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Abstract 

This work presents a two-level methodology for the optimal design and MINLP 
synthesis of flexible chemical processes with known probability distributions of 
uncertain parameters. This methodology comprises synthesis at 1) nominal level 
and 2) approximate stochastic level. Both levels rely on  considerable reduction 
of discrete points. The first level provides good starting and flexible structure 
for the second level, therefore, the computational effort is reduced and larger 
problems with many uncertain parameters, e.g. 10 to 100, can be solved. The 
use of this methodology is illustrated by the synthesis of a flexible heat-
integrated methanol process flow sheet. 
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1. Introduction 

The design and, in particular, the synthesis of large flexible process flow sheets 
with a significant number of uncertain parameters is still a challenging problem. 
The main reason is that such problems are usually solved by the discretization 
of an infinite uncertain space, which may cause an enormous increase in a 
problem’s size. Several authors have proposed various approaches for 
facilitating the process synthesis under uncertainty [1-3]. However, a step 
forward should be taken in order to relate flexible synthesis to real-size 
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applications. The main purpose of this contribution is to develop a robust and 
reliable strategy for the MINLP synthesis of flexible process flow sheets, which 
can solve those larger synthesis problems having a considerable number of 
uncertain parameters. This approach can also be applied to NLP design when 
process flowsheets are considered at fixed topology. 

2. Methodology description 

The main idea is to perform the synthesis through several levels, from a less 
accurate simple level to more accurate, approximative stochastic level, which is 
computationally more demanding. As the first level generates a good initial 
structure for the second level, the latter needs less iterations and the 
computational effort can be significantly reduced. 

2.1. Two-level MINLP synthesis for flexible flow sheets 

The flexible synthesis is performed at both levels simultaneously at several 
critical points, θc, c∈CP, and at one point, θap, which is used for approximating  
the objective function’s expected value. The latter is usually rather close to the 
objective value obtained at the nominal point. Therefore, the objective function 
at the first level is evaluated simply at the nominal values of uncertain 
parameters, θap=θ N. At the second level, the central basic point [4] takes this 
role in order to account for possible deviations in the expected value from the 
nominal point, θap=θCBP. The central basic point is determined through one-
dimensional Gaussian integration, which will be described in Section 2.3.  
The mathematical problem for flexible MINLP synthesis either at the first or at 
the second level has the following form: 
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In the model (P1), y represents vector of binary variables for the selection of 
process topology. x, z and d are the vectors of the state, control and design 
variables (sizes of process units), respectively. C is the economic objective 
function, g and h are the vectors of (in)equality constraints and gd represents the 
design specifications. The left group of constraints represents the optimization 
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at the single point, θap, which approximates the expected objective function. The 
right group of constraints refer to the critical points, θ c, from the set, CP. These 
points are always presented in synthesis models, as they assure sufficient sizes 
of process equipment for feasible operation. They have to be determined in 
advance for each flow sheet selected by the optimization algorithm, as will be 
described in the next subsection. Flexible synthesis is then performed by means 
of an MINLP algorithm, e.g. Outer Approximation/Equality Relaxation 
algorithm (Fig. 1).  
Fig. 1. Two-level strategy for flexible MINLP synthesis 

2.2. Determination of critical points 

Critical points in this work are defined as those combinations of uncertain 
parameters that require the largest overdesign of process units for given 
deviations of uncertain parameters. Equipment dimensions have to suit all 
predefined deviations at minimum cost. This means, that the flexibility index of 
the optimal flexible solution, as defined in the literature [5], has to be equal or 
very close to 1. In our recent work [6,7], we proposed various schemes for 
identification of critical points, however, it has emerged during this work that 
simplified noniterative formulation is, for now, the most appropriate for large 
process flow sheets.  
This formulation is mathematically described by a non-linear model (P2) where 
the binary variables are fixed, yfx, according to the temporarily selected flow 
sheet structure. Uncertain parameters are transformed into variables that can 
vary between the selected lower and upper bounds, θ LO and θ UP.  
Assume that the number of design variables in particular structure is nd. Then, 
NLP problem (P2) is solved for nd-times by searching for the maximum value 
of each design variable di, at minimum cost. This is achieved by subtracting the 
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design variable multiplied by a large scalar M, from the cost function C. The 
result of nd subproblems are the critical values of uncertain parameters which 
are then merged into the smallest set of critical points. 
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2.3. Determination of central basic point  

The determination of the central basic point was extensively described in our 
previous work [4]. In order to summarize the procedure briefly, it should be 
emphasized that coordinates of this point are determined by one-dimensional 
stochastic integration of each uncertain parameter over its Gaussian quadrature 
points. In this integration the remaining uncertain parameters are held at their 
nominal values while the critical points are included to assure flexibility. 
Objective values obtained at five Gaussian points are fitted into the curve which 
correlates values of particular uncertain parameter with the objective function 
values. The basic coordinate is then determined from this curve as the value of 
uncertain parameter at which the optimal objective function is equal to the 
expected objective function determined during one-dimensional integration. The 
basic coordinates of all uncertain parameters constitute a vector of central basic 
point which is used for the approximation of the expected objective function. 

3. Synthesis of flexible heat-integrated methanol process 

This methodology was applied for the synthesis of a flexible heat-integrated 
methanol process (Fig. 2) where methanol is produced from hydrogen and 
carbon oxide. This example was taken from the literature [8] and the prices 
were updated. This flow sheet is medium-sized with 32 streams, 4 hot and 2 
cold process streams. Eight binary variables were used for selection between 
two feed streams, between one- or two-stage compression of the feed stream, 
two reactors, and one- or two-stage compression of the recycle stream. 
Additional 38 binary variables were assigned for the selection of heat matches 
between process streams, as well as between process streams and utilities in the 
four-stage MINLP heat-integration superstructure [9].  
24 uncertain parameters were defined with nominal values and deviations: 
annual production, temperatures, pressures, compositions and the prices of the 
feed streams, product, electricity, steam and cooling water, heat transfer 



A Methodology for the Approximate Stochastic Synthesis of Flexible Chemical 
Processes 5 

coefficients, conversion parameters in the reactors and efficiencies of the 
compressors. 

Fig. 2. Methanol process superstructure 

3.1. Deterministic non-flexible synthesis  

Deterministic synthesis at the nominal values of uncertain parameters with no 
flexibility consideration yielded a solution with a profit of 37.37 MUSD/yr. The 
optimal structure was comprised of more expensive feed stream (FEED-2), 
double-stage feed compression, cheaper reactor with lower conversion (RCT-1), 
and one-stage recycle compression. This structure is a threshold problem with 
two process heat exchangers, two coolers, and no heaters. It was determined 
that even small deviations in the uncertain parameters from the nominal values 
result in infeasible solutions. 

3.2. Nominal flexible synthesis 

Flexible synthesis was performed at the nominal point and at the critical points. 
MIPSYN, an MINLP process synthesizer with a modified OA/ER algorithm 
[10] was used to perform five MINLP iterations yielding the same optimal 
topology than deterministic synthesis. The profit was significantly reduced to 
33.04 MUSD/yr, mostly because of larger compressors on the feed stream, a 
larger reactor, and some exchangers. However, flexibility index of this solution 
was determined for deviations of influencing uncertain parameters yielding a 
value of 1.004, which indicates a flexible solution. Optimal design was tested 
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by applying Monte Carlo simulation over 4000 randomly selected points that 
assure the mean value within an error of ±0.23 MUSD/yr at 95 % confidence 
limit. The expected value obtained with Monte Carlo was 32.82 M$/yr which 
indicates that the nominal result (33.04) is within required confidence interval. 

3.3. Approximate stochastic flexible synthesis 

In this MINLP step, the normal distributions of uncertain parameters were 
defined with mean values equal to the nominal values and total deviation 
intervals equal to six-times standard deviations (6σ). The central basic point 
was determined for the optimal structure obtained at the previous level and the 
synthesis started at this point, and at the critical points. The approximated 
expected profit of the optimal structure is 32.72 MUSD/yr. The values of the 
design variables were close to those obtained using the nominal approach. 
Monte Carlo simulation yielded the expected profit of 32.81 MUSD/yr. This 
may indicate that, in the case of normal distributions of uncertain parameters, 
nominal point could give sufficiently accurate approximation of the expected 
value and exhaustive stochastic optimizations can thus be avoided. 

4. Conclusions 

A strategy is presented for the MINLP synthesis of flexible process flow sheets 
with many uncertain parameters. The procedure is evolutive and progresses 
from simple, less accurate steps to more demanding, but more accurate steps. 
The lower levels assure good initial flexible structures for higher levels which 
then converge faster. Moreover, it is expected that in many cases optimal 
topology could be found at the lower level, while at the upper level only fine 
adjustments of the design variables and the expected objective value are 
performed. A further motivation is thus to improve methodology in order to 
obtain flexible process flow sheets in just a few iterations. 
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