
17th European Symposium on Computer Aided Process Engineering – ESCAPE17
V. Plesu and P.S. Agachi (Editors)
© 2007 Elsevier B.V. All rights reserved. 1

Code Design as an Optimization Problem: from
Mixed Integer Programming to an Improved High
Performance Randomized GRASP like Algorithm

José Barahona da Fonseca, PhD

Department of Electrical Engineering and Computer Science,Faculty of Sciences and
Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal.
jbfo@fct.unl.pt

Abstract

We begin to show that the design of optimum codes is a very difficult task by a
set of preliminary brute force experiments where we generate all the possible
optimum codes of a given length and minimum Hamming distance and then
estimate the probability of finding one of these codes filling randomly the
matrix that defines the code. Then we develop a novel approach to the code
design problem based on the well known optimization technique of Mixed
Integer Programming. Unfortunately the GAMS optimization software package
limitation of 10 indexes imposes a limit of a maximum length 5 in the code to
be designed. We show some results confirmed by the literature with this MIP
model. Finally we develop a high performance randomized GRASP like
algorithm that surprisingly has much better runtimes than the MIP model.

Keywords

Optimal Code Design, Hamming Distance, Optimal Code, MIP, High
Performance Randomized GRASP like Algorithm

1. Introduction

One of the main problems studied by Code Theory is to find the biggest
possible code (with more words) with a given length (number of characters) and

2 J. Barahona da Fonseca et al.

a given minimum Hamming distance. This is equivalent to find the minimum
length of a code with a given number of words and minimum Hamming
distance [1]-[2].
When we design a digital communication system, with the advent of VLSI
circuits is possible to reduce the power of the emitted signal and maintaining the
same S/N augmenting slightly the bandwidth that will correspond to extra bits
based that make possible to detect or even correct transmission errors [3].
The exact solutions are known only for few combinations of length and
minimum Hamming distance and in the general case we only know lower and
upper bounds of the maximum number of words of the optimal code
The minimum Hamming distance, d, between the words of a code has an
important application to describe the capacities of the code to detect and to
correct errors. If d=2k+1 then the code will be capable to correct k errors (it will
be a k-error correcting code) being the corrupted message decoded as the
nearest word of the code in terms of the Hamming distance. And if d=k+1 the
code will be capable to detect k errors, although in most cases it will be not
possible to correct them [1]-[2].

2. Preliminary Brute Force Experiments

Although there are a lot of theoretical works that prove that the design of an
optimal code is NP-Hard [4]-[5], to get a feeling and insight of the difficulty of
the design of a good code we begin to make some brute force computer
experiments where we identify all the codes with some given characteristics and
estimate the approximate probability to get one of them filling randomly the
words of the codes. This probability is a measure of the difficulty of the design
of the associated code. For a binary code with three words and five bits there are
215 manners to fill the 3x5 matrix, but generating all the possible fillings we
only found 2880 1-error correcting codes, i.e. with minimum Hamming
distance 3, the first code found being

10011 11100 00000

and the 2880th 1-error correcting code being

 01100 00011 11111

So we have a probability of finding a three words with 5 bits with minimum
Hamming distance 3 code filling randomly the 3x5 matrix given by P1=2880 /
215=0.09=9%. Then we try to maximize the minimum Hamming distance for a
given number of words and bits. For codes with 5 words and 6 bits we found
4,838,400 codes with maximum minimum Hamming distance 3, the last being

Code Design as an Optimization Problem:from Mixed Integer Programming to an
Improved High Performance Randomized GRASP like Algorithm 3

101010 100001 011001 000111 111111

This also means that A(6,3)=5, result that is confirmed by the literature [5]. So
we have a probability of finding a five words with 6 bits code with minimum
Hamming distance 3 code filling randomly the 5x6 matrix given by
P3=4838400 / 230=0.0045=0.45%. It is natural that this probability is greater
than the previous since it is easier to build a 5 word code with minimum
Hamming distance 4 with 8 bits than with 6 bits. The very low values of these
probabilities mean that even for very simple codes is very difficult to design one
with a required number of words and minimum Hamming distance.

3. Description of MIP Solution

We began with the development of a nonlinear MINLP model over the GAMS
software. Even for very simple problems this implementation converged for
sub-optimal solutions very far from the optimal solution.
The calculation of the Minimum Hamming Distance is a Non-Linear Operation
and it was the main difficulty that we found to solve the problem of the design
of an optimal code with a Linear Model as MIP. For a n bits binary code, the
Hamming distance between two words, A and B, may be defined by (1).

∑
=

=
n

i
ii baXORwordshd

1

(1)),(_2__

Since the XOR function is a non-linear function, the Hamming distance defined
by (1) is also a non-linear function. For a n characters j-ary code, we must
generalize the XOR function to the definition given by (2), which we denote by
XOR_g and then replace XOR by XOR_g in (1).

⎪
⎩

⎪
⎨

⎧

=

≠
=

ii

ii

ii

ba

ba
bagXOR

,0
(2)

 ,1
),(_

Although GAMS stops when it finds an optimal solution, this do not means that
there is only one optimal solution. In the previous cases there are a lot of
optimal solutions, which means that the design of the previous codes had an
average difficulty.

3.1. Some results obtained with the MIP model

To our knowledge nobody before us did solve the problem of obtaining an
optimum code with a given minimum Hamming distance with Mixed Integer
Programming. Nevertheless our optimization software package imposed a
limitation of 10 indexes, so we only may obtain optimal codes with a maximum
length of five characters. We did obtain an optimal ternary code with minimum
Hamming distance 3 with 18 words, i.e. we confirmed the very well known

4 J. Barahona da Fonseca et al.

result A3(5,3)=18 [6]-[7]. Here it is the optimal code obtained with the MIP
model using the GAMS software code described in appendix A:

00022 11122 01212 20102 10000 21201
00111 12110 02001 20210 10221 22012
01100 12202 02220 21020 11011 22121

Then we show that a ternary code of length 5 and minimum Hamming distance
4 can have a maximum number of 6 words, i.e. A3(5,4)=6 which is confirmed in
[6]-[7]. Here it is the code obtained by the MIP model:

01222 10120 20211 02101 12012 21000

Next we confirmed that A4(5,4)=16 [8]. Here it is the quaternary code obtained
by the MIP model:

00102 23200 23200 23200
01231 30213 30213 30213
02310 31120 31120 31120
03023 32001 32001 32001

We obtained a 64 words quaternary code with length 5 and minimum Hamming
distance 3 obtained by our MIP model confirming that A4(5,3)=64 [8] and a 256
words quaternary code with a minimum Hamming distance 2 obtained by our
MIP model which confirms that A4(5,2)=256 [8].

4. Improved High Performance Randomized GRASP Like Algorithm

Our algorithm that was developed as an preliminary experiment towards a more
complex evolutionary algorithm, although very simple showed a very good
performance in terms of runtime. It begins by generating randomly the first
word of the code and then the next words, also generated randomly, are only
accepted if their Hamming distance to all the existent words is greater or equal
to the minimum Hamming distance of the code we want to build.
If that does not happen the algorithm keeps generating more words until it finds
a ‘good’ word or the number of generated words is greater than a certain limit.
In this latter case it is considered that it is impossible to introduce more words
in the code, and the code is considered finished.
If the number of words is greater than the maximum number of words, then the
generated code is saved as the candidate to optimum code.
This Algorithm may be classified as a Strong Artificial Intelligence algorithm
since it tries to Replicate our own way to create a Code with a given Length L
over a given Alphabet A and Minimum Hamming Distance d:

Code Design as an Optimization Problem:from Mixed Integer Programming to an
Improved High Performance Randomized GRASP like Algorithm 5
1. Generate Randomly the First Word of the Code
2. Generate Randomly a New Candidate Word and Calculate the Minimum
Hamming Distance relative to the Words Alredy Created, d_i
IF d_i ≥ d THEN accept_the_new_word; n_words++; counter=0; GOTO 2.
 ELSE
 counter++;
 IF counter > N1
 IF n_words > n_words_max
 n_words_max=n_words; save_new_code;
 IF n_words_max==n_words_opt
 break; // Optimal Code Found!!
 ELSE n_words=1; counter=0; GOTO 1.
 ELSE GOTO 2.

5. Discussion of Results

The bad performance of the nonlinear MINLP model maybe explained by the
multimodal nature of our optimization problem. With the linearized model we
already got some published optimal results for codes of length 5 [5]-[8], since
the GAMS software imposed a maximum of 10 indexes. Although much more
simple the runtimes of our randomized algorithm, in its last version, i.e. with the
maximization of minimum Hamming distance and the weight of the candidate
words, were in average, for the same code design problems, an half of MIP
runtimes. This is surprising since our optimization package use very advanced
techniques such as the ILOG’s CPLEX algorithm and resulted of lot of research
work.

6. Conclusions and Future Work

The poor results of our nonlinear MINLP model shows the fragility and
imperfection of actual commercialized nonlinear solvers. Although we already
did obtain optimal solutions with the linearized MIP model for codes of length
5, the limitation of a maximum of 10 indexes of GAMS software prevents us to
go further and study codes with bigger lengths. Our results with the
Randomized Algorithm are very promising but not enough to attack very big
problems and in the near future we plan to develop an improved genetic
algorithm [9] and to enter in the war of the upper and lower bounds of very big
(with a lot of characters) ternary and quaternary codes where there are a lot of
work to be done [7]-[8].

References

1. R.W. Hamming, “Error Detecting and Error Correcting Codes”, The Bell System
 Technical Journal, Vol. 26, No. 2, April 1950, pp. 147-160.

6 J. Barahona da Fonseca et al.

2. Peterson, W.W., Error-Correcting Codes, MIT Press, 1961.
3. Sklar, B., Digital Communications: Fundamentals and Applications, 2nd Edition,

Prentice Hall PTR, 2004.
4. I. Dumer, D. Micciancio and M. Sudan, “Hardness of approximating the minimum

distance of a linear code”, IEEE Transactions on Information Theory, Vol 49, n.1, 2003,
pp. 22-37.

5. Conway, J.H. and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-
Verlag, 2nd edition, 1993, pp. 248.

6. M. Svanström, “A Lower Bound for Ternary Constant Weight Codes”, IEEE Trans.
OnInformation Theory, Vol. 43, No. 5, September 1997, pp. 1630-1632.

7. M. Svanström, “Constructions of Ternary Constant-Composition Codes with Weight
Three”, IEEE Trans. On Information Theory, Vol. 46, No. 7, November 2000, pp. 2644-
2647.

8. G.T. Bogdanova, A.E. Brouwer, S.N. Kapralov, and P.R.S. Österard, “Error-Correcting
Codes over an Alphabet of Four Elements”, Designs, Codes and Cryptography, Vol. 23,
2001, pp. 333-342.

9. A. Barbieri, S. Cagnoni, and G. Colavolpe, “A Genetic Approach for Generating Good
Linear Block Error-Correcting Codes”, in K. Deb et al. (Eds), Proceedings of GECCO
2004, LNCS 3103, Springer-Verlag, Berlin Heidelberg, 2004, pp. 1301–1302.

Appendix A- Implementation of MIP model with GAMS software

Sets b0 bits /0*1/; alias (b1,b2,b3,b4, c0, c1, c2, c3, c4, b0);
Scalar d_h_min /3/ d_h_max /18/ n_p_min /2/;
Parameter dist_h(b4,b3,b2,b1,b0, c4,c3,c2,c1,c0);
dist_h(b4,b3,b2,b1,b0, c4,c3,c2,c1,c0)=(ord(b4) ne ord(c4)) + (ord(b3) ne
ord(c3)) + (ord(b2) ne ord(c2)) + (ord(b1) ne ord(c1)) + (ord(b0) ne ord(c0)) ;
*The following equality forces an artifical Hamming distance d_h_max for
* equal words that would have a null Hamming distance
dist_h(b4,b3,b2,b1,b0, c4,c3,c2,c1,c0)=dist_h(b4,b3,b2,b1,b0,
c4,c3,c2,c1,c0)*(dist_h(b4,b3,b2,b1,b0, c4,c3,c2,c1,c0)>0)+
d_h_max*(dist_h(b4,b3,b2,b1,b0, c4,c3,c2,c1,c0)=0);
Variables n_p;
Binary Variables pal(b4,b3,b2,b1,b0);
Equations
calc_n_p constr_n_p calc_constr_d_h(b4,b3,b2,b1,b0, c4,c3,c2,c1,c0);
calc_constr_d_h(b4,b3,b2,b1,b0, c4,c3,c2,c1,c0)..
d_h_min=l=1/2*dist_h(b4,b3,b2,b1,b0,c4,c3,c2,c1,c0)*
(pal(b4,b3,b2,b1,b0)+pal(c4,c3,c2,c1,c0))
+ d_h_max*(1-pal(b4,b3,b2,b1,b0))+ d_h_max*(1-pal(c4,c3,c2,c1,c0));
calc_n_p.. n_p=e=sum((b4,b3,b2,b1,b0), pal(b4,b3,b2,b1,b0));
constr_n_p.. n_p=g=n_p_min;
Model OptCode /all/;
Solve OptCode using MIP maximizing n_p;

