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Abstract

In this work, a generalized structure of a multi-scale dynamic simulation model for emulsion polymerization is presented. A simplified version of this multi-scale structure, a multi-scale kinetic Monte Carlo - Brownian Dynamics simulation, is used to study the competition between the capture of radicals by polymer particles and radical reactions in the aqueous phase in a seeded semibatch emulsion polymerization. In this case, the system is simulated by a kinetic Monte Carlo technique where the kinetic information of radical absorption is supplied by a lower scale Brownian Dynamics simulation model. The kinetics of radical capture by polymer particles is determined by Brownian dynamics simulation using a Monte Carlo random flight algorithm. The multi-scale model developed may be used to optimize the conditions for avoiding secondary particle nucleation in any particular emulsion polymerization system.
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1. Introduction
Radical emulsion polymerization is a widely used technique for the synthesis of polymers for a variety of industrial fields ranging from coatings and adhesives to biomedical applications (Tauer, 2004). Emulsion polymerization is preferred over other polymerization techniques especially because of the higher molecular weight of the polymers obtained, the low viscosity of the latex, the increased safety and productivity of the reaction, and for being friendlier to the environment (Daniel, 2003). However, good product quality control and batch to batch homogeneity are very difficult to achieve because radical emulsion polymerization is a highly complex dynamic process in which several simultaneous and usually competitive colloidal (aggregation, coalescence), chemical (radical generation, polymerization, termination, chain transfer) and physical events (diffusion, nucleation, swelling) occur at very different time scales and dimensions. These events take place, for instance, at rates ranging from about 100 to 109 s-1 and involving entities of very different length scales, such as ions and molecules (< 1 nm), macromolecules (1 – 10 nm), polymer particles (10 nm – 1 (m) and monomer droplets (>1 (m). Additionally, emulsion polymer systems may present a marked spatial heterogeneity on the macroscopic scale (imperfect mixing), making it very sensitive to temperature and composition profiles inside the reactor. For all these reasons, it is clear that a very precise representation of the process is only possible if different simulation techniques –such as Brownian Dynamics simulation, kinetic Monte Carlo stochastic simulation, Molecular Dynamics simulation, Computational Fluid Dynamics, etc.– are integrated into a multi-scale simulation approach (Fermeglia and Pricl, 2007; Kevrekidis et al., 2004; Chen and Kim, 2004).

2. Multiscale modeling and simulation of emulsion polymerization
A general representation of the different scales in emulsion polymerization is presented in Figure 1. At least seven different characteristic scales can be considered for multi-scale modeling of emulsion polymerization. At each level, different simulation techniques can be used depending on the type of information required.
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Figure 1. General multi-scale structure of emulsion polymerization 

The atomistic scale considers the electronic interactions between different atoms of the same or different molecules. These interactions are determined by the corresponding solution of the Schrödinger equation. Therefore, Quantum Mechanics (QM) can be used to obtain valuable information about the system, such as activation energies and reaction rate coefficients, long-range potential parameters (such as the Lennard-Jones parameters) and interaction parameters (such as the ( Flory-Huggins parameter). At the molecular scale, the information obtained by QM can be used to determine transport properties (viscosity, diffusivity, thermal conductivity), chemical potentials and interfacial tensions. For this purpose, techniques such as Molecular Dynamics (MD) simulation or Monte Carlo (MC) simulation can be used. At the macromolecular scale it is possible to use a coarse grained (CG) representations of the structure of matter considering groups of atoms as single units, and it is also possible to use the mean field (MF) approach, by assuming continuity for the most abundant chemical species. This is the case of water in the aqueous phase of an emulsion polymerization, or monomer inside the polymer particles. Kuhn lengths and gyration radii of the polymer segments can be calculated and the conformation and arrangement of macromolecules in the aqueous phase and inside the polymer particles can be determined. Transport properties of small molecules inside polymer particles and transport properties of macromolecules in the continuous phase can be determined using Lattice or Off-lattice chain models. At the colloidal scale Brownian entities ranging from 1 nm to 1 (m are defined, and the kinetics of colloidal events such as collision, aggregation, flocculation, adsorption, etc., can be evaluated. The frequent collisions of small molecules from the continuous phase are responsible for the random motion, and therefore, for the diffusion of Brownian entities. This effect can be represented by Brownian Dynamics (BD) simulation which is based on the solution of Langevin’s equation of Brownian motion. At this level, Population Balances (PB) are also useful for incorporating polydispersity effects. At the microscopic scale, an integration of chemical, colloidal and hydrodynamic events is performed using the kinetic Monte Carlo (kMC) technique, also known as Stochastic Simulation Algorithm (SSA). The main condition for this integration is the assumption of perfect mixing inside the reference volume. At the mesoscopic scale, mixing hydrodynamic effects are dominant. In this case, Finite Element Modelling (FEM) techniques such as Computational Fluid Dynamics (CFD) can be used. These methods are able to calculate composition and temperature profiles inside the reactor. Finally, the macroscopic scale, which in this case is the emulsion polymerization reactor, is modelled basically with Ordinary Differential Equations (ODE) according to the laws of conservation of mass and energy (and momentum if necessary). 

A very important aspect of multi-scale modeling is the processing and exchange of information between the different scales. A lower-scale model requires information about the state of the system (temperature, velocity, composition, etc.) which is determined at a higher scale, while at the same time the upper-scale model requires parametric and structural information of the system obtained at a lower scale. Therefore, top-down and bottom-up information exchange procedures must be clearly defined (Chatterjee and Vlachos, 2006; Maroudas, 2000; Broughton et al., 1999). In the top-down procedure, a suitable grid decomposition method based on the distribution of states of the corresponding system scale must be used, while in the bottom-up procedure, the integration of the lower-scale results must be performed. In the next section, an illustrative example of multiscale modeling in emulsion polymerization is presented consisting only of two scales, the microscopic and the colloidal scales.
3. Application of multiscale modeling to semibatch seeded emulsion polymerization

The system considered for this example is the semi-batch surfactant-free emulsion polymerization of vinyl acetate in the presence of a monodisperse polystyrene seed latex, initiated by a water-soluble initiator (potassium persulfate) at 80°C. A multiscale model is developed to simulate the molecular weight distribution of polymers in the aqueous phase during polymerization in the presence of radical-capturing polymer particles. For a monomer-starved feed addition policy, it is possible to assume that the monomer concentration in the aqueous phase is constant, that the monomer concentration in the polymer particles is low enough to give rise to a high viscosity inside the particles (therefore negligible radical desorption rates), and that the particles grow at the rate of monomer addition.
3.1. Microscopic scale: Kinetic Monte Carlo (kMC) simulation  

The kMC simulation technique is based on the SSA introduced by Gillespie (1976). The basic idea of this method is to randomly simulate competitive events (such as chemical reactions) based on their frequency of occurrence. The kMC method is a very good alternative to the classical deterministic rate equations especially when very infrequent events are considered or when a very low number of reactants are present. The kMC method has been successfully used to describe polymerization processes (Nie et al., 2005; Tobita et al., 1994; Lu et al., 1993). In the present example, the following competitive events are considered: Initiator decomposition in the aqueous phase, radical capture by polymer particles, and propagation and termination by recombination reactions in the aqueous phase. Additional events such as chain transfer reactions or termination by disproportionation can be easily included in the formulation of the kMC, but they are not considered in this example for simplicity. The key state variables at the microscopic scale are the chain length distribution and concentration of polymer in the aqueous phase. The kinetic coefficients used for the chemical reactions were taken from the literature (Ferguson et al., 2002). The capture rate coefficients are periodically calculated by lower-scale Brownian Dynamics simulations of the system. 
3.2. Colloidal scale: Brownian Dynamics (BD) simulation
The BD simulation method is based on the solution of Langevin’s equation for Brownian motion, which contains a random force term caused by the frequent random collision between molecules. BD has been successfully employed for simulating a wide variety of systems including molecules, colloidal particles and macromolecules, and it has been previously used for studying radical capture in emulsion polymerization (Hernández and Tauer, 2007). Radical capture kinetic coefficients can be easily estimated with BD simulation, by determining the average time required by a radical generated in the aqueous phase to enter a polymer particle. When the size of the polymer particles changes above a certain tolerance value in the kMC simulation, a BD simulation of radical capture under the new conditions is triggered. The capture rate coefficients for every chain length of the radicals are calculated and given back to the kMC model, to continue the upper-scale simulation. 
3.3. Multiscale kMC-BD simulation
3.3.1. Simulation conditions

In Table 1, the full set of conditions and parameters used during the multiscale kMC-BD simulation is presented. In all cases the final polymer volume fraction was 20%.
Table 1. Parameters used for the multiscale kMC-BD simulation of semi-batch seeded emulsion polymerization of vinyl acetate

	Parameter
	Value
	Parameter
	Value

	Temperature (°C)
	80
	Simulation volume (l)
	1x10-14

	Seed volume fraction (%)
	0.01 - 10
	Seed particle diameter (nm)
	10-500

	Seed polymer density (g/ml)
	1.044 
	Water density (g/ml)
	0.972

	Poly(vinyl acetate) density (g/ml)
	1.15
	Aqueous monomer concentration (mol/l)
	0.3

	Monomer feed rate (mol/l(s)
	3x10-4
	Initiator efficiency
	0.9

	Initial initiator concentration (mol/l)
	1x10-3 
	Initiator decomposition rate coefficient (s-1)
	8.6x10-5 

	Propagation rate coefficient (l/mol(s)
	1.29x104 
	Termination rate coefficient (l/mol(s)
	1.13x1010 

	Primary radical molar volume (l/mol)
	0.046
	Primary radical molar mass (g/mol)
	96.16

	Monomer unit molar volume (l/mol)
	0.075
	Monomer unit molar mass (g/mol)
	86.09

	Water viscosity (cP)
	0.355
	Particle size tolerance for BD simulation triggering 
	5%


3.3.2. Simulation results

Figure 2 shows an example of the multiscale integration in the kMC-BD simulation. Whenever the particle size is increased above the tolerance value of 5%, a BD simulation is triggered and the capture rate coefficients are updated. This can be seen in Figure 2 as “jumps” in the value of the rate coefficient. In this example, an increase of almost one order of magnitude in the capture rate coefficient between the start and the end of the simulation is observed.
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Figure 2. Periodic determination of the capture rate coefficient of primary radicals by BD simulation. Seed particle size: 100 nm; seed volume fraction: 0.1%.
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Figure 3. Number average chain length (Ln), Weight average chain length (Lw), Polydispersity Index (PDI) and Maximum chain length (Lmax) of the radicals formed in the aqueous phase for different particle size and volume fraction of the initial seed. The dashed lines represent best fit curves.
The effects of the competition between aqueous phase propagation and radical capture by polymer particles are clearly seen in Figure 3. The chain length of the polymer formed in the aqueous phase increases as the initial seed particle size increases (for a constant volume fraction) or the volume fraction of the initial seed decreases (for a constant particle size). That is, the degree of polymerization in the aqueous phase increases as the rate of radical capture decreases. An additional effect observed is the increase in the polydispersity of the polymer formed in water as the rate of radical capture decreases. This result reflects the fact that smaller radicals are captured by the particles more easily than the larger ones. Therefore, the larger radicals can grow even further in the aqueous phase increasing the polydispersity of the system. 
For the particular case considered, radical propagation in the aqueous phase is practically suppressed when initial seed particles smaller than 80 nm at seed volume fractions higher or equal than 1% are used. When radical propagation is unavoidable, it is possible to determine the extent of secondary particle nucleation in the system using a suitable nucleation model, like for example, the Classical Nucleation Theory (Becker and Döring, 1935; Tauer and Kuhn, 1995) or a modification thereof (Hodgson, 1984). The nucleation model requires the knowledge of the concentration (obtained from the kMC-BD simulation) and the solubility of all the nucleable species. Thus, it is possible to use the kMC-BD multiscale simulation model to optimize the conditions required for avoiding secondary nucleation in any given emulsion polymerization system.

4. Conclusions
Multiscale dynamic simulation methods have been shown to be potential tools for the investigation of complex systems, in particular, of emulsion polymerization processes. In this paper, a kMC-BD simulation was presented as an example of the integration of different scales in the modeling of semi-batch seeded emulsion polymerization processes. The results obtained in the simulation can be used to find optimal conditions for the suppression of secondary nucleation in emulsion polymerization. 
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