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Abstract 

Both safety and economy of process plants are heavily dependent on the proper 
functioning of several thousand control loops regulating or optimizing unit and 
plant-wide performance over a wide range of operating conditions. In this work 
ordinal methods for analyzing controller´s error are proposed by focussing on 
merely comparing error values beyond a proper control horizon. The local order 
structure of a well-performing controller is characterized as a symbolic 
sequence of equally probable permutations. A new performance index based on 
the complexity of the error time series measured by the permutation entropy of 
ordinal patterns is proposed.  
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1. Introduction 

Control loops implementing a hierarchy of functions for process regulation and 
optimization are the cornerstone of safety and economy in process plants [1]. 
Many loops are just PID controllers whilst other may be more advanced ones, 
such as inferential loops, MPCs and real-time optimizers working on top of the 
regulation layer. It is well known that in most industrial environments the 
behavior of control loops deteriorate with time due to a number of reasons, e.g. 
fouling, utility constraints and raw material variability. Accordingly, process 
dynamic characteristics change along time and, if not properly maintained, most 
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control loops will perform poorly after some time, which can lead to degraded 
process operation. In particular, problems with the regulation layer can cancel 
the benefits of advanced control systems and real-time optimization [2]. With 
the increasing complexity of control structures and the sheer number of 
controllers in modern process plants, the automation of performance monitoring 
tasks is mandatory [2,3]. In this work, the concept of predictability patterns in 
the error time series proposed in [4] is put in the framework of ordinal methods. 

2. Ordinal methods 

2.1.  Error order patterns 

If a control loop exhibits “good” performance, it should be able to cancel any 
disturbance entering the loop up to a present time t, or follow a set point change 
correctly, after some sensible time interval b (expressed in terms of sampling 
periods), so-called control horizon which is roughly equal to the loop settling 
time. Then, it can be said that, from t + b onwards the error time series cannot 
be distinguished from a random walk stochastic process. This fact strongly 
suggest that for monitoring the vital information in the error time series is 
primary local. However, due to the occurrence of noise and unknwon 
disturbances in various forms, it is far from trivial to get reliable information 
about a control system performance directly from its error time series. 
Moreover, the statistical assumption of normal distribution error is unsound and 
misleading. To overcome these problems and gain insight into the local 
structure this work based performance analyisis only in ordinal relationships 
between error values instead of values themselves. 
 
Given the error time series (e1, e2,…, eT) it is of interest to study the order 
patterns for n equally spaced time points t, t+b, t+2b,…, t+(n-1)b, where t runs 
from 1 to T-(n-1)b. The concept is graphically explained in Fig.1 using a 
fictitious error series. By the ordinal pattern of order n at time t it is understood 
the permutation of ranks )(tb

nπ = (r0, r1,…, rn) of (1, 2, …, n) satisfying: 
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For a given n there are n! possible order patterns π or permutations. In Fig. 2, 
the six order patterns for n=3 are shown. These permutations can be easily 
assigned to the numbers 1, . . . , n!  
If the controller is working properly the probability of any of these permutations 
should be identical and the superimposed stochastic process should follow a 
random walk. However, if the controller is performing poorly, some of the 
permutations will become more frequent than others. The proposed approach is 
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to take the frequencies of order patterns in a data set  as an indication of the 
loop condition. To account for the different pattern frequencies, we do not just 
take the number of π’s. We determine the entropy of the error time series [5]. 

 

Fig. 1. Superimposed random-walk stochastic process in the error time series 

 

Fig. 2. The six possible permutations for n=3. 

2.2. Permutation entropy 

For a permutation identified with number π, let f(π) denote its frequency in the 
error time series [6]. In other words: f(π) is the number of t between 1 and T-(n-
1)b for which πt = π. The relative frequency is p(π) = f(π)/(T-(n-1)b). The local 
permutation entropy of order n for the time series is then defined as: 
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ππ                                                                                    (2) 

Clearly, the permutation entropy characterizes the local order structure of the 
controller error. This is the information contained in comparing n consecutive 
values in the time series. Typically n is chosen between 3 and 7. The smallest 
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possible value of Hn is zero. It will be attained for a monotonously increasing or 
decreasing series which can be easily predicted. The largest possible value of Hn 
is log n! which is realized when all permutations have equal probability. This is 
the limit value for a controller which is perfectly working over the control 
horizon b (here we refer to natural logarithms, but it does not matter which log 
we take). 

2.3. Example 

Consider a small part of a error time series for a flow controller consisting of 72 
data points (see Fig. 3). For t = 72; b= 12 and n = 6,  the ordinal relationships 
are as follows: e12 > e60  > e48 > e24 > e1 > e72 > e60. Hence, for this particular t the 
resulting permutation π(t)=(1, 5, 4, 2, 0, 6, 3) yielding a qualitative 
reconstruction of the up-and-downs which may be readily associated with a well 
performing controller. However, it is worth remembering that all 6!=720 
possible permutations are all equally probable as t is varied between 1 and T-(n-
1)b, assuming the value of b is right and T is large enough. It is worth 
emphasizing that if the loop is performing well, controller errors separated by a 
least b time steps should approximate as a random walk stochastic process. To 
calculate the permutation entropy it is necesario to use a larger error series (e.g. 
1000 data points) and determine each π(t) frequency in the data set. 
 

Fig. 3. Ordinal pattern descriptive of local error 

3. Performance monitoring 

3.1. Performance index 

For loop monitoring, the following performance index is proposed: 
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for a controller working properly this performance index should be very close to 
1. As any of the permutations in Fig. 2 increases its probability over 1/n!, the 
value of ζ n will exhibit a decrease which is indicative of degraded 
performance. Choosing a low value of n such as 3 o 4 it is the best option for a 
number of reasons. Firstly, if the control horizon b is properly set, the type of 
information for loop monitoring the permutation entropy can provide is 
independent of n. However, the calculation effort of Hn dramatically increases 
with n! Secondly, as n increase the index ζ n  is less sensitive for detecting 
performance degradation since the probability of each permutation is very low. 
Accordingly, the size of the data set should be much higher. Finally, if the 
number of permutations n! is low enough, the sampled frequencies for each 
permutation can be readily correlated with specific causes of faulty operation. 

3.2. Example(cont´d) 

The loop under study is the slave controller in a cascade demanding a constant 
variation of the desired flow set-point. Actual flowrates and the controller error 
time series are shown in Fig. 4 for an industrial data set of 17280 using a 
sampling time of 5 sec. The control horizon b=12 is set based on a typical 
flowrate loop settling time (≅ 60 sec). Using samples of size T=1016, the 
corresponding values of the standard permutation entropy ζ3 were calculated 
and shown Fig. 5. With minor variations, the performance index remains very 
close to 1 in the first twelve samples, a clear indication that the loop is 
performing well. For these sample the frequencies of the six patterns are very 
similar to each other as expected when the loop is performing well. However, 
loop performance severely degrades in the 13th sampled possible due to a 
saturarion of the manipulated variable. The performance index ζ3 is also 
significantly lower than 1 for data sets describing samples 14th and 16th. A sharp 
increase of frequencies associated with ordinal patterns (0,1,2) and (2,1,0) is the 
main reason for the observed lowering in the sample values of ζ3, due to valve 
opening saturation.       

4. Concluding remarks 

Ordinal methods for monitoring control systems have many advantages 
including simplicity, clarity and robustness. Statistical assumptions are not 
needed for analysis. Ordinal patterns in the error time series are characterized 
here as error permutations which are equally probable for a well-performing 
loop assuming the control horizon b has been properly chosen. The permutation 
entropy of the symbolic dynamic sequence in the error time series is used to 
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define a performance index for loop monitoring. It is worth noting that the use 
of ordinal methods discussed above can also be very advantageous for process 
supervision and monitoring in batch processes and hybrid control systems. 
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                                 (a)                                                             (b) 

Fig. 4. Flow rate control loop. (a) process variable; (b) error time series. 

 

 

 

 

 

Fig. 5. Loop monitoring using the 
permutation entropy index 
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