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Abstract

In the hierarchical decomposition method, or, process synthesis one only looks at the input-output structure of the process at the first level. In subsequent levels more detail is added, finally ending with the entire flowsheet. Design decisions are made by using heuristics and models. The amount of detail in the models depend on the level at which the models are applied. 

The models are used to describe how processes behave in terms of bulk properties. However, during the product-process design, the product is judged on sensory attributes. The models need extension to sensory attributes (the property model).

The sensory attributes depend on physical attributes, as can be predicted by the models,  and ingredients. This dependency range from constant to highly non-linear. This paper describes how the problem of determining the lowest complexity model for the property function can be formulated and solved for an ice cream example.

The estimated property function model provides a good estimation of the sensory attributes. In combination with a process function model we are able to related ingredients and process conditions with sensory attributes. 
Keywords: product-process design, sensory models, neural networks.

1. Background

Process synthesis is regarded as the invention of conceptual process designs. These designs are expected to be reliable, economic attractive and generated within a limited time frame. Thus, process synthesis is the generation of alternatives and choices to reduce the number of alternatives in all conceptual process engineering steps within the innovation process. 
As the number of possible alternatives to perform a desired task can be easily about 104 to 109, methodologies are required to reduce this explosive number to manageable levels. The development of those methodologies to aid engineers to better design a process is not a novel challenge. In the chemical industry, first academic publications and successful industrial implementations related to process synthesis methodologies are well established, see Douglas (1988), Sirola (1996). 
In the hierarchical decomposition method developed by Douglas (1988) one only looks at the input-output structure of the process at the first level. In subsequent levels more detail is added, finally ending with the entire flowsheet. Design decisions are made by using heuristics and models. The amount of detail in the models depend on the level at which the models are applied. 

Historically, process models are used to describe how processes behave in terms of bulk properties such as flow, temperature, pressure, concentration, etc. However, our consumer goods, such as soups, mayonnaise or ice cream, are not bought on their bulk properties, but on how consumers perceive the products. During the product-process design stages, the product is judged on measured sensory attributes, such as mouth feel, bite, creamy texture, etc. Hence, there is a need to extend process models with sensory attributes. Figure 1 shows how the process model can be extended into a model chain from raw materials, equipment and operational conditions through sensory attributes to consumer liking. 
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Figure 1 Process, property and consumer function for ice cream

Products are bought by the consumers based on their perceived benefits.  A product design should therefore aim at satisfying specific consumer benefits. To be more precise, one needs to be able to relate the ingredients, equipment and processing conditions to the consumer benefits. 

In the design phase there is the need to evaluate concepts without ‘large’ and expensive consumer trials. For this purpose  sensory attributes measured by a trained QDA panel, are used to measure  consumer benefits. 

Previously reported work describes dynamic process model for ice cream freezers (Bongers, 2006) and extruders (Bongers and Campbell, 2008) to relate operating conditions, equipment geometry with physical attributes, such as extrusion temperature. 

This leaves the property function as the unknown to be found. As no fundamental relations are currently available on which to develop a model, we have to revert to experimental relations. Then, for analysis purposes, the property function should be determined from physical attributes to sensory attributes. For synthesis purposes, the property function should be determined from sensory attributes back to physical attributes. 

In the past various attempts have been made to determine the property functions for all kinds of products. Almost all of these use linear regression techniques (see for example Powers and Moskovitz, 1974) to deal with the measured data. By the fact that most of the property function is highly non-linear, these techniques fail. In addition to the linear regression, a linear regression on non-linear functions of the attributes can be used. The drawback is that the non-linear functions of the attributes have to be defined by the user. At present this have to be done by trail‑and‑error and turns out to be a very tedious. Based on the above observations, a successful approach to determine the property function has to be based on a generic non‑linear function description. One such approach is to use neural networks as a non-linear describing function.

2. Data manipulation

2.1. Data set

The dataset of 30 experiments contains:

· 1 equipment type (usage of a freezer or a freezer and single screw extruder) . This is a nominal parameter (-1 for only freezer, +1 for both freezer and single screw extruder)
· 1 process parameter (exit temperature). This is a continuous parameter between -6oC and -13oC with a resolution of 0.1oC
· 1 ingredients parameter (fat level). This is a continuous parameter between 8% and 12% with a resolution of 1%
· 25 sensory properties of the icecream. These are ordered intervals between 0 and 10 with a resolution of 0.1
The property model has 3 independent inputs and 25 outputs. This multi-input-multi-output system can also be described as a multiple (decoupled) system of multi-inputs-single-output (Ljung, 1999).  

2.1.1. Data analysis
Basic statistical analysis on the sensory properties (variance, kurtosis and min-max) showed that 4 sensory parameters where not influenced by the inputs and hence excluded from the analysis (later on, they will be indicated as constant).
Correlation analysis between the sensory attributes showed 3 sensory attributes having a correlation coefficient of 0.95 or higher with each other. For this cluster only one of the sensory attributes is taken forward in the analysis.
As a result, only 17 sensory attributes will be analysed.
3. Property model

The property model should be as simple as possible, but not too simplistic That means that for each of the senory parameters we need to determine the ‘simplest’ relation. On the data set two types of describing functions will be determined: a linear regression or neural network to describe the non-linearities.
Which of the models to use will be determined by trading-off the prediction error against the number of parameters used, i.e. the AIC (Akaike, 1974).

3.1.1. Linear regression

Multiple linear regression can be applied to determine a linear function having the following form:
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3.1.2. Neural network

A neural network consists of a number of nodes, called neurons, connected to the inputs and outputs, having the following structure for this application.  
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The neurons weight all inputs and provide an output via the activation function. The complexity of the neural networks used will be determined by the number of nodes in the hidden layer (2,3,5 or 7). The activation applied in this application is a hyperbolic tangent function. In mathematical terms, the output of neuron j is defined by:
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	With:
	yj
	output of neuron j

	
	
	wiu i
	input from neuron i (or input i), weighted with wi




The weightings wi  in the neural network are determined by an optimisation algorithm using the error between the measured outputs and the outputs predicted by the neural network. The work of Rumelhart et.al. (1985) is recommended for more details about this type of neural networks and examples.

In theory one hidden layer neural network is sufficient to describe all input/output relations. More hidden layers can be introduced to reduce the number of neurons compared to the number of neurons in a single layer neural network. The same argument holds for the type of activation function and the choice of the optimisation algorithm. However, the emphasis of this work is not directed on the selection of the best neural network structure, activation function and training protocol, but to the application of neural networks as a means of non-linear function fit. 

4. Model parameter estimation

4.1. Training set

In order to be able to perform validation of the model, not all 30 cases can be used to determine the model. Also care must be taken to which cases will be used for validation and which cases for determination of the model. Because it is easy with an experimental model to fit noise in the data, a ‘large’ validation set has been chosen (5 cases in the validation set and 25 cases remaining in the set to determine the model (=training set) ). To avoid coincidental results, the whole procedure is repeated 5 times with different training sets and validation sets, where the cases in the validation set have been selected randomly.

4.2. Error Criterion

The next step is to determine the error criterion on which to decide the predictive value of the model and to decide which prediction type to use for which sensory attribute. 

For each of the sensory attribute, the root mean square of the prediction error, (, will be used to evaluate the properties of the prediction model type.
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	predicted output for case i

	
	
	yi
	measure output for case i 

	
	
	N
	number of cases


4.3. Results
The whole analysis (including the penalty for over parametrising) has been implemented in Matlab (Mathworks 2007) using the public domain neural network tool of Norgaard (1995). The following predictor type, and mean square errors for the sensory attributes have been obtained.

	Sensory attribute
	predictor type
	Sensory attribute
	predictor type

	No.
	Name
	
	No.
	Name
	

	1
	Firmness on spooning 
	0.10
	Neural (3*)
	14
	powdery              
	0.02
	Constant

	2
	Initial firmness     
	0.11
	Neural (2)
	15
	vanilla pods         
	0.06
	Neural (3)

	3
	Chewiness            
	0.05
	Neural (3)
	16
	flavour melt         
	0.05
	Correlated with  10

	4
	Coldness             
	0.18
	Linear
	17
	creamy flavour       
	0.44
	Linear 

	5
	Crumbliness          
	0.08
	Neural (2)
	18
	sweetness            
	0.03
	Constant

	6
	inital smoothness    
	0.08
	Neural (2)
	19
	sharp/yogurt         
	0.02
	Constant

	7
	I/C quantity in mouth
	0.11
	Neural (7)
	20
	fruity               
	0.12
	Neural (2)

	8
	I/C/ size in mouth   
	0.11
	Neural (2)
	21
	vanilla flavour      
	0.07
	Neural (2)

	9
	Rate of melt         
	0.17
	Linear
	22
	boiled milk          
	0.14
	Linear

	10
	Creamy texture       
	0.12
	Neural (5)
	23
	other flavour        
	0.04
	Constant

	11
	Thickness            
	0.14
	Correlated with  10
	24
	unexpected flavour   
	0.15
	Linear

	12
	final smoothness     
	0.15
	Neural (2)
	25
	final mouth-coating  
	0.16
	Neural (2)

	13
	grittiness           
	0.07
	Neural (2)
	
	
	
	

	
	
	
	
	
	sum of errors
	2.78
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As an example for the validation, one of the validation cases is shown below. It can be seen that almost all sensory attributes are predicted within the accuracy of the data. 
5. Conclusions and future work
The process models predicting bulk physical attributes have been augmented by a properties model describing the relations between the physical attribues and the sensory attributes. For each of the sensory attribute the lowest complexity model has been determined. Instead of an trial-and-error approach, a neural network with one hidden layer has been used as a generic non-linear function. The complexity of the neural network can thus be seen as the number of nodes in the hidden layer. The performance of the property function model obtained by the above described procedure has verified with the validation set and the property function model provides a good estimation of the sensory attributes.  
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* Denotes the number of neurons in the hidden layer.
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