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Abstract 

This paper introduces a Moving Finite Elements Method (MFEM) based on 
cubic Hermite polynomial local approximations to handle Population Balance 
Equations (PBE) modeling breakage phenomena. The adequacy and 
performance of the MFEM framework are tested in two case studies involving 
breakage: a benchmark problem with known analytical solution and the 
hydrolysis of starch. Both examples emphasize the stability and accuracy of 
MFEM in handling PBE models, thus proving its suitability for this kind of 
problem. 
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1. Introduction 

Particulate and emulsion systems have always been present in nature and in 
chemical and biological processes. Many of the recently developed products 
also correspond to good examples of dispersed multiphase systems and this led 
to a growing interest on the development of models for these particulate 
systems characterized by both a continuous and a dispersed phase. The 
population balance models (PBE), based on the extensity density balance 



2  B.P.M. Duarte et al. 

regarding the particles, enable to describe their behavior in a particular 
surrounding environment. 
The numerical approaches employed to solve PBE models fall into two main 
strategies: i. solution representation by global/local basis function 
approximations, encompassing all finite element schemes; ii. Discretized 
Population Balance (DPB) methods, based on the concept of pivot. For a 
detailed analysis of DPB methods see [1]. In recent years Finite Elements 
methods became quite appealing to handle PBE models, since they provide a 
general framework [2]. The literature on the application of adaptive grid 
strategies to PBE models is scarce, although these schemes are remarkably 
promising since some PBE models develop moving fronts and sharp dynamics 
caused by the initial distribution. Most of the adaptive techniques applied to 
PBE are based on DPB methods, exploiting the moving pivot concept 
introduced by Kumar and Ramkrishna [3] (see for instance the work of 
Attarakih et al. [4]). Mahoney and Ramkrishna [5] presented an approach based 
on the combination of a Galerkin-finite elements scheme with the method of 
characteristics to capture the motion of pivots. Tsang and Rao [6] presented a 
Moving Finite Elements explicit approach based on linear approximations to 
handle PBE models. In this work a general Moving Finite Elements approach 
based on cubic Hermite polynomial approximations and the Method of Lines to 
handle PBE models comprising breakage terms are used. 

2. Moving Finite Elements Method formulation 

The MFEM, firstly proposed by Miller and Miller [7], stands on the 
minimization of the residuals all over the domain Ω =[0, tf]Error! Objects 
cannot be created from editing field codes.[0, V], where tf is the maximum 
integration time and V the limit of the spatial domain. A general PBE model is 
represented as: 
 

( )tv,,vn,nn,=n vt ∫ d ℓ        (1.a) 
( ) ( )tv,,vn,nn,=tn v ∫ d 0, β       (1.b) 
( ) ( )vf=v,n 0         (1.c) 

 
where n(v,t) represents the density of particles with v dimension at time t, nt 
stands for its time derivative, nv for its spatial derivative, ( )•ℓ  is an operator 
comprising differential, integral and non-linear transformations of n(v,t), ( )•β  
is the boundary condition, and f(v) the initial particle size distribution (PSD). 
The global residuals, ( )•r , can be calculated by: 
 
( ) ( )tv,,vn,nn,n=r vt ∫−• d ℓ       (2) 
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which are approximated by using a global polynomial approximation to 
represent the particles density. In this paper, cubic Hermite polynomials are 
employed [8]:  
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where ak,i(t) stands for the time dependent coefficients, Hi[• ] for the cubic 
Hermite polynomials, u=(v-sk-1)/(sk-sk-1) for a scaled spatial variable, hk(t)=sk(t)-
sk-1(t) for the size of kth finite element, sk(t) for kth node position and N  for the 
number of finite elements. The minimization of the square norm of the residuals 
with respect to time derivatives of coefficients ak,i(t) and node velocities, here 
represented as js , leads to the basic equations of the method, with 
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where Rk stands for the approximation of ( )•r  in the kth finite element. To avoid 
node coalescence a penalty term is added to the square residuals objective 
function. Therefore, equation (4.b) is replaced by equation (5) with ε  standing 
for the internodal force: 
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Equations (4.a) and (5) coupled with the relations arising from the discretization 
of the boundary conditions lead to the Differential Algebraic Equations (DAE) 
system to be solved. The solver used, which is based on BDF methods, enables 
one to exploit the jacobian sparsity in order to increase the computational 
efficiency. The structure of the differential component of the jacobian has the 
form of a diagonal band matrix of width 9, and the algebraic component is an 
upper triangular full matrix due to integral terms that represent the breakage 
phenomena. Both components are computed numerically. In the solver the 
relative tolerance was set to 10-6 and the absolute tolerance to 10-9. The integral 
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terms involved in Equations (4.a) and (5) are calculated by Gaussian Quadrature 
(GQ) based on 8 collocation points, two of them located at the nodes.  

3. Application of MFEM to PBE models involving breakage terms 

In this section the framework derived in Section 2 is applied to PBE models 
describing physical processes involving some extent of breakage – division of 
the particles into smaller size entities. Case 1 intends to evaluate the accuracy of 
the approach in dealing with a benchmark problem with analytical solution 
available. Case 2 aims at submitting the method to a more challenging problem, 
and handling simultaneously the model describing the wheat starch hydrolysis, 
of interest to the food industry.  

3.1. Case 1 – Ziff’s fragmentation model 

This model was proposed by Ziff and McGrady [9], and is commonly used as a 
benchmark problem for numerical strategies handling breakage terms, since its 
analytical solution is available: 
 

( ) ( ) ( ) ( ) ( ) ( ) v'tvnv'Sv'v,ρ+tv,nvS=
t

tv,n +

v
d ,'∫−

∂
∂ ∞

      (6.a) 

( ) ( ) [ ] [ ]                      20  ,510    ,'/2 5 ;t;v v,=vSv=v'v,ρ ∈∈ −   (6.b) 
( ) ( )v=v,n −exp0        (6.c) 

 
where ( )tv,n  is the PSD, ( )v'v,ρ  is the breakage function and ( )vS  the 
breakage rate kernel. Figure 1 highlights the accuracy and stability of the 
MFEM approach based on a non-regular initial grid, particularly on the zones of 
smaller particles. As time elapses, at the zones of larger particles the approach is 
less accurate as a result of the approximation of the upper limit of the integral. 
One may see that the nodes tend to move to the zone where the gradients of the 
solution are higher. However, due to the stabilization introduced by the integral 
term and the smoothness of the solution, its motion is slow. The results, 
particularly the numerical solution accuracy, allow us to state that the MFEM is 
suitable for solving PBE models involving breakage terms.  

3.2. Case 2 – Hydrolysis of wheat starch model 

The model describing the hydrolysis of wheat starch was proposed by Chang et 
al. [10] aiming at studying the effect of the hydrolysis phenomenon on the 
Falling Number measurement. In this problem ( )tv,n  represents the molecular  
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Figure 1 – Fragmentation model: comparison of analytical vs. numerical solution. 
 
weight distribution (MWD) of starch, and v  stands for the molecular weight, 
yielding the model: 
 

( ) ( ) ( ) ( ) ( ) ( )∫−
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( ) [ ] [ ]3500  101.5104      ,'/1 72 ;t,;vv=v'v,σ ∈××∈    (10.d) 
 
where ( )tT,r  is the temperature dependent depolymerization reaction rate and 
( )v'v,σ  the partition function that describes the probability of breaking starch 

chain of mass fraction v’ into a mass fraction v, which is described in this case 
by a uniform function. It was considered that the temperature remains constant, 
T = 298.50 K, and the parameters are listed in the work of Chang et al. [10]. 
One may see in Figure 2 that the starch chain breaks as the time evolves 
producing lower molecular weight chains. Such a behavior is remarkably fast 
until the steady state is reached, around 350 s. However, MFEM presents stable 
solutions for the all domain and captures the solution magnitudes quite 
accurately.  

4. Conclusions 

This paper presents a moving finite grid strategy for the solution of PBE 
models, particularly those including breakage terms. The numerical approach – 
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Moving Finite Elements Method – provides a general framework to deal with 
evolutive Partial Differential Equations, from which PBE models are good 
examples. The MFEM formulation presented is based on local cubic Hermite 
polynomials and the Method of Lines. Its application to a benchmark problem 
allowed us to evaluate its accuracy and stability, which is indeed remarkable. 
The ability of the numerical approach to handle problems that involve changes 
of large magnitude was successfully tested using an example from the food 
industry. Based on the results achieved, MFEM is a good choice for handling 
general PBE models because of the generality it provides and the ability to deal 
with complex dynamics such as moving fronts, common when breakage 
phenomena are present or the initial distribution is complex.  
 

Figure 2 – Numerical solution of the hydrolysis of wheat starch model at particular instants. 
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