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Abstract

This work considers the use of information indices for optimal model selection and validation of process data. The approach followed assumes the existence of a set of fundamental process models associated with possible, although distinct, operating regions. A 2-phase mathematical programming algorithm for the assessment of structural changes and optimal fitting of local models in data series is proposed. This approach is used to determine the kinetic parameters of the gelation reaction of chitosan with genipin, employing dynamical elastic modulus data.
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1. Introduction and Motivation
We address the problem of efficiently using data relative to a chemical process or experiment for a set of activities associated to model validation, process monitoring and knowledge extraction. This problem has become progressively more and more common in the processing industry, with the incremental assembly of large networks of sensors, where extensive amounts of data are continuously produced as a result of a more careful monitoring, to improve the control and reduce the variability of the quality indexes. The approach followed assumes the existence of a set of fundamental process models associated with possible, although distinct, operating regions of the process. These models represent a priori knowledge that can be used to support the plant supervision, either by direct comparison of their predictions with the plant data or by regression of their parameters to particular subsets of the data. A fundamental question is then the determination of regions where some of the available models become applicable, and the selection of “appropriate” data sets for their regression. Related to this problem is also the question of identifying the points where the process changes, commonly referred as transition points. The determination of these transition points and the assessment of structural changes in data sets is traditionally performed by statistically-based approaches. Two different methodologies can be found in the literature: 1. the use of estimators such as the Maximum Likelihood score [1], and supW [2] to locate iteratively the change points combined with asymptotic estimators or boostraping procedures to assess the confidence level of the original estimator; 2. the use of multivariate adaptive regression splines (MARS) [3], hinging hyperplanes (HH) [4] and adaptive logic networks (ALN) [5]. All these approaches have been considered for data mining purposes, but are not so efficient when a more careful model construction is required. Moreover, they often tend to overfit the data, even when cross validation or pruning procedures are employed to avoid that possibility. 
In this paper, we propose an algorithm based on a mathematical programming approach for the assessment of structural changes and optimal fitting of local models in data series. For simplicity, a system involving only one regressor and several inputs is considered, and maximum likelihood estimation (MLE) is employed in the objective function. This approach aims to reach the global optimal solution while avoiding hard enumeration-based algorithms [6].

2. Mathematical formulation
We consider a system with one output 
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 of observations sampled at instants 
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, where 
[image: image7.wmf]N

 is the total number of observations. We assume that the data is heteroskedastic with constant variance, and that the maximum number of possible underlying local models representing the process is known a priori, and designated by
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 the set of points considered, and by
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 the set of admissible local models, which are assumed to be linear in the coefficients. Here we consider that 
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 characterizes the jth local model, relative to the regressors 
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The problem then consists on simultaneously determining the sets of consecutive points 
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 that can be assigned as the region of validity of the jth model, with 
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 standing for the first point in jth segment and 
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for the last, and the respective vectors of coefficients 
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 that maximize a global maximum-likelihood criteria. It is assumed that structural changes occur at the points where 
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, thus requiring the application of distinct models on each side of the transition points. Consequently, each model is assumed to be only valid in a region which is disjoint from all of the other regions identified in the data set 
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. Not all of the models in the set 
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need to be supported by the data used. Possible contamination of the data sets with outliers as well as the presence of points that do not fit any of the given models are also considered.
Several related problems have been previously considered in the literature. In addition to the afore mentioned statistical approaches for structural change detection in data sets and their application for linear system identification [7], the joint problem of model structure determination and parameter estimation was addressed by [8-10]. A related approach was used by [11-13] in the context of data reconciliation. Additional aspects of model selection in chemical engineering are covered in [14]. Although the present problem shares common features with the all of the previous applications, it also presents unique characteristics that require a specific formulation.
Since each data point needs to be (possibly) assigned to a specific model within 
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, binary variables 
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 are introduced to express this fact. The algorithm described is based on the use of the Bayesian Information Criterion (BIC) for the selection of the optimal model structure. Among other competing information criterion, this specific index was chosen because experience shows that it can provide an equilibrated balance between the discrimination ability towards simple-enough models, and the simplicity of its evaluation.
To enlarge the domain of applicability of the present methodology within reasonable solution times, a two-phase approach is proposed. In the first step (problem P1) an approximate solution (number of models and approximate location of the boundaries) is obtained, through the simplification of the objective function considered. In this case a 
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norm is used, which originates a MINLP problem. The first phase of the algorithm can optionally be skipped, when a good initial solution is already available, e.g. through the previous application of one of the iterative strategies such as MARS, HH or ALN. Alternatively, the solution obtained in this step can be used for the identification of outliers in the data set [15-17]; these points are subsequently removed before the final solution phase. This is possible since the 
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 norm is closer to the median, producing estimates which are less sensitive to the presence of outliers.
In the second solution phase (problem P2) the minimization of the Bayesian Information Criterion (BIC) is directly considered, subject to model constraints, using a recursive estimation of the variance of the data [10]. The optimization problems solved in this case correspond to mixed integer quadratic programs (MIQP).
The mathematical formulation of problem P1 can be succinctly expressed as:


[image: image26.wmf],

2

,

2

,

ln

||

min   ln(2)

(

l)

)

n(

ij

jjj

wC

jJiI

j

jj

e

nnpn

s

p

s

s

ÎÎ

--+

-

åå





(2.a)
s.t.

[image: image27.wmf][

]

T

,

1,,

ijiij

yCXrj

=+"







(2.b)


[image: image28.wmf],,,max

(1)

ijijij

rewM

£+-

,


[image: image29.wmf],,,max

(1)

ijijij

rewM

³--



(2.c)


[image: image30.wmf],

1

1,

M

ij

j

wi

=

£"

å

,



[image: image31.wmf],min,

1

,

N

ijj

i

wnj

=

³"

å



(2.d)

[image: image32.wmf]1,,

,11

ijij

wwij

-

³>Ù=

,


[image: image33.wmf]1,,

,1

ijij

wwijM

-

£>Ù=



(2.e)


[image: image34.wmf]1,1,1,1

,1

ijijij

wwwijM

--++

+³>Ù<





(2.f)


[image: image35.wmf]1,1,

1,1

NM

ww

==

,

[image: image36.wmf]{

}

,

0,1

ij

w

Î






(2.g)
Equation (2.a) presents the objective function, equation (2.b) corresponds to the underlying model structure, equations (2.c) formalize the assignment of the points to segments, where 
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 is a magnitude limit (constant), here set to 
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 is the number of points assigned to jth local model, 
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 the standard deviation of the error and 
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 the number of parameters involved. Furthermore, equation (2.d) assigns each point to a single model, and implements the requirement that each structural model should include at least a pre-assigned minimum number of points. Equations (2.e-g) are employed to reduce the degeneracy of the optimization problem by setting an assignment order of the first points of the data set to the first local models.
In many instances this problem can be solved approximately by considering the solution of a sequence of MILP problems that result from fixing both 
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 in each iteration; the estimates of these parameters are afterwards updated, and the solution of the MILP problem updated, sequentially. This is especially the case after careful initialization of the problem, when 
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 is larger than 
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, due to the smaller sensitivity of 
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 to the exact delimitation of the regions. In the second phase, problem P2 can be formulated as:
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s.t.
equations (2.b-2.g)
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As in the previous case, 
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 can often be estimated sequentially, after the solution of a series of MIQP problems. To speed up the solution of problem P2, a significant fraction of the binary variables included in this problem can be fixed to the values previously determined in P1. This is done by considering that possible changes in the assignment of points to different models only occur in the neighborhood of the transition points identified previously. In this case, the binary variables provided to the model are fixed for a set of points designated as 
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 denoting the number of points allowed to change in the vicinity of the structural changes location. The complementary set of 
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, designated as 
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 contains all the points that are allowed to be reassigned to a different segment in this case. This definition makes the problem P2 much easier to solve, in practice.
3. Application

This approach was employed to determine the kinetics of the gelation reaction of chitosan with genipin, employing dynamical elastic modulus data measured with a cone-and-plate rheometer. Chitosan is a biopolymer with large interest in biomedicine and therapeutic applications, due to its properties. Genipin is crosslinking agent employed to modulate the chitosan network properties achieved through the gelation. One of the techniques used to study the kinetics of polymerization reactions is based on monitoring the rheological properties of the mixture, particularly the elastic modulus, designated as rheokinetics [18]. This approach allows to establish a relation of the so called rheological degree of conversion with the fraction of liquid that turns into gel phase. The liquid-solid reactions are described by the Avrami model, here employed to represent the extent of gelation, designated as 
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where 
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 are parameters dependent on the system. This equation can be linearized, defining 
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where 
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 is the elastic modulus at time 
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 its maximal value. Several sources refer that the gelation mechanism of biopolymers, such as gelatine, follows a sequence of four phases [20]. The models representing the sol-gel transition are described by linear relations (Equation 5), with different parameters holding for different phases. The rheological monitoring of the gelation of the system chitosan-genipin reveals the occurrence of synerysis [21]. Therefore, the third and fourth phases of the gelation reaction are rheologically dominated by mechanical transformations, with the kinetic features extracted from data having no physical meaning. Morever, it was observed that due to the prevalence of the mechanical aspects, the behavior of the gel in phases 3 and 4 is indistinguishable, and three local models can be employed to represent the complete experiment.

We used the dynamics of 
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 resulting from an experiment lasting for about 12 hours (715 min) and the algorithm presented in Section 2 to determine: i. the kinetic parameters of the reaction rate for each of the gelation phases; ii. the points where change transitions occur. It is noteworthy to mention that the kinetic parameters fitted for the last two phases have no chemical significance due to the synerysis phenomenon. Therefore, in this situation, the total number of models could be fixed equal to 3.
GAMS/CPLEX was used to solve both MILP and MIQP problems presented, using a relative tolerance of 
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. Table 1 presents the preliminary results for the parameters obtained from the solution of problems P1 and P2, with 
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=715. We may see that the algorithm captures the dynamic transitions of the rheological behavior, and particularly the synerysis occurrence is located at the same instant by both norms. The transition from phase 1 to phase 2 is located at different instants. The local models determined in pre-processing phase denote a small difference relatively to the models arising from minimization due to the location of the first change point and because of the characteristics of both norms, 
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 penalizing the square of residuals. These features are well demonstrated by Figure 1.  
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Figure 1 – Experimental data and model fits obtained.
4. Conclusions

A mathematical programming formulation for optimal model selection and validation of process data was considered in this paper. One important advantage of this methodology is its capability of reaching an optimal solution, while avoiding enumeration based algorithms. To reduce the total solution time and alleviate problems resulting from the presence of outliers in the data, a two-phase approach is suggested, where an approximated solution is first obtained and later refined by the direct solution of the BIC. While the numerical solution of the optimization problems involved can present some difficulties, some of the properties of the problem can be exploited to reduce these problems. The application of the methodology to the basic determination of kinetic parameters was considered  and successfully performed in this work.
Table 1 – Structural models for each of phases captured by monitoring the rheological behavior.

	
	Phase
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	Time interval (min)
	CPU (s)

	Pre-processing step (
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 minimization)
	1
	2.557
	-0.458
	[0.00; 57.18]
	49.95

	
	2
	11.316
	-2.616
	]57.18; 135.68]
	

	
	3
	-0.686
	0.162
	]135.68;714.68]
	

	Final step (
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 minimization)
	1
	2.309
	-0.383
	[0.00; 50.18]
	6.10

	
	2
	10.981
	-2.593
	]50.18; 127.18]
	

	
	3
	-0.292
	0.098
	]127.18;714.68]
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