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Abstract 

Multivessel batch distillation (MBD) has been proposed and investigated to 
meet changing demands of the specialty and fine chemistry. This contribution 
addresses the multiobjective optimisation of a MBD with one intermediate 
vessel for the first time. The process is highly non-linear and inherent dynamic. 
Design and operating parameters has been considered simultaneously. The 
problem formulation results in a mixed integer dynamic optimisation (MIDO) 
problem. It is solved using a sophisticated framework based on a modified 
differential evolution algorithm (MDE). The challenging non-linear dynamic 
model is solved in Aspen Custom Modeler. The start-up phase, usually 
neglected, has been taken into account. Selected results of the multiobjective 
MIDO will be discussed. 
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1. Introduction 

Multivessel Batch Distillation (MBD) can be considered as a superstructure of 
all batch distillation configurations. It consists of a reboiler, a condenser, a 
distillate receiver, N-1 thermally coupled column sections and N-2 intermediate 
vessels where N indicates the number of components. It is generally 
recommended to operate the column with infinite reboil and reflux ratio to 
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exploit the maximum separation efficiency. The products are simultaneously 
collected in associated vessels applying an appropriate process control strategy, 
so that no off-cuts have to be reprocessed. A MBD with one intermediate 
vessel, which is focus of this contribution, is illustrated in Fig. 1. 
 
MBD has been subject to investigations over the last decade, whereas primarily 
process control strategies have been proposed. Only a few works can be found 
dealing with single objective global optimisation of a MBD with two 
intermediate vessels [1,2]. Global optimisation studies have been executed on 
the basis of evolutionary algorithms and dynamic optimisation. However, the 
weighting of the factors of the objective function is always difficult to handle in 
the design phase of a process. Moreover, the optimisation results in one single 
solution on which a decision has to be made. Using multiobjective optimisation, 
one can hold off on this decision to a later point of time. This guarantees more 
flexibility, since a posterior decision making can include superior information. 
 
Our contribution addresses the multiobjective MIDO of a MBD with one 
intermediate vessel (Middle Vessel Batch Distillation). Since the process 
variables are inherently time-variant, an  integrated complex dynamic 
optimisation has been performed. 

2. Problem formulation 

Multiobjective optimisation often leads to the problem to distinguish between 
investment costs (IC) and operational costs (OC). Both can be estimated using 
appropiate correlations from literature or in-house estimation methods. Then, 
OC is a function of the operating parameters uo and the time t while IC depends 
on the design parameters ud. Since the reboiler duty has been fixed during the 
optimisation runs of which the results are shown in this contribution IC is 
directly related to the number of theoretical stages in the upper and lower part of 
the column Nth,k. The optimisation problem can be written as follows: 
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where g indicates the dynamic process model, x the state variables, ud the design 
variables and uo the operation variables, i.e. the refluxes from N-1 product 
vessels Li. wi denotes the mass fractions of the key components while h is an 
evaluation function that is used to improve the dynamic optimisation. ∆wi,j 
indicates the difference of the mass fractions between two time intervalls during 
the dynamic optimisation. The indices i and j denote the number of components 
and the number of time intervalls N∆t, respectively. The process has been 
discretised into six time intervalls. Design and operating parameters are, of 
course, constrained to reasonable ranges. However, the integrated approach of 
combining global optimisation and dynamic optimisation leads to a large 
number of possible combinations which demands a robust solver. In the next 
section, our optimisation approach is presented. 

3. Multiobjective MIDO framework 

The MIDO has been solved in MS Excel while the dynamic simulation has been 
executed in Aspen Custom Modeler. During the optimisation initial parameters 
are transferred from the optimisation framework to Aspen Custom Modeler to 
run the simulation. Afterwards, necessary values are transferred back to 
evaluate the objectives using the provided interface. 

3.1. Multiobjective global optimisation using evolutionary algorithms 

Compared to other methods, the class of evolutionary algorithms (EA) is the 
only method capable of finding a Pareto optimal set in a single optimisation run. 
Unfortunately, many special solution procedures exist, but no standard solver 
that can be easily applied to a given problem. Therefore, we developed the non-
constrain-dominated sorting MDE (ncsMDE) on the basis of a MDE algorithm 
that will be presented in the following chapter.  
 
Originally, the MDE algorithm, developed by Babu and Angira [3], was 
intended to solve single objective global optimisation problems. The main 
advantage of this algorithm is its robustness. The benefit can be explained by 
the facts that only a few solver parameters have to be specified and a bad solver 
tuning just prolong the time of an optimisation run. A solution is still 
guaranteed. The flowsheet of the algorithm is shown in Fig. 2. In the first step, 
m random individuals are generated to form the population (Initialisation). To 
evaluate the 0th generation, m dynamic simulation runs are executed in Aspen 
Custom Modeler. Afterwards, the fitness of each individual is determined. This 
is done using the characteristics of the non-dominated sorting genetic algorithm 
(NSGA) proposed by Srinivas et al. [4]. Violations of constraints are considered 
using the concepts of the constrained tournament method proposed by Deb [5]. 
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Fig. 1: Middle Vessel Batch Distillation                             Fig. 2: ncsMDE flowsheet 

The actual improvement of indivduals occurs by passing a series of genetic 
operators m times. In the mutation step, the MDE generates a new individual 
(noisy random vector NRV) by adding a weighted difference vector between 
two randomly chosen individuals to a third one. The target vector and the NRV 
are taken to create one new individual, the so-called trial vector TV. 
 
The probability of preferring a genome of the target vector to the one of the 
NRV has to be set in advance (Crossover). The objective function values of the 
TV are determined after a dynamic simulation run (Evaluation). In the 
following selection step, the constrained tournament method is used to compare 
the TV to the target vector. If the TV perfoms better, it will be directly available 
in the next mutation step by replacing the target vector. This leads to a 
significant increase in velocity. At the end of the loop, the next generation is 
evaluated and the optimisation terminates if the stopping criteria are met. 
 
The efficiency of the algorithm has been proven solving several problems of 
different level of complexity. Non-convexity has been taken into account as 
well as multiple inequality constraints. Two problems will be used in the 
presentation to introduce the concept of the algorithm in detail. 
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3.2. Modelling and simulation framework  

Studies on batch distillation usually used a simplified approach to initialise the 
process, that is, the column trays are filled and contain liquid at feed 
concentration and boiling temperature. These assumptions lead to errors in the 
characterisation of thermodynamic and hydraulic profiles at the beginning of 
each optimisation run. The influence on the resulting optimal solution is still 
unknown and work is in progress. Since optimal switching of manipulated 
variables is expected to take place before the column reaches its hydraulic 
steady state, consideration of the start-up is strongly recommended. Therefore, 
we have developed and presented a dynamic tray-to-tray equilibrium model 
model that is capable of dealing with the physical phenomena occurring during 
this phase. Details can be found in [6,7]. For the first time, the start-up is 
encapsulated in the following investigations. 

4. Pareto optimal design and control of multivessel batch distillation  

4.1. Case study 

The optimisation strategy has been applied to an industrial scale distillation 
column which aim was to separate a ternary mixture of hexanol, octanol and 
decanol subject to high product qualities (wi > 0.99 kg/kg). The feed contains 
400 kg of each component. In order to assure a reasonable vapour load, the 
reboiler duty has been set to 200 kW. The individuals are characterised by their 
genomes containing values of the number of theoretical stages in both column 
sections, two refluxes from the product vessels, and the length of six time 
intervalls. As a consequence of the available computational power, the 
population size was limited to 20. The optimisation has been terminated after 
2000 generations. At this point of time, no further significant improvement of 
the Pareto-optimal front has been observed. 

4.2. Results and discussion 

Fig. 3 shows the the number of feasible individuals and the mean violation of 
constraints as a function of the number of generations. Two facts can be 
observed. The first feasible individuals have been found after 600 generations 
because of the large number of possible genomes. Despite the stochastic 
character of the solution method, the mean violation of constraints is rapidly 
decreased. This is a consequence of the constraint tournament method that has 
been adapted. Fig. 3 also illustrates the Pareto-optimal front and the first two 
dominated fronts after 2000 generations. The process time is displayed in 
relation to the batch time needed when conventional temperature control is  
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Fig. 3: Pareto-optimal solution and solver efficiency 

applied (reference). It can be seen that the optimal solution perform better than 
temperature control. The trade-off between IC and OC can be clearly seen. 

5. Summary and Conclusion 

For the first time, an integrated approach to multiobjective MIDO of a MBD 
with one intermediate vessel has been presented. The optimisation problem has 
been solved using an efficient evolution strategy. Main advantage of the 
algorithm is its robustness that makes it possible to find the global optimum 
within a wide range of existing solutions and a much wider range of individuals. 
The dynamic optimisation permitted free time intervalls and included the startup 
phase. A convergent Pareto-set has been achieved after 2000 generations. The 
process time can be reduced compared to a conventional temperature control.  
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