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Abstract 

The paper deals with an application of robust static output feedback control to an 

exothermic continuous-time stirred tank reactor with parametric uncertainties and 

multiple steady states. The problem of robust controller design is converted to 

solution of linear matrix inequalities and a computationally simple non-iterative 

algorithm is presented. The possibility to use robust static output feedback for 

stabilization of reactors with uncertainties and comparison of a robust controller with 

an optimal controller is demonstrated by simulation results. 

 

Keywords: chemical reactor, multiple steady states, uncertainty, robust control, static 
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1. Introduction 

Exothermic reactors are very interesting systems because of their potential safety 

problems and the possibility of exotic behavior such as multiple steady states 

(Molnár, A. et al., 2002). Furthermore, operation of chemical reactors is corrupted by 

many different uncertainties. Some of them arise from varying or not exactly known 

parameters, as e.g. chemical kinetics or reaction activity. In other cases operating 

points change. Various types of perturbations also affect chemical reactors. All these 

uncertainties can cause poor performance or even instability of closed-loop control 

systems (Kuník et al., 2006). Application of robust control approach can be one way 

to overcome all these problems as it is shown e.g. in Gerhard et al. (2004), Bakošová 

et. al. (2005) and others. 

 

Robust control has grown as one of the most important areas in modern control design 

since works by Zames (1981), Doyle (1981) and many others. One of the up to now 

opened problems is also the problem of a robust static output feedback (Syrmos et al., 

1997). Various approaches have been used to study two aspects of the robust 

stabilization problem. The first aspect is related to conditions under which the linear 

system described in the state space can be stabilized via output feedback. The 
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necessary and sufficient conditions can be found e.g. in Kučera and de Souza (1995), 

Veselý (2004). The second aspect is related to finding a procedure for obtaining a 

stabilizing or robustly stabilizing control law. It has been shown that an extremely 

wide array of robust controller design problems can be reduced to the problem of 

finding feasible solutions of LMIs (Boyd et al., 1994). LMIs have been used to design 

of robust output feedback controllers e.g. in Benton and Smith (1999), Henrion et al. 

(1999), Veselý (2002) and others. 

 

The goal of this paper is to present the possibility to stabilize a continuous stirred tank 

reactor (CSTR) with an exothermic reaction (hydrolysis of propylene oxide to 

propylene glycol) in its unstable steady state using robust static output feedback 

control (RSOFC). The CSTR is an uncertain system because of two inexactly known 

physical parameters, reaction rate constant and heat of reaction. A computationally 

simple LMI based non-iterative algorithm is used for design of robust static output 

feedback controller (Veselý, 2002). The designed robust controller is used to 

stabilization of the exothermic CSTR with uncertainties.  

 

The paper is organized as follows. In section 2, basic principles of RSOFC are 

summarized. The CSTR is described in section 3, and simulation results are presented 

in section 4. Finally, in section 5 main conclusions are drawn. 

 

2. Robust static output feedback control 

2.1. Robust static output feedback, robust quadratic stability and guaranteed cost 

Consider an uncertain linear time variant system S in the form 
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where n
R)t(x ∈  is the state, m

R)t(u ∈  the control and r
R)t(y ∈ the output. 

{ }N,, AA K1Co , { }N,, BB K1Co  and { }N,, CC K1Co  are convex envelopes of sets of 

linear time invariant (LTI) matrices Ai, Bi, Ci, ,N,,i K1=  and matrices Ai, Bi, Ci have 
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appropriate dimensions. The system represented by (1) is a polytop of linear time 

invariant systems Si, N,,i K1= , 
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which represent vertices of S. The number of vertex systems p
N 2= , where p is the 

number of uncertain parameters of S. 

 

Consider also an uncertain polytopic closed-loop system  
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with static output feedback  
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and 

iiii FCBAA +=CL , N,,i K1=  (9) 

 

The robust static output feedback problem can be formulated as follows. For the 

system (1) find a static output feedback (7) such that the closed loop system (6) is 

stable, i.e. eigenvalues of ACL always have negative real parts. Finding of F is 

important when the state matrix A is unstable since having F leads to a stabilizing 

static output feedback. 

 

A sufficient condition for the asymptotic stability of the system (6) is feasibility, e. a. 

the existence of a quadratic Ljapunov function )t()t()(V
T

Pxxx = , 0>P , such that   

0
d

d
<

t

))t((V x
along all state trajectories. If a 0>P  exists, system (6) is quadratically 

stable and following statement holds: system (6) is quadratically stable if and only if 

there exists a positive definite matrix 0>P  such that following inequalities are 

satisfied 

0CLCL <+ T
i

T
i PAPA , 0>P , N,,i K1=  (10) 

 

Consider the uncertain polytopic system (1). Then the following three statements are 

equivalent (Veselý, 2002). 

1. The system (1) is simultaneously static output feedback stabilizable with 

guaranteed cost J* 
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2. There exist matrices 0>P , 0>Q , 0>R  and a matrix F such that the following 

inequalities hold 

( ) ( ) 0<+++++ i
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3. There exist matrices 0>P , 0>Q , 0>R  and a matrix F such that the following 

inequalities hold 
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2.2. Robust static output feedback controller design 

 

The design procedure for simultaneous static output feedback stabilization of the 

system (1) with guaranteed cost (11) is based on statements formulated above and 

their transformation to LMIs. Using Schur complement formula and defining  
1−= PS , the inequality (13) is transformed to the following LMIs 
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where 0>γ  is any non-negative constant.  

 

The inequality (14) is transformed to the following LMIs 
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The algorithm for static output simultaneous stabilization of the system (1) with 

guaranteed cost (11) is following. 

1. Compute 0>= T
SS from the inequalities (16). 

2. 1−= SP . 

3. Compute F  from the inequalities (17). 

4. If the solution of (16) is not feasible, the system (1) is not simultaneously 

stabilizable by static output feedback. If the solution of (17) is not feasible, the 
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closed-loop system (6) is not quadratically stable with guaranteed cost. Then it is 

necessary to change Q, R and γ  in order to find feasible solutions. If the solutions 

of (16), (17) are feasible, then the system (1) is simultaneously stabilizable and the 

system (6) is quadratically stable with guaranteed cost J* (11). 

 

3. Controlled CSTR 

Hydrolysis of propylene oxide to propylene glycol in continuous stirred tank reactor  

(Molnár et al. 2002) was chosen as a controlled process. The reaction is as follows 

C3H6O+H2O →  C3H8O2 (A) 

The reactor with volume of 2.407 m
3
 is fed with propylene oxide, methanol and 

water. Methanol is added to improve the solubility of propylene oxide in water. The 

excess of water provides higher selectivity to propylene glycol and eliminates the 

consecutive reactions of propylene oxide with propylene glycol. The reaction is of the 

first order with respect to propylene oxide as a key component. The dependence of 

reaction rate constant on temperature is described by Arrhenius equation  








 −
= ∞

rTR

E
kk exp  (18) 

 

where ∞k is pre-exponential factor, E – activation energy, R – gas constant and Tr –

temperature of reaction mixture.  

 

Assuming ideal mixing of the reactor and constant volumetric flow rates, the material 

balance for each component of reaction (A) is  

( ) rVccV
t

c
V jrjjj

j
r ν+−= 0

d

d
& ,    j=1,2,3 (19) 

where Vr  is volume of the reaction mixture, c – molar concentration, V& – volume flow 

rate, ν – stoichiometric coefficient, r – molar rate of chemical reaction. Further it is 

assumed that the coefficients of thermal capacity and volumetric flow rates do not 

depend on temperature and composition, and also the heat of mixing and mixing 

volume can be neglected.   

 

The simplified enthalpy balance of reaction mixture used as a standard at reactor 

design (Ingham et al., 1994) is 

( ) ( )rHVQTTcV
t

T
cV rrp

r
pr ∆

d

d
0 −+−−= &&ρρ  (20) 

)TT(UAQ cr −=&  (21) 

where T is temperature, ρ – density, cp – mass heat capacity, Q& – heat flow rate, 

Hr∆ – heat of reaction, U – overall heat transfer coefficient, A – area. 
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The simplified enthalpy balance of cooling medium used as a standard at reactor 

design (Ingham et al., 1994) is 

( ) QTTcV
t

T
cV ccpccc

c
pccc

&& +−= 0
d

d
ρρ  (17) 

Subscripts denote 0 – inlet, c – cooling medium, r – reaction mixture and superscript s 

– steady state. 

Values of parameters and feed values are in Table 1, where c10 is the inlet 

concentration of propylene oxide and c30 – inlet concentration of propylene glycol. 

 

Vr = 2.407 m3 ρ = 974.19 kg m-3 Tr0= 299.05 K sV& = 0.072 m3 min-1 

Vc = 2 m3 ρc = 998 kg m-3 Tc0 = 288.15 K s
cV& = 0.6307 m3 min-1 

cp = 3.7187 kJ kg-1 K-1 AU = 120 kJ min-1 K-1 c10 = 0.0824 kmol m-3  

cpc = 4.182 kJ kg-1 K-1 E/R = 10183 K c30 = 0 kmol m-3  

 

Table 1: Parameters and steady-state inputs of the chemical reactor 

 

Model uncertainties of the over described reactor follow from the fact that there are 

two physical parameters in this reactor, heat of reaction and pre-exponential factor, 

with values known within following intervals: 

]10491088[∆
44 ×−×−∈ .;.Hr , ]10451001114[ 99 ××∈∞ .;.k  (22) 

 

The nominal values of these parameters are mean values of intervals and they are 

used for deriving of the nominal model of the CSTR. The minimal and maximal 

values of intervals are used for obtaining of models, which create the vertex systems 

for the robust controller design. 

 

4. Simulation results 

The steady state behavior of the chemical reactor with nominal values and also with 

all 4 combinations of minimal and maximal values of 2 uncertain parameters is 

studied at first. It can be stated the reactor has always three steady states, two of them 

are stable and one is unstable.  

 

The situation for the nominal model is shown in Fig. 1, where the curve GENQ&  is the 

heat generated by the reaction and the line OUTQ&  is the heat withdrawn from the 

reactor. The steady state operating points of the reactor are points where the curve and 

the line intersect. The steady states are stable only in the case when the slope of the 

cooling curve is higher than the slope of the heat generated curve. 



Robust stabilization of an exothermic CSTR  
 

 

 7

280 300 320 340 360 380 400
-10000

0

10000

20000

30000

40000

 

 

Q
G
E
N
 ,
 Q
O
U
T
  
[k

J
 m

in
-1
]

T
r
  [K]

. 

Figure 1: Three steady states of the CSTR with nominal values of uncertain parameters 

 

Further the open-loop behavior of the reactor in its unstable steady state is studied. 

The main operating point is given by the unstable steady state of the reactor with the 

temperature of the reaction mixture Tr
s
 = 343.1K. Simulation results obtained for the 

nominal model and also for 4 vertex systems are shown in Fig. 2. They confirm that 

without feedback control, the CSTR cannot operate in its unstable steady state and the 

CSTR converges either to the upper or to the lower stable steady state.  
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Figure 2: Open-loop response of the CSTR, - - - main operating point,  nominal system,   vertex systems 

From the viewpoint of safety operation, it is sometimes necessary to stabilize reactors 

in their unstable steady states. So, the main aim is to stabilize the presented reactor in 

its unstable steady state. The main operating point is given by the unstable steady-

state reactor temperature Tr
s
 = 343.1K. Because of presence of uncertainties in the 

CSTR, it is necessary to find a robust stabilizing controller. 

 

Design of a robust stabilizing controller is based on having a linear state space model 

(1) of the controlled system. Linearized mathematical model of the CSTR has been 
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derived using material balances of propylene oxide and propylene glycol and enthalpy 

balances of reaction mixture and cooling medium under the assumption that the 

control inputs are the reaction mixture flow rate rV&  and the coolant flow rate cV& . The 

controlled output is the temperature of reaction mixture Tr. The other input variables 

are considered to be constant. The matrices of the nominal linearized model in the 

main operating point are 
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


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0

0

0

18.3011-
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 0.0188

0B  (23) 

( )01000 =C  (24) 

 

The eigenvalues of A0 are  –0.0299, 0.0929, –0.0260,  –0.3301 and they confirm the 

instability of the reactor in one of its steady states. For 2 uncertain parameters, we 

have obtained also 2
2 

=4 linearized models, which represent vertices of the uncertain 

polytopic system and they all are unstable. 

 

It was further important to find a robust static output feedback, which would be able 

to stabilize the CSTR as the uncertain system with the guaranteed cost expressed by 

(11), where matrices Q, R are chosen as follows 

)1000101000101010diag( 33 −− ××= .,.,,.qconstQ  (25) 

)10100,1diag( 4−×= .rconstR  (26) 

For finding a stabilizing output feedback controller it is necessary to solve two sets of 

LMIs (16), (17), each set consisting of 4 LMIs. The feasibility of the solution of (16) 

assures that the reactor is robust static output feedback quadratically stabilizable and 

the feasibility of the solution of (17) gives robust static output stabilizing controller 

with guaranteed cost for the whole uncertain system.  

 

For solving the LMIs, the LMI MATLAB toolbox was used. There are three 

parameters, which influence solution and can be changed: γ,, constconst rq . In 

dependence on the choice of these parameters, it was possible to find several 

stabilizing controllers, which stabilize the polytopic system with 4 vertices and also 

stabilize the reactor. For all stabilizing controllers all closed loop systems obtained for 

the nominal system and also for 4 vertex systems are stable, e. a. all eigenvalues of 

state matrices (8) of the nominal and 4 vertex closed loop systems have negative real 

parts. 
 

Simulation results obtained with the robust static feedback controller 

[ ] T
..F 55751012300= are shown in Fig. 3. 
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Figure 3: Closed-loop response of the CSTR with the robust output feedback controller, - - - main operating point, 

 nominal system,   vertex systems 

 

Simulations demonstrate also comparison of the designed robust controller with an 

optimal LQ controller. The optimal LQ controller was designed (Mikleš and Fikar, 

2004) with the same matrices Q, R (25), (26) as the robust controller in the form   









=

917322115902389071803

000050014000805974

....

....
K  (27) 

Fig. 4 shows the closed-loop response of the CSTR with the optimal LQ controller. 

The designed LQ controller is able stabilize the nominal model, but the control 

response is more sluggish than with the robust controller. The LQ controller is not 

able to stabilize all vertex systems to the main operating point. 
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Figure 4: Closed-loop response of the CSTR with the optimal LQ controller, - - - main operating point,  

nominal system,   vertex systems 
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5. Conclusions 

In this paper, the possibility to stabilize the exothermic chemical reactor for 

hydrolysis of propylene oxide to propylene glycol with 2 uncertain parameters and 

multiple steady states via static output feedback controller is studied. The results 

confirm that using a simple non-iterative algorithm based on solving of two sets of 

LMIs is a successful way to design robust stabilizing controllers also for such 

complicated systems as CSTRs with multiple steady states and uncertainties. LQ 

design gives optimal controllers, which successfully stabilize systems without 

uncertainties (nominal systems), but they cannot assure stabilization of systems with 

uncertainties.  
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