18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.


6

P. Castro et al.
MILP-based Decomposition Method for the Optimal Scheduling…

5

MILP-based Decomposition Method for the Optimal Scheduling of an Industrial Batch Plant
Pedro M. Castro,a Augusto Q. Novais,a Alexandre Carvalhob
aDMS/INETI, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal
bHovione, 2674-506 Loures, Portugal
Abstract

This paper considers a periodic scheduling problem from a fine chemicals plant that synthesizes active pharmaceutical ingredients (API). The objective is to select from the set of available equipment units those better suited for the production of a certain product. The trade-off involved is that, as the number of selected equipments increases the makespan decreases but so does the free capacity of the plant, making it harder to accept new orders. The problem is tackled with a Resource-Task Network (RTN) discrete-time formulation, and a decomposition method is used to overcome a potentially large problem size resulting from the multiple possibilities of distributing the equipment units over the processing tasks. The results have shown that the method is very efficient, since it can find good solutions in a few minutes of computational time.
Keywords: Optimization; Design; Changeovers; Cycle.

1. Introduction
Enterprise-wide Optimization (EWO) has become a major goal in the chemical industries due to the increasing pressures of remaining competitive in the global marketplace (Grossmann, 2005). A major focus in EWO is the optimal operation of manufacturing facilities, where scheduling plays an important part. For companies to respond to market requirements quickly, they have to rely increasingly on more flexible plants and on an optimal management of equipment resources. Allocating too many equipment units to the production of a particular product may lower its makespan, but might also make it impossible for the plant to accept other orders for that same time window, thus facing the risk of missing out on important business opportunities.
Of the many scheduling approaches available in the literature, not all can tackle the real problem features or are able to find very good, if not global, optimal solutions in relatively short computational time. The excellent review paper of Méndez et al. (2006) provides a road-map of optimization models for batch plants and can be used to select the most appropriate formulation. Of the wide variety of aspects that need to be taken into account, two are particularly relevant in our case study: i) the equipment units are multipurpose in nature, since they can be used for multiple processing tasks in different stages of production; ii) we were given fairly accurate processing times, which are multiples of 8 h (working shift). Hence, State/Resource-Task Network discrete-time formulations are the obvious choice. The RTN (Pantelides, 1994) is preferred since it provides a uniform treatment of resources whether they are materials, units or equipment cleaning states (useful when changeovers are involved as it is the case).
Despite recent progress, large-scale scheduling problems cannot be addressed in full. Adequate decomposition methods need to be used to lower the inherent complexity, without severely compromising optimality, so that good solutions can be obtained rapidly and effective decision making tools may result. Work related to this area can be found in Janak et al. (2006). In this paper, we propose one such decomposition method that uses the basic idea proposed by Roslöf et al. (2001) for continuous-time models with sequencing variables, of scheduling one product at a time.
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Figure 1. Production recipe of all chemicals leading to the Active Pharmaceutical Ingredient (E)
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Figure 2. Characteristics of available equipment units

2. Problem description

The problem comes from a Portuguese fine chemicals plant dedicated to the synthesis of APIs for the pharmaceutical industry. A single product is considered (E) that involves 4 intermediate chemicals (A-D). The recipes are given in Figure 1 in the form of a RTN, where rectangles and circles represent processing tasks and resources, respectively. Tasks may involve multiple equipment units, which are multipurpose in nature, i.e. they can be used in tasks belonging to any chemical provided that their function, e.g. reactor, construction material, e.g. stainless steel, and capacity, are suitable. A changeover of 24 h is mandatory when switching between chemicals. The recipe is defined in terms of virtual equipment resources, which will have a one to one correspondence to real units. A total of 20 equipment units of 4 different types are available (see Figure 2).
3. Fundamentals of periodic scheduling formulation

The discrete-time formulation employed is conceptually the original one (Pantelides, 1994), with the necessary adjustments to consider a periodic mode of operation (Shah et al., 1993). Nevertheless, to ensure that the problem is addressed more systematically and that the model is reusable when the number of tasks, resources and chemicals is changed, other model entities are used. Processing tasks (K) are associated to a given chemical (I) and also to a system of equipment units (X), while cleaning tasks will be defined for each unit (M) and for all combinations of chemicals i, i’ with i≠i’. Two sets of binary variables identify the starting point (t(T) of these tasks: Ni,k,x,t and 
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. The amount of mass processed is given by the continuous extent variable (i,k,x,t. The net production of the API is given by Δi. Two sets of excess resource variables are used: Si,k,t for material states originating from task k, chemical i; Ci,m,t for equipment units, which are disaggregated in order to identify if unit m is at a state that allows it to process chemical i immediately after. Design variables 
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 identify if the equipment is chosen for the production of the API. Note that these last set of variables are continuous since the excess resource balances will ensure that they belong to the {0, 1} domain.
3.1. Defining equipment systems
While the large majority of scheduling problems considers a single equipment resource per task, in this case there can be up to three units involved. To deal with the complexity resulting from the need to account for all valid combinations, we introduce the concept of equipment system. This is defined as one of the suitable combinations of real plant units that can replace the virtual units given in Figure 1. Taking the second task of A as an example, only M2 can be used as R1 (5020>5019 l), while M3, M5, M9, M10 and M12 can take the place of R2 for a total of 5 systems. Overall, 578 processing tasks are required. The set of valid equipment systems for task k of chemical i is given by Xk,i.
4. New decomposition approach

Instead of solving the full mixed-integer linear program (MILP), we derive the periodic schedule one chemical at a time, following sequence A-E (see Figure 3). A total of |I| MILPs are solved, each featuring on each calculation stage the same set of variables and constraints as the full MILP. However, their domain is now much smaller. Dynamic sets were employed for this purpose. The chemical under consideration (i’’’) is the only element of set FiP. The algorithm starts with the first product of the sequence (1≡A), the only one tackled in the first stage. The dynamic sets are then updated accordingly, FiP=AcP={A} and AcPi={}. The last two hold the active products and those that on a particular unit can be executed after i, respectively. In the first block of variable bounds, it is important to note that only i’’’ will be produced over the cycle. The actual amount must be greater than the production goal, pgoal, corrected by the yield of all chemicals i>i’’’. Attribute .lo defines the lower bound of variable Δi’’’. The upper bound (.up), ensures that only the final material state of i’’’ is allowed.

In model constraints given next, Ω is a wrap-around operator (Shat et al., 1993), τk,i holds the duration of tasks in number of time intervals (δ=8 h) and set Ki gives the tasks belonging to chemical i. The objective function minimizes the total cost of the schedule in relative money units (r.m.u.). Eq 2 ensures that the volume handled by the task does not exceed the capacity of the vessel Vm. Eq 3 ensures that material production only occurs if the corresponding task is executed. The periodic schedule features exactly one batch of each chemical (eq 4). Eqs 5-6 are the excess resource balances. Eq 7 ensures that the start-up procedure does not require more units than those available.

[image: image5.wmf]å

å

å

å

Î

Î

Î

Î

-

×

×

+

×

×

+

×

×

M

m

T

t

I

i

t

m

i

m

m

m

M

m

m

C

C

vcost

C

vcost

setup

T

dcost

)

(

24

/

24

/

|

|

min

,

,

0

0

d

d


(1)


[image: image6.wmf]T

t

M

m

V

m

AcP

i

K

k

X

x

m

x

i

k

t

x

k

i

i

i

k

Î

Î

"

£

å

å

å

Î

Î

Î

,

/

,

,

,

,

,

,

,

r

x


(2)


[image: image7.wmf]T

t

X

x

K

k

AcP

i

N

i

k

i

t

x

k

i

t

x

k

i

Î

Î

Î

Î

"

×

£

,

,

,

1000

,

,

,

,

,

,

,

x


(3)


[image: image8.wmf]i

X

x

T

t

t

x

k

i

K

k

AcP

i

N

i

k

Î

Î

"

=

å

å

Î

Î

,

1

,

,

,

,


(4)


[image: image9.wmf]t

AcP

i

m

N

N

C

C

I

i

AcP

i

t

m

i

i

i

i

i

K

k

X

x

t

x

k

i

m

x

i

k

t

m

i

t

m

i

i

i

i

k

i

k

,

,

'

'

'

3

0

)

(

,

,

'

'

,

'

,

,

'

'

'.

0

)

(

,

,

,

,

,

,

,

)

1

(

,

,

,

,

'

,

,

Î

"

+

+

=

å

å

å

å

å

å

Î

Î

=

-

W

Î

Î

=

-

W

-

W

q

q

q

t

q

q

q

m

m


(5)

[image: image10.emf]Initialization

i'''=1

SOLVE

PROBLEM

i'''<|I|?

i'''=i'''+1

REPORT 

SOLUTION

YES

NO

Dynamic sets update

I i i i i i i i I i AcP

i i I i FiP

i i I i AcP

i

        

  

  

}''' ' ''' ' : ' {

}''' : {

}''' : {

Updatingvariable bounds

T t K k up S

massb

pgoal

lo

i tk i

ii

K i K

i

i i

   

 





|, | 0 .

.

''' ,,'''

'''

| |,|, |

'''

''' '''

Updatingvariable bounds

0 .

0 .

1 . : 1 .

, ' , , . .

, , . .

'''

|, |,'''

0 0

, ,', , ,',

''', ''' ,,,''' ,,,'''

'''

 

  

   

     

    

up

T t up S

l C M m fx C

T t AcP i I i M m l N fx N

T t X x K k l N fx N

i

t K i

m m

i t m ii t m ii

ik i tx k i tx k i

i


Figure 3. Algorithm of proposed decomposition approach
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Following the solution of the MILP, other variables are updated. Binary variables linked to processing and changeover tasks are fixed (.fx) to their values (.l). Selected equipment units get their binaries (
[image: image13.wmf]0
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) fixed and both the excess amount of all material states of i’’’ and Δi’’’.up are set to 0. The complete schedule is found after all products have been tackled. In order to illustrate the second step, note that for i’’’=2, FiP={B}, AcP={A,B}, AcPA={B} and AcPB={A} so only changeovers tasks A-B and B-A are considered (in the first step there are no changeover tasks since there is only A).
5. Results

In discrete-time periodic scheduling formulations the cycle time is fixed by both δ and |T|. Thus, finding the optimal cycle time implies a search procedure over |T|. The equipment costs, vcostm are given in Figure 2, while the operating cost dcost=22.5 r.m.u./day and the initial setup=10 days. While the production goal cannot be disclosed we can say that a total of 20 batches are required. The algorithm was implemented in GAMS 22.5 and the resulting MILPs were solved to optimality (relative tolerance=1E-6) by CPLEX 10.2 on a Pentium-4 3.4 GHz PC running Windows XP Professional. 
The results are given in Table 1. Columns 2 and 7 refer to the largest MILP solved. When compared to the full MILP, we get a 45% reduction in binary variables. The integrality gap is also tighter and for some instances it is even 0. The five subproblems are very easy to solve and so the computational effort is significantly lower. For |T|>14 the proposed method is about one order of magnitude faster. The overall search time is 86 instead of 1078 CPUs. The drawback of the decomposition approach is that the lowest cost equipment for a particular function is always selected on each step, which may not always be the best choice. Nevertheless, the optimality gap is very low. The global optimal solution corresponds to a cycle time of 11, 8-hour shifts. The lowest makespan (|T|=9) is equal to 236 shifts, has a total cost of 250.7 r.m.u. and involves the selection of 19 units. The cost can be reduced by 3% (|T|=11) for a makespan of 274 shifts (16% higher) due to selection of 16 units. Another interesting solution (|T|=15) involves the selection of just 13 units for a makespan of 350 shifts (48% higher).
Table 1. Computational statistics
	|T|
	RMIP
	TCost (r.m.u.)
	Gap (%)
	Total CPUs
	|T|
	RMIP
	TCost (r.m.u.)
	Gap (%)
	Total CPUs

	9
	251.1
	251.1
	0.16
	4.9
	15
	249.5
	249.5
	0.81
	6.9

	10
	252.3
	258.6
	0.15
	5.0
	16
	250.0
	256.4
	0.08
	7.6

	11
	236.9
	243.3
	0.04
	5.2
	17
	260.2
	266.6
	1.18
	8.0

	12
	267.2
	267.2
	0.11
	6.1
	18
	260.8
	267.3
	0.87
	8.8

	13
	261.0
	261.0
	0.08
	5.9
	19
	269.3
	275.8
	0.91
	10.9

	14
	269.0
	269.0
	0.34
	6.5
	20
	276.0
	282.8
	2.20
	10.2


6. Conclusions
This paper has addressed the optimal periodic scheduling of an industrial batch plant from a new perspective. The aim has been to select a convenient number of equipment units so as to minimize the total equipment allocation cost and hence achieve a trade-off between a low makespan and high free capacity. A decomposition method based on a Resource-Task Network discrete-time formulation has been proposed that, when compared to the solution of the full problem, was able to reduce the total computational effort by one order of magnitude without severely compromising optimality.
The proposed approach can in theory be applied to more complex cases and we are currently working on a problem that involves just two chemicals but with a 3:2 proportion in the number of batches. This means that more than a single instance of every production task will need to be executed, which will be translated into a longer cycle time and a higher number of time intervals. Preliminary results have shown that such problem is significantly harder to solve. And this is just for a single API. Ideally, one would have liked to consider more products simultaneously to better illustrate why better schedules in terms of flexibility are desirable.
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