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Abstract— In this paper, we derive and apply a novel numer-
ically robust and computationally efficient extended Kalman
filter for state estimation in nonlinear continuous-discrete
stochastic systems. The continuous-discrete extended Kalman
filter is applied to the Van der Vusse reaction example. This
example is a well-known benchmark for nonlinear predictive
control. Using the Van der Vusse example, we demonstrate
inherent limitations of the extended Kalman filter and sensor
structure for unbiased state estimation. In particular, we
demonstrate that the convergence rate of the concentration
estimate in the Van der Vusse system is limited by the frequency
of concentration measurements. These limitations limit the
achievable performance of any closed-loop system including
nonlinear model predictive control.

I. I NTRODUCTION

The objective of state estimation is to reconstruct the state
of a system from process measurements given a model. State
estimation has important applications in nonlinear model
predictive control as well as in monitoring, prediction and
fault detection of chemical processes. Several approachesto
state estimation in systems modelled by ordinary differential
equations exist. They include a rigorous probabilistic method
solving Kolmogorov’s (Fokker-Planck’s) forward equation
[1], [2] as well as approximative methods such as extended
Kalman filtering (EKF) [3], [4] and optimization based
approaches usually referred to as moving horizon estimation
(MHE) [5]–[8]. The probabilistic approach based on solution
of Kolmogorov’s forward equation is applicable only to
the simplest systems due to its requirement for solution of
partial differential equations with the number of independent
variables equal to the number of stochastic states. Moving
horizon estimation has gained some popularity recently due
to its similarity to model predictive control and its ability to
handle constraints on the states and the stochastic process
disturbances. Undoubtedly, the extended Kalman filter is the
most widely adopted state estimation technology for non-
linear systems and remains the standard technology for state
estimation in nonlinear model predictive control applications
despite recent popularity of moving horizon estimation [9]–
[12]. Furthermore, systematic methods for grey-box identifi-
cation of nonlinear models used in continuous-discrete time
extended Kalman filters exist [13]–[15].

The state estimate quality of any of these state estimation
techniques is limited by plant-model mismatch including
unmeasured disturbances as well as the underlying sensor

structure providing the feedback. These limitations and the
expected performance of a continuous-discrete EKF are
illustrated for the Van der Vusse benchmark example.

This paper is organized as follows. Section II introduces
the extended Kalman filter for continuous-discrete stochastic
systems. In Section III, we demonstrate the performance
of the continuous-discrete EKF and provide a critical dis-
cussions of its limitations in process control applications.
Section IV provides the conclusions.

II. CONTINUOUS-DISCRETEEKF

Consider the continuous-discrete stochastic nonlinear sys-
tem

dx(t) = f(t,x(t))dt + σ(t)dω(t) (1a)

yk = h(tk,x(tk)) + vk (1b)

in which {ω(t), t ≥ 0} is a standard Wiener process, i.e.
a Wiener process with incremental covarianceIdt, and the
measurement noise is normally distributed,vk = v(tk) ∼
Niid(0, Rk). Assume that the mean and covariance of the
initial state are known, i.e.

x0|−1 ∼ F(x̂0|−1, P0|−1) (1c)

Then the extended Kalman filter for filtering and predic-
tion in (1) may be stated as follows. The one-step ahead
prediction of the measurement,ŷk|k−1 = yk−1(tk), and its
approximate covariance,Rk|k−1, are computed as

ŷk|k−1 = h(tk, x̂k|k−1) (2a)

Ck =
∂h

∂x
(tk, x̂k|k−1) (2b)

Rk|k−1 = CkPk|k−1C
′
k + Rk (2c)

The innovation,ek, is obtained by

ek = yk − ŷk|k−1 (3)

and the state filter gain is computed using the expression

Kfx,k = Pk|k−1C
′
kR−1

k|k−1
(4)

The filtered state,̂xk|k, and its covariance,Pk|k, are com-
puted by

x̂k|k = x̂k|k−1 + Kfx,kek (5a)

Pk|k = Pk|k−1 − Kfx,kRe,kK ′
fx,k (5b)



The above formulas for the measurement update is struc-
turally equivalent to the discrete-time case. The difference
between the discrete-time case and the continuous-discrete
time case arises in the one-step ahead propagation of the
state estimate and its covariance. In the continuous-discrete
casex̂k+1|k = x̂k(tk+1) = x̂(tk+1; tk, x̂k|k) and Pk+1|k =
Pk(tk+1) = P (tk+1; tk, x̂k|k, Pk|k) are computed as the
solution to the system of differential equations

dx̂k(t)

dt
= f(t, x̂k(t)) (6a)

dPk(t)

dt
= A(t)Pk(t) + Pk(t)A(t)′ + σ(t)σ(t)′ (6b)

in which

A(t) =
∂f

∂x
(t, x̂k(t)) (6c)

and with initial conditionŝxk(tk) = x̂k|k andPk(tk) = Pk|k.
The main computational effort in the extended Kalman filter
is the solution of (6). While this system can be solved using
software for the standard initial value problem for systems
of ordinary differential equations, it is highly inefficient to
do so as (6) has additional structure that may be utilized for
its efficient solution. We apply a specialized explicit singly
diagonal implicit Runge-Kutta solver, ESDIRK, for solution
of this system [16], [17].

A. Array Algorithm

Computational efficiency in terms of speed is only one
concern for the numerical solution of (6) embodied in an
extended Kalman algorithm for state estimation in the system
(1). As the algorithm is to be executed unsupervised in a real-
time control system, numerical stability and robustness are
just as important as computational speed. Therefore, the nu-
merical robust array algorithm which propagates the matrix
square roots of the covariances rather than the covariances
themselves is preferred [4].

The steps in the array algorithm are as follows. The one-
step ahead prediction of the measurement vector and its
derivative are

ŷk|k−1 = h(tk, x̂k|k−1) (7a)

Ck =
∂h

∂x
(tk, x̂k|k−1) (7b)

Using an orthogonal transformation,R1/2

k|k−1
, K̄fx,k and

P
1/2

k|k are computed as

[

R
1/2

k CkP
1/2

k|k−1

0 P
1/2

k|k−1

]

ΘM =

[

R
1/2

k|k−1
0

K̄fx,k P
1/2

k|k

]

(8)

and the filtered state,̂xk|k, is computed by

ek = yk − ŷk|k−1 (9a)

ēk =
(

R
1/2

k|k−1

)−1

ek (9b)

x̂k|k = x̂k|k−1 + K̄fx,kēk (9c)

Algorithm 1 Square root algorithm forPk+1|k in (11).
[

X1/2 0
]

←
[

Φ(tk+1, tk)P
1/2

k|k Φ(tk+1, T1)
√

δ1Q
1/2

1

]

Θ1

for i = 2 : nq do
[

X1/2 0
]

←
[

X1/2 Φ(tk+1, Ti)
√

δiQ
1/2

i

]

Θi

end for
P

1/2

k+1|k ← X1/2

Instead of computing the one-step ahead prediction of the
states and the associated covariance by (6), ESDIRK com-
putes these quantities by the following equivalent set of
equations

dx̂k(t)

dt
= f(t, x̂k(t)) x̂k(tk) = x̂k|k (10a)

dΦ(t, s)

dt
= A(t)Φ(t, s) Φ(s, s) = I (10b)

in which

A(t) =
∂f

∂x
(t, x̂k(t)) (10c)

and

Pk(t) = Φ(t, tk)Pk|kΦ(t, tk)′

+

∫ t

tk

Φ(t, s)σ(s)σ(s)′Φ(t, s)′ds
(10d)

The equivalence of (6) and (10) follows directly from the
derivation of (6) [17], [18]. Equation (10b) has almost the
same structure as the state sensitivity equation. However,in
(10b) the initial time is also variable. If the integral of (10d)
is computed by quadrature then it may be expressed as

Pk+1|k = Pk(tk+1)

= Φ(tk+1, tk)Pk|kΦ(tk+1, tk)′

+

∫ tk+1

tk

Φ(tk+1, s)Q(s)Φ(tk+1, s)
′ds

≈ Φ(tk+1, tk)Pk|kΦ(tk+1, tk)′

+

nq
∑

i=1

δiΦ(tk+1, Ti)Q(Ti)Φ(tk+1, Ti)
′

(11)

in which Q(s) = σ(s)σ(s)′ and nq is the number of
quadrature points. LetQi = Q(Ti). Then it is evident from
(11) that the one-step ahead covariance square root,P

1/2

k+1|k,
can be computed by a sequence of orthogonal transforma-
tions as described in Algorithm 1. In this algorithm,Θi are
orthogonal transformation operators.

III. E XAMPLE : VAN DER VUSSEREACTION

In this section, we test the developed extended Kalman
filter algorithm on the Van der Vusse reaction. The purpose
is to provide a critical evaluation on the application of the
ESDIRK based extended Kalman filter. We demonstrate the
limitations that the sensor configuration imposes on the state
estimation quality and its rate of convergence toward the
true value. These limitations also limits the resulting closed-
loop performance achievable by any controller including a



TABLE I

PARAMETERS FOR THEVAN DER VUSSECSTR.

Symbol Value Symbol Value

k10 1.287 · 1012 hr−1 ρ 0.9342 kg/L
k20 1.287 · 1012 hr−1 Cp 3.01 kJ

kg·K

k30 9.043 · 109 L
hr·mol kw 4032

kJ
hr·m2

·K
E1/R 9758.3 K AR 0.215 m2

E2/R 9758.3 K VR 10 L
E3/R 8560 K mJ 5 kg
∆Hr1

4.2 kJ/mol CPJ 2.0 kJ
kg·K

∆Hr2
-11.0 kJ/mol cA0 5.1 mol/L

∆Hr3
-41.85 kJ/mol T0 378.05 K

TABLE II

NOMINAL STEADY STATE FOR THEVAN DER VUSSECSTR.

Symbol Value Symbol Value

cA 2.1404 mol/L F 141.9 L/hr
cB 1.0903 mol/L Q̇J -1113.5 kJ/hr
T 387.34 K cA0 5.1 mol/L
TJ 386.06 K T0 378.05 K

nonlinear predictive controller. The Van der Vusse reaction
has been exploited in several controller benchmark studies
[19]–[22]. The Van der Vusse reaction is

A
k1−→ B

k2−→ C

2A
k3−→ D

in which B is the desired product, while C and D are
unwanted by-products. The reaction is conducted in a CSTR
with a cooling jacket. The reaction rates for this system are

r1(T, cA) = k1(T )cA, k1(T ) = k10 exp

(

− E1

RT

)

(12a)

r2(T, cB) = k2(T )cB , k2(T ) = k20 exp

(

− E2

RT

)

(12b)

r3(T, cA) = k3(T )c2
A, k3(T ) = k30 exp

(

− E3

RT

)

(12c)

and the model of the CSTR is

ċA =
F

VR
(cA0 − cA) − r1(T, cA) − r3(T, cA) (13a)

ċB = − F

VR
cB + r1(T, cA) − r2(T, cB) (13b)

Ṫ =
F

VR
(T0 − T ) +

kwAR

ρCpVR
(TJ − T )

− r1(T, cA)∆Hr1
+ r2(T, cB)∆Hr2

+ r3(T, cA)∆Hr3

ρCp

(13c)

ṪJ =
1

mJCPJ

(

Q̇J + kwAR(T − TJ)
)

(13d)

The parameters and nominal operating point are provided in
Tables I and II, respectively.

The model of the Van der Vusse system is a deterministic
system of ordinary differential equations, i.e.

dx(t)

dt
= f(x(t), u(t), d(t)) (14)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F (L/hr)

C
B
 (

m
ol

/L
)

C
A0

 
1.3 ⋅ C

A0
0.7 ⋅ C

A0

Fig. 1. Steady state plot for the concentration of B.

in which

x =









cA

cB

T

TJ









u =

[

F

Q̇J

]

d =

[

cA0

T0

]

andx is the state vector,u is the manipulable input vector,
andd is the disturbance vector. The steady state yield of B as
function of the feed flow rate for different values of the feed
concentration of A is plotted in Figure 1. It should be noted
that around the optimal point of operation (maximum yield),
the gain from the feed flow rate to the concentration of B
changes sign. Hence, the system is not integral controllable
by a linear controller in that optimal operating point.

The deterministic system (14) is augmented by a stochas-
tic term, σdω(t), describing the random part of the state
evolution. Consequently, the evolution of the Van der Vusse
system is described by the following system of stochastic
differential equations

dx(t) = f(x(t), u(t), d(t))dt + σdω(t) (15)

A stochastic and deterministic simulation of the Van der
Vusse system is plotted in Figure 2. At timet = 4.0, the
feed concentration ofA is increased by 20%. The diffusion
term is selected asσ = 0.03diag(x0)

1 and the stochastic
system is simulated using the Euler-Maruyama scheme with
a step length of 0.0001 hr [23].

The stochastic differential equation (15) is observed by the
following stochastic measurement equation

y(tk) = h(x(tk)) + v(tk) v(tk) ∼ N(0, Rk) (16)

at the discrete times{tk = 0.01k : k = 0, 1, . . .}. The mea-
surement noise covariance,Rk, is a diagonal matrix with
the entries equal to 0.1 times the corresponding entries in
σ, i.e. for the full state measurement caseRk = 0.1σ. The
measurement scenario used for the simulations is illustrated
in Figure 3. In the full state feedback all measurements

1Using the Matlab notion of diag.



0 1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

c A
 (

m
ol

/L
)

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

c B
 (

m
ol

/L
)

0 1 2 3 4 5 6 7 8 9 10
370

380

390

400

T
 (

K
)

0 1 2 3 4 5 6 7 8 9 10
370

380

390

400

T
J (

K
)

time (hr)

Fig. 2. Stochastic and deterministic (dashed line) simulation of the Van
der Vusse system.
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Fig. 3. Noise corrupted measurements (dots) and actual states(full line)
for the Van der Vusse system.

are used for the extended Kalman filter, while only the
temperature measurements are used for the extended Kalman
filter in the temperature feedback case.

Systematic procedures for identification of parameters in
continuous-discrete stochastic systems (15)-(16) exist but is
outside the topic of this paper [14], [15].

A. Temperature and Concentration Feedback

The first case considered is the case with full state feed-
back, i.e. all states are measured; though the measurements
are corrupted by measurement noise. The filtered estimate
of the states,̂xk|k, and true states are illustrated in Figure 4.
The filtered state estimate is close to the true state until time
t = 4.0 at which the disturbance in the feed concentration
of A occurs. After that time, at which there is a plant-
model mismatch, a significant offset in the estimation of the
concentrations ofA andB persists.

To avoid the persistent offset of the concentration esti-
mates in the case of unknown disturbances, i.e. plant-model
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Fig. 4. The filter estimates and the true states (dotted line) for the case
with full state feedback and no integrators.

mismatch, the model is augmented with integrators [24],
[25]. In this case, we augment the model with integrators in
the feed concentration ofA, cA0, and the feed temperature,
T0, i.e. integrators in the unmeasured disturbance vector,d.
Hence, in the framework of stochastic differential equations,
the integrator states,xd(t), used for estimatingd is a random
walk

dxd(t) = σddωd(t) (17)

such that the augmented model becomes

d

[

x(t)
xd(t)

]

=

[

f(x(t), u(t),xd(t))
0

]

dt +

[

σ 0
0 σd

]

d

[

ω(t)
ωd(t)

]

(18)
This model augmented with integrators is used by the ex-
tended Kalman filter for state estimation withσd = 0.01d,
(x̂d)0|−1 = d, and the corresponding covariance matrix equal
to the unity matrix. The filtered state estimates and the true
states are illustrated in Figure 5. The estimated disturbances
and their true values are plotted in Figure 6. In this case,
there is no persistent offset in the state estimates and the
estimates of the unknown disturbances converge to their true
values. In conclusion, the extended kalman filter performs
adequately as a state estimator for this system with full noise
corrupted state feedback and unknown disturbances in the
feed concentration ofA.

B. Temperature Feedback

Consider the more realistic situation in which the concen-
trations ofA andB are not measured. Only the temperatures
T andTJ are measured. The performance of the continuous-
discrete extended Kalman filter with input integrators dete-
riorate dramatically. This is illustrated in Figures 7 and 8.
The filtered state estimates for the concentrations as well
as the unknown input disturbances do not converge to their
true values. Provided that the system is locally detectable
with the available measurements and that the noise model is
locally stabilizable the estimated states converge in a mean
sense. However, even though it is in principle possible to
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Fig. 5. The filter estimates and the true states (dotted line) for the case
with full state feedback and two input disturbance integrators.
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Fig. 6. The filter estimates of the two input integrators and their true value
(dashed line) for the case with full state feedback.

estimate the unmeasured states from the subset of measured
states, it is often so in practice that in the face of model-plant
mismatch the result is quite disappointing in the sense that
one cannot substitute concentration measurements with a soft
sensor such as the EKF [26]. There is simply no substitute
for a good sensor (except for the Utopian wish for a perfect
model).

C. Laboratory Measurement of the Concentrations

To overcome some of the limitations associated with
an estimator based on only temperature measurements, we
assume that the concentrations are measured every 15 min-
utes (25 times less frequent than the sample rate of the
EKF). This setup is supposed to emulate the situation in
which the concentrations,cA and cB , are measured by
a laboratory procedure2. The resulting performance of the

2A more realistic emulation would include time delay due to the labo-
ratory procedure. To keep the setup simple, the analysis time is assumed
negligible in this study.
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Fig. 7. The filter estimates and the true states (dotted line) for the case
with only temperature feedback and two input disturbance integrators.
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Fig. 8. The filter estimates of the two input integrators and their true value
(dashed line) for the case with only temperature feedback.

extended Kalman filter with input disturbance integrators is
illustrated in figures 9 and 10. While the filtered state and
input disturbance estimates converge to their true values,the
convergence is slower compared to the full state feedback
case. This observation is not surprising, but points to the fact
that the achievable performance of a closed-loop feedback
system intended to control either the productivity or the
concentration ofB is ultimately limited by the rate at
which the estimates ofcB , cA, and cA0 converge. And the
convergence rate is limited by the frequency at which the
concentrations are measured.

IV. CONCLUSION

A numerically robust and efficient extended Kalman fil-
ter has been introduced as an approximative technique for
state estimation in nonlinear stochastic continuous-discrete
systems (1). The continuous-discrete extended Kalman filter
is applied to the Van der Vusse benchmark example. In
this example, temperature measurements arenot sufficient
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Fig. 9. The filter estimates and the true states (dotted line) for the
case with frequent temperature measurements, infrequent concentration
measurements, and two input disturbance integrators.
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Fig. 10. The filter estimates of the two input integrators and their true
value (dashed line) for the case with frequent temperature measurements
and infrequent concentration measurements.

to provide steady-state offset free state estimation. The con-
vergence rate of the concentration estimates is limited by the
frequency of concentration measurements. This implies that
the closed-loop performance of the Van der Vusse benchmark
for any controller including nonlinear predictive controlis
limited by the concentration measurement frequency.
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