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Abstract

During the design of chemical processes, considerable effort is put into developing and refining stationary process models. Once a process model has been developed, significant value can be added by its subsequent reuse for plant design, design of operational strategies, control concepts and even for operational support of an existing plant. In this work, we present a methodology for the simple and efficient re-use of the steady-state simulation data in the context of the process control structure selection which follows basic ideas of the self-optimizing control paradigm of Morari et al. (1980). It is shown how the approach is integrated into a decision support tool, which has already been successfully applied to one of our large-scale investment projects. 
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1. Introduction

Process modeling and simulation play a prominent role during the development of new chemical processes. The modeling of a new or modified chemical process typically starts during the conceptual design phase. Based on a physico-chemical process model, which is steadily refined and further developed, a systematic screening and economic evaluation of design alternatives is possible using commercial process simulation and/or optimization tools such as e.g. Aspen Plus. Once a process model has been developed, significant value can be added by its consequent reuse for plant design, design of operational strategies and control concepts and even for operational support of an existing plant. 

During the engineering phase, which is concerned with the transformation of a chemical process design into a highly profitable and reliable plant, the reuse of process models can already been considered to be an established practice. In this context, an important ingredient is a methodology named intelligent total cost minimization (i-TCM) (Wiesel and Polt, 2006). By incorporating short-cut equipment sizing and costing routines into the process model, this method translates the conventional results from a process simulation into costs for raw materials, utilities and annualized costs for equipment, i.e. the lifecycle costs of the process. This helps us to obtain a plant lifecycle cost-centric view of the process design alternatives – based on a total cost minimization by numerical optimization – which allows an objective decision-making process based on quantitative information. 

Successful plant design should also take into account operability rather than only design aspects. Therefore, we have adopted a method for decision support for control structure selection during plant design, which follows the approaches of Morari et al. (1980) and Skogestad (2000) to systematically find favorable control structures by 


i.  making use of stationary process models to the extent possible,


ii. employing an economic measure to classify different control structures. 
Engell (2007) gives a nice explanation of (ii) by stating: “From a process engineering view, the purpose of feedback control is not primarily to keep the plant at their set-points, but to operate the plant such that the net return is maximized in the presence of disturbances and uncertainties, exploiting the available measurements.”. Following this paradigm, we advocate the use of economic measures for the evaluation of process control structures in an analogous fashion to the way lifecycle costs are used to compare process design alternatives. While a cost-centric view has become an established best practice in industrial process design, this is not the case for control structure selection. Interestingly, we found that neither (i) nor (ii) is a well defined industrial practice up to now.

The present contribution is organized as follows: The control structure selection procedure is presented in Section 2. To illustrate the method, we elaborate on the control structure design for a particular distillation column in our large-scale plant in Section 3. The main results related to plant-wide control are briefly outlined in Section 4. The findings of our work are summarized in Section 5.

2. From optimal design to optimal operation: Identifying economically attractive control structures

The starting point of our analysis is the development of a stationary simulation model of a chemical plant under consideration. For this purpose, we typically employ Aspen Plus extended by our i-TCM functionality, which was developed by BASF engineers. The first stage in the i-TCM procedure is the identification of the degrees of freedom (DOF) that are available for steady-state optimization. These include operational DOF (such as boilup rates, reflux ratios), and equipment-related DOF (e.g. reactor volumes, number of trays in distillation columns). A total cost function is then established, and the operational and design constraints are identified. The next step is to perform a total cost minimization to obtain minimal nominal lifecycle costs in €/a and the corresponding optimal (nominal) operating point and equipment geometries. 

During plant operations, the actual total lifecycle costs will, of course, differ from the nominal case due to the fact that the operational costs vary in the presence of external disturbances such as fluctuating feedstock qualities or prices, or model uncertainties/plant malfunction. The goal of process control is – in addition to keeping process operations feasible and stable – to run the plant as efficiently as possible by minimizing the operational cost for all operating conditions within a range around the nominal operating point. The question of which control structure, i.e. which set of controlled (measured) and manipulated variables is used and how they are paired with each other, is suited to meet these requirements best is usually addressed using heuristics, best practices and process engineering insight. The control structure selection problem of a large-scale investment project motivated us to look for a more systematic approach which makes an explicit and quantitative re-use of process engineering insight contained in our steady-state process models. This is achieved by extracting data from these process models including the equipment and operational cost models that were already used for the process design and by following ideas from Morari et al. (1980) and Skogestad (2000) as will be seen in the following sections.  

2.1. Identifying attractive candidate controlled variables

For the selection of the controlled variables, all equipment-related DOF are fixed within the Aspen Plus i-TCM model. The next step is to identify candidate controlled variables. These variables are typically quantities that represent the current state of the process, such as flows and temperatures. These examples are favored choices for controlled variables since they can be measured reliably, accurately and easily. However, sometimes more sophisticated controlled variables, such as compositions, that have to be measured online, are required. For such cases, the investment and maintenance cost for measurements needs to be taken into account. The trade off we typically face between the additional cost of installing complex measurement systems versus the actual benefit created in terms of control performance can nicely be estimated using the proposed method as will be seen later. Finally, a controlled variable should be sensitive to changes in the manipulated variable associated with it via the respective control loop.
In the subsequent step important disturbance scenarios that are most likely to act on the process have to be defined. These can include external disturbances as well as model uncertainties or measurement errors in the controlled variables. For each disturbance scenario, operational cost optimization calculations using the operational DOF are repeated to obtain the corresponding objective function. Each of these operational cost minima represents the optimal process cost for the respective scenario assuming ‘perfect control’, i.e. assuming the corresponding disturbances could be measured and an advanced process control setup involving a real-time optimizer would be available during process operations. These minima related to ‘perfect control’ are used to perform an economic evaluation of each potential set of controlled variables selected to control the chemical plant. For each set of controlled variables this measure calculates the difference in terms of cost between the operational cost of the plant with closed loop control (with constant setpoints) and with a re-optimization of the respective setpoints. Among the various alternative candidates that can be selected as controlled variables, the loss that is to be expected by fixing controlled variables to their setpoint values should be minimal. It should be noted that the i-TCM operational cost and equipment models in conjunction with the equation-oriented (EO) simulation mode of Aspen Plus constitute important ingredients of these variational calculations. 

2.2. Control Loop Pairing and Verification by Dynamic Simulation Analysis

Once promising candidate sets of controlled and manipulated variables have been selected, an appropriate control loop pairing needs to be determined. Sensitivity considerations as well as the relative gain array (RGA) method (Bristol, 1966) help in selecting one or a few out of the various potential pairings that are left from the previous selection process. Based on sensitivity information, which is available from the solution of the stationary process model, and a few simple matrix operations the RGA method can effectively be used to identify instable pairings.  

All the steps presented so far can be conducted using information derived from stationary process models. Dynamic simulation studies are the next step towards building up and testing the control structures that are initially proposed based on stationary simulation studies. Several aspects of dynamic simulations are discussed in the following that give a lot of information about the dynamics of the process and on controllability issues, which are relatively hard to extract from the stationary models:

Firstly, the disturbance scenarios identified in the previous subsection are assessed. Then, different possible combinations of the control structures are examined in view of operational feasibility. RGA analysis gives possible guesses for good loop pairing but may not always lead to the best results (it may even lead to unstable loop pairings). This is checked and verified. After a suitable control structure has been selected, care must be taken in choosing ranges for the controllers (actuator limitations on the manipulated variables), its effect on the controlled variables and the coupling effect on the whole process (e.g. undesirable overshoots or long delays). Further on, partial control schemes in which an important key variable is controlled and some other operational specifications during big disturbances are allowed to be off-spec are also checked. Dynamic simulation is also useful to get ideas of control parameters if desired.  

3. Case Study: Control Structure Selection for a Distillation Column

In order to illustrate the above procedure, we examine a particular section of our large-scale process: a distillation column used to separate the key product P from the raw material R as well as from a set of inert components. Though the distillation column is operated under high pressure, the top product has to be condensed at very low temperatures, a fact which makes process operations expensive. A schematic of the system can be seen in Fig. 1, left.


[image: image1]
Figure 1: Schematic of the distillation process (left) and normalized sensitivity plot of the temperature profile in the column (stage 1:= condenser, stage 29:= reboiler) with respect to the manipulated variables condensing fluid flow rate FC, evaporator steam flow rate FQ and side stream flow rate S (right). D, B and S refer to the distillate, bottoms and side draw streams.  

The first step is to determine an optimal design of the column based on minimizing the total cost. Due to confidentiality issues we do not elaborate on equipment-related issues but instead concentrate on the three operational DOF available for steady-state optimization (thereby assuming that the liquid holdups in the condenser and the reboiler are controlled by the reflux and bottoms streams respectively, and that the pressure is controlled by the vapor stream D): the condensing fluid flow rate FC, the evaporator steam flow rate FQ and the side stream flow rate S. Two important operational constraints are imposed: The product P should contain less than 5 w-ppm of R while the side stream S should contain less than 50 w-ppm of P. The nominal lifecycle costs in Euro per annum are obtained by a total cost minimization using i-TCM.

3.1. Identifying attractive candidate controlled variables

For the design of an appropriate control system, we proceed with selecting flows and temperatures as candidate controlled variables, which can be measured easily and reliably.  In order to simplify the list of candidate control variables a sensitivity check is conducted. We are principally interested in examining which temperatures within the column are most sensitive to changes in the manipulated variables FC, FQ and S (see e.g. Luyben, 2006). These sensitivity values are obtained conveniently as a by-product of the Aspen Plus EO solution. The results calculated for the column are shown in Fig. 1, right. For this system, it is seen that there are two areas of good temperature sensitivity, one around stage 14, and another around stage 19. This suggests that temperature sensors could be effectively used at these positions. Additionally, the condenser temperature T1 as well as the ratio rFFQ of the feed flow rate and the evaporator steam flow rate FQ are selected as candidate controlled variables. With these considerations, the following two sets of controlled variables are identified: Set 1 composed of variables T1, T14, rFFQ and set 2 composed of variables T1, T14, T19.
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Figure 2: Economic comparison of controlled variables sets 1 and 2, distance to ‘perfect control’.  

For an economic comparison of the two sets of controlled variables, disturbance scenarios are to be defined. The project team argued that a change in the amount of R in the feed is, amongst others, a realistic and important scenario for testing our control system. Fig. 2 shows the influence of a change in the feed mass flow of component R on the operating cost of the column for three different control schemes. The cost for ‘perfect control’, which is calculated as explained in Section 2.2, indicated by the circles in Fig. 2 serves as a reference for the two sets of candidate controlled variables. By comparing the operational cost for varying feed compositions (+/- 20% in component R), it can easily be seen that set 1 is worse than ‘perfect control’ and set 2. This first result shows that set 2 should be used rather than set 1. Furthermore, Fig. 2 also reveals that set 2 is rather close to the performance of ‘perfect control’. Hence, it would not be worth spending the effort required for an advanced control scheme with an economic performance close to ‘perfect control’. These general findings are confirmed for all remaining disturbance scenarios. Thus, it can be concluded that set 2 is the favorable set of controlled variables. 

3.2. Control Loop Pairing and Verification by Dynamic Simulation Studies

Having identified a set of controlled and manipulated variables, an appropriate control loop pairing remains to be determined. For this purpose, we again make use of stationary process information by using sensitivity information to calculate the RGA matrix for the system. This is especially important for the control design problem considered here, since controlling a distillation column with more than one temperature is known to potentially cause stability problems. Whereas several pairings of controlled variables T1, T14, T19 with the manipulated variables FC, FQ, S are found to be unstable, the following control loop pairing is found to be stable: FC controls T1, FQ controls T19, S controls T14. By converting the stationary into a dynamic model using Aspen Custom Modeler, this control system is tested and confirmed to be well suited for our purpose.  
4. Plant-Wide Control Structure Selection

The proposed methodology has not only been applied to design the control structure for the distillation column discussed in the previous section, but also for the plant-wide control structure selection of a large-scale BASF process (of which the distillation column is a part). The confidential process consisting of multiple units (reactor, several separation columns, many heat exchangers) is described using a non-standard chemistry and thermodynamic model. Despite the system complexity, the methodology could be applied in a precisely analogous manner. Important elements of our considerations included product relevant specifications, hydraulic calculations, product and material-relevant temperatures as well as several internal concentrations. In our experience, the breakdown of the overall process into smaller subsections (process modules) proved to be a key element for success. Finally, the chosen control structures were validated by a dynamic simulation of the complete plant. The application of this method was seen to greatly facilitate the selection of a favorable control structure for the process.

5. Conclusions

A decision-support tool for control structure selection has been proposed in this paper. The two core elements of the method are (i) a re-use of stationary process model information and (ii) the use of an economic measure in order to objectify decisions to the extent possible. The method has proven its ability to support decision-making in the project team with quantitative information and to greatly simplify dynamic simulation studies required to design the control structure of an industrial process. In this respect, the proposed method is an effort to overcome the break between model-based design and control reported by Bausa and Dünnebier (2005).    
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