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Abstract 

In this work, a mixed integer optimisation approach is proposed to solve the 
problem of data classification with multiple groups. An iterative solution 
procedure is developed to assign multiple boxes for each single class. The 
applicability of the proposed approach is demonstrated by two illustrative 
datasets. The computational results indicate that the optimisation-based 
framework is competitive in terms of prediction accuracy when compared with 
other standard classification models.  
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1. Introduction 

Data classification is one of the fundamental problems in machine learning and 
data mining. It involves the identification of patterns from training data and the 
membership prediction of newly sampled observation. Various classifiers have 
been used in many applications such as business aspects [1], flow regime 
identification [2,3] and fault diagnosis [4]. Initial approaches include linear 
discriminant analysis (LDA) [5] and k-Nearest Neighbor (k_NN) algorithm. 
Alternatively, neural networks have drawn more attentions because of their 
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ability to approximate nonlinear classification functions without any 
assumptions of training data distribution. A min-max neural network classifier 
was proposed [6]. N-dimensional fuzzy set hyper-boxes were determined by 
minimum and maximum points with a corresponding membership function. 
Moreover, support vector machines (SVM) [7] approach was applied to many 
practical data classification problems including flow regime identification and 
protein secondary structure prediction. SVM provides hyper-planes with the 
maximum separating margin to discriminate two classes of training samples. 
Kernel functions are incorporated to design nonlinear classification functions. 
Finally, classification models can be developed by mathematical programming 
(MP) techniques without knowing any assumption of group distribution. 
Discriminant function is initially generated as linear programming (LP) models 
[8, 9]. A mixed integer programming model (MIP) was then proposed to extend 
LP representations [10]. Binary variables were introduced to indicate whether 
training samples are correctly classified. The total number of correctly classified 
samples was maximised. Recently, Sueyoshi addressed a series of non-
parametric discriminant analysis approaches for two-class and multi-class data 
classification problems [11]. Glen applied piecewise linear classifiers to 
approximate nonlinear discriminant functions [12]. Finally, Uney and Turkay 
[13] proposed a mixed integer linear programming (MILP) model using hyper-
box representations. 
In this paper, a mixed integer optimisation approach for the multi-class data 
classification problem is presented by generalising our previous work on 
process plant layout [14] to M-dimensions (where M is the number of attributes 
used for data classification). The proposed approach is also based on a hyper-
box representation, which is similar to the one developed by Uney and Turkay 
[13]. In the next section, a brief description of the proposed approach is 
provided. An iterative solution algorithm is introduced in section 3 and a testing 
procedure is described in section 4. Two illustrative datasets are tested in 
section 5 to demonstrate the applicability of our methodology. Finally, some 
concluding remarks are made in section 6. 

2. Model Description 

Consider a multi-class data classification problem with C classes and S training 
samples. Each sample is characterised by M independent attributes. The class 
membership of each sample is known. The proposed approach is based on a 
MILP representation. Hyper-boxes with M dimensions are adopted to recognise 
the patterns hidden in the training data samples. Data enclosing constraints are 
applied to determine the optimal dimensions and locations of each hyper-box so 
as to cover the maximum number of correctly classified samples. Non-
overlapping constraints are used to avoid hyper-boxes from different classes 
occupying the same location. The objective function used is the minimisation of 
the total number misclassified samples. It should be mentioned that the 
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proposed MILP representation assigns only one hyper-box to each class. Multi-
boxes solution algorithms will be introduced in the next section to improve the 
training and testing accuracy. 

3. An Iterative Solution Algorithm 

In this section, an iterative solution procedure is proposed to assign N 
)( CN ≥ hyper-boxes to classify C groups of data samples. After allocating one 

hyper-box to each class by solving the single level MILP model described in 
section 2, new boxes are introduced to capture any misclassified samples during 
previous iterations and the modified MILP model with more hyper-boxes is 
then solved. The algorithm will terminate when the objective functions of two 
successive iterations have the same value. It should be noted that when a new 
box is added, the non-overlapping conditions are activated only for those boxes 
which belong to different classes. Therefore, potential overlapping happens 
between boxes that belong to the same class but not for boxes with different 
class memberships. Next, the following sets are defined for the description of 
the iterative algorithm: 
Sets 
 H Set of hyper boxes that belong to the same class 
Δ  Set of misclassified samples 
 is Hyper-box which sample s belongs to  

The steps of the proposed approach are outlined below: 
Step 1: Initialise φ=Δ , φ=H ,N=C.  
Step 2: Solve the single level MILP. 
Step 3: Identify samples outside hyper-boxes. 

UpdateΔ. 
Step 4: Add one more box for each class to samples 

inΔ. Update N, H, is. 
Step 5: Formulate new MILP problem with more added 

boxes. Non-overlapping constraints and 
variables are generated for i and j H∉ . 

Step 6: Solve the modified MILP model using updated 
N boxes. 

Step 7: If the objective function values of two 
successive iterations are the same, STOP; 
otherwise, go to STEP 3. 

4. Testing Procedure 

An important task for any classification method is its ability to perform a 
successful prediction based on the patterns captured through the training 
process. According to our hyper-box approach, the distances between the new 
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testing sample s to all established hyper-boxes are calculated. If sample s is 
within one of the hyper-boxes, its membership is identified directly as the class 
that is represented by the hyper-box enclosing the sample. If the sample is 
outside all existing hyper-boxes, sample s will be classified to the nearest one. 

5. Computational Results 

Two real datasets are used in this section to evaluate the applicability of the 
proposed methodology. The first example introduced by Sueyoshi [11] is 
associated with the bankruptcy of firms in US electric power industry. This 
dataset includes 61 non-default firms (group 1) and 22 default firms (group 2). 
The performance of each firm is determined by 13 independent financial ratios. 
The second dataset reflects the flow regime map of gas-liquid, two-phase flow 
in microsystems. This dataset collects 115 experimental data samples covering 
5 flow regimes (Bubbly, Churn, Slug-Annular, Bubbly-Slug and Slug). The 
flow pattern of each sample is identified by measuring the superficial velocity 
of gas and liquid phases (this dataset shown in Figure 1 is provided by Dr. P. 
Angeli, UCL, through personal communication). The computational results 
from the iterative MILP approach are compared with five other standard 
classifiers including LDA, k_NN, NN and two MILP formulations for data 
classification with multiple groups proposed by Gelhrein [10] and Sueyoshi 
[11] (see Tables 1 and 2). The testing performances of all classification methods 
are compared through the following three themes: 
Scenario A: 70% of the samples of each class are extracted randomly for 
training and the rest are used for testing. 
Scenario B: 70% of the complete data samples are selected randomly for 
training and testing is applied to the remaining samples. 
Scenario C: leave-one-out scheme. Each sample is dropped out for testing after 
training the remaining samples. 
The proposed mixed integer optimisation approach is implemented in GAMS 
[15] using CPLEX mixed integer optimisation solver with 1% margin of 
optimality. LDA and k-NN are performed by MASS and class packages using 
the statistical computing language R (http://www.r-project.com). All neural 
network classification are applied using the weka open source machine learning 
software (http://www.cs.waikato.ac.nz/ml/weka/) with the following parameter 
settings: Model: Multi-layer Perceptron, Number of Hidden layers: 2, Learning 
Rule: Momentum (0.7), Step Size: 0.1, Maximum Number of Epochs: 10000, 
Weight Update Method: Batch Learning and Termination Method: Cap the 
number of epochs. Because of the random nature of  scenarios A and B, both 
schemes are repeated 50 times and the mean prediction accuracies for all six 
classification methods are reported. The best testing performance in each 
scenario is indicated in bold. 
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Figure 1. Gas-liquid two phase flow regime in microsystems 

Table 1. Computational results for Example 1 

Model Scenario A Scenario B Scenario C 
Our work 92.67% 91.67% 91.57% 

Gelherin (1986) 86.75% 84.67% 81.93% 
Sueyoshi (2006) 88.50% 89.25% 89.16% 

k_NN 89.16% 89.44% 89.15% 
LDA 89.68% 90.24% 90.36% 
NN 91.25% 90.99% 91.56% 

Table 2. Computational results for Example 2 

Model Scenario A Scenario B Scenario C 
Our work 80.29% 80.70% 80.87% 

Gelherin (1986) 80.17% 79.47% 78.26% 
Sueyoshi (2006) 41.70% 39.65% 43.48% 

k_NN 79.23% 79.05% 81.74% 
LDA 67.53% 66.06% 75.65% 
NN 72.84% 71.43% 71.30% 

In the first dataset, our work outperforms other classification models in terms of 
all three different scenarios; achieving prediction accuracy of above 91%. NN 
approach also shows its ability to achieve good prediction accuracy because of 
its adoption of nonlinear discriminant functions (see Table 1). 
The computational results of the second dataset for all presented methods 
indicate that the flow pattern of an experimental sample in microsystems can be 
successfully predicted by our approach with more than 80% accuracy. In most 
cases, our method still gets the best prediction accuracy among all six classifiers 
in terms of three testing scenarios (see Table 2). 
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6. Conclusions 

An efficient mixed integer optimisation approach has been proposed to solve 
the classification problem with multiple groups. Hyper-boxes are used to 
enclose training samples which belong to the same class. In order to improve 
the training and testing accuracy, an iterative solution procedure has been 
presented to assign multiple boxes for each class. The memberships of new 
samples have been identified by calculating the distances between testing 
samples to all established hyper-boxes. Finally, the applicability of the proposed 
methodology has been demonstrated through two illustrative datasets. The 
prediction performance of our approach has been compared with five other 
standard classifiers over three different scenarios. The computational results 
indicate that our approach is competitive in terms of prediction accuracy when 
compared with other alternative classification methodologies. 
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