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Abstract 

Integration of real-time optimization and control with higher level decision 
making (scheduling and planning) is an essential goal for profitable operation in 
a highly competitive environment. While integrated large-scale optimization 
models have been formulated for this task, their size and complexity remains a 
challenge to many available optimization solvers. On the other hand, recent 
development of powerful, large-scale solvers leads to a reconsideration of these 
formulations, in particular, through development of efficient large-scale barrier 
methods for nonlinear programming (NLP). As a result, it is not unrealistic to 
solve NLPs on the order of a million variables, for instance, with the IPOPT 
algorithm. More recently, IPOPT has been embodied as an object oriented code 
that exploits problem structure, takes advantage of parallelism, and allows 
configuration of different "internal decomposition strategies" without 
compromising its fast convergence properties. Finally, an NLP sensitivity 
extension was added to this code that allows the fast approximate solution of 
perturbed NLP problems. These developments are demonstrated on dynamic 
optimization formulations that integrate real-time optimization with on-line 
calculations required by model predictive control. This allows on-line 
computations to be drastically reduced, even when large nonlinear optimization 
models are considered.   
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1. Introduction 

For over two decades, real-time optimization has evolved as a standard practice 
in the chemical and petroleum industry. The ability to optimize predictive 
models provides a major step towards linking on-line performance to higher-
level corporate planning decisions. As described in [1,2], these decisions form a 
hierarchy as seen in the Figure 1, with levels of decision-making that include 
planning, scheduling, site-wide 
and real-time optimization, 
model predictive control and 
regulatory control. In this 
pyramid, note that the frequency 
of decision-making increases 
from top to bottom, while the 
impact and importance of 
decision-making increases from 
bottom to top. Moreover, 
mathematical models and 
optimization problems have been 
developed for all but the bottom-
most level. Planning and 
scheduling decision models are 
often characterized by linear 
models with many discrete decisions. These are usually represented as mixed 
integer linear programs (MILPs), and occasionally mixed integer nonlinear 
programs (MINLPs) that capture key nonlinear elements. On the other hand, 
site-wide and real-time optimization require nonlinear process models which 
usually reflect steady-state performance of the plant, while model predictive 
control (MPC) is often characterized by linear dynamic models. In severely 
nonlinear processes, nonlinear model predictive control (NMPC) is needed and 
this requires a more expensive modeling effort to solve dynamic optimization 
problems on-line [3].  
 
Communication and interaction among levels requires that decisions made at 
higher levels be feasible at lower levels. Moreover, the performance described 
by lower level models must be reflected accurately in decisions made at higher 
levels. Clearly, the strongest communication and interaction is through direct 
integration of optimization formulations between two or more levels. Such 
integration has been described for planning and scheduling [1]. Similarly, site-
wide and real-time levels can be integrated through compatible steady-state 
optimization models. However, integrated real-time optimization and MPC 
often suffers inconsistencies due to mismatch of linear dynamic and steady state 
nonlinear models, and also because of conflicting objectives [4].  
 

Figure 1. Decision Hierarchy for  
Enterprise Wide Optimization 
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To resolve these two levels, we explore simultaneous dynamic optimization 
formulations that combine these two levels. In the next section we briefly 
describe the optimization problem and summarize the direct transcription 
approach used to solve it. Section 3 then discusses an on-line NMPC strategy 
based on NLP sensitivity, which easily extends to more general dynamic 
optimization schemes. In this section we also present a recent case study on 
grade transition for a realistic LDPE process. Section 4 summarizes these 
concepts and outlines areas for future work.  

2. Fast, Large-scale Dynamic Optimization 

Consider the following dynamic optimization problem:  
 

Min  Φ(z(tf ), y (tf), u(tf),  p)    (1) 
s.t.  F(dz/dt; z(t); y(t); u(t); t; p)  = 0, z(0) = z0 

Gs(z(ts); y(ts); u(ts); ts; p)) = 0 
zL ≤ z(t) ≤ zU, yL ≤ y(t) ≤ yU 

uL ≤ u(t) ≤ uU, pL ≤ p ≤ pU, tf
L ≤ tf ≤ tf

U 
 
where Φ is a scalar objective function at final time, tf, F is the differential-
algebraic equation (DAE) model, assumed to be index 1, Gs are additional point 
conditions at times ts, z(t) are differential state profile vectors, y(t) are algebraic 
state profile vectors, u(t) are control state profile vectors and p is a 
time-independent parameter vector.  
 
In this formulation, the continuous time problem is converted into an NLP by 
approximating all of the state and control profiles as a family of polynomials on 
finite elements. This is known as the direct simultaneous or direct transcription 
approach, where the discretizations stem from implicit Runge-Kutta formulae. 
Here monomial representations are used for the differential variables, and 
control and algebraic profiles are approximated using Lagrange polynomials. 
Once discretized, a large NLP is constructed of the form: 
 

Min f(x), s.t. c(x) = 0, xL ≤ x ≤ xU
   (2) 

 
where x represents all discretized variables and c(x) = 0 represents the 
discretized equations.   
 
Direct transcription methods offer a number of advantages for challenging 
dynamic optimization problems. First, control variables can be discretized at the 
same level of accuracy as the differential and algebraic state variables. The 
KKT conditions of (2) can be shown to be consistent with the variational 
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conditions of (1) and finite elements allow for discontinuities in control profiles. 
Next, collocation formulations allow problems with unstable modes to be 
handled in an efficient and well-conditioned manner, as the NLP formulation 
inherits stability properties of boundary value solvers. Finally, dynamic 
optimization using collocation methods has been used for a wide variety process 
applications including batch process optimization, batch distillation, 
crystallization, dynamic data reconciliation and parameter estimation, nonlinear 
model predictive control, polymer grade transitions and process changeovers, 
and reactor design and synthesis. A review of this approach can be found in [5].  
 
On the other hand, these strategies lead to large nonlinear programs, often with 
many thousands of variables, constraints and, possibly, degrees of freedom. 
These can be addressed efficiently by the IPOPT algorithm [6]. This algorithm 
follows a barrier approach, where the bound constraints in (2) are replaced by 
logarithmic barrier terms and added to the objective function to give the 
equality-constrained NLP:  
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                                                    s.t.   c(x) = 0                                                    
Solving a sequence of these problems with the barrier parameter, μ  0 allows 
us to recover the solution of (2). Problem (3) is solved by writing the KKT 
conditions of (3) in primal-dual form:  
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where A(x) = )(xc∇ and λ, νL, νU are the KKT multipliers for the equality 
constraints and variable bounds in (2). IPOPT solves (4) by applying Newton’s 
method and solving the sparse, symmetric linear system at each iteration, ℓ.  
 

⎥
⎦

⎤
⎢
⎣

⎡∇
−=⎥

⎦

⎤
⎢
⎣

⎡Δ
⎥
⎦

⎤
⎢
⎣

⎡ Σ+
)(

)(
0 xc

xx
A

AW
T

μϕ
λ

.   (5) 

 
Here VU=diag{ Uν } and VL=diag{ Lν }, Wℓ is the Hessian of the Lagrange 
function, Σ = (Xℓ-XL)-1VL + (XU-Xℓ)-1VU, (X = diag(x)) is the barrier term 
correction and )(xμϕ  is the barrier function from (3). As a result, local 
convergence of the Newton method is fast and global convergence of IPOPT is 



Integration of Large-scale Nonlinear Programming 5 

ensured by a novel filter line search strategy.  More information on IPOPT, 
along with open source code, can be found in [6]. Moreover IPOPT has been 
applied to a number of direct transcription problems including an NMPC study 
applied to the unstable Tennessee Eastman process [7]. Here the on-line 
calculations required only 5-10 CPUs for each of a long series of NLPs with 
about 11000 variables and 660 degrees of freedom.  

3. On-line Dynamic Optimization  

Efficient NLP formulations and fast NLP solvers are not enough for large-scale 
on-line dynamic optimization.  Process models in (1) continue to increase in 
size while on-line calculations remain time-critical with fixed intervals to 
update the model, as seen in Figure 2. Instead, we note that on-line solution of 
(2) is parametric in the state variable estimates (z0) and this solution often varies 
only slightly between measurements y(tk ) and y(tk+1). As a result, we can apply 
two concepts:  

• The on-line solution of (2) at tk+1 can be approximated with a 
perturbation of the previously converged solution, using the initial 
condition z0 inferred from y(tk+1 ) 

• Once an approximate solution is calculated at tk+1, and uk+1 is injected 
into the plant, a fully converged solution can be determined in 
background, say between tk+1 and tk+2.  

Both of these real-time iteration concepts have been used to advantage in [2, 8, 
10]. In particular, using direct transcription and IPOPT leads to an on-line 
solution approximated by an NLP sensitivity step from the primal-dual 
algorithm. Such steps are well characterized, lead to first order accurate 
solutions, and require only a fast, direct calculation from a sparse linear system 
[9]. As a result, they can lead to reduction of on-line optimization costs by at 
least two orders of magnitude.  
 
As detailed in [10], the real-time iteration approach can be implemented in a 
number of ways. The direct approach is to calculate, from the solution of (1) at 
tk, an approximate solution that perturbs the initial conditions of the differential 
variables, z0, inferred from the measurement y(tk+1). This approach solves the 
system, KΔv = r, where K is the matrix in (5), the right hand side r represents 
the perturbation of the initial condition z0 and Δv is the change in the (primal 
and dual) approximate solution from tk to tk+1. Because this approach applies the 
matrix factorized from (5), it is quite fast. However, it retains the active 
constraint set from solution at tk for tk+1 (which is incorrect and should be 
shifted by one step). This leads to a poor approximation of the optimal solution.  
 
In contrast, the second approach recognizes the shift in the active set. From the 
measurement y(tk+1), it implicitly performs a perturbation on z1 (at tk+1) and 
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back-calculates the value of z0 (at tk) to achieve this. This approach ensures the 
correct active set by requiring an additional equation z1 - z1(tk+1) = 0, a slack 
variable s for z0, and solution of the augmented system: 
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   (6) 

 
where z1

* is from the previous solution at tk. Using the previous factorization of 
K, (6) can be solved quickly with a Schur complement operation.  

 
IPOPT has features that allow both approaches and it exploits the similarities 
between the Newton and sensitivity steps. After solving the NLP in background, 
it retains the previous matrix factorization from (5) and finds the approximate 
solution of the perturbed problem with a single back-solve in (6). More details 
of this approach are given in [10]. 

3.1. LDPE Case Study 

The above computational framework is demonstrated on a grade transition 
scenario for a large-scale high-pressure low density polyethylene (LDPE) 
process described in [10] and shown in Figure 3. The on-line grade transition 
combines NMPC with dynamic real-time optimization to minimize the 
transition time and reduce off-spec product. The process model consists of a 
simplified polymerization reactor, a number of compression stages and 
separators, and several time delays. Product quality is estimated from the butane 
content in the low pressure recycle stream, while butane feed and the purge 
stream flowrate are the control variables. In addition, uncertainties in the time 
delays lead to deviations of the measurements from the process model. The 
resulting dynamic optimization problem (1) contains 294 differential and 64 

Figure 2. Time Horizon for On-line Dynamic Optimization 
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algebraic state variables. Applying direct transcription leads to a large-scale 
NLP problem (2) with 27,135 constraints, 9360 lower bounds, 9360 upper 
bounds and 30 degrees of freedom. With a 3.0 GHz Pentium IV processor using 
1 GB of RAM, complete solution of this problem requires about 350 CPUs, 34 
CPUs for the factorization of matrix K and 0.95 CPUs for a single back-solve 
with this matrix. In contrast, the approximated solution requires an on-line 
calculation of only 1.0 CPUs. The results of the approximate and complete 
solution profiles are shown in Figure 4. The output product quality shown in the 
top graphic shows identical performance for both approaches while the control 
variables in the middle and bottom graphic are quite similar, despite a drastic 
computational reduction with the real-time iteration approach.  

4. Conclusions 

Integration of optimal decision-making for operations is an important task for 
today’s highly competitive chemical industry. In particular, tying higher-level 
decisions to optimal on-line operations is essential. This paper considers the 
challenges at real-time optimization and model predictive control levels as they 
both comprise large-scale NLP problems, often with conflicting models and 
objectives. We show that direct transcription and fast NLP solvers, like IPOPT, 
allow the integration of real-time optimization and model predictive control 
through a single dynamic optimization formulation. In addition, concepts from 
real-time iteration allow on-line calculations to be drastically reduced with 
almost all of the optimization calculations performed in a background step. This 
is shown on a large LDPE process where on-line optimization computations 
were reduced by over 300 times, with negligible loss of performance.  
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Future work deals with application of real-time iteration concepts to moving 
horizon estimation and the optimization of on-line multi-stage operations. These 
represent challenging large-scale NLPs which require specialized 
decomposition strategies that can be exploited by IPOPT. In addition, a 
particular stability result of real-time iteration has been developed in [8]. We 
intend to explore these nominal and robust stability properties further through a 
Lyapunov analysis along with recently developed robustness properties for 
Nonlinear Model Predictive Control.  
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