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Abstract 

This contribution describes the development of various strategies for the dynamic 
optimization of a batch reactor in order to obtain a robust model, suitable for 
nonlinear (NLP) or mixed-integer nonlinear programming (MINLP) problems. 
Different Orthogonal Collocation on Finite Element (OCFE) schemes and various 
formulations of the MINLP model have been studied to increase its robustness. It has 
been found that none of the MINLP model formulation is as efficient as NLP. Various 
strategies have been applied to NLP and MINLP models, and in addition, their 
efficiencies and robustness have been compared.  
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1. Introduction 

Over the last decade modeling, dynamic optimization and on-line optimization have 
been the main research areas in optimization of batch reactors. The modeling category 
is usually oriented towards a more realistic description of a batch reactor (Zaldivar et 
al., 1996) and towards the use of special modeling techniques and strategies in cases 
of imperfect knowledge of kinetic studies involved, e.g. the use of tendency models 
(Fotopoulos et al., 1998) or a sequential experiment design strategy based on 
reinforcement learning (Martinez, 2000). The second category is related to more 
advanced aspects of dynamic optimization of batch reactors, e.g. robust optimization 
of models, characterized by parametric uncertainty (Ruppen et al., 1995), or stochastic 
optimization of multimodal batch reactors (Carrasco and Banga, 1997). And finally, 
in work related to on-line optimization, which is currently the prevailing activity, 
different control schemes were proposed, e.g. feedforward/state feedback laws in the 
presence of disturbances, and nonlinear state feedback laws for batch processes with 
multiple manipulated inputs were developed (Raman and Palanki, 1996, 1998).  
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Kinetics in batch reactors is described using differential equations. These equations 
represent complex optimization problems, even in small and simple examples. The 
use of Orthogonal Collocation on Finite Elements (OCFE) in optimization models of 
batch reactors has become a well-established numerical method. The OCFE method 
with a fixed finite element is the most straightforward and easiest. However, when 
using fixed finite elements directly it is impossible to explicitly model the optimal 
retention times of the batch reactors and the optimal outlet concentrations and 
conditions. Consequently, the use of flexible finite elements is regarded as a 
conventional approach for overcoming these difficulties (Cuthrell and Biegler, 1989). 
This model, however, seems to have become more nonlinear because the length of the 
final element is converted into a variable.  
 
In recent research (Ropotar and Kravanja, 2006a), NLP and MINLP models were 
developed for the dynamic optimization of batch reactors. A differential-algebraic 
optimization problem (DAOP) model was initially converted into a robust nonlinear 
programming (NLP) model by the use of Orthogonal Collocation on a fixed, rather 
than flexible, Finite Element.  
 
This paper describes the use of various strategies for the dynamic optimization of a 
batch reactor in order to obtain a robust model, suitable for NLP or MINLP synthesis 
problems. Different schemes for OCFE were studied to increase the robustness of the 
model. Finally, in the case of the MINLP model, the robustness of the model is 
studied with respect to the use of different model formulations. Different model 
formulations are then compared, in order to find out which of them are more efficient 
and robust. Models were developed on the example of a batch reactor described by 
Ropotar and Kravanja, 2005. 

2. OCFE schemes and strategies 

Different OCFE schemes with a fixed (NLP) or changing number of finite elements 
(MINLP), with moving or fixed finite elements, and with an end and/or inner optimal 
point in the Legendre polynomial representation were investigated in order to increase 
the efficiency of the NLP and MINLP models. In the case of NLP optimization, the 
number of finite elements has to be set in advance and is, thus, usually oversized in 
order to satisfy a given error tolerance, whereas, in the MINLP cases it is explicitly 
modeled in order to be simultaneously adjusted during the optimization process to the 
minimal number of elements. 

2.1. NLP model with moving finite elements 

In the case of NLP and MINLP formulations with moving finite elements, additional 
nonlinearities of algebraic constraints are introduced in the model due to the presence 
of the variables, which represent finite element’s lengths. On the other hand, some 
nonlinearities vanish because optimal time is moved to the end of the final element 
and several equations become linear. Additionally, inequality constraints for the 
approximation error were included in the model. Complete NLP model (F-NLP) with 
flexible finite elements and inequations for approximation error is shown below. The 
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model was developed on the example of a batch reactor problem (Fig. 1), where 
consecutive reaction A → B → C is carried out and B is the desired product. Since 
the reaction is endothermic, the system can be heated and/or preheated. As far as the 
optimal inlet temperature is higher than the one defined by the user, the inlet must be 
preheated. The kinetics of this reaction is following: 
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Figure 1: Batch reactor. 
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Residual equations and component balances: 
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Energy balance:  
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where K and NE are collocation points and final elements, respectively. Optimal 
outlet point by Legendre polynomials: 
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The point at the interior knot is defined as the optimal interior point from the previous 
finite element defined by Legendre polynomials (eq. 1):  
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where ε is an error tolerance, e.g. 10-3. Note that optimal time is, in contrast to the 
model with fixed final elements, at the end of the final element and, thus, Legendre 
polynomials are simplified. Furthermore, the heat flow in the objective function is 
integrated over the whole length of the final element, which is optimized. It also 
should be noted that the profit and number of batches are defined for production 
covering 8 hours and a 600 sec non-operating period between batches. Thus, the 
number of batches is 28880/( +600). Total time is defined as a sum of all optimal 
times, which are actually the length of the final elements, in all finite elements: 

 and . Thus, each fixed final element is defined as 
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2.2. MINLP model with moving final elements 

The MINLP model is similar to the NLP with the exception of some additional 
constraints. These are applied in order select the optimal number of finite elements: 
 

     (2) 1−≤ ll yy NEl ,...3,2=∀
  

NEl ,...2,1=∀
lll y⋅Δ≤Δ UPαα  (3) 

 
lll y⋅Δ≥Δ LOαα  (4) 

 
Ineq. (2) is applied to ensure that all finite elements up to the last selected one are, in 
fact, selected. If the corresponding finite element is rejected, ineq. (3) forces lαΔ  to 
zero. On the other hand, when the element is selected, ineqs. (3)-(4) are applied to 
vary the lαΔ  of each finite element between bounds. Note that, in contrast to the NLP 
model where the integration is distributed equally and continuously within all the 
finite elements, here the integration is applied only to the selected finite elements. 
 
Ropotar and Kravanja (2006b) developed an alternative convex-hull model 
formulation and implemented it in the process synthesizer MIPSYN, the successor of 
PROSYN-MINLP (Kravanja and Grossmann, 1994). MIPSYN enables automated 
execution of simultaneous topology, and parameter optimization of the processes. 
Optimization of each NLP subproblem is performed only on the existing units rather 
than on the entire superstructure, which substantially reduces the size of the NLP 
subproblems. An NLP initializer, model generator and a comprehensive library of 
models for basic process units and interconnection nodes, together with a 
comprehensive library of basic physical properties for the most common chemical 
components were developed in order to facilitate different types of computation (for 
example initialization, optimizing fixed structures).  
 
In the case of the MINLP model the robustness of the model was studied with respect 
to the use of different model formulations. Namely, Big-M formulation, conventional 
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convex hull (CCH) and alternative convex hull formulation (ACH) and the following 
representations of outer approximations (OA) for the Outer Approximation/Equality 
Relaxation algorithm are compared: 
 
Big-M formulation: ( ) ( ) ( ) )1(lTlTll yMhhh xx −≤∇−∇+ xxxxx  (5) 

Convex hull representation: ( ) ( ) ( )( )yhhh llTlTl xxxxx xx −∇≤∇  (6) 

Alternative formulation: ( ) ( ) ( ) ( ) ( )( )yhhhh lflTlfTlTl xxxxxxxx xxx −−∇+∇≤∇  (7) 
 
Unlike CCH representation, where the continuous variables x are usually forced into 
zero values when the corresponding disjunctives are false, in ACH the variables are 
forced into arbitrarily-forced values, xf. 

3. Results and comparison 

As stated above, all schemes and strategies were performed on the batch reactor 
example with 50 finite elements. Results for different OCFE schemes are given in 
Table 1 in order to compare NLP and MINLP solutions with fixed final elements to 
those with flexible final elements. The last two columns outline NLP and MINLP 
solutions obtained considering approximation error tolerance ε = 10-3. The 
comparison between three different MINLP model formulations is given in Table 2. 
  
Table 1: Comparison among different schemes and strategies. 
 

scheme/ 
strategy 

NLP 

(fixed FE) 

MINLP 

(fixed FE) 

NLP 

(flexible FE) 

MINLP 

(flexible FE) 

NLP (ε = 10-3) 

(flexible FE) 

MINLP (ε = 10-3) 

(flexible FE) 
opt
Ac  (mol/l) 0.101 0.101 0.101 0.101 0.101 0.101 
opt
Bc  (mol/l) 0.605 0.605 0.605 0.604 0.607 0.605 
opt
Cc  (mol/l) 0.094 0.094 0.094 0.095 0.092 0.094 

Topt (K) 369.1 369.3 369.3 382.3 369.2 383.2 

topt (s) 142.55 138.69 139.95 132.61 173.65 139.97 

Z (k$) 36.996 37.024 36.998 37.139 36.574 36.881 

CPU time (s) 11.46 244.48 7.07 328.61 33.96 667.05 

 
It can be seen that the solutions are very similar: small differences occur in 
temperatures, total optimal time, and profit. However, the CPU time for solving the 
NLP model is significantly smaller than the MINLP one because 6 major MINLP 
iterations have to be performed to obtain the optimal solution. Also, the values of the 
objective function obtained with MINLP model are somewhat larger than the NLP 
ones. With 50 finite elements the NLP and MINLP models were able to tolerate an 
approximation error tolerance less than 10-3. When the approximation error tolerance 
is considered explicitly in the model, the value of the objective function is, as 
expected, somewhat smaller. It should be noted that Big-M model formulation was 
used in the case of MINLP.  
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Table 2: Comparison among three different MINLP model formulations. 
 

formulation BIG-M 

(fixed FE) 

CCH 

(fixed FE) 

ACH 

(fixed FE) 

BIG-M 

(flexible FE) 

CCH 

(flexible FE) 

ACH 

(flexible FE) 
opt
Ac  (mol/l) 0.101 0.101 0.101 0.101 0.101 0.101 
opt
Bc  (mol/l) 0.605 0.605 0.605 0.604 0.604 0.604 
opt
Cc  (mol/l) 0.094 0.094 0.094 0.095 0.095 0.095 

Topt (K) 369.3 369.3 369.3 382.3 379.9 383.0 

topt (s) 138.69 139.85 139.85 132.61 132.53 132.47 

Z (k$) 37.024 36.999 36.999 37.139 37.141 37.142 

CPU time (s) 627.26 639.21 844.09 722.58 527.74 1266.96 

 
Finally, three different MINLP model formulations were compared, the Big-M, CCH 
and ACH, Table 2. It can be seen that when fixed final elements were used, CPU time 
needed for solving 11 major iterations is comparable for Big-M and CCH 
formulation, while for the ACH formulation it is somewhat bigger. When flexible 
final elements were used, ACH formulation needed twice as much CPU time for 
solving 11 major iterations as CCH formulation, while Big-M formulation needed 
slightly more CPU time than the CCH one. Also, it can be seen from both tables that 
when using flexible final elements better solutions were obtained than with fixed 
elements. 

4. Conclusions 

The main goal of the research described in this contribution is to obtain a robust 
model, suitable for nonlinear (NLP) or mixed-integer nonlinear programming 
(MINLP) problems. In order to achieve that, different OCFE schemes and strategies 
were developed and, furthermore, different model formulations were studied in the 
case of the MINLP model.    
 
In the NLP model with flexible final elements, some nonlinearities were reduced and 
CPU time was also decreased. On the contrary, in the case of MINLP model, CPU 
time was increased when flexible final elements were used, except in CCH 
formulation. Although convex hull formulations are usually more efficient than     
Big-M ones, which was shown also by Ropotar and Kravanja (2006b), in our example 
of batch reactor it was just the opposite. It was noticed that Big-M formulation is in 
our example most straightforward and contains considerably less equations and 
variables.   
 
The NLP model is most suitable for the optimization of stand-alone reactors when the 
approximation error is large. Since the disjunctive MINLP model can adjust 
automatically an appropriate number of finite elements in order to tolerate a given 
approximation error, it can be more efficient than the NLP model when the 
approximation error is small. This could be especially significant when MINLP 
synthesis of reactors is performed within the overall process schemes where it is 
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important not to burden the NLP computation by carrying unnecessary final elements 
through MINLP iterations. On the other hand, it is promising that the NLP model 
would behave better during the process synthesis than the MINLP model, especially 
because the combinatorics of the model can be significantly reduced since the 
selection of the final element as performed in the MINLP model is avoided. 
Moreover, other MINLP formulations were used and all of them were more expensive 
in CPU time than NLP. Hence, the future research is oriented towards the use of NLP 
rather than MINLP model for reactors in process synthesis.  
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