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Abstract 

We present an industrial case study of a three-phase reaction system in a batch 
reactor. For the successful modeling and prediction of the plant-scale 
performance a hybrid model is used. Data from different scales were available 
for developing the model. In order to model the large-scale production process 
the first principles model was extended with neural network models to identify 
the missing parameters. 
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1. Introduction 

In order to develop a reliable three-phase model all information available from 
the lab-scale experiments and from the industrial-scale process is used. To take 
advantage of process knowledge and process measurements a hybrid first-
principles neural network model has been proposed. The key factors in 
modeling this batch process involve the reaction mechanism and kinetics, 
dissolution rates, solubility equilibrium, global mass-balance equations for the 
liquid and solid phases, and the calculation of missing removal rates. The 
different types of model components and measurements data are combined into 
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a hybrid first-principles neural network model. It will be demonstrated how the 
developed models are used to analyze and improve the investigated process. 

2. Problem statement 

In the beginning of the process operation, until the complete dissolution of 
component A, the reactor system consists of three phases: solid, liquid and gas. 
Four equilibrium reactions in series take place in the liquid phase and a catalyst 
is used in solubilized form. The reaction scheme is as follows: 
 
As    Al (1) 

Al + B    C + D (2) 

B + C    E + D (3) 

B + E    F + D (4) 

B + F    P + D (5) 
 
where As and Al represent component A in solid and liquid phase, respectively. 
Raw materials are component A and B; components C, E, F are intermediates 
and P is the desired product. Besides the reaction kinetics there are two major 
phenomena to be modeled: the dissolution of component A into the liquid phase 
and the removal of coupled product D (scale dependent). 

3. Methodology 

3.1.  Small-scale process model 

On the small scale experimental data from 1 kg laboratory experiments are 
available in the form of time-variant temperature and pressure profiles and 
measured concentrations for components A, B, E, F, and P. Due to the operating 
conditions and the small reaction mass we assume that the component D holdup 
in the liquid phase is zero on this scale. As a consequence reverse reactions do 
not take place and the kinetic model will comprise only the four forward kinetic 
equations. The complete model description is found in L. L. Simon et al. [1]. 
For this model there are five parameters to be fitted: the solid-liquid mass 
transfer coefficient and the four rate constants at reference temperature. 
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3.2.  Large-scale process model 

The industrial process is operated in a 6 m3 vessel with the same initial mass 
fractions of component A and B as the experiments on the 1 kg scale. However, 
as will be demonstrated below the assumption of component D concentration 
being zero does not hold true on this scale and a large-scale process model is 
needed. To complement the first-principle part the mass balances in the reaction 
model are extended with the liquid phase mass balance of component D: 
 

removal
BD r

dt
dn

dt
dn

−−=  
(6) 

 
where nD is the component D mole number in liquid phase [mol], and removalr  is 
the time-variant removal rate of component D during the process [mol / s]. The 
latter parameter is the unknown in the first-principles model and is calculated 
with two neural networks, each describing one of the two stages of process 
operation. The connection between the first principles part and the neural 
network is made in the serial way [2]. 

3.2.1. Modeling of the first stage of process operation 
During the first stage component D is condensed after removal from the reactor 
and is collected in a storage tank. The goal of the neural network model NN1 for 
this stage is to create a dynamic mapping between process advancement, 
measured in form of accumulation of component D in the storage tank, a 
process operation specific variable (i.e. temperature) and the removal rate of 
component D from the reactor. In order to achieve this goal a one-step ahead 
feed-forward neural network is proposed. The inputs to the model are the 
accumulated (condensed) mass of component D in the storage tank and the 
reactor temperature, which is needed due to the fact that the production rate of 
component D is directly influenced by it. The neural network output is the 
accumulation rate in the storage tank, which was calculated by differentiating 
the accumulated mass. The implemented black-box model is a Bayesian type of 
neural network. 

3.2.2. Modeling of the second stage of process operation 
In the second stage the accumulation rate of component D is not available 
anymore because it is not condensed; instead concentration measurements are 
taken and similarly to stage one the evacuation rate is the unknown parameter in  
the first-principles part. Due to the fact that the removal rate of component D is 
not measured, usual training methods such as back propagation are not possible. 



4  L. L. Simon et al. 

The identification of the component D removal during this stage is posed as an 
inference or parameter estimation problem from the concentration 
measurements. As a solution to the parameterization of the removal rate and 
inference of component D in liquid phase a feed-forward neural network 
structure (NN2) is proposed. This structure has as input the component P yield 
and as output the component D evacuation rate. By setting the product P yield 
as the input the normalization of the mass of product P was achieved, by this 
the model can be used for extrapolation as will be shown later on. The 
assumption behind this normalization is that the system will have the same 
behavior at the same yield values and its behavior does not depend on the mass 
of reactants present in the reactor. This assumption is only valid in a certain 
range around the operating points used for the NN2 model development. 
The calculation of the removal rate of component D is posed as an optimization 
problem [3] with the goal of minimizing the overall hybrid-model predicted 
concentration deviations by manipulating the weights and biases of this second 
neural network (NN2) subject to the constraints formulated in the given first-
principles model and evacuation rates calculated from NN1. The hybrid model 
structure is presented in Figure 1. 
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Figure 1  Overall structure of the hybrid model (continuous lines indicate the connections 
between the sub-models) and the optimization problem (dashed lines).  
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3.3. Results& discussions 

3.3.1.  Small- scale process model results 
A comparison of the modeled concentrations and the experimental data as 
obtained in fitting the reaction kinetics and solid-liquid mass transfer coefficient 
to the small-scale laboratory experiments is shown in Figure 2. The model 
describes the data well and the degree of explanation R2 is about 98%. 
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Figure 2:  Comparison of measurements from the laboratory experiments (circles) and 
corresponding fitting results as obtained with the small-scale process model (solid line).  

3.3.2. Large-scale process model results 
It is important to describe the concentration of component F as accurately as 
possible because it defines the termination criteria for the batches in plant 
operation. The hybrid model describes the low component F values at the end 
of the batch well. However, the model does not describe the decrease in 
component F mass fraction from its peak value at the beginning of the batch 
well. A reason for this might be that the catalyst activity in the large-scale 
reactor is not exactly the same as in the laboratory experiments. Although the 
exact reason could not be identified it was concluded that a re-fitting of the 
kinetic parameters on large scale is required. 
The kinetic parameters were re-fitted with the forward reactions model. The 
fitting resulted in a value for the 4th reaction constant being 30% smaller than in 
the small-scale model while the other reaction constants are unchanged. The 
decrease in component F mass fraction from its peak value is described much 
better with this new set of parameters. Therefore, in the next modeling step the 
NN2 in the hybrid model is re-optimized on the basis of the updated first-
principles model. 
By this a very good agreement between plant measurements and modeled 
component mass fractions is obtained (Figure 3). In particular component F is 
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now modeled well all over the whole range of available measurements. 
 
  

 

 

 

 

Figure 3: Comparison of component mass fractions as obtained with the large-scale hybrid model 
including updated kinetic constants and updated NN2 (solid line) and plant measurements 
(circles). 

4. Conclusions 

In this work the modeling and improvement of a complex industrial batch 
reactor has been presented. Here a first-principle approach is applied for 
modeling reactions and dissolution of one reactant that is introduced into the 
reactor in solid form. In order to model the large-scale production process this 
model was extended with neural network models to identify the missing 
parameters. In addition a re-fitting of the kinetic parameters on plant scale was 
required. With this hybrid model a good prediction of the concentration courses 
in the industrial reactor was obtained. 
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