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Abstract 

In this work, an optimization-based approach is presented which recognises the 
switching to new parameters or even to a different model at a certain growth 
rate improving the quality of model prediction for different time horizon 
lengths. For the dynamic automatic adjustment to changing kinetics, a moving 
horizon estimator (MHE) is used. Experimental data from cultivation of 
Ustilago maydis are used for the model-based parameter identification. The 
embedded MHE was successfully applied to predict changes in biokinetic 
constants during membrane bioreactor (MBR) fermentation when very low 
growth rates and therefore changes in metabolism occur. Setting suited horizon 
lengths and parameter bounds were found to be crucial for convergence and 
parameter estimation. The expected drop in maintenance parameters at low 
growth rates was confirmed when using an optimum number of data points.  

Keywords: moving horizon estimation, biokinetics, fermentation, membrane 
bioreactor 

1. Introduction 

During high-cell-density cultivations, which are becoming increasingly popular 
in biotechnology and wastewater treatment in membrane bioreactors (MBR), 
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very low growth rates and changes in cell metabolism occur [1]. While 
knowledge on near zero-growth states is scarce it is clear that the emerging 
phenomena cannot be sufficiently described by kinetic models used during 
earlier phases in the process when growth rates were higher. Therefore, process 
monitoring and control requires switching to new parameters or even to a 
different model at a certain growth rate [2]. Growth rate, however, is a value 
which cannot be determined directly online. A model-based identification 
approach utilising online data is thus needed [3]. In this work, novel numerical 
strategies are presented which recognise the switching time and improve the 
quality of model prediction for different time horizon lengths. For the first time, 
such methods are applied to biological processes. 

2. Problem Statement 

For design, monitoring, and control of a biological process, reliable models are 
required. Balance equations for the individual components (biomass, nutrients, 
and metabolites) are coupled via yield coefficients Y. These are defined as the 
rate of change in one concentration over the rate of change in another. Biomass 
yields from substrate uptake can be considered constant over wide ranges of 
growth rates. However, especially at very low growth rates, other phenomena 
must be taken into account. To describe such phenomena, Pirt [4] introduced the 
maintenance concept whereby part of the substrate is always used for cell 
survival and not for reproduction, the corresponding substrate uptake rate 
(expressed as specific rate km,S) therefore only yielding energy for maintenance 
processes. g

S/BY  represents the true yield which relates the formed biomass B to 
the substrate mass S used for growth (superscript g) as opposed to maintenance 
purposes. According to Pirt [4], the substrate uptake rate can be expressed as: 
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Fig. 1 clearly shows that long-term limited cultures cannot be described by 
parameters (in this case km,S) optimised for short-term limited cultures and early 
process phases. To overcome this problem, a strategy is required to improve the 
predictivity of kinetic models. 
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Fig. 1: Model-based 
prediction of biomass 
concentration in short-term 
(fed-batch) and long-term 
(MBR) limited cultures [2]. 
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3. Solution approach  

In this work, experimental data from Ustilago maydis cultivations were used for 
model-based parameter identification and to assess the efficiency of different 
estimation methods. High cell densities were achieved by using an MBR. 

3.1. Methodology  

Moving horizon based on-line state estimations have been successfully 
implemented for several applications [7-10], showing an advantage over 
extended Kalman-filtering because of robustness despite poor initial values and 
the comfortable use of constraints on state and parameter variables. Considering 
only recent measurements for the estimation of kinetic parameters, it is possible 
to recognize values that change during the progress of the estimation time 
frame. To overcome the above mentioned problem, we propose an optimization-
based approach to improve the predictivity of kinetic models based on available 
measurements together with a process model. The algorithm presented uses a 
moving horizon-based approach to estimate kinetic parameters of the nonlinear 
model. A constrained least squares estimation, acc. to the computational 
framework we presented in [6], is performed, but without estimation of the 
input variables and assuming no noise or disturbances in the measurements. The 
general moving horizon formulation follows [9] in using a fixed number of 
recent measurements for the estimation, resulting in a moving time frame that 
keeps progressing as cultivation time proceeds during the tested experiments.  

3.2. Experimental arrangement 

U. maydis was stored in glycerol stocks (25%) at –80 °C. After a 3-day 
inoculation on potato-dextrose-agar cells were transferred for approx. 24 h into 
shaking flasks containing a defined medium with glucose as the main carbon 
source (100 min-1, 27 °C). For cultivation, a 5 L glass fermentor (B.Braun Int., 
Germany) was used (see Fig. 2). In MBR runs, this was equipped with an 
external ceramic tubular membrane module for biomass retention (Pall 
Schumacher, Germany). Temperature was controlled at 27 °C, pH at 7.2, and 
pO2 at 40 %. Biomass concentration was determined by turbidity measurements 
at 600 nm (UV-120-01, Shimadzu) calibrated against dry weight measurements. 
Substrates and nutrients concentrations were determined using test kits (liqui-
color, Human GmbH, Germany; LCK 303/304, Dr. Lange GmbH, Germany). 
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Fig. 2: Experimental set-up (MBR flow sheet). 
 
A model was developed to describe the considered MBR process at the given 
conditions [5] including mass balances and kinetics (eqs. 2-11), with the kinetic 
parameters µmax, Ki, Yi and ki being subject to possible changes during the 
fermentation. 
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(11)  specific growth rate

 

3.3. Results and discussion 

Figs. 3 - 5 show the computed biomass, glucose and ferrichrome concentrations 
for two fed-batch (FB1 und FB2) and two MBR cultivations (MBR1 and 
MBR2) along with measurements. In general, experimental data are well 
represented. As can be seen, the extent of deviations from measurements 
changes with the used horizon length. Local optima seem to exist for the 
horizon length: For the product concentration in FB1, e.g., the estimation using 
8 data points does not lie between the curves for 9 and 7 data points (see also 
glucose in FB1 and MBR2). 
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The changing kinetic parameters are plotted in Fig. 6 for FB2 and MBR2. It was 
expected that maintenance parameters drop as specific growth rate decreases. 
This is clearly confirmed for MBR2 when using an optimum number of data 
points for the moving time frame (in this case 10). At approx. 75 h, km,S abruptly 
drops from around 0.045 to 0.022 h-1 and g

S/BY from 0.55 to 0.3. Using other 
time frames can cause large overestimations (in this case approx. 50 %). The 
sensitivity increases with a decreasing number of data points. However, 
measurements errors can cause large fluctuations here, whereas they get 
dampened when using more points.  

 
Fig. 3: Ammonium-limited fed-batch experiment FB1 ( —: 9, - . -: 8, . . . . .: 7    data points).  

 
Fig. 4: Glucose-limited fed-batch experiment FB2 (—: 30, - . -: 20, . . . . .: 10    data points) 

 
Fig. 5: Continuous cultivation experiment MBR1 (—: 8, - . -: 7, . . . . .: 6    data points). 
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Fig. 6: Parameters estimated for FB2 (o: 10, x: 15, +: 20 Pts) and MBR2 (o: 8, x: 9, +: 10 Pts). 

4. Concluding remarks 

Moving horizon estimation was successfully applied to predict changes in 
biokinetic constants during up to 170 hours of fermentation in an MBR. Setting 
a suited horizon length and parameter bounds was found to be crucial both for 
convergence of the simulation layer and good estimation results for the 
parameters. It was expected that maintenance parameters drop as specific 
growth rate decreases. This was clearly confirmed for MBR2 when using an 
optimum number of data points. The developed approach is being extended to 
determine the varying kinetics based on online respiration data to increase the 
predictivity of long-term limited cultures and to enable a model-based control.  
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