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Abstract

In this work, an unstructured and a cybernetic model are proposed and compared for the Simultaneous Saccharification - Fermentation process from Starch to Ethanol (SSFSE), in order to have good, reliable, and highly predictive models, which can be used in optimization and process control applications. The cybernetic is a novel model, which especially considers i) the starch degradation into both glucose and dextrins, and ii) the dynamic behavior of the concentration of the main enzymes involved in the intracellular processes, giving a more detailed description of the process. Furthermore, a new identification procedure based on a sensitivity index is proposed to identify the best set of parameters that not only minimizes the error function, but also contains a fewer number of parameters depending on the initial conditions of the process. Finally, an application of the two models for controlling the SSFSE process using an NMPC (following an optimal reference trajectory for the ethanol concentration) is presented, showing the potential and usefulness of each type of models. 
Keywords: Cybernetic Model, Ethanol, Sensitivity Analysis, Parameter Identification, NMPC.

1.  Introduction
During the last years, significant improvements have been done in the bio-ethanol industry in order to make it economically more competitive, such as, in purification technologies for ethanol dehydration as well as in the genetic modification of microbial strains. However, the economical feasibility of the bio-ethanol industry is still questioned, and therefore much effort should be oriented to the optimization and control of the process. It is well known that a suitable model of the process should be available for developing optimization and control tasks and that although in chemical processes this is currently not a problem, the complexity of biological systems makes its modeling a difficult task. Bioprocess modeling is usually addressed from two different points of view: the structured and the unstructured modeling frameworks. Structured models (such as cybernetic models) try to describe in detail the intracellular behavior, and although they are more complex (i.e. higher number of ODE and AE with more parameters), they can predict more accurately the actual behavior of the process states. Parameter identification of biochemical models by error minimization is a nonlinear optimization problem that contains multiple local minima. In those cases, stochastic optimization methods are more convenient because they usually present a better performance in comparison to gradient search based methods which frequently lead to local solutions, especially if the model contains a large number of parameters and sufficient experimental data are not available. Therefore, trying to avoid local solutions while at the same time finding a minimum number of parameters dependent on the initial conditions of the process, in Section 3 an identification procedure based on a Simulated Annealing method coupled with a sensitivity analysis is presented. The main purpose of this paper is not to answer the question regarding to which kind of model is better or worse; the purpose is to show that depending on the application, these two models can even be used in a synergistic manner. Unstructured models are more suitable for online applications where the simplicity of the model plays an important role especially for saving computation time while the model predictions are still good. In contrast, cybernetic models are preferred for offline applications in which very accurate predictions are needed no matter the computation time. As an example of the potential usefulness of the two types of models, a Nonlinear Model Predictive Control (NMPC) for the fed-batch SSFSE process was implemented for controlling an optimum ethanol concentration profile that guarantees maximal productivity. The unstructured model was run online as the predictive model that is part of the NMPC; whereas the cybernetic was used offline for finding the optimal ethanol profile defined as the reference trajectory on the NMPC calculations. Additionally, the results of the controlled fed batch process are compared to a batch SSFSE process, simulated using the model presented in (Ochoa et al, 2007), in order to show that the productivity reached in the controlled fed batch process is higher than in the batch. 
2.  Modeling of the SSFSE Process
The process modeled on this section is a fed batch process in which two reactions take place simultaneously in the same vessel: i) the enzymatic conversion of starch into glucose (by means of glucoamylase and (-amylase), and ii) the fermentation of glucose to ethanol by means of yeast. A genetically modified Saccharomyces cerevisiae strain is used in the process (as described by Altintas et al, 2002), which is able of both, secreting the required enzymes for the starch saccharification and producing ethanol by glucose fermentation. 
2.1. Cybernetic Model

The cybernetic modeling framework has been developed by Ramkrishna’s group and presented in several papers. The most remarkable of those is the paper by Varner and Ramkrishna (1999), in which the guidelines for developing cybernetic models of bioprocesses are given, according to the type of pathway that is taking place. Following Ramkrishna’s ideas and the metabolic pathway shown in Figure 1, the cybernetic model for the fed batch SSFSE process is proposed in this section. 
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Figure 1. Metabolic Pathway for ethanol production from starch. 
The cybernetic model for the fed batch process is obtained from the mass balances for Starch (S), Glucose(G), Dextrins (D), Cells (X), Ethanol (E), Glucoamylase (e1= e2), ((-amylase (e3), hypothetical enzyme 1 (e4) and hypothetical enzyme (e5), as shown in Figure 2. The expressions for the kinetics ri and the cybernetic variables (i (enzyme activity) and ui (enzyme synthesis) are given in Figure 3. A detailed description of the nomenclature used in this work can be found in Ochoa et al. ( 2007).
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Figure 2. Cybernetic model for the fed-batch SSFSE: Mass balances for the state variables
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Figure 3. Kinetic expressions and cybernetic variables for the SSFSE process 

Altintas et al. (2002) developed a cybernetic model for the same SSFSE process tackled here; but the authors did not consider the starch degradation into dextrins, which is considered in the present work (see Figure 1). The main advantage of including this in the model is that more accurate predictions of the process variables can be made, especially for the starch and for the ethanol concentration, being the latter the most valuable product of the process. This fact is corroborated by the results presented in section 3 (see Figure 7). 

2.2. Unstructured Model
The unstructured model developed here considers that the starch is composed of two fractions, one susceptible (faster hydrolyzed, represented by Ssus), and one resistant (Sres) as described in Kroumov et al. ( 2006). Although the saccharification is carried out using glucoamylase and (-amylase, the model considers that this two-enzyme action can be simplified and represented by an additive enzyme activity (Enz) (Kroumov et al., 2006). The kinetic expressions used for describing the fermentation, take into account substrate and product inhibition in both cell’s growth and ethanol production rates. The model for the fed batch SSFSE process is given in Figure 4, while the corresponding kinetic expressions are given in Figure 5. 
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Figure 4. Unstructured model for the fed batch SSFSE process. 
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Figure 5. Kinetic expressions for the unstructured model. 
3. Identification of Parameters 
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Figure 6. Developed Identification Procedure: Optimization coupled with Sensitivity analysis.
The parameters for both models were identified using experimental data reported by Altintas et al. (2002), following the identification procedure proposed in Figure 6. The identification procedure uses different sets of experimental data at different initial conditions and is divided in three main steps: i) An initial optimization routine (for all sets of data simultaneously) is run to calculate a first group of parameters for the various sets of experiments; ii) a sensitivity index is calculated for identifying which parameters have stronger influence on the objective function (according to a pre-established tolerance, Tol), iii) a re-optimization is performed, this time for each set of data independently, but only considering those parameters to which the objective function showed a higher sensitivity. The objective function (Fobj) was taken as the sum of the normalized squared error values for X, S, G and E (comparing to the experimental data). The sensitivity index SI evaluates the sensitivity of Fobj to each parameter when the k-th parameter varies between the integration limits that are defined as a function of the optimized value for k (P0k). It is important to remark that the sensitivity is usually analyzed as the partial derivative of Fobj with respect to the k-th parameter; however in this case an optimum has been already found and if we use the typical sensitivity analysis, we could find that some parameters may have a sensitivity value of zero. That is the reason why we propose here to analyze the sensitivity using the new index shown in the procedure described in Figure 6. Cybernetic and unstructured models presented in Section 2 are composed of 34 and 20 parameters respectively. After analyzing the sensitivity by means of the new sensitivity index, it was found that only 17 and 7 parameters respectively, are sensitive parameters. It is possible to state that for the set of parameters for each kind of model, only those sensitive should be periodically adapted using online information from the process, especially when the process conditions change considerably. On the other hand, non-sensitive parameters can be maintained fixed at their optimal values. As the main advantage of the identification procedure is the reduction of the number of parameters that should be adapted online, it is important to remark that the success of the procedure depends highly on the methods used for the optimization and re-optimization steps. Stochastic optimization methods are more suitable due to their ability for escaping out of local minima. In this way, the Metropolis Monte Carlo simulated annealing method (Kookos, 2004; Ochoa et al., 2007) is recommended because of i) its random nature, which allows the exploration of a much wider region, ii) its ability for avoiding getting trapped in a local optimum, which is given by the Metropolis condition and iii) the annealing effect, which takes care of the convergence. In Figure 7 a comparison between the predictions made by the unstructured, the cybernetic and Altintas’ model is presented for starch and ethanol. As can be seen, the models presented in Section 2 not only are in good agreement with the experimental data but also give a better description of the state variables during the whole process. In contrast, Altintas’ model fails predicting the ethanol and starch dynamic behavior. It is important to remark that the main difference is that, in contrast to the cybernetic presented here, Altintas’ model does not consider the conversion of starch into dextrins. This is probably the main reason why their model predicts higher starch concentration in the interval 20-100 h leading to a lower predicted ethanol, and a lower starch for the period 100-140 h leading to a higher predicted ethanol.
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Figure 7. Models Predictions for Starch (left side) and Ethanol (right side).

4. Nonlinear Model Predictive Control
In this section the usefulness of each kind of model is exemplified in the control of the fed-batch SSFSE process. The objective of the control system is to maximize the productivity of the process, which is calculated as the total mass of ethanol produced. Due to its accuracy for predicting the dynamic behavior of the process, the cybernetic model was used offline to calculate a profile for the ethanol concentration that leads to maximal productivity; whereas the unstructured model was used in the prediction block of the NMPC, because of its simplicity (important for a fast online solution) and still good prediction capability. Figure 8 shows the scheme of the control system. The dynamic behavior of the process and the NMPC performance were investigated through simulation studies considering measurement noise with standard deviation of 3%, 0.02%, 0.01% and 0.02% for X, S, G, and E respectively. During the process, two disturbances were simultaneously considered, i) a 10% of change in the feed starch concentration (Sin) and ii) a 20% of change in the value of the maximum specific growth rate um. The results for the NMPC are compared in Figure 9 to those for the nominal case (optimal operation without disturbances) and to the batch results. The batch case was run in open loop using the unstructured model presented in Ochoa et al. (2007). Despite the disturbances and the model mismatch, the NMPC followed successfully the optimal ethanol reference trajectory calculated offline. Therefore, it can be stated that the cybernetic and unstructured models are quite useful for offline and online applications respectively, due to the predicting capability of the cybernetic model and the simplicity (and even good predictions) of the unstructured model. Besides, it is important to highlight that a higher ethanol concentration (and therefore a higher productivity) is obtained in the fed-batch process when compared to the batch process. In the example tackled here, it is shown that by means of a conveniently controlled fed-batch process, the purity of the ethanol in the fermentation stage can be increased, which is translated into a reduction of downstream purification costs.
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Figure 8. NMPC: Cybernetic and Unstructured models application. 
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Figure 7. NMPC results. Ethanol concentration: Fed batch controlled process vs. Batch. 

5. Conclusions

Cybernetic and unstructured models were proposed for the fed batch SSFSE process. The models were compared to a cybernetic model previously reported, showing a better performance than the previous model. The parameter identification of the models was done by means of a new identification procedure in which stochastic optimization is coupled to sensitivity analysis. Using this procedure, it was possible to find which parameters should be adapted online and which could be kept at fixed values, leading to a more robust model. The unstructured model is suitable for online applications such as model-based control, whereas the cybernetic is the best choice for applications where the accuracy of the model is important such as the off-line determination of optimal trajectories to be tracked along the process.
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