
17th European Symposium on Computer Aided Process Engineering – ESCAPE17
V. Plesu and P.S. Agachi (Editors)
© 2007 Elsevier B.V. All rights reserved. 1

Iterative Specification Refinement in Deriving
Logic Controllers

Sven Lohmann, a Lan Anh Dinh Thi, a Thanh Ha Tran, a Olaf Stursberg, b
Sebastian Engell, a

aProcess Control Laboratory, Department of Biochemical and Chemical Engineering,
 Universität Dortmund, s.lohmann@bci.uni-dortmund.de
bInstitute of Automatic Control Engineering, Department of Electrical Engineering,
 Technische Universität München

Abstract

In this paper the refinement procedure of informal requirements in the context
of an earlier proposed systematic procedure for logic controller design as
sequential function chart (SFC) is described in detail. The use of two data
formats is proposed: dependency charts (DC) and function tables (FT) that
support hierarchy and modularization and are refined iteratively until a final
degree of detail is reached from which the logic controller as SFC can be
generated algorithmically.

Keywords logic controller design, requirements engineering, refinement,
hierarchy, sequential function chart

1. Introduction

Automation tasks in today’s process industry are characterized by the need for
increasingly complex controllers to further increase productivity and to
accommodate the market’s demand for more and more sophisticated products.
The logic controller design is in industrial practice a manual, unsystematic and

2 S. Lohmann et al.

error-prone procedure which highly depends on the experience and process
knowledge of the designer. In [5] a systematic procedure for logic controller
design was proposed where, starting from the informal requirements, a logic
controller as SFC [6] is derived using a systematic procedure.
In software design, hierarchy [2], modularization [3] and documentation are
well established means to tackle complexity and to ease the task of good design.
This contribution applies ideas from software engineering to the problem of
logic controller design. The presented work focuses on the aspect of formalizing
the natural-language requirements that are introduced and used in the
refinement process given initially such that a set of specifications1 is obtained
that can be translated algorithmically into a logic controller as SFC. Two data
formats are: Dependency charts (DC) and function tables (FT).
This paper is structured as follows: The refinement procedure in the context of
logic controller design and its underlying data formats are described in detail in
Sec. 2. The application to an experimental batch plant [7] with requirements that
include production sequencing and scheduling as well as procedures for error
handling is reported in Sec. 3. Finally, Sec. 4 concludes the paper.

2. The Refinement Procedure

A procedure is proposed here in which the requirements are collected,
formalized and systematically refined using two data formats: Dependency
charts (DC) and function tables (FT). As shown in Fig. 1.(a), the information
that is available for the logic controller design consists of an informal set of

1 The term specifications is used here in contrast to requirements, where the latter refers
to an informal description in contrast to a formal one

Informal
Requirements

Piping &
Instrumentation

Diagram

Requirements
Analysis
& Sorting

(A) (B)

(I)

Dependency
Chart (DC)

Function Table
(FT)

(C) (D)

(E)

(II)

Formal
Specification
DC* + FT*

Iterative Refinement

DC1 FT1

FT2.m1FT2.1DC2.m1DC2.1

DCn.mkDCn.1 FTn.mkFTn.1

Level 1

Level 2

Level n

Function Table (FT)Dependency Chart (DC)

... functions

a) Refinement scheme for the requirements b) Hierarchical development of DC and FT

Figure 1: The refinement scheme using DC and FT starting from informal requirements

Iterative Specification Refinement in Deriving Logic Controllers 3

requirements (A) and a piping and instrumentation diagram (P&ID) (B) of the
plant. Before the requirements can be formulated in terms of DC (C) and FT
(D), it is required to perform a requirement analysis (I) [1]. The data formats
DC and FT support hierarchy and modularization and are iteratively refined (II)
until finally a degree of detail (E) is reached from which a SFC can be
generated algorithmically. Firstly, the requirements are analyzed to ensure that
they are correct, complete and precise. Then the requirements are ordered with
respect to time, where possible, and separated into those concerning the nominal
operation of the plant and those concerning error handling. Additionally the
requirements are sorted into functional2 and non-functional3 requirements. Then
the representation of all requirements as FT and DC begins.
The DC describes the interdependencies between different functions (ordinate)
over a qualitative time axis (abscissa). Independent functions or groups of
functions are described in separate DCs. The building elements of a DC (see
Fig. 2) are: rectangles which denote procedural functions, arrows which denote
strict sequential execution, function connectors which denote concurrencies,
labels which denote an order of priorities, and a terminal point which denotes
the end of the DC. These elements are arranged in a graph where the functions
are ordered from top to bottom with respect to time, as far as possible.
Alternative branches in the sequence of functions are denoted by multiple
arrows originating from the terminal edge of a function rectangle. The last
function in the graph is reachable over all paths starting from the initial
function.
Each function in a DC is described by an entry in the function table (FT) (see
Fig. 3). Each entry consists of a number of actions, specified by the identifier of
the function (A), the precondition for the execution of an action as described

2 statement of some function or feature that should be implemented in a
 system
3 statement of a constraint or expected behavior that applies to a system

F1

F3

F2

F0

F4

F5

F6

functions

qualitative
time

[1]

[3]

[2]

function
block

transition

parallel branch
opening

parallel branch
closing

priority label

F1
F2

F3
F4

F5
F6

F7

F8
F9

F5
F6

F8
F9

DC*

F5
F6

F8
F9

F4F3

F1

terminal
point

Figure 2: The building elements of the DC (left) and their evolution in the refinement process
(right).

4 S. Lohmann et al.

textually (B), the sensor information corresponding to this condition using only
defined sensor or internal variables, formulated as a Boolean formula or
inequality (C), the description of the operation (D) carried out, and a list of
actions with qualifiers (E) that are defined in [6] and determine when an action
is executed. Both data formats are related by the function names (Fig.1.b). For
each newly introduced function in the DC, a new function is defined in the
corresponding FT.
The starting point of the refinement is the first DC (level 1), called root-DC
which describes the controller on a coarse level. Fig. 2 (right) shows a root-DC
consisting of F1-F4. The functions can be defined freely, however, good
practice is to use procedural basis functions [8], e.g. dose or temper. For each
root-DC one SFC is created. The set of input (sensor) and output (actuator)
variables is taken from the P&ID. Additional internal variables can be declared
as needed. Using the DC, the interdependencies between the different functions
are defined. Hereby, the line-by-line arrangement of the functions in the graph
provides a good overview of the functions. Each function has a defined point in
time (event) for its activation and deactivation. The control structure is first
described on an abstract level, thereafter the refinement of the DC is done using
an hierarchical graphical representation. As illustrated in Fig. 2, F2 is refined by
newly defined functions F5-F7. A new function must be defined when a conflict
occurs where two or more optional paths in the controller can be selected (loop
or alternative branch). To maintain a clear and manageable code, large functions
can always be separated into smaller modules.
In parallel to the design of the structure of the controller using the DC, the FT is
used for the specification of the details of each function as well as for
documentation. During the overall refinement process, each function in the DC
has its counterpart as a FT (Fig. 1.b). Fig. 3 shows an example of a FT. The
field (A) contains the function name as defined in the DC (e.g.: Fill_R23). The
fields (B) and (D) contain explanatory text stating the precondition and
operation of the action. In the early stages of the refinement, the description of
the controller is yet too coarse to define suitable sensors or actuators. Therefore

functions precondition sensor operation actuatorEDCBA

F1 action 1

action n

...

textual description
of the condition
for the action

Boolean formula
or inequality

statement

textual description
of the resulting

actions

List of actions:
action name +

qualifier

Fill_R23 The reactor R23 is
empty. The sensor has
an accuracy of 10%

LIS23 <= 120 The reactor is filled
first with the acid
from B12.

S - V123_open

The reactor R23 is
filled half-full

LIS23 >= 4550 Fill level is reached.
Acknowledge.

R - V123_open
S - Ack_B12

The filling of acid has
stopped. Fill level is
acknowledged

LIS23 >= 4550
AND Ack_B12

Fill B23 with base S - V113_open

...

Figure 3: Example of a function table

Iterative Specification Refinement in Deriving Logic Controllers 5

(C) and (D) are filled only in the later stage of the refinement process. Each
action is directly linked to its explanation, hence each design step can be fully
documented.
The requirements refinement is completed if no more functions have to be
defined and all preconditions and operations are formalized. The different DCs
are taken to form one DC* for each root-DC. The DC* is obtained by inserting
refined DC into the coarser ones, level-by-level, starting from the most refined
(see Fig. 2 and Fig. 1.b). Corresponding to this DC*, a subset of FT exist that
holds the description of all functions appearing in the DC*. This function table
is called FT*. Both pieces of data represent the formal specification from which
the logic controller can be generated algorithmically [7,8].

3. The Example

The presented methodology was used to design
a logic controller for a experimental multi-
product batch plant [7] where two different
products are produced in a three-train plant
(Fig. 4). The plant consists of three buffer tanks
on the top level that hold the raw materials, three
reactors on the mid-level and two storage tanks
on the bottom level. Each vessel of a level is
connected with every vessel on the level below.
Three different feeds are provided by the buffer
tanks (A,B,C). Each product is a mixture of
equal parts of two of the feeds (A+B and A+C).
The buffer tanks can hold each the feed for two
batches and are filled from an external source.
Every tank is equipped with a level sensor and
the reactors additionally have a mixer attached.
A reactor is filled from a single buffer tank at a

time. The objective is to use the plant’s assets to produce the required amount of
batches of each product as fast as possible while considering the possibility that
one reactor fails. In this case, the production is continued without interruption
because the spare reactor replaces the blocked part of the plant immediately.
The resulting SFC comprises 25 inputs and 23 outputs. In the design process, 26
internal variables and 83 different functions were defined over all levels of
detail which led to a logic controller with 111 states and 148 transitions in three
SFCs. The correctness of the controller was verified using a timed automata [4]
model. The SFC was implemented on a programmable logic controller
(SIMATIC-PLC S7-300) using the Step7 programming tool and all findings
were confirmed experimentally at the real plant.

Figure 4: The example plant

6 S. Lohmann et al.

4. Conclusions

The requirements refinement phase of a systematic logic controller design
procedure that uses well-defined data formats, incorporating a documentation of
each design step, was discussed. The step-by-step refinement of the
specification, in which the structure of the controller is designed using DCs and
the straight sequences are specified using FTs, accommodates the need for
thorough and methodical LC-design. Hierarchy and modularization are the
means of choice to keep the description clear and accessible. Eventually, the
final degree of detail of the specification is reached and the fully documented
design can be translated algorithmically into the SFC controller. The time
needed for the design can be considerably shortened while providing a well-
documented and well-structured logic controller, which will result in lower
investment and operational costs. Maintenance works, smaller or bigger
modifications which are common for the long life-cycles of chemical plants are
improved. Changes are introduced by modifying the specification not the
control code directly in order to keep the documentation consistent with the
SFC. To check whether the operation of the logic controller does result in the
intended plant behavior can be done at a subsequent stage; e.g. in a subsequent
verification of the controller using a formal plant model [4,5].

References

1. Kotonya, G.; Sommerville, I.: Requirements Engineering - Processes and
 Techniques. John Wiley and Sons, 282 p., Chichester, 2002.

2. Brooks, F.P.: No Silver Bullet - Essence and Accidents of Software Engineering.
 Information Processing 1986, H.J. Kugler, Ed., Elsevia Science Publishers B.V.
 (Holland) IFIP 1986.

3. Parnas, P.L.: On the Criteria to be Used in Decomposing Systems into Modules.
 Communications of the ACM, Vol.15, No.12, 1053-1058, 1972.

4. Lohmann, S.; Stursberg, O.; Engell, S.: Comparison of Event-Triggered and Cycle-
 Driven Models for Verifying SFC Programs. Proc. American Control Conference 2007,
 2007 - 11.-13.07. 2007, New York, accepted.

5. Lohmann, S; Dinh Thi, L.A.; Stursberg, O.: Design of Verified Logic Control
 Programs. Proc. IEEE International Symposium on IEEE International
 Conference on Control Applications, Munich, 2006.

6. Int. Electrotechnical Commission: Programmable Controllers - Programming
 Languages. Standard IEC 61131-3, 2003.

7. Bauer, N.; Kowalewski, S.; Sand, G.; Löhl, T.: A case study: Multi product batch
 plant for the demonstration of scheduling and control problems. Proc. 4th Int. Conf.
 on Automation of Mixed Processes: Hybrid Dynamic Systems/ Shaker,
 Dortmund, p.383-388, 2000.

8. NAMUR: Recommendation NE33 - Requirements to be met by systems for recipe-
 based operations. 2003.

