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Abstract 

Biodiesel is an important new alternative transportation fuel. Biodiesel processing and 
quality are close related. The process used to refine the feedstock and to convert it to 
biodiesel determines whether the fuel will meet the applicable specifications. In this 
work, a new characterization method is proposed using an electronic nose coupled to 
artificial neural networks.  Four samples of biodiesel from different sources and one 
petrodiesel were analysed and could be recognized by the e-nose.  Furthermore, an 
innovative semi quantitative method is proposed entirely based on the smellprints 
correlated by feed-forward artificial neural network. The promising results of this 
work indicate that e-nose can be used to identify the biodiesel source and as indicative 
assay when expensive equipments are not available.  
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1. Introduction 

Biodiesel are alkyl ester obtained from vegetal or animal oils by catalysed 
transesterification reaction, bases are the most common catalysts worldwide used, but 
enzymatic catalysis presents a growing importance as well.  Many feedstocks can be 
used to produce the parent oils and this usually varies with geographic availability.  It 
is obvious that the esters obtained vary with the parent oils, because they will contain 
the corresponding fat acids from the oil.  
Many countries already have specific legislation to regulate the use of biodiesel and 
its blends to petrodiesel as a commercial fuel. In Brazil, the use of biodiesel as fuel 
has been legally authorized since 2005, allowing up to a volume fraction of 2% in 
petrodiesel, this blend is commonly named as B2. This content will become 
mandatory in 2008 and in 2013 the biodiesel content in petrodiesel will be increased 
to a volume fraction of 5%. However, the increase in biodiesel production in Brazil 
indicates that B5 blend will be available to be mandatory in 2009. 
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The advantages of the use of biodiesel compared with petrodiesel are related to its 
derivation from a renewable resource, reducing dependence on and preserving 
petroleum, biodegradability, reduction of most exhaust emissions (with the exception 
of nitrogen oxides, NOx), higher flash point, leading to safer handling and storage, 
excellent lubricity, a fact that is steadily gaining importance with the advent of low-
sulfur petrodiesel fuels, which have greatly reduced lubricity. Adding biodiesel at low 
levels (1–2%) restores the lubricity (Khote, 2005). 
Some problems associated with biodiesel are its higher price, which in many 
countries is offset by legislative and regulatory incentives or subsidies in the form of 
reduced excise taxes; cold flow properties that are especially relevant in cold 
countries; stability when exposed to air (oxidative stability) and slightly increased 
NOx exhaust emissions (Khote, 2005). However, the air quality effect of 100% 
market penetration of B20 into on-road heavy-duty fleets in several major urban areas 
was examined in a study that employed pollutant inventory and air quality models; 
the results suggest that the NOx increase does not have serious air quality 
implications (Morris et al., 2003). 
The characterization of biodiesel on its various aspects has been largely studied and 
reported in the literature. Some authors have reported chromatographic and 
spectroscopic methods to classify biodiesel on its mono-, di-, or triacylglycerol 
composition (Freeman et al. 1986; Foglia et al., 1987; Freeman et al., 1984). 
Concerning the determination of the concentration of biodiesel in blends with 
petrodiesel, different methods have been used including 1H NMR spectroscopy 
(Khote, 2001), chromatography (Foglia, 2005) and infrared spectroscopy (Pimentel, 
2006).  Recently, Felizardo et al., in 2007 used multivariate near infrared 
spectroscopy for predicting methanol and water content in biodiesel.   
Few articles are found reporting the determination of the parent oils from which a 
biodiesel has been produced. There are some important reasons to characterize a 
biodiesel in terms of its parent oils; probably the most important is concerned to fiscal 
laws. Some countries apply different policies depending on the feedstock.  Another 
important reason is related to the fact the each oil determines specific chemical and 
physical properties on the biodiesel, what are essential data to handle it in appropriate 
way. The quantitative analysis in terms of the quantity of biodiesel in blend with 
petrodiesel is also important due to the necessity of supervising the correct application 
of environmental laws. 
Electronic noses measurements are based on a change in resistance in an array of 
chemical sensors when exposed to a chemical vapor. Its use has been reported in the 
literature to determine the origin of a variety of stuffs such as honey (Benedetti, 
2004), cigarettes (Dehan, 2004), wine (Lozano et al., 2005), olive oil (Cosio et al., 
2006), spoiled beef (Panigrahi, 2006), sesame oil and gasoline (Sobanski, 2006). 
Artificial Neural Networks (ANN’s) are computer programs designed to simulate the 
way in which the human brain processes information, they gather their knowledge by 
detecting relationships and patterns in data and hence they are able to learn from 
experience, differently from common programming.  The major capabilities of the 
ANN’s are recognition of patterns and data correlation when no mathematical models 
are available.  Some authors have used successfully this tool in order to enhance the 
potentiality of e-nose analysis (Martín, 2001; Lozano et al., 2005; Onkal-Engin, 2005; 
Hai, 2006). 
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In this work, a 32 sensor-based e-nose was used to recognize four samples of 
biodiesel and one of commercial petrodiesel, since each sensor produces one set of 
data, 32 sets form the smellprint of the analyzed substance. Principle components 
analysis was used to reduce the quantity of data and to group them into a three 
dimensional space.  Artificial neural networks resources were used to correlate the 
quantity of biodiesel in petrodiesel blends to the smellprints, in such a way to obtain a 
semi quantitative essay. 
 

2. Materials and Methods 

2.1. E-nose 

A Smiths Detection Cyranose 320 e-nose was used in this work. Its measurement is 
based on a change in resistance of each chemical sensor in the 32-sensor array when 
exposed to a chemical vapor. This is a differential measurement with the sensor 
response measured as (Rmax-Ro)/ Ro, with Ro being the resistance during a baseline gas 
flow and Rmax being the maximum resistance during exposure to the sample vapor as 
shown in Figure 1.  

 
Figure 1: Typical sensor response through the (A) baseline purge, (B) sample exposure, and (C) sensor refresh. 
 
The chemical sensors respond to the vapor headspace to which they are exposed. 
Across the array of unique sensors the responses are different and a response pattern 
is obtained that represents each particular headspace.  
The sensor materials are thin films deposited across two electrical leads on an 
alumina substrate, creating the conducting chemiresistors. When the composite film is 
exposed to a vapor-phase analyte, the polymer matrix acts like a sponge and swells 
while absorbing the analyte. The increase in volume causes an increase in resistance 
because the conductive carbon-black pathways through the material are disrupted. 
When the analyte is removed the polymer releases the analyte and shrinks to its 
original size, restoring the conductive pathways. Each polymer used in the array is 
chemically unique and absorbs the analyte gases to a different degree, thus creating a 
pattern of differential response across the array. Figure 2 shows a typical sensor 
response to petrodiesel. 
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Figure 2: Response of 32-based sensor array when exposed to petrodiesel 

 

2.2. Principal Component Analysis 

As it can be seen, a great quantity of data is collected to each sample; occasionally it 
is not practical to treat all of them, because important information may be hidden 
inside the dataset, so it is necessary to use a technique to “clean” the dataset, reducing 
its size without loosing important information.  The mathematical tool very often used 
to do that is Principal Component Analysis (PCA).   
From the original dataset, the method generates a new set of data, called set of 
principle components, that is linear combination of the original set and have the 
characteristic of being orthogonal one to each other, in such a way that no redundant 
information exists. The principal components form an orthogonal basis of the total 
space.   
There are several ways to construct an orthogonal basis to a number of data columns.  
In PCA technique, the first set of principal components is a single axis in the space, 
when each observation is projected over this axis, the resulting values form new 
variables. The variance of these variables is the greatest among all the possible 
choices to the first axis. The second set is other axis in the space, perpendicular to the 
first, which creates a new variable whose variance is also the greatest.  The total set of 
principal components is as large as the original set, but is known that the sum of the 
variances of just few initial data exceeds in 80% the sum of the variances of the entire 
group.  In this way, it is possible to reduce the dataset to a size whose sum of 
variances represents the entire dataset; in such a way that the generating forces 
existing in the original set still exists in the new one.   
 

2.3. Artificial Neural Networks 

There are many types of neural networks but all of them have the same basic 
principle. Each neuron in the network is able to receive input signals, to process them 
and to generate an output signal (Haykin, 2002). Each neuron is connected with at 
least another neuron, and each connection is represented by a real number, called 
weight coefficient, which reflects the degree of importance of the given connection to 
the neural network. 
The most popular ANN is the backpropagation feed-forward type, whose architecture 
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is based on an input layer containing all the entrance variables that feed the network 
and an output layer that contains the responses of the ANN to the desired problem. 
All the layers between input and output are called hidden layers. There is no limit to 
the number of hidden layers, but one hidden layer with an arbitrarily large number of 
processing elements (neurons) is generally enough to solve the majority of problems, 
although some rare functions require two hidden layers to be well modelled. 
The output value of the i th neuron ix  is determined by Eqs. (1) and (2), which holds: 

( )ii yfx =                 (1) 
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where iy  is the potential of the i th neuron, ib  is the bias coefficient and can be 
understood as a weight coefficient of the connection formally added to the neuron, n  
is the number of input connections no the i th neuron, jw  is the weight coefficient of 
the connection between the input j and the i th neuron and xj is the value of the input j.  
The function )( iyf  is the so-called transfer function.  
One of the most widely used transfer function is the sigmoidal, but there are others 
such as hyperbolic tangent and linear. 
In the supervised training, i.e., that one whose targets are already known for a given 
input dataset, biases and weight coefficients are varied in order to minimize the sum 
of the squared differences between the computed and required output values (targets), 
what is done by minimization of an objective function E: 
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where jx  and jx̂  are vectors composed, respectively, of the computed and targets 
activities of the output neurons; n is the number of neurons. 
Although backpropagation is the most popular training algorithm, it is known that 
sometimes it is slow to converge and tends to fall into local minima; there exist some 
variations of this algorithm developed to optimise convergence. The Levenberg-
Marquardt algorithm was designed to approach second-order training speed.  This 
algorithm appears to be the fastest method for training moderate-sized feed-forward 
neural networks (up to several hundred weights). It also has a very efficient 
MATLAB® implementation.  The Levenberg-Marquardt algorithm has proven to be 
very efficient in works where it has been used (Laugier, 2003; Yu, 2003). 
The main advantage of neural networks is that they are able to use some information a 
priori hidden in data. The process of capturing the unknown information is done 
during the training step of the ANN, when one may say that the ANN is learning how 
to output a satisfactory response for an input dataset. In mathematic language, the 
learning process is the adjustment of the set of weight coefficients in such a way that 
some conditions are fulfilled. 
One problem that happens frequently to ANN is called overfitting; it happens when 
the network is much more trained than it would be enough to reach generalization of 
the phenomenon. In fact, the ANN seems to memorize the training examples, 
presenting good results only to that training data and diverging to any others.  To 
overcome this problem, the most used technique is early stopping. The training 
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dataset is divided in such a way that the first part is used to train the network and the 
second part is used as a test dataset. The error calculated by Eq. 3 is usually reduced 
as the training process goes on, but the test error increases when ANN begins to 
overfit. Therefore, the training process is stopped and the weights and biases are 
reverted to the values they had just before overfitting.   
 

2.4. Bio and petrodiesel samples 

Four different samples of biodiesel and one sample of petrodiesel were used; the 
viscosities for all samples are shown in table 1, viscosities were determined in 
Brookfield Model DV-II+pro viscometer at 40ºC and may furnish a reasonable idea 
whether the biodiesel contain parent oil remaining from uncompleted 
transesterification.  The palm and the babassu samples were obtained by enzymatic 
catalysis (Moreira, 2006); chicken grease sample was obtained by basic catalysis 
(Amaral, 2007), all in laboratory scale.  Beef tallow sample (BIOMAX®) was 
obtained industrially and gently furnished by Fertibom Ltd. and used as received.  
 

Parent oil Viscosity (mm2/s) 
Palm 7,50 
Babassu 4,50 
Chicken grease 6,90 
Beef tallow 5,38 
Petrodiesel 3,74 

Table 1: viscosities of bio and petrodiesel samples used in this work. 
 
Five 1mL samples of each pure bio or petrodiesel studied were put into 40mL 
headspace vials and enough time was left to attain liquid-vapor equilibrium at room 
temperature, the headspace of each vial was then exposed to the e-nose in order to 
form a set of data large enough for statistical treatment.  In order to form a dataset 
containing ten exposures, each vial was exposed twice to the e-nose.  E-nose was 
adjusted to run 10s purging air to form the baseline and 30 seconds aspirating the 
headspace, this time was enough to the majority of the sensors to reach steady state.  
Purge and aspiration were at a sampling speed of 120mL/min. Six sensors were 
disabled because their resistance did not attain steady state. 
Additionally, four B20 blends (20% of biodiesel with 80% of petrodiesel) were 
prepared with each biodiesel sample.  Ten 1mL samples were prepared to each B20 
blend and exposed to the e-nose once.  The reason not to prepare five samples and 
exposing them twice such as in the former study was to obtain a homogeneous set of 
data, given that when working with a blend, where one of the components is much 
more volatile than the other one, the time to attain headspace equilibrium is more 
important and could influence the e-nose readings.  Blends exposure were regulated 
to have 10s of air purging to the baseline at 120ml/min and 60s of headspace 
aspiration at 180ml/min to attain steady state. 
The responses of the 26 sensors used were normalized using a simple weighting 
method type (ΔR/Ro)i = (ΔR/Ro)i /Σ |ΔR/Ro|j to remove the effects of response size on 
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the smellprint pattern.  
Finally, B2, B5, B10 and B20 blends with babassu biodiesel were prepared, ten 
samples of each were exposed to the e-nose. The baseline of the smellprints had to be 
conditioned with the pure petrodiesel, i.e. the base line was formed not by pure air 
purging, but by pure petrodiesel headspace, in order to enhance the sensitiveness of 
the sensors regarding to biodiesel presence in the mixture. No normalization 
techniques were used here to keep the original resistances registered by sensors, 
because in this case the response sizes of the smellprints are used to be correlated to 
concentration. 
 

3. Results and Discussion 

3.1. Pure Biodiesel 

The e-nose was capable to recognize the smellprints of each diesel and to group them 
based on PCA techniques, as can be seen on Figure 3.  Based on this result, it is 
possible to say that the e-nose is suitable equipment to recognize with efficiency and 
rapidity any of the presented samples.  The results indicate that other biodiesel 
samples could be well recognized because the distance among the groups is large 
enough to hold other groups.  

 
Figure 3: PCA projecting plot of four different samples of biodiesels and petrodiesel 

Validation studies to this analysis method were done by repeating exhaustively 
recognition tests using the same headspace technique used in training step, i.e, at 
normal operating conditions.  The test attained 100% of success.   Afterwards, a 
qualification test was carried out by testing samples at the boundaries of operating 
conditions, which was accomplished doing the sample headspace aspiration with open 
vials, to reproduce possible field conditions.  This test attained approximately 93% of 
success.  The main purpose of method validation and qualification is to insure the 
repeatability, reproducibility and robustness of the method and model when using the 
e-nose to identify samples. 
 

3.2. B20 blends 

In a first essay, samples of the four blends were exposed to the e-nose according to 
the procedure in section 2.4.  As it can be seen in Figure 4a, beef tallow and chicken 

Babassu oil 
Palm oil 
Chicken grease 
Beef tallow 
Petrodiesel 
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grease B20 blends had almost the same behavior and were grouped by PCA technique 
almost together, what turns impossible their recognition one from another in only one 
essay.  The recognition could be done at least in terms of animal origin biodiesel and 
vegetal origin biodiesel.  Nevertheless, in such situations it is recommended to 
perform the essay in two steps, what is commonly called tiered analysis.  Then, a new 
exposure to the e-nose was done, this time with only chicken grease and beef tallow 
B20 blends, as a result both samples could be distinguished by the e-nose as shown in 
Figure 4b.   
Thus, the strategy recommended to this set of B20 blends is tiered methodology.  It is 
likely that this kind of occurrence may happen with other sets of blends when the 
same tactic should be used. 
  

  
Figure 4: PCA projecting plot of (a) four different B20 blends of biodiesel                                                                         

(b) only beef tallow and chicken grease B20 blends 

 

Validation of this method was carried out as well as in the former one; results indicate 
that 88% of the essays were considered correct.  Qualification of the method, with 
aspiration of open vials headspace achieve only 60% of correct determination, what 
indicates that, to B20 blends, essays should be done with the strict methodology of 
closed vials.  In fact this is not surprising, because even though the groups are well 
separated one from another, the real distances among them are smaller than in pure 
biodiesel case. 
 

3.3. Semi quantitative analysis 

When a set of pure petrodiesel, B2, B5, B10 and B20 blends of babassu biodiesel 
were presented to the e-nose, the results of PCA projecting plot was not exciting as 
can be seen in Figure 5, where no group separation can be found, due to the great 
proximity of the resistances of the sensors when exposed to the vapors. A cross 
validation test using leave-one-out method showed a 68% of right predictions, which 
was not considered reasonable.  However, a meticulous analysis of the smellprints 
and of the response intensities of the sensors, when no data regularization was 
applied, has shown two important facts: there were slight differences among them and 
that these differences could be greater if the baseline would be formed not by air 
purging, but by pure petrodiesel headspace.  If compared to the human nose, it could 
be said that the e-nose is more sensible to few quantities of babassu biodiesel in the 

Babassu B20 
Palm B20 
Chicken grease B20 
Beef tallow B20 

Chicken grease B20 
Beef tallow B20 
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blend when it is previously “adapted” to the petrodiesel smell. 
 

 
Figure 5: PCA projection plot of Babassu B0, B2, B5, B10 and B20 blend samples 

 
Thus, since other authors have successfully used ANN resources to enhance the 
power of the e-nose (Martín, 2001; Lozano et al., 2005; Onkal-Engin, 2005; Hai, 
2006), it was decided to apply this methodology. 
The smellprint of each sample exposure to the e-nose was collected to form the 
training dataset of a feed-forward backpropagation ANN.  Since there were ten 
samples of five blend concentration (B0, B2, B5, B10 and B20), a set of fifty essays 
was formed.  Five essays were separated to form a testing group, so early stopping 
could be used to accelerate the search for global minima in the training process.   
A 26:3:1 architecture was initially chosen to be tested, where 26 is quantity of 
neurons the input layer, corresponding to the number of sensors activated; 3 is the 
quantity of neurons in the hidden layer and 1 is number of neurons in the output layer, 
corresponding to the babassu biodiesel concentration in the blend.  The network was 
trained using Levenberg-Marquardt algorithm and after some random weight 
initializations, the training process was ready. 
The trained ANN was then submitted to a validation test, when a new set of blends 
was presented to the network.  In order to test the capacity of the ANN to predict 
different values from those used in training, besides B0, B2, B5, B10 and B20, two 
new blends were added in the validation test: B7 and B15. As it can be seen in Figure 
6, predictions were very close to the real values.   
 

 
Figure 6: Correlation of real values and ANN predicted values 
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It can also be observed that to B7 and B15 blends predicted values were not as close 
as they were to the rest of the group, what indicates that the generalization capacity of 
the ANN need to be improved.  The mean error to the validation was 1,71% if only 
B0, B2, B5, B10 and B20 samples are considered and 7,42% when B7 and B15 were 
included.  It is obvious that better ANN’s could be searched, an increase in the 
quantity of neurons in the hidden probably would have improved generalization, on 
the other hand the semi quantitative character of the method was already 
demonstrated.  
   

Conclusions 

The capacity of the e-nose to recognize pure biodiesel samples was shown even in 
conditions slightly different of those used to train it, what demonstrates that the 
equipment is perfectly suitable to perform field essays in a very rapid and practical 
way. 
The electronic nose was also tested to recognize the origin of the biodiesel in B20 
blends; the study revealed that it is also suitable to this task; however the essays must 
be always done in the same conditions of the training, i.e. using closed headspace 
vials. In some cases it is necessary to apply the tiered method to recognize some 
samples. 
A semi quantitative method was successfully developed to determine de quantity of 
biodiesel in blends of babassu biodiesel with petrodiesel using artificial neural 
networks to enhance the e-nose capacity. This technique is worth of further studies to 
improve generalization of the network predictions. 
Electronic nose coupled to artificial neural networks is a very promising technique to 
biodiesel characterizations, especially taking into consideration the portability and the 
price of the equipment compared to the traditional techniques. 
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