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Abstract 

Optimal placement of sensors based on different criteria viz., precision, 
reliability, cost, and fault unobservability has been an important area of research 
in the last few years. Most of the sensor location problems proposed in literature 
have been solved either using graph theoretic approaches or conventional 
mathematical optimization techniques. However, these techniques have not 
been able to satisfactorily address the issue of tradeoffs between multiple 
objectives, the determination of which is important from a designer’s 
perspective in terms of providing design flexibility. In this article, we address 
this challenge by proposing the use of Constraint Programming (CP) as a 
potential alternative to conventional solution techniques to determine the pareto 
optimal solutions. CP is an intelligent enumeration based optimization 
technique that uses domain reduction as its inference engine and has recently 
emerged as a powerful tool for solving combinatorial optimization problem in 
operations research. We also present efficient reformulation of some existing 
problems using the superior modelling power of CP. 

Keywords Constraint Programming(CP),sensor network design, multiobjective 
optimization.  

1. Introduction 

The importance of optimal placement of sensors has been discussed in [1-5]. 
Most of these methods use graph theoretic approaches [1,2] and either have 
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time issues [2] or do not guarantee optimality [1]. Mathematical programming 
techniques [3,4] have also been reported to have computational issues for larger 
flowsheet [3]. Moreover, most of the existing research has not satisfactorily 
addressed [4,5] the design of sensor networks in a multi-objective framework. 
In this article, we show the use of CP in addressing this deficiency for the 
design of combinatorial sensor network design problems. CP is an intelligent 
enumeration based optimization technique that uses constraints to reduce the 
domain of the decision variables. Its strong domain reduction inference engine 
has made it more suitable for discrete optimization problems when compared to 
the traditional mathematical programming techniques [6]. The important merits 
of CP stem from the fact that it does not distinguish between linear and non-
linear programming. Moreover, its superior modeling power and the ability to 
easily determine all the multiple global optima make it highly suitable for 
discrete optimization problems. Additional literature on CP can be found in [6]. 
In this article, we specifically show the superior modeling power of CP along 
with its use in the evaluation of trade-offs between various conflicting 
objectives by generating the pareto-optimal front. 

2. Sensor Network Design for fault diagnosis 

Fault detection and diagnosis (FDD) plays an important role in the operation of 
a chemical plant. Efficient FDD requires strategic placement of sensors. 
Bhushan and Rengaswamy [4] have designed sensor networks for the 
minimization of the maximum unobservability of all the faults. In their 
approach, every fault i has an occurrence probability (fi) and every sensor j has a 
failure probability (sj). A fault can remain undetected if the fault occurs and the 
associated sensors fail at the same time. This event has been termed as the 
unobservability of fault i which can be calculated as [4] 
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In the above expression, n denotes the number of variables, xj denotes the 
number of sensors on the jth variable and can be greater than one (incase of 
hardware redundancy), and bij is the i,jth  entry of the cause-effect bipartite 
matrix B. The faults form the rows of this matrix and the variables form the 
columns. If the ith fault affects jth variable, then the bij entry is one and is zero 
otherwise. 
1. Superior Modeling in CP 
The traditional mathematical programming techniques require the constraints to 
be in the form of inequalities and this sometime forces the inclusion of 
additional variables and constraints thereby potentially increasing the 
computational burden. In this section, we utilize the high expressive modeling 
power of CP to present an efficient reformulation of the MILP formulation (Eq. 
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(2)) available in the literature [4,5] for the design of sensor networks with 
minimum unobservability. Additionally, the objectives of minimizing the sensor 
network cost and the maximization of the network distribution were considered 
in decreasing order of precedence. 
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where α1 and α2 are the lexicographic constants, cj denotes the cost of the sensor 
measuring the jth variable, C* denotes the maximum available cost for the sensor 
network and m denotes the number of faults. The term nj takes a value of one if 
the jth variable is measured and zero otherwise and hence the term 
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the network distribution. We now present an efficient CP based formulation in 
Eq. (3) which is much smaller in size than the above MILP formulation without 
compromising on the rigor of representation. 
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It can be seen that the term min (xj,1) is equivalent to the term nj for it takes a 
value of one if the jth variable is measured and zero otherwise. Thus the n binary 
variables nj along with their constraints can be eliminated. Similarly, the term U 
in Eq. (2) corresponds to the maximum unobservability of the m faults and this 
can be easily represented by the term ( )max log ii M

U
∀ ∈  thereby additionally 

eliminating the m unobservability constraints. Table 1 compares the 
dimensionality of the MILP and CP based formulations. It can be seen that the 
CP model is much smaller than the MILP based model. This reduction in 
dimensionality can translate to potential savings in the computational burden. It 
has to be noted that unlike in the MILP formulation, the number of binary 
variables and the number of constraints are independent of the number of 
process variables and the number of faults in the CP based formulation. 
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Table 1. Comparison of dimensionality of MILP and CP Formulations  

Formulations Binary Variables Integer Variables Continuous variables Constraints 

MILP 
Formulation 

Network n 1 m+1 

CP Formulation 0 n 0 1 

2. Multi-objective Optimization: Pareto Front 

The lexicographic optimization approach for multi-objective optimization [4,5] 
suffers from the drawback that it requires apriori knowledge of the precedence 
level in the various objective functions. In reality, this precedence level may not 
be explicitly known to the designer and hence the designer may be interested in 
evaluating tradeoffs between various conflicting objectives without specifying 
any precedence levels. Such trade-offs are characterized as pareto-optimal front 
and are the set of non-dominated solutions [4,5]. In the following discussion, we 
exploit the ability of CP to solve feasibility problems to determine such pareto-
front. Also, we assume that the minimization of the unobservability is the 
primary objective and the designer needs to study the tradeoffs between the 
network distribution and the cost of the sensor network. The pareto-front is 
determined using the following two steps.  
Step 1: This step involves the solution of an optimization problem to determine 
the minimum unobservability, optimalU  
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Step 2: This step involves the solution of a feasibility problem to determine all 
the solutions that have the unobservability equal to optimalU  
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The set of solutions to Step 2 inherently contain all the pareto-optimal solution 
and can be obtained by a simple, straight forward post-optimality analysis. The 
cost of such solutions and network distribution can be easily generated from the 
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sensor network configuration. Thus, we will be able to generate all the trade-off 
solutions between the network distribution and the cost of sensor network. An 
important point to be noted is that the set of solutions to Step 2 also contain all 
the realizations (solutions with identical set of objective function values but 
with different sensor network configuration) for each of the pareto-point. 
Further, all these tradeoff solutions have minimum unobservability, optimalU . It 
can be easily seen that this procedure can be applied to optimization problems 
for the determination of multiple global optimal solution as well. We now 
demonstrate these ideas on the TE case study. 

2.1. Case Study: Tennessee Eastman (TE) Process 

We demonstrate the suitability of CP to solve the above formulations on the 
benchmark TE problem. This problem has 50 variables and 15 faults and has 
been taken from literature [4,5]. The list of variables and faults can be found in 
[5]. The costs of the sensors along with the fault occurrence and sensor failure 
probabilities have been taken from [5] and are not reproduced here. The results 
presented in this section are based on the assumption of single fault resolution 
case after the removal of the redundant constraints [4,5].  

2.2. Results 

1. Dimensionality of the problem 

 
Based on Table 1, it can be seen that the MILP formulation will have 50 
additional binary variables and 65 additional constraints compared to the CP 
formulation. While for this problem, no significant computational benefit was 
observed, in general, as the number of variables increase, this reduction in 
dimensionality can translate to reduction in the computational burden. 
 

2. Pareto-optimal fronts 

 
Figure 1 shows the pareto-fronts between the network distribution and the cost 
of the sensor network for three different available costs: C*= 500, 6000 and 
10000. The number of realizations at each pareto solution is also shown. For 
example, solution A for C*= 500 has two sensor network configurations that 
have a network distribution=1 and a cost=100 units. Thus, the designer can 
choose a sensor network configuration based on the different tradeoffs.  
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Figure 1: Pareto-optimal fronts between network distribution and cost of the sensor network 

3. Conclusions 

In this article, we have shown the suitability of CP to solve the combinatorial 
sensor network design problems. We have shown the superiority of CP to 
efficiently model the sensor network design problem and its applicability to 
determine the pareto-front for various conflicting objectives. Thus, it can be 
seen that the use of CP enables efficient modeling and also gives a wider choice 
of solutions along with the tradeoffs for the multi-objective optimization 
problems. 
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