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Abstract 

The objective of this work is to develop an optimization model for the medium-
term planning of single stage continuous multiproduct plants. Several types of 
SKUs (Stock Keeping Units) are produced. Customers place orders that 
represent multiples of SKUs and these orders must be delivered at the end of 
each week. When different SKU types are processed, sequence-dependent 
changeover times and costs are incurred. The problem is represented as a 
mixed-integer linear programming (MILP) model with a hybrid time 
representation. The objective is to maximize profit that involves sales revenues, 
production costs, product changeover costs, inventory costs and late delivery 
penalties. The proposed optimization-based model is validated in a real-world 
polymer processing plant. 
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1. Introduction 

Medium-term planning matches production requirements so as to meet demands 
by generating plans that determine the flow of materials and the use of 
resources over a given planning horizon of several weeks to a few months. 
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Traditionally, continuous plants have been associated with single product 
manufacturing. Nowadays, there is an increasing need for more flexible 
continuous processing facilities being suitable for more than one product. The 
efficient planning and scheduling of such facilities (decisions related to when, 
where, and how much of each product should be manufactured) is a challenging 
problem, usually a non trivial one [1-7].  
One key characteristic in the operation of continuous plants is the sequence-
dependent changeovers/transitions incurred when changing from one product to 
another. A transition cost and a transition time arise whenever a new product 
starts to be processed. These factors often refer to the cost and time associated 
with out-of-specification products generated while the unit is adjusted to a new 
set of operating conditions. The planning and scheduling of continuous 
multiproduct plants usually involves tradeoffs such as quantities produced, 
storage levels, backlogs and transition costs. The above tradeoffs can be 
resolved at an optimal manner through a simultaneous optimization- based 
approach. 
The objective of this work is to develop an optimization model for the medium-
term planning of single stage continuous multiproduct plants based on a hyrbrid 
discrete/continuous time representation. 

2. Problem Description 

Several types of SKUs (Stock Keeping Units) are produced. Customers place 
orders that represent multiples of SKUs and these orders must be delivered at 
the end of each week. Customer demands are typically the result of a 
negotiation whereby order quantity, delivery date, and any variability on this is 
regulated by a contract. Penalties and manufacturer liability are usually agreed 
for late deliveries [5]. When different SKU types are processed, sequence-
dependent changeover times and costs are incurred. 
The strategic objective in this formulation is to maximize profit, which involves 
sales revenues, production costs, product changeover costs, inventory costs and 
late delivery penalties. 

3. Mathematical Model  

The main assumptions of the model are: (1) the plant is composed of a single 
stage with a single unit; (2) there are sequence dependent changeover times and 
costs; (3) demands and backlogs are only enforced at the end of each week. Due 
to the nature of the problem, the time domain is modeled in hybrid form: a 
discrete formulation represents the weeks of the planning horizon whereas each 
week is modeled with a continuous formulation, which is based on the one 
proposed by Casas-Liza and Pinto [5]. Hence, intervals of equal length 
represent each week, and each week comprises several time slots of variable 
length. The model relies on the following notation: 
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Indices and sets Binary Variables 
c customers 
i, j products 

Ei,w 1 if product i is produced in 
week w 

k time slots 
Kw set of time slots in week w 
w weeks 

yi,k,w 1 if product i is processed in 
time slot k during week w 

Zi,j,k,w 1 if product i (slot k-1) 
precedes j (slot k) in week w 

Parameters  
CBc,i backlog cost of i to customer 
c 

Continuous Variables 

CIi,w inventory cost of i in week w Pi,w production of i in week w 
CTi,j transition cost from i to j 
Dc,i,w demand of i from customer c 
 in week w 
PSc,i price of i to customer c 

Sc,i,w sales of i to customer c in 
 week w 
Tk,w time point k in week w 
Vi,w volume of product i in week 
w 

ri processing rate of i 
Vi

max/min max / min storage of i 
θL/θU lower/upper processing time 

Δc,i,w backlog of i for c in week w 
θi,k,w processing time of product i 

in slot k during week w 
τi,j changeover time from i to j  

 
Next, the mathematical model is presented. 
 
• Assignment constraints 

, 1i,k w
i

y =∑  ,wk K w W∀ ∈ ∈  (1) 

The unit processes exactly one product at every time interval. Although 
products are assigned at every interval, production may not be required. 
 
• Timing constraints  

0, 0wT =  | |, 168wK wT =  w W∀ ∈  (2) 

, , , ,0 U
i k w i k wyθ θ≤ ≤ ⋅  , ,wi k K w W∀ ∈ ∈  (3) 

, , ,
w
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i k w i w

k K
Eθ θ
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≥ ⋅∑  ,i w W∀ ∈  (4) 

, 1, , , , , , ,k w k w i k w j i j i k w
i j

T T Zθ τ−
⎛ ⎞

− = ⎜ + ⋅ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑  ,wk K w W∀ ∈ ∈  (5) 

The time points and time intervals are calculated by the duration of the 
processing of a product. The time points are determined from the time horizon 
defined between the initial point (T0,w = 0) and final point (TKw,w = 168) as well 
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as from the ordering of the intermediate points. The duration of a time interval k 
(Tk,w – Tk-1,w) is determined from the duration of the processing and transition. 
 
• Transition constraints 

, , , , 1,i j k w i k w
j

Z y −=∑  , {1},wi k K w W∀ ∈ − ∈  (6) 

, , , , ,i j k w j k w
i

Z y=∑  , {1},wi k K w W∀ ∈ − ∈  (7) 

, ,1, 1 , ,wi j w i K w
j

Z y+ =∑  ,i w W∀ ∈  (8) 

, ,1, 1 ,1, 1i j w j w
i

Z y+ +=∑  ,i w W∀ ∈  (9) 

Transition constraints (6) and (7) are enforced within the weeks, while 
constraints (8) and (9) represent transitions between consecutive weeks. Similar 
constraints have been proposed by Pinto and Grossmann [1]. 
 
• Process  and storage capacity constraints 

,  . 
w

i w i i,k,w
k K

P r θ
∈

= ∑  ,i w∀  (10) 

min max
,i i w iV V V≤ ≤  ,i w W∀ ∈  (11) 

The amount of product i being produced is given by its constant product rate 
and processing time. The amounts of material to be stored are bounded by 
minimum and maximum capacities.  
 
• Demand constraints 

, , 1 , , , = + -i w i w i w c i w
c

V V P S− ∑  ,i w∀  (12) 

, , , , 1 , , , , = + - c i w c i w c i w c i wD S−Δ Δ  , ,c i w∀  (13) 

Constraint (12) represents material balances, whereas constraint (13) addresses 
product backlogs per customer. 
 
• Objective function 
The optimization criterion adopted is the maximization of the operating profit 
by the sales of final products minus changeover, inventory and backlog costs. 

( ) ( ), , , , , , , , , , , ,
w

i c c i w i c c i w i j i j k w i w i w
i w c j K K

Pro PS S CB CT Z CI V
∈

⎡ ⎤
= − Δ − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑∑ ∑ ∑ ∑  (14) 

Integer cuts are proposed to eliminate degenerate schedules by allocating each 
selected product for each week to one slot while allowing the last product 
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manufactured per week to occupy more than one consecutive time slot. Other 
cuts involve changeovers required during each week. Moreover, upper bounds 
in the total manufacturing time available per week are imposed.  

4. Computational Results 

The proposed optimization-based model is validated in a real-world polymer 
processing plant that produces ten SKU types (A to J) by investigating different 
contract scenarios. Weekly demands for each individual SKU are established 
for ten customers over a period of four weeks. All products are processed at a 
maximum rate of 110 ton/week. Inventory cost and backlogging coefficients are 
10% and 20% of product prices, respectively; transition costs correspond to 
10% of transition times, which are shown in Table 1. This table also shows the 
prices of products for all customers, except for one of them (50% higher). 
Table 1 – Changeover times (min) and product prices 

 A B C D E F G H I J PSi,c ($) 
A - 45 45 45 60 80 30 25 70 55 10 
B 55 - 55 40 60 80 80 30 30 55 12 
C 60 100 - 100 75 60 80 80 75 75 13 
D 60 100 30 - 45 45 45 60 80 100 12 
E 60 60 55 30 - 35 30 35 60 90 15 
F 75 75 60 100 75 - 100 75 100 60 10 
G 80 100 30 60 100 85 - 60 100 65 8 
H 60 60 60 60 60 60 60 - 60 60 14 
I 80 80 30 30 60 70 55 85 - 100 7 
J 100 100 60 80 80 30 45 100 100 - 15 

Table 2 shows the demands for each SKU during each week as well as their 
total amounts. The same table shows the weekly aggregated backlogs. Note that 
the total backlog is 86.3 tons in the first week, because the maximum capacity 
of the plant is 110 tons, whereas overall demand is 195 tons. The backlog is 
slightly reduced in the following weeks due to spare capacity of the plant.  
Table 2 – Product demands and backlogs 

Weekly demands (ton)  Weekly backlogs (ton) SKU 1 2 3 4  1 2 3 4 
A 31 0 0 0  20.3 20.3 0.0 0.0 
B 12 15 0 15  12.0 11.5 0.0 0.0 
C 19 4 4 19  0.0 4.0 0.0 0.0 
D 36 0 6 0  0.0 0.0 6.0 0.0 
E 43 0 43 0  0.0 0.0 0.0 0.0 
F 24 0 0 24  24.0 0.0 0.0 0.0 
G 12 0 27 0  12.0 2.6 29.6 24.3 
H 3 27 3 9  3.0 0.0 0.0 0.0 
I 15 15 15 15  15.0 30.0 30.0 40.0 
J 0 27 0 27  0.0 0.0 0.0 0.0 

Total 195 88 98 109  86.3 68.5 65.6 64.3 
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Figure 1 shows the production schedule for the 4-week horizon.  
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Figure 1. Gantt Chart for a four-week schedule 

5. Conclusions 

This paper presented an optimization model for the planning of single stage 
continuous multiproduct plants. The model is based on a discrete/continuous 
representation of the time domain and effectively represents changeover and 
backlog constraints. Results were obtained for a four-week horizon. 
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