18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.

6

S.C. de Graaf, et al.

Reduction of computational load associated with integration of DAE systems

5

REDUCTION OF COMPUTATIONAL LOAD ASSOCIATED WITH THE INTEGRATION OF DAE SYSTEMS
Stefan C. de Graafa, Pål Kittilsena, Heinz A. Preisigb

aCybernetica AS, Leirfossveien 27, Trondheim N-7038, Norway

bNorwegain University of Science and Technology, Department of Chemical Engineering, Trondheim N – 7491, Norway

Abstract

Dynamic models come often in the form of Differential Algebraic Equations (DAEs). The integration of DAEs has a high computational load, which is one of the main obstacles for the real-time implementation of advanced control in chemical processes. This paper emphasizes that the magnitude of these loads depends mostly on the eigenvalues and the amount of time necessary for the computation of Jacobians of state equations AND algebraic equations. Furthermore, it presents an overview of methods to adjust these Jacobians by altering state equations and algebraic equations, and methods to accelerate Jacobian computation.

Keywords: computational load, model reduction, DAE system

1. Introduction

The performance of chemical processes can often be improved markedly by implementing advanced control. Product yields, operation near process constraints and start-up and shutdown times all benefit from applying model-based control. Unfortunately, advanced control algorithms often require integration of Differential Algebraic Equations (DAE). Integrating DAEs is a computationally relatively complex and consequently relatively slow, which often becomes the main obstacle hindering the implementation of such control strategies.

With this problem being so central, much, though scattered research about fundamental causes and possible reduction of high computational loads has been done. Maas (1993), Hahn, et al. (2003) and Rowley (2005) associate the high computational load with the number and complexity of state equations. Hedengren and Edgar (2005) and Sun (2006) looked at the number and complexity of algebraic equations. Nejad (2005) and Averick, et al. (1994) focused on the computational load of Jacobian matrices.

This research suggests a number of methods resulting in computational procedures that are more efficient than solving the original problem. Though, with the literature being as scattered as it is, the practitioner lacks guidelines on what method to choose in a particular situation. There exists no overview that provides a clear representation of what the cause of the computational problem is and how it can be resolved. This paper attempts to fill some of this gap.

2. DAE-systems and their integration

In this paper it is assumed that the following DAE-system causes high computational loads:

[image: image1.wmf](

)

(

)

00

,,,

xfxzudxtx

==

&

(1)

[image: image2.wmf](

)

0,,,

gxzud

=

(2)

where
[image: image3.wmf]Î

¡

x

n

x

,
[image: image4.wmf]z

n

z

Î

¡

,
[image: image5.wmf]Î

¡

u

n

u

,
[image: image6.wmf]Î

¡

d

n

d

. The vector x is the system state vector, z the vector with algebraic variables, d the disturbance vector and u the control input vector. The function vector f is a system state function vector and the vector g is a function vector for computing the algebraic variables z.

Note that the DAE system has index 1. If the system is of a higher index then the system should first be reduced to an index 1 representation, because most software for integration of DAE systems are developed for index-1 systems (Asher and Petzold, 1998).

A DAE or stiff ODE system is often integrated by using the backward difference formulae (BDF) methods, which is a well-known multi-step method. The general form of this method is:

[image: image7.wmf]0

1

()

()()

()()

()

k

n

nni

i

i

nni

n

ft

xtxt

h

ztzt

gt

ab

-

=

-

éù

éùéù

=+

êú

êúêú

ëûëûêú

ëû

å

(3)

where and αi and β0 are constants, h is the step size in time and n denotes the mesh number. It shows that the BDF methods use several past values of the variable x and its rates of change f and g with respect to time t to move the integration forward from tn-1 to tn. This is done in an iterative way until a convergence criterion is met (Asher and Petzold, 1998).

At a fixed integration horizon, the computational load associated to the application of BDF methods depends on the step size, the convergence criterion and the Jacobian that is required for solving equation 3 by using a Newton iteration. Note that this Jacobian contains partial derivatives of state equations and algebraic equations with respect to states and algebraic variables. The computational load is inversely proportional to the step size, whose product with the eigenvalues of the Jacobian has to be small enough to meet the convergence criteria. The load increases mostly with the number of non-zero elements in the Jacobians, because they have to be computed for every move.

As the eigenvalues and number of non-zero elements of the Jacobian depend on the equations, model adjustments that result in a reduction of the difference between the largest and the smallest eigenvalues may reduce the computational load. But most of all, a reduction of the number and nonlinearity of equations may reduce the computational load.

3. Methods that reduce computational loads

The eigenvalues and computation of non-zero elements of Jacobians can be modified on two complementary levels: (i) state and algebraic equations of DAE systems; (ii) implementation of DAE-systems in integration routines.

3.1. Modifying state and algebraic equations of DAE systems

As the state and algebraic equations affect the eigenvalues and the number of the non-zero elements in Jacobians, they should both be reduced. Most reduction algorithms for state equations create new algebraic equations, so it is wise to reduce the number of state equations before reducing the number of algebraic equations.

3.1.1. State equations

Many of the methods achieve a higher computational efficiency by reducing the state space. This is usually done in two steps: First the original model is transformed into another state space, which enables the second step, namely to split the model into three parts, one for which one assumes event dynamics, one that shows dynamic behaviour and a third, which can be assumed to be constant in the dynamic scale of interest for the application.

The state is transformed linearly:

[image: image8.wmf](

)

1

,,,

xTxTfTxuzd

-

==

&

%&%

(4)

The consequent splitting into the three different dynamic regimes is based on eigenvalue criteria of a matrix associated with the transformation matrix (for example Hahn, et al. (2002)) with the indices 1, 2, 3 representing the fast, the dynamic and the constant part, the split model reads:

[image: image9.wmf](

)

(

)

1

1

1

22

3

,,,

0

,,,

0

TfTxuzd

xTfTxuzd

x

-

-

éù

éù

êú

êú

êú

=

êú

êú

êú

êú

ëû

ëû

%

&

%%

&

%

(5)

Beside the assumptions made about the dynamics, the three groups of states also have other properties, that are determined by the approach chosen to compute the transformation matrix. Properties that stem from three published approaches are summarized in Table 1.

This transformation and splitting of the state equations reduces the computational load only because of the assumption that was made for the states of the third group. The algebraic and state equations for the dynamics of the states that belong to the first and second group are not likely to reduce the number of non-zero elements in the Jacobian. In the latter case a reduction is only achieved if the event dynamic part has an explicit solution allowing for the complete elimination of the fast state variables. Reducing the computational load for the algebraic equations (2) and (5) is the topic of the next section.
Table 1. Three approaches to transform and split state equations in sub-models, and the properties of these sub-models

	References
	
[image: image10.wmf]1

x

%

	
[image: image11.wmf]2

x

%

	
[image: image12.wmf]3

x

%

	Maas (1993), Bykov, et al. (2005), Skodje and Davis (2001)
	Fast changing states

	Moderately changing states
	Slowly changing states

	Löffler and Marquardt (1991)
	Fast changing states that are controllable

	Moderately changing states that are controllable
	States that are uncontrollable

	Hahn, et al. (2002), Hahn and Edgar (2003), Willcox and Peraire (2001)
	Fast changing states that are controllable and observable
	Moderately changing states that are controllable and observable
	States that are uncontrollable or unobservable or both

3.1.2. Algebraic equations

Reduction of the complexity and number of algebraic equations can be seen as the identification of new, but simpler algebraic equations that approximate the original set sufficiently well in the context of the application. Linear equations can be approximated in different ways: For example by (multiple) linear regression in connection with discriminant analysis, principal component analysis and sub-space methods. Nonlinear relationships can for example be captured in an artificial neural network.

The approximation with linear algebraic equations is preferable over the use of nonlinear equations. This is because those elements in the Jacobians that stem from the linear algebraic equations are constant and thus there is no need to recalculate them when Jacobians are updated, which reduces the computational load.
3.2. Adjusting the implementation of DAE-systems in integration routines

Choosing a particular implementation of DAE-systems in the integration routines may also reduce the computational load. Three possibilities are discussed here: solving algebraic equations externally, use of pre-computed look-up tables and interpolation as an alternative to evaluate the respective model equations for each step, and providing an analytical representation of the Jacobians to the integrator.

3.2.1. Solving algebraic equations externally

Solving algebraic equations in functions that are programmed in another language is relevant when equation-based languages, e.g. gPROMS, are used. Equation-based languages solve all state equations together with the implicit and explicit algebraic equations equation-system, which may lead to high computational loads. The only alternative to reduce the computational load is to solve the algebraic equations externally using a highly optimized C++ or Fortran code. Algorithm-based languages, such as MATLAB, make it easy to use alternative or separated code.

3.2.2. Use of look-up tables

Algebraic equations can be solved off-line for different values of the dependent variables. These solutions can be stored in tables and retrieved and interpolated during on-line applications. The computational load associated to the off-line calculations is high, but the computational load of the on-line applications is usually significantly lower.

3.2.3. Efficient computation and storage of Jacobians

Providing coded analytical Jacobians and efficient storage of Jacobians may lead to lower computational loads than one observes with the approximation of Jacobians by numerical differentiation. The latter has the advantage that only the function is needed as a black box. However, the accuracy of these approximations may be hard to asses. The computational load is approximatley n+1 times the computational costs associated with the computation of the function value f(x), where n is the number of independent variables.
Manual coding of Jacobians produces accurate and efficient code. However, it is often time consuming and error prone, especially if the function is complex. These disadvantages can be partially overcome by using symbolic manipulation packages such as Maple and Mathematica. It should be mentioned though that although symbolic differentiation is a powerful technique, it quickly runs into resource limitations when applied to even moderately sized problems.

Automatic differentiation is a better approach for generating code for derivatives. This technique relies on the fact that every function, no matter how complicated, is executed on a computer as a (potentially very long) sequence of elementary operations such as additions, multiplications, and elementary functions. By applying the chain rule to the composition of those elementary operations, one can compute derivative information of f exactly and in a completely mechanical fashion. This approach lead to exact derivatives and the computational load of the so-called reversed mode is independent of the number of independent variables (Al Seyab, 2006).

The load related to computing and storing Jacobians may also be reduced when elements of the Jacobians are zero or when directional derivatives that are used to compute the elements are equal to zero. In these cases only the non-zero elements and non-zero directional derivatives need to be computed and stored, which reduces the load of computing and storing Jacobians. This is called sparse and compressed structure storage of Jacobians and its computational load is relatively small for large DAE systems. Software is available that scans Jacobians for these storage possibilities (Forth and Edvall, 2006).

4. Concluding remarks

This paper emphasizes that the magnitude of computational load for integration of DAEs depends mostly on the eigenvalues and the amount of time necessary for the computation of Jacobians of state equations AND algebraic equations. Furthermore, it presents various methods to adjust these Jacobians by altering state equations and algebraic equations, and methods to accelerate Jacobian computation. A combination of these methods will lead to a dynamic model with a lower computational load.

References

R.K. Al Seyab, 2006, Nonlinear model predictive control uising automatic differentiation (thesis), Cranfield University, United Kingdom
U.M. Ascher, L. Petzold, 1998, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for industrial and applied mathematics
B.M. Averick, J.J. More, C.H. Bishof, A. Carle and A. Griewank, 1994, Computing large sparse Jacobian matrices using automatic differentiation. SIAM Journal on scientific computing 15, 2, 285-294

V. Bykov, I. Goldfarb, V. Gol’dshtein, 2005, Novel numerical decomposition approaches for multiscale combustion and kinteic models, Journal of physiscs: Conference series 22, 1-29

S.A. Forth and M.M. Edvall, 2006, User guide for MAD-- a Matlab Automatic Differentiation Toolbox, TOMLAB/MAD, Version 1.4, The Forward Mode, http://tomopt.com/tomlab/download/manuals.php

J. Hahn and T.F. Edgar, 2002, An improved method of nonlinear model reduction using balancing of emperical gramians. Computers and chemical engineering 26, 1379-1397

J. Hahn, T.F. Edgar and W Marquardt, 2003, Controllability and observability covaraince matrices for the analysis and order reduction of stable nonlinear systems, Journal of process control, 13, 115-127

J. D. Hedengren and T.F. Edgar, 2005, Order reduction of large scale DAE models, Computers and chemical engineering 29, 2069-2077

U. Maas, 1993, Automatische reduktion van reaktionsmechnismen zur simulation reaktiver strömungen, thesis, Institut für Technische Verbrennung der Universität Stuttgart

H.-P. Löffler, W. Marquardt, 1991, Order reduction of non-linear differential-alebraic process models, Journal of process control, 1, 32-40

L.A.M. Nejad, 2005, A comparison of stiff ODE solvers for astrochemical kinetics problems, Astrophysics and space science, 299, 1-29

C.W. Rowley, 2005, Model reduction for fluids, using balanced proper orthogonal decomposition, International journal of bifurcation and chaos, 15(3), 997-1013

R.T. Skodje, M.J. Davis, 2001, Geometrical simplification of complex kinetic systems, Journal of physical chemistry, 105, 10356-10365

C. Sun, 2006, Model reduction of systems exhibiting two-time scale behaviour or parametric encertainty (thesis), Texas A&M University

K. Willcox, J. Peraire, 2001, Balanced model reduction via the proper orthogonal decomposition, Proceedings of the 15th AIAA Computational fluid dynamics conference, Anaheim, CA

_1255348852.unknown

_1256374095.unknown

_1256384484.unknown

_1256385888.unknown

_1255349199.unknown

_1255349200.unknown

_1255349132.unknown

_1254312890.unknown

_1254313069.unknown

_1254143356.unknown

_1254143367.unknown

_1254143325.unknown

