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Abstract 

The paper present a robust procedure to estimate the parameters set of the kinetic 
model, as the activation energy (Ei) and the pre-exponential factor (Ai), used in the 
calculation of the constant of Arrhenius (ki) for the partial oxidation of benzene to 
maleic anhydride. This estimate is carried through Genetic Algorithms (GAs) with the 
purpose to minimize an objective function, that considers the error between real 
values operation supplied by literature, industrial units or laboratory scale reactors 
and the simulated theoretical values from the used model, so that a reliable adjusted 
kinetic model can be determined to be used in the reactor model to design and 
operational strategies development. 
 
Keywords: kinetics, parameter estimation, optimization, genetic algorithms, fixed bed 

1. Introduction 

Maleic anhydride has numerous industrial uses and is of significant commercial 
interest worldwide. One of the synthesis routes for the production of maleic anhydride 
is based on the direct air oxidation of benzene over vanadium pentoxide catalyst 
(V2O5). An excess of air is applied, and a low benzene concentration must be utilized 
in order not to exceed the flammability limit of the mixture, but the reactant benzene 
cannot be recovered economically so the reactor must operate at high yields. Bearing 
this in mind, a pseudo-homogeneous bidimensional model for fixed bed catalytic 
reactors was developed taking into account variations in the physical properties of the 
fluid and their impact on the heat and mass transfer coefficients. The objective is to 
estimate the parameters set of the kinetic model, as the activation energy (Ei) and the 
pre-exponential factor (Ai), used in the calculation of the constant of Arrhenius (ki). 
This estimate is carried through Genetic Algorithms (GAs) with the purpose to 



                                                                                                             E.R. Morais et al.                              

minimize an objective function to be established, that considers the error between real 
values operation, values these that can be obtained from temperature or concentration 
reactor profiles for determined points throughout the reactor length, supplied by 
literature, industrial units or laboratory scale reactors, and the simulated theoretical 
values from the used model, so that a reliable adjusted kinetic model can be 
determined to be used in the reactor model to design and operational strategies 
development. 
 
The genetic algorithms are based on the genetics and natural evolution principles of 
the species. The mechanism of the Genetic Algorithms technique occurs with 
successive modifications of the individuals or chromosomes (artificial structures) of 
population through the application of selection, crossover, and mutation operators. 
For the application of Genetic Algorithms in parameter estimation it is necessary to 
develop a suitable objective function based on the data from the reactor model and 
experimental values. The coding basic recommendations were considered. The 
interest of this work is to show that the Genetic Algorithms technique can be useful to 
estimating the parameters of the Arrhenius equation, obtaining good results so that 
with this accurate information operational improvements can be achieved when 
deterministic models are used. The results shown that, the whole procedure of kinetic 
data identification together with reactor model is a robust procedure, which allows the 
reactor to be operated at high level of performance. 
 

2. Reaction Rates 

The partial oxidation reaction rates of benzene to maleic anhydride with V2O5 catalyst 
consists on a system of parallel and series equations with a classical triangular 
reaction scheme: 

 
 
 
 
 

where A and B are benzene and maleic anhydride, respectively, while C denotes the 
combustion products (CO, CO2, H2O). 
 
The kinetic data were described in the works of Wohlfahrt and Emig (1980) and also 
by Westerink and Westerterp (1988) for the following system of reactions: 
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There is no maleic anhydride, carbon dioxide and water in the reactor feed. 
Thus,

2 2,0 ,0 ,0    0AM CO H OC C C= = =  and the conversion of the limiting reactant 

(benzene) is given by Westerink and Westerterp (1998): 
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The component molar flow rates of the reaction are calculated by: 
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The total molar flux rate is given by the above equation:  

 

 
6

,0 ,0 ,0 1 2 3
1

1 1

2 2T B Ar B T i
i

F F F F X X X F F
=

 = + + − + + ⇒ = 
 

∑  (11) 
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The reaction equation rates are given by: 
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All the reactions are considered to be 1st order, due to the huge excess of air, and 
consequently, the oxygen. In this way, the oxygen concentration is considered 
constant. The reaction rate as a function of conversion can be obtained by using the 
relation above for concentrations, applied to multiple reactions (Fogler, 1999): 
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3. Mathematical Model 

The model developed for this work are based on the works of Jutan et al. (1977), 
Maciel Filho (1989) and Vasco de Toledo (1999), which incorporate the thermal 
capacities of the fluid and the solid, (ρCp)g e (ρCp)s respectively. This model 
incorporates in implicit form the presence of the solid, which allows overcoming the 
difficulties of representing the dynamic behavior of the fixed bed catalytic reactor 
satisfactorily, including the inverse response phenomenon, allowing for a fast and 
reliable analysis of the reactor performance. 
 
The dynamic formulation of this model consists of partial differential equations 
derived from the balance of mass, energy, momentum and continuity equation, with 
the appropriate initial and boundary conditions. The model allows for variations in the 
physical properties, and their influence on the heat and mass transfer coefficients, as 
well as to variations in the temperature of the coolant, and reactor pressure, which are 
not normally considered in the literature. The following assumptions are made in the 
formulation of the model (Vasco de Toledo, 1999): 
 
• The physical properties of the fluid (density, viscosity, thermal conductivity, heat 

capacity, reaction enthalpy, molecular weight, superficial velocity), and the 
coefficients of heat and mass transfer varies along the reactor length; 

• Plug-flow velocity profile; 
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• Negligible axial dispersion; 
• Flat temperature profile at the inlet of the bed; 
• Uniform porosity. 
 
A dynamic bi-dimensional model of the catalytic reactor is presented bellow. 
 
• Mass Balance 
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where: 
 
• X1: Amount of benzene converted into the reaction (1) in relation the amount of 

fed benzene 
• X2: Amount of benzene converted into the reaction (2) in relation the amount of 

fed benzene 
• X3: Amount of maleic anhydride converted into the reaction (3) in relation the 

amount of fed benzene 
 
• Energy Balance 
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where: Cm = ε (ρg Cpg) + (1 − ε) (ρs Cps) 
 
 

• Momentum Equation 
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• Continuity Equation 
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• Coolant Fluid Equation for co-current flow 
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The solution procedure was based on the method of lines with the spatial variable 
discretization carried out by orthogonal collocation, Villadsen and Michelsen (1978) 
and Vasco de Toledo (1999). The integration was made through a GEAR type 
algorithm (Rice and Do, 1995; Vasco de Toledo, 1999), since the equations are stiff. 
 

4. Reactor Optimization and Kinetic Data Identification 

Genetic Algorithms (GAs) are general-purpose search techniques for able to solve 
complex problems, including those to identify kinetic parameters in a high non-linear 
function where more than one parameter is present. They are based on the genetics 
and natural evolution principles of the species. The GAs work through repeated 
modifications in an artificial structures population denominated of individuals 
(chromosomes or set of solutions) applying the selection, crossover, and mutation 
operators. The evaluation of optimization happens with an objective function (fitness) 
that determines the performance of the genetic process. The fitness could be 
understood as the capacity of the individuals to survive in a natural environment. 
 
The problem consisted of maximizing an objective function taking into consideration 
the kinetic model together a detailed reactor model, based in a system of differential 
partial equations. With the reliable kinetic model it is possible to optimize the rector 
to match specific objectives.  
 

5. Genetic Algorithms (GAs) 

Genetic Algorithms are a family of computational models inspired by evolution. 
These algorithms are a procedure of research and optimization motivated by the 
principles of natural selection (Holland, 1992; Goldberg, 1989; Bäck et al., 2000). 
These are often viewed as function optimizers. In a strict interpretation, the genetic 
algorithm refers to a model introduced and investigated by John Holland. The primary 
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reasons for their success are their broad applicability, ease of use, and global 
perspective (Goldberg, 1989). 
 
The GA initiate with a population of represented random solutions in some series of 
structures. After this first stage, a series of procedures (operators), are applied 
repeatedly, up to convergence is achieve. These operators are: coding, reproduction, 
crossover and mutation. These two last operators are used to create new and better 
populations. This procedure continues until a termination criterion defined in 
accordance with the necessities proposals for optimization of the problem. The 
determination of the parameters is made developing an objective function that can 
represent the problem in a suitable way. The application of the GA follows some 
steps as: coding, population size, evaluation – fitness, selection (reproduction), 
crossover and mutation. 

5.1. Coding 

There were two parameter coding schemes (floating point and binary), many selection 
schemes, and different types of crossover and mutation operators that have been 
investigated in previous GA works (Goldberg, 1989). For this application, the best 
choice of coding was binary form. 
 
These studies were based in the Carroll’s work (Carroll, 1996a). The parameters are 
discretized into a number of possibilities, but the chromosome length is based on the 
total number of possibilities in a binary format, e.g., 32 possibilities would be 
represented by a string of five 0’s and 1’s, whereas 16 possibilities would be 
represented by a string of four 0’s and 1’s. For this application, binary coding 
produced a total chromosome string length of 21. Again, the length of each parameter 
string is called the parameter length. For binary coding, each parameter is represented 
by a string of 0’s and 1’s in the total chromosome string; therefore, for binary coding, 
the parameter length is 5 for 32 possibilities and is 4 for 16 possibilities. During 
crossover with binary coding, the crossover point may occur in the middle of one the 
parameter strings; this allows the child to have a parameter string that is a mix of the 
parents parameter strings and, consequently, the child may have an allele (parameter 
value) between the two alleles of the parents. In floating point coding, the child must 
have a mix of the parents’ alleles but cannot have alleles which are not present in the 
parents chromosome strings. Thus, in binary coding, more alleles (possible values of 
the parameters) are preserved as new generations are created. 
 
The target is to create a representation of a parameter which allows its modification 
through the cut (division) in some position being these parts of the separate sequences 
in condition to be matched with others. A codified parameter is similar to a 
chromosome in genetics, in other words a modifiable carrier of information. 
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5.2. Population Size 

In accord to Wehrens and Buydens (1998), the population size is determined by each 
particular case and normally is in the range of 20-500 are common. In general, when 
many parameters are optimized great populations are used, even so it does not exist 
definite rules. There are frequently limits for the number of evolutions (due to the 
time and computer bounder) that can be carried through. In many cases for a great 
number of evolutions, a small population is applied and vice-versa.  When there is 
interest to obtain a set of “good” solutions instead of a single solution, executions are 
usually repeated with small populations. Some care must be considered to do not get 
premature conclusions when only one execution is carried out. Because of the random 
nature of the search, it is preferable to observe an average value in different 
executions. This study of optimization used population size of 20. 

5.3. Evaluation – Fitness 

The evaluation function (fitness) represents, in biological terms, the pressure exerted 
for the environment on the individuals, in other words, this function is representative 
of the problem to be analyzed and determines which of these individuals (parameters) 
of a determined population supplies better values (more adaptable) in the optimization 
(objective function). The best individuals can assume larger or smaller values that 
depend on the problem to be considered (maximization or minimization respectively). 
Application of the scheduling problem considers the series with better performance of 
fitness. The correct determination of the evaluation functions is the main task to carry 
out the optimization in an efficient way, preventing many executions and speeding the 
solution (Victorino, 2005). 

5.4. Selection 

Selection is the stage of a genetic algorithm in which the individuals are chosen from 
a population for later to be submitted to recombination (crossover) and mutation 
operators respectively. The selection is normally the first procedure applied in the 
population, and is carried out a choice of good individuals (series) and promotes a 
mating pool (reproduction). Some selection types are found in literature (Goldberg 
and Deb, 1991). The main idea is to select individuals that possess fitness values 
above the average of a current population and is duplicates and in mating pool. The 
more traditional selection methods are the proportional selection, roulette wheel, 
tournament and based in rank. 
 
Expected value selection: the fitness of all the individuals in the population is 
summed, and then the expected probability of selection is based on the fitness of the 

individual divided by the total fitness of the population, i.e.,
∑

=
i i

i
i f

fp . The 

expected number of parents with chromosome set i for the new generation is 
simply inp . This procedure will fill most of the parent slots, but there will be a 

fractional remainder of slots that are filled using the stochastic remainder sampling 
without replacement method (Goldberg, 1989). Random pairs of mates are then 
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chosen from this population of fit parents. Then, each pair of mates creates two 
children, e.g., one child could end up with chromosome set abcDE and the other with 
ABCde. 
 
In this work was used the Tournament selection, where random pairs are selected 
from the population and the stronger (most fit) of each pair is allowed to mate. Each 
pair of mates creates one child, which has some mix of the two parents chromosomes 
according the method of crossover (discussed next). The process of selecting random 
pairs and mating the stronger individuals continues until a new generation of size n is 
repopulated. 
 
Several other methods of selection can be applied in GA, such as elitist selection, bi-
classist representative and for diversity. After the selection process, the selected 
individuals are submitted to the crossover and mutation operators described in the 
sequence. This operator is used to ensure that the chromosome set of the best parent 
generated to date is reproduced. After the population is generated, the GA checks to 
see if the best parent has been replicated; if not, then a random individual is chosen 
and the chromosome set of the best parent is mapped into that individual. Although 
this operator is not necessary, it was found to help prevent the random loss of good 
chromosome strings. 

5.5. Crossover 

This operator is applied in the series proceeding from mating pool (after the stage of 
selection), (Goldberg, 1989). In the same way that the reproduction operator, is found 
some different types of crossover operators applied to GA (Syswerda, 1989; Carroll, 
1996b). In the majority of the operators, two series (individuals) are chosen from the 
mating pool randomly and a recombination is made, constructing two new individuals 
(recombining parts of the series relatives). This operator is considered the main 
operator of the genetic algorithms. It is regulated by an adjustable parameter for the 
user (crossover probability) normally the values that are used can be found in the 
range of 0.5-0.9. One of the most important is that one-point crossover cannot 
combine certain combinations of features encoded on chromosomes: schemata with a 
large defining length are easily disrupted. It is also possible that certain elements are 
not allowed to appear more than once. In that case, precautions have to be taken. 
Therefore, in previous years, several other crossover techniques have been used and 
will be discussed some of them here, as: two-point crossover, uniform crossover, 
partially mixed crossover and uniform order-based crossover. 
 
In this study was used Single-point crossover and Uniform Crossover. The Single-
point crossover the chromosome set of the first parent is mapped into the child, e.g., 
abcde. A crossover point is randomly chosen where the chromosome set of the second 
parent, ABCDE, overwrites the chromosome set of the first parent, e.g., one possible 
chromosome set for the child is abcDE, where the position between the c and D 
chromosomes is the randomly determined crossover point. For this study, the 
probability of a single-point crossover occurring,crossp , was set at 0,6. Note that there 
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is a crossp1−  probability that the child would retain the entire chromosome set of the 

first parent. In the case with Uniform crossover is possible to obtain any combination 
of the two parents chromosomes, e.g., the child could end up with chromosome set 
aBcDe. For this study, the probability for a crossover occurring at each chromosome 
position was set at 0.6 (the same value used for single-point crossover). Note that it is 
possible that the child could retain the entire chromosome set of either parent, but in 
uniform crossover it is unlikely. 

5.6. Mutation 

The main target of this genetic operator is to promote new solutions (individuals) that 
cannot be generated by another form. The mutation introduces an element of the 
random research (some times called exploration) which has attention to focus in 
promising regions of the search space (exploitation). One more time the occurrence of 
this operator is determined by the user that can justify it with a mutation probability. 
Normally, the values that are used can be found in the range 0.001-0.05. In binary 
representations, normally, the random mutation is applied, where an individual of the 
current generation is chosen randomly by means of some method of selection or still 
the best individual of the population is taken (larger fitness), determining the 
percentage of genes that must be changed. 
 
In this case jump mutation was used so that there is a small probability that one or 
more of the child's chromosomes will be mutated, e.g., the child ends up with 
chromosomes abcDM, where M was not a chromosome from either parent. The jump 
mutation produces a chromosome that is randomly picked to be in the range of the 
appropriate parameter, e.g., the parameter could jump from one side of the range to 
the other side. The probability of a jump mutation occurring for each chromosome 

was set equal ton
1 , i.e., the inverse of the population size. The jump mutation 

operator was used in al of the GA work in this study. 
 
The other form of mutation is Creep mutation, where another small probability 
mutation is that one or more of the child's parameters will be mutated by a single 
increment, e.g., the child ends up with chromosomes abcDF, where F was not a 
chromosome from either parent, but is only one increment away from parent 2’s 
chromosome value of E. The creep mutation produces a parameter value that is 
randomly picked to be larger or smaller, so long as it remains in the range of the 
appropriate parameter, i.e., the parameter could creep one increment up or down from 
one of the parents values. The probability of a creep mutation occurring for each 

chromosome was set equal ton
1 , i.e., the inverse of the population size (a probability 

of n
1  was chosen for the same reason it was used for jump mutations). 
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6. Strategies of Optimization 

The objective is to estimate the parameters set of the kinetic model, as the activation 
energy (Ei) and the pre-exponential factor (Ai), used in the calculation of the constant 
of Arrhenius (ki). This estimate is carried through algorithms optimization as, for 
example, Genetic Algorithms with the purpose to minimize an objective function to 
be established, that considers the error between real operational values, obtained from 
temperature or concentration reactor profiles for determined points throughout the 
length of the reactor supplied by literature, and simulated values from the model. 
With is procedure is possible to determine the kinetic model taking into account all 
the observable phenomena taking place in the reactor allowing the use of real 
operational data.  In Table 1 are presented the design and operation reactor data. 
 
Table 1 – Data set of the fixed bed catalytic reactor. 

Design Parameters Operation Parameters 
Reactor Length 3.0 m Gas Feed Temperature 760.15 K 
Shell Diameter 0.030 m Coolant Feed Temperature 760.15 K 
Tube Diameter: 0.025 m Feed Air/Benzene Ratio 75.0 
Pellet Diameter 0.0025 m Inlet Pressure 2.0 atm 
Tube thickness: 0.000889 m Gás Mass Velocity 9000.0 kg.m-2.h-1 

Solid Thermal 
Conductivity 

7.0 kcal.m-1.h-1.K-1 Coolant Velocity 150.0 m.h-1 

Bed Density 900.0 kgcat.m-3 
Initial Benzene 
Concentration 

0.000467 kmol.m-3 

Bed Porosity 0.47 Feed Benzene Molar Flow 0.002262 kmol.h-1 

 
 In Table 2 are shown the kinetic parameters of reaction rate, with the 
maximum and minimum values. 
 
Table 2 - Westerink, E. J., Westerterp, K. R., 1988) 

Parameters Ai Ai  MAX Ai MIN Eai (Ea/R) Eai 

MAX(Ea/R) 
Eai 

MIN(Ea/R) 
k1 (m

3.kgcat
-1.s-1) 4.280 x 103 4.360 x 103 4.200 x 103 - 1.2660 x 104 1.280 x 104 1.250 x 104 

k2 (m
3.kgcat

-1.s-1) 7.010 x 104 7.150 x 104 6.950 x 104 - 1.5000 x 104 1.560 x 104 1.440 x 104 

k3 (m
3.kgcat

-1.s-1) 2.600 x 101 2.680 x 101 2.530 x 101 - 1.0800 x 104 1.160 x 104 1.030 x 104 

 
 The Arrhenius’s Equation was linearized in accordance with Rodionova and 
Pomerantsev (2003), the procedure is presented in the sequence: 
 

 0  exp ,    [ ]i
i

Ea
k k T K

T
 = = 
 

 (30) 

Defining, 
 

 0 0ln( )k q k→ =  (31) 

Substituting in (1), 
 

  exp i
i

Ea
k q

T
 = − 
 

 (32) 
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Making, 

 
0

        and          i iEa Ea
T X b

T Ea
→ = =  (33) 

 
Obtaining: 
 

 ( ) expik q bX= −  (34) 

The genetic code based on the code developed by Carroll (1996a,b) was coupled with 
the reactor model. The genetic code possesses the following characteristics:  binary 
code; uses the elitism; search in niches and selection by tournament. More details can 
be found in the site http://cuaerospace.com/carroll/html). This genetic algorithm (GA) 
code is written in FORTRAN.  

6.1. Parameters of Control of the Genetic Algorithms  

The selected values for the GA parameters are given in Table 4. The parameters to be 
optimized were codified with the binary form, based and adapted of many published 
literature works (Carroll, 1996a,b; Deb, 1998; Goldberg, 1989). In the Table 3 shows 
genetic parameters that are used in the optimization. 
 
The selected values for the GA parameters are given in Table 4. The parameters to be 
optimized were codified with the binary form, based and adapted of many published 
literature works (Carroll, 1996a,b; Deb, 1998; Goldberg, 1989). In the Table 3 shows 
genetic parameters that are used in the optimization. 
 
Table 3 - Control parameters of genetic algorithms utilized in the optimization. 

Size 
Population 

Parameters 
(Variables) 

Crossover 
(Uniform 

Crossover) 

Mutation Rate 
(Jump 

Mutation) 

Creep 
Mutation 

(Rate) 

Generations 
(Maximum 
Number) 

20 6 0.5 0.01 0.02 100 
 
The GAs parameters were chosen based on extensive simulation not shown in this 
work. 

6.2. Objective Function 

In this work the objective function is related the average and simulated temperature. 
The representation of this function is: 
 

 

2

1

( )
N

Avg Sim
i

T T
f

N
=

−
=
∑

 (35) 

 

Where, AvgT  and SimT  are the average and simulated axial temperature respectively, 

this values are in Kelvin (K).  
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In the Figure 1, the optimization reactor flowchart is presented and this is based in the 
Carroll’s code and that it is used in this work. 
 

 
 

Figure 1 – Flowchart of Genetic Algorithm optimization reactor, based in Victorino (2005). 

7. Results  

The kinetic parameters of reaction rate used from the literature together with the 
estimated values obtained with the optimization procedure are presented in the 
Table 4: 
 
Table 4 - Kinetic parameters of reaction rate from the literature (Westerink, E. J. and Westerterp, K. R., 1988) and 
estimated values. 

 Literature values Estimated values 
Parameters Ai Eai (Ea/R) Ai Eai (Ea/R) 

k1 (m
3.kgcat

-1.s-1) 4,280 x 103 - 1,2660 x 104 4,3198 x 103 - 1,2539 x 104 
k2 (m

3.kgcat
-1.s-1) 7,010 x 104 - 1,5000 x 104 6,9543 x 104 -  1,5072 x 104 

k3 (m
3.kgcat

-1.s-1) 2,600 x 101 - 1,0800 x 104 2,530 x 101 -  1,1545 x 104 
 

The steady state simulated temperature profile with the estimated kinetics parameters 
are compared to temperature profile obtained using the kinetics parameters from the 
literature as illustrated in Figure 2: 
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Figure 2 – Axial temperature profile along the reactor length. 

 
As can be seen a very good adjust was obtained taking into account the available data. 
The same procedure was used with an industrial set of data either for temperature and 
concentration and very good results were obtained in terms of parameter fitting. It is 
worthwhile mentioning that is more adequate to deal with the thermal profiles instead 
of concentrations ones to achieve a good parameter estimation. The industrial data 
were not shown explicitly in this work for sake of confidentiality. 

8. Conclusions 

A suitable procedure to identify kinetic parameters using large scale industrial units 
data is proposed. It is based on the use of a detailed deterministic model for the 
reactor coupled with a kinetic model with the parameters led freely to be determined. 
An objective function based on the minimization of the difference of the real 
operation and simulated data from the model is generated and the whole problem is 
solved using Genetic Algorithms. The procedure allows the use of real profile of 
either temperature or concentration but the former are more easily obtained form 
industrial units. The whole procedure showed to be robust so that is a good tool to 
deal be used to find out kinetic data from industrial reactors. 
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