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Abstract 

On-line balancing of mass and energy in a large-scale plant is a feasible opera-
tion given the development state of the current data-acquisition systems. How-
ever, not all data are available in real time and the programmed version of the 
instrumentation flow sheets in form of a graph cannot be used directly. They 
need to be modified so as to match the available information. 
Two cases are discussed: the dynamic case, where all units are seen as dynamic 
components and the steady state case, where each unit is assumed to operate at 
steady state. The analysis is done purely on a graph basis. The idea is the essen-
tial part; the resulting algorithms are extremely simple and only require a path 
search algorithm such as depth-first or a breath-first search algorithm.  
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1. Introduction 

Today’s large-scale plants, such as refineries, are equipped with plant-wide data 
acquisition equipment that log a large amount of process data as part of the 
plant’s operation. This data is primarily used for planning but may also be used 
for plant-wide control scheduling of maintenance, fault detection and simply to 
keep a statistics of the operations.  
We are interested in assessing the plant’s operations in terms of mass and en-
ergy of parts of the plant, preferably to the detail possible. This requires closing 
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the mass and energy balances over parts of the plant. In a large plant, where one 
has hundreds of streams and correspondingly many measurements, it is not triv-
ial to identify the parts for which balances can be drawn up thereby also identi-
fying what type of quantity can be balanced in the respective case. Thus our 
first effort was to work on a method to systematically determine on what bal-
ances we can actually draw up in the plant. 

2. How the Model is Constructed 

This group is dedicated to network modelling whereby the plant is represented 
as a network of primitive capacities that communicate mass and energy [3]. We 
first map the physical containment of the plant into a network of control vol-
umes and communications of material and energy between them. Each control 
volume represents a capacity for mass and energy and each connection repre-
sents a flow of mass or energy. The result is a directed graph with the nodes 
representing the different control volumes and the edges representing the con-
nections between connected pairs of control volumes. Arcs can thus not split or 
join as this would be the case in a flow sheet. Both, the vertices, as well as the 
arcs can be typed. For example one distinguishes between mass transfer and 
conductive heat transfer as well as mechanical work.  
 
In the second step, (chemical) species are being introduced by “injecting” them 
at their respective source. Such sources are often modelled as infinite large ca-
pacities. The graph is analysed for its connectivity1. If one assigns to every type 
of transferred and conserved quantity a colour and defines a set of colour-co-
ordination rules, which reflect component mass and energy balances, it is easy 
to construct the domains in which for example species exist (= species domain), 
or mass is exchanged (= mass domain) or heat is exchanged (= “heat” domain). 
Colour combinations, defined by the rules, allow also the computation of where 
what balance can be drawn.  
 
The question we asked was what we can compute given the graph and the 
online data, which are available for some of the streams. In our case we have 
always too little information. Thus it is a priori clear that the balances over the 
different control volumes cannot be computed. However, we allow for recon-
figuration of the graph in the sense that we allow for agglomeration by simply 
adding groups of connected control volumes together. Adding a set of con-
nected control volumes will represent the corresponding total volume of the 
group with the internal boundaries being eliminated. In terms of the graph, the 
arcs inside the agglomerated part are eliminated. In terms of the conservation 
principles applied to the extensive quantities in each node (control volume) the 
agglomeration operation eliminates all internal flows. 
                                                      
1 Notation see Wikepedia : http://en.wikipedia.org/wiki/Glossary_of_graph_theory 
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The question is then refined to: what sub-graphs need to be agglomerated in 
order to compute what-ever-else can be computed in the graph? 
 
We shall next discuss the dynamic and the static graph. In order to simplify the 
discussion, we shall not type the extensive quantity but discuss the case of one 
only, say mass, to mention a common case. We shall also assume that no reac-
tion occurs. The extension to other conserved quantities is straightforward. 

3. Developing the Algorithms 

First we look at the dynamic case. Here each node represents a dynamic system. 
We ask the question what parts of the graph representing the plant with a certain 
granularity need to be agglomerated given a set of connections marked as being 
observed (full line) with the rest not being observed (thin line) by the appropri-
ate measurement equipment. Whilst the problem can be wrapped into mathe-
matics, a pure graphical explanation has been chosen.  

3.1. Dynamic Case  

The base case has two types of connec-
tions, shown as dotted and full lines. First 
we eliminate the dotted ones, which could 
represent heat streams for example, as we 
only analyse the monochromatic case. By 
definition, the reservoirs, being infinitely 
large systems shown as open half circles, 
cannot be balanced and must be removed 
as well.  
 
In order to compute a dynamic node with-
out internal dynamic such as reactions, one requires knowledge of ALL connec-

tions crossing the node boundary.  It is ap-
parent that one can calculate node T, H and 
K, whilst L, S, M and Q are not completely 
defined. Thus: which of the nodes must be 
agglomerated in order to compute the result-
ing agglomerated graph? In the example it is 
easy to see what the solution is, namely the 
nodes L, S, M and Q must be agglomerated 
for the sum of it is fully determined. 
The algorithmic solution is astonishingly 

simple: if one deletes all known streams and ignores the reservoirs, one is left 
with the sub-graphs that need to be agglomerated. Thus all one requires is a 
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graph algorithm that determines the components of the graph, the connected 
sub-graphs, which are easily available or programmed as essentially it is only a 
depth first search algorithm. 

3.2. Steady-State Case 

It turned out that this is a much harder 
problem. Many different approaches were 
tried. Complex methods such as he cele-
brated Dulmage Mendelsohn decomposi-
tion, which did yield results for bipartite 
graphs only; but once the idea has come 
up, the resulting algorithm got stunningly 
simple:  
 
To demonstrate the problem, we take the 
topology of the previous example, but define a slightly different set of known 
streams. 

 
Again, we work with the monochromatic 
case thus remove the dotted lines focusing 
on the full lines representing mass flow 
only. Also balancing reservoirs is without 
meaning and consequently the reservoirs 
are removed from the graph. 
 
We can now compute the stream H → T. 
We mark it with a grey thick arrow and 
set it first into the first list of computa-

tions (1.1) then search further if we can identify a node with the same structure.  
 
This is not the case. Though we did also 
find a node for which all the streams are 
known, namely node K. This node is 
over-determined (see below) and is 
marked with a grey background. 
 
So in the next stage, we delete all known 
and computable connections and are left 
with a set of graph components including 
T, L, M, S and Q.  All other components 
of the graph are single nodes.  The only way to compute any other connection is 
to try and agglomerate a group of nodes. Since we seek nodes with one un-
known connection, we need to define the boundary of the agglomerated graph 
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such that there is one unknown connec-
tion only. Cutting through any loop does 
leave us with two unknown streams. Thus 
we must eliminate the circuits by agglom-
erating the nodes forming a circuit, here 
S, M and Q. 
 
Now we repeat searching for nodes that 
have one unknown connection only and 
find as designed node (S+Q+M). After 
marking the computable connection L →  

(S+Q+M) we repeat the search and find next the connection T →   L and C →  
T. Again we put them in the given sequence in the list of computable connec-
tions. Deleting the computable connections 
leaves us with primitive graph components 
only and the algorithm terminates. In other 
cases one would again seek a loop in a 
graph component and repeat the last step 
of agglomeration followed by a search for 
nodes with one unknown connection until 
only primitive graph components are left. 
 
The result of the algorithm is 
o A list of nodes representing reservoirs: 

A, B, C, W, D, E, Y Z. 
o A sequences of triple of lists (agglomeration of nodes, computable nodes 

and connections, over-determined nodes):  
o step 1: (agglomeration : -; computable: H →  T from H; over-det.: K) 
o step 2: (agglomeration: S, Q, M, computable: L →  (S+Q+M) from 

(S+Q+M), T →  L from L, C →  T from T; over-det: -). 
  
Extension: The discussion was limited to the mono-chromatic case, meaning 
for one type of connection only. The extension to other cases is trivial: For mass 
only, one only requires the total mass, which may also be obtained from sum-
ming all component masses in a stream. To obtain the component information, 
all components in the respective streams must be known and finally to compute 
energy streams, one need to know the mass streams and its thermodynamic 
properties, all heat streams and all the mechanical work streams. 

4. Implementation 

Given a graph representation of a plant and given a set of measurements, the 
analysis can be done as described and the result can be implemented into the 
tool that analyses the plant on-line. The task can be synchronised with the sam-
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pling of the measurements in the plant taking the information from the real-time 
data base through an appropriate interface protocol. 
 
Over-determined can be seen as dynamic nodes and may give information on 
how much material is accumulated in the part of the plant represented by the 
node. Thus one can for example observe the accumulation in a tank etc. Overde-
termined nodes may also result from the agglomeration process. 
 
In the case of assuming steady state for the different nodes, a circuit finding al-
gorithm is required as well. The latter can though be constructed from a dept-
first algorithm in two stages: move first from a start node to an adjacent node, 
then break the connection behind and find a path from the adjacent node to the 
starting node. If it exists a circuit has been identified. 

5. Conclusions 

The problem was formulated on what can be calculated when incomplete stream 
information is available from the plant. A literature search revealed no results 
that address this problem specifically though the use of graph theoretical ap-
proaches in the context of representing and solving models describing the op-
eration of chemical plants is an old and correspondingly rich field [1,2]. So to 
author’s knowledge the problem formulation is new and correspondingly the 
presented results. Both the dynamic case and the steady state case are being ana-
lysed. 
Both algorithms are surprisingly simple and require only a path-search algo-
rithm for example a depth-first search algorithm.The algorithms provide ag-
glomeration sets of nodes and computation sequences.Acknowledgements 
The author thanks Alice Olsen and Ida Julseth Gjerde for their work on the pro-
ject and Statoil for providing the problem and funding the activity. 
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