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Abstract 

A population balance model is presented for describing heat transfer processes 
in gas-solid turbulent fluidized beds. In the model, the gas and particle transport 
is described by a cells-in-series with back-flow model, while the particle-par-
ticle and particle-wall heat transfers are modeled as collisional random events, 
characterized by collision frequencies and random variables with probability 
density functions determined on interval [0,1]. An infinite hierarchy of moment 
equations is derived from the population balance equations, which can be closed 
at any order of moments. The properties of the model and the effects of process 
parameters are examined by numerical experimentation.  
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1. Introduction 

The turbulent fluidization is characterized by low amplitudes of pressure fluc-
tuations and favorable gas-solids contacting. In gas-solid turbulent fluidized 
beds the solids hold-ups are also high, typically 25-35 % by volume [1], thus, 
because of intensive motion of particles, particle-particle and particle-surface 
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collisions appear to play significant role in controlling the thermal characteris-
tics of the bed.  
 For modeling and simulation of collisional heat transfer processes in gas-solid 
systems, an Eulerian-Lagrangian approach, with Lagrangian tracking for the 
particle phase [2-5], and a recently developed population balance model [6-9] 
have been applied. 
 The population balance equation is a widely used tool in modelling the dis-
perse systems of process engineering [10], describing a number of fluid-particle 
and particle-particle interactions. This equation was extended by Lakatos et al. 
[7] with terms to describe also direct exchange processes of extensive quanti-
ties, such as mass and heat between the disperse elements as well as between 
the disperse elements and solid surfaces by collisional interactions [8,9]. 
 The aim of the present paper is to develop a population balance model for 
describing also the spatial distributions of the gas and particle temperatures in 
turbulent fluidized beds.  

2.  Population balance model 

The axial dispersion model is commonly applied to describe the dispersion of 
gas and solids mixing in turbulent fluidized beds [11,12]. Axial mixing can be 

characterized by the axial dispersion and 
the backmixing coefficients which can 
be related to each other by the variance 
of the residence time distributions. Here 
we apply the cells-in-series with back-
flow model for both the void and emul-
sion phases as it is shown in Fig.1 where 
the heat transfer resistance of the gas in 
the emulsion phase is added to the gas-
particle heat transfer.  
In this system five interphase thermal 
processes are considered: fluid-particle, 
fluid-wall, particle-particle, particle-wall 
and wall-environment. Because of inten-
sive motion of particles, the particle-par-
ticle and particle-wall heat transfers oc-
cur through the interparticle and par-
ticle-wall collisions.  

Fig.1. Two-phase model of the bed The main assumptions concerning the 
 system are as follows: 
1) The particles are of constant size and are not changed during the process; 2) 
The system is operated under steady state hydrodynamic conditions, and the 
influence of thermal changes on the hydrodynamics is negligible. 3) Heat trans-
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fer between the gas and particles, wall and gas, as well as the wall and environ-
ment are continuous processes, characterized by the heat transfer coefficients 
hpf, hwf and hwe respectively. 4) Interparticle heat transfer occurs by collisions, 
and is described by the random variable ]1,0[1 ∈ξ  with probability density func-
tion b1. 5) The particle-wall heat transfer also occurs by collisions that is charac-
terized by the random variable ]1,0[2 ∈ξ  with probability density function b2. 6) 
There is no heat source inside the particles. 7) The heat transfer by radiation is 
negligible. 8) The temperature of the wall is homogeneous. 
 Let nk(Tp,t) denote the population density function for the kth cell, k=1,2…K, 
by means of which nk(Tp,t)dTp provides the number of particles from interval 
(Tp, Tp+dTp) in a unit volume of the cell at time t. If Tg;k(t) denotes the gas tem-
perature in the kth cell and Tw(t) stands for the temperature of the wall, then the 
population balance model is formed by the following equations. 
Population balance equations:  
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subject to the initial conditions ....2,1),()0,( 0 KkTnTn ppk ==  In Eqs (1), 
),(),(0 tTntTn pinp = , 0),(1 ≡+ tTn pK , and the auxiliary symbols, introduced for 

the sake of shortness, are: 1  ,01 == KSS , 11 == KZZ , 1=lS , 2=lZ , and 
1 ..., ,2 −= Kl . Further, q is the volumetric flow rate, Vk is the volume of the 

kth cell, Vk=V/K, V is the volume of the bed, and R denotes the back-flow 
coefficient.  
 The factors )/(2 wwpppp cmcmcmp +=  and )/(1 wwppww cmcmcmp +=  
characterize the ratios of particle-wall heat capacities where m and c denote, 
respectively, mass and specific heat, while the indices p and w regard the 
particle and the wall.  
 The second term on the left hand side of Eq.(1) describes the gas-particle heat 
transfer with coefficient Kp, while on the right hand side: the first three terms 
represent the transport of particles between the cells, the next two terms de-
scribe the collisional wall-particles heat transfer with collision frequencies k2k, 
and the last two terms describe the collisional particle-particle heat transfer with 
collision frequencies k1k.  
 The axial inhomogeneity of the solids hold-up in Eq.(1) is represented by the 
variation of the solids concentration given, in principle, by the total number of 
particles M0,k in the kth cell, defined as 
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where kε  is the void fraction in the kth cell, and pd  denotes the particle diame-
ter. Here, the axial voidage distribution is modeled by means of the balance 
equations  
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where the source terms fk are to be obtained by fitting those to the measured 
εk,meas voidage distribution data [1,13]. Based on the voidage distribution, varia-
tion of the collision frequencies can also be estimated [14]. 
 By using the voidage distribution, the balance equation for the gas tem-
perature takes the form 
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while the balance equation for the wall becomes 
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In Eq.(5) the environment temperature Te is kept constant. 

3. Simulation results and discussion 

An important point of applying the population balance model is the solution of 
the population balance equation. A number of methods have been developed for 
that purpose [10,15-18] but, since the moment equations induced by Eq.(1) can 
be closed at any order of moments [9], the set of equations (1)-(5) was solved 
by applying a second order moment equation reduction of the population ba-
lance equation (1), written for the first three leading moments of the temper-
ature of particle population [8,9] 
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which are necessary for a basic characterization of the temperature distribution 
of particles. The zero order moments M0,k provide the total numbers of particles,  
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by means of which the solids concentrations can also be computed. The mean 
temperatures of particles are expressed as kkk MMm ,0,1,1 /= , while the 
temperature distributions arising in the individual cells are characterized by 
the variances ( ) 2 

,0,1,0,2
2 // kkkkk MMMM −=σ . The program developed in 

MATLAB can handle arbitrary number of cells, and the resulted set of ordi-
nary differential equations is solved by means of an ode solver of MATLAB. 
The results to be presented here were obtained for 8 cells using the same 
constitutive parameters and expressions as given in detail in [9]. The gas input 
temperature was 180oC, the inlet feed of particles was a mixture of tem-
peratures 20oC and 60oC, while the environment temperature was kept 20oC. 
 Fig.2 presents the variation of the gas temperature and the mean temperature 
of particle population as a function of the cell number for different back-flow 
coefficients of particles and plug flow conditions for gas. It is seen that equali-
zation of the gas temperature and mean temperature of particles becomes comp-
leted already in the second and third cells, i.e. at the lower part of the bed, 
although when the back-mixing of particles is large, some temperature gradient 
arises in the upper part of the bed.  
 Backmixing of the particulate phase affects also the temperature distribution 
of particles significantly, as it is illustrated in Fig.3, presenting the variance of 
temperature of the particle population as a function of the cell sequence. As the 
back-flow ratio increases the temperature distribution of particles remains in-
homogeneous even at the outlet of the bed. Since the axial voidage distribution 
is characterized by an increase of gas volume concentration therefore the inten-
sity of collisional events and, as a consequence, their contribution to tempera- 
ture homogenization may be reduced significantly in the upper part of the bed. 
 Transients of the gas temperature and mean temperature of the particle popu-
lation are presented in Fig.4. These plots illustrate well that the heat transfer in-
duced changes are characterized by much smaller time constants than those  
 

Fig.2. Variation of the mean temperature of 
particle population m1 and the gas tempera-
ture Tg along cell sequence 

 
Fig.3. Variance of the temperature distribu-
tion of particle population along the cell se-
quence 
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Fig.4. Transients of the gas temperature Tg 
and mean temperature of particles m1 in the 
first three cells of the 8-cell compartment 
model for R=10 

 
 

 
caused by the mass transport and backmixing of particles, predicting some dif-
ficulties in developing control systems for turbulent fluidized beds. Here, pro-
cesses were plotted only up to the third cell since practically all the remaining 
transients are covered by the third cell processes. 
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