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Abstract 

The Kalman filter requires knowledge about the noise statistics. In practical 
applications, however, the noise covariances are generally not known. In this 
paper, a method for estimating noise covariances from process data has been 
investigated. This method yields least-squares estimates of the noise 
covariances, which can be used to compute the Kalman filter gain. 
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1. Introduction 

In state estimation the state of a system is reconstructed from process 
measurements. State estimation has important applications in control, 
monitoring and fault detection of chemical processes. The Kalman filter and its 
counterpart for nonlinear systems, the extended Kalman filter, are well-
established techniques for state estimation. However, a well-known drawback 
of Kalman filters is that knowledge about process and measurement noise 
statistics is required from the user. In practical applications the noise 
covariances are generally not known. Tuning the filter, i.e. choosing the values 
of the process and measurement noise covariances such that the filter 
performance is optimized with respect to some performance index, is a 
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challenging task. If performed manually in an ad hoc fashion it represents a 
considerable burden for the user. Therefore there is need for a tool that can 
perform filter tuning or provide assistance to the user. 
The filter tuning problem is essentially a covariance estimation problem and the 
Kalman filter gain is computed based on the estimated covariances. This issue 
has been addressed in numerous papers and a number of methods have been 
presented, cf. discussion in [1,2] and references therein. A promising technique 
for covariance estimation is the autocovariance least-squares method proposed 
recently by Odelson and co-workers for linear time-invariant systems [1]. This 
method is based on the estimated autocovariance of the output innovations, 
which is used to compute a least-squares estimate of the noise covariance 
matrices. The estimation problem can be stated in the form of a linear least-
squares problem with additional constraints to ensure positive semidefiniteness 
of the covariance matrices. 
In this paper, a generalized autocovariance least-squares tuning method is 
applied to the Kalman filter. This Kalman filter tuning methodology is 
implemented into a software tool to facilitate practical applications. The 
performance of the Kalman filter tuning tool (Kalfilt) is demonstrated on a 
numerical example. 

2. Problem statement 

Consider a linear time-invariant system in discrete-time, 
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where A ∈ Rn × n, B ∈ Rn × m, G ∈ Rx × g and C ∈ Rp × n. The process noise wk and 
the measurement noise vk are zero-mean white noise processes with covariance 
matrices Qw and Rv, respectively, and cross-covariance Swv. Assume that a 
stationary Kalman filter is used to estimate the state. The one-step ahead 
prediction is given by 
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where the Kalman filter gain Kp is defined as 
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and Pp is the covariance of the state prediction error, 1|1| ˆ~
−− −= kkkkk xxx . The 

covariance [ ]T
kkkkp xxEP 1|1|

~~
−−=  is obtained as the solution to the Riccati equation 
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In the following approach it is assumed that the model is given, along with an 
initial suboptimal Kalman filter, based on initial guesses Qw,0, Rv,0 and Swv,0. The 
objective is to estimate the covariance matrices Qw, Rv and Swv and use these to 
compute the Kalman filter gain Kp. 

3. Autocovariance least-squares estimation  

A general state-space model of the measurement prediction error can be 
defined, 
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where 1|ˆ −−= kkkk xCye . 

 
The autocovariance of the measurement prediction or estimate error is given by 
 

[ ]
[ ]

1     )(         

)()(
1

1
,

0,

≥−−

−+−==

+==

−

−
+

j,RKCKAC

GSCKACCPCKACeeER

RCCPeeER

vp
j

p

wv
j

p
T

p
j

p
T
kjkje

v
T

p
T
kke

 (6) 

 
The autocovariance matrix is defined as 
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Substitution of Eqs. (6) into Eq. (7) followed by separation of the right-hand 
side into terms is performed. After this, the vec operator is applied to both sides 
of the resulting equation. The vec operator performs stacking of the matrix 
columns to form a column matrix [3]. This allows the problem to be stated as a 
linear least-squares problem, 
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where the parameter matrix Als is formed from system matrices A, G, C and the 
Kalman filter gain Kp. This has the form of a linear least-squares problem. The 
left-hand side of Eq. (8) can be estimated from steady-state data. Given a 
sequence of data { } dN

iie 1= , the estimate of the autocovariance can be computed by 
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where Nd is the length of the data sequence. An estimated autocovariance matrix 
)(ˆ LRe  can then be formed analogously to Eq. (7). Solving (8) as a linear least-

squares problem does not gurantee that the estimated covariance matrices are 
positive semidefinite. Furthermore, the parameter matrix Als may be poorly 
conditioned, which affects the accuracy of the solution. This can be remedied by 
adding a regularization term. The estimation problem can be formulated as 
follows, 
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where λ is a regularization parameter chosen by the user and allows a suitable 
bias-variance trade-off. Eq. (10) is a semidefinite least-squares problem, which 
is convex and can be solved by an interior point method [1]. A suitable value for 
λ can be found by plotting Φr versus Φ for different values of λ. The optimal 
Kalman filter gain can then be computed from the estimated covariances using 
Eq. (3) after solving the Riccati equation (4).  

4. Numerical example 

We consider a system with the following system matrices 
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and noise covariances Qw = 0.5, Rv = 0.1 and Swv = 0.2. A set of 200 simulations 
were performed, each comprising a sequence of Nd = 1000 data points. For each 
simulation, the covariances were estimated. The autocovariance lag was chosen 
as L = 15.  
The effect of regularization was investigated for the first simulation. In Fig. 1 
the regularization term Φr and the fit to data Φ are plotted versus each other for 
parameter values λ ∈ [10-9 - 10]. The parameter value λ = 0.1 gave a good 
trade-off (Φr = 0.15) and was used subsequently. The covariance estimates are 
plotted in Fig. 2. The bias in the estimates is due to regularization. 
The performance of the tuned Kalman filter is compared to that of the initial 
filter and the ideal filter based on perfect information. The root-mean square 
error of output predictions,  
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is computed for each experiment and the result is shown in Fig. 3. As can be 
seen, the prediction error of the tuned filter is very close to that of the ideal 
filter, despite the bias in the estimates. 

5. Conclusions 

A tool for Kalman filter tuning was presented. The method used is a 
generalization of the autocovariance least-squares method to systems with 
mutually correlated noise. Regularization was included in order to handle ill-
conditioning of the least-squares problem. The results show that significant 
improvement to the predictions can be achieved with the tuning tool.   
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Figure 1: Trade-off curve. 

Figure 3: Prediction results. Figure 2: Estimated covariances. 
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