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Abstract 

In this paper the refinement procedure of informal requirements in the context 
of an earlier proposed systematic procedure for logic controller design as 
sequential function chart (SFC) is described in detail. The use of two data 
formats is proposed: dependency charts (DC) and function tables (FT) that 
support hierarchy and modularization and are refined iteratively until a final 
degree of detail is reached from which the logic controller as SFC can be 
generated algorithmically. 
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1. Introduction 

Automation tasks in today’s process industry are characterized by the need for 
increasingly complex controllers to further increase productivity and to 
accommodate the market’s demand for more and more sophisticated products. 
The logic controller design is in industrial practice a manual, unsystematic and 
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error-prone procedure which highly depends on the experience and process 
knowledge of the designer. In [5] a systematic procedure for logic controller 
design was proposed where, starting from the informal requirements, a logic 
controller as SFC [6] is derived using a systematic procedure.  
In software design, hierarchy [2], modularization [3] and documentation are 
well established means to tackle complexity and to ease the task of good design. 
This contribution applies ideas from software engineering to the problem of 
logic controller design. The presented work focuses on the aspect of formalizing 
the natural-language requirements that are introduced and used in the 
refinement process given initially such that a set of specifications1 is obtained 
that can be translated algorithmically into a logic controller as SFC. Two data 
formats are: Dependency charts (DC) and function tables (FT).  
This paper is structured as follows: The refinement procedure in the context of 
logic controller design and its underlying data formats are described in detail in 
Sec. 2. The application to an experimental batch plant [7] with requirements that 
include production sequencing and scheduling as well as procedures for error 
handling is reported in Sec. 3. Finally, Sec. 4 concludes the paper. 

2. The Refinement Procedure 

A procedure is proposed here in which the requirements are collected,  
formalized and systematically refined using two data formats: Dependency 
charts (DC) and function tables (FT). As shown in Fig. 1.(a), the information 
that is available for the logic controller design consists of an informal set of 

                                                           
1 The term specifications is used here in contrast to requirements, where the latter refers 
to an informal description in contrast to a formal one 
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requirements (A) and a piping and instrumentation diagram (P&ID) (B) of the 
plant. Before the requirements can be formulated in terms of DC (C) and FT 
(D), it is required to perform a requirement analysis (I) [1]. The data formats 
DC and FT support hierarchy and modularization and are iteratively refined (II) 
until finally a degree of detail (E) is reached from which a SFC can be 
generated algorithmically. Firstly, the requirements are analyzed to ensure that 
they are correct, complete and precise. Then the requirements are ordered with 
respect to time, where possible, and separated into those concerning the nominal 
operation of the plant and those concerning error handling. Additionally the 
requirements are sorted into functional2 and non-functional3 requirements. Then 
the representation of all requirements as FT and DC begins. 
The DC describes the interdependencies between different functions (ordinate) 
over a qualitative time axis (abscissa). Independent functions or groups of 
functions are described in separate DCs. The building elements of a DC (see 
Fig. 2) are: rectangles which denote procedural functions, arrows which denote 
strict sequential execution, function connectors which denote concurrencies, 
labels which denote an order of priorities, and a terminal point which denotes 
the end of the DC. These elements are arranged in a graph where the functions 
are ordered from top to bottom with respect to time, as far as possible. 
Alternative branches in the sequence of functions are denoted by multiple 
arrows originating from the terminal edge of a function rectangle. The last 
function in the graph is reachable over all paths starting from the initial 
function. 
Each function in a DC is described by an entry in the function table (FT) (see 
Fig. 3). Each entry consists of a number of actions, specified by the identifier of 
the function (A), the precondition for the execution of an action as described 

                                                           
2 statement of some function or feature that should be implemented in a   
  system 
3 statement of a constraint or expected behavior that applies to a system 
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Figure 2: The building elements of the DC (left) and their evolution in the refinement process 
(right). 
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textually (B), the sensor information corresponding to this condition using only 
defined sensor or internal variables, formulated as a Boolean formula or 
inequality (C), the description of the operation (D) carried out, and a list of 
actions with qualifiers (E) that are defined in [6] and determine when an action 
is executed. Both data formats are related by the function names (Fig.1.b). For 
each newly introduced function in the DC, a new function is defined in the 
corresponding FT. 
The starting point of the refinement is the first DC (level 1), called root-DC 
which describes the controller on a coarse level. Fig. 2 (right) shows a root-DC 
consisting of F1-F4. The functions can be defined freely, however, good 
practice is to use procedural basis functions [8], e.g. dose or temper. For each 
root-DC one SFC is created. The set of input (sensor) and output (actuator) 
variables is taken from the P&ID. Additional internal variables can be declared 
as needed. Using the DC, the interdependencies between the different functions 
are defined. Hereby, the line-by-line arrangement of the functions in the graph 
provides a good overview of the functions. Each function has a defined point in 
time (event) for its activation and deactivation. The control structure is first 
described on an abstract level, thereafter the refinement of the DC is done using 
an hierarchical graphical representation. As illustrated in Fig. 2, F2 is refined by 
newly defined functions F5-F7. A new function must be defined when a conflict 
occurs where two or more optional paths in the controller can be selected (loop 
or alternative branch). To maintain a clear and manageable code, large functions 
can always be separated into smaller modules.  
In parallel to the design of the structure of the controller using the DC, the FT is 
used for the specification of the details of each function as well as for 
documentation. During the overall refinement process, each function in the DC 
has its counterpart as a FT (Fig. 1.b). Fig. 3 shows an example of a FT. The 
field (A) contains the function name as defined in the DC (e.g.: Fill_R23). The 
fields (B) and (D) contain explanatory text stating the precondition and 
operation of the action. In the early stages of the refinement, the description of 
the controller is yet too coarse to define suitable sensors or actuators. Therefore 

functions precondition sensor operation actuatorEDCBA

F1 action 1

action n
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Fill_R23 The reactor R23 is
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filled half-full
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Figure 3: Example of a function table 
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(C) and (D) are filled only in the later stage of the refinement process. Each 
action is directly linked to its explanation, hence each design step can be fully 
documented.  
The requirements refinement is completed if no more functions have to be 
defined and all preconditions and operations are formalized. The different DCs 
are taken to form one DC* for each root-DC. The DC* is obtained by inserting 
refined DC into the coarser ones, level-by-level, starting from the most refined 
(see Fig. 2 and Fig. 1.b). Corresponding to this DC*, a subset of FT exist that 
holds the description of all functions appearing in the DC*. This function table 
is called FT*. Both pieces of data represent the formal specification from which 
the logic controller can be generated algorithmically [7,8]. 

3. The Example 

The presented methodology was used to design 
a logic controller for a experimental multi-
product batch plant [7] where two different 
products are produced in a three-train plant 
(Fig. 4). The plant consists of three buffer tanks 
on the top level that hold the raw materials, three 
reactors on the mid-level and two storage tanks 
on the bottom level. Each vessel of a level is 
connected with every vessel on the level below. 
Three different feeds are provided by the buffer 
tanks (A,B,C). Each product is a mixture of 
equal parts of two of the feeds (A+B and A+C). 
The buffer tanks can hold each the feed for two 
batches and are filled from an external source. 
Every tank is equipped with a level sensor and 
the reactors additionally have a mixer attached. 
A reactor is filled from a single buffer tank at a 

time. The objective is to use the plant’s assets to produce the required amount of 
batches of each product as fast as possible while considering the possibility that 
one reactor fails. In this case, the production is continued without interruption 
because the spare reactor replaces the blocked part of the plant immediately. 
The resulting SFC comprises 25 inputs and 23 outputs. In the design process, 26 
internal variables and 83 different functions were defined over all levels of 
detail which led to a logic controller with 111 states and 148 transitions in three 
SFCs. The correctness of the controller was verified using a timed automata [4] 
model. The SFC was implemented on a programmable logic controller 
(SIMATIC-PLC S7-300) using the Step7 programming tool and all findings 
were confirmed experimentally at the real plant.  

 
Figure 4: The example plant 
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4. Conclusions 

The requirements refinement phase of a systematic logic controller design 
procedure that uses well-defined data formats, incorporating a documentation of 
each design step, was discussed. The step-by-step refinement of the 
specification, in which the structure of the controller is designed using DCs and 
the straight sequences are specified using FTs, accommodates the need for 
thorough and methodical LC-design. Hierarchy and modularization are the 
means of choice to keep the description clear and accessible. Eventually, the 
final degree of detail of the specification is reached and the fully documented 
design can be translated algorithmically into the SFC controller. The time 
needed for the design can be considerably shortened while providing a well-
documented and well-structured logic controller, which will result in lower 
investment and operational costs. Maintenance works, smaller or bigger 
modifications which are common for the long life-cycles of chemical plants are 
improved. Changes are introduced by modifying the specification not the 
control code directly in order to keep the documentation consistent with the 
SFC. To check whether the operation of the logic controller does result in the 
intended plant behavior can be done at a subsequent stage; e.g. in a subsequent 
verification of the controller using a formal plant model [4,5].  
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