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Abstract 

Many parameter estimation problems in chemical or biochemical engineering 
lead to ill-conditioned and nonconvex optimization problems. For bad starting 
values the use gradient based result in local optimal solutions. To overcome this 
drawback, a global optimization approach, Simulated Annealing, has been 
coupled with a gradient-based SQP approach. To improve the accuracy of the 
parameter estimates, sensitivity information has been included into the objective 
function by iteratively adjusting the weighting matrix with the variance-
covariance matrix of the model prediction. The hybrid approach has been 
applied to a case study of biochemical nonlinear parameter estimation problem. 
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1. Introduction 

The basis for the design, control and optimization of process systems is a 
detailed mathematical model. To satisfy the increasing demand on model 
accuracy, a nonlinear model has to be used in most cases to describe the process 
as accurately as possible. These models frequently contain process parameters 
which have to be determined from available measurement data. To estimate the 
parameters, a model-based error-in-variables (EVM) approach can be used, 
where a weighted sum of squared errors is minimized subject to the model 
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equations. Due to the nonlinear nature of the problem the resulting optimization 
problem is, in many cases, ill-conditioned and nonconvex, resulting in local 
optimal solutions. Therefore, deterministic gradient-based optimization 
techniques fail to arrive at satisfactory solutions. 
To solve the problem of finding the global optimal solution, a series of global 
optimization approaches has been developed. Simulated Annealing (SA) is a 
(physically inspired) stochastic optimization technique where the  analogy of 
the arrangement of atoms during the cooling of metals, leading to the most 
stable configuration, is used as an optimization procedure. The drawback of this 
method is that the convergence toward the optimal solution is very slow. Even 
if the approach is near the global solution it still needs a large number of 
function evaluations due to the logarithmic cooling rate.  
To overcome this drawback, the SA approach has been coupled with a gradient-
based SQP approach. The developed optimization framework includes a 
coordinator which is used to determine the switching time between the two 
approaches. To improve the convergence properties of the SQP approach, an 
iterative adjustment of the weighting matrix of the objective function has been 
used. In the original weighted least-squares formulation of the objective 
function only the variances of the measurement errors are used. The proposed 
approach uses the variance-covariance matrix of the model prediction as an 
additional weighting matrix in order to include sensitivity information into the 
objective function. This leads to better convergence properties and earlier 
switching times can be realized. 

2. Solution approach 

To estimate parameters Θ  in a nonlinear implicit equation system, we usually 
have several measured data sets of some output (dependent) variables, y. A 
general parameter estimation problem with multiple sets of data can be 
formulated as follows: 
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Where kmnplmn U YX ℜ⊆ℜ⊆ℜ∈ℜ⊆∈ℜ⊆∈ℜ⊆∈ + hgΘuyx   ,  ,, ,   ,  
W is the weighting matrix of the objective function. iŷ  are the measured values 
of the dependent variables for data set i. g is the vector of the model equations 
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and h the vector of inequality constraints. The inequality constraints represent 
the process restrictions which should be considered in the parameter estimation.  
Two major issues in parameter estimation have been studied in the past. One 
important issue is the high dimension of the estimation problem. As errors are 
allowed for all (dependent and independent) variables, the degrees of freedom 
as well as the number of constraints of the optimization problem become high 
and they increase with the number of data sets involved. Thus, even for 
medium-sized systems the optimization problem can become too large to handle 
with standard optimization software. Therefore, in a series of previous studies 
decomposition algorithms have been used [1,2]. Another important issue of 
finding the global optimum has been investigated by several authors (e.g. 
Esposito and Floudas [3], Gau and Stadtherr [4]), since the problem is generally 
non-convex.  

2.1. Sequential SQP-based parameter estimation with iterative weight 
adjustment 

In our contribution an sequential, SQP-based optimization approach for solving 
an EVM parameter estimation problem has been used [2]. In this approach the 
process model equations are decoupled from the optimization problem thus 
reducing the size of the optimization problem and making this approach 
applicable to large-scale systems with multiple data sets. In addition the 
weighting matrix in (1) is iteratively adjusted by introducing sensitivity 
information of the measured variables with respect to the optimization 
parameters into the weighting matrix. 
In the general weighted least-squares formulation the variance-covariance 
matrix of the measurements is used as a weighting matrix in the objective 
function. Especially in nonlinear estimation problems however the sensitivity of 
the measured variables with respect to the optimization parameters is very 
important in deterministic approaches. If the sensitivity is very low, the 
optimization algorithm might result in a poor solution. To consider this 
sensitivity information in the objective function, the variance-covariance matrix 
of the model prediction VC was introduced into the weighting matrix: 

( ) 1−+= iii VCMVW  (2) 

With the variance-covariance matrix of the measurements MV and 
T
iii VPVVVC 1−=  (3) 

With the variance-covariance matrix of the parameters PV and the sensitivity 
matrix  
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As PV in eq. (3) can only be calculated from historical experiments or 
analytically computed at convergence of the parameter estimation problem an 
iterative procedure has been introduced, where PV is calculated with first order 
approximations at each iteration of the SQP algorithm (see [6]). 
The drawback of gradient-based approaches as SQP is that good starting values 
for the parameters are needed which are inside the attraction domain of the 
global optimum. In many nonlinear, nonconvex parameter estimation problems 
these starting values are not available and only local solutions can be achieved. 

2.2. Simulated Annealing 

Simulated annealing was developed in the 1980s by Kirkpatricket al. [5] and 
various other authors. SA is based on first principles of thermodynamics, it 
analogizes annealing processes of liquids and metals to the minimization of an 
objective function. If the system is cooled very slowly, it can reach thermal 
equilibrium on every temperature level.  
Simulated annealing is considerably simpler than gradient-based approaches. 
Convergence can be guaranteed with suitable values for the initial annealing 
temperature, the cooling rate and the number of cycles performed.  
However, SA has some serious drawbacks when it comes to computational 
efficiency. As a global solution can only be guaranteed for a small cooling rate 
the number of function evaluations is very large. Even if the algorithm has 
reached a near optimal solution, still a large number of iterations are necessary 
to achieve the optimal solution. 

2.3. Hybrid approach 

To overcome the drawback of both algorithms which is the local applicability of 
gradient-based methods and the low computational efficiency of Simulated 
Annealing a hybrid approach has been used, which couples both approaches. 
The SA procedure is used in the first stage to find a solution within the 
attraction domain of the global optimum. This solution is then used as starting 
values for the SQP approach. A coordinator is used to determine the switching 
time between the two algorithms. The switching time must be chosen as early as 
possible to decrease the number of function evaluations performed by the SA 
stage as much as possible but as late as necessary to compute starting values for 
the SQP stage that are in the attraction domain of the global solution. Several 
switching criteria have been studied in this contribution: 
 
• The annealing temperature and the SA step size. 

If these values are small enough, the possibility of escaping a local minimum 
is very low and further improvement can be achieved using a gradient-based 
approach. Although it is very difficult to quantify the temperature and step 
size at which the switching should be performed, as these values are case 
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sensitive. If they are too small, then the improvement in the overall 
computational time is low, on the other hand if they are too large, the starting 
values provided by SA might not be in the attraction domain of the global 
optimum. 

• The number of function evaluations performed. 
This criterion is connected to analyzing the annealing temperature but does 
not take the ratio of accepted function evaluations over the last Markov-chain 
into account. Therefore there is no information if SA is near a local (global) 
optimal solution. With this switching criterion the overall CPU time can be 
restricted, but the solution of the SA algorithm may still not be in the 
attraction domain of the optimal solution. 

• The relative change of the objective function value over the last n accepted 
SA trials. 
This is a common termination criterion for The SA algorithm. By relaxing 
this criterion the algorithm is terminated at an earlier stage which reduces the 
computational time, but also might result in a poor solution. Again the value 
for this switching criterion is case sensitive and is therefore difficult to chose. 

• Analysis of the confidence region at the best SA solution. 
With this criterion it is possible to analyze the quality of the SA solution. If it 
is near a local (global) optimum, the size of the confidence region decreases. 
The drawback is that it is not possible to analyze if it is a local or global 
solution. Therefore this criterion should be coupled with other switching 
criteria mentioned before. 

2.4. Case study 

To demonstrate the applicability of the hybrid optimization approach, it has 
been applied to a case study of biochemical nonlinear parameter estimation 
problem considered by Mendes and Kell [7]. The optimization problem consists 
of the estimation of 36 kinetic parameters of a nonlinear biochemical dynamic 
model formed by 8 ODE’s that describe the variation of the metabolite 
concentrations with time. The problem is nonconvex and gradient-based 
methods could not find the global solution from any arbitrary starting vector. In 
a contribution by Moles et al. [8] several global optimization approaches have 
been tested on that problem, including evolutionary strategies that led to the 
best solution. To compare the results, the same conditions as in [8] have been 
used in this study for starting values, parameter boundaries and measurement 
data. 

2.5. Results and discussion 

Simulated Annealing was able to find a solution close enough to the global 
solution to enable the gradient-based SQP approach to converge. By choosing 
an appropriate switching criterion the number of function evaluations needed by 
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the SA stage could be reduced significantly. By using the iteratively adjusted 
weighting matrix in the objective function of the SQP approach the quality of 
the solution could be improved significantly. In Table 1 the average relative 
residuals for the Parameters ( )[ ]truetrueabs θθθ −∗  and the maximum relative 
residual ( )[ ]( )truetrueabs θθθ −∗max  at the solution ∗θ  of the parameter estimation 
problem for the biochemical pathway problem are presented for both cases. It 
can be seen that by using the sensitivity information in the objective function 
the quality of the estimated could be improved. 
 

Table 1: Relative residuals at convergence 

 Average residual Maximum residual 

Original weighting matrix 8.63*10-³ 0.109 

Adjusted weighting matrix 3.05*10-³ 4.49*10-² 

3. Conclusions 

A hybrid optimization approach has been used for estimating parameters in a 
nonlinear nonconvex implicit equation system. A stochastic global optimization 
approach, Simulated Annealing, has been used to find parameter values in the 
attraction domain of the global optimum. The global approach has been coupled 
with a gradient based local SQP optimization approach to decrease the number 
of function evaluations toward the end of the optimization procedure. To 
improve the accuracy of the parameter estimates, sensitivity information has 
been included into the objective function by iteratively adjusting the weighting 
matrix with the variance-covariance matrix of the model prediction. The 
algorithm was applied to a case study of biochemical nonlinear parameter 
estimation problem. For this case study the hybrid approach was able to achieve 
the global solution. By using the iteratively adjusted weighting matrix, the 
quality of the estimates could be improved significantly. 
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