
17th European Symposium on Computer Aided Process Engineering – ESCAPE17
V. Plesu and P.S. Agachi (Editors)
© 2007 Elsevier B.V. All rights reserved. 1

Learning to schedule new orders in batch plants
using aproximate dynamic programming

Facundo Arredondo, Ernesto Martínez

Instituto INGAR - National Scientific Research Council, Avellaneda 3657, Santa Fe
3000, Argentina, ecmarti@ceride.gov.ar

Abstract

Production scheduling in a wide range of batch plants involves minimizing
tardiness of batches already scheduled when inserting new orders. This problem
is addressed here as learning an “order insertion policy” using intensive
simulations in the framework of approximate dynamic programming (ADP).
Simple insertion operators are defined and the values of choosing them at
different schedule states found by the incoming order are learnt using a Q-
learning algorithm. To generalize values of insertion operators across schedule
states a locally weighting regression technique is used. Results obtained
highlight that simulation-based heuristic learning is very appealing to increase
responsivenes of scheduling and planning systems in disruptive event handling.

Keywords

Learning, Scheduling, Simulation-based optimization, Supply chain control.

1. Introduction

Although there are many scheduling methodologies grounded on good
theoretical foundations [1], the advent of e-commerce and the need for
automatic handling of disruptive events in the supply chain are emphasizing the
development of dynamic (re)scheduling techniques which can truly increase the
responsiveness and agility of batch plants [2]. Simulation-based optimization
[3] offers a powefull alternative for developing robust policies using
reinforcement learning - also known as ADP- for ‘on-the-fly’ decision-making

2 F. Arredondo et al.

in real-time [4,5]. Unfortunately, with few exceptions [3], the use of ADP has
been almost neglected in dynamic scheduling and planning. It is our contend
here that integration of optimization, simulation and learning along with
increasing computational power can really make a responsiveness breakthrough
in controlling and supervising the supply chain with automatic procedures.

2. Problem Statement

Typically, in most industrial environments when production orders are released
to the shop-floor the current schedule should be modified to allow their
insertion and a new schedule will result. Batch orders are normally placed on
the plant by a central inventory management system; but they also can be placed
directly to meet customer needs for special orders. The incoming (n+1)th order
has at least three key attributes for its insertion: a product type, a batch size and
a due date Dn+1. The main criterion for near-optimal insertion is to minimize an
arbitrary function of the schedule tardiness:

)(
1

∑
+n

i
iDτ (1)

where τ(Di) is the tardiness of the ith order and n is the number of orders in the
current schedule (before inserting the arriving order). It´s not included in (1) a
penalty term for the disruption caused by rescheduling. Let´s denote by s the
vector of variables describing the state of the schedule at the arrival moment of
the n+1 order and O1, O2,…, Om the insertion operators or rules. The entries in s
correspond to feature variables that are descriptive of the existing schedule
before the arrival of the (n+1)th order. Insertion operators are well-defined
procedures to generate a new schedule from the current one following a given
rationale and whose degree of optimality, or value Q, will depend heavily on
the schedule state s. The easiest alternative for defining an insertion operator is
doing a 1-batch removal operation according to some criterion, insert somehow
the new batch and then reschedule conveniently the earlier removed batch. This
removal/insertion/reschedule procedure can be extended to 2-batches, …, n-
batches involved in rescheduling. Furthermore, there can be defined more
problem-specific insertion operators (see the example below).

Should the value Q(sa, Om) of applying Om at the schedule characterized by sa is
known, then the problem of optimal insertion can be easily solved by choosing
the operator with highest value at sa. As this is not the case, Q values must be
learnt. In industrial practice, expert shop-floor managers develop over time –
through learning - simple rules or insertion heuristics that guide their day-to-day
decision making. Using reinforcement learning algorithms [3-5] similar
expertise can be learnt using intensive simulations with almost no costs
involved, except some computational power. There exist also the need to define

Learning to schedule new orders in batch plants using aproximate dynamic
programming 3
meaningful feature variables for schedule states and a reward function to
measure the goodness of schedules resulting from applying a given insertion
operator. The latter will provide simulated reinforcements in the trial-and-error
learning algorithm to drive the initial schedule state to a goal state.

3. Simulation-based learning

3.1. Q-learning

One of the most widely used learning algorithm in ADP [3-5] is the one
allowing learning directly the values of state-operator pairs. In its simple form,
one-step Q-learning, is defined by

⎥⎦
⎤

⎢⎣
⎡ −++← ++),(),(max),(),(11 tttttttt asQasQrasQasQ

a
α (2)

where rt+1 is reward resulting of taking the action at at the state st and 0<α<1 is
the learning rate. The index t emphasizes the idea of learning in episodes. In our
case each learning episode is made up of a sequence of schedule states from the
initial state to the goal state where transitions are caused by insertion operators.
As the values Q of state-action pairs should be incrementally learnt, each
operator selection requires a policy with some room for exploration. The easiest
alternative is the so-called ε−greedy. With probability (1- ε) the action with
highest value is chosen whereas with probability ε any of the non-optimal
action is tried. An alternative is the softmax criterion based on the current
estimates of state-action values. A softmax action selection policy uses a Gibbs,
or Boltzmann, distribution with probabilities π(at) for each action at at state st:

π(at)=
∑ =

m
b

TbsQ

TasQ

e
e

1
/),(

/),(
 (3)

where T is a positive parameter called the “temperature.” High values of T cause
actions to be all nearly equiprobable. As learning progresses, T is incrementally
lowered which causes a greater difference in selection probabilities for actions
that differ in their value estimates.

3.2. State generalization

One problem with the basic Q-learning algorithm is the assumption of having a
finite number of actions and states. In our application the number of insertion
operators is indeed finite but the schedule states are not. To generalize across a
continuum of states to locally weighted regression (LWR) [7] is used. LWR is a

4 F. Arredondo et al.

variation of the standard linear regression technique in which training points
close to a query point have more infuence over the fitted regression surface.
LWR, on the other hand, only fits a function locally, without imposing any
requirements on the global form of the Q-function. Integration of LWR with the
basic Q-learning algorithm makes possible to update the Q-values of all
examples in the region of influence around the query point defined by the kernel
parameter κ. This integration dramatically speed up simulation-based learning.

3.3. Order insertion learning

A schema of the algorithm for order insertion learning is given in Fig. 1.
Simulations in each learning episode are done using random selection of the
initial schedule and new order attributes to account for the widest variety of
circumstances in the schedule state found by an incoming order.

Fig. 1. Learning to insert orders using operators and Q-learning

Learning to schedule new orders in batch plants using aproximate dynamic
programming 5
4. Example

As a rather simple example of the proposed approach, the following single-stage
scheduling problem adapted from [6] is used. Plant equipment items are
semicontinuous extruders which process orders for 4 products. Processing rates
and cleanout requriments are given in Table 1. Also, data for the current
schedule and the new order are given in this table. For the sake of space and
clarity only three very simple order insertion operators are considered. The
simplest one, O1, seeks the minimum disturbance to the already scheduled order
by inserting the new order at the end of one extruder´s queue so that total
tardiness is minimized. The operator O2 allows a bit more room for rescheduling
the existing orders by inserting the new order in the position of the extruder´s
queue that minimized the total tardiness of the resuting schedule. This operator
delays those orders that are left behind by the new order. Finally, the insertion
operator O3 is the 1-batch generic operator designed around the optimal
removal/insertion/reschedule for only one batch as discussed earlier. Operator
O3 causes a significant change to the existing schedule, but can provide a nearly
optimal insertion. In Fig. 2, the resulting schedules when insertion operators are
used to update the existing schedule are shown.

 Table 1. A small example problem formulation

Processing rate (kg/day) Customers Orders
Product Orders # Size Product Due Date Extruder A B C D 1 500 A 5

1 100 200 -- -- 2 100 B 1
2 150 -- 150 300 3 300 C 2
3 100 150 100 200 4 100 C 3

 5 700 B 9
Cleanout requirements (day/cleanout) 6 700 A 7

Next Product 7 600 D 11 Previous
Product A B C D 8 300 D 11

A 0 0 0 2 9 100 B 6
B 1 0 1 1 10 600 B 9
C 0 1 0 0 New Order

D 0 2 0 0

 11 150 A 5

To learn the values of these three insertion operators using the algorithm in Fig.
1, the following state representation for the schedule found by the (n+1)th order
is used s=(n, F1,F2). The first entry is the number of already scheduled orders,
F1 is the ratio of total late days to total productive days and F2 is the ratio of
total cleaning days to total production days. To assess the goodness or badness
rt+1 of choosing a given insertion operator the total tardiness (Eq. 1) of the
resulting schedule is used, although other criteria would be used as well. Using
the estimated Q-values after 10,000 simulations, choosing the insertion operator
with maximum value is compared to the actual optimal decision for 2,500
different initial schedules.

6 F. Arredondo et al.

The results obtained (see Fig. 3) show that the learning process had converged
quickly to a near-optimal insertion policy. Analysis of the operator values
reveals that the operator O1 -which involves no disruption to the existing
schedule- is the best decision when there are few cleaning operations in the
current schedule. As cleaning time increases, the optimality of O2 reflects that
total tardiness can only be improved by changing the existing schedule. Finally,
as cleaning operations are more ubiquitous, insertion is best made by O3 which
involves a complete overhauling of the schedule found by the incoming order.

5. Concluding remarks

The integration of simulation-based optimization with reinforcement learning
techniques in scheduling and planning problems opens a new way for automatic
control of disruptive events in the supply chain. The problem of near-optimal
insertion of a new order in a production schedule was used as a simple example.

Fig. 2. Inserting the new order using O1,O2 and O3 Fig. 3. Using operator values for insertion

References

1. C. A. Méndez et al., Computers chem. Engng. 30, 913-946 (2006).
2. G. E. Vieira, J. W. and E. Lin, J. of Scheduling 6, 39-62 (2003).
3. E. C. Martínez, Computers chem. Engng. 23, S527-S530 (1999).
4. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press,

 Cambridge, MA (1998).
5. J. Si, A. G. Barto, W. B. Powell and D. Wunsch, Handbook of Learning and

 Approximate Dynamic Programming, Wiley-IEEE Press (2004).
6. R. F. H. Mussier and L. B Evans, Computers chem. Engng. 13, 229-238 (1989).
7. 7.C. G. Atkeson, A. W. Moore and S. Schaal, Artificial Intelligence Review 11, 11-73

 (1997).

70 75 80 85 90
0

1

2

3

4

5

6

7

8

9

10

Optimal Selection Rate

