in the food, pharmaceutical, cosmetic, and polymer industry (Alves 
de Oliveira et al., 2018), has garnered significant interest. Integrating environmental 
assessment and techno-economic assessment is a way forward for the successful 
development of bagasse-based routes to produce value-added chemicals like lactic acid 
in a sustainable manner. 
 
In this study, detailed environmental and techno-economic assessment is performed for 
an upstream technology developed at Vasantdada Sugar Institute (VSI) to produce LA 
from bagasse in the Indian context. Reactive distillation is employed for separation and 
purification of LA and is simulated using Aspen Plus®. The life cycle assessment (LCA) 
framework is employed to identify the environmental hotspots, and techno-economic 
evaluation has been performed to assess the economic viability. 
 

2. Process Development 
The methodology followed for developing the LA production route from bagasse is 
described in the following section. Upstream stages developed by VSI and downstream 
simulated using Aspen Plus® software are briefly discussed. 
2.1. Process description 

Detailed process technology developed by VSI is reported elsewhere (Nalawade et al., 
2020). Upstream stages involve size reduction followed by alkali pretreatment with 
NaOH. In hydrolysis, cellulose and xylan present in the pretreated solid fraction are 
hydrolysed to fermentable sugars by Cellic CTec2 enzyme. The saccharified broth is 
filtered to remove the solid fraction, and the hydrolysate proceeds to fermentation. In 
fermentation, excess calcium carbonate (CaCO3) is added to the hydrolysate to maintain 
the desired pH, along with yeast extract and inoculum. Glucose present in the broth is 
metabolized by Bacillus coagulans NCIM 5648 to produce L (+) lactic acid.  

CaCO3 + 2 CH3CHOHCOOH → Ca (CH3CHOHCOO)2   + H2O + CO2   (1) 

 
As shown in Eq. (1), LA present in the broth reacts with CaCO3 to form calcium lactate. 
Acidification with sulfuric acid (H2SO4) liberates calcium lactate to form lactic acid, as 
shown in Eq. (2). The broth is then filtered to obtain a stream containing water and 
dilute concentrations of LA. 
 

Ca (CH3CHOHCOO)2   + H2SO4 → 2 CH3CHOHCOOH + CaSO4   (2) 

 
2.2. Downstream separation  

In the downstream stage, the stream obtained after filtration is subjected to multi-effect 
evaporation to concentrate the LA to 40 %, followed by reactive distillation with ethanol 
in esterification column. In this column, LA reacts with ethanol to produce ethyl lactate 
and water, as shown in Eq. 3. Ethyl lactate, water, and unreacted ethanol obtained in the 
top stream are then fed to the hydrolysis column to undergo hydrolysis, as shown in Eq. 
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Hydrolysis 

Esterification 

(3), to give 99.9 % pure lactic acid. The ethanol removed from the top is fed to the next 
column, where ethanol is separated by distillation and recycled. 
 
The downstream separation of LA is simulated using process simulation software Aspen 
Plus®. Reaction kinetics and catalyst assumption data are taken from the literature (Su et 
al., 2013). UNIQUAC method is chosen as the property method, and evaporators are 
simulated using the flash model. RADFRAC is used to model the reactive distillation 
columns and DSTWU block for modeling the ethanol-water separation column. 
 
 
 
CH3CHOHCOOH + C2H5OH            ⇌                   CH3CHOHCOO(C2H5) +   H2O     (3) 
 
 
 

3. Methodology 
The LCA and TEA assessment has been performed for a LA facility with 104 tonnes per 
day production capacity, annexed with an existing sugar mill. The bagasse is assumed to 
be transported to the LA facility by trucks at a round trip distance of 100 km. Size 
reduction data is obtained from the literature (Shastri et al., 2012)(Moiceanu et al., 2019). 
Upstream stages are adjusted accordingly in a sequential batch process, so that 
downstream takes place in a continuous mode.  
 
3.1. LCA Methodology 

The methodology followed for LCA analysis is per ISO 14040. The goal of the LCA is 
to quantify the environmental impacts of bagasse based LA production facility annexed 
with an Indian sugar mill. The LCA model has cradle to gate scope, including stages of 
sugarcane farming, transportation, pretreatment, hydrolysis, fermentation, and 
downstream. The system boundary of the LCA analysis can be seen from Figure 1. 1 kg 
of LA is chosen as a functional unit.  
 
Inventory data for farming (Mandade et al., 2016) and transportation (Murali and Shastri, 
2019) specific to India are taken from literature. Economic allocation method is used to 
allocate these impacts for bagasse. Carbon sequestration of biomass and avoided impacts 
due to bagasse valorization are not included in the study.  Experimental data provided 
inputs to the upstream stages, and process simulations are used for downstream data. 
Emissions data for producing the enzyme, an input to the hydrolysis stage, are adapted 
from literature (Sreekumar et al., 2020). The LCA model is developed in OpenLCA, and 
Ecoinvent® database is used for inventory. Recipe (H) mid-point indicators methodology 
is used for impact assessment.  
 
3.2. TEA Methodology 

An economic evaluation of the LA facility annexed to an existing sugar mill is performed 
to determine the product cost as reported in Table. 1. Equipment cost for pretreatment is 
calculated by designing the reactor using engineering design principles. Whereas the 
equipment cost for other upstream stages is adapted from the literature by scaling the cost 

(Lactic acid) (ethanol) (ethyl lactate) (water) 
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using the six-tenth rule and downstream from Aspen Plus® process economic analyzer. 
The facility is assumed to operate for 330 days. Bagasse is priced at $54/tonne and costs 
of cooling water, natural gas, and boiler water are taken as $0.54/m3, $1.22/m3 and 
$1.86/MMBTU, respectively. Electricity required for the LA facility is assumed to be 
supplied by the cogeneration plant in the sugar mill. The cooling tower assumed to be 
part of the sugar mill’s infrastructure is not included in the costing.  
 
 

 
Figure 1: System boundary considered for LCA analysis of bagasse based LA production 

 
Table.1: Economic assessment methodology followed for the LA facility  

 
Economic Estimation Summary 
Procurement Cost = 1.15 * Equipment Cost 
Fixed Capital Cost (FCC) = Procurement Cost / 0.4 
Working Capital = 0.15 * FCC 
Total Capital Investment = Fixed Capital + Working Capital 
Fixed Operating Cost (FOC): Maintenance = 0.05 * FCC; Operating labour (OL) = (0.5-0.15) * 
TOC; Laboratory Cost = 0.2 * OL; Supervision = 0.2 * OL; Plant Overheads = 0.5 * OL; Insurance = 
0.01* FCC; Capital Charges = (FCC * economic life of plant) /100; Local taxes = 0.02 * FCC; 
Royalties = 0.01 * FCC 
Variable Operating Cost (VOC) = Raw material Cost + Utilities 
Total Operating Cost (TOC) = Fixed Operating + Variable Operating Cost 
General Overhead (GO) = 0.25 * TOC 
Annual Production Cost = TOC + GO  

 

4. Results and discussion 
Environmental assessment results revealed that the life cycle climate change impact for 
the bagasse-based LA process was 4.62 kg CO2 eq. per kg LA. Figure 2 shows the 
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pretreatment stage as a major environmental hotspot for GHG emissions. Adverse 
impacts associated with NaOH manufacturing, an input to the pretreatment stage, alone 
resulted in 2.66 kg CO2 eq. emissions. Whereas, enzyme production and sugarcane 
farming resulted in 0.78 and 0.42 kg CO2 eq. emissions respectively. Recently published 
LCA studies on corn-based LA (Ögmundarson et al., 2020) and vine based LA (Pachón 
et al., 2020) reported life cycle GHG emissions as 7.9 kg CO2 eq. and 3.26 kg CO2 eq., 
respectively. They also reported that the usage of chemicals such as lime, triethanolamine 
majorly contributed to GHG emissions. However, Nature works reported relatively lower 
emissions for corn-based LA production at 1.53 kg CO2 eq. per kg of polylactic acid 
produced (Vink et al., 2010). This lower value can be attributed to the improved 
fermentation technology that required less CaCO3 and absence of pretreatment stage. 
 

 
Figure 2: Stage-wise distribution of GHG emissions for bagasse based LA production 

 
LCA analysis revealed water depletion and agricultural land occupation of the LA process 
as 18.89 m3 and 1.02 m2a, respectively.  

From economic evaluation, the total capital investment and total annual operating cost of 
the LA facility were estimated at 69.86 Million $ and 86.50 Million $, respectively. The 
product cost for LA was $3.27/kg (Rs.242/kg) when bagasse was not free, with hydrolysis 
and pretreatment stage contributing to 38 % and 36 % of this product cost. Higher costs 
associated with hydrolysis and pretreatment stage was due to enzyme and NaOH 
requirement. For a 10.32% internal rate of return and 6 years payback period, the LA 
price was found to be $3.58/kg (Rs. 265/kg). The total capital investment value presented 
in this work agrees with a study based on an economic evaluation of LA biorefinery 
(Manandhar and Shah, 2020) upon scaling to the same production capacity. 

If bagasse was available for free, LA production cost and LA price to achieve 6 years 
payback time with 10.32% internal rate of return were $2.9/kg (Rs.215/kg) and $3.21/kg 
(Rs.237/kg), respectively. Sensitivity analysis was also performed for key parameters to 
identify opportunities to reduce the life cycle impacts and production cost.  
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5. Conclusions 
The production of LA from bagasse was found to be economically viable based on the 
proposed process, with the market price of commercially produced LA at $ 3/kg. Solid 
loading in pretreatment, the amount of NaOH used for pretreatment, and enzyme quantity 
used in the hydrolysis stage were three significant factors affecting the production cost 
and the life cycle GHG emissions of the LA process. Recycling of NaOH used in the 
pretreatment process can result in environmental and economic benefits of the bagasse 
based LA process. 
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Abstract 
Compared to conventional petroleum-based polymers, biopolymers like 
polyhydroxyalkanoates are a promising alternative as raw material for manufacturing of 
plastics. One way to reduce the microbial PHA production costs is to use organic wastes 
from agriculture and food industries, which contain a wide range of carbon sources. Two 
organic waste carbon sources are fructose, present in fruit juice waste and acetate, present 
in waste from wine or biogas production. Simulations using kinetic models can help to 
reduce the range of optimal substrate combinations and thus prevent time-consuming and 
costly experimental investigations. This contribution outlines an extended hybrid 
cybernetic model for the polyhydroxybutyrate production in Cupriavidus necator 
growing on fructose, acetate, and nitrogen. Data from bioreactor experiments are used for 
the adjustment of the kinetic parameters and for the validation of the hybrid cybernetic 
model. The new model is able to precisely predict the dynamic behavior of 
hydroxybutyrate while co-feeding with fructose and acetate. Finally, our model is used in 
a computational study to analyze different initial carbon/ammonium ratios and oxygen 
partial pressures with respect to the maximum hydroxybutyrate concentration. 
 
Keywords: Polyhydroxyalkanoates, Hybrid Cybernetic Modeling, Cupriavidus necator, 
carbon/ammonium ratio, oxygen partial pressure 

1. Introduction 

In recent decades, plastic pollution has come more and more into focus. Besides large 
plastic carpets, there is also a huge amount of microplastic beneath the ocean's surface. 
Due to the ingestion of these particles by aquatic animal species, our garbage ultimately 
ends up on our plate. In addition to personal rethinking towards reusable packaging 
materials and optimizing the recycling stream, investigations of less durable alternatives 
to conventional plastic raw materials are necessary. Polyhydroxybutyrate (PHB) from the 
group of polyhydroxyalkanoates (PHA) is one example of a suitable raw material that can 
be used to replace conventional plastic (Sabapathy et al., 2020). PHA is biodegradable in 
the environment, non-toxic and bio-based since PHA can be produced using a wide 
variety of microorganisms. The best examined representative is Cupriavidus necator 
(C. necator), which was also used in this work. Compared to the production of 
conventional plastic raw material, PHA production is very expensive. The costs of the 
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process can be reduced by using inexpensive substrates (Riedel et al., 2015), intelligent 
control strategies (Morabito et al., 2019) or adapting production process conditions 
(Lopar et al., 2013). Mathematical models can help to avoid costly experimental 
investigations by simulating a large number of possible process conditions and 
investigating the product yield. 
This contribution presents a hybrid cybernetic model (HCM) with two carbon sources as 
inputs, which typically occur in waste from juice, wine or biogas production. The model 
is based on our previous approach in (Duvigneau et al., 2020). In contrast to this, 
additional experimental data for a mixture of fructose and acetate as carbon sources and 
additional elementary modes (EMs) were considered. It is shown that the extended model 
is able to reproduce the experimental data significantly better. Further, the growth rate 
expression is extended to account explicitly for different oxygen partial pressures in the 
culture broth which has a major influence on the maximum concentration of 
hydroxybutyrate (HB). Finally, the HCM is used to correlate different carbon/ammonium 
(C/N) ratios and oxygen partial pressures (pO2) and to evaluate them with regard to the 
maximum concentration of HB. The preliminary analysis with our mathematical model 
makes it possible to identify suitable initial substrate concentrations for precise 
experimental screening studies.  

2. Experimental Methods 
The strain Cupriavidus necator (H16, DSM 428) obtained from DSMZ GmbH 
Braunschweig was used in the presented experiments. The experimental data set with 
acetate as single carbon source was obtained as described in (Duvigneau et al., 2020). For 
the other two data sets, the strain was cultivated in a DASGIP parallel bioreactor system 
(Eppendorf, Jülich) with 1 L working volume. The initial and cultivation conditions are 
summarized in Table 1. Ammonium concentrations were determined from supernatants 
of the samples using an enzymatic test kit (R-Biopharm AG, Darmstadt, Germany) and 
following the manufacturer’s instructions. 
Acetate, HB and cell dry weight (total biomass) concentrations were determined as 
described in (Duvigneau et al., 2020). Fructose concentrations were determined with high 
performance liquid chromatography (HPLC, Agilent Infinity II 1290, Agilent, 
Waldbronn, Germany). For this, 10 µL of the filtered supernatant was loaded on an RHM-
Monosaccharide ion exchange column (Phenomenex, Torrance, USA) and eluted 
isocratically with 0.6 mL∙ min  DI-water at 80 °C. The fructose peaks were detected 
with a refractive index detector (G7162A, Agilent, Waldbronn, Germany) at 40 °C. 
 

Table 1: Cultivation conditions 
data set FRU(0), ACE(0), NH Cl(0) in g/L media T in °C pO2 in % 
I 22, 0, 1.7  M811 30 70 
II 26, 4.4, 1.4  M811 30 5 

1 Recipes for the Medium 81 can be found in (Franz et al., 2011) or on the web page of the DSMZ. 

3. Mathematical Model 
Differential equations for the substrates (fructose, acetate, ammonium), HB content and 
the total cellular biomass are defined as follows: xxx =  𝐒𝐒𝐙𝐫𝐌c ,  =  𝐒𝐇𝐁𝐙𝐫𝐌,  =  µc                          (1) 
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The EM matrix in yield space for the substrates 𝐒𝐒𝐙 consists of the stoichiometric 
information of the metabolic network. The metabolic model was derived in  (Duvigneau 
et al., 2020) from models published in (Franz et al., 2011) and (Yu and Si, 2004). The 
Monod-type kinetic in r ,  (see Equation (5)) expresses influence of substrate 
concentrations for each selected EM. Internal metabolites, except for internal storage 
material such as PHB, are assumed to have fast dynamics compared to the external 
substrates and do not need a model equation. The EM matrix in yield space for HB 𝐒𝐇𝐁𝐙 
describes normalized consumption and production of HB in yield space. 
The growth rate µ consists of a rate vector 𝐫𝐌, the EM matrix for the normalized biomass 
production 𝐒𝐜𝐙 and a proportional factor Kµ: µ = 𝐒𝐜𝐙𝐫𝐌Kµ                                                                           (2) 

The proportional factor  Kµ can be calculated for each experimental setup with respect to 
the pO2 in the culture broth by using the following correlation: Kµ  =  µ( )µ( %)  with  µ(pO )  =  −0.151pO  +  0.256                          (3) 

Further, the use of enzymes for each chosen EM is characteristic for the hybrid cybernetic 
approach: 𝐞 =  α +  𝐫𝐄𝐌b –  β𝐞,  where e =   with e =   ,  , (𝐒𝐜𝐙)                          (4) 

The increase of the enzyme level occurs via the constitutive enzyme synthesis rate α and 
the catalytically active part of the total biomass b. Monod-type kinetics 𝐫𝐄𝐌 (Equation (5)) 
control the catalytically active biomass fraction. The term −β𝐞 represents the enzyme 
degradation by a protein turnover (β). Compared to the previous model description, the 
dilution terms −µ m  and −µ 𝐞  were excluded in Equation (1) and (4), respectively.  
A general description of rates r  and r of the ith EM is r , = v k , e r ,   r , = u k , r ,    .                                 (5) 

The rate r  of the ith EM is a multiplied Monod-type kinetic: r , = XK +  X ∙  ⋯ ∙  XK +  X      .                                                     (6) 

The number of negative yield coefficients (consumption terms) in each EM defines the 
number of factors given in Equation (6). For the regulation of enzyme synthesis and 
activity, cybernetic control variables u and v are introduced and calculated by cybernetic 
control laws as described in the publication of (Young and Ramkrishna, 2007). 
The matrix of all normalized EMs 𝐒𝐙 = 𝐒𝐒𝐙, 𝐒𝐇𝐁𝐙, 𝐒𝐜𝐙 was obtained in (Duvigneau et 
al., 2020). The selection of EMs describing the co-feeding with fructose and acetate was 
done during parameter estimation of the kinetic parameters 𝐤𝐫 for those modes. For this, 
the set of 38 generating modes from yield analysis of the underlying metabolic model was 
used to find a sufficient EM candidate (Song and Ramkrishna, 2009; Duvigneau et al., 
2020). 
The model was implemented and solved numerically in MATLAB2019b. Parameter 
adjustment of rates 𝐤𝐫 was performed using the MATLAB routine fmincon with a lower 
boundary zero and a multi-start approach with n=1000 by minimizing the following 
objective function 
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ESS =  𝐱𝐞𝐱𝐩(t )  − 𝐱𝐬𝐢𝐦(t ) max(𝐱𝐞𝐱𝐩) .                                                                   (7)  
 
Kinetic parameters 𝐤𝐫 are shown in Table 2. All other 49 parameters of the model were 
kept as described in (Duvigneau et al., 2020).  

Table 2: Kinetic parameters 𝐤𝐫 from three model-data combinations 
Original1 0.26, 3.71, 0.07, 0, 0, 0, 0, 0, 0, 3.44, 1.51, 0.44, 0.44, 0.44, 0.25  
Set A 0.26, 3.71, 0.07, 0.04, 28.48, 0.67, 0, 0, 0, 3.44, 1.51, 0.44, 0.44, 0.44, 0.25  
Set B 0.08, 0.89, 0.04, 0.09, 0.15, 0.61, 0, 0, 0, 0, 1.45, 0.43, 0.43, 3.15, 0.20  

1 (Duvigneau et al., 2020) 

4. Results 
Figure 1 (dashed lines) shows the dynamics for the substrates and products after 
simulation of the model in (Duvigneau et al., 2020) applying the initial condition of data 
set II (acetate and fructose as carbon sources). 
The model already delivers a qualitatively good result without the inclusion of EMs with 
both substrates as input. 
After inclusion of these EMs and the kinetic parameters 𝐤𝐫 of these EMs (set A) the model 
simulation shows the consumption of both carbon sources at the same time (diauxic 
growth), but underestimates the final biomass by approx. 20 %. The simulation result 
with set A can be seen as solid lines in Figure 1. 

 

Figure 1: Model simulation and experimental data set II (fructose and acetate co-feeding, diamonds) using the 
model of (Duvigneau et al., 2020) (dashed lines) and the adapted version with respect to the kinetic parameters 
kr of the EMs with acetate and fructose as co-substrates (solid lines, set A). Legend: FRU, fructose; NH4, 
ammonium; ACE, acetate; BIO, total biomass; HB, hydroxybutyrate. All concentrations are given in g/L. 

In general, precise data sets with controlled and constant process conditions are required 
for adapting kinetic models (Carius and Findeisen, 2016). The data sets from (Duvigneau 
et al., 2020) and data set II were obtained from different cultivation systems and hence, 
differ in their dynamic behavior. For this reason, data sets I and II as well as the data set 
with acetate as the single carbon source from our previous publication were selected for 
a new adjustment of the kinetic parameters 𝐤𝐫. The data sets only differ in the available 
carbon source and pO2 (see Table 1). A proportionality factor Kµ can be determined with 
Equation (3). This leads to an increased growth at lower pO2. Furthermore, dilution terms 
in the differential equations for the HB content and the hybrid cybernetic enzymes have 
been eliminated (Equations (1) and (4)). The result of adapting the new model to the 
above-mentioned data sets can be seen in Figure 2. Now, the concentrations of HB and 
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biomass can be simulated more precisely. All model simulations show an overestimation 
for fructose between 25 and 30 h. This discrepancy between simulation and experimental 
data could be compensated by considering maintenance, energy generation or CO2 due to 
the activity of the central metabolism. 

 

 
Figure 2: Model simulation and experimental data set I (left) and data set II (right) using the restructured and 
adapted model. Legend: FRU, fructose; NH4, ammonium; ACE, acetate; BIO, total biomass; HB, 
hydroxybutyrate. All concentrations are given in g/L. 

The new model can be used to analyze different initial conditions with respect to the 
maximum product concentration. Besides a well-chosen ration of fructose and acetate 
(FRU/ACE ratio), ammonium in the culture broth promotes the growth of non-PHB 
biomass. Thus, the C/N ratio can also be decisive. Figure 3 shows a simulation study 
using different C/N ratios and pO2 while keeping the initial concentrations for the carbon 
sources as in data set II. The model study delivers one very interesting result: with 
decreasing pO2, a higher C/N ratio can be selected, so that a higher maximum HB 
concentration is reached. 
 
 

 
Figure 3: Model study with different carbon to ammonium ratios (C/N) and oxygen partial pressures (pO2). 
Selected pO2 levels are shown in the legend. 

N 
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5. Conclusion 
In the presented work an HCM was adapted to experimental data with fructose and acetate 
as carbon sources. Diauxic growth is one of the effects that can be described very well 
with a hybrid cybernetic approach (Song, Morgan and Ramkrishna, 2009). By changing 
the kinetic parameters, it is also possible to describe diauxic growth in the presence of 
fructose and acetate with the model presented in this manuscript. By including the pO2 in 
the model structure further improvement of the model can be achieved.  
Finally, we investigate different C/N ratios and pO2 levels with respect to the maximum 
product yield. Therein, lower pO2 values lead to higher HB concentrations. In addition, a 
different C/N ratio should be selected for each pO2 level in order to achieve an optimal 
production yield. Future work will focus on an extension of the model study using 
different initial carbon concentrations, experimental validation of the results shown here 
and a comparison of the pO2 effect with other factors e.g. temperature variations. 
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Abstract
Compared to crude oil-based polymers, biopolymers like polyhydroxyalkanoates
represent a promising raw material to produce plastics as they feature eco-friendly
desirable properties such as biodegradability and non-toxicity. Moreover,
polyhydroxyalkanoates can be produced by a wide range of microorganisms from organic
material under phosphorus, nitrogen, or oxygen limitation. This motivates application of
microbial production processes for valorization of organic wastes from agriculture and
food industries, containing a wide range of carbon sources. Mathematical modeling of
cellular metabolism as well as polymer formation is necessary for sophisticated process
control and intensification. In this contribution, a multi-scale model for PHB production
in Cupriavidus necator under limiting conditions is presented, which accounts for the
dynamics of the chain length distribution and also the intracellular regulation of the
cellular metabolism. While the dynamics of chain length distribution is described by a
population balance model, cellular metabolism is characterized by a hybrid cybernetic
model.

Keywords: Polyhydroxyalkanoates, Polymerization, Population Balance Modeling,
Multiscale Modeling

1. Introduction
Due to the existing global waste problem, the demand for alternatives to conventional
plastic is continuously increasing. Polyhydroxybutyrate (PHB) from the group of
polyhydroxyalkanoates (PHAs) is bio-based and, above all, biodegradable and therefore
represents a suitable alternative. In addition, PHAs can be produced by a large variety of
microorganisms (Jendrossek and Pfeiffer, 2014; Singh et al., 2018). One common PHA
producer is Cupriavidus necator (C. necator), which was also used in this work. In
addition to precise measurements and predictions of overall PHA concentrations, the
specific structure of the polymer chains in terms of chain length and composition, is an
important property which is related to physical properties, like melting point and
brittleness (Laycock et al., 2014). Thus, there is an increasing interest for production of
PHAs of specific structure to meet certain product requirements.
In this context, multi-scale mathematical modeling of the cellular metabolism and
polymer chain formation supports experimental investigations. Early modeling
approaches used only little structural information from metabolic networks to explain the
general dynamics of the polymer production (Heinzle and Lafferty, 1980). Starting in the
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1990s, first structural information on reaction kinetics and metabolic regulation was
added (Leaf and Srienc, 1998). Further models used small metabolic reaction networks to
describe PHB production more precisely for mixed microbial cultivations (Dias et al.,
2005). Coupling of the thereby described dynamics on the reactor scale to chain formation
models have been presented employing a population balance modeling framework to
describe the dynamics of chain length distribution (CLD) (Penloglou et al., 2010,
2012a,b, 2017; Mantzaris et al., 2002). Those are derived from similar models
characterizing chemical polymer formation in bulk solution or emulsion (Butté et al.,
2002; Kiparissides, 2006; Vale and McKenna, 2005) and can be solved with established
numerical techniques (Kumar and Ramkrishna, 1996; Krallis et al., 2008). Further
extensions include modeling of block-copolymer chains (Krallis et al., 2008;
McChalicher and Srienc, 2007). Those models have been used for the development of
control concepts (Penloglou et al., 2017; Mantzaris et al., 2001; Iadevaia and Mantzaris,
2006) for the design of polymers with desired properties.
A shortcoming of the previous approaches is that they lack detailed information on the
cellular metabolism, in particular intracellular regulation. As an alternative to dynamic
flux balance analysis, the hybrid cybernetic modeling (HCM) approach developed by
Ramkrishna and coworkers (see (Ramkrishna and Song, 2018) and the references therein)
can be used to take into account optimal and detailed metabolic regulation (resource
allocation) with respect to existing substrates. This is achieved by introducing hybrid
cybernetic control variables.
In this contribution, we will present a multi-scale model for PHB formation in C. necator
which combines an HCM and a dynamic model for CLD dynamics. Therein, two different
carbon sources, namely fructose and acetate, are considered (Duvigneau et al., 2020).

2. Model Formulation
The proposed multi-scale model consists of a state-of-the-art HCM (Duvigneau et al.,
2020) characterizing the cellular metabolism and intracellular regulation which is
complemented by a population balance model describing dynamics of the PHB chain
length distribution Penloglou et al. (2017).
The HCM in (Duvigneau et al., 2020) represents a set of ordinary differential equations
that describes the temporal evolution of concentrations of substrates fructose, acetate and
ammonium but also total biomass concentration and intracellular PHB content

,𝑑
𝑑𝑡 𝑥
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with the Monod-type kinetics and selected active modes (AMs) for substrates, biomass𝑟
𝑀

and biopolymer , which are determined by metabolic yield analysis𝑆
𝑆

· 𝑍,  𝑆
𝑐

· 𝑍,  𝑆
𝐻𝐵

· 𝑍
(Song and Ramkrishna, 2009). The kinetic rates are controlled by so-called cybernetic𝑟

𝑀
control variables which represent intra-cellular regulation of enzyme activity. Further, the
HCM includes by the enzyme dynamics for each AM

. (2)𝑑𝑒
𝑑𝑡 = α + 𝑟

𝐸𝑀
· 𝑏 − β⋅𝑒 − µ⋅𝑒

To account for the dynamics of the chain length distribution, the HCM is complemented
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by a population balance model (Vale and McKenna, 2005). Here, polymers from
HB-monomers are distinguished into active (living) and inactive (dead) polymer species,

and . The dynamics of their CLDs are described by𝐿𝑃[ ]
𝑖

𝐷𝑃[ ]
𝑖

𝑑 𝐿𝑃[ ]
𝑖
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where denotes the number density distribution of chains with distinct chain length .◦[ ]
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 𝑖
In contrast to Penloglou et al. (2017), the species of intermediate polymers is neglected in
our formulation. The dynamics of the monomer concentration and the monomer-synthase
complex are given by
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Under the assumption, that both are not accumulated, i.e., monomers are directly
polymerized and constant synthase concentration , steady𝑘
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with the molecular mass of a HB-monomer . The PHB-production and depletion𝑀𝑊

𝐻𝐵

rates and can be derived from the HCM. Taking all above considerations into𝑟
𝑃𝐻𝐵
+ 𝑟

𝑃𝐻𝐵
−

account the production rate of monomers and the depolymerization rate are𝑀𝑜𝑛[ ]* 𝑘
𝑑𝑒𝑝

given as
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+
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𝑀𝑊
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∞
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3. Numerical Solution
The overall model (1)-(6) consists of a large-scale system of ordinary differential
equations. As the average chain length is in the order of , simulation of each single106

chain length class is unfeasible. To scale the computational effort to an approachable scale
the Fixed-Pivot-Method (Kumar and Ramkrishna, 1996; Saliakas et al., 2007) was
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applied to divide the chain length scale into 100 different pivots. The resulting system of
220 ODEs was solved numerically in MATLAB using ode15s and the parameters
reported in Duvigneau et al. (2020) for the HCM-model. Due to lack of experimental data
of PHB CLDs, parameters of the polymerization model were chosen such that the
obtained CLDs are in ranges reported for microbial PHB production (Kawaguchi and Doi,
1992).

4. Results
The simulation scenarios followed in this contribution have been presented first in
Duvigneau et al. (2020) and are based on two different experimental runs with either
acetate or fructose as carbon supplying substrate. In Fig. 1 the simulation results for
substrates and overall biomass and PHB are shown along the experimental records. It is
seen that the amount of PHB of the macroscopic HCM and the microscale polymerization
model are the same. It can thereby be inferred that the applied numerical scheme provides
an accurate solution for the latter. In Fig. 2, characteristics of the overall CLD (active +

Figure 1: Macroscopic dynamics for scenario I (left, fructose) and scenario II (right, acetate)
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inactive polymer chains) are depicted. It is seen that the addition of ammonium in the first
scenario (fructose as the single carbon source) results in general PHB consumption,
represented by a flattening CLD. However, for the kinetic model predicts a𝑡 > 27ℎ
small increase of PHB for a short time range. This is also seen from the increased CLD in
Figure 2. The model also indicates that for the CLD flattens out as PHB is𝑡 > 28. 5ℎ
metabolized and the chain depolymerize. For the second scenario (acetate as single
carbon source), a similar effect is visible after acetate is depleted for . The𝑡 > 24ℎ
intracellular PHB is metabolized as ammonium is still present in the medium resulting in
a flattening CLD. For both cases, the number average molecular mass is in the order of

while the polydispersity index is around and thereby within ranges reported by106 2
Kawaguchi and Doi (1992).

5. Conclusion
In this contribution a multi-scale model for PHB formation was presented, which links a
state-of-the-art HCM with a detailed description of the chain length distribution
dynamics. To the best of our knowledge, this is the first multi-scale model which is able
to describe PHB formation on two different carbon sources combining a medium scale
metabolic model, optimal intracellular regulation and polymerization kinetics at the same
time. The simulation delivers reasonable average chain lengths in the right order of
magnitude and will be a valuable tool for future investigations.

Figure 2: Overall chain length dynamics for scenario I (left, fructose) and scenario II (right, acetate)

Future work will be concerned with model calibration using own data from experiments
with C. necator. Afterwards, the multi-scale model shall be used for optimization of
substrate feeding strategies to obtain high PHB molecular weights. Furthermore, the
model could be extended to include additional carbon sources and account for co-polymer
formation.
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Abstract

Systems biology is a field where Process System Engineering has an immense potential
for contribution. The first step in applying Systems Biology to a given problem is to
characterize potential microorganisms to be used for a transformation of interest. One
basic characterization is to estimate what are the extents of the reactions that take place
inside the cell, which is called flux analysis. In this contribution, we present an
application of identifiability analysis to 13C-Metabolic Flux Ratio Analysis (13C-MFA),
which is essentially a parameter estimation problem. A simple and precise way to assess
if an experiment would give a unique solution for all flux ratio estimates is important
for the successful use of 13C-MFA. In this work, the principal components (PC) of the
Hessian matrix were evaluated to assess the identifiability of metabolic fluxes on
labeling experiments. A recently proposed sparse PC calculation was used for that end
and compared with classic PC. This approach was applied to the estimation of metabolic
flux ratios of the central metabolism of Pseudomonas aeruginosa producing
polyhydroxyalkanoates (PHA). The results indicated that sparse PC make it
straightforward to interpret dependencies among fluxes, and that the substrate
[6-13C]glucose is the best option for labeling experiments with Pseudomonas
aeruginosa. The identifiability analysis also showed that the exchange rates of the PP
pathway cannot be estimated uniquely, just some combinations of a reduced set of them
are identifiable. In contrast, the flux through the Entner-Doudoroff Pathway can be
estimated with high accuracy. The results presented here indicate that applying
identifiability analysis to 13C-MFA can reduce experimental costs and increase
estimation precision.

Keywords: Identifiability, 13C-MFA, Metabolism, Systems Biology, Metabolic
Engineering
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1. Introduction

Metabolic Engineering is a field that aims to assist in the development of new strains for
sustainable production of valuable bioproducts. In essence, it consists of applying
mathematical models to guide genetic modification in cells in order to obtain higher
yields and productivity (Sauer, 2006). Among the tools that have been developed in the
field, 13C-Metabolic Flux Ratio Analysis (13C-MFA) emerged as a powerful tool to
describe the metabolism of a cell (Sauer, 2006) by estimating the flux distribution of
metabolites. Figure 1 illustrates how this method works; first a carbon 13 labeled
substrate is used in the culture medium (e.g. [6-13C]glucose), then the labeling goes
through the internal metabolites until it reaches a bioproduct. The labeling pattern in the
bioproduct is a function of the pathway that was used by the cell, and each pathway
shuffles the labeling differently. Finally, the labeling in the bioproduct is measured by
techniques such as Gas Chromatography-Mass Spectrometry (CG-MS) and Nuclear
magnetic resonance (NMR). Using a metabolic network model, an estimation problem
is formulated and solved and the flux distribution inside the cell estimated. Determining
precisely what fluxes can be estimated from a given experiment architecture (i.e.
labeling substrate and bioproducts measurements) is crucial due to the high
experimental cost associated with carbon labeling experiments.

The Process System Engineering community has given important contributions to the
identifiability of nonlinear model parameters, and identifiability studies on 13C-MFA
have also been conducted (van Winden et al., 2001; Kappelmann et al., 2016). However,
most of them focus on structural identifiability and not on practical identifiability. Here,
the well-known Principal Component Analysis (PCA) is applied to identify nonlinear
relations between metabolic fluxes in 13C-MFA. Also, a recently developed
methodology to obtain sparse PC is applied (Nakama et al., 2020). As a case study, the
identifiability of metabolic flux ratios of the central metabolism of Pseudomonas
aeruginosa producing polyhydroxyalkanoates (PHA) is evaluated. PHA is a group of
natural biodegradable polyesters and, to make its production economically feasible,
their yield must be increased.

Figure 1: 13C-MFA method flow diagram. The labeling substrate is metabolized by the cell that
will shuffle the labeling pattern depending on the flux distribution. The labeling pattern of

specific metabolites is measured by analytical techniques and using a metabolic network model
the flux distribution can be estimated.

2. Methodology

The 13C-MFA metabolic model consists of metabolite and carbon labeling (x) balances.
The metabolic fluxes (v) were parameterized using the metabolite balances and
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calculated in terms of the so-called free fluxes (vfree). The approach for parametrization
of fluxes variables presented by Wiechert et al. (1999), where a bidirectional reaction
has a net flux(vnet) and an exchange flux (vxch), was also applied. The fluxes are then
represented by

𝑣 = 𝑔 𝑣
𝑓𝑟𝑒𝑒( ),    𝑣

𝑛𝑒𝑡
= 𝑣→ − 𝑣←,    𝑣

𝑥𝑐ℎ
= 𝑚𝑖𝑛 (𝑣→, 𝑣←) (1)

The labeling balance (2) is a system of bilinear equations. By performing a linear
transformation of the variables (Wiechert et al., 1999), it is possible to compute the
sensitivities of the labeling of measured components with respect to the free fluxes in an
explicit form (3).

𝑓 𝑥, 𝑥
𝑖𝑛𝑝

, 𝑣
𝑓𝑟𝑒𝑒( ) = 0,   𝑦 = ℎ(𝑥) (2)

∂𝑦(𝑥,𝑣
𝑓𝑟𝑒𝑒

)

∂𝑣
𝑓𝑟𝑒𝑒

= ∂𝑦(𝑥)
∂𝑥 •

∂𝑥(𝑣
𝑓𝑟𝑒𝑒

)

∂𝑣
𝑓𝑟𝑒𝑒

(3)

where xinp is the labeling of the substrate and y the labeling of the measurements. PCA
was applied to assess the identifiability of the parameters of the nonlinear model and
select a subset of parameters that can be estimated with high accuracy (Vajda et al.,
1989). The method consists in computing the Hessian matrix (H) obtained by the
Gauss-Newton approximation, using normalized sensitivities. Then, its PCs are obtained
with the Singular Value Decomposition (SVD) as follows:

where V is the matrix of PCs (eigenvectors of H) and 𝚺 the matrix with the eigenvalues
of H. The PCs of H represent linear combinations of the original parameters, which may
indicate dependencies between parameters. However, because these matrices are
normally dense, finding combinations with a reduced number of relevant parameters can
be challenging. Recently, Nakama et al. (2020) developed a method to compute sparse
PC that are orthogonal to the components associated with small eigenvalues, which can
be particularly blamed for the large variance in the parameters. In this work, both PC
and sparse PC were computed to evaluate the identifiability of metabolic fluxes. The
13C-MFA metabolic model was implemented in MATLABv2015a and the sparse
eigenvector decomposition was calculated in Julia.

3. Case study

To evaluate the efficiency of this new methodology, a small but challenging estimation
problem of 13C-MFA was selected. This case study is based on the work of Riascos et al.
(2013), which consists of the estimation of metabolic flux ratios of the central
metabolism of P. aeruginosa producing PHA with only few measurements available.
Usually, the 13C-MFA method is applied under growth conditions and the labeling
measurements of amino acids are available (Sauer, 2006). However, PHA production by
P. aeruginosa mainly occurs under non-growth conditions and, in this case, only the
measurements of PHA mass isotopomer are available (Riascos et al., 2013). The
metabolic network of P. aeruginosa used in this work is presented in Figure 2. It uses
glucose as the sole carbon source and PHA is the only bioproduct. There are two
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options to metabolize glucose into PHA, either by the Pentose Phosphate (PP) pathway,
or by the Entner-Doudoroff (ED) pathway, which can also operate in a cyclic mode.
Riascos et al.(2013) estimated the metabolic fluxes ratios on P. aeruginosa using data
from an experiment with 80% of [U-13C]glucose and made the hypotheses that the ED
pathway operates only in linear mode and the PP pathway without reversible reactions.
However, those hypotheses are not necessarily valid and, in this case, these pathways
would shuffle the labeling of PHA mass isotopomers (Kohlstedt and Wittmann, 2019).

Figure 2: Pseudomonas aeruginosa metabolic network.

In this work, the effect of considering the aforementioned pathways in the fluxes ratio
estimation problem is evaluated by an identifiability analysis. The network has 15
reactions (including three reversible reactions from the PP pathway), 9 internal
metabolites, and glucose uptake is fixed at the unity. Consequently, the system has five
degrees of freedom, that is, five free fluxes. The chosen free fluxes are: the net flux of
the oxidative PP pathway (PPoxi); the net flux of the cyclic mode of the ED pathway
(EDcyc); and the exchange fluxes of the PP pathway (PPxch1, PPxch2, and PPxch3).

4. Results

The results presented in this section are based on a flux distribution similar to the one
used by Riascos et al. (2013), in which part of the flux through the ED pathway was
directed to its cyclic mode (Figure 2). PCs associated with small eigenvalues implies in
a large variance of the estimates. Based on the standard deviations of measurements
presented by Riascos et al. (2013), eigenvalues lower than 10-4 are considered small
(Vajdaet al., 1989). The eigenvectors (v) and eigenvalues (𝜎) of the Hessian matrix for
the [U-13C]glucose experiment are presented in Table 1. Only one of the eigenvalues is
above the threshold, indicating that the problem has identifiability issues with
dependencies between parameters. The only component that can be estimated with a
certain confidence is the flux through the cyclic mode of the ED. After analyzing a few
commercially available labeled glucose, substrate [6-13C]glucose presented the best
results regarding parameter identification. As it can be seen in Table 1, only two
components are below the threshold. Although the problem still presents identifiability
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issues, more parameters can be estimated with higher confidence with this experiment.
Obtaining a more precise and physically meaningful combination of the parameters
from data is not always a simple task (Vajdaet al., 1989). For this reason, the sparse
eigenvectors of the hessian matrix were calculated.

Table 1: Eigenvectors (PC) and corresponding eigenvalues of the Hessian matrix.

[U-13C]Glucose

v1 v2 v3 v4 v5

PPoxi -0.19 -0.06 0.08 -0.97 -0.14

EDcyc -0.92 0.36 0.04 0.16 0.01

PPxch1 -0.08 -0.33 0.83 0.04 0.44

PPxch2 -0.08 -0.29 0.33 0.19 -0.87

PPxch3 -0.33 -0.82 -0.45 0.06 0.15

σ2 0.17 8e-18 9e-19 5e-19 2e-20

[6-13C]Glucose

v1 v2 v3 v4 v5

PPoxi -0.07 0.35 0.29 -0.69 0.56

EDcyc 0.37 -0.86 0.16 -0.24 0.20

PPxch1 0.59 0.21 -0.32 0.39 0.59

PPxch2 0.59 0.21 -0.32 -0.50 -0.50

PPxch3 0.41 0.22 0.82 0.25 -0.20

σ2 60.7 0.69 0.004 9e-16 1e-16

Sparse PCs were obtained using the methodology proposed by Nakama et al. (2020).
Components v4 and v5 were removed and the other components were sparsified, keeping
the orthogonality to v4 and v5. Sparse PCs for the [6-13C]glucose experiment using the
complete network are presented in Table 2. Now some combinations of parameters can
be easily identified; by analyzing component one, it is clear that the objective function
only depends on the PPxch1/PPxch2 combination, not on these fluxes separately.
Component v2 indicates that flux EDcyc can be estimated individually. A similar analysis
can be applied to component v3, and PPxch3, and flux PPoxi cannot be individually
estimated from this experiment.

The metabolic network for P. aeruginosa can differ among strains, hence two other
typical networks were also considered, the ∆EDcyc and the ∆PPoxi strains. For the former,
in which the ED pathway cannot operate in cyclic mode (Table 2), PPoxi could be
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estimated separately, which was the original goal of Riascos et al. (2013). The relation
among the exchange fluxes of the PP pathways practically remains unchanged;
however, component v1 now has no influence from PPxch3. The other common variation
of the P. aeruginosa network considered is the absence of the oxidative branch of the PP
pathway (Table 2). In this case, the situation is similar to the complete network without
the PPoxi influence on the components.

Table 2: Sparse PC of the Hessian matrix for the [6-13C]glucose experiment.

complete network ΔEDcyc ΔPPoxi

v1 v2 v3 v1 v2 v3 v1 v2 v3

PPoxi 0.00 -0.33 0.34 0.00 1.00 0.00 x x x

EDcyc 0.00 0.94 0.00 x x x 0.00 1.00 0.00

PPxch1 -0.67 0.00 0.00 -0.71 0.00 0.00 -0.71 0.00 0.00

PPxch2 -0.67 0.00 0.00 -0.71 0.00 0.00 -0.71 0.00 0.00

PPxch3 -0.29 0.00 0.94 0.00 0.00 1.00 0.00 0.00 1.00

5. Conclusion

Identifiability analysis is an essential tool for research in which 13C-MFA is applied.
This analysis can reduce experimental costs and increase the precision of the estimated
metabolic fluxes. Here, it was demonstrated that the application of a sparse PC
decomposition can improve the identification of dependencies among parameters and
the determination of estimable fluxes from available data. In the case study of P.
aeruginosa producing PHA, the identifiability analysis indicated that the substrate
[6-13C]Glucose allows for the estimation of the fluxes through the ED pathway in cyclic
mode and the oxidative branch of the PP pathway for some networks. The method
presented in this work enables the identification of parameter combinations that can be
estimated from labeling experiments. This represents an advantage when compared to
the methods presented in literature that only verifies whether a subset of parameters is
identifiable, leading to a combinatorial problem (van Winden et al., 2001; Kappelmann
et al., 2016).
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Abstract 
The Numerical Matrices Methods (NMM) are assessed regarding their potential for 
reconstructing the topology and kinetics of biochemical reaction networks featuring 
increasing complexity, from a single-enzyme system to a three-enzyme cyclic network. 
The eventual goal is to use this analysis framework for synthetic in vitro enzymatic 
networks for which kinetic data are available. The NMM use time-dependent 
concentration data of the chemical species to reconstruct the network and determine its 
kinetic parameters. Preliminary results indicate that the methods are able to identify the 
correct network structure and kinetics, but have problems dealing with rate constants 
deviating from each other by several orders of magnitude. This finding is particularly 
relevant for biochemical systems with highly variable kinetics. Future addressing of the 
problem will enable the NMM to accommodate fast reaction kinetics and aid the 
establishment of a more robust model-based design and optimization framework.    

Keywords: metabolic engineering, enzymes, Numerical Matrices Methods, network 
reconstruction, biochemical kinetics 

1. Introduction 
There is an increasing interest in in vitro metabolic engineering due to the advantages of 
using cell-free ensembles of purified enzymes or cell lysates for the production of 
compounds of biotechnological interest (Dudley et al. 2015). Synthetic in vitro metabolic 
networks (SivMeNs) operating in cell-free systems are easier to manipulate and optimize 
due to the reduced complexity compared to living cells – the interconnectivity and cell-
wide regulations of the latter are yet to be properly understood, even for model organisms 
such as Escherichia coli. The complete decoupling of the enzymatic pathway of interest 
from other cellular processes allows cell-free systems to redirect all the input biomass 
towards product formation, with consequent increase in product yields (Erb 2019, Bowie 
et al. 2020).  

An example of such a SivMeN is the CETCH cycle, designed for biochemical carbon 
fixation. This cycle can convert two molecules of CO2 to one molecule of either 
glyoxylate or malate, both of which are two-carbon metabolites (Schwander et al. 2016). 
The introduction of engineered enzymes was among the many improvements carried out 
during the course of its development. Addition of methylsuccinyl-CoA oxidase (Mco) in 
the CETCH cycle allowed oxidation of methylsuccinyl-CoA by molecular oxygen instead 
of relying on artificial electron acceptors such as ferrocenium, while the engineered 
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proofreading enzyme propionyl-CoA oxidase (Pco) prevented metabolite loss due to the 
build-up of dead-end metabolites such as malyl-CoA. 

As reaction kinetics govern the behaviour of SivMeNs, kinetic modelling is essential for 
pathway design and further optimization. Metabolic network reconstruction and kinetic 
parameter identification from experimental data may prove useful for gaining additional 
insights into pathway performance improvement. For example, nodes engaged in 
unwanted and previously unknown side reactivities can be pinpointed through network 
structure identification. 

Several methods have been developed to deduce the connectivity of chemical species 
participating in a reaction network from time-series concentration data. For example, in 
the correlation metric construction (CMC) method, a map of connections is determined 
through analysis of time-lagged concentration correlation functions of two chemical 
species at a time (Arkin et al. 1995, Arkin et al. 1997). In comparison, the Numerical 
Matrices Methods (NMM) are based on the analysis of correlations between kinetic 
complexes to determine not only the network structure, but also the kinetic parameters 
using linear algebra and statistical methods. The present work aims at evaluating the 
capabilities and drawbacks of NMM for analysis of cyclic SivMeNs such as the CETCH 
cycle. 

2. Numerical Matrices Methods (NMM) 
NMM was developed for network structure identification as well as for the determination 
of the respective rate constants through least squares parameter estimation (Karnaukhov 
et al. 2007). The NMM use the formalisms of kinetic complexes, a key aspect of the 
chemical reaction network theory according to which linear, bilinear and quadratic rate 
expressions are applied to identify all possible uni- and bimolecular interactions among 
chemical species, that may occur in a given reaction network. A short survey of the tools 
included in the NMM is illustrated in Figure 1. 
  
The first tool, called the Kinetic Matrix Method (KMM), expresses the rate of change of 
the concentrations 𝑋 𝑡  of the chemical species as a product between a kinetic matrix 𝐴 
and a vector of kinetic complexes 𝐹, as shown in Figure 1b. The vector 𝐹 is calculated 
from the exponentiation of the species vector 𝑋 𝑡  with the matrix 𝑌 formed from the set 
of complex vectors 𝑦 , as stated in equation (1). The species vector 𝑋 𝑡  has a number 
of 𝑛𝑠 rows, equal to the number of chemical species involved, where its elements 
represent the concentration 𝑋  of the chemical species j at time point 𝑡 . 

𝐹 𝑡 = 𝑋 𝑡 = 𝑋 𝑡  (1) 

The KMM initially reconstructs a primary kinetic matrix with null columns, each of 
which contains elements with values below a certain threshold 𝜀 . Such columns 
represent complexes that do not contribute to the network dynamics. A second KMM 
with more accurate values of the matrix 𝐴 can be executed through the removal of the 
non-relevant complexes from the initial matrix 𝑌 of complex vectors. Afterwards, the 
Representation Matrix Method (RMM) is used to decompose the kinetic matrix 𝐴 into a 
set of representation matrices 𝐺  and a vector of nonzero parameters 𝑘 = 𝑘  that contains 
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Evaluation of the Numerical Matrices Methods   𝑛𝑝 nonzero elements of 𝐴 with absolute values above a certain threshold 𝜀 , as shown in 
Figure 1c.  

 

 
Figure 1. Overview of the tools of the Numerical Matrices Methods. Starting from time 
series of concentration data for all the chemical species participating in a given reaction 
network (a), a sequence of matrix-based numerical steps (b-f) is executed that finally 
leads to the reconstruction of both the network stoichiometric matrix 𝑅 and the vector of 
rate constants 𝐾.  
 
Then the stoichiometric matrix 𝑅 is reconstructed from the set of representation matrices 𝐺  through an intermediate “collapsed” kinetic matrix 𝑊 (see Figure 1d). The columns 
of 𝑊 corresponding to multivariant reactions (or reactions that share the same reactant 
complex, but with different product complexes) are then decomposed into reaction 
vectors of the stoichiometric matrix 𝑅. In the complete absence of multivariant reactions 
in the chemical reaction network of interest, 𝑊 will be equal to 𝑅. 

Once the stoichiometric matrix 𝑅 is fully known (see Figure 1e), the last method called 
the Stoichiometric Matrix Method (SMM) is used to calculate the vector 𝐾 of rate 
constants. The SMM mathematically expresses the rate of change of 𝑋 𝑡  as a function 
of the matrix 𝑅 and the vector 𝐾 as shown in Figure 1f. 

3. Numerical Experiments 
MATLAB-based numerical experiments were conducted to test the capabilities of NMM 
in reconstructing the kinetic mechanisms governing enzyme-catalyzed reaction networks. 
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In particular, the NMM were tested for its ability to reconstruct the reaction network 
structure and determine the values of the rate constants starting from time series of 
concentration data. To achieve this goal, in silico data sets describing the concentration 
profiles over time of three models of enzyme-catalyzed reactions were generated and used 
as input information for the NMM-based reconstruction approach. The first model 
represents a single-enzyme mechanism, the second model represents a two-enzyme 
cascade, and the third model represents a three-enzyme cycle that resembles a strongly 
simplified CETCH cycle. In all of these cases, the enzymes were modeled to follow the 
compulsory-ordered ternary complex mechanism. Figure 2 shows the schematic 
representation of the three enzymes that participate in the designed models.  

The aforementioned in silico data sets were generated through numerical integration of 
the differential equations representing the mass balances of the chemical species 
participating in the three enzymatic networks. Due to the nature of these equations, the 
generated datasets also contained complete information about the concentration dynamics 
of the transitional enzyme-substrate complexes. Such information is usually not present 
in concentration profiles gathered under laboratory conditions. During numerical 
integration, the maximum chosen duration was 𝑡 =10, with concentration values 
known at a resolution of 0.01 mol/l.  

 
Figure 2. Diagrams that represent the compulsory-ordered ternary complex mechanism 
that governs the kinetics of the enzymes considered in the network models. The single-
enzyme model contains the rate expressions of (a). The two-enzyme model contains the 
rate expressions of both (a) and (b). The cyclic three-enzyme model contains the rate 
expressions of (a), (b) and (c). 

The values of the rate constants used during synthetic data set generation were chosen to 
ensure that the enzyme-substrate complex formation steps are fast reactions, while the 
product formation steps were considered as the rate-determining steps. The difference 
between the rate constant values of the slowest and the fastest steps of both forward and 
reverse reactions are chosen to reach up to three or more orders of magnitude. Such a 
range of values mimics biological reality, as similarly huge differences between rate 
constants have been observed in enzymes such as the yeast hexokinase (Noat et al. 1968) 
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and bovine heart mitochondrial malate dehydrogenase (Heyde et al. 1968). The chosen 
values for each of the rate constants are given in Table 1 and were later varied, as 
explained in section 4. 

To enable faster and more accurate determination of the kinetic matrix 𝐴 during the 
execution of the KMM, a preliminary elimination of the complex vectors was carried out. 
Thereby, we excluded species’ interactions that usually do not occur in enzyme catalysis. 
Examples of such kinetic complexes include the ones that correspond to interactions 
between small molecules that are not bound to their respective enzymes or enzyme-
substrate complexes, interactions between unbound enzymes, interactions between 
enzyme-substrate intermediates, and interactions between free and bound enzymes. It was 
also assumed that no dimer formation occurs during the operation of the three network 
models. For this reason, the complex vectors representing such interactions were 
eliminated beforehand. We noted that these complex interactions may need to be re-
considered in the future, in order to better reflect the biological reality, for instance with 
respect to signaling pathways in which interactions between different enzymes are 
present. 

In enzymatic reactions and networks, the linear dependencies among the chemical species 
due to the conservation of mass in the system of reactions lead to singularities of the 
kinetic matrix 𝐴. To break these holonomic conditions intrinsic to stoichiometric matrices 
of reaction networks, a sufficient number of time-dependent concentration profiles with 
different initial concentration conditions were collected. The number of time-series of 
concentration data 𝑛𝑚, and the initial concentration values used, were chosen according 
to a fractional factorial design. Two-level designs were chosen, with the normalized lower 
level assigned with the value of 0.05 and the normalized higher level with the value of 
0.5. These values are given only to the concentrations of the unbound enzymes, substrates, 
cofactors and products, while to the rest of the chemical species we assigned the initial 
concentration values of zero during dataset generation. For the single-enzyme kinetic 
model, a 25-1 design was chosen. For the two-enzyme kinetic model, a 29-4 design was 
sufficient to break the holonomic constraints. For the three-enzyme kinetic model, a 211-4 
design is sufficient, as long as a twelfth factor has non-zero initial concentration values 
(either 0.05 or 0.5 in any of the 32 numerical experiments). 

4. Results 
Karnaukhov et al. (2007) tested the NMM by using a network model representing a 
hypothetical assembly mechanism of a quaternary complex between ribosomal RNA and 
three RNA-binding proteins. The used rate constant values were in the range of 0.001–
1.3. Using the same range of rate constant values for our three network models during 
numerical dataset generation and setting the threshold 𝜀  = 0.0005, the NMM managed 
to properly reconstruct the stoichiometric matrices and the values of all rate constants. 

But in the case of the three-enzyme network, the SMM gave incorrect stoichiometric 
matrices when the rate constant values of the first step of the reverse reactions catalyzed 
by the three enzymes (i.e. 𝑘 , , ) were one order of magnitude smaller than the values 
of the next step involving the binding of substrate. If at least one of these rate constants 
had a value that was in the same order of magnitude as that of the next step, then the 
NMM properly determined the correct entries of the stoichiometric matrix. If the rate 
constant values were changed to get a difference of more than three orders of magnitude 
between the slowest and fastest steps (e.g. setting either 𝑘 ≥10 or 𝑘 <10−3), the SMM 
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calculations became very slow, as the kinetic matrix 𝐴 at this point assumed a very high 
rank and condition number. A similar issue occurred in the cases of the simpler single-
enzyme and two-enzyme cascade models, where differences of more than three orders of 
magnitude between the slowest and fastest steps resulted in incorrect dimensions and 
incorrect entries of the reconstructed stoichiometric matrix. 

Table 1. The non-dimensional rate constants chosen during numerical dataset generation.  

Rate constants Values used Rate constants Values used 𝑘  1.3 𝑘 , ,  0.011 𝑘  0.75 𝑘  1.03 𝑘  0.001 𝑘  0.6 𝑘 , ,  0.009 𝑘  0.006 𝑘 , ,  0.5 𝑘  1.1 𝑘 , ,  0.85 𝑘  0.95 𝑘 , ,  0.009 𝑘  0.005 

5. Conclusion 
The Numerical Matrices Methods (NMM) are useful tools for kinetic network reconstruc-
tion from time-dependent concentration data. However, problems arise when the rate 
constants in a given network differ by more than three orders of magnitude between fast 
and slow steps (i.e. the rate-determining steps). The findings suggest treating the network 
reconstruction task better as a dynamic optimization problem, constrained by a 
differential-algebraic equation (DAE) system, where the fastest steps are modelled as 
chemical equilibrium constraints. As rate constants are often not known a priori, one 
should create a family of kinetic network alternatives, from which the best network could 
be identified by systematic model discrimination. In this way, the model-based design 
and optimization of synthetic in vitro metabolic networks (SivMeNs) can be addressed. 
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Abstract 
Chimeric Antigen Receptor (CAR)-T cell therapies are a type of patient-specific cell 
immunotherapy demonstrating promising results in the treatment of aggressive blood 
cancer types. CAR-T cells follow a 1:1 business model, translating into manufacturing 
lines and distribution nodes being exclusive to the production of a single therapy, 
hindering volumetric scale up. In this work, we address manufacturing capacity 
bottlenecks via a Mixed Integer Linear Programming (MILP) model. The proposed 
formulation focuses on the design of candidate supply chain network configurations 
under different demand scenarios. We investigate the effect of an intermediate storage 
option upstream of the network as means of: (a) debottlenecking manufacturing lines and 
(b) increasing facility utilisation. In this setting, we assess cost-effectiveness and 
flexibility of a decentralised supply chain and we evaluate network performance with 
respect to two key performance indicators (KPIs): (a) average production cost and (b) 
average response treatment time. The trade-off between cost-efficiency and 
responsiveness is examined and discussed. 
 
Keywords: personalised medicine, supply chain, optimisation. 

1. Introduction 
Chimeric antigen receptor T cell (CAR-T cells) therapy is a type of adoptive cell 
immunotherapy (Zhang et al. 2017; Guthrie, 2018). T cells are a sub-type of white blood 
cells that assist cell-mediated immunity. In the case of CAR-T cell manufacturing, T cells 
are genetically modified and enabled to recognise and kill target cancer cells. Their 
manufacturing process starts with the extraction of T cells from the donor's (allogeneic) 
or patient's (autologous) blood stream through a specialised procedure (leukapheresis). 
The leukapheresis sample is then transferred to the manufacturing facility for further 
processing that involves cell expansion, genetic modification and Quality Control (QC). 
The approved therapy is then sent to the hospital and administered to the patient 
(Levine, 2015). Autologous CAR-T cell therapies have received landmark approvals by 
the U.S. Food and Drug Administration (FDA) (2017) and the European Medicines 
Agency (EMA) (2018) and are currently offered for the treatment of recurring, aggressive 
B-cell lymphoma, under a controlled scheme (EMA, 2018; Novartis, 2018; FDA, 2017). 
At the moment, autologous CAR-T cells seem to be leading the race in personalised cell 
therapies, while the allogeneic counterpart is also gaining attention. 

A unique feature of autologous CAR-T therapies is that the patient’s cells are used as raw 
material and therefore the therapy manufacturing and distribution that follow are 
exclusively dedicated to the production and delivery of a single therapy. In such cases, 
volumetric scale-up is not applicable and is replaced by scale-out solutions, where parallel 
manufacturing lines are available. In addition, CAR-T cell life cycle involves the 
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distribution and handling of sensitive materials with short shelf lives. This is translated 
into tight time constraints that challenge the supply chain network even more. Given the 
autologous and sensible nature of CAR-T therapies, novel decentralized manufacturing 
models are considered promising alternatives to a traditional centralized approach, since 
small scale local manufacturing facilities offer greater flexibility and can significantly 
reduce transportation costs (Harrison et al., 2018). On the other hand, intermediate 
storage of the therapies might be necessary to serve as buffer when the demand 
temporarily exceeds the manufacturing facilities’ capacity or to optimise the facility 
utilisation and is crucial to efficiently coordinate manufacturing and distribution tasks. 

In this work, we present a Mixed Integer Linear Programming (MILP) formulation that 
provides candidate solutions with respect to the location, number and capacity of 
manufacturing sites, storage duration, and the most suitable mode of transport. In 
particular, the MILP model is used to assess the supply chain network performance under 
three different time constraint scenarios (19, 22 and 25 days) total return time. The latter 
refers to the total duration of the therapy life cycle, starting from the leukapheresis 
procedure and ending with the delivery of the therapy at the hospital. All the scenarios 
are assuming a demand of 500 patients per year. 

2. Materials and methods 
The general supply chain network considered in this work is represented in Figure 1. It 
consists of 5 nodes in total, namely: leukapheresis site, storage site, manufacturing site, 
Quality Control and hospital. It should be noted that storage in this case is optional, thus 
the model is allowed to by-pass it and proceed directly into the manufacturing. The 
location of both storage and QC facilities is assumed to be co-located with the 
manufacturing facilities in this work. Nevertheless, the model formulation has the 
capability of evaluating outsourced storage and QC, whereby the decision becomes a 
design variable of the supply chain network. 
 

 
Figure 1: Supply chain network considering 5 nodes: (a) leukapheresis site, (b) storage site, (c) 
manufacturing site, (d) Quality Control and (e) hospital. Storage of leukapheresis samples is 
optional allowing the model to by-pass this node and move directly into manufacturing. 

Manufacturing facilities of three different capacities are considered. These include 
facilities of 4, 10 and 31 parallel production lines, corresponding to a maximum capacity 
of approximately 200, 500 and 1500 therapies per year respectively. Manufacturing costs 
are based on the information available from Spink and Steinsapir (2018), while QC costs 
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are proprietary to Trakcel Ltd. The unit transport costs across the various locations are 
estimated costs from a white glove courier with cell therapy processes. Storage costs 
consider preservation of samples at -150℃.  

Based on economies-of-scale, the variable manufacturing cost per therapy is assumed to 
be a decreasing function of the percentage at which the respective facility is utilised. This 
is represented by an originally non-linear formulation that is then linearized using a 
McCormick envelope (McCormick, 1976). Constraints representing the minimum flow 
of samples are adapted from Tsiakis et al. (2001). 

The model considers that manufacturing facilities are placed close to transport hubs, such 
as airports, ports and train stations to facilitate distribution. In addition, the locations align 
with existing cell and gene therapy facilities in Europe, US and the UK. In this case, we 
assume that QC is co-located with the manufacturing facility. We consider that QC 
facilities are of 20-fold higher capacity when compared to the manufacturing facilities, 
relaxing therefore QC capacity constraints. Following standard European and UK 
practices of public and public and/or semi-public healthcare systems, we assume that the 
choice of collaborating hospitals and specialist centres is not under the manufacturer’s 
sole control. Therefore, these two nodes are considered as model inputs and not as 
decision variables. For the leukapheresis sites we consider a capacity of 8 patients per 
day, while we assume that capacity is not a bottleneck for the administration of the 
therapy at the hospital site and thus no upper limit is provided. Following the Advanced 
Therapy Treatment Centre (ATTC) model as discussed in Papathanasiou et al. (2020), we 
assume that leukapheresis sites and hospitals are different facilities, located in the same 
region. We assume that transportation can happen either within 24 or 48 hours, 
irrespective of the mode of transport (i.e. car, rail etc). This is to align the model 
assumptions with standard practice in the cell therapy space where courier contracts are 
costed based on the estimated time of delivery. An overview of the model formulation is 
presented in Table 1.  
Table 1: Overview of model formulation. 

 Index Mathematical formulation  Description 
Obj function (1)  Total cost  

Constraints (2)  Total return time of therapy 

(3)  Manufacturing capacity constraint 

(4)  Total number of manufacturing sites 

(5)  Sample balance at each node 
(leukapheresis site, storage, 
manufacturing and quality control 

 
 

 

  
We consider a base case where the samples are processed immediately after they reach 
the manufacturing facility (Scenario A), and four alternative scenarios where the samples 
can be stored at the manufacturing facility site for up to six days and different time 
constraints are enforced. Table 2 summarizes the constraints in each scenario. The 
assumed duration of the manufacturing is 7 days, representing a forward-looking scenario 
of technology developments that can lead to decreased culture times with respect to 
current industrial average (~19 days). 
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Table 2: Summary of the five scenarios considered in this paper. 

 Storage # of manufacturing 
facilities 

Ut 

Scenario A No storage 2 19 days 
Scenario B ü (up to 6 days) 2 19 days 
Scenario C ü (up to 6 days) 2 22 days 
Scenario D ü (up to 6 days) 2 25 days 
Scenario E ü (up to 6 days) 2 No constraint 

3. Results and discussion 
The model described above is used for the design and assessment of a supply chain 
network to deliver 500 therapies per year. The demand distribution is assumed to be 
homogeneous among each year quarter, for which results are demonstrated here. In all 
examined scenarios the model is allowed to invest into maximum two manufacturing 
facilities to be built.  

The model has 10,338,522 variables and 2,502,554 discrete variables and all the scenarios 
have been executed in a 24-Core Xeon E5-2697 machine with 96GB Ram. The scenario 
with the highest CPU time is Scenario E and it required a CPU time of ~98 hours to reach 
an optimality gap lower than 3%.  

Figure 2a illustrates the results of all five scenarios in terms of average cost and return 
time of a therapy, Figure 2b focus on Scenarios A, B and C, and Figure 3 reports the 
utilisation of the manufacturing facilities in Scenario A and C.    
 

 
                                      (a)                                                                                       (b) 
Figure 2: (a) Average therapy cost in Scenario A (blue star), B-D (black squares) and E 
(red triangle). The bars represent the average return time of a therapy in each scenario. (b) Number 
of therapies in manufacturing in Scenario A and C. The black horizontal lines represent the 
thresholds of 14 and 20 therapies. 

We can observe that the average therapy cost decreases when storage is chosen as an 
option, as it allows for improved manufacturing planning. This is achieved by scheduling 
to manufacture more therapies in parallel, therefore decreasing the operating cost. When 
the same upper bound for the total return time of a single therapy is considered then a 5% 
decrease of the cost is achieved with an incremental increase in the average return time 
(~1%). A sharper decrease of 20% of the average therapy cost can be achieved by 
increasing the upper bound for the total return time of a therapy to 22 days. Relaxing 
further this constraint leads to negligible improvements in the cost. 
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The reason of the decrease of the average therapy cost is explained by the choice and 
utilisation of the manufacturing facilities. Given the sizes of the manufacturing facilities 
considered in this work, a different combination of small (4 parallel manufacturing lines) 
and medium-sized (10 parallel manufacturing lines) is required for scenarios A and C. As 
we can observe in Figure 2b, in Scenario A the threshold of 14 therapies in manufacturing, 
which can be satisfied by a small and a medium facility, is temporarily exceeded in a 
small subset of days. On the other hand, in Scenario C the same total demand can be 
satisfied by one medium and one small facility, as the threshold of 14 therapies in 
manufacturing is never exceeded. It is important to note that in Scenario B two medium-
sized facilities are still needed in order to satisfy the demand.  

 
Figure 3: The graphs on the left represents the utilisation of the manufacturing facilities m3 (top) 
and m6 (bottom) in Scenario A, the graphs on the right represents the utilization of manufacturing 
facilities m3 (top) and m1 (bottom) in Scenario C. The black horizontal line in each plot represents 
the average utilisation. 

From Figure 3 we can observe that the facility m6 in Scenario A is significantly 
underutilized, resulting into a higher operating cost per therapy. In Scenario C the main 
facility m3 is almost always operating at maximum capacity, while the smaller facility 
m1 is used only when the demand cannot be satisfied by m3 and on average the utilisation 
is higher than the utilisation of  m6 in Scenario A, due to its smaller size. It should be 
mentioned that the average utilisation is calculated excluding the days when the facilities 
are not in operation. 

Assessment of intermediate storage and distribution nodes in personalised 
medicine
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4. Conclusions  
In this work we present a Mixed Integer Linear Programming (MILP) formulation for the 
design and optimisation of supply chain networks in personalised therapies. The latter 
present the unique characteristic of a 1:1 business model, where manufacturing and 
distribution lines are occupied for the production and delivery of a single therapy. This is 
translated into increased per-therapy costs, as well as manufacturing bottlenecks, 
considering that volumetric scale up is not applicable in such cases. The MILP model 
investigates the potential of decentralised manufacturing as well as storage in an attempt 
to create a flexible, cost-efficient network that remains responsive to the patient schedule. 
We consider different life cycle duration scenarios and an annual demand of 500 patients 
throughout. Overall, the model indicates that cost decreases as a function of the return 
time, while the use of multiple facilities may lead to lower operating costs. The latter is 
related to the variable cost being calculated as an inverse function of the facility 
utilisation. Lastly, results from this work demonstrate that storing leukapheresis samples 
upstream of the supply chain can allow for improved manufacturing planning, as well as 
debottlecking. This can be attributed to the flexibility added in the overall network that 
allows samples to be stored until a critical mass is ready to be manufactured in parallel, 
leading therefore to a higher utilisation percentage of the facility and lower operating cost.   
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Abstract 
The optimisation of heat treatment processes in the dairy industry is of high practical 
interest. Models are key to understanding and optimising equipment design, operating 
conditions, energy and water utilization, heating and cleaning cycles and economics. 
Decades of research have led to the development of many models, however, there is still 
a lack of understanding about the role and mechanism of denaturation and deposition of 
proteins from whey solutions. Extensive validation of the more recent thermal and fouling 
models against experimental data is also incomplete.  

Here, five sets of detailed data from dynamic experiments in typical Plate Heat 
Exchangers (PHEs) are used to validate a 2D-distributed, dynamic model under fouling. 
The model accounts for the exchanger geometry, operating conditions and prevailing 
local conditions. Three reaction mechanisms for β-lactoglobulin (β-LG) protein 
unfolding, aggregation and deposition are considered, one of which is novel. 

First, a validation was carried out of the thermal PHE model alone (i.e. under clean 
conditions, with no fouling) against a water-water dynamic experiment, with excellent 
results. The exit temperatures predictions match the experimental observations within 
<1C on average. The fouling model was then validated against four dynamic water-whey 
protein solutions (WPS) experiments (hot water heating a cold WPS stream) covering 
different conditions. Some of the model deposition constants were obtained through 
parameter estimation. Comparison of predicted and measured quantities (exit 
temperatures and amount of deposit in each channel at the end of the experiments) show 
that neither the aggregate protein deposition model nor the unfolded deposition model on 
their own can describe the observations. It is shown that a new modification that combines 
both mechanisms results in an improved fitting of the data in all experiments. The 
combined deposition scheme results indicate that both mechanisms are important in 
different parts of the exchanger, and even along individual plates.  

Keywords: food thermal treatment process, pasteurisation, fouling, experimental model 
validation, unfolded and aggregate proteins, dynamic simulation, parameter estimation. 

1.  INTRODUCTION 
Thermal treatments such as pasteurisation and ultra-high-temperature (UHT) processes, 
widely used in the dairy and food industries to insure product hygienic safety and long 
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shelf life. They typically use plate heat exchangers (PHEs). Fouling reduces PHEs 
thermal efficiency, requires frequent cleaning that generates large volumes of wastewater 
and increases costs. The optimisation of such processes is therefore of high practical 
interest. Reliable, predictive models of heat transfer and fouling are key to optimise 
equipment design, operating conditions, energy and water utilization, heating and 
cleaning cycles, productivity and economics. Decades of experimental and modelling 
research have led to the development of many models to characterise, in particular, the 
role and mechanism of denaturation and deposition of whey proteins (for example, but 
not limited to, β-lactoglobulin, β-LG) in dairy derivatives (Loveday, 2016, Blanpain-
Avet, et al., 2016, Khaldi, 2016, Sharma and Macchietto, 2019). However, there is still 
uncertainty about the denaturation/deposition mechanisms, and an extensive validation 
of the most recent models against experimental data is still missing. Here, the objective 
is to assess a recently developed dynamic model of PHEs subject to fouling, developed 
at Imperial College London, against some high quality experimental data collected at 
UMET/INRAE, France. The work is part of a collaboration aimed at the development and 
validation of improved fouling and cleaning technology. 

1.1. Fouling reaction model 
Above a certain temperature β-LG undergoes denaturation whereby the native protein (N) 
changes to an unfolded form (U) with highly reactive thiol groups exposed. The unfolded 
proteins irreversibly react to form insoluble aggregates (A). All the reactions are assumed 
to begin at 70⁰C, and the unfolding and aggregation reactions to occur in both bulk fluid 
and boundary layers with the same kinetic parameters. The unfolding reaction is reported 
to be limiting below 80⁰C and the aggregation reaction limiting above 80⁰C. Controversy 
still exist in literature concerning the denaturated protein species (unfolded and/or 
aggregated) which are supposed to form the deposit (Bansal and Chen, 2006; 
Sadeghinezhad et al., 2013, Blanpain-Avet et al., 2016). Consequently, in addition to 
deposition arising from Aggregates (Type A model) and Unfolded (Type B model) 
proteins alone, a new model that combines them (Type C model) is proposed (Figure 1). 
The kinetics parameters of the denaturation reactions are taken from (Khaldi, 2016) and 
those of the deposition reactions from (De Jong, 1996). The deposition proportionality 
parameters, βU and/or βA, were estimated from the channel mass deposit data. Full details 
and parameters values are given in Darko, 2020. 

1.2. Plate Heat Exchanger model 
The PHE dynamic model considers a whey protein fouling fluid being heated as flowing 
in a channel delimited by two hot plates (Guan and Macchietto 2018). The model is 
distributed in 2 directions, longitudinally (coordinate x) and across (coordinate y), 
considering five domains (Figure 2, from left to right): ΩWL: Left plate wall domain; ΩLL: 
Left plate deposit layer domain; ΩF: Channel fluid flow domain; ΩLR: Right plate deposit 
layer domain; ΩWR: Right plate wall domain. A uniform distribution is assumed along the 
plate width, W. Differential mass and energy balances in the 5 domains plus the above 
reaction models define 2D-distributed temperature profiles, heat fluxes, and deposition 
rates at each location of each plate, according to the local thermal and hydraulic 
conditions. A similar model describes the hot fluid channel (for a non-fouling fluid, the 
fouling reactions are omitted). The models of all channels are then integrated into an 
overall model (Figure 3, left) through appropriate boundary conditions, according to the 
PHE design and flow configuration. The resulting partial differential and algebraic 
equation (PDAE) system was implemented in a commercial simulator (gPROMS, 2018). 
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The full dynamic model is used both in simulation mode (to calculate all outputs given 
all parameters and inputs) and in parameter estimation mode (to estimate the best 
parameters given all inputs and selected output measurements). Details of model and 
solution method are given in Sharma and Macchietto, 2019 for a single PHE and in Zhu 
et al., 2020 for application to a complete heat treatment process. 

 

Figure 1: Protein denaturation and deposition mechanisms and reactions (adapted from 
Georgiadis and Macchietto, 2000) 

1.3. Experimental setup and data 
The PHE apparatus in Figure 3 was used in five experiments at different operating 
conditions (Table 1) (Khaldi, 2016). Flowrates, inlet and outlet temperatures of both hot 
and cold streams were measured every 15 seconds. Experiment No. 0 used water in both 
streams (no fouling). This corresponds to a preheat phase, where the PHE is brought to a 
desired steady state temperature. Fouling experiments 1-4 involved a specially prepared 
whey protein solution (WPS), heated by a hot water stream. After an initial preheat phase 
as in Exp. 0, the cold stream is switched from water to the fouling fluid. Initial conditions 
at this point are given in Table 1. In these fouling runs, the outlet WPS temperature was 
manually maintained constant by manipulating the inlet hot water temperature (and in 
some cases, its flowrate). At the end of each experiment the deposit in each channel was 
collected and weighed (Table 1). Measurement variances are 0.1 g for mass deposition 
and 0.1⁰C (at calibration, rising gradually to 0.3⁰C) for temperature. 
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Figure 2 Schematic for a single channel delimited by two plates (Guan and Macchietto, 2018) 
 

 

Figure 3: PHE configuration and design characteristics 

Table 1: Initial conditions, and deposit mass in channels C1 to C9 at the end of the experiments 

Exp. 
No. 

Whey Protein Solution (WPS) Hot Water 
 
Deposit in channels 
[g] 

End  
time  
[s] 

 
 

[kg/m3] 

Tin 
[°C] 

Tout 
[°C] 

Flowrate 
[L/min] 

Tin 
[°C] 

Tout 
[°C] 

Flowrate 
[L/min] 

C1 C3 C5 C7 C9 
 
 

0 0 75 84 5.00 86 78 4.37 0 0 0 0 0 2520 
1 6.58 65 85 5.25 96 70 4.82 0.3 4.2 18.8 38.6 40.4 6752 
2 6.58 64 85 5.00 87 79 14.99 3.8 24.1 38.1 43.4 43.5 6716 
3 6.58 64 85 5.13 115 66 2.43 0.2 1.8 14.1 46.6 58.4 6712 
4 6.58 60 74 5.05 81 64 5.18 0.2 0.9 1.2 1.3 3.4 6692 

2. Model Validation 
The measured inlet temperature and mass flowrate profiles of both streams were 
reproduced using linear and quadratic polynomial splines. As an example for Exp. No. 0, 
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Figure 4 (left) shows that the inputs to the simulations are very well captured. Experiment 
No. 0 (with no fouling), allows validating the PHE thermal model. Excellent agreement 
is observed between experimental and predicted exit temperatures of both cold and hot 
water streams (Figure 4, right), with average absolute deviations of 0.5 ± 0.6⁰C and 0.8 
± 0.5⁰C, respectively. The model has the structural adequacy and predictive ability to 
describe heat transfer dynamics for the clean PHE. Then, for each fouling experiment 1-
4, the channel mass deposit data at the end of the run (Table 1) were used to estimate the 
remaining constants (βA and/or βU) in the three deposition models (A to C) described in 
Figure 1. Results (e.g. Exp. No. 1 in Figure 5) show that the Type C model (which 
combines aggregated and unfolded deposition) gives a better fit in all experiments. Post 
treatments of the numerical data obtained by Type C model seems to indicate that the 
ratio of aggregated and unfolded proteins in the deposit varies both along the length of 
the channels, and between channels (Figure 6). Hence both reaction schemes are 
important in different locations and temperature conditions. 

 
Figure 4 Experiment No. 0: Inlet profiles of flowrates (left) and temperatures (centre); Outlet 
temperatures profiles (right) 

 

Figure 5 Experiment No. 1: Exit temperature profiles with model Type C (left); Experimental and 
simulated deposit mass in the fouling channels with all deposition models (right) 

 

Figure 6 Experiment No. 1: Distribution of aggregate and unfolded proteins in the deposit layer 
along the length of a plate (left); total protein deposited in the fouling channels, C1-C9 (right) 

3. Discussion and Conclusions 
The dynamic, 2D distributed PHE model was tested on experimental data from five well 
documented experiments with three protein reaction/deposition models. Validation of the 
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PHE thermal model with a highly dynamic water-water run showed an excellent 
agreement between data and model, without parameter adjustments. The fouling runs 
(here and Darko, 2020) show that the aggregate proteins (Type A) fouling scheme does 
not adequately describe the final channel mass deposit data. The unfolded proteins (Type 
B) scheme performs better, however, neither scheme alone is adequate in all experiments. 
A linear combination of the two (Type C) gives a better agreement under all conditions. 
The predicted spatial distribution in the channels of unfolded and aggregate proteins in 
the deposit shows that both mechanisms are locally important and must be considered 
together. Protein ratios in the deposit were not measured, so remain to be validated. The 
combination of thermal and fouling models with quality experimental data enabled a 
systematic assessment of two traditional protein deposition models and a proposed new 
one, for dairy heat treatment in PHEs. Additional results and a sensitivity analysis will be 
reported elsewhere. This work could be extended to whey protein solutions containing 
calcium, which has a significant influence on denaturation and is known to promote 
binding of unfolded protein (hence aggregation and fouling). The approach, models and 
results presented will improve the optimal monitoring, operations and design of heat 
treatment in dairy and related food processes. 
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Abstract

Energy is one of the essential inputs for socio-economic, and geo-political strategies in nation building. Among
potential interests, lignocellulosic biomasses constitute a prime source of biofuel and other value-added
products. The thermochemical approach resolve to the degradation of cellulosic biomass into fragments of
lignin, hemicellulose and cellulose. From the fragmented components, extraction of fermentable and
hydrolysable sugars could be obtained through various combined process steps and finally converted into
desired products (alcohols, alkanes, CO, H2). In this research, an average of wet bagasse (C30H120,11O53,84) with
49.28% moisture content; dry bagasse (C30H46,65O17,11); dry molasses (C30H56O28) and dry filter cake
(C30H51.14O22.7), were taken for the conversion analysis, with sulphur and nitrogen remained neglected. Adopting
gasification as a proposed approach on all of the incoming wet bagasse (16.53 kg/s), mobilizes 6907 kg of water
or 5.03% of total water in it. Since, the factory is characterized by low energy efficiency, using a large fraction
of the bagasse produced as fuel in the cogeneration system to supply the process energy requirements. The
possibility of selling surplus electricity to the grid and utilizing surplus byproducts as an input for the other
processes has motivated to enhance more efficient cogeneration systems and process thermal integration.
Keywords: Energy, Lignocellulose, Bagasse, Hydrolysis, Biorefinery.

1. Introduction
1.1. Background
Energy is one of the essential inputs for the socio-economic development (Brew-Hammond, 2010), and
geo-political strategies in nation building. Nations set the ball rolling by putting forward their strategic
development vision with clear objectives to meet the energy demands. Among the potential interests to extending
alternatives bioenergy resources, lignocellulosic biomass has been identified as the prime source of biofuels and
other value-added products (International Finance Corporation, 2017), and geared towards the production of
cost-effective biofuel (Boateng & Lee, 2013), from inputs which are not food competitive by nature (Viikari et
al., 2012). A new scenario, with the possibility of biomass conversion technologies to the production of alkanes
(CnH2n+2O) from hydrolized bagasse with dodecane (C12H26) as the longest carbon chain produced, the convesion
of bagasse and molasses into alcohols ( O). Eventually, conversion of biomass into hydrogen(H2) and𝐶

𝑛
𝐻

2𝑛+2
carbon monoxide (CO) are considered through conversion mechanisms at a higher level to sustainable economy.

In Ethiopia, the Wonji-Shoa sugar factory crushes about 906,089 tons of cane per year and produces about
111,014 tons of sugar. Its energy demand depends on the cogeneration plant designed to produce 31 MW power
of electricity from surplus bagasse and consumes 11 MW power of electricity to self-sufficiency. However, the
factory has been historically characterized by low energy efficiency due to the lack of process energy integration
in the sugar mills.

2. Biofuel processing routes from biomass
2.1. Biofuel processing routes from sugarcane bagasse
Essentially, there are two different approaches (i.e., thermochemical and biochemical) for the bioethanol
production from biomass(bagasse) (Cesaro & Belgiorno, 2015). Both approaches resolve to the degradation of
cellulosic biomass into fragments of lignin, hemicellulose and cellulose. The biochemical pathway includes
physical t and biological pretreatments of the lignocellulosic biomass. The physical pretreatment is commonly
used methods subject to high pressure saturated steam at temperatures of 160–260°C and pressure of 0.7 to
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4.8MPa (Kucharska et al., 2018). Biological pretreatment (enzymatic hydrolysis) is an ideal approach for
degrading cellulosic biomass (bagasse) into fermentable sugars and generally it can be accomplished by the role
of at least three major class of enzyme synergetic action such as endoglucanases, exoglucanases, and
β-glucosidase to extract fermentable sugar. later on, the sugars are converted into bioethanol via fermentation
and anhydrous ethanol is produced via distillation. Thermochemical biomass conversion includes a number of
possible routes to produce useful fuels and chemicals from the initial biomass feedstock. Biomass can be used as
a solid fuel, or converted into liquid or gaseous forms for the production of electric power, heat, chemicals, or
gaseous and liquid fuels (Kundu et al., 2018). The thermochemical approach under process consideration
includes incineration, combustion, sophisticated oxidation such as HydroThermal oxidation (SHTO) and Wet
Air Oxidation (WAO) (Goffé & Ferrasse, 2019). This technology requires high level of heat and results in
syngas (synthesis gas) such as CO, H2, and CO2. These gases are chemically converted into a mixture of alcohol
using metal catalysts. The process can occur through direct combustion, pyrolysis, gasification, torrefaction and
liquefaction. The process to biomass conversion use three ways. It can be burned to produce heat and electricity,
changed to gaseous fuels such as methane, hydrogen, and carbon monoxide or changed to liquid fuels (Cesaro &
Belgiorno, 2015).

2.2. Pretreatment
This process has an essential effect on the overall process of biofuel from lignocellulose, which makes the
cellulose accessible to hydrolysis for conversion to biofuel. Lignocellulosic biomass is pretreated by diverse
methods including physical, chemical, physicochemical, biological pretreatment or combined pretreatment
(Asghar et al., 2020). In this step, it is applied to modify the macroscopic as well as the microscopic size and
structure of lignocellulosic feedstock (Kazemi Shariat Panahi et al., 2020). Steam explosion taken as the sole
pretreatment method for sugar yield improvement is been considered for the biofuel production (Boateng & Lee,
2013). One of the most important evidences of implementing pretreatment methods for the alcohol and alkanes
production is the removal of lignin and hemicellulose, through cost-effective processes.

2.3. Hydrolysis
The goal of this process is to generate fermentable monomeric sugars from hemicellulose (C5) and cellulose (C6)
content of lignocellulosic biomass in conversion scheme. Its performance is highly associated with the selected
pretreatment process (Achinas & Euverink, 2016). This step can be accomplished by two different processes
steps, namely, acid hydrolysis and enzymatic hydrolysis. In acid hydrolysis either sulphuric acid or hydrochloric
acid-based hydrolysis process is operated under two different conditions; (í) a process that uses concentrated
acids operates at a lower temperature and, (íí) a process that uses dilute acid concentration and operates at a
higher temperature. On the other hand enzymatic hydrolysis, which is an ideal approach for degrading cellulosic
biomass into reducing sugars, generally can be accomplished by the role of at least three major classes of
enzyme synergetic action (section 2.1). However, enzymatic hydrolysis depends on certain critical optimal
conditions for maximal efficiency such as sample moisture content can cause an irreversible collapse of the pore
cellulosic structure, decreasing the hydrolyzability (Taherzadeh & Karimi, 2007) and the cellulose access to the
enzymatic reaction and limit the number of hydrolyzed carbon atom within the reaction stoichiometry (Da Silva
& Chandel., 2014). The hydrolysis reactions of biomass specifically cellulose and hemicellulose components
under go monomeric generation shown in reaction equation (1 & 2) respectively. The lignin component resistant
to hydrolysis could be a source of heat and electricity in cogeneration plant during gasification.

(C6H10O5)n +  nH2O nC6H12O6 Eq. (1)

(C5H8O4)n +  nH2O nC5H10O5 Eq. (2)

Where, n is the stoichiometric coefficients of reactants consumed and products generated from the utilized
biomass for reaction (1 & 2). Taking into account reaction (1) each glucose unit in the long chain combines with
a water molecule, and 180 mass units of glucose are released from 162 mass units of glucan and 18 mass units
of water, an 11.1% substantial mass gain and from hemicellulose hydrolysis over 13.6% mass gain is reported
from the theoretical weight percent ratio. For this research the mass of cellulose and hemicellulose from
141285.7334 ton/year of moisture free bagasse calculated accordingly to the weight percent value reported on
table (1).
Table 1A: biochemical composition of bagasse Table 1B: biochemical composition of bagasse

Biochemical composition Weight %
Cellulose 44
Hemicellulose 27
Lignin 25
Sucrose losss 4

2010

Elemental composition Weight %
Carbon 44
Hydrogen 27
Oxygen 25

S.Shumet et al.
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3. Materials and methods
The methodology of the considered system includes the conversion reaction and combustion reaction that
provides energy to the system for reactants and products in their standard states and the results presented from
the MATLAB code in which coded by J.-H. Ferrasse. In the case of material selection with respect to the
desired products (alcohol, alkane, carbon monoxide, hydrogen), thermochemical path way is chosen for this
research sugarcane bagasse whose characteristics have been extracted from the database for biomass and waste
of the energy research center of the Netherlands (Goffé & Ferrasse, 2019). An average of wet bagasse

) with 49.28% moisture content (factory records); dry bagasse ( ); dry molasses(𝐶 𝐻
30 120.11

𝑂
53.84

𝐶
30

𝐻
46.65

𝑂
17.11

); dry filter cake ( ); taken for conversion analysis, where sulphur and nitrogen were(𝐶 𝐻 𝑂
30 56 28

𝐶 𝐻
30 51.14

𝑂
22.7

neglected. The formula values used for the study assumed on a carbon basis number of 30, sulphur and nitrogen
are neglected. To construct comparability among results one kilogram per second of biomass is considered as an
input of the designed reaction system. Biomass to which shall put the subject of biomass conversion in the
proper energy perspective to variables in the conversion process (reaction stoichiometry), technology, and the
desired end product (Detroy & St Julian, 1982). Table (2) list the values used for the study on a carbon basis
number of 30, sulphur and  nitrogen are neglected.

Table (2)Biomass composition used for the study, ash and moisture-free basis.
Biomass Formula C (%) H (%) O (%) H/C O/C
Sugarcane bagasse C30H46.65O17.11 52.90 6.86 40.24 1.56 0.57
Molasses C30H56O28 41.56 6.50 51.94 1.87 0.93
Filter cake C30H51.14O22.7 46.50 6.6 46.90 1.70 0.76

3.1. Conversion products
The first biomass conversion is the production of alkanes (CnH2n+2O) from hydrolized bagasse with dodecane
(C12H26) as the longest carbon chain produced, to conventional corrsponding products found in liquid
hydrocarbons. The second product with the longest carbon chain family dodecanol (C12H26O), is the convesion
of biomass into alcohols ( O). The third product with the stright carbon chain family n-nonane (C9H20O),𝐶

𝑛
𝐻

2𝑛+2
is the convesion of biomass (molasses) into alcohols ( ). Eventually, conversion of biomass into𝐶

𝑛
𝐻

2𝑛+2
hydrogen(H2) and carbon monoxide (CO) are considered through conversion mechanisms.The biomass and
product (s) considered in this research paper by taking into account inputs bagasse, molasses and filter cake
mixed together to simultaneous fermentation after individual components pretreatment and hydrolysis, if
biochemical pathway is favoured. Since input components deffer from each other in their sugar content and
number of atoms in their chemical formula resulting to differ their lower heating value (LHV) defined in the
Boie equation (Eq. (3)) as thermochemical biomass conversion is the sole process prototype.

𝐿𝐻𝑉
𝐵𝑜𝑖𝑒

= 348. 35𝐶 + 938. 7𝐻 − 108𝑂 + 62. 8𝑁 + 104. 65𝑆                                                                               𝐸𝑞. (3)

Each capital letter (eq. 3 and 4) is the mass percent (wt%) of corrsponding atoms in the element and the LHV is
expressed in kJ/kg. The LHV of input components is subject to its moisture content. In the case of additional
drying, the energy (if we wanted to dry) represents 2%, assuming that the sun brings us to a dryness of 85%
(which remains to be verified). Therefore, the LHV of inputs can be specified as wet and dry to remark the
impact of moisture content on biomass to energy conversion scenario. For wet bagasse with its expression
(C30H120.11O53.84) the LHV is: LHVwet,bagasse = 10.816 MJ/kg and for dry bagasse with its expression
(C30H46.65O17.11) the LHV is: LHV dry bagasse = 20.519 MJ/kg). For wet molasses with its expression (C30H94O47) the
LHV is: LHVwet molasses = 10.997 MJ/kg and for dry molasses with its expression (C30H56O28) the LHV is: LHVdry

molasses = 14.964 MJ/kg. For wet filter cake with its expression (C30H313O154) the LHV is: LHVwet filter cake = 4.906
MJ/kg and for dry filter cake with its expression (C30H51.14O22.70) the LHV is: LHVdry filter cake = 17.331

the Ethiopian sugar industry: A case study in Wonji-Shoa sugar factory, Ethiopia
2011     

MJ/kg. In the case of alkanes and alcohol, the modified version of Boie equation is used to liquid and gaseous
fuel (Eq. 4).

𝐿𝐻𝑉
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

= 349. 1𝐶 + 958. 3𝐻 − 103. 4𝑂 − 15. 1𝑁 − 100. 5𝑆                                                             𝐸𝑞. (4)



Biomass and products representation helps to structured elements depend on the two atomic ratio on the basis of
carbon atom, H/C and O/C. By increasing H/C and decreasing O/C it is possible to visiualize the conversion
impact. The biomass conversion performance can be seen from material and energy ratio indicators in which
inputs calculated from the biomass and energies comes from biomass and their products. Depend on the energy
supply to the system either biomass or products become a role play to material ratio indicator calculation. Here,
if only biomass is involved, equation (5) used to calculate material ratio.

ηmaterial= Eq. (5) 𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑* ᴹ𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ 𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑏𝑢𝑟𝑛𝑒𝑑( )*𝑀 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

on the other hand , if the combustion of products become an energy supply source to the system equation (6) is
used to determine kilogram of bomass converted.

ηmaterial = Eq. (6)  𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑− 𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑏𝑢𝑟𝑛𝑒𝑑 ( )* ᴹ𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛*𝑀 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

where, ni and Mi are refer to the mole number and molar mass of component “i” respectively. The energy ratio
indicator considered as a measure of energy value contained by the biomass or the product(s) from its lower
heating value (LHV) and the source of energy supply to the system. If the biomass is used to supply energy to
the system, it will follow equation (7) to determine biomass conversion.

ηenergy = Eq. (7)  𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑* 𝐿𝐻𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ 𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑏𝑢𝑟𝑛𝑒𝑑( )*𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

when the energy supply to the system is originated from the product conversion, equation (8) is used to
determine energy efficiency of the system.

ηenergy = Eq. (8)  𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑− 𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑏𝑢𝑟𝑛𝑒𝑑( )*𝐿𝐻𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛* 𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

Parameters for the system can be considered as conversion and thermo-chemical for biomass conversion and
energy analysis. In thermo-chemical parameters the energy analysis viewed from the first law of
thermodynamics in which the calculation of reagents and products done in their standard states (T = 298 K and
P = 1.01325*105 Pa) and the LHV described in equation (3 and 4) from simulis® thermodynamics database. In
this stance the amount of energy necessary to supply to the system can be calculated by the standard enthalpy of
reaction described in equqtion (9). In conversion parameters the biomass could be a limiting reagent or reaction
rate determining agent by taking into account some assumptions according to biomass elemental composition.
Upon the behavior of limiting reagents and converted products biomass perceived carbon and hydrogen rules
that marked the conversion ratio of carbon and hydrogen atoms in biomass conversion.

Eq.  (9)∆
𝑟 

𝐻
298
𝑜 =

𝑖
∑ 𝑣

𝑖
∆

𝑓
𝐻

298
𝑜

3.1.1 Carbon as limiting reagent
Carbon rule details about the amount of atomic carbon conversion present in the biomass (numbered as carbon
30) into valuable products such as alkanes, alcohol, or carbon monoxide with range of conversion from 0 to
100% in proportion to the production of carbon dioxide from the reaction. The proportional carbon conversion
ration given by equation (10).

Eq. (10)𝐶% =  
𝑛

𝑝𝑟𝑜𝑑𝑢𝑐𝑡
* ξ

𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑛
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

* ξ
𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠

Where, refers to stoichiometric number of moles of biomass and products in equilibrium𝑛
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

,   𝑛
𝑝𝑟𝑜𝑑𝑢𝑐𝑡

reaction respectively. The formation of carbon dioxide in the reaction measures the carbon conversion ratio and
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the supply of oxygen into the reaction. As well the formation of carbon monoxide basically appreciated by the
partial oxidation of biomass described by equation (14) . The general conversion reaction of the biomass
equation (11 - 13) considered sulphur and nitrogen are negligiable. The reactions were conducted with providing
only oxygen and only hydrogen equation (12 and 13), and with simulataneous provision of oxygen and
hydrogen, equation (13).

. + . + . O + Eq. (11)𝑛
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐶
ξ𝐶
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ξ𝑂
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2

→    𝑛
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𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑛
𝐻2𝑂

𝐻
2

β𝐶𝑂
2

. + . + . O + Eq. (12)𝑛
𝑏𝑖𝑜𝑚𝑎𝑠𝑠
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𝐻
2

β𝐶𝑂
2

. + + . + . O + Eq. (13)𝑛
𝑏𝑖𝑜𝑚𝑎𝑠𝑠
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ξ𝐶

𝐻
ξ𝐻

𝑂
ξ𝑂

𝑂
2

𝐻
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𝐻2𝑂

𝐻
2

β𝐶𝑂
2

where, the parameter ( )  used to adjust the CO2 production and carbon conversion ratio (C%).β

𝐶
𝑥
𝐻

𝑦
𝑂

𝑧
+  1

2
𝑥

γ+1 1 + 2γ( ) + 𝑦
2 − 𝑧⎡⎣ ⎤⎦.  𝑂

2 
→ 𝑥

γ+1  .  𝐶𝑂 + γ𝑥
γ+1 𝐶𝑂

2
+  𝑦

2  𝐻
2
𝑂  

Eq. (14)

Hence, the general biomass conversion, into alkanes can be described as equation (14 - 16) with𝐶
𝑥
𝐻

𝑦
𝑂

𝑧
provided only oxygen, only hydrogen, and with simultameous provision of both oxygen and hydrogen in the
conversion reaction.

𝐶
𝑥
𝐻

𝑦
𝑂

𝑧
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2
                            (15)
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2
                      (17)

3.1.2 Hydrogen as limiting reagent
In this perspective the atomic hydrogen in biomass taking a role play career as a limiting reagent in the biomass
conversion reaction. The amount of hydrogen contain in the biomass converted into useful products such as
alkanes, alcohol, or hydrogen. on the same analogy of carbon the hydrogen atom in the biomass conversion
performance described by hydrogen conversion ratio equation (18).

(18)𝐻% =  
𝑛

𝑝𝑟𝑜𝑑𝑢𝑐𝑡
* ξ

𝐻𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑛
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

* ξ
𝐻𝑏𝑖𝑜𝑚𝑎𝑠𝑠

Like the carbon conversion ration (C%), hydrogen conversion ratio ( ) used a defined adjustable parameter (𝐻%
) for hydrogen conversion and water production. The potential of hydrogen conversion differ accordingly withα

the biomass composition and H/O ratio. Based on the unified generalized molecular formula of dry bagasse (
), dry molasses ( ), and dry filter cake ( ), the H/O ratio accounts 2.73, 2,𝐶

30
𝐻

46.65
𝑂

17.11
𝐶

30
𝐻

56
𝑂

28
𝐶

30
𝐻

51.14
𝑂

22.7
and 2.25 respectively considered to the capture or supply of carbon and oxygen for possible reactions. The
possible reactions to decide the product either alkanes or alcohols shown equation (19 - 23).
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(23)𝑛
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The production of water and hydrogen conversion appreciated by exothermic reaction of biomass without the
supply of external heat described by equation (24).
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Similarly considering hydrogen as a limiting reagent to the biomass conversion to the product formation of
alkanes given equation (25 - 28).
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In the case of alcohol the terms of equation (25 - 28) replaced by . The parameter varies𝐶
𝑛
𝐻

2𝑛+2
𝐶

𝑛
𝐻

2𝑛+2
𝑂 β

accordingly with the amount of carbon, . The variation can be between = 0, and When theξ
𝐶

β β = 30. β = 0,  
carbon conversion is the same as the amount of carbon contained in the biomass. When all the carbonβ = 30,
atom in the biomass converted to Similarly, the parameter varies with the conversion of hydrogen in the𝐶𝑂

2 
. α

biomass into water and hydrogen.

4. Results and Discussion
4.1. Hydrolysis of bagasse
To achieve the conversion of bagasse to biofuel, since it is unrealistic to convert water (moisture content), the
assumption is that water can hydrolyze cellulose and hemicellulose to sugar. The sugar obtained will have for
molar composition the same composition as that already contained (presented) in the bagasse. Thus, the
hydrolyzed biomass has a composition of and a LHV of 19.60 MJ / kg if it is considered to𝐶

30
𝐻

50.34
𝑂18.

18.96
be dry. Virtually this consists of using 4.66% wet biomass (kg water / kg bagasse). In this specific case all, the
water is consumed. If this operation is done on all of the incoming bagasse (16.53 kg/s), it will mobilize 6907 kg
of water or 5.03% of the total water that constitutes the moisture in the bagasse. Hence, wet biomass:

(LHV = 10.81MJ/kg) flow rate of 16.53 kg / s; dry biomass: (LHV = 20.51𝐶
30

𝐻
120.11

𝑂
53.84

𝐶
30

𝐻
46.65

𝑂
17.11

MJ/kg) flow rate of 8.38 kg / s and hydrolyzed biomass: (LHV of 19.60 MJ / kg) flow rate of𝐶
30

𝐻
50.34

𝑂18
18.19

8.79 kg / s. There is a slight drop in LHV, but a change in composition and a slight increase in throughput. The
two offset each other. The gain is therefore not energy, but it gives a "realistic upper limit to the water that can
be taken into account". In this stance 100% dry bagasse amount come into effect hydrolysis and of which 1 mole
of cellulose gain 1 mole of water to release simple sugar. Since cellulose is a polymer and to define exact
number of moles of hydrolized product assumed that 1*106 as a constant factor. Therefore, the number of moles
of cellulose generated from the given mass can be calculated as equation (29).

(29)𝑛
𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒

=  
1𝐸6 * ṁ
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𝑀
𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒

Thus, from 62,165.7227 ton/year cellulose, accounts 383739029.1 moles. The gain of water which is𝑛
𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒

the same molar value assumption with the hydrolyzed cellulose and can be calculated as equation (30).
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The mass of water gained during hydrolysis goes to 6907.302524 ton/year, which is only 5.032% of the water
contained in the original bagasse it accounts 49.28% moisture content from the total 278560.20 ton/year of
bagasse production. Consider that the calculated dryness of 50.7% moisture free bagasse. In the case of
additional drying, the energy (if necessary to dry) represents 2%, assuming that the sun brings us to a dryness of
85% (which remains to be verified). This question of drying will be central if design to make a biorefinery
scheme, less important if this is satisfied with a theoretical analysis and relying on the sun. The amount of water
evaporated is considered as the difference of amount of water in the original biomass and the amount of water
required for hydrolysis process equation (31), which is about 130367.164 ton/year.

ṁ
𝐻

2 
𝑂, 

𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒𝑑

=  ṁ
𝐻

2
𝑂, 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

−  ṁ
𝐻

2
𝑂,  ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠

(31)

To reach to complete dryness of bagasse it requires energy for evaporation depend on the latent heat of
evaporation and the amount of water evaporated as described in equation (32).

= (32)𝐸
𝑣

ṁ
𝐻

2𝑂

*  𝐿
𝑣

Where, , and are heat energy required for evaporation and specific latent heat of vaporization (2250 kJ/kg)𝐸
𝑣

𝐿
𝑣

of water respectively. Therefore, energy required to evaporated the specified amount of water is 2.93326 * 1011

kJ/year. The amount of energy contained in hydrolyzed biomass according to its lower heating value equation
(3) from the molecular formula ( ) is calculated as equion (33).𝐶

30
𝐻

50.34
𝑂

18.96

(33)𝐸
ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑧𝑒𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

=  ṁ
ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑧𝑒𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

*  𝐿𝐻𝑉
ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑧𝑒𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

Therefore, the hydrolyzed bagasse energy content refers to 2.90482 * 1012 kJ/year. Taking into account the
percent ratio of energy required to evaporation to the energy contained in the hydrolyzed biomass
( ) about 10. Thus to evaporate the water gained for hydrolysis, in order to obtain a dry𝐸

𝑣
/𝐸

ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑧𝑒𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
product, one can consider a complete or partial thermal action in addition to solar drying. In the case of
complete drying, without the integration of heat, the energy required to represents 10% of the energy contained
in the hydrolized bagasse.

4.2. Site power requirements
The power requirement to sugar production assumed be the unit’s overall needs are covered by bagasse.The
calculations presented (Table 1), are for dry bagasse. But the same is found for the other two forms of biomass
(molasses and filter cake). The designed power requirement of the factory is 11 MW of electricity generated
from its back pressure turbine with an average steam to cane ratio of 0.56 from 906089.5 ton/year crushed cane.
The annual steam production could reach 507410.12 ton/year at 180 . Therefore, the steam power can be℃
calculated as given equation (34).

(34)𝑃
𝑠𝑡

=  
ṁ

𝑠𝑡𝑒𝑎𝑚 * 𝐻
𝑣,  𝐻2𝑂

𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Where, and are steam power potential and annual operation time (4680 hr/year) of the case factory.𝑃
𝑠𝑡

 𝑡
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Hence, the steam power calculated is 83.785313 MW for bagasse 49.28% moisture. The heat requirement for

electricity generation can be determined from the electricity consumption to bagasse feed ratio ( ) or
𝑃

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

ṁ
𝑏𝑎𝑔𝑎𝑠𝑠𝑒

(11 MW/16.5337251 kg/s), of which 0.6653 MW/kg bagasse. On the same way the heat requirement for steam

production follow steam to bagasse ratio ( ), about 1.821546 with enthalpy of the steam at specified
ṁ

𝑠𝑡𝑒𝑎𝑚

ṁ
𝑏𝑎𝑔𝑎𝑠𝑠𝑒

temperature (180 ). Table (3) describes the heat requirement values for electricity generation and steam℃
production for a flowrate of 1 kg/s of bagasse.
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Heat for electricity generation 1.869661953 MW/kg bagasse ( )/(1- )),
𝑃

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

ṁ
𝑏𝑎𝑔𝑎𝑠𝑠𝑒

(√(𝑇
𝑐𝑜𝑙𝑑

/𝑇
ℎ𝑜𝑡

and𝑇
𝑐𝑜𝑙𝑑

= 300𝑘 𝑇
ℎ𝑜𝑡

= 723𝑘

Heat for steam production 5.067539993 MW
( ) *

ṁ
𝑠𝑡𝑒𝑎𝑚

ṁ
𝑏𝑎𝑔𝑎𝑠𝑠𝑒

Δ𝐻
𝑠𝑡𝑒𝑎𝑚,   𝑇=180℃

Therefore, it becomes 1.31 MW/kg of total dry bagasse. Electricity is produced from steam at 300 °C and it

consider an efficiency to be closer to finite time production (1- ),  with = 300K, = 573 K.(
𝑇

𝑐𝑜𝑙𝑑

𝑇
ℎ𝑜𝑡

) 𝑇
𝑐𝑜𝑙𝑑

𝑇
ℎ𝑜𝑡

Table 4. Biomass to energy conversion result on moisture free feedstocks and hydrolysed bagasse

Feedstock
Alcohol Alkane CO+H2

Flow
(kg/s)

LHV
(MJ/kg)

Energy
[kJ]

Mass
[kg]

C Energy
[kJ]

Mass
[kg]

C Energy
[kJ]

Mass
[kg]

Hydrolyzed
bagasse

93.30 56.20 12 93.30 41.40 12 94.00 123 2.37
(3.30*)

19.60

Dry bagasse 93.30 54.60 12 93.30 43.40 12 93.40 129 2.36
(3.17*)

20.51

Dry molasses 93.30 46.70 9 93.20 31.00 10 94.60 1 1.20 14.96

Dry filter cake 93.30 52.60 10-12 93.10 36.50 12 94.30 1,12 1.97 17.33

(C refers to carbon atom number), (* refers to hydrolysed biomass flowrate)

For steam, the power found is 83 MW. The ratio of 0.56 (steam to cane ratio), for steam becomes in MW/kg dry
bagasse is 3.59. To fix ideas it is necessary to articulate the energy equivalent of 1kg/s of wet bagasse is the
production of 4.74 MW electricity and 9.99 MW steam. However, with a dry bagasse flow rate of 8.38 Kg/s and
a LHV 20.51 MJ/kg to cover the plant's needs, it will therefore be necessary to burn 1.93 kg/s for electricity and
4.08 kg/s for steam generation.

In this case Steam/electricity production is not optimized in the sense of cogeneration. But, in view of the ratio
of vapor taken, this is a point to be discussed and it leaves a flow rate of 2.36 kg/s of dry biomass. This
calaculation done for the wet biomass, results 2.59 kg/s and 2.37 kg/s for the hydrolyzed biomass. It’s prefered
to retain the two values   of 2.36 kg/s and 2.37 kg/s to conversion for LHV of wet biomass. Hence, the power
requirement can be seen with cogeneration and extraction, and without cogeneration schemes. The cogeneration
and extraction scheme considered that the steam cycle at a hot temperature of 450 to 180 withdrawn the℃ ℃ 
turbined horse power (HP) with no streach to 27 . this is substantial gain of 3.1 kg/s (Table 4) of dry biomass℃
which is almost 107 theoretical MW power and 98,000 tons of biofuel. Where as, without cogeneration
integration scheme the production of biofuel (alcohol and alkanes), goes to 93 MW of power from 5.1 kg/s
biomass and 86,000 tons of possible biofuel during the whole operation time in a year.

5. Conclusion
Biomass is a versatile and abundant resource, which can be used to produce energy via different routes. Several
kinds of biomass can be used either to produce bioethanol or alkanes, CO and H2. To this end, some boundary
conditions, including the area of application and the presence of existing infrastructure to process integration,
have to be identified. It is suspected that from the complete balance sheet of the biomass composition, water has
significant role in the final energy content (LHV). Although biochemical pathway is reliable techniques, already
common at full-scale, the integrated thermochemical process feasibility for industrial application should be more
deeply investigated. Nevertheless, the strongest integration is the water treatment unit. Water is three times more
important than biofuel. This treated water (and separated in fact if it is concentrate the material in sugar +
biofuel) also has a significant value. Since, 92% of Ethiopia's policy is based on the biomass resource;
biorefinery integration into the sugar factories is of prime importance.
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Table (3) heat requirement values for electricity generation and steam production for 1 kg/s biomass.
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Abstract
With the emergence of new pathogens, e.g., methicillin-resistant Staphylococcus aureus
(MRSA), and the recent novel coronavirus pandemic, there has been an ever-increasing
need for novel antimicrobial therapeutics. In this work, we have developed support
vector machine (SVM) models to predict antiviral peptide sequences. Oscillations in
physicochemical properties in protein sequences have been shown to be predictive of
protein structure and function, and in the presented we work we have taken advantage
of these known periodicities to develop models that predict antiviral peptide sequences.
In developing the presented models, we first generated property factors by applying
principal component analysis (PCA) to the AAindex dataset of 544 amino acid
properties. We next converted peptide sequences into physicochemical vectors using 18
property factors resulting from the PCA. Fourier transforms were applied to the
property factor vectors to measure the amplitude of the physicochemical oscillations,
which served as the features to train our SVM models. To train and test the developed
models we have used a publicly available database of antiviral peptides
(http://crdd.osdd.net/servers/avppred/), and we have used cross-validation to train and
tune models based on multiple training and testing sets. To further understand the
physicochemical properties of antiviral peptides we have also applied a previously
developed feature selection algorithm. Future work will be aimed at computationally
designing novel antiviral therapeutics based on the developed machine learning models.

Keywords: Computational biology, Machine learning, Support vector machines,
Feature selection, Antiviral peptides

1. Introduction
With the increasing threat of viruses on human populations around the world, as
evidenced by the recent COVID-19 pandemic, there is significant need for approaches
for rapid development of treatments for novel viral outbreaks. If and when a new viral
outbreak poses an eminent threat, the availability of tools for therapeutic design could
enable the fast and efficient development of novel antiviral treatments. One promising
class of antiviral treatments are anti-viral peptides (AVPs), which can act in a variety of
ways, such as inhibiting replication, preventing binding to host cells, and interrupting
virus-induced host signalling. Rational approaches have been previously used to
successfully design AVPs, and more recent efforts have been aimed at using
computational methods to predict their function based on the peptide sequence. One
challenging aspect of developing machine learning models is identifying how to best
encode or represent a peptide’s sequence or properties. Most datasets of peptide
function include peptides of varied length and to train a machine learning model one
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must ensure that every peptide is represented by the same number of features. Past
efforts for predicting AVPs have used peptide features that include the number of
positively/negatively-charged amino acids, the charge of the peptide, the frequency of
each amino acid in the sequence, the amount of possible H-bonds, molecular weight,
and average hydrophobicity. One major limitation of these features is they do not
maintain information regarding the ordering of amino acids or properties along the
peptide structure, which is known to be crucial to protein structure and function. An
alternative approach for developing physicochemical descriptors of protein sequences
has been previously proposed that takes advantage of underlying periodicities in
protein/peptide physicochemical properties (Eisenberg et al. 1984; Rackovsky 1998).
Rackovsky (1998) has shown that periodicities of physicochemical properties along the
sequence of a protein can be used to categorize families of protein structure/function.
By using Fourier transforms and numerical tricks, it is possible to encode peptide
sequences of varying lengths in terms of the same number of features based on the
oscillation of amino acid properties.

In this work, we have used data analysis (i.e., PCA) and machine learning (i.e., support
vector machines) to develop accurate models for predicting AVP sequences based on
periodicities of amino acid properties. Additionally, by ranking the importance of the
developed Fourier-based features, we were able to train SVM models with improved
accuracy and generalizability, while also beginning to gain some insights into the
importance of oscillations in physicochemical properties for AVP function.

2. Methods
In this work, we have used the R statistical language to perform all steps of our analysis
including the generation of amino acid property factors using PCA, Fourier-based
feature extraction, training/validating support vector machines, and feature selection.
Below are more detailed descriptions of how these elements of our approach were
implemented.

2.1. AVP Dataset
To develop data-driven classification models we need to have access to sufficiently
large datasets, which contain both amino acid sequences and function labels. At present,
there are multiple publicly available databases that hold the identities of some known
antiviral peptides, including AVPpred (Thakur et al. 2012), APD3 (Wang et al. 2016),
and CAMPR3 (Waghu et al. 2016). In the current study, we have focused on the
AVPpred dataset, which contains 544 experimentally validated antiviral peptide
sequences along with two sets of negative AVP: i) 407 experimentally validated
nonactive peptides; and ii) 544 randomly selected non-secretory peptides. To eliminate
the possibility of potential bias, we filtered the AVPpred dataset to eliminate any
sequences with greater than 40% sequence identity. This was performed by first using
the Clustal Omega webserver (https://www.ebi.ac.uk/Tools/msa/clustalo/) to align all
sequences of the AVPpred dataset, and then applying hierarchical clustering in R to
identify clusters of sequences sharing more than 40% sequence identity. The medoid of
each cluster was selected as the representative sequence, resulting in 195 AVP
sequences, 259 nonactive AVP sequences, and 492 randomly selected non-secretory
peptides. The filtered dataset is what was used for all of the model training and
validation in presented work.
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2.2. Principal component analysis
To generate physicochemical Fourier-based features, we first need to convert amino
acid sequences into numerical vectors based on amino acid properties. The AAindex
dataset, found in the protr R package, is a collection of 544 amino acid properties from
the literature that include various physicochemical descriptors. All of the 544 amino
acid properties could be used to convert the amino acid sequences into property vectors;
however, this would result in thousands of potential features once the property vectors
were converted into Fourier coefficients. Alternatively, we can perform dimensionality
reduction to reduce the number of amino acid property vectors prior to conversion to
Fourier coefficients. In the current work, we have applied principal component analysis
to generate amino acid property factors, as has been proposed previously. We used the
prcomp function in R to extract principal components and to select a subset of the
principal components based on contributions to the overall variance in the data (Figure
1).

Figure 1. Schematic of feature extraction procedure based on amino acid property periodicities.

2.3. Feature extraction
Based on the generated amino acid property factors, we then converted the amino acid
sequence of each peptide into physicochemical vectors (Figure 1). Fourier transforms,
using the fft function in R, were then applied to each of the property factor vectors. To
ensure that the same number of frequency (Fourier) components were generated for
each property vector we used zero padding and an assumed maximum sequence length
of 128 amino acids (maximum AVP sequence length in the dataset is 107 amino acids).
The moduli of the complex Fourier coefficients for frequency values of 0, 0.015625,
0.03125, 0.0625, 0.125, 0.25, and 0.5 were selected as the features for training models
(Figure 1). The frequency components (features) corresponding to periods that are
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longer than a given peptide were set to zero. We eliminated features (columns) from the
full set of features if more than 70% of peptides had a value of zero.

2.4. Support vector machines
All support vector machines were trained using the svm function of e1071 R package
based on the radial basis function nonlinear kernel. The cost and gamma
hyperparameters of the SVM models were tuned using a grid-search with cost and
gamma values based on powers of two, , where n is an integer.2𝑛  ∀ 𝑛∈ − 9, … , 8{ }
Five-fold cross-validation, based on balanced training sets containing 435 AVP and 435
non-AVP sequences, was used to tune and validate the models based on first sorting the
peptide sequences according to length and then select five training and testing sets with
an equal number of samples for each peptide class. Model performance was measured
based on classification accuracy and is reported as the fraction of classes (AVP or
non-AVP) that was predicted correctly in the testing sets (Figure 3). The reported cross
validation accuracies are the average of the classification accuracies for the five training
and testing sets.

Figure 2. Variance explained by the 20 principal components from the PCA of the 544 AAindex
amino acid properties.

2.5. Feature selection
Feature selection is a crucial aspect of data science as it can enable the identification of
an essential set of predictive descriptors (features), as well as it can increase the
robustness of models to prevent overfitting. Previously, we have developed a feature
selection algorithm based on non-linear SVMs, which is general in nature and has been
applied to predicting fault detection in chemical plants (Onel et al. 2018; Onel et al.
2019) and HIV-1 viral entry (Kieslich et al. 2016). The algorithm is model-based and
requires first training a SVM model prior to computing a criterion that quantifies the
contribution of each feature to the SVM objective function to determine which features
to remove. The criterion (Eq. 1) is derived based on sensitivity analysis of the dual
formulation of SVM models.
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The algorithm uses a greedy approach to rank the features, where we start with a
training model based on all of the features, compute the criteria for all features, and
remove a fraction of the features with the largest criteria values. In the presented work,
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we removed 25% of the remaining features after each iteration of the algorithm and
retuned the hyperparameters after each iteration of the algorithm. The feature ranking
procedure was applied to each of the five training sets and a consensus ranking was
generated based on the average rank of each feature across the five training sets.

Figure 3. Feature contributions to model accuracy based on feature selection ranking. A) Feature
selection results for classifying AVPs vs. random peptides; B) Feature selection results for
classifying AVPs vs. non-AVPs.

3. Results
The principal component analysis of the amino acid properties from AAindex dataset
was based on a data matrix consisting of 20 instances (amino acids) of 544 variables
(properties). The PCA analysis generated 20 principal components that describe the
more than 500 amino acid properties, and the contribution of each principal component
is visualized in Figure 2. In choosing which principal components to use as amino acid
property factors, we selected the principal components which contribute more than 1%
of overall variance in the data. The first 18 principal components met our criteria (>1%
variance) (Figure 2), and together describe over 99% of the total variance. The analysis
resulted in 18 amino acid property factors that were used to generate 18 property vectors
for each of the peptide sequences. For each peptide, the FFT spectrum of each property
vector was computed and the frequency components corresponding to the sequence
average and the oscillations with periods of 2, 4, 8, 16, 32, or 64 amino acids were
extracted. This resulted in 126 features based on 7 frequency components from 18
property vectors for each sequence, which was filtered to 90 features by removing
features with at least 70% of the values being zero.

Based on the generated features, we developed two SVM models, one to distinguish the
AVP peptides from each of the types of non-AVP peptides (nonactive and random
non-secretory peptides). For both classification tasks, we performed feature selection to
rank the physicochemical features. To measure to the contribution of each feature to
model accuracy we performed five-fold cross validation after adding each feature one at
a time starting with the highest ranked feature. As can be seen in Figure 3,
distinguishing AVPs from random non-secretory peptides is an easier classification task
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4. Conclusions
In this study, we have developed support vector machine models that distinguish
between antiviral peptide sequences and two classes of nonAVP sequences. To develop
these models, we first generated amino acid property factors by applying principal
component analysis to a dataset on amino acid properties from the literature. We then
used the property factors to convert AVP sequences into property vectors that served as
the input for Fourier analysis to extract the features used in training our models. The
proposed approach for feature extraction and model development, including the
incorporation of the feature selection algorithm, have potentially applications in
prediction of peptide properties and function. Future work will be aimed at improving
the Fourier-based encoding of peptide sequences and applying the approach to
predicting various peptide functions/properties, as well as further development of
approaches for SVM-based feature selection. The models developed in this study could
have potential use in designing novel antiviral peptides but given the remaining
challenges in distinguishing between active and nonactive AVPs further investigation is
necessary, which may need to include both computational and experimental studies.
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than distinguishing AVPs from nonactive AVPs, since the maximum accuracy when 

using random peptides is 0.912 and only 0.752 for the nonactive peptides. Only 5 of the 

90 features are necessary to achieve the majority of the accuracy of the AVP-vs-random 

model, while about 4 times as many features are necessary to achieve the maximum 

accuracy of the AVP-vs-nonactive model, which is further evidence of the difficulty 

distinguishing between active and nonactive AVPs. 
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Abstract
Mammalian circadian clocks are composed of transcriptional-translational feedback
loops. Transcriptional activators (BMAL1/CLOCK) form positive arm and
transcriptional repressors (CRYPTOCHROMEs (CRYs) and PERIODs (PERs)) form
the negative arm of the clock mechanism in mammals. CRYs have conserved primary
(FAD binding) and secondary pockets critical to interact with different proteins. Despite
high structural similarities between CRY1 and CRY2, studies suggest each CRY plays a
different role in the circadian clock. For example, the binding of the CRY1 to CLOCK
is regulated by a dynamic serine-rich loop (Ser-loop) around the secondary pocket. A
recent report showed that a distant residue Arg-293 allosterically regulates the Ser-loop
in CRY1. Here, using molecular dynamics simulations, we showed that Arg-311 to His
mutation in CRY2 (homolog of Arg-293 of CRY1) had a minor effect on the allosteric
path to Ser-loop.

Keywords: Circadian Clock, Cryptochromes, Allosterisim, Molecular dynamics
simulation

1. Introduction
The circadian clock regulates several behavioral and physiological processes such as
alertness, memory, heart rate, blood pressure, and immune responses through rhythmic
transcriptional regulation (Cermakian et al, 2013). Several diseases e.g. diabetes,
obesity and some sleep disorders are associated with circadian rhythm abnormalities
(Sahar & Sassone-Corsi, 2009).
At a molecular level, BMAL1 and CLOCK form heterodimer and bind to E-box
(CACGTG) in the promoter region of clock-controlled genes (CCG) including Period
(Per) and Cryptochrome (Cry) to initiate their transcription in mammals (Aryal et al,
2017). After accumulation and translocation of PER and CRY along with casein kinase
Iε (CKIε) into the nucleus, they bind BMAL1/CLOCK dimer and inhibit transcription
(Aryal et al., 2017; Kavakli et al, 2017; Kavakli & Sancar, 2002). The degradation of
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CRY and PER proteins relieves the repression of BMAL1/CLOCK, restarting the cycle
(Takahashi, 2016).
There are two Cry genes in mammals and studies suggested that CRYs have different
roles in the circadian clock as discussed in (Cal-Kayitmazbatir et al, 2021; Fribourgh et
al, 2020; Gul et al, 2020). CRYs contain a photolyase homology region (PHR)
comprising primary (FAD binding) and secondary pockets and an extended C-terminal
region (Kavakli et al., 2017; Ozber et al, 2010; Partch et al, 2005). PHR and C-terminal
regions of the CRYs are necessary to maintain rhythmicity and amplitude of circadian
rhythm, respectively (Gao et al, 2013; Khan et al, 2012). CRY1 interacts directly with
CLOCK and BMAL1 through two distinct regions in the PHR domain (Michael et al,
2017). C-terminal regions of CRYs interact with the transactivation domain (TAD) of
BMAL1 (Czarna et al, 2011; Xu et al, 2015). Mutational analysis of CRYs showed that
residues around the secondary pocket of CRY1 and CRY2 are critical for the CLOCK
binding and their repression activity (Rosensweig et al, 2018). A human
gain-of-function CRY1 variant (exon 11 skipping mutation in C-tail of CRY1),
exhibiting high affinity to BMAL1/CLOCK, and another CRY1 mutant (exon 6
skipping mutation in PHR of CRY1), causing an arrhythmic phenotype in a cell line,
were found in people suffering from familial delayed sleep phase disorder and attention
deficit/hyperactivity disorder (Onat et al, 2020; Patke et al, 2017).
Our recent study revealed that the Arg-293 of CRY1, within the FAD binding pocket is
important for the allosteric regulation of Ser-loop and has affected the molecular clock
(Gul et al., 2020). Sequence alignment showed that the Arg-293 is a conserved amino
acid residue in both CRY1 and CRY2. Thus, in this study, we performed the molecular
dynamics simulation to understand the role of Arg-311 in CRY2 (the homolog of
Arg-293 in CRY1) in the allosteric regulation of the Ser-loop.

2. Materials and Methods
Complete photolyase homology region of mouse CRY2 with accession number of
NP_034093.1 was obtained from NCBI database. Sequence was submitted to the
RaptorX web-server to get complete PHR structures for CRY2 (Kallberg et al, 2012).
CRY2-Arg-311His (homolog of Arg-293 of CRY1) mutant protein structure was
generated using VMD psfgen plugin. Protonation states of ionizable residues of all four
models calculated using PDB2PQR webserver that uses PROBKA. The CHARMM36m
forcefield and NAMD software were used for parametrization and to run simulations
respectively. Systems were solvated in a rectangular box that extends 10 Å from the
closest protein surface by TIP3P water. Periodic boundary conditions and Particle Mesh
Ewald (PME) used for full electrostatic interactions with a 12 Å cutoff. All covalent
hydrogen bond lengths were constrained with SHAKE algorithm with a time step of 2
fs. Systems were, then, neutralized with the appropriate amount of sodium and chloride
ions. Energy minimization was performed for 100,000 steps. After, systems were heated
and equilibrated for 140ps. The temperature increased gradually, 5K per step, until
310K using a Langevin thermostat. NPT equilibration performed at 310K and under 1
atm, pressure using Langevin barostat. During equilibration, harmonic restraints of 3
kcal‧mol-1‧Å-2 on Cα atoms were gradually removed. Production simulations were run
for CRY2, and CRY2-Arg-293His for 300ns and 150ns, respectively. Temperature and
pressure were maintained by the Langevin thermostat and the Langevin barostat,
respectively. NAMD software and CHARMM force fields were used to run all MD
simulations (Phillips et al, 2005).
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For analysis of simulations, all trajectories were aligned to the initial structure, and we
discarded first 10 ns of all simulations. RMSD, H-bonds and RMSF calculations were
performed by using VMD. Each of the refined trajectories was saved as two multi-frame
pdb files with 1 ns and 100 ps intervals for analysis to be used in POVME and WISP,
respectively. Secondary pocket volume was calculated using POVME 3.0 software
(Wagner et al, 2017), with a 1 ns intervals. The Wilcoxon rank-sum test was used to
determine the significance of the difference between the pocket volumes implemented
in R (Wickham, 2009). WISP 1.1 software was used to analyze the allosteric pathways
(Van Wart et al, 2014).

3. Results
Our previous work showed that p.Arg293His CRY1 variant exhibits CRY2-like in vitro
properties (Gul et al., 2020). Our further molecular dynamic simulation revealed that
the Arg-293 is responsible for allosteric regulation of the Ser-loop, which plays an
important role in CLOCK-CRY1 binding. The multiple sequence alignment with other
CRYs from different organisms showed the conservation of this residue, including
mammalian CRY2. To understand the role of Arg-311 (homolog of Arg-293 of CRY1)
in allosteric regulation of CRY2 we employed molecular dynamics (MD) simulations
using CRY2 and CRY2-R311H structures. For comparison, previously reported
simulation data of CRY1 and p.Arg293His CRY1 were used (Gul et al., 2020).
Root-mean-square deviation (RMSD) values for each structure was calculated to show
that simulations reached equilibrium (Figure 1A). Next, the dynamics of CRY1 and
CRY2 were compared by plotting root-mean-square fluctuation (RMSF) of each amino
acid residue in CRYs. Overall, the dynamicity of both CRYs is different, especially in
α/β domains including Ser-loop and P-loop (Figure 1B). Ser-loop in CRY1 was found
to be highly dynamic compared to Ser-loop of CRY2. We then compared RMSF plot of
CRY2-R311H with CRY2 to evaluate change in the dynamicity of both structures.
Results demonstrated that Ser-loop dynamicity are very similar in both structures.
However, the P-loop behavior was greatly affected by the mutation in CRY2 (Figure
1B, C, D).The same mutation increased the dynamicity of C-lid that is critical for
CRY-PER2 and CRY-FBXL3 interactions (Czarna et al, 2013), in both CRYs (Figure
1C, D). Collectively, our data suggested that the highly conserved Arg amino acid
residue in CRY1 and CRY2 has differential effects on the CRYs.
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Figure 1: A) Root mean square deviation (RMSD) of all simulations (CRY1,
CRY1-R293H, CRY2, CRY2-R311H). Root mean square fluctuation (RMSF) of B)
CRY1 and CRY2; C) CRY2 and CRY2-R311H; D) CRY1-R293H and CRY2-R311H.
For the sake of figure clarity, residue numbering in CRY1 was followed. The critical
and functional parts of CRYs were shown between dashed lines. NLS: Nuclear
localization signal.

We then calculated the secondary pocket volumes (SPV) of CRY2 and CRY2-R311H
and compared them previously reported CRY1 and CRY1-R293H results (Gul et al.,
2020) to analyze the effect of mutations, where CLOCK binds. The SPV of the
CRY2-R311H was quite larger than both CRY1 and CRY1-R293H and comparable to
that of CRY2 (Figure 2A). Unlike Arg-293 mutation to His in CRY1, Arg-311 to His
mutation in CRY2 did not affect the SPV. The distance between the Ser-loop and
secondary pocket was not affected in CRY2-R311H, however, the same distance was
affected in CRY1- R293H (Figure 2B). Finally, the number of H-bonds was calculated
between the Ser-loop and the rest of the protein. The decreased distance between
Ser-loop and secondary pocket in CRY1-R293H can be explained by more hydrogen
bond formation throughout the simulation compared to CRY1. Amount of hydrogen
bond per frame was similar in CRY2 and CRY2-R311H. H-bond analysis suggests that
the effect of Arg-311 mutation in CRY2 has a different effect on CRY2 than that of its
homolog mutation in CRY1 (Figure 2C). To address the effect of R311H mutation on
the allosteric regulation of Ser-loop in CRY2 we investigated the allosteric paths
between Ser-loop and Arg-311 using WISP. The shortest lengths of the allosteric paths
(between Ser-loop and residue 311) in CRY2 and CRY2-R311H were 3.4 Å and 2.2 Å,
respectively. Other suboptimal paths to Ser-loop were quite different in CRYs (Figure
2D). WISP analysis for CRY2 structures in this study and our previous CRY1 results
(Gul et al., 2020) showed that: 1) CRY1 and CRY2 path lengths are changing in
different magnitudes, implying that allosteric regulations between the Arg293 and the
Arg-311 and Ser-loop in CRY1 and CRY2 are different, respectively; 2) while
Arg293His mutation changed the shortest path length dramatically in CRY1, Arg-311 to
His mutation in CRY2 had less effect on the path length. To note, SPV mainly affected
by the position of highly dynamic unstructured Ser-loop in CRY1, however, Ser-loop in
CRY2 has a turn of an alpha helix that increases its rigidity. Because of the rigidity of
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Ser-loop in CRY2, the effect of mutation might not alter its dynamics as drastically as in
the CRY1.

Figure 2: Box-plot representation of the A) secondary pocket volume (Wilcoxon rank
sum test *: p <0.0001); B) loop distance between Ser-loop (Gly43/Ala61) and Phe
105/123 (first residue number is for CRY1, second for CRY2), C) number of H-bonds
between Ser-loop and rest of the protein per frame. The same number of pdb files were
used for each calculation. D) Histogram representation of pathways’ length calculated
by using WISP.

Conclusions

Despite high primary sequence and tertiary structure similarities between CRY1 and
CRY2, their different functions in the mammalian circadian clock remained elusive.
One of the most notable differences between CRY1 and CRY2 is their differential
affinity to CLOCK. Recent reports shed light on the critical amino acids and loop
dynamics for the CRY-CLOCK binding (Fribourgh et al., 2020; Rosensweig et al.,
2018). Our recent paper identified unique allosteric regulation between the Arg-293 in
the primary pocket and Ser-loop in CRY1 (Gul et al., 2020). In this report, we analyzed
the role of homolog Arg residue (Arg-311) of CRY2 in allosteric regulation using MD
simulations. Full-length PHR domains of CRY2 and CRY2-R311H were modeled and
simulated and compared with previously reported CRY1 simulations. RMSF analysis
showed that CRY1 and CRY2 have different dynamics. Mutations on CRY1 and CRY2
differentially affected the overall dynamicity. While dynamics of Ser-loop were
significantly reduced in CRY1-R293H mutant, it didn’t get affected in CRY2-R311H
mutant. H-bond analysis suggested that the reduced Ser-loop dynamicity may stem from
an increase in H-bond interaction between the loop and the rest of the protein in
CRY1-R293H. Unlike CRY1-R293H, the secondary pocket volume of the
CRY2-R311H remained unchanged. The dynamics of CRY1 and CRY2 were drastically
different in primarily two regions, Ser-loop and P-loop. While CRY1-R293H had
reduced the dynamics of both regions, CRY2-R311H had a subtle effect on the
dynamics of Ser-loop but increased the dynamics of the P loop Consistently both
mutations increased the dynamicity of C-lid. Experimental studies need to be carried out
to show the physiological significance of such dynamical changes in the CRY2.
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Abstract
This work reflects on the use of scenario- and problem-based learning as a way of
conveying not only fundamental knowledge, but also to provide training in the use of
computational Process Systems Engineering (PSE) tools applied to open-ended real
world problems. The teaching framework also has a strong emphasis on the
development of professional skills and to evaluate the recommended design solutions
considering multiple perspectives such as economics, safety, environment and societal
context. The framework is implemented through week-long group projects called
Scenarios, taking place mainly in the first two years of study, and examples are given of
different variations of Scenarios. This teaching approach has multiple benefits,
including but not limited to, students’ understanding of PSE tools and the development
of their critical engineering thinking.

Keywords: problem-based learning, Scenarios, Process Systems Engineering

1. Introduction
University College London (UCL) has long been considered a global leader in
engineering education, and has also recently been identified amongst one of the
strongest emerging trailblazers delivering cutting edge engineering education (Graham,
2018). The latter is partly due to the introduction of UCL’s Integrated Engineering
Programme (IEP) which was introduced in 2014/15. The IEP is a teaching framework
that allows both specialist and interdisciplinary engineering education to be delivered
across different engineering disciplines and in programmes that teach fundamental
technical knowledge through interdisciplinary, research-based projects and professional
skills. The programme aims to produce independent and self-directed engineers based
on innovative teaching practices which includes the use of scenario- and problem-based
learning using real world examples (Sorensen, 2016).

One of the main aspects of the IEP is a strong emphasis on modelling and design,
starting with two compulsory modules dedicated to mathematical modelling & analysis
for all engineering students in Years 1 and 2 (Molaei Chalchooghi and Sorensen, 2018),
which for chemical engineering is supplemented by a third module on computational
modelling and analysis. The use of computational tools is embedded within the
curriculum and within most individual modules, and the students become proficient in
the use of Matlab, GAMS, gPROMS and Aspen Plus. More importantly, they are taught
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how to critically evaluate the results based on the assumptions made in the definition of
the problem.
Most of the curriculum is still dedicated to core engineering disciplinary content, mainly
for accreditation reasons, which is delivered through lectures, tutorials and labs,
however, the IEP also introduced a series of project-based learning opportunities, in
particular, during the first two years of studies. Students in their very first term take on
two five-week engineering design challenges, where traditional lectures are replaced by
smaller design workshops. During these workshops, they participate in modelling,
testing and prototype-making of their engineering solutions for global challenges such
as sustainability and global health (Sorensen, 2016). Similarly, within each department,
including UCL’s Department of Chemical Engineering, core modules have been
re-configured into four-week blocks such that they offer a theoretical context for a
one-week team-based project, within the IEP called Scenarios, following the block.
Scenarios are one week-long projects where students working in groups are asked to
tackle an open-ended real world problem that is related to the modules considered in
that teaching term. The undergraduate curriculum currently delivers six such Scenarios
across Years 1 and 2, all of which have a strong element of modelling and design
(Molaei Chalchooghi and Sorensen, 2018), as well as of safety (Pollock and Sorensen,
2018), the latter not considered in this work but is also an integral part of each Scenario.
In the following, the structure of the Scenarios will be presented, and examples of
Scenario problems will be provided with particular emphasis on Process Systems
Engineering (PSE), followed by a discussion of the benefits of this innovative approach
on students’ learning.

2. Problem-based learning through Scenarios
The Scenarios are research-based projects, firmly embedding the six dimensions of
UCL’s Connected Curriculum which aims to ensure that all UCL students are able to
learn through participating in research and enquiry at all levels of their programme of
study (Fung, 2017). The Scenarios teach fundamental engineering knowledge, but also
have a strong focus on professional skills, ethics and safety. Of particular focus is the
Statement of Ethical Principles set out by UK’s Engineering Council and the Royal
Academy of Engineering (Royal Academy of Engineering, 2017), an engineering
concern that is not normally addressed in technical modules but is highly relevant to the
discipline.

Each of the six Scenarios focuses on a different problem, the subject of which is of
relevance to the topics that have been covered during the teaching term in the core
modules, for instance, transport phenomena, thermodynamics or mass transfer. The
Scenarios are usually related to the chemical industries, thus giving the students some
insight into the types of problems they will face as practicing engineers during their
career. The students are given five days to come up with a solution to the problem,
attending progress meetings and facilitation sessions throughout the week, before
submitting and presenting their results in a report and through a poster, presentation or
video. Whilst the technical topics of the Scenarios are linked to core technical modules,
the marks contribute to IEP modules on Design and Professional Skills, covering
general learning outcomes related to these themes rather than technical aspects.
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The department has used gPROMS ModelBuilder (Process Systems Enterprise, 2020) in
undergraduate teaching for over 15 years, within the IEP introduced in the second term
of Year 1. Process flowsheeting is introduced at the start of Year 2, with particular
emphasis on Aspen Plus (Aspentech, 2017), which together with gPROMS are the main
simulation tools used across the curriculum. Both tools are used within the Scenarios,
which therefore also serve to introduce students to the importance of PSE and to how
they can use their theoretical knowledge and modelling skills in order to model a
chemical process, interpret its behaviour and think critically about how the process
could be further improved from a design and/or operational perspective.

Team working is a key aspect of the IEP and for each Scenario teams are allocated on a
different basis, for instance, based on accumulated average mark or even allocated
randomly. A discussion of the rationale behind the different team allocations methods is
unfortunately beyond the scope of this paper, so it will therefore suffice to say that, at
the end of the sixth and last Scenario, and before the students start their capstone design
project in Year 3, students are generally very confident that they can perform in various
teams towards a common goal, ensuring that all team members have an equal workload
and are respecting each other.

The Scenarios are normally launched on a Monday morning during a plenary
introductory session where the Scenario topic and deliverables are presented by the
teaching team and the expectations are stated to make sure the students understand the
goals for this Scenario. Next, students are informed about the two client (progress)
meetings during the week, the helpdesk sessions for any questions they might have and
for software support, the deadlines they need to meet, as well as suggested literature. In
this way, the teaching team ensures that the students are sufficiently guided, but at the
same time have freedom to organize their work within their groups of five to six
students (Wankat and Oreovicz, 1993). The teaching team usually consists of four
members of teaching/academic staff and two Postgraduate Teaching Assistants (PGTAs)
supporting a cohort of around 120 students. Staff members participate in the progress
meetings and in the final presentations, whilst PGTAs mainly support students in the
helpdesk sessions.

3. Scenario examples
In the following, three different Scenarios will be discussed. The focus will be on a
Scenario normally delivered as the fourth Scenario, taking place at the end of the first
term in Year 2, to illustrate different ways of delivering the same learning outcomes.
The Scenario considered is linked to an introductory module on Separation Processes
which covers fundamental aspects of distillation, absorption and extraction as well as
basic column design.
Different Scenarios problems are considered each year. This is quite challenging for the
teaching staff but ensures that students are not able to plagiarise a previous problem, or
even seek assistance from older students. As the module lecturer is always one of the
Scenario staff members, they can focus the delivery of the module around the Scenario
problem to ensure that all the learning outcomes for the module are met regardless,
hence the variation in the Scenario topic is not a concern.
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The design of a reactive distillation process was considered in the 2017/2018 academic
year. As reactive distillation is not exhaustively covered in the module curriculum,
students were introduced to the concept of process intensification in depth for the first
time in this Scenario. The first deliverables were therefore focused around reviewing the
process; understanding its working principle and why it is considered a prime process
intensification example; discussing the advantages and potential limitations of the
industrially relevant case study, i.e. the production of MTBE, etc. Then, students were
asked to simulate the case study using Aspen Plus (Aspentech, 2017), but were given a
template input file from which to start. After the fundamental process modelling step,
the next deliverable included suggestions from each team with regards to potential
process improvements, demonstrating the benefits of their suggested design revisions on
process performance and economics, and grounded in the simulation work.

b) Carbon Capture and Sequestration
Another example includes consideration of Carbon Capture and Sequestration (CCS),
introduced in 2019/2020, where students were asked to design a carbon capture
absorption unit based on a post-combustion method. The deliverables included
reviewing the social context of the method based on recent European greenhouse gases
regulations. In addition, teams were required to evaluate alternative process
development options, and to design the absorption column for post-combustion using
Aspen Plus (Aspentech, 2017) whilst evaluating the associated process safety aspects by
conducting a Failure Mode and Effect Analysis (FMEA). The final deliverable also
focused on suggestion of process alternatives to encourage students to think about how
their process can be further improved, and to justify their choices based on the current
(and future?) regulations, process design limitations and simulation results. The students
were also asked to consider the concept of sequestration, and to recommend whether or
not this should be considered by future engineers. A number of student teams reported
concerns with sequestration and suggested other ways of combating climate change
should instead be considered.

c) Fermentation bio-butanol process
In a slightly different case study, introduced in 2018/2019, student teams were asked to
design a simple batch biofuel separation process for the production of biofuel for use by
anthropologists studying indigenous Indian tribes in the Amazon delta. Students first
explored current bio-butanol processes, in particular, identify design limitations of the
process such as potential azeotropes based on VLE diagrams generated using simulation
tools. The next deliverable was to provide suggestions for process developments related
to raw materials, resources, biological aspects etc. and to demonstrate the associated
benefits based on their simulations. Finally, each team discussed the impact of their
suggested process design with regards to local land use, water contamination etc.,
concluding on whether their solution is acceptable or not, from a sustainability and
social perspective, for use in a vulnerable area such as the Amazon. In this particular
Scenario, the tutors therefore encouraged the teams to make their decisions not only in
terms of process feasibility and performance, but also in terms of its social and
environmental impact. The majority of student teams recommended that their design
should not be implemented due to concerns for the impact on the indigenous tribes, thus
clearly demonstrating that the IEP focus on professional skills and social responsibility
is taken very seriously by the students.

a) Reactive distillation for the production of MTBE
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Reflections on the development of scenario and problem-based
chemical engineering projects

All the Scenarios mentioned above make use of simulation tools as an integrated part of
the Scenario. The aim is very much to make the students proficient in the use of
computational tools but for them to see them precisely just as tools to achieve the
engineering calculations they require rather than a means to an end.
Prior to the helpdesk sessions, a short video is issued which explains how the process
considered works, and how it can be simulated using the appropriate software to ensure
that the students have understood the fundamental concepts and how they could proceed
with setting up their simulation. During the helpdesk sessions, the students can ask
questions, addressing them not only to the tutors (staff and PGTAs) but also to the rest
of the class as peer discussion has been found to be particularly effective as a teaching
and learning practice (U.S. Department of Education, 1986).

In all Scenarios, progress meetings are held twice during the Scenario week. During
these meetings, each student team is given limited time to critically present their
findings so far, demonstrating that they are able to meet all deliverables. In cases when
teams have difficulty addressing some of the deliverables, the tutors can direct them
without directly providing the answer. With regards to the design of the processes
considered, all teams are encouraged to properly justify their design decisions based on
their simulations, and using proper model analysis tools such as sensitivity analysis.

In the final presentations, each team presents their findings and all team members are
expected to participate, including answering questions from the tutoring team. From a
teaching perspective, presenting their work in teams is beneficial for students’ learning
as they learn how to cooperate and obtain knowledge both within the group and
individually, and to defend a team decision. For their presentations, time is deliberately
very limited, forcing the students to think critically about which findings to present and
how to justify their final decisions, leaving the rest for their written report.

4. Discussion
The example Scenarios presented above have hopefully illustrated how different
engineering concepts can be considered using project-based learning with a strong focus
on team working and professional skills. Each Scenario considers a different real world
problem, for which students must make use of computation tools and to use their critical
engineering thinking in order to reach a solution. For all the Scenarios presented, the
concepts considered have been carefully selected in terms of the knowledge and
professional skills students should ultimately obtain. Firstly, students learn how to apply
fundamental engineering knowledge (mathematic equations, process principles etc.) in
order to tackle an open-ended real world problem. Secondly, understanding how
computational tools can be used in order to investigate a process, as well as learning
how to take into consideration the impact of their design decisions on a number of
aspects (e.g. economic, environmental, societal etc.) is another key aim of these
Scenarios. Through scenario-based learning students learn how to convert their
theoretical knowledge into not only modelling equations, but also how to investigate the
process using sensitivity analyses and optimisation making therefore, design choices
which can be properly justified.
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It is truly impressive to see how much students achieve during a Scenario given that
they were first introduced to the problem at the beginning of the week, having therefore
very limited, if any previous, background on the topic. The use of project-based learning
undoubtedly has a significant impact on student learning, as has the use of simulation
tools required to meet the deliverables. From a teacher perspective, it is highly
satisfying to see how the students develop from one Scenario to the next; in particular,
how they feel more confident about their suggested solutions and how their confidence
in arguing their decisions increases. This is, in our opinion, in part due to the fact that
their decisions are based on proper investigations within a computer-aided process
engineering framework.

5. Conclusions
This work has presented the rationale behind the use of project-based learning in an
integrated engineering programme, implemented through six week-long Scenarios,
including the use of computational tools in considering open-ended real world
problems. Several example Scenarios have been presented and discussed, highlighting
how this teaching approach has multiple benefits, including but not limited to, students’
understanding of PSE tools and the development of their critical engineering thinking in
their use.
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Abstract
Industry 4.0 is moving towards the digitalization of traditional manufacturing processes,
and thus, the educational system must adapt and meet the demand of engineers able to
work in this digital paradigm. In this context, students, and engineers, are now more
than ever required to possess programming skills. Therefore, in this work, we collected
and evaluated the students' perceptions about the need of acquiring programming skills
in (bio)chemical engineering education. The data has been collected through a
quantitative survey distributed to undergraduate and graduate students in the chemical
and biochemical engineering study programs at the Technical University of Denmark. In
general, the students pointed towards an insufficient presence of programming content
in their study plan, and they favor Python as the preferred programming language.
Moreover, the students selected actions to improve the integration of programming in
their curriculum, focusing on increasing the content of programming applied to the
(bio)chemical engineering field and using only one programming language. In addition,
the students pointed out modeling and optimization as the most useful topics for their
future career. Finally, a learning design has been developed to fulfill these needs and it
has been implemented in an educational computer-aided tool, called BioVL (Bioprocess
Virtual Laboratory - www.biovl.com).

Keywords: Computer-aided tool, Education, Programming, (Bio)chemical engineering.

1. Introduction
Industry 4.0 is a current trend in the bio-manufacturing industry, with the focus to
introduce and use digital solutions inside traditional manufacturing. In this context, the
digital realm has an important part to play, with examples such as the Internet of Things
(IoT) or Digital twins (DT). Accordingly, educational systems must become active
agents for this ongoing transformation (Gargalo et al., 2020; Narayanan et al., 2020);
universities are engaged in integrating the current and future needs of the digital
transition into their curriculum. This digital dimension relies on computational tools and
methods to implement the interactions among the operation units, share information
between different processes and systems, and adopt decisions without human
intervention. Therefore, although there is an increasing need for engineers with
programming skills, there is no data on the students' perception and opinion about the
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programming content in their education. Meanwhile, students' perception of an activity's
value is strongly linked to performance and success in the task. This corresponds to the
Expectancy-Value Theory (Wigfield and Eccles, 2000), which is the educational
theoretical framework used in this study. In this context, we have collected and
evaluated the students' interests and opinions regarding the programming content and
implementation level in their curriculum. Moreover, these insights are then used to
design a topic-related pedagogical description, which is then implemented in an
educational computer-aided tool; called BioVL (Bioprocess Virtual Laboratory).

2. Methods
A quantitative assessment of the students' perceptions about the need of programming
skills in the curriculum was performed. The data was obtained by using a
multiple-choice questionnaire. This survey was distributed to students through a link in
the following courses: 1) Chemical reaction engineering (the third and final year of their
BEng education) (DTU, 2020a); and 2) Process adaptation in Fermentation Based
Biomanufacturing (first year of their MSc) (DTU, 2020b). Both courses belong to the
chemical and biochemical engineering study programs at the Technical University of
Denmark.

3. Results and Discussion
In 2020, 52 students completed the survey: 39% were BEng students, while 61% were
MSc students. The questions asked were related to previous knowledge about
programming and how they perceived programming to be implemented in their
education. This assessment aims to provide a complete view of the students' education
gaps and requests; and deliver a road map to better integrate, if necessary, programming
in their studies. Therefore, the main aim of this work is to propose a learning design to
bridge the identified gaps as well as include, as much as possible, wishes brought up by
the students.
3.1. Students' perception: a quantitative approach

Initially, the students were asked if they perceived their programming education as
sufficient. The collected data is presented in Figure 1.

Figure 1. Survey responses to: do my studies include enough programming?

As it can be observed in Figure 1, 66.7% of the participants are convinced that their
studies do not include enough programming, and none of the participants strongly
agrees on the extent of their current programming education. Hence, this data clearly

2040



Programming skills across the (bio)engineering curriculum – a students’ 

identifies that the students feel that the
extent of programming in their
curriculum is not enough.
The second line of research has to do
with gathering the students' views on
including the teaching and practical
implementation of programming skills
into their curriculum.
Therefore, as presented in Figure 2, we
have started by identifying the students'
preferred programming language. It
shows that most of the students have
previous knowledge on MATLAB
or/and Python. Notably, approximately
30% of students declared that they do
not have knowledge or experience in
any programming language.
Considering that the students are in the
last year of their BEng or the first year
of their MSc, we believe this to be a
concerning reality.
On the other hand, Figure 2-b) shows
that students prefer Python (79%) and MATLAB (73%) over other programming
languages, such as R. However, when asked to select only one programming language,
60% of the participants choose Python, while 30% voted for MATLAB. The remaining
students selected R (5%) or were indecisive (5%). The data showed a difference
between the programming language that the students had previous knowledge about and
the language that they see as most useful for their future careers. To understand the
inbuilt motivations behind the students' choices, they were questioned about the
characteristics of the different languages that impacted their decision (see Table 1).
Table 1. The most important characteristics identified by the students for the selection of a
programming language.

Statement Percentage
Easy to read and easy to code 66.7%
Open source / Free license 52.9%
Can be used for artificial intelligence and machine learning 11.8%
Several available packages 17.6%
A great online community and support 68.8%
Multidisciplinary 29.4%
Availability of models in chemical and biochemical engineering 39.2%

Table 1 shows a strong agreement in three characteristics: 1) great online community; 2)
easy to read and to code; and 3) open source. By selecting these attributes, the students
are again supporting their choice for Python, a very popular and well-documented
open-source language, built on a philosophy emphasizing code readability. Moreover,
the students used the 'extra comments' section in the survey to highlight their interest in
favoring the programming languages currently being used in the industry.

perspective
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Once the students have evaluated their programming skills, they had the opportunity to
assess ways to improve them in their education. The survey statements and the collected
data are presented in Table 2. Here, a high number of the students advocated for more
practice on programming through an applied programming course in the latest part of
their studies (65.4%) as well as more applied exercises (59.6%). Besides, most students
also agree on their interest in using only one programming language (57.5%). These
strategies have already been implemented in universities, such as Lund University that
systematically uses MATLAB in their engineering education, or (dos Santos, Vianna
and Le Roux, 2018) who implemented a programming course in Fortran in the final
year of chemical engineering education with positive but inconclusive results at the
University of São Paulo.
Table 2. Students' perspectives on how to improve the teaching of programming in their
education.

Statement Percentage
Only one programming language for all subjects in my studies
(e.g. MATLAB, Python)

57.5%

More exercises on programming related to a specific topic 59.6%
Introductory sessions on the programming language before using
it in the classroom

55.8%

A teacher assistant for programming in the classroom 36.5%
Hands-on programming course for chemical and biochemical
engineering in the latest part of my study plan

65.4%

None of the above 0%

Furthermore, the students added suggestions in the comments section, coming up with
proposals such as inviting experts from the industry.
Finally, the students were asked about the expected purpose of the use of their
programming skills in their future careers; the collected data is presented in Figure 3.

Figure 3. Survey responses related to the expected use of programming in the students' future
careers.

These results show that almost all students (94%) selected "modelling" as the main
application of programming in their future, closely followed by "optimization" (85%).
On the other hand, only 17% have chosen "artificial intelligence and machine learning",
even though it currently is a hot topic in (bio)chemical engineering.
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To sum up, students were critical about the content of programming in their studies,
highlighting a gap in their educational curriculum.

3.2. Learning Design

A specific learning design should be developed to overcome the identified pedagogical
need, and later on implemented and validated. This work will mainly focus on the
definition of a learning design and its implementation. The developed learning design
aims to establish a pedagogical frame to teach applied modelling in Python for chemical
and biochemical engineers in the final years of their education mostly through
programming exercises.

In general, a learning design consists of the specification of the following points: 1)
prerequisites of learning; 2) settings; 3) learning goals; 4) content; 5) learning process;
and 6) assessment. This didactic frame was first proposed by (Hiim and Hippe, 1997)
and later expanded by (Weitze, 2016).

Table 3 shows the defined characteristics of the developed and implemented learning
design in this study. It is important to highlight that the learning goals in Table 3 intent
to include and integrate the higher levels of the Bloom taxonomy (Abdulwahed and
Nagy, 2009) associated with meta-cognitive knowledge.

To conclude, this learning design has been implemented into a computer-aided tool -
BioVL. A prototype of BioVL is available at www.biovl.com. This software focuses on
explaining, solving, and enabling the modification of conditions and parameters in
mechanistic models for bioprocesses focused on undergraduate education. Currently,
BioVL has been designed as a complementary material for the students' education to
provide more programming exercises. It includes among its functionalities, a Python
library with the models, questionnaires, mini-games, a chatbot, and the possibility to
confront realistic operational problems (de Las Heras et al., 2019).

Table 3. Learning design for the teaching of programming to (bio)engineering students.

Element Definition
Pre-requisite of learning Students with previous knowledge on process design

and a basic knowledge of modelling and
programming.

Setting A computer-aided tool, called BioVL.
Learning goals It aims to: 1) apply Python to solve (bio)chemical

engineering problems; and 2) create (and implement)
process models in Python.

Content It covers: (i) theoretical and practical knowledge of
Python and object-oriented modelling; (ii) theoretical
knowledge on how to create a model.

Learning process Collaborative learning between students, a chatbot
and the Kolb's experiential cycle.

Assessment Use of variable feedback and self-evaluation as the
students test their hypothesis and develop and test
abstract conceptualization (Hattie and Timperley,
2007).

Programming skills across the (bio)engineering curriculum – a students’ 
perspective
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4. Conclusions
Industry 4.0 has the potential to greatly improve (bio)chemical processing. However, to
shift paradigms and bring traditional manufacturing to the digital era, engineering
students need to be able to communicate and connect the physical and digital world.
This is done through programming, and therefore, programming skills must be seen as
an essential tool and integrated into the university's curriculum. In addition, the students'
involvement in the development of a learning design for the teaching of programming
can have significant benefits, such as increased motivation and performance. Therefore,
in this work, we quantitatively assessed the students' perceptions about their knowledge
of programming, as well as their main interests. After the students have indicated that
their curriculum's programming content was insufficient, the survey asked how to
improve this based on the students' perception. Furthermore, the students indicated their
preferred programming language as being Python, to be applied for modelling and
optimization. These needs identified by the students were used as guidelines to define a
learning design. Finally, the appropriate learning design is integrated into a
computer-aided tool. This computer-aided tool is called BioVL (www.biovl.com), and it
is currently in its prototype stage, focusing on modelling of bioprocesses.
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Abstract
To successfully rise to the challenges of contemporary physical and social contexts, and
thus secure a more sustainable world, (process) engineering (under)graduates must learn
to engage effectively with other professionals. This demands that we structure learning
opportunities that make explicit with whom engineers need to engage and promote
softer skills that form an essential foundation of effective professional engineering
practice. As a step towards this, we present a workspace that provides a holistic
perspective on the intersections of the various value chains that obtain in manufacturing
and process industries; this framework helps to identify key partners from professions
and stakeholder groups. We also show how this framework informs the discussion
around employability and professional competence.

Keywords: Engineering Education, Ethical Practice, Sustainable Development,
Employability, Circular Economy.

1. Background
Engineers shape the world around us, changing both physical and social contexts.
Ingenious materials and innovative industrial processes yield technologies and business
models that improve standards of living. Yet, this increased quality of life is not
universally enjoyed and in the longer-term the procurement of profits threatens to exact
a heavy price on people and the planet; cf. Elkington (1997) and Savitz and Weber
(2006). Growing awareness of the cumulative environmental impact of extraction,
synthesis, manufacturing, and transport provokes increasing demands for accountability
and corporate responsibility (Horrigan 2010). A groundswell of opinion challenges
industries to be more transparent in their practices and proactive in replacing the
traditional “take-make-waste” model with a so-called “Circular Economy” (MacArthur
Foundation 2019).

Engineers are precisely the professionals to take a lead in rectifying such imbalances;
indeed, resolving contradictions is a fundamental aspect of an engineer’s mindset; recall
for example, TRIZ (Altshuller 2006). Moreover, responsibility in processing,
manufacturing, distribution, and use has long been a key imperative in Engineering, cf.
Life-Cycle Assessment (e.g., Ashby 2005) and initiatives for sustainable industrial
systems (Pozo et al, 2020). Redress demands the “creative destruction” of established
processes (Schumpeter 1934) and the innovation of new, more sustainable practices; and
this cannot be done in isolation. Engineering systems must be recognised as systems
within larger systems; thus, practitioners must work together with stakeholders and
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other professionals to accommodate the needs of all those directly or indirectly affected
by the outputs―concepts, systems, products, etc.―of their industries; see Freeman
(1994).

We must ensure that engineering graduates know with whom to speak, how to engage,
why and about what. We must equip them with appropriate skills to debate; and we
must ensure that they are familiar with ethical perspectives to promote appreciation of
different viewpoints in the pursuit of rapport. As a step towards this, we present a
‘workspace’ that provides a holistic perspective on the intersections of the various value
chains that obtain in process engineering, manufacturing and product development; this
makes explicit the many paths through which products and services are created and
developed (“innovation trajectories”) and the (artificial and natural) contexts from
which these draw; this in turn helps to identify key partners from professions and
stakeholder groups. Knowing with whom one must engage, how and why directly
supports softer skills that are an essential foundation of an effective professional
engineering practice. Our key contribution here is a framework to structure appropriate
learning opportunities, ensuring that engineering education fulfils these essentials. We
also consider this framework a useful mechanism to inform the discussion around
employability and professional competence; cf. Dacre Pool and Sewell (2007).

The structure of the article is as follows: in Section 2, we clarify sustainable
development; in Section 3, we present our workspace, outlining its construction and
briefly illustrating its application; we close in Section 4 with an indication of its
relevance to employability

2. Sustainable Development
There are many uses of the terms ‘sustainability’ and ‘sustainable development’;
perhaps the most oft-cited definition of sustainable development is that of the
Brundtland report (WCED 1987): “development which meets today’s needs without
compromising the ability of future generations to meet theirs” (p. 41).

Figure 1: Sustainable Development

I.D.Stalker et al.2046



Engineering Social Responsibility: Rising to the challenge of 

We prefer a more wholistic conceptualisation that recognises the three pillars of
Elkington (1997), see Figure 1: unless there is explicit consideration of the needs of
people (society) and economic viability in conjunction with responsible curation of the
environment, we will not have a truly sustainable approach; cf. the observations of inter
alia Savitz and Weber (2006) that sustainable development arises where “business
interests and the interests of the environment and society intersect”.

3. The SAMITE Workspace
3.1. Framework and Trajectories

The SAMITE workspace of Figure 2 (Stalker et al 2011) comprises: a framework that
coordinates elements essential to a full characterisation and understanding of a
product-service bundle, its composition and interaction with users and markets; and
‘innovation trajectories’ that elucidate routes through the framework

Figure 2: SAMITE Workspace with a Market-Driven Innovation Trajectory

Value proposition denotes a bundle of products and services offered to a specific
customer. It acts as the focal point of the framework.

Physiology denotes the structural aspects of the value proposition and comprises
● Construction which treats the physical form, material(s), and the technical

process(es) employed.
● Composition which addresses design approach(es), specific shape(s) and

technique(s) applied.
● Organisation which addresses the means through which the value proposition

is brought to market; it also addresses the intangible analogue(s) of physical
form for services; it consists in business processes and the organisational
infrastructure or ecosystem.

Market captures the commercial context, identifying target customer(s), i.e. market(s),
and design intention.
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Finance captures the revenue stream(s) through which the value created will be
appropriated and makes explicit the cost structure(s) involved in creating and delivering
the value proposition.

Psychology denotes the intangible aspects of the value proposition; it follows the
product expression model of Gotzsch (2006) and comprises Company ID, User ID1 and
Product/Service ID.

An ‘(innovation) trajectory’ is a path through the framework; it begins at an ‘epicentre’
and visits each main area; it is descriptive rather than prescriptive. Tracing possible
trajectories clarifies how to bring products, services, or bundles to market, e.g. what to
consider and whom to consult. This reveals the fundamental nature of the framework as
a clarifying structure: it elucidates aspects to be evaluated and considered; it identifies
potential roles where teams coordinate their efforts; and it gives suggestions of whom,
i.e. what categories of stakeholders, to approach to realise products, services or bundles.
Figure 2 illustrates a trajectory with an epicentre in ‘context’: we refer to this as a
‘market-driven innovation trajectory’. The driver for the innovation is a new market
opportunity. From this, a profile of the target customer is developed and used to define
a product-service bundle to meet the demand. If the market opportunity can be clarified
in terms of price, then the product-service bundle definition is augmented with strategic
pricing and an appropriate (target) cost structure. This cost structure is likely to
influence the choice of business processes, composition techniques and the physical
construction of the final offering. To refine the choices and decisions that will
ultimately lead to the value proposition, the trajectory will be traced a number of times;
each tracing provides opportunities to explore the economic viability of the value
proposition, the social contribution and costs of developing the value proposition and
the environmental/ecological impact of delivering it.

Naturally, other epicentres are possible and give rise to complementary trajectories; for
example, an epicentre in ‘physiology’ deriving from (say) the development of a new
(technical) process that is more environmentally friendly would be referred to as a
‘process driven innovation trajectory’ (Stalker et al 2011). Often, an innovation will
unite and unify a number of developments; for example, a new market opportunity may
coincide with the development of a new process, e.g., the more ethically minded
consumer demands more sustainable fabrics that can be realised through the use of
‘newer’ fibres such as bamboo. In this case, we consider multiple trajectories from
multiple epicentres and refer to the coordination of the individual trajectories into a
single trajectory as ‘(innovation) trajectory alignment’ (Stalker et al 2011). These invite
the coordination of efforts from different disciplines and motivate the education of
engineers and other graduates of the future in the context of product-service
developments.
3.2. Summary Case Study: Synthetic Biology

Synthetic biology is an exciting subfield of bioengineering that promises disruptive
innovation in the development and production of drugs and vaccines and therapeutics
(Freemont 2019). It comprises in silico design informed by real biological data and was
identified by the European Parliament as an emerging technology with the potential to
combat the COVID-19 pandemic (Kritikos 2020). By its very nature, being

1 Here, we use ‘locus’ to signify expressions of time, place, status, and culture.
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laboratory-informed and computation-based, it promises sustainable approaches to
product design and process development. We believe that it makes an interesting and
topical case study for the use of the SAMITE workspace in the education of (process)
engineers to foster sustainable development and stakeholder engagement: what we refer
to as “Engineering Corporate Responsibility”. For example, Bruynseels (2020)
examines responsible innovation through synthetic biology and data positionality,
exploring several ethical issues on the way. We can view this as a market-driven
approach to vaccine development that, when scaled up to production, would trace an
innovation trajectory like that of Figure 2. The trajectory makes clear the stakeholders
whose engagement is essential to the realisation of commercially viable sustainable
process (for the final vaccine) at industrial scale. Moreover, that the preliminary product
design is computational―as indeed could be the process synthesis, e.g., cf. Fraga et al
(2000)―means that the translation of the designs into physical and business processes
affords ample opportunity to convene implementation groups of specific stakeholders
and professionals that not only have necessary expertise, but would have a vested
interest working to ensure the most sustainable process is delivered owing to their
engagement.

4. Conclusion
Sustainable development and practices cannot be realised in isolation. To ensure that the
challenges of physical and social contexts are confidently met and surmounted, and thus
a sustainable world secured, future (process) engineers must convene effective teams of
appropriate professionals and relevant stakeholders. They must be educated in what
such teams look like. We believe that SAMITE is a constructive step towards this. The
notions of epicentre and trajectory foster systematic engagement: making explicit the
many paths through which products and services are created and developed and the
(artificial and natural) contexts from which these draw helps to identify key partners
from professions and stakeholder groups. Moreover, this provides a fundamental
platform for communication: it offers an explicit recognition of the interfaces at which
the vocabularies of disparate areas must be aligned.

The SAMITE workspace is also a useful mechanism to inform the broader discussions
around employability, contributing directly to development of a fuller understanding of
the context of ones subject, confidence in knowing how to assemble an appropriate team
to address challenges, and reflection on the need to engage with stakeholders; cf.
Understanding, Efficacy and Metacognition in the USEM model of Knight and Yorke
(2004). Knowing with whom one must coordinate and why directly supports softer
skills that are an essential foundation of an effective professional engineering practice;
for example, it explicitly supports the ‘personal and professional skills’ components of
the CDIO framework (www.cdio.org); the structures can be used to structure
interdisciplinary project teams, which supports the ‘interpersonal skills’ component of
the CDIO Framework; and of course other professional frameworks.
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Abstract 
In this paper, we present virtualization of the pressure control demonstration unit. The 
two main objectives were: to determine a dynamic mathematical model of the unit, and 
to use the mathematical model to virtualize the process that enables open and closed loop 
simulations. The dynamic model of the unit, which was developed based on experimental 
input-output data, shows Fit to Working Data greater than 95 %. Finally, the unit was 
virtualized in a form of a graphical user interface that hides all the modeling components 
from the user. The virtual unit is thus designed to enable students with limited or no prior 
knowledge of control theory and modeling of dynamic systems to study and analyze the 
dynamics of the system and to observe the effects of feedback control mechanisms. 

Keywords: Education, Modeling, Process Dynamics, Process Control, Virtual 
Laboratory. 

1. Introduction 

The pandemic of 2020 has changed the way knowledge is passed on from teachers to 
students. Classroom lectures have been replaced by online lectures practically overnight. 
Due to restrictions, some laboratory exercises, which are essential for undergraduate 
chemical engineering students to acquire practical competences and skills, had to be 
modified, condensed, recorded by technical staff and presented online to students 
(Pintarič and Kravanja, 2020), leaving them with no or only limited practical experience.  
Process control is regarded as one of core topics of most undergraduate chemical 
engineering curricula. The course not only exposes students to the rigors of process 
dynamics and control, but also teaches them how to tackle complex problems and apply 
good engineering judgment to obtain results of engineering usefulness (Byrne, 2006). 
Putting theory in practice is crucial in this respect. In a recent study, Zendler and Greiner 
(2020) conclude that learning by computer simulation performs similarly to learning by 
experimental method. However, to achieve the best learning outcome, the two methods 
should be considered complementary. 
If laboratory or demonstration equipment is not available, there are many simulation 
environments that can provide virtual learning experience. Some of them are commercial 
(e.g. Matlab & Smulink (www.mathworks.com), SimulationX (www.simulationx.com), 
PiDISTILL, PITOPS-TFI, SIMCET (www.picontrolsolutions.com)) and some are 
opensource (e.g. OpenModelica (www.openmodelica.org), Scilab & Xcos 
(www.scilab.org)).  
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In the reminder of the manuscript, we present a study on virtualization of the pressure 
control demonstration unit RT-634 (GUNT GmbH, Hamburg) – a step towards making 
the laboratory equipment virtual so that it can be made available to students to enhance 
their learning experience. 

2. Case Study and Methods 
The pressure control demonstration unit RT-634 is shown in Fig. 1. Its main components 
are hardware controller (a), control valve (b), pressure tanks (c, d), pressure sensor (e), 
and needle valve for air tapping (f). The air pressure at the inlet of the controller valve 
(pin) is assumed constant at 4.5 bar. The actuator driving the control valve is connected to 
a standard modulated signal (0 V –10 V). At 0 V the valve is fully closed and at 10 V the 
valve is fully open. The needle valve can be adjusted to allow for a specific maximal 
pressure (pmax) to be attained in the system. The equipment can be operated either by the 
hardware controller or by a software controller within the provided instrumentation and 
control software. In addition to the control functionality, the software also enables data 
logging. 
 

 
Figure 1: Pressure control demonstration unit RT-634 (Source: GUNT GmbH). 

2.1 Experimental 
Experiments were conducted on unit RT-634 to obtain three sets of input-output data 
needed for data-driven model development at three different values of maximal pressure 
(pmax = 3.3 bar, 3.6 bar, and 4.0 bar). An identical set of input data (i.e. modulated voltage 
applied to the actuator) was used in all experiments. The input data set was designed by 
a random number generator (Fig. 2). In this way, most of the important dynamics of the 
system were excited. The system output (pressure (p)) was recorded in 0.5 s intervals over 
the duration of the experiments. 
2.2 Model identification 
The identification of the RT-634 demonstration unit model was performed in Matlab 
(Matlab, R2019a) using experimental input-output data and System Identification 
Toolbox. 
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2.3 Modeling and virtualization 
Virtualization of the RT-634 unit was performed in Simulink (Matlab, R2019a) using the 
identified dynamic input-output model and graphical modeling, simulation, and 
vizualization capabilities of Simulink. 

 

 
Figure 2: Piecewise-constant input data set (modulated voltage) with variable time step. 

3. Results 
In this section we present the results of the model identification, and modeling and 
virtualization of the RT-634 unit. 
3.1 Model identification results 
Among the many models available in the System Identification Toolbox, the nonlinear 
Hammerstein-Wiener (NLHW) model was found to produce the best agreement between 
experimental and simulated data. The NLHW model was set up with a 10-segment 
piecewise linear function as input nonlinearity, and a 4th order one-dimensional 
polynomial as output nonlinearity. The metrics related to the quality of the identified 
models – Fit to Working Data (FWD), Final Prediction Error (FPE) and Loss Function 
(LS) – are listed in Table 1.  

Table 1: Model quality metrics. 

Mode
l 

pmax (bar) FWD (%) FPE (/) LF (/) 

M3.3 3.3 96.74 0.001 0.001 
M3.6 3.6 95.51 0.002 0.002 
M4.0 4.0 95.02 0.004 0.004 

 
The results given in Table 1 show that the models provide a good fit to the experimental 
data. This is indicated by FWD values (normalized root mean squared error as %), which 
are greater than 95 %. In addition, the values of complementary metrics (FPE and LF), 
are less than 0.004 in all the cases. The plot representing simulated response to changes 
in voltage applied to the actuator versus the experimental response to those changes for 
model M4.0 is presented in Fig. 3. The plot shows that even at FWD = 95 %, the simulated 
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response is in good agreement with the experimental data over the entire range of tested 
input voltage values.  
    

 
Figure 3: Experimental and simulated response to modulated voltage input (Model: M4.0). 

3.2 Modeling open and closed loop response 
Fig. 4 shows the Simulink model of the demonstration unit RT-634. The model can be 
used to simulate open and closed loop response. The developed dynamic models (M3.3–
M4.0) are embedded in subsystem NLHWs and can be switched on and off during 
simulation as required. To avoid unnecessary discontinuities in the model, switching 
between open and closed loop operation is accomplished through gain K, which can take 
a value of 1 or 0. The model operates in an open loop mode if K = 1, on the other hand, 
if K = 0, the model operates in closed loop mode. For consistent and realistic simulation 
results and to prevent numerical difficulties, a saturation block is put downstream of the 
NLHWs subsystem, with the lower saturation limit set to 10–5 and the upper saturation 
limit to 4.5. In addition, the PID output is limited between the values 0 and 10.   
 

 
Figure 4: Simulink model.  

The model shown in Fig. 4 is fully functional in terms of simulation capabilities, but a 
novice unfamiliar with the Simulink environment might find the user experience 
overwhelming. A graphical user interface that hides the model and presents it in a more 
familiar look, revealing only the necessary features, can be built using elements from 
Simulink block libraries such as subsystems, dashboard switches, sliders, gauges, scopes 
etc.  
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3.3 Graphical virtualization 
The virtual RT-634 graphical user interface is shown in Fig. 5. The block model (Fig. 4) 
is embedded in a subsystem and masked by the image of the demonstration unit. The 
control panel is equipped with a rotary switch to select the maximal attainable pressure 
(pmax). A toggle switch enables the user to switch between open and closed loop mode. In 
open loop mode, the voltage applied to the actuator can be set using the slider. On the 
other hand, in closed loop mode, the user can adjust the set-point value and set the values 
of PID controller constants. All the inputs available on the control panel can be adjusted 
during the simulation run.  
The simulation results are shown in two plots. In open loop simulation, the results shown 
in the plots are the value of the process variable (p) and the voltage applied to the actuator. 
In loop simulation, the results shown are the value of process variable (p) and the set-
point value. 
Using Simulink Simulation Pacing, the simulation time can be synchronized with the wall 
clock time, making the learning experience more realistic. All data generated during the 
simulation is saved to Matlab Workspace and can be used for additional analyses (e.g. 
system identification, model linearization, controller tuning).  
 

 
Figure 5: Virtual pressure control demonstration unit – graphical user interface. 

4. Conclusions 
A dynamic model of the RT-634 unit was developed based on experimental input-output 
data using MATLAB’s System Identification Toolbox. The Hammerstein-Wiener model 
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with piecewise linear input nonlinearity and polynomial output nonlinearity provided the 
best fit among the tested models. Fit to Working Data was greater than 95 % indicating 
that the model captures the experimental behavior of the unit. The RT-634 was virtualized 
in Simulink in a form of graphical user interface.  
The virtual unit is designed as to enable students with limited or even without previous 
knowledge of control theory and modelling of dynamic systems to study and analyze 
system dynamics and to observe the effects of P, PI and PID feedback control mechanisms 
in the context of servo and process control problems in real time.  
Although, practical training with real demonstration unit and control hardware, even if 
computer-controlled, allows for more realistic and memorable experiences, the virtual 
counterpart is a valuable alternative. One of the main advantages is its continuous 
availability. Finally, future work will focus on virtualization of flow, level, pH, and 
temperature control demonstration units, so that the students will have virtual laboratory 
at their disposal. 
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Abstract
Academia is an arena where practitioners from industry are integrated to theoreticians.
Such alliance has been intensified by the industry 4.0 (I4) age from which these
counterparts are seeking to merge efforts towards society 5.0 (S5), enabling next
generations to easily accept novelties and changes in well-established operations,
process-of-work, behaviours, etc. In educational centres, such a pace into the I4-S5 state
pushes new ways of adopting (or adapting current) sharing of work among peers since
this may potentially become a tool for an efficient process-of-research. Thus, we
particularly cover postgraduate centres with part-time (PT) and full-time (FT) students
in the fields of process system engineering (PSE) and we are widely relying on
computer aided process engineering (CAPE) tools, algorithms, software, packages, etc.
A collaborative research and development of PSE-CAPE systems may a) involve PT
and FT postgraduates in multi-disciplinary fields of science and engineering and b) go
across physics, math, and technologies to include social sciences, public policies, and
beyond. The proposition is to analyse PT-FT synergies considering their experiences,
accessibility of data to validate models, viability to handle CAPE tools, etc. An example
of collaboration between PT and FT students, involving a university, a research center, a
consulting company, and a medical corporation, is highlighted to optimise healthcare
treatment systems for social progress and sustainable development amid COVID-19.

Keywords: Education in PSE, part-time postgraduates, shared working, teamwork.
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1. Introduction

The increasing number of part-time students in postgraduate centres worldwide has
brought concerns about their evolution as researchers and developers of technology and
related impacts in communities. How supervision tasks should adapt to this and which
mechanisms must be adopted to address such situations are the points to be answered in
this paper. This study particularly focuses on postgraduates from the fields of process
system engineering (PSE) or widely counting on computer aided process engineering
(CAPE) tools, algorithms, software, packages, etc. In the argumentation,
complementarities of part-time (PT) and full-time (FT) postgraduates of PSE/CAPE are
analysed from the point of view of the industry (organisations, companies, ministries,
etc.) aiming to identify gaps and drawbacks of PT postgraduates that work in parallel
with the FT postgraduates. Considering companies’ investments in employees, release
time and PT’s extreme efforts given their job workloads and academic duties,
challenges to facilitate such a scenario need to be discussed to improve the synergies in
the relationship between industry and academia.
Lacking data on postgraduation numbers in terms of distribution and effectiveness of PT
and FT students, an analogy with postsecondary education in the United States is
introduced. Data from the Integrated Postsecondary Education Data System (IPEDS)
published for the first time in 2017 shows the alarming results on postsecondary
part-time students’ efficiency, which demonstrates the need to improve the path of their
academic endeavour. According to IPEDS (2017), among the postsecondary students,
which represents 37% of the PT students, only 17% received a degree or certificate
within six years (considering five years as the effective time of graduation as a
bachelor). In comparison, around 56% of FT postsecondary students graduated within
six years of enrolment. The poll covered about 1.2 million PT students from 2008 to
2017. Several other details on the distribution of PT per sector and data differentiating
private and public and profit and non-profit institutes are given in the IPEDS survey.
For several years, sharing of information among students, despite being PT or FT,
postsecondary or postgraduates, has been established as a framework to equalise the
quality of the knowledge given that bridges are built to allow students with weaknesses
to succeed towards standards of learning. Nevertheless, as we sustain in this work, a
certain level of intrusive management on behalf of the PT and FT learning success must
emerge in supervision activities. It is clearer when PT students are allowed in PSE
education centres and it gets stronger when most of the students are PT. By doing a
postgraduation in parallel while working in public and private sectors, the available time
of PT students to research and to develop a PSE postgraduate study is reduced. It is
intensified when CAPE tools are involved in the research and development of a product
to be deployed further in industrial, ministerial, etc., sectors that have followed the
evolution of their employees and allowed the investment in their released time as PT
students in academia (Kelly and Menezes, 2020).

From such study, complementarities of PT and FT students are evaluated by comparing
pros and cons in terms of practitioners’ and theoreticians’ capabilities and efforts to be
conjugated or combined into a teamwork process of making research and development
for a complete deployment of the postgraduate topic. The coordination of such
cooperation among PT and FT students resembles the hierarchical decomposition
heuristic (Kelly and Zyngier, 2008) that focuses on solving the overall problem when
managing a decentralized and distributed system integration of competing targets and
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directions of multiple sub-systems. These must be defined systematically every
semester and re-tuned whenever needed. As potential assistants of supervisors, FT
students have more time to spend in the postgraduation studies covering theories,
configuration and codification of algorithms in mathematical and computing languages,
extra paper writing (e.g., review papers), etc. However, challenges exist such as a) tools
to allow sharing of work without compromise learning; b) exposition of weaknesses of
students who are underperforming; c) balances of number of PT and FT students for
teamwork supervision; and d) extra work for advisory coordination and control of
effectiveness of the PT learning and FT assistance.

2. Previous literature on PSE/CAPE tools for teamwork applications
Into the applicability of process system engineering in industry to facilitate PT and FT
students in a staged fashion within an easy pathway, Menezes and Kelly (2018a)
presented open-use and community-based tools for education in PSE with several
examples in industrial applications from decision automation (or decision-making or
prescriptive analytics) to data analytics (or predictive analytics). Menezes and Kelly
(2018b) extended their previous work describing prescriptive and predictive analytics
examples found in batch and continuous processes in industry by using the
mathematical modeling platform IMPL (Industrial Modeling and Programming
Language) that embeds the unit-operation-port-state superstructure (UOPSS) and the
quantity-logic-quality phenomena (QLQP) from Kelly (2005). In their work, the
so-called industrial modeling frameworks (IMF) are given as an initial phase for the
development of PSE applications by using the built-in UOPSS flowsheet network.
Within this stage of the learning process, equations are not coded, instead, the problems
are configured using the input data in specific meaningful frameworks with respect to
keywords or semantics to be learned as in any modeling and programming language.
This type of modeling platform is known as structure-based (as opposed to the set-based
such as GAMS and scalar-based such as MATLAB), whereby the equations are
constructed automatically by the configuration of the problems using the UOPSS
constructs and QLQP concepts (Kelly and Menezes, 2019).

Kelly and Menezes (2020) presented a path to evolve towards advanced modeling and
programming skills by using a blend of IMPL’s IML (Industrial Modeling Language),
IPL (Industrial Programming Language), and IMPC (Industrial Modeling and
Programming Code). This hybrid modeling allows sharing work between PT and FT
students (configuration in IML and codification in IPL and IMPC). In such a way, the
PT students can drive the achievements of the project by using the IML configuration
considering the vast number of parameters, variables, and constraints and the
UOPSS-QLQP elements without coding. For more advanced steps to programmatically
model the problems integrated with other systems connecting graphical user interface
and database, the use of an application program interface (API) may be accomplished
by FT students using IMPL’s IPL codifications via computing languages as Python,
Julia, R, C, C++, C#, Java, Visual Basic, etc. The development of ad hoc libraries for
PSE packages (thermodynamics, kinetics, etc.) can be developed in IMPL’s IMPC using
Intel-Fortran. IML, IPL, and IMPC can coexist simultaneously in a model in a hybrid
PT-FT work. More recently, IMPL-DATA has been released which has always been a
part of IMPL to pre- and post-process problem data, but is exposed to support the user
in the creation of simpler and smaller analytics, estimation and optimization
deployments. Therefore, the PT students can progress from a low-skilled modeler or
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mere user of off-the-shelf tools to a high-skilled developer that drives the design and
implementation of solutions to be deployed in the postgraduation and their companies.

3. Postgraduates from industry and academia
For those postgraduation centres with part-time students for research and development
in process system engineering topics, some particularities must be addressed. In
analysing potential synergies and trade-offs or pros and cons in the combination of PT
and FT experiences, time spent for researching, accessibility of data to validate models,
viability to handle CAPE tools, supervisors learn from such study everywhere this
applies.

In this way, we initialise the argumentation with a digression. In such comparative
analyses, the uniqueness aspects of industry and academia aim to be merged in favour
of the researching, development, and deployment (RD&D) in the engineering
management and decision sciences on the process of making decisions to be managed
the executions. In the digressive example, both the trial-and-error procedures based on
previous experiences and the automated decision-making via exact methods of
mathematical programming are found. One would be inclined to say that the latter
would be more efficient than the former. This may be true if the automated engine based
on decision sciences is representative enough to be accepted as the result to be followed
in the execution of the decisions. However, industrial practitioners may act as validators
of the theoretical decisions. Joly et al. (2017) discussed lessons learned from developing
and implementing refinery production scheduling technologies pointing out the
weaknesses and strengths of both development and implementation or deployment part
of the whole, when involving researchers and developers in research centres and
end-users (the validators) in industrial production sites.

3.1. Part-time (PT) students from industry, organisations, companies, ministries,
etc.

Campbell and Bombardieri (2017) address postsecondary learning and fulfilment steps
of PT and FT students. In the postsecondary environment, the majority of PT are older
and financially support themselves and their families. Approximately 75% of them are
currently working and 40% of them work 40 hours per week. Obviously, this situation is
even worse in postgraduation since the students are within a further stage of their career
than in the postsecondary stage. As an extrapolation, the complicated state for PT
postgraduates of PSE centres must be considered by the advisers in the coordination of
their challenges to succeed.

Despite the barriers of PT students, their strengths related to previous experiences on the
topics of the postgraduation’s researching and development may allow them to act as
validators of the theories and proofs from the academic environment. Furthermore, the
PT student’s access to data must be considered as a powerful attribute, however such
data mostly needs to be sanitized to hide confidential information. These PT qualities
are shown in the example of the healthcare treatment system to be seen.

3.2. Full-time (FT) students: the additional arms of PT supervision

Postgraduate FT students need some essential core skills if they are going to assist their
supervisors in advising PT students. Some core skills are required for a better
supervision, such as leadership, time management, technical expertise, communication
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skills, and ability to judge. One of the pillars of growth in both business and academia is
to have good leadership and supervision skills over team members. Therefore,
improving the FT student expertise in leadership and supervision is required to interact
with other peers, which also supports the faculty supervision process through the
enrolment period. The core skills are following. First, being a good leader is critical for
FT, it is the first step towards managing tasks delegated by faculty supervisors and
collaborate with team members (FT or PT students) as they would rely on their leader
for guidance and mentorship. Second, time management skill is considered the seed to
thriving in any task or activity as it is implemented in every workplace and for any
position. Third, strong technical skills are required when a peer asks for technical
support and knowledge that FT should be able to deliver as close as their supervisor.
Fourth, communication skills are needed since the FT should be prepared as it helps to
professionally transfer the message or tasks to others. Fifth, judgmental skills are
required in certain situations to overcome unexpected outcomes, although it will
improve based on previous advising experiences.

4. Example of a merge of industry and academia
The problem in Figure 1 is addressed by a collaboration between PT and FT students
within a coalition of a university, a research center, a consulting company, and a medical
corporation to develop predictive and prescriptive analytics based on machine learning
and optimisation for the optimal healthcare systems in the planning, scheduling, and
coordination of the treatment networks amid the COVID-19 pandemic.

This study aims to better predict the spread of the disease in order to prepare for the
avalanche of the number of patients in the healthcare treatment systems. In measuring or
simulating the selected inputs (social distance, lockdown policies, out-of-stock of
personal protective equipment (PPE), climate, etc.), the spread of the new number of
cases per day (epidemiology curve) can be modeled through a data analytics machine
learning approach. In a second step, using epidemiology curve predictions, an optimal
design, operation, and control of the healthcare treatment systems can be determined.
Then, the sensitivity analysis for an assessment on social progress and sustainable
economy can be performed. In the first and second steps of the project, FT students with
machine learning and optimisation skills develop the configuration, codification,
interfaces, etc., needed to predict the epidemiology curves of COVID-19 positive
patients in the near future and this will be an input of the optimisation and control of the
healthcare treatment systems. The data, modeling and results of such complex problems
are validated by the PT students that work in the medical corporation.
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Figure 1. Advanced analytics for healthcare systems: merge of industry and academia.

For a medical resource supply chain resilience against the COVID-19 pandemic, a
generalised performance model can be developed considering minimisation of
deviations from targets, standards, policies, etc., to be gathered by the PT student. A
target can be defined as the safety level of PPE stocks in the location for use and in the
warehouse for distribution. However, one of the biggest challenges is to determine the
forthcoming number of patients, considering models of the contagious curve and how
this can be used in a performance model in agreement with a) standards (soft bounds or
targets); b) limits in the treatment capacities; and c) correlated processes by using lower
and upper bounds of variables. Under certain circumstances, the use of penalties can be
considered to avoid infeasible problems (out of stock on the PPE as an example).

5. Conclusions
The complementarities of part-time and full-time postgraduates in process system
engineering centres are a topic to be addressed by policymakers, institutional leaders,
and researchers to improve part-time student efficiency. Education in PSE/CAPE tools
highlights the importance of merging industry and academia to validate case studies,
find synergies, coordinate the cooperation of postgraduates, etc. It also participates in
building a future society that balances economic development, addresses social issues
and incorporate technology to solve sustainably real-world problems. The example of
optimisation and control of healthcare systems illustrates how industry, represented by
the medical corporation, must be in consonance with the knowledge provided by
academia. The case was developed based on a synergy between a part-time student
exposed to the needed tools from academia and real data gathered from the industry.
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Abstract 
The Quantum industry is currently at an embryonic stage.  If it is to grow, it will require 
new markets, and, a workforce with the requisite skills and knowledge to support it.  
Anticipating this potential growth, this paper will explore capacity building within 
engineering education on the subject of Quantum Computing (QC).  This work has two 
aims.  On the one hand, it seeks to illustrate the need for developing education on the 
subject, inferred by trends in open literature.  On the other hand, it seeks to suggest a 
starting point for quantum computing education in higher education.  Since 2018, a sharp 
incline can be observed in the number of publications on topics related to QC. These 
publications are arising within several fields related to engineering including, but not 
limited to, material science, chemistry and computer science.  In response to this trend, 
this paper will evaluate several third party educational approaches to teaching emergent 
technologies with a view to developing a model for teaching QC.  Due to a lack of 
precedent in a wide range of industry applications and the current limitations in the state-
of-the-art of this technology, the educational model proposed will be one that exploits 
imagination, as opposed to knowledge acquisition, in the pursuit of new knowledge 
building. 
 
Keywords: Education, Emergent Technologies, Quantum Computing, Engineering. 

1. Introduction 
This paper highlights the current progress of a project for which the objective is to build 
capacity within engineering education at the Department of Chemical and Biochemical 
Engineering at the Technical University of Denmark and at the Lassonde School of 
Engineering at York University in Canada.  The goal is that when Quantum Computing 
technology is ready for widespread adoption, we will be ready to support its growth. 
1.1. Quantum Computing 
Quantum Computing (QC) can be described as an emergent technology.  Whilst its 
scientific principles (e.g. superposition and entanglement) are well understood, it 
currently possesses several limitations in relation to its useful application in the real 
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world.  Despite these limitations, several early use cases have been shown to be 
competitive compared to classical systems whilst many areas have been identified as 
having great potential for quantum advantage in the future. For example, in the field of 
Process Systems Engineering (PSE), Ajagekar and You (2020) published experimental 
results where a proposed QC-based fault diagnosis model outperformed both state-of-the-
art data-driven approaches and deep neural network based models in almost all cases.   
Activities such as process optimization and process data analytics (Pistikopoulos et al., 
2021), and, areas such as drug discovery (Hassanzadeh, 2020), and, energy systems and 
supply chains (Ajagekar, You, 2019), are projected to benefit from QC. 
1.2. Quantum Computing Education 
Despite the potential for the future application of quantum computing in engineering, no 
unified curriculum exists to bring these approaches to engineering education across its 
various disciplines.  This may be because teaching and learning an emergent technology 
presents many unique challenges.  More precisely and unlike an established technology, 
it may not be possible to present a full body of science.  Further, adequate tools and 
techniques may not be developed, and real-world examples will be sparse.  Day and 
Shoemaker (2000) proposed several unique characteristics that can be ascribed to 
emergent technologies that result in significant challenges in the sphere of teaching and 
learning.  These characteristics include ‘uncertainty, an evolving understanding of 
functional benefits, formative regulatory standards, speculative use patterns, incomplete 
market knowledge, embryonic industry structure, new market players and emergent and 
fast changing rules of the game’.  Quantum computing can be qualified as possessing 
many of these characteristics and therefore, we will approach the challenge of designing 
education on this subject in the broader context of designing education for an emergent 
technology.  Whilst adopting this broader approach will make it easier to conceptualise 
the problem, it does not make it easy to solve.  Due to the breadth of characteristics that 
apply to emerging technologies, and the variation that may be inherent within each, a 
bespoke design is often required. 

2. The Growing Interest in Quantum Computing 
To explore the growing investment in quantum computing within academia, a quantitative 
analysis was undertaken with a view to identifying trends across time. ‘Count of 
publications’ was selected as the quantifying parameter whilst a list of keywords served 
as the qualifying parameter.  The keywords were as follows: (i) Quantum Computing, (ii) 
Quantum Computation and (iii) Quantum Computer. 
The keywords were applied to journal ‘Titles’ in the first instance and journal ‘Topics’ in 
the second, resulting in the production of a list of journal entries for each search 
respectively.  ‘Title counts’ were intended to illustrate the growth in focus on the subject 
of quantum computing whilst ‘Topic counts’ were intended to illustrate a more general 
growth in interest.  The results of the analysis are illustrated in Figure 1. 
As Figure 1 demonstrates, the annual count of ‘Titles’ containing a keyword was 
reasonably uniform between 2001 and 2017.  A significant upturn occurred in 2018, 
which continued into 2019 where an increase in excess of 100 % is illustrated in the 
number of ‘Titles’ containing a keyword compared to just two years previous.   
Turning to the count of ‘Topics’ containing a keyword, a more gradual increase in interest 
can be observed in quantum computing over the same period.  In agreement with the trend 
in ‘Title’ counts, ‘Topic’ counts also illustrate a sharp upturn in growth in both 2018 and 
2019 offering further support that a transition is on the horizon.  With a view to  
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Figure 1: Count of ‘Titles’ and ‘Topics’ containing the search keywords 

 

developing a more granular overview of the growing interest in QC, the topics were then 
broken down by ‘field’, as illustrated in Figure 2. 
Figure 2 illustrates that physics and mathematics are the fields that are producing the 
greatest output in terms of the number of publications. Relatively speaking, mechanics, 
computing, optics, and chemistry are also making a respectable number of contributions, 
whilst material science is close behind.  Whilst the trend line for mechanics, and to a 
lesser extent optics and chemistry, appears to be well correlated with that of physics and 
mathematics, the computing trend line is not.  Between 2009 and 2015, computing 
appears to have experienced a trough in interest for reasons we are unable to identify here.  
 

 
Figure 2: Count of ‘Topics’ containing the search keywords, broken down by Field 
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However, what is apparent is that several fields are experiencing accelerated growth in 
interest in the area of quantum computing, and with this, one can expect an emerging 
demand for a growing talent pool with appropriate knowledge, skills and creativity.  And, 
whilst the education field has also experienced a relative increase in the number of 
publications on quantum computing over the last couple of years (at 22 and 30 
publications for 2018 and 2019 respectively) we might have reasons to be concerned that 
the level of interest expressed here is simply not enough to match demand elsewhere.  
Validation for this concern is supported by a recent Black and White report commissioned 
by D-Wave where 59% of the survey respondents who are not using or considering using 
quantum computing in the near future are not doing so because of skills issues (451 
Research, 2020). 

 
3. State-of-the-Art: Teaching Emerging Technologies 
Consulting literature on the topic of Education for emergent technologies, several 
methodologies have been proposed and/or implemented.  Three methods will be outlined 
below.  
Nilsen & Purao (2005) outline how a trio of pedagogical traditions, objectivist, 
constructivist and social-cultural could be mapped to a trio of learning objectives, namely 
the learning of tools, the understanding of principles and the application of these tools 
and principles in problem solving respectively.  Employing a case study research 
methodology, they were able to identify several challenges to teaching emergent 
technologies within their own field (Information Systems) and hence, proposed some 
recommendations to overcome same.  These recommendations included the use of 
flexibility in structuring courses, the use of practical elements in content building, and, a 
need to engineer roles that can evolve over time, thus permitting the use of multiple 
pedagogies in the delivery of a single course.   
The Pritzker School of Molecular Engineering (PME) at the University of Chicago (IL. 
USA) created an elective titled ‘Introduction to Emerging Technologies’ with a view to 
attracting new students to diversify their student body.  In their recent paper, Fowler, et 
al., propose how systems thinking can be integrated into their current course by adding a 
number of systems thinking techniques to a series of case studies (Fowler et al., 2019).  
The subject of the case studies range from tissue engineering to quantum information 
technologies whilst the proposed systems thinking techniques, many of which can equally 
be applied to a range of other pedagogies, include think-pair-share, relationship 
identification between actors within a system, and, questioning (carefully selected in 
advance).  Fowler, et al., correctly identify that systems thinking has applications beyond 
the sphere of technology in assessing and addressing problems in the wider societal 
landscape. 
A few years earlier, Bishop (2009) opted to use a socio-technological development model 
for the design of an elective course involving the study and analysis of emerging 
technologies for the systems engineering department at the United States Naval Academy.  
The foundation of the course is to address three fundamental questions: 1) What is 
possible? 2) What is achievable? 3) What is valuable?  A number of models including the 
McKenzie certainty trough and the Disruptive Innovation model are woven into a series 
of case studies that allow the course participants to expand their skills in recognising the 
factors that affect and effect technological change (Bishop, 2009). 
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Figure 3: Visual Illustration of Bishop’s three fundamental questions 

4. Analysis 
Nilsen & Purao’s (2005) course attempted to address the full range of knowledge and 
skills required to be competent in a technology.  The year was 2004 and their emergent 
technology was XML.  XML and Quantum Computing are not comparable technologies, 
hence, the challenges they encountered were quite different from the challenges we are 
encountering with quantum computing today.  Using their trio of pedagogies and 
corresponding learning outcomes, it was the principles and the potential use cases of 
XML where the ambiguity was most prominent, and hence most challenging for 
education.  Whilst Quantum Computing also suffers from ambiguity in the region of 
potential use cases, it differs significantly from XML in that it is the lack of tools, and not 
principles, that pose the greater challenge.  To cut through the ambiguity residing with 
XML technologies in 2004, explanations, guidelines and standards were required.  To cut 
through the ambiguity residing in quantum computing today, a technological leap is 
required.   
Working independently, both Fowler et al. (2019) and Bishop (2009) approached the 
topic of emerging technologies from a non-technical angle.  Unlike Nilsen & Purao 
(2005), they focused their programs on the socio-cultural aspect of the technology, 
relieving themselves of the need to employ multiple pedagogies within a single course.  
Whilst it is essential to understand something about the scientific principles and state-of-
the-art that underpin, or occasion, the technologies that they present, there is no 
requirement for the participants to be expertly versed or skilled in them.   
At the same time, there are a few departures between these two socio-technological 
approaches.  As stated above, Fowler, et al., are proposing a systems thinking 
methodology whilst Bishop is leveraging a system of probing.  Systems thinking 
champions joined up thinking, which is a valuable way to assess the viability of a new 
technology, however, seeing beyond what already exists is not a core function of this 
pedagogical style.  Put another way, it may be that systems thinking is better at telling us 
what is likely or unlikely to succeed as opposed to assisting us in developing new ideas.  
Alternatively, Bishop’s more open-ended approach of questioning draws us closer to the 
human cognitive capacity for imagination. 

5. Proposed Model 
The educational model that this paper proposes to develop is one that separates the 
teaching of the core technology from that of exploring its socio-cultural applications.  
Tailoring a single course for engineering students where the objective of the course is to 
design new use cases, participants will be encouraged to investigate how quantum 
computing can be harnessed where other methods are currently utilized across industry.  
Excluding the more practical implementations of quantum computing, and according to 
McKenzie’s certainty trough, we anticipate that the participants of the course will be more 
optimistic about the possibilities that the technology presents, given their distance from 
the technology itself.  This course will also lean towards Bishop’s system of probing.     
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6. Conclusion 
Designing education for emergent technologies presents unique challenges as knowledge, 
skills and use cases pertaining to the technologies are not well established and subject to 
change.  Quantum computing is one such technology and whilst this paper does not 
predict when this technology will become established, our quantitative analysis of 
published papers on the subject indicates that we are drawing closer.  To build capacity 
within engineering education we must confront these educational challenges.  Otherwise, 
we may not be ready to support the market for quantum computing as the technology 
becomes more frequent and accessible.  We have proposed to implement a learning design 
that will exercise the cognitive muscle for imagination as well as joined up thinking.  
Ultimately, we hope that our pedagogical approach will permit more freedom of the 
imagination, thus widening the circle of what is deemed possible within several 
engineering industries, and, in quantum computing more generally.   
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Abstract 
The author has been teaching process systems engineering (PSE) courses to 
undergraduates at the Technion for more than 30 years, evolving his teaching to active 
learning methods, and in the last five years, to the “flipped class” model. In the spring of 
2020, teaching became particularly challenging, since it was taught on-line for the first 
time, with students having to collaborate remotely with each other also for the detailed 
design work. This contribution presents the experiences and conclusions resulting from 
the first COVID-19 semester (spring 2020). At the time of writing, the recommendations 
are being implemented on two flipped courses, on process design and process control, 
which are being taught completely on-line in winter 2020 to the same class of 53 students. 
The presentation will thus summarize the lessons learned over a complete year of practice 
 
Keywords: Process design instruction, process control instruction, project-based 
learning, active learning, flipped classroom, on-line learning. 

1. Introduction – typical instructional objectives for PSE mastery 
All of us in the PSE community will agree about the importance of taking a systems 
approach in chemical engineering design and analysis instruction (Silverstein et al, 2013). 
Within the framework of PSE, this instruction would include at least courses in the central 
expertise areas of numerical methods, process control and process design, composed of 
curricula like those listed below. A helpful way of teaching these materials is by making 
use of concept maps, which facilitate explaining the connection between the course 
components. An example of a concept map for a course on numerical methods is 
presented in Figure 1. Representative learning outcomes for these three key courses are 
outlined next. 
1.1 Numerical Methods: This course ideally instructs the students in the understanding 
of the basic building blocks of numerical methods, before continuing to providing tools 
for their practical application. On the completion of such a course, students are expected 
to select the appropriate numerical method for a given problem, implement it, and 
interpret the obtained result. Typical course outcomes are as follows: 
Building blocks: 
• Efficient solution of linear systems 
• Finite difference approximations (derivatives, interpolation, integration) 
• Efficient solution of nonlinear systems 
• Mastery in unconstrained and constrained minimization (Linear Programming) 

Applications: 
• Linear and nonlinear regression capabilities 
• Efficient solution of ODEs, IVPDEs and BVPs 
• Integrated problem-solving capabilities 
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Figure 1. Concept map for a typical course on numerical methods. 
1.2 Process Control: This course provides the tools to develop first principles and 
empirical process models, and then using the derived models, to design simple control 
systems to meet desired closed-loop performance. Typical course outcomes (Seborg et al, 
2004) are as follows: 
Process modelling: 
• First-principles modelling capability 
• Ability to generate state-space and transfer function models 
• Block diagram manipulation capability 
• Ability to analyse the transient response of linear systems 

Process control synthesis:  
• Frequency domain analysis capabilities 
• Stability analysis capability 
• Capability to synthesize control systems to meet response specifications using the 

root locus method 
• Knowing how to tune PID controllers effectively 
• Capability to design cascade and feedforward control systems 

1.3 Process Design:  The capstone design course represents the acid test of a student’s 
ability to apply the engineering tools he/she has acquired, with typical desired outcomes 
(Seider et al, 2017) being as follows:  
• Capability to carry out plant costing and profitability analysis 
• Separation sequence synthesis capability for both zeotropic and azeotropic systems 
• Capability to perform MER targeting and heat exchanger network synthesis 
• Plant-wide control system configuration capability 
• Capability to perform a HAZOP and to carry out a HAZAN  
• Proven cooperative design project capability, demonstrating both team and individual 

skills 
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2. Student-centered vs Teacher-centered teaching 
As postulated by Bloom (1968), the degree to which students achieve mastery depends 
on four conditions: (1) Clear definition of what constitutes mastery; (2) Systematic, well-
organized instruction, focused on student needs; (3) Assistance for students when and 
where they experience difficulties; (4) Provision of sufficient time for students to achieve 
mastery. Bloom reports the modes of learning that improve outcomes, with the most 
significant obtained by personal tutoring, which increases the degree of mastery as 
exhibited by exam grades up to two standard deviations higher than for students taught 
conventionally by a lecture-based approach.  

In a course that is taught in a teacher-centred approach, the contact time between the 
teacher and the students is mostly utilized for lectures by the teacher, often with modest 
involvement of the students. In recitations, the assistant will often take the same approach. 
This means that in a teacher-centred approach, students are largely passive in most of the 
contact time available, with the students expected to take an active role mostly when 
tackling homework sets on their own. These deficiencies reduce the degree to which 
students acquire mastery in higher-level design and evaluation capabilities.  

In contrast, in a student-centred approach, the contact time is focused on giving 
opportunities for students to become involved in class activities, with the teaching staff 
acting as mentors. Amongst the activities are class quizzes leading to discussions, 
brainstorming, cooperative problem-solving, and student presentations. By nurturing 
student involvement, the teacher will be able to better assess the degree of mastery being 
built up by the students. Student involvement is even more critical in the recitations, 
where the focus should be on giving students time to work problems for themselves. For 
students to learn, they need to be given opportunities to make mistakes, understand the 
reasons for the mistakes, and correct them. This takes time, and the more recitation time 
taken up by the TA explaining his/her problem-solving strategies, the less time the 
students will have for their own efforts. Mentoring students’ work, should fill most of the 
recitation time, enabling staff to mentor and assess student capabilities.   

This formative assessment can only be ascertained if the teachers and assistants 
reduce the amount of time that they are lecturing in favour of providing time for active 
learning by the students (Velegol et al, 2015). One of the best ways to make this happen 
is to transition to flipped classes, which move a large part of the information transfer to 
on-line, pre-recorded lectures, which the students need to complete as their homework in 
advance of class activities. The flipped classroom, involves the following sequence of 
activities, repeated in every week of each course: 
a. On-line Materials – Produced by converting lectures to pre-prepared, on-line lessons 

composed of 5-15 min video clips interspersed by on-line quizzes. Students are 
expected to cover these materials on their own as homework in advance of each week 
of activity and are given course credit for it. Benefits: Students learn the basic 
materials covered in each week at their own pace, and their learning is reinforced by 
addressing the on-line activities as they follow the materials. The on-line activities 
can be tailored to achieve specific objectives in each stage of the course. These can 
be: (a) Regular quizzes: Quiz questions posed as multiple-choice, matching, or 
numerical computations; (b) “Your turn” extended calculations and small-scale 
designs: A problem for the student to tackle independently is defined at the end of a 
video clip, which is followed by a movie in which a possible solution to the problem 
solved is presented, which students can compare to their solutions; (c) Preparing for 
brainstorming: A video clip can present a problem that requires group effort to 
address, for which students are requested to collect information, write down ideas,  
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and bring their results to class for groups discussion. Note that all these activities 
increase the students’ stake in their learning and will prepare them to make better use 
of the next resource – the Class Meeting. 

b. Class Meetings – Moving from teacher-cantered lecturing to student-cantered 
meetings in the classroom. A typical class meeting combines quizzes, class 
discussions and open-ended problem solving, with the focus being to keep the 
students active. Benefits: Giving students the opportunity to prepare ahead increases 
their effective participation in class and impacts positively on the degree to which 
they learn and master the application of what they have learned. The specific benefits 
of each type of activity that could be utilized are as follows: (a) Quizzes for 
comprehension: These could be clicker questions, to test comprehension of concepts 
learned at home, or to reinforce previous, related materials. The lecturer can check 
the level of understanding exhibited by all of the students, instantly; (b) Quizzes to 
generate discussion: When the questions raised may have more than one solution, it 
pays dividends to use them to generate class discussion. Learning from incorrect 
answers is often more valuable than focusing only on correct ones; (c) Open-ended 
problem solving: This is one of the main reasons for having class meetings. The focus 
should be on getting students to participate in the development of solutions. For 
particularly complex problems, dividing the class in separate workgroups may have 
benefit. 

c. Active Tutorials – For students to master course content, they need to apply 
themselves to independently work problem sets covering the curriculum. The job of 
the teaching assistant in this setting is to be the enabler for student efforts rather than 
a demonstrator of solutions. Benefits: In active tutorials, students working in teams 
solve the classwork (previously referred to as homework) in class time. This ensures 
that: (a) All students who participate in the sessions are actively involved in working 
problems; (b) Assistance can be provided by staff and from students, helping each 
other; (c) Students, assistants and the lecturer all receive feedback in a timely fashion 
(in real time).  

3. On-line challenges and how to address them 
The spring of 2020, with the resulting COVID-19 lockdowns, introduced additional 
challenges to effective teaching. Several problems surfaced, associated with a need for 
social distancing and on-line lessons. Here is an itemized list of problems together with 
the ways that have been found helpful in overcoming them: 
a. Undesirable on-line behaviour of students, such as students turning off cameras and 

microphones or passive and/or low student attendance. Fixes: (a) Request that 
students turn on cameras with microphones on mute, turning on microphones to 
participate. A bright and positive attitude by the lecturer will go far in securing 
cooperation of the students. (b) What worked outstandingly well was to invite all of 
the students to an on-line “BYOB Party” before the start of classes, to get to know 
them and to use the informal meeting as a chance to share expectations. After that, 
the ice was broken and most of the students were cooperative in the on-line Zoom 
sessions. Attendance was high (usually over 80% of the students), with many 
students participating in class discussion.    

b. Undesirable on-line behaviour of teachers, such as the teacher talking most of the 
class time, or teachers demonstrating solutions of problems, with little involvement 
of students, or allowing a few students to dominate the in-class discussions. Fixes: 
(a) Pause in presentation to give students a chance to ask questions. Respond to the 
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questions and check that the response fully-addresses them; (b) In-class problem 
solving should involve the students. Do not provide full solutions up-front but get 
students to contribute suggestions and partial solution steps by brainstorming with 
student involvement; (c) Use on-line quizzes to promote class discussion, with all 
students participating. Use polling software to involve the whole class in this, and 
use the class answers, especially the wrong ones, to generate discussion in the class.  

c. Too many students (typically 15-25%) not preparing for the synchronous meetings 
by studying the on-line lessons in advance. Fix: You cannot afford to lose 15-25% 
of the class! Not taking steps to bring these non-performers back into the fold can 
mean a large proportion of underperformers who do not even pass a course. Efforts 
need to be made to track the non-collaborators, reaching out to them from Week 1 of 
the course, and bring them back in, and it is surprising how easy this is to do. Many 
of them will take kindly to your outreach, especially if your communication is 
positive and focused on how much you care about their success. If the percentage of 
students truly on-board is maintained high during the entire course, the whole class 
will benefit, and the outcomes at the end of the course will reflect this. 

Most of these suggested fixes will work in a regular, face-to-face (F2F) setting also. 

4. A flipped roadmap for the future 
The author has had a long and successful experience with the effective implementation 
of the flipped classroom to the teaching of both process control and process design, now 
for seven consecutive years. There is evidence for improved outcomes in process design 
instruction resulting from the implementation of active methods (Lewin and Barzilai, 
2020a). In the year of the pandemic, and the consequently imposed lockdowns, the flipped 
classroom was relatively easily adapted to on-line learning (Lewin, 2020b). The 
experiences gained in the second semester of the pandemic to a relatively large group of 
students who simultaneously participated in courses in process design and process control 
have led to a clear conclusion that a correctly implemented flipped paradigm is highly 
effective. This implementation involves the following eight key components: 
1. Have a game plan. Balance expectations of the lecturers, teaching assistants and 

students, as all three stakeholder groups need to be on board. It is recommended that 
a lecturer with no previous experience in flipping try the paradigm first on a single 
week of class, selecting the week that is the most challenging to fully-cover using a 
conventional approach. In addition to preparing the on-line lesson as homework, the 
class meeting and the active tutorial should be included in this trial.  

2. Preparation of on-line lessons.  Define instructional objectives for each lesson. 
Divide the lecture into video segments of between 5–15-minute duration, ensuring 
that the content is complete (e.g., cover all steps in a mathematical development). 
Write and use a script when recording the video segments and practice the delivery 
before recording. Audio quality is more critical than video quality. 

3. Preparation of effective quiz questions. Follow each video segment with a quiz 
question/cluster/activity to test students’ understanding. Write useful explanations of 
all answers (especially important for the wrong ones) and allow students to retry the 
questions that they get wrong.  This is not a test – it is part of their learning! 

4. Lesson assembly and testing. Upload questions and videos and generate a Moodle 
Lesson (or similar). The teacher should test the flow and system response first, and 
have an assistant perform an independent check. 
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5. Require students to complete the lessons before Class Meetings. Students should be 
given credit for this crucial preparatory step. Continuously follow up on students who 
do not do this, starting from the first week of the semester. 

6. Plan for a useful Class Meeting.  Prepare additional materials and do not repeat what 
the students have already learned on-line. The following is a partial list of activities 
that have been found to be useful: (a) Short quiz questions – to be used to foster class-
discussion; (b) Open-ended exam-style questions to be solved with class 
participation; (c) Project/design work, executed in “break out rooms”; (d) Short 
student presentations. 

7. Schedule an Active Tutorial. Schedule sufficient time as this activity largely replaces 
what used to be “homework.” Allow time to discuss solution strategies in class. 
Divide the class into small work groups, using breakout rooms if on-line, or by 
ensuring appropriate seating arrangements if F2F. Make sure question levels in each 
week’s problem set span from easy to difficult (exam level), and make solutions 
available on-line. It is unreasonable to expect students to handle exam-level 
questions well in the final exam without giving them the opportunity to practice 
solving similar questions for themselves in the Active Tutorials during the semester.  

8. Follow up on every component. All three steps of the flipping paradigm are critical 
to success and all of them can be continuously improved.  For the On-line Lesson, 
were there any problematic video segments, and were there any problematic or 
particularly useful quiz questions, and should more questions be added? For the Class 
Meeting, were there enough students active, and how many attended? Were the 
planned activities suitable? For the Active Tutorial, how many students attended, and 
how many of them were actively engaged and completed the assignments?    

5. Conclusions 
Experience with the flipped-class approach indicates that engagement with the materials 
throughout the semester improved the students’ level of confidence in their mastery of 
the subjects. These observations could explain the improved performance in the final 
exams in both the process design and the process control courses since adopting active 
learning and flipping in both. The encouraging outcomes obtained in both courses suggest 
that this format can be taught to good effect in more than one course at a time, and equally 
well both on-line and in F2F teaching. Hopefully, these findings and recommendations 
will encourage others in the PSE community to move to active learning methods. 
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Abstract 
In the modern chemical world, engineers have access to millions of data points at their 
fingertips. Using this data properly can help us to recognize vast improvements in the 
way plants are run, especially in process monitoring. In this paper three aspects of process 
monitoring are considered: visualization, fault identification, and fault diagnosis. For 
each aspect, the use of modern machine learning techniques for addressing these issues 
is discussed, and improvements over outdated methods are illustrated. This proposed 
approach is tested using the Tennessee Eastman Process (TEP) for several types of faults. 

 
Keywords: Process Monitoring, Dimensionality Reduction, Clustering, Fault Detection, 
Fault Diagnosis 

1. Introduction 
The chemical industry has always had a need for a system to monitor the process and 
ensure the quality of chemical product. Such a monitoring system has four goals: fault 
detection, fault identification, fault diagnosis, and process recovery. In the past, these 
goals could be achieved to a degree for any individual process with a model developed 
carefully with specific process knowledge, using tools like univariate error charts and 
alarms. Methods have been developed to bring about more sophisticated process 
monitoring that takes advantage of multivariate data information. Common methods like 
Principal Components Analysis (PCA) and recursive PCA (RPCA) are useful in some 
cases, but are deficient in dealing with data containing nonlinearities, which is especially 
problematic in the chemical industry. The other drawback is that a PCA model is unable 
to trace such normal process drifting, while most of the industrial processes are time-
varying due to catalyst deactivation, equipment aging, and tube coking.  

Recent breakthroughs in dimension reduction (DR) techniques and topology have 
popularized the Uniform Manifold Approximation and Projection (UMAP) algorithm for 
projecting high dimensional data into 2 or 3 dimensions. With UMAP, we can reduce the 
dimensionality of process data and apply modern clustering algorithms to quickly and 
effectively categorize it. Once a model has been created using the historical information, 
incoming data points can be passed through the same UMAP model and a fault detection 
program (FDP). The FDP uses an adaptive k-Nearest Neighbor (AkNN) method to 
determine the belongingness of each incoming data point to the clusters of data in the 
historical model. Data which correspond to known clusters are added to a repository of 
historical information, and data which do not are classified as “faulty”. We can diagnose 
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the cause of faulty points using a subspace greedy algorithm (SGS), which determines the 
variables that contribute to their differences from known clusters. After diagnosis is 
accomplished, the route to process recovery will be much clearer for the responsible 
engineer. This proposed method is tested using the Tennessee Eastman Process (TEP) for 
several types of faults. The proposed method of process monitoring outperforms 
traditional methods. The online monitoring tool provides fast and useful information to 
engineers or operators in the case of a fault, leading to speedy recovery of the process. 

 

2. Methods 

2.1. Uniform Manifold Approximation and Projection (UMAP) 

UMAP is a dimension reduction technique developed by McInnes et al. in 2018. It is a 
manifold learning technique based on Riemannian geometry and algebraic topology. 
UMAP works by first discovering the relationships of the input data in the high-
dimensional space, using fuzzy simplicial complexes, which are a topological 
representation of a local neighborhood graph. Once a graph has been constructed, UMAP 
uses stochastic gradient descent optimization to find a low-dimensional representation 
that is most similar to the high-dimensional input. UMAP improves upon the previous 
state-of-the-art DR algorithm, t-SNE, by better preserving the global structure of the input 
data in the low-dimensional space. For low-dimensional t-SNE representations, the 
within-cluster distances were meaningful for determining similarity of data, but the 
between-cluster distances were not guaranteed to be important. Because the real-time 
process monitoring workflow hinges on the separation of faulty data in the low-
dimensional space, this improvement is critical. 

 

2.2. K-Nearest Neighbors Fault Detection 

The k-Nearest Neighbor (kNN) algorithm is a popular classification method for unknown 
data. By using the Euclidean distance, we can classify a data point based on information 
known about its k-nearest neighbors. If we set k=1, then each point will be classified just 
by its single nearest neighbor, and if we set k to a large integer value, it will be classified 
by a vote of the aggregate classes of its k nearest neighbors. Using the output distances 
from the kNN, we can determine the likelihood that a single point belongs to a known 
group of points. In a plant setting, we can use kNN to scan incoming data points in real-
time, compare them to a historical database of pre-classified points, and determine if the 
incoming point characterizes an abnormal event based on a threshold distance. 
 
2.3. Adaptive kNN 

In order to run a kNN fault detection program for any amount of time, the trained kNN 
graph must have the ability to adapt over time. The behavior of a chemical plant is subject 
to time-varying behavior and process drift. Because the pairwise kNN graph construction 
is computationally expensive, we can reduce the workload of the computation engine by 
maintaining a database of only data which are prototypical for each class we are interested 
in. For a data point x, the number of its neighbors, in data set D laying within the kth 
threshold distance da, denoted as Nx, is defined: 
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𝑁" 	= 	 |{𝑞	 ∈ 	𝐷|𝑑𝑖𝑠𝑡(𝑥, 𝑞) 	<= 	𝑑3}| (1) 

Thus, we can define a prototype by naïve criteria. A point x is considered a prototype if 
the Nx is equal to k. This definition is too strict, so we can expand the scope of the 
prototype by using an updating factor, p, where p ∈ (0,1). Now we can define the extended 
prototype: 

𝑘(1	 − 	𝑝) 	< 	𝑁" 	< 	𝑘(1 + 	𝑝) (2) 

We can now also define a fault: 

𝑁" 	≤ 		𝑘(1 + 	𝑝) (3) 

 

Using these definitions, we now have an adaptive kNN algorithm that can determine if 
incoming data points would be redundant in the model or if they otherwise provide new 
useful information. We can also define a “valley” point within the sorted k-dist graph: 

𝑥 = min	{𝑥 ∈ [𝑎, 𝑏]|
𝑓 C𝑥 + 𝑠

2E − 𝑓(𝑥 −
𝑠
2)

𝑠 ≥ 𝑓(𝑏) − 𝑓(0)
𝑏 } (4) 

Where f(x) is the sorted k-dist curve, and the searching step is defined as s where s>1. 

 

2.4. Variable Contribution using Subspace Greedy Search Algorithm 

Now that the monitoring framework can use AkNN to detect faulty data, the next stage is 
to diagnose those faults as soon as they occur. If we can determine which of the real input 
variables contribute to the differences in a faulty data point, recovering from the abnormal 
event will be much easier. The goal of fault identification is to find the combination of 
the most contributing group of variables (subspace) which causes the discriminant 
between normal and faulty data. A naïve approach which tests all possible subspaces for 
a difference in disparity between normal and faulty data will fail for two reasons. First, 
the curse of dimensionality will dull this effect on the score as the data grows in 
dimension. Second, with a number of possible subspaces given by 2d, where d is the 
number of input variables, it is impractical to calculate the score for each subspace due to 
computational complexity. In order to address these problems, subspace greedy search 
(SGS) is implemented. The testing score is calculated by comparing the k-distance 
between the normal and faulty data for each target subspace. Use of a greedy algorithm 
beginning in low-dimensional subspaces allows the search to terminate in a reasonable 
number of step and return a list of input variables ranked by their contribution. This 
addition will allow users to react appropriately to data found to be faulty. 

3. Results 

3.1. The Tennessee Eastman Process 

The Tennessee Eastman Process (TEP) is a simulation developed by Downs and Vogel, 
which is used as a benchmark for studying process control and monitoring. It consists of 
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two liquid products along with an unwanted byproduct, which are generated by four 
gaseous reactants and one innert. The simulation offers 20 process faults among 53 
measurements. We studied TEP0 (normal data), TEP2 (step change in the innert 
composition), and TEP10 (random variation in the feed temperature). For each of these 
faulty conditions, the goal is to create a good visualization in 2D space using UMAP, 
identify the faults using AkNN, and to diagnose the root cause of the event using SGS. 

3.2. Projection into 2D space 

For the step change introduced in TEP2, all three methods of visualization accomplish 
the goal of separating the TEP0 data from the TEP2 data in 2D space. For this task, UMAP 
was run with k=50 neighbors and min_dist=0.5. These projections are depicted in Figur

For the random variation introduced in TEP10, the three methods give us drastically 
different results. PCA struggles to separate the TEP0 data from the TEP10 data, so in 2D 
space, all of the data points fall into one group. The t-SNE results are much better, 
separating out two groups of TEP10 data from the larger group of TEP0 data at the top 
left. UMAP is able to separate the two groups of TEP10 and show the separation clearly 
in 2D space, outperforming the other two DR algorithms. For this task, UMAP was run 
with k=10 neighbors and min_dist=0.05. These projections are depicted in Figure 2. 

3.3.  Error Testing 

The AkNN fault detection system was able to characterize the faulty data at over 99% 
accuracy for both faults TEP2 and TEP10 compared to the normal data TEP0 (shown in 
Figures 3 and 4). With faulty data showing a knn-dist measurement above the given 
threshold, AkNN can identify faults and alert personnel quickly when faults occur.   

Figure 1: TEP0 (Normal) and TEP2 (step change) visualized with 
PCA, t-SNE, and UMAP (from left to right) 

Figure 2: TEP0 (Normal) and TEP10 (random variations) visualized 
with PCA, t-SNE, and UMAP (from left to right) 

e 1.
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Figure 4: TEP0 (Normal) and TEP10 (random variations) error measured by knn-dist 

Figure 3: TEP0 (Normal) and TEP2 (step change) error measured by knn-dist 

Figure 5: TEP0 (Normal) and TEP2 (step change) contribution chart 

Figure 6: TEP0 (Normal) and TEP10 (random variations) contribution chart 
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3.4. Variable Contribution 

The subspace greedy search algorithm was able to identify the primary source of the fault 
TEP2 (step change in the innert composition) and TEP10 (random variation in the feed 
temperature). When compared to the variable contributions given by the explained 
variance of PCA, this SGS algorithm is clearly preferable. SGS often returns only one or 
two contributing input variables, which speeds up the recovery process by pointing to the 
most responsible contributors, while PCA can give a long list of partially contributing 
variables, leaving personnel with not much assistance. 

 

4. Conclusions 
In this paper, we propose three tools: dimension reduction for improved process 
visualization with UMAP, real-time process monitoring including fault identification 
based on AkNN, and variable contribution fault diagnosis with SGS to form a full process 
monitoring environment for detecting and recovering from abnormal events, especially 
in the chemical processing world. We have shown that these modern tools are competitive 
with traditional techniques and in many cases improve upon them. An environment which 
uses all of these methods in conjunction with a user-friendly interface will be the 
introduction of many in the chemical industry to the world of machine learning and 
computer science. These advanced methods improve the popularity real-time process 
monitoring, which would improve the quality of chemical products and better the safety 
of those nearby. 
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Abstract 
In this paper we show that for a zeotropic mixture the simultaneous implementation of 
different heat integration alternatives like direct reboiler-condenser heat exchange, Direct 
or reverse vapor recompression cycles, multi-effect distillation, partially or totally 
breaking of thermal couples and substitution of thermal couples by the equivalent only 
liquid transfer alternative, when possible, considerable increase the thermal efficiency of 
a sequence of distillation columns and its total cost. We illustrate the procedure with the 
separation a four-component mixture. Results show that we can get impressive reductions 
in total annual cost. 

Keywords: Thermally Coupled Distillation, Heat Integration, Process Integration, Vapor 
Recompression Cycle. 

1. Introduction 
In the chemical industry engineers have a large number of unit operations to separate 
components (e.g. adsorption, extraction, membranes, absorption, etc.). However, 
distillation accounts around 90-95% of all the liquid separations and purifications in 
industry, and this situation is not likely to change in the near future (Humphrey and Keller, 
1997). In spite of the predominance of distillation, it is not uncommon the claim that 
distillation is an inefficient separation technology. However, Agrawal and Tumbalam 
Gooty, (2020) have shown that this believe is a misconception likely based on the fact 
that distillation involves vaporization of one or more components and therefore is more 
energy intensive that other alternatives that do not requires phase change. However, the 
energy required in distillation is not necessarily proportional to the reboiler duty and 
distillation can be much more efficient than intuition seems suggest. Conversely, for 
many applications, the high efficiency of distillation makes it challenging for alternatives 
to even achieve the same energy as that of distillation (Agrawal and Tumbalam Gooty, 
2020). In this work we will show how the systematic implementation of heat integration 
alternatives can substantially increase the energy efficiency in distillation. 

The characteristics of the search space for the sharp split of M components in N fractions, 
were stablished by different authors around 10-15 years ago by Caballero and Grossmann, 
(2006) and following a different approach by Giridhar and Agrawal, (2010). Shah and 
Agrawal, (2010) defined a regular configuration as a sequence of distillation columns 
formed by exactly N-1 columns (where N is the number of key components to be 
separated). If each one of the columns of the sequence has a reboiler and a condenser, 
then the sequence is a basic sequence. Basic sequences can be generated only by relations 
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between separation tasks and therefore it is possible to separate the structural 
considerations associated with the separations from the heat requirements of each 
distillation sequence. Alternatively, Caballero and Grossmann, (2006) used the concept 
of «structurally different configurations» to refer to a given sequence with a specific 
separation task without specifying any particular assignment of heat exchangers. The 
extension from structural different separations (or Basic) to the regular ones only requires 
to assign a heat exchanger or a thermal couple to each one of the streams connecting two 
columns in the sequence. Those authors showed that if we do not consider further 
integration or intensification, the optimal sequence is a regular sequence.  

While there have been important advances in theory and algorithms for the generation of 
distillation-based separation sequences, and a good number of alternatives have been 
proposed for improving the energy efficiency (i.e. heat integration, vapor recompression, 
multi-effect distillation, partially thermally coupled columns, heat pumps, etc.) there are 
no a systematic framework for combining all those possibilities (and of course the new 
ones that could eventually appear) to generate efficient distillation sequences. In this work 
we present a systematic approach for designing separation sequences of zeotropic 
mixtures that simultaneously consider thermally coupled distillation (TCD) sequences, 
together with different alternatives for heat integration. 

2. Algorithm for the efficient energy integration in thermally coupled 
distillation. 
A good number of alternatives have been proposed to increase the energy efficiency in 
distillation. Direct heat integration between condensers and reboilers. Multi-effect 
distillation. Thermally coupled distillation, VRCs (or RVRC) are also a common 
approach to save energy when the temperature difference is not too large (typically no 
more than 30ºC) and it is usually implemented between the condenser (or the rectifying 
section) and the reboiler (or the stripping section) of a column. Navarro-Amorós et al. 
(2013) showed that in thermally coupled distillation is possible to take advantage of the 
inherent inefficiency of TCD systems, by withdrawing the excess vapor (liquid) inside 
certain column sections and using it in a VRC (RVRC). The benefit is twofold; on one 
hand, the optimal operating conditions of the TCD system are recovered and therefore the 
diameter of some column sections and the utilities consumption are reduced. On the other, 
the VR or RVR allow further reductions in utilities consumption. Other alternatives, like 
partially thermally coupling; or the only liquid transfer alternative (Jiang and Agrawal, 
2019; Skiborowski, 2020), are structural modifications that can be used to improve the 
heat integration.  

The simultaneous design of the distillation sequence and all previous heat integration 
alternatives (and others that could eventually appear) is likely to produce very large and 
complex models that could be, at least, very hard to solve. Instead, we propose a 
sequential approach: 

1. Select the best sequence of distillation columns in the space of regular configurations. 
In this work we use the disjunctive approach proposed by Caballero and Grossmann, 
(2006). This model, that relies on the Underwood-Fenske-Gilliland shortcut model, 
was validated using the commercial process simulator Aspen-Hysys. The next steps 
are developed using rigorous simulations. 

2. For the selected configuration, identify: 
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2.1.  Inefficiencies in the connection points between separation tasks that belong to the 
same column. The excess of vapor/liquid can be removed by heat exchanger. Those 
heat exchangers use utilities at intermediate temperatures, which in some cases 
allows the use of cheaper utilities. Besides, the internal flows decrease in some of 
the decoupled sections and therefore also the column diameter. 
If the unbalance of flows in the connection points is large then consider to 
implement a VRC or RVRC to further reduce the energy costs. 

2.2. Identify the possibility of heat integration between reboilers and condensers. 
Consider also the possibility of changing the pressure of some columns, breaking 
totally or partially some thermal couples if needed to get direct reboiler-condenser 
heat integration or indirect through a VRC/RVRC cycles. 

2.3. For difficult separation task, consider the possibility of a multi-effect column 
integration. If that separation task is thermally coupled with other separation task, 
there are different alternatives: a) consider the possibility of partially (or totally) 
breaking the thermal couple introducing a new heat exchanger. b) Use the ‘liquid 
transfer only’ proposed by Agrawal. This last approach requires adding a new 
column section and a heat exchanger. With this approach, at least one of the 
columns that form the multi-effect arrangement can be maintained thermally 
coupled with the rest. 

3. Repeat step 2 until no further improvement be possible. 
4. Consider the possibility of intensification. This last point is not included in this work, 

but a review of different alternatives can be found in (Jiang and Agrawal, 2019) 

3. Example 
We illustrate the algorithm by designing the separation of a equimolar mixture of propane 
(A), isobutane (B), n-butane (C) and pentane (D). The objective is to obtain each 
component with a purity of at least 0.99 mol fraction. The best distillation sequence is 
shown in Figure 1a. The result, including the sizing of the columns was validated using 
ASPEN-HYSYS. Table 1 shows the data for the example.  

Table 1. Data for the example. 

Components Composition 
(mol fraction) 

  

A: Propane 0.25 Feed Flow 200 kmol/h 
B: i-Butane 0.25 Nominal Pressure 1000 kPa 
C: n-Butane 0.25   
D: Pentane 0.25 Thermodynamics:  Peng Robinson 

Cold Utilities Cost ($/kW·y) Hot Utilities Cost ($/kW·y) 
Refrigerated water 

(5-15 ºC) 127.6 LP Steam 
(5 bar 160 ºC) 404.67 

Cold Water  
(20 – 35ºC) 10.2 HP Steam 

(10 bar 180 ºC) 427.14 

         Electricity   0.06 $/kWh equivalent to 480$/kW·y based on 8000 h/y of operation 
         Annualization factor = 0.162 (interest = 10% in 10 years)  
         Cost estimation based on correlations by (Turton et al., 2013) 
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(a) (b) 

Figure 1. a) Optimal thermally coupled initial configuration, b) configuration after adding 
intermediate heat exchangers. 

The temperature difference between the component B (i-C4) and C(n-C4) at the 
operational pressure is around 13-14 ºC, so the integration of a VRC could eventually be 
of interest (Figure 2.a). On the other side, it would be possible to increase the pressure in 
the first column to try a heat integration with the reboiler C (Figure 2.b). However, to that 
end we need to remove the thermal couple in the top of the first column and substitute it 
by a condenser. Of course, this change is not for free, (remember that the optimal solution 
does not include this heat exchanger): it affects the rest of the system, adds a new heat 
exchanger, and the increase in pressure increases the hot utilities. With only the VRC we 
can reduce the TAC up to 3255 k$/y, and with only the direct heat integration up to 3144 
k$/y, around a 29 and 31% compared to the base case. In both cases, there is still an 
important duty that is not satisfied in reboiler C. But with the simultaneous heat 
integration and the VRC we completely remove the duties in the reboiler C (See Figure 
2.c), and the TAC is reduced in a 36.5% (2924.4 k$/y). 

Going back to the initial configuration it is possible to implement a different strategy for 
heat integration. Due to the fact that separation of butanes (B/C) is much more difficult 
than the rest, we can consider the possibility of a multi-effect integration. To that end, it 
is necessary to brake, at least partially, the thermal couple associated to the stream ‘BC’. 
There are at least two possibilities: one is to add an extra column section and a new 
reboiler to convert the thermal couple BC in an equivalent ‘only liquid transfer stream.’ 
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Figure 2. a) Direct heat integration between condenser of the first column and reboiler in C, b) 
Vapor recompression cycle between states B and C, c) Direct heat integration + VRC. 

Another consists of adding a reboiler in stream BC, but at the same time partially maintain 
the thermal couple BC. With the second approach we avoid adding an extra column 
section, and therefore, it is the selected approach. The flows in the thermal couple and the 
liquid stream that form the new set of streams BC are adjusted to allow the heat integration 
between the two columns that form the thermal couple. Note that in this case, we can 
reduce the pressure of one of the columns that separate B from C to around 550 kPa, and 
maintain the thermal couple in the other separator B/C, and at the same time the 
integration of this last column B/C with C/D in the same column. In this way, we have 
halved the reboiler duty associated to stream C, but at the prize of adding two small 
reboilers (one in the stream BC and another in stream B) and a condenser (in stream B of 
the low-pressure B/C separator). Even though with this configuration the TAC is 3152.6 
k$/y a 31.6 % lower than the base case -Figure 3.1-.  

(a) (b) 

Figure 3. a) Partial thermal couple in state BC, and multi-effect integration by dividing the 
separation B/C in two columns at different pressure. b) Same that in (a) adding direct heat 
integration with first column and a VRC.  

Following the same reasoning that in first configuration, we can break the thermal couple 
in ABC, and increase the pressure in the first column to integrate the condenser of this 
column with the reboiler associated to stream C. Adding this direct heat integration the 
total cost reduces up to 2349.6 k$/y a 49% lower than the base case. Finally, the 
temperature in the condenser of the low-pressure B/C separator is around 44ºC and the 
temperatures in the reboilers of separators A/B and AB/BC are around 66 and 72 ºC 
respectively. Then, a VRC from the upper of low-pressure B/C separation can provide 
duty enough to satisfy those two heat exchangers. The cost of this last configuration is 
reduced to 2163 k$/y a 53% lower than the base case -Figure 3.b. 

4. Conclusions 
In this paper we have shown that starting from the best thermally coupled sequence of 
distillation columns obtained from the set of regular configurations it is possible to 
increase the efficiency of distillation columns by sequentially and iteratively adding 
different alternatives of heat integration. While no one of those alternatives is new, the 
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simultaneous consideration of all/some of them can produce an impressive increase in 
energy efficiency that is reflected in considerable reduction in total costs.  

We have illustrated the procedure with the separation of a four-component mixture that 
includes a difficult separation. The identification of points of inefficiency and the 
systematic inclusion of intermediate heat exchangers, vapor recompression cycles, 
breaking totally or partially some thermal couples to implement direct heat integration of 
multi-effect heat integration have produced two configurations one with a reduction of 
36% in TAC and the second one over a 50% 

5. Acknowledgements 
The authors acknowledge financial support to the Spanish «Ministerio de Economía, 
Industria y Competitividad» under project CTQ2016-77968-C3-2-P (AEI/FEDER, UE) 
and to the «Generalitat Valenciana» under project PROMETEO/2020/064. 

6. References. 
1. Agrawal, R., Tumbalam Gooty, R., 2020. Misconceptions about efficiency and maturity of 

distillation. AIChE J. 66, 2–4. https://doi.org/10.1002/aic.16294 
2. Caballero, J.A., Grossmann, I.E., 2006. Structural Considerations and Modeling in the 

Synthesis of Heat-Integrated−Thermally Coupled Distillation Sequences. Ind. Eng. Chem. 
Res. 45, 8454–8474. https://doi.org/10.1021/ie060030w 

3. Giridhar, A., Agrawal, R., 2010. Synthesis of distillation configurations: I. Characteristics 
of a good search space. Comput. Chem. Eng. 34, 73. 

4. Humphrey, J., Keller, G., 1997. Separation Process Technology. McGraw-Hill Education. 
5. Jiang, Z., Agrawal, R., 2019. Process intensification in multicomponent distillation: A 

review of recent advancements. Chem. Eng. Res. Des. 147, 122–145. 
https://doi.org/10.1016/J.CHERD.2019.04.023 

6. Navarro-Amorós, M.A., Ruiz-Femenia, R., Caballero, J.A., 2013. A new technique for 
recovering energy in thermally coupled distillation using vapor recompression cycles. 
Aiche J. 59, 3767–3781. 

7. Shah, V.H., Agrawal, R., 2010. A matrix method for multicomponent distillation 
sequences. AIChE  J. 56, 1759–1775. https://doi.org/10.1002/aic.12118 

8. Skiborowski, M., 2020. Energy Efficient Distillation by Combination of Thermal Coupling 
and Heat Integration, in: Pierucci, S., Manenti, F., Bozzano, G., Manca, D. (Eds.), 
Proceedings of the 30 European Symposium on Computer Aided Process Engineering 
(ESCAPE30). Elsevier B.V., pp. 991–996. https://doi.org/10.1016/B978-0-12-823 377-
1.50146-4 

9. Turton, R., Bailei, R.C., Whiting, W.B., Shaeiwitz, J. A., & Bhattacharyya, D., 2013. 
Analysis, Synthesis and Design of Chemical Processes., 4th editio. ed. Pearson Education, 
Inc., Upper Saddle River, NJ. USA. 
 

 

2088



PROCEEDINGS OF THE 31st European Symposium on Computer Aided Process Engineering  
(ESCAPE31), June 6-9, 2021, İstanbul, Turkey  

 

Enhancing operability during early stage of process 
synthesis considering flexibility and inherent safety 
simultaneously 
Andreja Nemet*,Klavdija Zirngast, Zdravko Kravanja, Zorka Novak Pintarič 

Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor 
Slovenia 

andreja.nemet@um.si 

Abstract 
Obtaining optimal solutions in process synthesis has great potential to improve the future 
profitability and sustainability of the process. Nowadays, most processes are either over- 
or undersized, resulting in suboptimal designs or designs with low operability 
performance. The latter means processes that in most cases do not meet production 
requirements or do not operate optimally under varying process parameters. There are 
several aspects of operability, all of which should be considered to achieve process 
designs that operate successfully in the real world. Moreover, the operability analysis 
should be included in the early stages of the process design. Once the process design is 
selected, there are limited opportunities for improvement and in most cases no substantial 
enhancement can be achieved. In this study, process synthesis is upgraded to include an 
operability view, that simultaneously considers flexibility and inherent safety to achieve 
economically optimal, flexible and safe process designs. The results of the case study 
show that an increase in flexibility of 3417 % and reduction in risk of 43 % can be 
achieved with a negligible loss in economic viability of 0.85 %.  
 
Keywords: MINLP process synthesis, operability, flexibility, inherent safety, 
simultaneous approach 

1. Introduction 
Heat Integration remains to be a core task in the process synthesis due to its high potential 
for energy and emission reduction. The methods for obtaining Heat Exchanger Network 
(HEN) are getting increasingly developed resulting in highly integrated networks. 
Although at nominal data these network designs seem to represent an optimal solution, 
the operability of such networks might be highly uncertain. One should be aware that the 
more the systems are integrated the lower is the degree of freedom, which narrows the 
operating window (Tian et al., 2018). Therefore, when obtaining HEN designs the 
operability should not be neglected, since HENs are inevitably highly integrated in 
process systems, connecting different parts of processes. The traditional hierarchical 
approach considers the operability of the energy systems at the third stage of the 
development, after synthesizing network and obtaining utility system. This approach has 
its disadvantages as the system configuration is already selected, which can lead to 
“topological trap”, when the operability of the energy system cannot be substantially 

M. Türkay, R. Gani (Editors). © 2021 Elsevier B.V. All rights reserved.
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improved (Andiappan et al., 2017). In previous work Escobar et al. (2013) considered the 
flexibility and controllability of HEN design using two-step approach.  
In this work two aspects of operability have been considered, flexibility and inherent 
safety. Flexibility is enhanced, when heat exchangers are optimally oversized, allowing 
larger number of degrees of freedom (Novak Pintarič and Kravanja, 2004). On the other 
hand, decreased risk (increased safety) is obtained when smaller and more compact heat 
exchangers are used (Nemet et al., 2017). Considering both, flexibility and inherent safety 
simultaneously, leads to trade-off solutions among different aspects of operability. 
Objective of this study is to simultaneously achieve flexible and inherently safer HEN 
designs.  

2. Methodology 
A multi-scenario mixed-integer nonlinear programming (MINLP) model was developed 
to simultaneously consider the inherent safety and flexibility in process synthesis. The 
initial HEN synthesis model by Yee and Grossmann (1990) was extended by i) 
considering different types of heat exchangers (Soršak and Kravanja, 2004), ii) 
calculations of the inherent safety index (Nemet et al., 2017), and iii) strategies for 
achieving flexible HEN under varying input parameters (Zirngast et al., 2019).  

 

Figure 1: HEN superstructure. 

Both sequential and simultaneous approaches were performed. With the sequential 
approach, a Pareto solutions of flexible HEN designs at various risk limits were obtained. 
The economic objective was the expected net present value (NPV) of the savings 
NPVsavings. Savings were defined as the difference between the solution where no Heat 
Integration was considered, NPVno_HI, and the case with Heat Integration, NPVHI (Eq. 1). 
The NPV consisted of investment (I), discounted annual cash flow (Fc) terms considering 
the discount rate rdisc and the lifetime tLT of HEN.  
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Eq. 2 presents the discounted annual cash flow (Fc), which takes into account the tax rate 
(t), revenue (R), expenses (E) and depreciation (D). 

c (1 ) ( )     F t R E t D       (2) 
In the simultaneous approach, the safety/risk was also considered in the objective 
function. The flexible HEN with no safety consideration was taken as a reference case. 
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The objective function Z was defined as a difference between NPV of savings normalized 
with NPV obtained at flexible design savings

flexibleNPV  and risk index RI normalized with risk 
index determined at flexible design RIflexible (Eq.3). The aim was to maximize Z. In this 
way, the economic performance tends to be as high as possible and the risk as low as 
possible.  

savings

savings
flexible flexible

 
NPV RIZ
NPV RI

      (3) 

The RI (Eq. 4) is determined for each substance on the hot hp and cold cp side (process) 
separately, for matches in each temperature stage k, for each type of heat exchanger hx. 
The risk index depends on the failure rate of the heat exchanger ffailhx, density of the 
substance in heat exchanger ρ, heat exchanger area Ahp,cp,k,hx, and area density of the heat 
exchanger βhx. Additionally, the risk index depends on risk factors accounting for i) 
process installation versus storage f1hx, ii) indoor/outdoor positioning f2hx and and iii) 
process conditions f3hp/f3cp divided by limiting value G. The limiting value G for toxic 
substances depends on lethal concentration LC50 (rat, inhalation, 1 h) at 298 K and phase 
of the substance as presented in Nemet et al (2017).  

1 2 3 1 2 3
, , , , , ,

, , ,  +hp hp cp k hx hx hx hp cp hp cp k hx hx hx hpfail fail
hp cp k hx hx hxh c

hx HX hx HXhx hp hx cp

A f f f A f f f
RI f f

G G
 

  

        
          

   
   ∀ hp ∈ HP, cp ∈ CP, hx ∈ HX, k ∈ K     (4) 

The overall risk RItot is determined (Eq. 5) by summation of individual risk RIhp,cp,k,hx over 
substances in hot and cold process streams and all types of heat exchangers in each stage.  

, , ,
tot

hp cp k hx
hp cp k hx

RI RI      (5) 

3. Case study 
The synthesis of a HEN was carried out as an illustrative example to test the operability 
(Table 1). The uncertain parameters were the heat capacity flowrates (CF) of the streams 
H1 and C1 as presented in Table 1. In this example, flexibility is understood as the 
minimum oversizing of the HEN required to cope with disturbances in the heat capacity 
flowrates. This type of variations corresponds to exogenous uncertainty as it does not 
depend on the decisions made. A lifetime of 15 years, a discount rate of 7 % and a tax 
rate of 20 % were assumed. 
Table 1: Input data for process streams and utilities 

Stream Ts /K Tt /K CF /kW K-1 h/ kW m-2 K-1 LC50  
(rat,1h, inh) mg-1 

H1 500  400 150±30 0.6 100 
H2 450 390 390 1 600 
C1 330 390 240±24 0.7 10 
C2 380  380 50 1 500 
Hot utility 510 510   5 - 
Cold utility 300 321   1 - 

 
Figure 2 shows the solution obtained at nominal values. As can be seen, the types of heat 
exchangers selected were the less compact ones, shell and tube, U-tube, and double pipe.  

flexibility and inherent safety simultanously 
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Figure 2: Solution at nominal input values 

 

Figure 3: Design considering flexibility  

Figure 3 shows the HEN design obtained using the strategy for flexible designs. Note that 
the total heat exchanger area installed was now higher by almost 60 % 3,434 m2, 
compared to design obtained at nominal input data (3,434 m2 vs. 2,157 m2); however, in 
both cases mostly the less compact shell and tube heat exchangers were selected (β =720 
m2/m3). Using a sequential approach, a bi-criteria optimization of NPV vs. risk index was 
performed. The optimization was performed firstly at nominal conditions and secondly 
by the strategy to obtain flexible designs. Figure 4a presents both Pareto curves for 
nominal and the flexible cases.  

 
Figure 4: Pareto curve of a) NPV and b) total area versus risk index for nominal and flexible HENs  

 

Figure 5: The solution at nominal input values and risk index at 0.011 
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The NPV curves remain relatively flat until a certain point while still decreasing the risk. 
In general, flexible designs have a higher risk compared to the solutions obtained at 
nominal input data. Improving safety in flexible HEN designs is more limited as the 
lowest risk index achieved was 0.010952, while at nominal values it was 0.003. Figure 
4b presents the Pareto curve of total HEN area installed versus the risk index. One can 
see that flexible design does require more extensive areas. A probable space of optimal 
solutions would be in the range of risk index 0.01-0.015 and the NPV of savings around 
80,000 k€, looking at the Pareto solution obtained for flexible designs. Figure 5 presents 
the safest HEN design obtained at nominal value having NPV 81,062 k€. All the selected 
heat exchangers are of compact plate and frame type (β =1300 m2/m3). More compact 
heat exchangers result in a lower mass of substances in the heat exchangers, which pose 
a lower risk. The total installed area was 1729 m2. Figure 6 illustrates the safest flexible 
HEN design. The total area of the safest flexible HEN design was 1,806 m2 and the NPV 
obtained was 78,401 k€. The safety was enhanced at the expense of the economic 
performance while keeping the flexibility of the HEN design.  

 

Figure 6: Flexible solution with decreased risk having risk index value 0.0109 

Using the sequential approach, the possible space of optimal design could be determined 
around kink of Pareto curves; however, not in the unique way. For this purpose, the 
simultaneous approach, considering the economic viability and the risk in the objective 
function simultaneously was applied.  

 

Figure 7: Design obtained with multi-objective optimization considering normalized NPV and risk 
index 

The result obtained with the simultaneous approach was within the optimal region 
determined with the sequential approach. The objective function of the simultaneous 
solution was Z = 0.9548, NPV 81,013 k€ and the risk index 0.015. Comparison between 
this solution and the most economically efficient solution reveals that the NPV decreased 
from 81,642 k€, by 629 k€ (0.7 %) and the risk index decreased from 0.04086 by 0.02586 
(63.3 % decrease). The obtained solution design is presented in Figure 7, showing that 
four of six heat exchangers are the compact plate and frame type. Compared to the most 
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economically viable flexible HEN design (Figure 3), there is an additional cooler for 
stream H2. The HEN’s total area was 1,996 m2, which is a significant decrease from 
3,434 m2 (Figure 3). 
Comparison between the simultaneous solution and the nominal solution leads to a very 
similar conclusion. The NPV of the solution at nominal input data was 81 713 k€, while 
for the simultaneous solution, it was 81,013 k€, which is a 700 k€ (0.85 %) decrease. This 
decrease is negligible when considering the operability performance. The flexibility 
increased from 0.029 to 1.02 representing 0.991 (3,417 %) increase, while the risk index 
decreased from 0.0269 to 0.0153 representing a 0.0116 (43.1 %) decrease.  

4. Conclusions 
A mixed-integer nonlinear programming (MINLP) model for HEN synthesis considering 
simultaneously two aspects of operability, flexibility and inherent safety, was developed.  
The results show that enhancing flexibility leads to an increase in the total area of HEN 
to cope with variations in the uncertain parameters. On the contrary, inherent safety is 
enhanced by selecting smaller heat exchangers with fewer potentially harmful substances. 
By considering flexibility and inherent safety simultaneously, appropriate trade-offs 
between these effects are established, leading to optimal compromise solutions. 
Sequential and simultaneous approaches were used to obtain results. The sequential 
approach showed that significant improvement in safety and, hence, risk, can be obtained, 
while the economics of HEN designs were not significantly reduced. It also revealed that 
flexible designs are associated with higher risks. The result obtained with the 
simultaneous approach shows that the NPV decreased by less than 1 % compared to the 
value obtained at the nominal conditions. At the same time, the flexibility was more than 
30 times higher and the safety almost twice as high. Therefore, even with a negligible 
reduction in economic performance, the operability of the HEN design was enormously 
improved.  
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