18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.


6

C. Jiang and E. Martin.
Functional Data Analysis for the Development of a Calibration Model for 
Near-infrared Data

Functional Data Analysis for the Development of a Calibration Model for Near-infrared Data

Cheng Jiang, Elaine B. Martin 

School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract 

The calibration performance of two functional data analysis approaches is investigated in this paper. The performance of the method is considered for different basis functions, the penalized B-spline with equally spaced knots and the B-spline with unequally spaced knots and wavelets. The various approaches are compared with respect to the prediction of the mole fractions of different components from the spectrum of mixture samples. The different approaches are benchmarked against the more traditional calibration modelling approach of PLS.
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1. Introduction

The implementation of spectroscopic techniques is expanding partially as a consequence of the recent Federal Drug Agency’s Process Analytical Technology (PAT) initiative. Of the different spectroscopic techniques, near infrared (NIR) spectroscopy is one of the more popular in terms of application. The NIR spectral region corresponds mainly to overtones and combinations of the active molecular fundamental oscillating frequencies with interfering peaks, together with various optical effects resulting in a complex spectral matrix. However to attain the greatest benefit from the data, there is a need for calibration procedures that extract the maximum information content.  Based on Beer’s law, a calibration model between the specific properties and spectra can be assumed to be approximately linear. Multiple linear regression (MLR) is the simplest approach for the creation of a calibration model but it is not suitable for the modelling of NIR data where the number of samples is less than that of wavelengths recorded since linear dependency among the columns of the data matrix X, called collinearity, results, and the matrix 
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will be singular. The application of subspace projection techniques is one approach to addressing the collinearity issue with Partial Least Squares (PLS) being one of the more popular techniques. PLS first projects the input variables, or predictors, onto several independent latent variables that are a linear combination of the original predictor variables, and the response y is then regressed on the space spanned by the latent variables, i.e. the subspace of the column space of X.
In an increasing number of fields, observations can be characterised by curves. NIR is one exemplar. This form of data is termed ‘functional data’ since curves are examples of functions. Ramsay and Dalzell (1991) proposed the concept of functional data analysis for analyzing such data. In contrast to multivariate data analysis, functional data analysis considers the observations as a function as opposed to a sequence of numerical values. Consequently a function lies behind each sample. A number of applications of FDA have been reported including in the areas of economics, medicine, biology and chemometrics. 
As NIR spectra can be considered as functional data, it is hypothesised that functional data analysis can capture the inherent structure of NIR spectra and hence FDA may provide an alternative approach to constructing a calibration model. Two functional linear regression approaches are discussed in this paper and are benchmarked against the more traditional approach of PLS. The arrangement of this paper is as follows. Section 2 introduces the different FDA approaches with details of the data set used in the study described in section 3. The results and a discussion of them is presented in section 4 with overarching conclusions provided in the final section.
2. Functional Linear Regression Approaches

Functional data analysis is a new way of thinking. The underlying philosophy behind it is that the item (sample) on which the functional data analysis is performed is considered as a function as opposed to a series of discrete data points. Based on this definition, with respect to the calibration analysis of NIR data, the NIR spectrum is considered as a function with the response being a specific property of an analyte. The goal of calibration is to build a model between a functional predictor and a scalar response. Consequently there exists a linear operator 
[image: image2.wmf]L

~

between 
[image: image3.wmf]¥

R

and 
[image: image4.wmf]1

R
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Thus the relationship between the NIR spectrum and the specific property is represented by the linear operator 
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. Two approaches for estimating the operator 
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 are discussed in this paper. One approach is fitting the NIR spectra with mathematical basis functions and then developing regression model between the response variables and the fitting coefficients. The second approach represents the regression coefficients by basis functions as opposed to the original spectra. Both approaches utilize the functional properties of NIR spectra. The first approach assumes the shape information contained within NIR spectra can be captured by the basis functions and the second hypothesis that the curve information of the NIR spectra can be reflected by that of the regression coefficients. A mathematical framework for these approaches is now presented.

2.1. Indirect Approach
Although the individual spectrum is a point in the 
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space, the dimension of variation between the N samples is always finite. Thus it can be assumed that the N spectra samples lie in the space spanned by a set of finite mathematical basis functions. Let the functional format of the whole spectrum be 
[image: image11.wmf])

(

l

x

, where 
[image: image12.wmf]l

 denotes the wavelength. 
[image: image13.wmf])

(

,

),

(

),

(

2

1

l

f

l

f

l

f

k

L

 indicates the set of basis functions and 
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is represented by a linear combination in terms of the k basis functions 
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Here 
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 are the fitting coefficients. Since 
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 are mathematically independent, 
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Consequently according to the property of linear operators:
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Therefore, 
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 can be calculated from Eq. (3) as a linear combination of 
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, as opposed to estimating the operator 
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directly.  Eqs. (2) and (3) can be expressed in matrix notation as:
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where the elements of 
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 are the basis functions
[image: image26.wmf])

(

,

),

(

),

(

2

1

l

f

l

f

l

f

k

L
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is the fitting coefficient matrix and 
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is that part of X unexplained by basis functions.
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where the elements of 
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is a noise term. Typically, the number of samples (spectra) is less than the number of fitting coefficients. In this situation, classical regression methods cannot be applied directly. Consequently, different strategies need to be considered to address this problem. Two approaches discussed in this paper are: (i) apply PLS to build a regression model between the response variable and the fitting coefficients, and (ii) place a hard constraint on the number of basis functions such that ordinary least squares can be applied. 

2.2. Direct Approach
In the case that the predictor is a function and the response is a scalar, the operator 
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 can be considered as an inner product operator and the estimation of the response is the inner product of the functional predictor and the regression coefficient. For example, let the matrix notation for the relationship between the response 
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 is scalar since 
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 is a scalar, consequently, 
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where
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denotes the range of the spectrum, and <,> denotes the inner product. The problem now becomes how to estimate the function 
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. The approach discussed in this paper is to represent the regression coefficient 
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 by a set basis functions directly as opposed to the original spectrum. Let 
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Thus 
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 are the parameters to be estimated. The matrix notation for Eqs (7) and (8) is:
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The framework was based on Penalized Signal Regression (PSR) with penalized B-splines representing the regression coefficient (Marx and Eilers, 1999). 
However the choice of basis functions is an issue in FDA. Ideally basis functions should have some features matching those of the estimated functions. Considering the non-periodic and broad bands combinational shape feature of NIR spectra, three mathematical basis functions considered were penalized B-spline with equally spaced knots, the B-spline with unequally spaced knots and wavelets.
2.3. Basis Functions and Fitting Methods

2.3.1. Penalized B-Spline

Splines are the most common basis function for non-periodic curve approximation, as they can accommodate local features. The B-spline developed by de Boor is the most popular for constructing spline bases. Suppose that the spectrum 
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.  If the B-spline has a fixed degree d, it has continuous derivatives of degree up to 
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. When using the B-spline as a smoother, the issue is how to choose the number and position of knots to avoid over or under fitting. Eilers and Marx (1996) proposed using a relatively large number of equi-spaced knots and a penalty on the finite differences of the coefficients of adjacent B-spline to avoid overfitting. This approach was termed the “P-spline”, penalized B-spline. The fitting criterion based on least squares using the penalized B-spline is given by:
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 where
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 is a parameter for controlling the smoothness of the fit, 
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is the difference operator, which is defined as:
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When using a P-spline, four parameters require to be chosen: spline degree d, knot number k, differences degree m and 
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2.3.2. Free knots B-Spline

This approach, based on a Bayesian approach, automatically identifies the optimal number and location of the internal knots. The fitting method adopted in this paper was proposed by Dimatteo, et al. (2001). First, a cubic B-spline is assumed. And a reversible-jump Markov chain Monte Carlo (MCMC) (Green. 1995) is implemented to change the knot number k and location
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. Finally, a posterior distribution of the knot number and location is achieved.

2.3.3. Wavelets

The fundamental idea of wavelets is multiresolution analysis. The ‘mother wavelet’ 
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 plays a primary role in wavelet analysis. Once a wavelet is chosen, a functional datum 
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 can be decomposed into different wavelet components 
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, with the dilation and translation of the ‘mother wavelet’ forming a set of basis functions that capture features in the frequency and time domain. The wavelets considered are Daubechies wavelets and are classified in terms of the number of vanishing moments. The first and third Daubechies wavelets are considered

Table 1. Prediction results

	Method
	
	Ethanol
	Water
	2-propanol

	
	
	Temp(ºC)
	RMSEP
	RMSEP
	RMSEP

	PLS
	
	30
	0.014
	0.012
	0.011

	
	
	40
	0.013
	0.006
	0.016

	
	
	50
	0.038
	0.008
	0.041

	
	
	60
	0.016
	0.008
	0.017

	
	
	70
	0.018
	0.008
	0.017

	Indirect Approach
	P-spline with PLS
	30
	0.016
	0.011
	0.012

	
	
	40
	0.009
	0.007
	0.014

	
	
	50
	0.030
	0.008
	0.031

	
	
	60
	0.013
	0.008
	0.015

	
	
	70
	0.014
	0.005
	0.012

	
	P-spline with limit numbers
	30
	0.004
	0.003
	0.004

	
	
	40
	0.007
	0.003
	0.006

	
	
	50
	0.011
	0.008
	0.016

	
	
	60
	0.009
	0.006
	0.004

	
	
	70
	0.014
	0.005
	0.010

	
	Free knots 

B-spline with PLS
	30
	0.015
	0.009
	0.011

	
	
	40
	0.018
	0.004
	0.022

	
	
	50
	0.048
	0.008
	0.053

	
	
	60
	0.020
	0.008
	0.020

	
	
	70
	0.026
	0.005
	0.026

	
	Daubechies wavelets(first)with PLS
	30
	0.016
	0.014
	0.013

	
	
	40
	0.013
	0.007
	0.016

	
	
	50
	0.037
	0.008
	0.039

	
	
	60
	0.018
	0.009
	0.021

	
	
	70
	0.022
	0.005
	0.023

	
	Daubechies wavelets(third) with PLS
	30
	0.018
	0.014
	0.011

	
	
	40
	0.011
	0.004
	0.008

	
	
	50
	0.022
	0.008
	0.020

	
	
	60
	0.017
	0.008
	0.018

	
	
	70
	0.021
	0.005
	0.024

	Direct Approach
	PSR
	30
	0.006
	0.004
	0.003

	
	
	40
	0.009
	0.003
	0.009

	
	
	50
	0.016
	0.008
	0.024

	
	
	60
	0.015
	0.006
	0.011

	
	
	70
	0.027
	0.006
	0.020

	
	Daubechies wavelets(first)
	30
	0.003
	0.004
	0.003

	
	
	40
	0.014
	0.006
	0.011

	
	
	50
	0.019
	0.010
	0.022

	
	
	60
	0.014
	0.005
	0.011

	
	
	70
	0.016
	0.008
	0.013

	
	Daubechies wavelets(third)
	30
	0.005
	0.004
	0.003

	
	
	40
	0.013
	0.006
	0.010

	
	
	50
	0.015
	0.010
	0.020

	
	
	60
	0.012
	0.005
	0.010

	
	
	70
	0.016
	0.008
	0.014


3. Case Study

A NIR spectral data set is considered (Wülfert et al. (1998)). Spectra of mixtures of ethonal, water and 2-propanol are used to predict the mole fractions of these components. Measurements of 19 samples at five temperatures (30, 40, 50, 60 and 70 ºC) in the range, 580-1091nm, with 1nm resolution were recorded. Only the spectral region 850-1049 nm was considered in the analysis. The samples were divided into 13 training and 6 test samples as described in the paper (Wulfert et al. 1998). Features associated with the spectra included an apparent band shift and broadening which introduced non-linearity into the relationship between the spectra and reference values. Mean centering was first applied. The root mean square error of prediction was used as the performance criteria to evaluate the predictive ability of the different models. 
4. Results and Discussion

In this section, the results of applying different functional linear regression approaches are considered which are benchmarked against PLS. The indirect approach with P-spline, free knots B-spline, and wavelets and the direct approach with P-spline, and wavelets were applied to the data. The prediction results are given in Table 1. It can be observed that the performance of PLS and the functional linear methods, especially the indirect methods with PLS being used for defining the relationship between the response and fitting coefficients, are comparable. Using a basis functions to fit the data, i.e. performing a transformation on the original data, variations within the original data will be transferred to the variation between the fitting coefficients. If a complete mathematical basis functions (i.e. wavelets) is used, the variation will be nearly totally transferred, which is the reason that PLS and functional linear methods with wavelets achieve similar prediction results. The B-spline is not a complete bases hence greater fitting errors may be introduced to the variations of the fitting coefficients resulting occasionally in a large prediction bias.

5. Conclusions
The prediction performance of PLS and functional linear regression methods is comparable except for the indirect method when a hard constraint is placed on the number of P-spline. For the data set studied it outperforms all other methods. The rationale for this needs further investigation. Both approaches can be described within a common framework as the loadings of PLS can be considered as data-based basis function. Future work is on-going on how to choose basis functions. 
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