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Abstract

The paper present a robust procedure to estimatepdhameters set of the kinetic
model, as the activation enerdgy)(and the pre-exponential factok), used in the
calculation of the constant of Arrhenius)(for the partial oxidation of benzene to
maleic anhydride. This estimate is carried throGgimetic AlgorithmsGA9 with the
purpose to minimize an objective function, that sidars the error between real
values operation supplied by literature, industtialts or laboratory scale reactors
and the simulated theoretical values from the usedel, so that a reliable adjusted
kinetic model can be determined to be used in #actor model to design and
operational strategies development.

Keywords: kinetics, parameter estimation, optim@atgenetic algorithms, fixed bed
1. Introduction

Maleic anhydride has numerous industrial uses andfisignificant commercial
interest worldwide. One of the synthesis routegherproduction of maleic anhydride
is based on the direct air oxidation of benzener samadium pentoxide catalyst
(V20s). An excess of air is applied, and a low benzemeentration must be utilized
in order not to exceed the flammability limit ofetimixture, but the reactant benzene
cannot be recovered economically so the reactot opesate at high yields. Bearing
this in mind, a pseudo-homogeneous bidimensionadenor fixed bed catalytic
reactors was developed taking into account vanatio the physical properties of the
fluid and their impact on the heat and mass trarsdefficients. The objective is to
estimate the parameters set of the kinetic moddhe activation energ¥{) and the
pre-exponential factorX), used in the calculation of the constant of Anibs ().
This estimate is carried through Genetic Algorith(@&As with the purpose to
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minimize an objective function to be establish&dt tonsiders the error between real
values operation, values these that can be obt&iosdtemperature or concentration
reactor profiles for determined points throughdu¢ treactor length, supplied by
literature, industrial units or laboratory scalactrs, and the simulated theoretical
values from the used model, so that a reliable shefl kinetic model can be

determined to be used in the reactor model to deaigd operational strategies
development.

The genetic algorithms are based on the genetidsnatural evolution principles of

the species. The mechanism of the Genetic Algosthechnique occurs with

successive modifications of the individuals or chasomes (artificial structures) of
population through the application of selectiomssiover, and mutation operators.
For the application of Genetic Algorithms in paraenesestimation it is necessary to
develop a suitable objective function based ond#ia from the reactor model and
experimental values. The coding basic recommenuativere considered. The
interest of this work is to show that the Genetigokithms technique can be useful to
estimating the parameters of the Arrhenius equatiaining good results so that
with this accurate information operational improwss can be achieved when
deterministic models are used. The results shoat the whole procedure of kinetic
data identification together with reactor moded igbust procedure, which allows the
reactor to be operated at high level of performance

2. Reaction Rates

The partial oxidation reaction rates of benzenmadeic anhydride with ¥Os catalyst
consists on a system of parallel and series eqmsatwith a classical triangular
reaction scheme:

A

B

N/

C

whereA andB are benzene and maleic anhydride, respectivelile Wthdenotes the
combustion products (CO, GCH,0).

The kinetic data were described in the works of Watint and Emig (1980) and also
by Westerink and Westerterp (1988) for the follogveystem of reactions:

ke
C.H, + %oz & CH,0,+ 2CO, + 2H,C )
15 _
CHs + =70, —~ 6CQ, + 3H,0 @

ks

C,H,0, + 30, — 4CQ + H,C ®)
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There is no maleic anhydride, carbon dioxide andewan the reactor feed.
ThusCpyo = Ceo,0= Cuoo =0 and the conversion of the limiting reactant

(benzene) is given by Westerink and Westerterp&1L99

Feo-F

Fo, F
oDy OO L TR0 -y x4 X,k X @
I:B,O I:B,O B,0 B.,0

The component molar flow rates of the reaction ateutated by:

Fs = Fo(1- X, = X)) (5)

F, =o,21FAr,O—{FB,O(%xl+1—25x2+ 3x3ﬂ (6)
Fu =079, , 7)

Faw = Fao (X1 X3) 8)

Feo, = Feo(2X,+6X,+4X,) )

Froo = Fgo(2X,+3X,+ X,) (10)

The total molar flux rate is given by the above digua

6
Fr= FB,O+FAr,O+FB,O(_%X1+%X2+ X3j: & :Z Rk (11)
i=1
with the ratio:
F
Ry/p = —2° (12)
'Ar /B FB’O
1 1
Fr=1+ RAr,B+J'(_§ X1+_2 X, + xaj (13)
The reaction equation rates are given by:
= leBCSl = kICB (14)
= kchng = kzcs (15)

;= k3CBC83 = kscs (16)
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All the reactions are considered to b€ drder, due to the huge excess of air, and
consequently, the oxygen. In this way, the oxygemcentration is considered
constant. The reaction rate as a function of caerrcan be obtained by using the
relation above for concentrations, applied to mpidtreactions (Fogler, 1999):

_ FYPIT
e

1-X,-X PlT,
Cy = Cqy ( 1 ! 12) (3] (?Oj (18)
1+ yB’O(_Z x1+E X2+ X3j 0
cC =C (Xl_ X3) Pl (19)
AM B,0 1 1 FB T
1+ Ye.o0 _E Xl+—2 X2+ X3
F
where: yg , :% and  Cyp= Y 0Crg

T,0

3. Mathematical Modél

The model developed for this work are based onwbeks of Jutan et al. (1977),
Maciel Filho (1989) and Vasco de Toledo (1999), alhincorporate the thermal
capacities of the fluid and the solidpQy)q e (0Cp)s respectively. This model
incorporates in implicit form the presence of tlodids which allows overcoming the
difficulties of representing the dynamic behavidrtioe fixed bed catalytic reactor
satisfactorily, including the inverse response mmeenon, allowing for a fast and
reliable analysis of the reactor performance.

The dynamic formulation of this model consists @rt@al differential equations
derived from the balance of mass, energy, momeraadcontinuity equation, with
the appropriate initial and boundary conditionse Tinodel allows for variations in the
physical properties, and their influence on thet lzeal mass transfer coefficients, as
well as to variations in the temperature of thel@o and reactor pressure, which are
not normally considered in the literature. Thedaling assumptions are made in the
formulation of the model (Vasco de Toledo, 1999):

» The physical properties of the fluid (density, wasity, thermal conductivity, heat
capacity, reaction enthalpy, molecular weight, sfigal velocity), and the
coefficients of heat and mass transfer varies albageactor length;

* Plug-flow velocity profile;
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* Negligible axial dispersion;
* Flat temperature profile at the inlet of the bed;
* Uniform porosity.

A dynamic bi-dimensional model of the catalyticates is presented bellow.

« Mass Balance

D .
dxl — ezf Ei|:r dxl _$dxl + qvopB rl (20)
ot R°rodrl oJr | L Jdz ¢k,

9%, _Du10[ 0% u0%,, ap,

- r 21
gt R°rdrl oJr | L dz ¢€F,°* &)

D _ _
ﬂxs :_ef:_Li rdxs _idxa_F qopBr3 22)

ot R*rdr| Jdr | L dz e€F,,

where:

* X;: Amount of benzene converted into the reactionir{Irelation the amount of
fed benzene

* X Amount of benzene converted into the reactionirf2elation the amount of
fed benzene

* Xsz: Amount of maleic anhydride converted into the rigac{3) in relation the
amount of fed benzene

* Energy Balance

(23)

4
AN 1i{r dT}—gcpgpgusﬂ+ oS —AH,r,

ot CRrdrl gr] CL dz CT.S

where:Cn= €(0y Cpy) + (1 - &) (0s Cpy)

*  Momentum Equation

2
E :—i E.}.G‘—Lf (24)
at ng 62 pg Dp Pref gc

» Continuity Equation

= (pV)=0 9)
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» Coolant Fluid Equation for co-current flow

R+ cn (T@ztH)-TR) (26)

with the following boundary conditions:

oX _oT .
r=0 —=—= simetr 27
or or ( Y @D
(004 oT
r=1 —=0,—=B -T(@ for all z 28
z=0 X=0, T=T,, P=P, =T  (forallr (29)

The solution procedure was based on the methothe$ with the spatial variable
discretization carried out by orthogonal collocati®¥illadsen and Michelsen (1978)
and Vasco de Toledo (1999). The integration was emidwlough a GEAR type
algorithm (Rice and Do, 1995; Vasco de Toledo, 199@ce the equations are stiff.

4. Reactor Optimization and Kinetic Data I dentification

Genetic Algorithms (GAs) are general-purpose se&echniques for able to solve

complex problems, including those to identify kingitarameters in a high non-linear
function where more than one parameter is pre§dmdy are based on the genetics
and natural evolution principles of the speciese ToAs work through repeated

modifications in an artificial structures populatiocdenominated of individuals

(chromosomes or set of solutions) applying thecsiele, crossover, and mutation
operators. The evaluation of optimization happeits an objective function (fitness)

that determines the performance of the genetic ggac The fithess could be
understood as the capacity of the individuals teiga in a natural environment.

The problem consisted of maximizing an objectivection taking into consideration
the kinetic model together a detailed reactor mao@sed in a system of differential
partial equations. With the reliable kinetic modek possible to optimize the rector
to match specific objectives.

5. Genetic Algorithms (GAS)

Genetic Algorithms are a family of computational dets inspired by evolution.
These algorithms are a procedure of research atithingtion motivated by the
principles of natural selection (Holland, 1992; @mdrg, 1989; Béack et al., 2000).
These are often viewed as function optimizers. Birit interpretation, the genetic
algorithm refers to a model introduced and investd by John Holland. The primary
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reasons for their success are their broad applitabease of use, and global
perspective (Goldberg, 1989).

The GA initiate with a population of representeddam solutions in some series of
structures. After this first stage, a series ofcpdures (operators), are applied
repeatedly, up to convergence is achieve. Theseimps are: coding, reproduction,
crossover and mutation. These two last operat@used to create new and better
populations. This procedure continues until a taanon criterion defined in
accordance with the necessities proposals for agaion of the problem. The
determination of the parameters is made developmgbjective function that can
represent the problem in a suitable way. The agitio of the GA follows some
steps as: coding, population size, evaluation reéi$, selection (reproduction),
crossover and mutation.

5.1.Coding

There were two parameter coding schemes (floatomgt |and binary), many selection
schemes, and different types of crossover and mootaiperators that have been
investigated in previous GA works (Goldberg, 19899r this application, the best
choice of coding was binary form.

These studies were based in the Carroll’'s work r@larl996a). The parameters are
discretized into a number of possibilities, but éleomosome length is based on the
total number of possibilities in a binary formatg.e 32 possibilities would be
represented by a string of five 0’'s and 1's, wherd® possibilities would be
represented by a string of four 0's and 1's. Fads thpplication, binary coding
produced a total chromosome string length of 2laiAgthe length of each parameter
string is called the parameter length. For binangilcg, each parameter is represented
by a string of 0’'s and 1’s in the total chromosastreng; therefore, for binary coding,
the parameter length is 5 for 32 possibilities @adl for 16 possibilities. During
crossover with binary coding, the crossover poiayraccur in the middle of one the
parameter strings; this allows the child to haymemeter string that is a mix of the
parents parameter strings and, consequently, titek rolay have an allele (parameter
value) between the two alleles of the parentsldatihg point coding, the child must
have a mix of the parents’ alleles but cannot redledes which are not present in the
parents chromosome strings. Thus, in binary codimyye alleles (possible values of
the parameters) are preserved as new generat®icseated.

The target is to create a representation of a patexmvhich allows its modification
through the cut (division) in some position beihgge parts of the separate sequences
in condition to be matched with others. A codifiparameter is similar to a
chromosome in genetics, in other words a modifighkeier of information.
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5.2.Population Size

In accord to Wehrens and Buydens (1998), the ptipalaize is determined by each
particular case and normally is in the range obR0-are common. In general, when
many parameters are optimized great populationsised, even so it does not exist
definite rules. There are frequently limits for thember of evolutions (due to the
time and computer bounder) that can be carriedugiroln many cases for a great
number of evolutions, a small population is applétl vice-versa. When there is
interest to obtain a set of “good” solutions inst@h a single solution, executions are
usually repeated with small populations. Some oaust be considered to do not get
premature conclusions when only one executionnsethout. Because of the random
nature of the search, it is preferable to obsemeawerage value in different

executions. This study of optimization used popatesize of 20.

5.3.Evaluation — Fitness

The evaluation function (fitness) represents, wldgical terms, the pressure exerted
for the environment on the individuals, in otherrdsy this function is representative
of the problem to be analyzed and determines whidhese individuals (parameters)
of a determined population supplies better valoesré adaptable) in the optimization
(objective function). The best individuals can aseularger or smaller values that
depend on the problem to be considered (maximizatianinimization respectively).
Application of the scheduling problem considersgbdes with better performance of
fitness. The correct determination of the evaluafinctions is the main task to carry
out the optimization in an efficient way, prevegtimany executions and speeding the
solution (Victorino, 2005).

5.4.Selection

Selection is the stage of a genetic algorithm inctvithe individuals are chosen from
a population for later to be submitted to recomtioma (crossover) and mutation

operators respectively. The selection is normdily first procedure applied in the

population, and is carried out a choice of goodviddals (series) and promotes a
mating pool (reproduction). Some selection types faund in literature (Goldberg

and Deb, 1991). The main idea is to select ind&isiithat possess fitness values
above the average of a current population and ichies and in mating pool. The

more traditional selection methods are the propodi selection, roulette wheel,

tournament and based in rank.

Expected value selection: the fitness of all thdiviiduals in the population is
summed, and then the expected probability of delecs based on the fitness of the

individual divided by the total fitness of the pdguion, i.e.,p, :VZ £ The

expected number of parents with chromosome is&ir the new generation is
simplynp. . This procedure will fill most of the parent slotsut there will be a

fractional remainder of slots that are filled usthg stochastic remainder sampling
without replacement method (Goldberg, 1989). Randmits of mates are then
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chosen from this population of fit parents. Theache pair of mates creates two
children, e.g., one child could end up with chroome set abcDE and the other with
ABCde.

In this work was used the Tournament selection,reshandom pairs are selected
from the population and the stronger (most fiteath pair is allowed to mate. Each
pair of mates creates one child, which has someofilke two parents chromosomes
according the method of crossover (discussed néRg.process of selecting random
pairs and mating the stronger individuals continuet a new generation of sizeis
repopulated.

Several other methods of selection can be apphg8A, such as elitist selection, bi-
classist representative and for diversity. Aftee tbelection process, the selected
individuals are submitted to the crossover and tartaoperators described in the
sequence. This operator is used to ensure thathtteenosome set of the best parent
generated to date is reproduced. After the pomuiat generated, the GA checks to
see if the best parent has been replicated; ifthety a random individual is chosen
and the chromosome set of the best parent is mappedhat individual. Although
this operator is not necessary, it was found t@ Ipeévent the random loss of good
chromosome strings.

5.5.Crossover

This operator is applied in the series proceedinghfmating pool (after the stage of
selection), (Goldberg, 1989). In the same way thatreproduction operator, is found
some different types of crossover operators appbe@A (Syswerda, 1989; Carroll,
1996b). In the majority of the operators, two sefi@dividuals) are chosen from the
mating pool randomly and a recombination is madastructing two new individuals
(recombining parts of the series relatives). Thperator is considered the main
operator of the genetic algorithms. It is regulabgdan adjustable parameter for the
user (crossover probability) normally the valueatthre used can be found in the
range of 0.5-0.9. One of the most important is tbae-point crossover cannot
combine certain combinations of features encodedhoomosomes: schemata with a
large defining length are easily disrupted. Itlsogpossible that certain elements are
not allowed to appear more than once. In that casssautions have to be taken.
Therefore, in previous years, several other cramstachniques have been used and
will be discussed some of them here, as: two-poiossover, uniform crossover,
partially mixed crossover and uniform order-base$sover.

In this study was used Single-point crossover andddn Crossover. The Single-
point crossover the chromosome set of the firséails mapped into the child, e.qg.,
abcde. A crossover point is randomly chosen whHegehromosome set of the second
parent, ABCDE, overwrites the chromosome set offitisé parent, e.g., one possible
chromosome set for the child is abcDE, where thsitipo between the ¢ and D
chromosomes is the randomly determined crossovémt.p&or this study, the
probability of a single-point crossover occurripg,.., was set at 0,6. Note that there
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IS al-p,.s Probability that the child would retain the entaleromosome set of the

first parent. In the case with Uniform crossovepassible to obtain any combination
of the two parents chromosomes, e.g., the childdcend up with chromosome set
aBcDe. For this study, the probability for a crossooccurring at each chromosome
position was set at 0.6 (the same value used rigiespoint crossover). Note that it is
possible that the child could retain the entireoamwsome set of either parent, but in
uniform crossover it is unlikely.

5.6. Mutation

The main target of this genetic operator is to ptamew solutions (individuals) that
cannot be generated by another form. The mutatitnoduces an element of the
random research (some times called exploration)chviiias attention to focus in
promising regions of the search space (exploitatiOne more time the occurrence of
this operator is determined by the user that catifyuit with a mutation probability.
Normally, the values that are used can be founthénrange 0.001-0.05. In binary
representations, normally, the random mutatiorp@iad, where an individual of the
current generation is chosen randomly by meansmiesmethod of selection or still
the best individual of the population is taken dlr fitness), determining the
percentage of genes that must be changed.

In this case jump mutation was used so that thee small probability that one or
more of the child's chromosomes will be mutated)., ethe child ends up with
chromosomes abcDM, where M was not a chromosonme éither parent. The jump
mutation produces a chromosome that is randomlkegido be in the range of the
appropriate parameter, e.g., the parameter cougp jisom one side of the range to
the other side. The probability of a jump mutatmecurring for each chromosome

was set equal t%] l.e., the inverse of the population size. The jumptation
operator was used in al of the GA work in this gtud

The other form of mutation is Creep mutation, wharether small probability

mutation is that one or more of the child's paramsewill be mutated by a single
increment, e.g., the child ends up with chromosoriesDF, where F was not a
chromosome from either parent, but is only oneem@nt away from parent 2's
chromosome value of E. The creep mutation prodecgmrameter value that is
randomly picked to be larger or smaller, so longtagmains in the range of the
appropriate parameter, i.e., the parameter coelejpcone increment up or down from
one of the parents values. The probability of segrenutation occurring for each

chromosome was set equa%), I.e., the inverse of the population size (a prolggbi

of % was chosen for the same reason it was used for joatations).
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6. Strategies of Optimization

The objective is to estimate the parameters s#ieokinetic model, as the activation
energy E) and the pre-exponential fact@k), used in the calculation of the constant
of Arrhenius k). This estimate is carried through algorithms mptation as, for
example, Genetic Algorithms with the purpose toimine an objective function to
be established, that considers the error betwesdroperational values, obtained from
temperature or concentration reactor profiles fetednined points throughout the
length of the reactor supplied by literature, andutated values from the model.
With is procedure is possible to determine the tkineodel taking into account all
the observable phenomena taking place in the neadtowing the use of real
operational data. In Table 1 are presented thigrd@sd operation reactor data.

Table 1 — Data set of the fixed bed catalytic react

Design Parameters Operation Parameters
Reactor Length 3.0m Gas Feed Temperature 760.15 K
Shell Diameter 0.030 m Coolant Feed Temperature 138K.
Tube Diameter: 0.025 m Feed Air/Benzene Ratio 75.0
Pellet Diameter 0.0025 m Inlet Pressure 2.0 atm
Tube thickness: 0.000889 m Gés Mass Velocity 90KRg.012.h*
Solid Thermal 7.0 kcal.mt.hitK? Coolant Velocity 150.0 m:h
Conductivity
Bed Density 900.0 kgcat:tn Igltlal Benzene 0.000467 kmol.nd

oncentration

Bed Porosity 0.47 Feed Benzene Molar Flow  0.00226@ kih

In Table 2 are shown the kinetic parameters of tr@acrate, with the
maximum and minimum values.

Table 2 - Westerink, E. J., Westerterp, K. R., 1988)

Parameter s Ai Ai max Aimin Ea (Ea/R) wax(Ea/R)  win(E&/R)

ki (M*kgeaitsY)  4.280x16  4360x18 4200x168 -1.2660x16 1.280x16  1.250 x 16
ko (MK ™81 7.010x16  7.150x160 6.950x14 -1.5000x 16 1.560x18  1.440x 10
ks (M kgeaitsY)  2.600x16  2680x16 2530x16 -1.0800x16 1.160x16  1.030x 16

The Arrhenius’s Equation was linearized in accoogawith Rodionova and
Pomerantsev (2003), the procedure is presentérisgquence:

k =k ex{%) , T = [K] (30)
Defining,
ko —» g=In(k) (31)

_ _Ea
k = exp(q T J (32)

Substituting in (1),
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Making,
T.x=E8%  and - Fa (33)
T Ea
Obtaining:
k = exp(qg-bX) (34)

The genetic code based on the code developed bgllGa®96a,b) was coupled with

the reactor model. The genetic code possesse®ltbeiihg characteristics: binary
code; uses the elitism; search in niches and s&heloy tournament. More details can
be found in the site http://cuaerospace.com/cdntaill). This genetic algorithm (GA)

code is written in FORTRAN.

6.1. Parameters of Control of the Genetic Algorithms

The selected values for the GA parameters are givéable 4. The parameters to be
optimized were codified with the binary form, based adapted of many published
literature works (Carroll, 1996a,b; Deb, 1998; Guady, 1989). In the Table 3 shows
genetic parameters that are used in the optimizatio

The selected values for the GA parameters are givéable 4. The parameters to be
optimized were codified with the binary form, basedl adapted of many published
literature works (Carroll, 1996a,b; Deb, 1998; Gudy, 1989). In the Table 3 shows
genetic parameters that are used in the optimizatio

Table 3 - Control parameters of genetic algorithtiized in the optimization.

Size Parameters Crossover  Mutation Rate Creep Generations
Population (Variables) (Uniform (Jump Mutation (Maximum
Crossover) Mutation) (Rate) Number)
20 6 0.5 0.01 0.02 100

The GAs parameters were chosen based on extensiuaton not shown in this
work.

6.2. Objective Function

In this work the objective function is related theerage and simulated temperature.
The representation of this function is:

3 2
Z(TAvg_ Sirr)
— =1
N

f (35)

Where, T,,, and Tg,,, are the average and simulated axial temperatsggectively,

this values are in Kelvin (K).
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In the Figure 1, the optimization reactor flowcharpresented and this is based in the

Carroll's code and that it is used in this work.

Random Initial Population

¥

Reactor
Model

Calculate Fitness for Each Individual
(i.e. for Each Chromosome Set)

Pil—

!

Select and Mate the Most Fit Parents

A\ 4

|

Perform Crossover Operation to
Obtain Chromosome Set of Child

Perform Low Probability Mutation Operation
(Alters Chromosome Set of Child)

!

Repeat Until Entire Population
Size is Replenished with Children

|

Repeat for New Generation

|

Very Fit Individuals are Obtained
Typically by Generation 20

Figure 1 — Flowchart of Genetic Algorithm optimiat reactor, based in Victorino (2005).

7. Results

The kinetic parameters of reaction rate used from literature together with the
estimated values obtained with the optimizationcpdure are presented in the

Table 4:

Table 4 - Kinetic parameters of reaction rate ftomliterature (Westerink, E. J. and WesterterpRK.1988) and

estimated values.

Literaturevalues

Estimated values

Parameters A Ea (Ea/R) A Ea (Ea/R)
ky (M®kgear™.sY) 4,280 x 18 -1,2660 x 16 4,3198 x 16 -1,2539 x 16
ko (M® kgear™.sY) 7,010 x 16 -1,5000 x 16 6,9543 x 16 - 1,5072 x 16
ks (M°.Kgear.S%) 2,600 x 16 -1,0800 x 16 2,530 x 16 - 1,1545x 16

The steady state simulated temperature profile thighestimated kinetics parameters
are compared to temperature profile obtained ufiegkinetics parameters from the

literature as illustrated in Figure 2:
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Figure 2 — Axial temperature profile along the teaéength.

As can be seen a very good adjust was obtainedgt@kio account the available data.
The same procedure was used with an industriafs#dta either for temperature and
concentration and very good results were obtaing@nms of parameter fitting. It is

worthwhile mentioning that is more adequate to aeti the thermal profiles instead

of concentrations ones to achieve a good paranestenation. The industrial data
were not shown explicitly in this work for sakeaunfidentiality.

8. Conclusions

A suitable procedure to identify kinetic parametesing large scale industrial units
data is proposed. It is based on the use of alegtdeterministic model for the
reactor coupled with a kinetic model with the paesens led freely to be determined.
An objective function based on the minimization tbie difference of the real
operation and simulated data from the model is geee and the whole problem is
solved using Genetic Algorithms. The procedurevadldhe use of real profile of
either temperature or concentration but the foremer more easily obtained form
industrial units. The whole procedure showed tadimist so that is a good tool to
deal be used to find out kinetic data from indastreactors.
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