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Abstract— In this paper, we derive and apply a novel numer-  structure providing the feedback. These limitations are th
ically robust and computationally efficient extended Kalman expected performance of a continuous-discrete EKF are
filter for_ state estimation in nonllne_ar continuous-discrete illustrated for the Van der Vusse benchmark example.
stochastic systems. The continuous-discrete extended Kalman . . . . .
filter is applied to the Van der Vusse reaction example. This This paper is organl_zed as fO"o_WS' Sect_lon I |ntr0duces
example is a well-known benchmark for nonlinear predictive the extended Kalman filter for continuous-discrete stonbas
control. Using the Van der Vusse example, we demonstrate systems. In Section lll, we demonstrate the performance
inherent limitations of the extended Kalman filter and sensor  of the continuous-discrete EKF and provide a critical dis-

structure for unbiased state estimation. In particular, we ¢ sqiong of its limitations in process control applicasion
demonstrate that the convergence rate of the concentration . . .
Section IV provides the conclusions.

estimate in the Van der Vusse system is limited by the frequency
of concentration measurements. These limitations limit the Il. CONTINUOUS-DISCRETEEKF
achievable performance of any closed-loop system including ) . } ) )

nonlinear model predictive control. Consider the continuous-discrete stochastic nonlines sy

tem
I. INTRODUCTION
L dx(t) = f(t, z(t))dt t)dw(t la
The objective of state estimation is to reconstruct thesstat 2(t) = St @()dt + o(t)dw(?) (1a)

of a system from process measurements given a model. State Yi = hl(ty, z(tr)) + vk (1b)

estimation has important applications in nonlinear modgh which {w(t), t > 0} is a standard Wiener process, i.e.
predictive control as well as in monitoring, prediction andy wiener process with incremental covariaric, and the
fault detection of chemical processes. Several appro@chesmeasurement noise is normally distributed, = v(t;) ~

state estimation in SyStemS modelled by Ordinary diffeadnt Niid(oka)- Assume that the mean and covariance of the
equations exist. They include a rigorous probabilistichodt  jnitial state are known, i.e.

solving Kolmogorov's (Fokker-Planck’s) forward equation R
[1], [2] as well as approximative methods such as extended @o|—1 ~ F(Zo—1, Poj-1) (1c)

Kalman filtering (EKF) [3], [4] and optimization based Then the extended Kalman filter for filtering and predic-
approaches usually referred to as moving horizon estimatiq,y in (1) may be stated as follows. The one-step ahead

(MHE) [5]—[8]. The probabilistic approach based on solatio prediction of the measurementty,_; — yr_1(ty), and its
of Kolmogorov’'s forward equation is applicable only to,

. ! - ) fpproximate covariance?y,—1, are computed as
the simplest systems due to its requirement for solution o

partial differential equations with the number of indepemnid Urlk—1 = h(te, Trik—1) (2a)
variables equal to the number of stochastic states. Moving oh .

horizon estimation has gained some popularity recently due Ch = %(tk’xk“"—l) (2b)
to its similarity to model predictive control and its abylito Riji—1 = CuPrjp—1Cy + Ry (2c)

handle constraints on the states and the stochastic process . . . )

disturbances. Undoubtedly, the extended Kalman filterds th! '€ innovationey, is obtained by

most widely adopted state estimation technology for non- ek = Yk — Jkjk_1 (3)

linear systems and remains the standard technology fa stat

estimation in nonlinear model predictive control applicas and the state filter gain is computed using the expression

despite recent popularity of_moving horizon estimatipr.a—[9.] Kpog = Pk\k—:LCIQR_l_ (4)

[12]. Furthermore, systematic methods for grey-box identi ’ klk—1

cation of nonlinear models used in continuous-discrete timr'he filtered state;;, and its covariancep,, are com-

extended Kalman filters exist [13]-[15]. puted by
The state estimate quality of any of these state estimation

techniques is limited by plant-model mismatch including ,

unmeasured disturbances as well as the underlying sensor Pek = Prjk—1 — Kpz pRe Ky (5b)

Tk = Trjp—1 + Kraz ek (5a)



The above formulas for the measurement update is struglgorithm 1 Square root algorithm foP. 1, in (11).
turally equivalent to the discrete-time case. The diffeeen [X1/2 0] <—(L<I>(tk+1,tk)Pkl|/kz ‘I)(tk+1,T1)\/EQi/2} o,

between the discrete-time case and the continuous-discret .
. . . . for i =2:n4 do
time case arises in the one-step ahead propagation of the

. . . A . 1/2
state estimate and its covariance. In the continuousetiscr (X120 0] — {XW O(tri1, T)VEQ, ] O,

caseipyip = Tk(ter1) = T(tpr1;te, Trx) and Peyqpp = eqc/i2for
Py(trt1) = P(tri1ste, Zxk, Por) are computed as the I\ - X2
solution to the system of differential equations
dz(t) .
—a f(t, 2x(1)) (6a) |nstead of computing the one-step ahead prediction of the
dPy(t) . ) states and the associated covariance by (6), ESDIRK com-
o = AOP() + Pt)A®) +o(t)o(t)”  (6b)  putes these quantities by the following equivalent set of
) ) equations
in which R
a0 = 2 (1. 40) (60) WO _ fay0) wt) =g (108)
and with initial COHditiOﬂSﬁ‘k(tk) = ik\k ande(tk) = Pk\k- dq)g; ) =A)P(t,s) P(s,s)=1 (10b)
The main computational effort in the extended Kalman filter
is the solution of (6). While this system can be solved usin@ which of
software for the standard initial value problem for systems A(t) = %(t,:ﬁk(t)) (10c¢)

of ordinary differential equations, it is highly inefficieto
do so as (6) has additional structure that may be utilized fgnd

its efficient solution. We apply a specialized explicit ding
diagonal implicit Runge-Kutta solver, ESDIRK, for solutio
of this system [16], [17].
A. Array Algorithm

Computational efficiency in terms of speed is only on

concern for the numerical solution of (6) embodied in a

Py(t) = ®(t, tr) P ®(t, i)’

Jr/ b(t, s)o(s)o(s)' ®(t,s) ds

23

(10d)

The equivalence of (6) and (10) follows directly from the

éierivation of (6) [17], [18]. Equation (10b) has almost the

ame structure as the state sensitivity equation. Howaver,

10b) the initial time is also variable. If the integral ofod)

extended Kalman algorithm for state estimation in the sgste .
computed by quadrature then it may be expressed as

(2). As the algorithm is to be executed unsupervised in a redd
time control system, numerical stability and robustness ar Py, = P (tx+1)

just as important as computational speed. Therefore, the nu = D(th 1, tr) Pop® (i, t)
merical robust array algorithm which propagates the matrix t7k-,+1 ’
square roots of the covariances rather than the covariances +/ B(tgyr, $)Q(s)P(tpsr,s) ds
themselves is preferred [4]. t (11)
The steps in the array algorithm are as follows. The one- ~ O (thr1, th) Peje®@(try1, tr)
step ahead prediction of the measurement vector and its ng
derivative are + 6@t 1, TQ(T)®(tri1, o)
=1
Grle—r = olti, Thji—1) (73 iy which Q(s) = o(s)o(s) and n, is the number of
Cp = %(%Jﬁmq) (7o) Quadrature points. LeD; = Q(7;). Then it is evident from

(11) that the one-step ahead covariance square Rjéﬁ‘ I
can be computed by a sequence of orthogonal transforma-

Using an orthogonal transformatiori?, |, K. and © fed L : _ .
tions as described in Algorithm 1. In this algorith@; are

P? are computed as

klk orthogonal transformation operators.
R/ Pyl o Ryi, 0 @) ll. EXAMPLE: VAN DER VUSSEREACTION
0 P;‘/,il M Kok Pkl‘/,f In this section, we test the developed extended Kalman

filter algorithm on the Van der Vusse reaction. The purpose
and the filtered statef., is computed by is to provide a critical evaluation on the application of the
. ESDIRK based extended Kalman filter. We demonstrate the
€k =Yk — y’“‘k—ll (%) jimitations that the sensor configuration imposes on thie sta
er = ( Ri{§71)7 ek (9b) estimation quality _an_d i_ts rate of_ convergence _toward the
_ true value. These limitations also limits the resultingseld-
Trlk = Thik—1 + Kfz ke (9¢) loop performance achievable by any controller including a



TABLE | 16

PARAMETERS FOR THEVAN DER VUSSECSTR. N PSS
14F 10 .- 1
[ -7
Symbol | Value || Symbol | Value " LT
1.2 N e R
ko | 1.287-10'2 hr! p 0.9342 kg/L N\e----
1
ko | 1.287-10'2 hr! Cp 3.01 k;(—JK il 1
kso | 9.043-10° o kw | 4032 —9— I T
Ei/R 9758.3 K Ar 0.215 n? €ost 1
Es/R 9758.3 K Vg 0L &~ :
Es/R 8560 K my 5 kg o6k i
AH,, 4.2 kJ/mol Cpy 2.0 kg—JK g
AH,, -11.0 kJ/mol cA0 5.1 mol/L 04} :
AHy, -41.85 kJ/mol To 378.05 K — Cy
0.2r -- 13 ECAO b
TABLE I ! e 0T
NOMINAL STEADY STATE FOR THE VAN DER VUSSECSTR. 0 50 100 150 200
F (L/hr)
Symbol | Value || Symbol | Value ] )
Fig. 1. Steady state plot for the concentration of B.
ca 2.1404 mol/L F 141.9 L/hr
cB 1.0903 mol/L Qy -1113.5 kJ/hr
T 387.34 K cAo 5.1 moliL
Ty 386.06 K Ty 378.05 K in which
cA
nonlinear predictive controller. The Van der Vusse reactio r= |°B w= {F] d= [CAO]
has been exploited in several controller benchmark studies g Qu To
J

[19]-[22]. The Van der Vusse reaction is
and zx is the state vector, is the manipulable input vector,
andd is the disturbance vector. The steady state yield of B as
24 *3, p function of the feed flow rate for different values of the feed
in which B is the desired product, while C and D areconcentration of A ?s plottgd in Figure '1. It shoyld be noted
at around the optimal point of operation (maximum yield),

unwanted by-products. The reaction is conducted in a CS the gain from the feed flow rate to the concentration of B

with a cooling jacket. The reaction rates for this system arghanges sign. Hence, the system is not integral contrellabl

by a linear controller in that optimal operating point.
The deterministic system (14) is augmented by a stochas-
S tic term, odw(t), describing the random part of the state
r2(Tcp) = ka(T)ep, ka(T) = ko exp (_RT) (12b)  evolution. Consequently, the evolution of the Van der Vusse
Es system is described by the following system of stochastic
r3(T, ca) = k3(T)c%, ks(T) = k3o exp (——) (12c) differential equations

k k
A B =2

T’l(T, CA) = kl(T)CA, kl(T) = klO exp (—E‘l) (12a)

RT
and the model of the CSTR is dz(t) = f(@(t),u(t), d(t))dt + odw(t) (15)
: F A stochastic and deterministic simulation of the Van der
éa=—1(cao—ca)—1r1(T,ca) —r3(T,c 13a ’ et k
4 Vr (ca0 = ca) =T ca) = rs(T: ca) (132) Vusse system is plotted in Figure 2. At time= 4.0, the
. F feed concentration ofl is increased by 20%. The diffusion
=—— T, —1o(T, 13b X , X
B Vr e +11(Tca) = (T’ cp) (13b) term is selected as = 0.03diag(zo)! and the stochastic
L F kwAR system is simulated using the Euler-Maruyama scheme with
=y, W=D+ oy (T =T) a step length of 0.0001 hr [23].
(T, ca)AH,, +745(T,cg)AH,, +r3(T,cs)AH,, The stochastic differential equation (15) is observed Iy th
- oC, following stochastic measurement equation
) (13c) y(ty) = h(z(ty)) +v(ty) v(ty) ~ N(O,Ry)  (16)
Ty = )7+ kwAR(T =T 13d i i _ k= ]
= G (QJ + kwAr( J)) (13d)  at the discrete time$t, = 0.01k : k= 0,1,...}. The mea

Th i q inal i int id dsurement noise covarianc®,, is a diagonal matrix with
€ parameters and hominal operating point are provided s o yyies equal to 0.1 times the corresponding entries in

Ta_ltflhesrlnagdl ”’f rtﬁsp\(?c::vdel):.v rem is a determinist% -€- for the full state measurement cag = 0.10. The
¢ € ? edg ed.; et. lusse ?ys emis a dete SYeasurement scenario used for the simulations is illestrat
system ot ordinary ditierential equations, 1.€. in Figure 3. In the full state feedback all measurements
dz(t)
= f(z(t), u(t),d(t)) (14) 1Using the Matlab notion of diag.

dt
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Fig. 2. Stochastic and deterministic (dashed line) simutatibthe Van  Fig. 4. The filter estimates and the true states (dotted lioe}He case
der Vusse system. with full state feedback and no integrators.

mismatch, the model is augmented with integrators [24],
[25]. In this case, we augment the model with integrators in
the feed concentration od, c49, and the feed temperature,
Tpy, i.e. integrators in the unmeasured disturbance vedtor,
Hence, in the framework of stochastic differential equagio
the integrator states;,(t), used for estimating is a random
walk

c,\ (mol/L)

Cy (mol/L)

d:l?d(t) = O’ddwd(t) (17)

anol o ‘ . ‘ ‘ ‘ _ such that the augmented model becomes

] = [ O e 7 ) Mgﬂ)

R ..mf(hr) s 7 8 9w This model augmented with integrators is used by the ex-
tended Kalman filter for state estimation witty = 0.01d,
Fig. 3. Noise corrupted measurements (dots) and actual gfatetne) (@d)0|71 = d, and the corresponding covariance matrix equal
for the Van der Vusse system. to the unity matrix. The filtered state estimates and the true
states are illustrated in Figure 5. The estimated disturdsn
and their true values are plotted in Figure 6. In this case,
are used for the extended Kalman filter, while only thehere is no persistent offset in the state estimates and the
temperature measurements are used for the extended Kalneatimates of the unknown disturbances converge to their tru
filter in the temperature feedback case. values. In conclusion, the extended kalman filter performs
Systematic procedures for identification of parameters iadequately as a state estimator for this system with fulienoi
continuous-discrete stochastic systems (15)-(16) exisish corrupted state feedback and unknown disturbances in the
outside the topic of this paper [14], [15]. feed concentration ofl.

A. Temperature and Concentration Feedback B. Temperature Feedback

The first case considered is the case with full state feed- Consider the more realistic situation in which the concen-
back, i.e. all states are measured; though the measuremantsions of A and B are not measured. Only the temperatures
are corrupted by measurement noise. The filtered estimadfeand7’; are measured. The performance of the continuous-
of the statesjy |, and true states are illustrated in Figure 4discrete extended Kalman filter with input integrators eete
The filtered state estimate is close to the true state umté ti riorate dramatically. This is illustrated in Figures 7 and 8
t = 4.0 at which the disturbance in the feed concentratioifhe filtered state estimates for the concentrations as well
of A occurs. After that time, at which there is a plant-as the unknown input disturbances do not converge to their
model mismatch, a significant offset in the estimation of th&rue values. Provided that the system is locally detectable
concentrations ofA and B persists. with the available measurements and that the noise model is

To avoid the persistent offset of the concentration estlocally stabilizable the estimated states converge in anmea
mates in the case of unknown disturbances, i.e. plant-mods#nse. However, even though it is in principle possible to
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Fig. 5. The filter estimates and the true states (dotted lioe}Hfe case Fig. 7. The filter estimates and the true states (dotted liae}te case
with full state feedback and two input disturbance integnsat with only temperature feedback and two input disturbancegirators.
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Fig. 6. The filter estimates of the two input integrators arerttrue value  Fig. 8. The filter estimates of the two input integrators arerttrue value
(dashed line) for the case with full state feedback. (dashed line) for the case with only temperature feedback.

estimate the unmeasured states from the subset of measusgbnded Kalman filter with input disturbance integratars i
states, it is often so in practice that in the face of modahpl illustrated in figures 9 and 10. While the filtered state and
mismatch the result is quite disappointing in the sense thaiput disturbance estimates converge to their true vathes,
one cannot substitute concentration measurements with a seonvergence is slower compared to the full state feedback
sensor such as the EKF [26]. There is simply no substituigase. This observation is not surprising, but points to #eé f
for a good sensor (except for the Utopian wish for a perfeghat the achievable performance of a closed-loop feedback
model). system intended to control either the productivity or the
concentration of B is ultimately limited by the rate at
which the estimates ofg, c4, andcyo converge. And the

To overcome some of the limitations associated With,nyergence rate is limited by the frequency at which the
an estimator based on only temperature measurements, W& centrations are measured.

assume that the concentrations are measured every 15 min-
utes (25 times less frequent than the sample rate of the IV. CONCLUSION
EKF). This setup is supposed to emulate the situation in A numerically robust and efficient extended Kalman fil-
which the concentrationsg4 and cp, are measured by ter has been introduced as an approximative technique for
a laboratory procedufe The resulting performance of the state estimation in nonlinear stochastic continuousrelisc
) - . . _ systems (1). The continuous-discrete extended Kalman filte
A more realistic emulation would include time delay due to theota

ratory procedure. To keep the setup simple, the analysis nessumed iS_ applied to the Van der Vusse benchmark exgmple. In
negligible in this study. this example, temperature measurements reresufficient

C. Laboratory Measurement of the Concentrations
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