
17th European Symposium on Computer Aided Process Engineering – ESCAPE17
V. Plesu and P.S. Agachi (Editors)
© 2007 Elsevier B.V. All rights reserved. 1

Generic vs. Engineered Evolutionary Algorithms in
Batch Scheduling with Recourse

Guido Sand,a Thomas Tometzki,b Jochen Till,b Maren Urselmann,b
Michael Emmerich,c and Sebastian Engellb

aABB Corporate Research, 68526 Ladenburg, Germany, guido.sand@de.abb.com
bProcess Control Laboratory, Universität Dortmund, 44221 Dortmund, Germany,
 {t.tometzki | j.till | m.urselmann | s.engell}@bci.uni-dortmund.de
cLIACS, University of Leiden, 2333 CA-Leiden, The Netherlands, emmerich@liacs.nl

Abstract

This paper considers a case study of a batch chemical scheduling problem on a
moving horizon with significant uncertainties in demand. The scheduling prob-
lem is represented as a two-stage stochastic integer program and solved by a
stage-decomposition based hybrid algorithm with an evolutionary algorithm for
the first-stage and mathematical programming for the second-stage. We de-
scribe an engineered evolutionary algorithm with systematic inclusion of proc-
ess knowledge versus a generic evolutionary algorithm. The former exploits the
hierarchical structure of operation, batching and scheduling decisions in the so-
lution space representation and the mutation operator. Comparative numerical
experiments show that the coverage of the feasible search space is significantly
improved and the convergence to good solutions is faster.

Keywords: batch scheduling, evolutionary algorithms, knowledge integration

1. Introduction

The information and decision structure in scheduling on moving horizons with
uncertainties can be reflected by a mixed-integer recourse model with a finite
number of scenarios in the form of a two-stage stochastic integer program. The

2 G. Sand et al.

here-and-now decisions (first-stage) which have to be made under uncertainty
are compensated by recourse decisions (second-stage). In [1] the application of
a hybrid stage decomposition based algorithm to a case study (see Section 2)
was presented. Compared to an exact scenario decomposition based algorithm
[2] the hybrid algorithm improves the initial solution faster for a while but then
it stagnates at suboptimal solutions. It is supposed that the reason is that hybrid
algorithm covers the highly constrained search space insufficiently. The aim of
the present work is to remedy the shortcomings of the generic evolutionary al-
gorithm for the case study by an engineered evolutionary algorithm.

2. Problem statement and generic evolutionary approach

2.1. Chemical Batch Scheduling Case Study

Fig. 1 shows the layout of a multi-product batch plant for the production of ex-
pandable polystyrene (EPS) [1]. Two types A and B of the polymer in five grain
size fractions are produced from raw materials E. The preparation stage is not
considered here. The polymerization stage is operated in batch mode and is con-
trolled by ten recipes. Each recipe defines the product (A or B) and its grain size
distribution. Each batch yields a main product and four coupled products. The

capacity of the polymerization stage
constrains the number of batches to
12 in each two-day period. The
batches are transferred into two
semi-continuously operated finish-
ing lines which fractionate the grain
sizes. The capacity of each finishing
line is between 5 and 12 batches per
period in case it is operated, and 0

otherwise. The operation mode can be changed every second period. The
scheduling decisions which have to be made are operation decisions on the fin-
ishing lines in each period, batching decisions on the numbers of polymeriza-
tions of each EPS-type in each period, and scheduling decision on the receipies
used in each polymerization. The decisions in periods 1 to 3 are considered as
first-stage, those in periods 4 and 5 as second-stage decisions. The uncertainty
in the demands is represented by 64 scenarios of equal probability. The profit to
be maximized is calculated from sales revenues, production costs, storage costs,
and penalties for lateness and for finishing line start-ups and shut-downs.

2.2. Stage decomposition based algorithmic approach

The main idea of stage decomposition is to remove the ties between the second-
stage scenario subproblems by fixing the first-stage decisions. The scenario

Fig. 1: The flow sheet of the multi-product batch

Generic vs. Engineered Evolutionary Algorithms in Batch Scheduling with Recourse 3

subproblems are of significantly smaller size than the full two-stage problem.
The master problem is a function of the vector of first-stage variables x only:

 ∑
=

∈≤+
Ω

ω
ωωπ

1

T .X,.t.s)(Q)=f(min xbAxxxcx
x

 (1)

The evaluation of the second-stage value function Qω(x) for a given x requires
the solution of Ω independent MILP subproblems over the second-stage vari-
ables yω:
 Ω.,1,=ω∀Y∈, -s.t.min=)(Q ωωωωωω

T
ωω

ω

…yxThyWyqx
y

≤ (2)

The linear constraints of the master problem (1) are scenario independent, while
the parameters of the linear second-stage constraints in (2) may vary from sce-
nario to scenario. The vector of the first-stage variables x appears as a vector of
fixed parameters in the constraints of the second-stage scenario problems. First-
stage feasible solutions do not necessarily have feasible solutions in the second-
stage due to the implicit constraints in (2). The objective is to minimize the sum
of the costs of the first-stage decisions and to the expected costs of the second-
stage decisions, weighted by the vectors c and qω. The finite sets X and Y may
contain integrality requirements. The main algorithmic idea is to address the
master problem given by (1) by an evolutionary algorithm. To evaluate f(x), the
Ω subproblems given by (2) are solved independently by a MILP solver.

2.3. Generic evolutionary algorithm

A realization of this algorithmic approach was presented in [1] using the mixed-
integer (μ,κ,λ)-evolution strategy from [3]. Each individual of the population
represents a search point xk=(x1,…,xn) by its object parameters, in addition to
mutation strength parameters sk=(s1,…,sn) which affect the mutation operator. In
the evaluation of x, for unsatisfied constraints Ax≤b the fitness function f(x) is
replaced by the penalty function p(x)+fmax which is defined as the sum of con-
straint violations according to p(x)=∑j(Ajx-bj) and an upper bound fmax of f(x)
for feasible solutions x. After the evaluation, λ offsprings are generated by λ-
fold application of the mutation operator. It perturbes each variable xi by a ran-
dom number drawn from the symmetric difference of two discrete geometric
distributions. The distribution depends on the dimension n and the parameter si
which is modified log-normally [3]. To maintain the bounds for xi, values out-
side the bounds are mapped onto the next bound. A truncation selection chooses
the μ best (1≤μ≤λ) individuals out of the union of μ parents and λ offsprings
which do not exceed the maximum age of κ for the next interation loop.

4 G. Sand et al.

2.4. Analysis of the search space of the generic algorithm

The natural representation of the search
space for the case study is given by a
30-dimensional integer vector (one
variable for the number of each recipe
in the 3 first-stage periods). Each vari-
able is bounded between 0 and 12 lead-
ing to a 30-dimensional box-
constrained search space with a cardi-
nality of 1330 ≈ 2.62·1033 . The capacity
of the polymerization stage constrains
each sum of 10 variables belonging to
one period to 12. Analogously, the ca-
pacity of each finishing line constrains

the sum of 5 variables to the disjunctive sets {0}∪{5,…,12}. The sum of the al-
located capacities of both finishing lines in one period is equal to the allocated
capacity of the polymerization stage. Fig. 2 shows the subsets of points which
satisfy all capacity constraints for one period. Each aggregated point represents
a 10-dimensional subspace. The cardinalities of points for the subsets are 1 for
the set in the origin (no finishing line operated, symbolized as 00), 6,062 for
each set on the axes (one finishing line operated, symbolized as 01 or 10), and
196,056 for the set in the center (both finishing lines operated, symbolized as
11). The geometry of capacity constraints is identical for all periods. The opera-
tions state constraints apply to pairs of operation states of the same finishing
line in two successive periods leading to 25 (out of 64) feasible operation state
combinations. The cardinality of the set of points which satisfy all constraints in
all three periods is approx. 8.50·1015. A ratio of feasible to infeasible solutions
of only 1:3·1019 highlights that the optimization problem is highly constrained.

3. Engineered approach

3.1. Drawbacks of the generic evolutionary algorithm

In previous work [1] it was found that the generic evolutionary algorithm typi-
cally converges towards a solution with operation state vector (11 11 11) even
though a better solution is known that has a different operation state vector, e.g.
(01 11 11) (the tupels represent periods 1, 2, 3). The aggregated representation
of the search space as developed in section 2.4 can help to identify the reasons
for the poor results. Fig. 3 shows a typical evolution of the allocated capacities
in the first period for both finishing lines during 2 CPU-hours. The different
shades of grey represent the quartiles and the median of the population. The in-
teger variables were initialized randomly according to a uniform distribution

Fig. 2: Capacity constraints and feasible solu-
tions in the space of allocated capacities.

Generic vs. Engineered Evolutionary Algorithms in Batch Scheduling with Recourse 5

with an expected value of
6. Consequently, the ini-
tially allocated polymeri-
zations (sums of 5 vari-
ables) are nearly normally
distributed with an ex-

pected value of 30. It can be observed that the penalty function forces the object
parameters towards solutions with the operation state vector (11 11 11). The
corresponding subset of polymerization vectors is the largest one and nearest to
the initial population. After reaching this subset the population stays in this sub-
set due to the following reasons:
1. Other subsets of feasible solutions are at least one order of magnitude

smaller than the subset corresponding to the operation vector (11 11 11).
2. Another feasible subset must be hit directly due the truncation selection op-

erator and the "feasible over infeasible"-penalty in the fitness function.
3. The distance between the feasible subsets in the space of allocated capaci-

ties is large compared to the variance of the mutation distribution.
4. The mapping function after the undirected mutation introduces a bias into

the offspring distribution away from the boundaries.

3.2. Engineered evolutionary algorithm

The analysis in Section 3.1 confirmed the hypothesis that the space of feasible
solutions is not well covered by the generic evolutionary algorithm. The aim of
algorithm engineering here is to improve the coverage of the feasible search
space. In contrast to the natural representation used by the generic algorithm, a
specific representation of the individuals is used here.
The representation reflects the hierarchy of decisions as mentioned in Section
2.1 namely operation, batching and scheduling. A decision tree is constructed
by propagating the operation and capacity constraints from the root to the leaves
while the decisions are disaggregated such that the full tree exactly represents
the total feasible set of polymerization vectors. On each hierarchical layer, the
feasible decisions are represented by layer-specific decision sets. Altogether,
each solution is represented by twelve object parameters, in addition to one
strategy parameter representing the mutation strength. The object parameters are
initialized such that all paths in the decision tree have the same probability.
According to this initialization scheme, the largest subset with the operation
state vector (11 11 11) is still privileged, but the probability for other subsets is
significant. Corresponding to the hierarchical representation of the feasible set
of solutions, a hierarchical mutation operator was designed for the variation of
individuals. Its design is based on minimal moves which are applied sequen-
tially to each hierarchical layer from the root to the leaves. In each mutation,
minimal moves are executed as long as the sum of their weights does not exceed
the mutation strength, where the weights decrease from the root to the leaves.

Fig. 3: Evolution of the allocated capacities (generic algorithm).

6 G. Sand et al.

Each weight is proportional to the estimated impact on the change of the objec-
tive function of the corresponding minimal move. A minimal move changes the
solution on a layer to a randomly chosen neighbour of the decision set. Possible
minimal moves for the operation state 00 in the first period are 01 and 10 with
the same probability, whereas state 11 is reached by at least two minimal
moves. The mutation strength is adapted similar to the generic algorithm.

The engineered algo-
rithm covers the set of
feasible solutions sig-
nificantly better than
the generic algorithm.
The main reason is

that according to the hierarchical mutation scheme the allocated capacities are
controlled by the operation states and not by the polymerizations. The probabil-
ity of a mutation of an operation state does not depend on the cardinality of the
corresponding feasible subset of polymerizations. Fig. 4 shows the evolution of
the allocated capacities corresponding to Fig. 3. After a few generations in op-
eration state (11 11 11), the first solution with operation state vector (01 11 11)
is found very fast. The fitness of the best solution
found is shown in Fig. 5 on a logarithmic scale
over CPU-time. The fitness converges signifi-
cantly faster to a significantly better level for the
engineered algorithm than in the generic case.

4. Conclusions and further work

The present work demonstrated that the inclusion of problem specific knowl-
edge can significantly improve the efficiency of an evolutionary scheduling al-
gorithm. The analysis showed that the highly constrained search space in not
well covered by the generic algorithm. An improvement is expected from com-
bining its metaheuristics with the ability of specific mutation operators for con-
strained aggregated parameters to cover all feasible subsets of the search space.

References

1. J. Till, G. Sand, M. Urselmann and S. Engell, Computers and Chemical Engineering,
(2006) in press

2. C. Carøe and R. Schultz, Operations Research Letters, 24 (1999) 37
3. I.C. Parmee (ed.), Evolutionary Design and Manufacture, Springer, NY, 2000, pp. 55-67
4. Y. Davidor, H.P. Schwefel and R. Männer (eds.), Parallel Problem Solving from Nature,

Springer, Berlin, 1994, pp. 193-197

Fig. 4: Evolution of the allocated capacities (engineered algorithm).

0 2000 4000 6000 8000
100

101

102

103

CPU-time [s]

fit
ne

ss

generic
engineered

 Fig. 5: Evolution of the fitness.

