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Abstract 

A statistical model, using Artificial Neural Networks (ANN), has been 
developed for the aerobic suspended growth Wastewater Treatment (WWT) 
plant. The paper presents the way ANN model has been designed and trained. 
The emerged recurrent ANN model has been used to perform WWT control 
using Model Predictive Control (MPC) algorithm. Model Predictive Control of 
the WWT soluble substrate and dissolved oxygen concentration has been 
investigated in the presence of setpoint changes and disturbance action. Cases of 
feedback provided by direct measurement of the soluble substrate concentration 
but also by using a special trained ANN soluble substrate estimator based on 
dissolved oxygen concentration measurement are shown. Incentives of the ANN 
model and ANN estimator based MPC are presented.  

Keywords: Biological wastewater treatment, Model Predictive Control, 
Artificial Neural Networks. 

1. Introduction 

The importance of the biological WWT is continuously growing, as sustainable 
development of the modern society is concerned on the health of the 
environment. The biological treatment converts soluble organic or inorganic 
contaminants to insoluble organic and inorganic constituents or to CO2 and 
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H2O. Aerobic or anaerobic processes are based on enzymes that transform 
hydrocarbons into food for bacteria, removing the hydrocarbons [1].  
Suitable conditions have to be achieved for bacterial growth, death phase and 
endogenous respiration in order to get optimal pollutant removal. Requirements 
may be obtained by appropriate control techniques intended to keep the 
operation of the unit at the most efficient working regime. MPC is a perfect 
fitted control strategy for fulfilling the demanding control tasks as the process 
features large time lags and nonlinear behaviour. 

2. Model description and model predictive control approach 

The aerobic activated sludge WWT system is presented in Fig 1. First, organic 
wastes are introduced together with the nutrients in a mixing basin. The mixture 
is then sent to the aeration basin (reactor) where the bacterial culture is held in 
suspension. Bacteria in activated sludge are capable of performing hydrolysis 
and oxidation reactions. Oxidation is conducted by aerobic organisms which use 
dissolved oxygen present in the biological system. Aerobic environment is 
achieved through diffused or mechanical aeration. For the completely mixed 
continuous-flow aeration unit, presented in Fig. 1, the influent is fed uniformly 
along the entire length of the basin.  
 

Figure 1: Schematic representation of the continuous-flow aeration unit. 

The aeration is essentially homogenous, resulting in uniform oxygen demand 
throughout the basin. This results in a homogeneous concentration of solids and 
substrates in the basin. A recurrent Artificial Neural Networks model of the 
WWT has been developed in order to describe the dynamic behaviour of the 
unit and for building the soluble substrate concentration estimator on which the 
model based control strategies have been studied. 
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3. ANN model development  

In order to achieve the first goal of building a ANN dynamic model of the 
WWT plant, the design started with setting up the process variables considered 
as inputs and outputs for the ANN. Since the analytical model of the WWT 
served as a basic source of data for training the ANN, the network inputs have 
been taken as the set of the states (process outputs) appended to the set of 
manipulated variables, all considered at the current moment of time t, [2, 3]. 
The ANN outputs (targets) have been selected as consisting in the set of the 
(subsequently) controlled variables but considered at the next sampling moment 
t+Δt, (Δt=1h). The set of the states consist in the following four variables: 
biomass effluent concentration X(t), soluble substrate (pollutant) concentration 
S(t), dissolved oxygen concentration DO(t) and recycled biomass concentration 
Xr(t). The manipulated variables are: air flowrate, considered indirectly by the 
ratio of air flowrate to basin volume W, and the ratio of recycled flowrate to 
influent flowrate r. The controlled outputs are: effluent soluble substrate 
(pollutant) concentration S(t) and dissolved oxygen concentration DO(t). 
Summarizing, the six inputs/two outputs ANN has been trained to predict the 
values of the change in the controlled variables, from one sample time to the 
next one, based on the current values of the states and manipulated variables. 
The employed ANN architecture was a two-layer feed-forward one (sigmoid 
and linear transfer functions) and the back-propagation training algorithm was 
used for computing the network biases and weights. The quasi-Newton 
Levenberg-Marquardt algorithm was used for training the ANN.  
The entire set of input and output data has been divided into a bulk set of 
input/target pairs of data (90%), used for training the ANN, and a smaller set 
(10%), later used for testing the quality of the learning process. The set of 900 
data has been presented to the ANN in order to carry out the learning procedure. 
Good training performance has been obtained as it is proved by the close to 
unity correlation coefficients between targets and ANN response. The 100 
testing set of data, completely different of the training one and not yet seen by 
the ANN, preserves the same favourable adequacy between targets and ANN 
outputs demonstrating a very good generalization property of the designed 
ANN. As a second test for proving the quality of the training process, randomly 
changing sequence has been generated for both considered manipulated 
variables (with changes equally distributed in time at multiples of ten hours). 
The comparative dynamic simulation results between the WWT response of the 
analytical model and the response of the trained ANN model are presented in 
Fig. 2 and Fig. 3, for the controlled variables of interest, effluent soluble 
substrate concentration S(t) and dissolved oxygen concentration DO(t). 
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Figure 2: ANN (dashed line) and first principle (solid line) model simulation results for soluble 
substrate concentration S. 

Figure 3: ANN (dashed line) and first principle (solid line)  model simulation results for dissolved 
oxygen concentration DO. 

As it may be noticed in Fig. 2 and Fig. 3, the ANN dynamic model has an 
almost identical behaviour with the first principle one, succeeding to capture the 
main dynamic features of the WWT. The ANN model will be further used for 
MPC.  
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4. Results of the ANN model based MPC approach 

The main control objective of the WWT unit is to maintain the effluent soluble 
substrate concentration S(t) at 0.5018 mg/l. Feedback is needed but 
measurement is either expensive or time consuming, making it difficult and/or 
infeasible. An ANN based estimator was developed based on dissolved oxygen 
process measurement, available from reliable instrumentation. For training the 
ANN based estimator of the soluble substrate concentration the following ANN 
structure has been chosen. As ANN estimator inputs have been considered the 
set of the manipulated variables appended to the dissolved oxygen variable, all 
considered at the current and 17 past moments t, t-Δt, t-2·Δt, … , t-17·Δt. The 
soluble substrate concentration S was taken as ANN estimator output (target), 
considered at the sampling moment t+Δt. Results of ANN estimator training 
were investigated by simulation. Using randomly varying inputs, the ANN 
estimator predictions and the first principle soluble substrate results have been 
compared and presented in Fig. 4. Showing relative errors within the range of 
±2.5%, the simulation results prove the quality of the ANN estimator, proposing 

Figure 4: ANN estimator and first principle model simulation results for random varying inputs. 

it for the observer based MPC. Using the developed ANN estimator and based 
on the dissolved oxygen feedback measurement, MPC of both soluble substrate 
and dissolved oxygen concentration have been tested by simulation. Results are 
presented in Fig. 5, for +10% setpoint change of soluble substrate, acting 
stepwise at the moment t=500 h. Fig. 6 presents the control performance for the 
case of the inlet soluble substrate concentration disturbance change of +10%, 
acting stepwise the at the moment t=500 h. MPC results presented in Fig. 5 and 
Fig. 6 reveal good setpoint following performance, zero offset and rejection of 
inlet soluble substrate concentration disturbance. 
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Figure 5: Soluble substrate change for MPC 
control of S and DO for +10% step increase 
of the soluble substrate concentration, using 
ANN model and estimator. 

 
Figure 6: Soluble substrate change for MPC 
control of S and DO for +10% step increase 
of inlet soluble substrate conc. Sin 
disturbance, using ANN model and estimator. 

5. Conclusions 

The presented results demonstrate the way recurrent ANN may be successfully 
designed and trained to subsequently perform MPC of the WWT plant. The 
ANN model and the ANN estimator of the soluble substrate concentration based 
on dissolved oxygen concentration measurement make the soluble substrate 
control efficient for both setpoint tracking and disturbance rejection. Incentives 
of the ANN based MPC approach consist in the capability of building the model 
of the WWT plant based on process data and avoiding complex first principle 
model development. The computation effort is also reduced, as ANN models 
require less calculation time than models based on solving sets of differential 
equations. The ANN based estimator of the soluble substrate concentration 
eliminates the need for special measuring instrumentation. They all motivate the 
development of the presented ANN based MPC for industrial implementation. 
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