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Abstract 

This paper describes a simple rule-based approach for the state detection in a 
biological waste water treatment plant. The plant shows bi-stable behaviour that 
makes its control a challenging and difficult task. The good operating point is 
difficult to reach and easy to lose. The approach combines the mathematical 
model of the plant and the available measurement information. After the state 
detection, the control system uses the model developed for the operation point 
in question and calculates the outlet substrate concentration. The approach is 
tested by simulations with the Chemostat -model where the kinetics follows 
Haldane-kinetics. 
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1. Introduction 

Due to increasing environmental requirements and the importance of reliable 
wastewater treatment, efficient monitoring and control methods are becoming 
more and more important. An adequate model enhances the understanding of 
the biological processes and it can be a basis for better process design, control 
and operation [1]. The activated sludge process is the most generally applied 
biological wastewater treatment method [2]. In the activated sludge process, a 
bacterial biomass suspension (the activated sludge) is responsible for the 
removal of pollutants. Within the process, numerous biochemical reactions 
occur, most of them with highly nonlinear dynamics. An activated sludge plant 
for wastewater treatment is a complex system due to its nonlinear dynamics, 
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large uncertainty in uncontrolled inputs, model parameters and structure, 
multiple time scale of the dynamics, and multi input-output structure [3].  
 
Until recently, an intensive work on physical modelling of the wastewater plant 
was rather separated from using these models for controller design. Recent 
developments triggered out new research and applications in combining 
physical (white-box) models with intelligent methods [2,3]. The status of 
technology for chemical dosing control in water treatment processes is in a 
relatively low level. In general, methods of dosage control can be far from ideal, 
leading occasionally to inefficient plant operation, occurrence of unnecessary 
costs and in some cases decreasing water quality [4].  
 
The state detection of wastewater plants is considered in [5]. The two-stage 
anaerobic wastewater pre-treatment is modelled and controlled. The biological 
state of the reactors is predicted using a fuzzy logic system and based upon this, 
proper control actions are taken automatically. The developed control system 
was successfully tested on a fully automated lab scale two-stage anaerobic 
digester. A new general approach to the global analysis of observability and 
detectability for nonlinear systems is proposed in [6]. Based on the definition of 
indistinguishability it is possible to derive the dynamics of the non-observable 
part of the system and thus to study its stability properties using methods of 
nonlinear systems theory.  
 
This paper describes the biological wastewater purification as a Chemostat 
reactor model which is used in generating data for developing the state detection 
algorithm and evaluating the performance of the algorithm. The state detection 
is based on the reactor model and a simple rule-based system utilising the fact 
that the process is bi-stable, i.e. it has two separate operating points.  

2. The modelling approach 

Chemostat is a continuous biological reactor operating with the constant feed 
rate. It is potentially a multi-stable system, if the substrate at high 
concentrations is toxic for micro-organisms [7]. Then an increase of substrate 
flow turns a linear behaviour into a strongly nonlinear one. Chemostat -models 
give an insight to real-life bioprocess systems, in particular biological water 
treatment. This study is based on the original model of ideally stirred Chemostat 
[8] adopted by [7]. The aim is to demonstrate the possibilities of the modelling 
and state detection of this bi-stable system.  
 
Bioreactor feed consists of substrate and biomass. High substrate concentrations 
inhibit the reaction and decrease the reaction rate constant, µ, according to 
Haldane kinetics. Following equations describe the system 
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In Eq. (1), cs and cb denote the concentrations of the substrate and the biomass, 
Qin and Qout the inflow and outflow, V is the volume of the reactor, µ reaction 
rate and μ0 and K are constants. Simulations use the values given in [7]. 

3. Simulation results 

The dynamic model of the process is done using Matlab® Simulink®. Simulink® 
model is used in generation of data for modelling and state detection purposes. 
Input concentration for the substrate varies between [35 90], and for the 
biomass between [5 20]. The reactor volume varies between [275 325]. The 
variables are taken from the uniform distribution at 30 minutes intervals. Fig. 1 
shows the histograms of the simulated output variables. The histograms show 
two separate operation areas – one at low and another at high substrate levels. 
Correlation analysis was performed for the generated data. It showed that there 
is a strong correlation between the output variables measured at the same 
moment. The correlations between input and output variables were reasonable 
between two successive moments, but the correlations fade away when the time 
passes. This means that in time series models we need to consider only first 
order models. 
 
 

Figure 1. The histograms of the simulated output variables. 
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4. State detection 

Next, the steady-state model corresponding to Eq. (1) is used in describing the 
inherent mechanism making the control of the system difficult. In steady-state 
conditions, biomass concentration is solved from Eq. (1). The results of that are 
presented in Fig. 2a, which shows the biomass concentration as a function of the 
substrate concentration and the reactor volume. It is clear that the biomass 
concentration achieves its maximum value always with the same substrate 
concentration. This value can be calculated analytically to be 
 

( ) 1−= K~Kcc max,bs  (2) 

 
Fig. 2b shows the biomass concentration as a function of the input concentration 
and the reactor volume. The figure shows two stable (and one unstable) 
operating points with the same input concentration of the substrate at high 
reactor volumes. When volume is small, there is only one stable operating point, 
but the conversion and the biomass concentration remain small. Thus it is 
desired to operate the reactor at higher reactor volumes. With the increasing 
volume the process becomes more sensitive for the volume changes. Thus the 
risk to end up at low conversion due to volume fluctuations increases. The input 
concentration of biomass has similar influence to the substrate concentration.  
 

Figure 2. The biomass concentration as a function of the reactor volume and a) the substrate 
concentration, b) the input concentration of substrate. 

 
The modelling is done separately for both operating points. Substrate 
concentration is the model output, because it is the most important variable 
from the monitoring and process control point of view in this case. The 
substrate concentration is modelled using only one previous measurement of 
substrate’s input concentration. The first order models are accurate enough for 
both operating points. The sampling interval in both cases is 30 minutes. The 
linear regression models for the low and high conversion areas are 
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562612251 ,)k(c,)k(c in,ss −−=  (3) 
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The model selection utilizes a simple rulebase derived from the generated data 
and knowledge obtained from the analytical model. Fig. 2b indicates that 
concerning the model selection three different conditions exist. The first occurs 
when the substrate feed is low leading to high conversion whatever the other 
variables are. Another occurs at high substrate feeds and leads inevitably to low 
conversion. In modelling, the area between these is problematic, because both 
operating points may be reached. Thus, two threshold values are identified from 
the data both being functions of the substrate and biomass input concentrations 
and the reactor volume. The threshold values are 
 

16601 −−= in,bin,s cc,f  (5) 

671133352 ,Vc,cf in,bin,s +−−=  (6) 

 
Negative values of Eq. (5) indicate that the process operates at high conversion 
and positive values of Eq. (6) that the process operates at low conversion. The 
problematic area is identified if Eq. (5) gives a positive value and Eq. (6) a 
negative value. Then the process operates at high conversion only if the 
substrate concentration in the reactor is below the value defined by Eq. (2). The 
corresponding rulebase is given in Table 1. 
 
Table 1. The rulebase.  

Rule If Then 

1 f1 ≤ 0 High conversion 

2 f1 > 0 AND f2 < 0 AND cs ≤ Eq. (2) High conversion 

3 f1 > 0 AND f2 < 0 AND cs > Eq. (2) Low conversion 

4 f2 ≥ 0 Low conversion 

 

5. Results 

The performance of the model is tested with the dynamic simulator. No control 
is supposed and the reactor is simulated as an open loop. The testing included 
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500 state detections of which about 10 percent were erroneous. The correlation 
between modelled and actual outputs was 0.9. 
 
The good results are inevitably due to the assumption that the model is perfect. 
In practise, the changes in model parameters will undoubtedly impair the 
performance and an updating scheme is a necessity. The biggest advantage of 
this approach is, however, in the simple solution and the modest requirements 
for the computing power. A disadvantage is that the model uses the 
measurement of the output concentration of substrate. In the most typical 
control case, this is not measured. In the future, the aim is to add a mass balance 
for oxygen and use that in modelling instead of the substrate concentration. 

6. Conclusions 

This paper describes a simple rule-based approach for the state detection in a 
biological waste water treatment plant. The plant shows a bi-stable behaviour 
that makes its control a challenging and difficult task. The good operating point 
is difficult to reach and easy to lose. The approach combines the mathematical 
model of the plant and the available measurement information of the input 
substrate concentration. After the state detection, the control system uses the 
model developed for the operation point in question and calculates the outlet 
substrate concentration.  
 
The approach is tested by simulations with the Chemostat -model with no 
controls as an open-loop simulation. The model showed a conformity with the 
actual (simulated) process output, when the model is assumed perfect. In 
practise, model updating will be problematic when the process is changing with 
time, eg. when the quality of the incoming water changes. 
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