
Controlling of Chaos in the Process of Crystallization of Dibasic Lead Phosphite 
Proceedings of European Congress of Chemical Engineering (ECCE-6) 
Copenhagen, 16-20 September 2007 

 

Controlling of chaos in the process of crystallization of 
dibasic lead phosphite 

M. Cherenkov,a E. Koltsovaa  

a Mendeleev Univ. of Chemical Technology of Russia, Dep. of Cybernetics of Chemical Technological 
Processes, 125047, Miusskaya pl. 9, Moscow, Russia 

Abstract 

In this paper three algorithms of control of chaos (destohastization, control with 
proportional feedback and control with time-delayed feedback) in the process of 
continuous mass crystallization of dibasic lead phosphite are offered. 

The first method involves a corrective action in compliance with the required 
values of the dynamic variables and, therefore, involves a feedback as a necessary 
component of the system. An algorithm based on the Poincare cross section was 
developed by Ott, Grebogi, and Yorke, which is referred to as the acronym of their 
names (the OGY algorithm). For today the OGY-method has quite a number of 
modifications. 

The second attractive for scientists method is the time-delayed feedback one. It 
was offered in 1992 by the Lithuanian physicist K. Pyragas. The main advantage of 
his idea is the continuity of the method. In other words, when one uses the OGY-
method and its modifications the algorithm starts working when a system gets, for 
example, to the given area of an unstable fixed point, that takes some time, but when 
using the Pyragas’ method the algorithm is supposed to be switched on any time when 
it is necessary due to a feedback principle. The efficiency of Pyragas’ method and its 
modifications for the physical, chemical and a number of other systems was 
demonstrated. 

Another approach to the stabilization of the stochastic behavior of dynamic 
systems involves external disturbances without feedback. This method of suppression 
of chaos is referred to as the destochastization method. 

We show the possibility of using of each method for controlling chaos in the 
process of continuous mass crystallization of dibasic lead phosphate. 
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1. Introduction 

In this paper the results of computational modeling of chaos control in the 
process of continuous mass crystallization of dibasic lead phosphite are offered.  
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The first method involves a corrective action in compliance with the required 
values of the dynamic variables and, therefore, involves a feedback as a necessary 
component of the system. An algorithm based on the Poincare cross section was 
developed by Ott, Grebogi, and Yorke [1], which is referred to as the acronym of their 
names (the OGY algorithm). For today the OGY-method has quite a number of 
modifications, e.g. [2] - [7].  

The second attractive for scientists method is the time-delayed feedback one. It 
was offered in 1992 by the Lithuanian physicist K. Pyragas [8]. The main advantage 
of his idea is the continuity of the method. In other words, when one uses the OGY-
method and its modifications the algorithm starts working when a system gets, for 
example, to the given area of an unstable fixed point, that takes some time, but when 
using the Pyragas’ method the algorithm is supposed to be switched on any time when 
it is necessary due to a feedback principle. The efficiency of Pyragas’ method and its 
modifications for the physical, chemical and a number of other systems was 
demonstrated [10]-[20].  

Another approach to the stabilization of the stochastic behavior of dynamic 
systems involves external disturbances without feedback. This method of suppression 
of chaos is referred to as the destochastization method. The theorem was proved that, 
for a set of one-parametric quadratic maps of logistic type: 

 
                                                  ),1(1 jjj xxx −λ=+                                                      (1) 

there is a periodic parametric disturbance transferring map (1) from the set of 
stochastic maps to a set of regular maps. This theorem suggests that there are ways of 
chaos control without feedback. The concept of regions of parameters in which chaos 
can be controlled without feedback makes it possible to search for a representation of 
the controlling parameter in such a manner as to suppress stochastic oscillations. The 
most frequently used representation is 
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where 0λ  is the value of the controlling parameter of map (1) in the region of chaos 
( 1 <<||λ 0λ ) and  is the frequency. It was shown that the frequency  should be 
taken from intervals of intermittency in chaos. 

w w

2. Control with proportional feedback 

Let’s demonstrate the efficiency of control with proportional feedback 
concerning the logistic map (1). This method is a modification of the OGY-algorithm 
and it was worked out by authors [21]. 

The essence of the algorithm of proportional feedback control can be 
formulated as follows. Since the system behaves chaotically, at a certain instant of 
time, it will find itself in the vicinity of a stationary unstable point xs (Fig. 1). If the 
controlling parameter of the system is changed at this instant of time, beginning from 
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the next step in time, the state of the system will be directed toward the stationary 
unstable point (of the cycle of period-1) xs (Fig. 1).      

 
Fig. 1. Quadratic map of the logistic equation )1(1 jjj xxx −=+ λ , where xs is the 

stationary unstable point.  
 

Let’s consider the stabilization of the cycle of period-1 of the system (1) if the λ 
= 3.7. Uncontrolled behavior of the system (1) is shown in Fig.2 and the result of the 
control is shown in Fig. 3a.      
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Fig. 2. The behavior of the system (1) at a value of controlling parameter λ =3.7.  
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The system got into the given neighborhood of the fixed point at t = 100. Then the 
algorithm of the control was switched on and the system was stabilized near the fixed 
point xs = 0.7297 at t = 118. The control was specially switched off at t = 600 and the 
system came back to the chaotic behavior. 

3. Control with time-delayed feedback 

In this part, the application of the extended method of time-delayed feedback 
[22], which is the modification of Pyragas’ method to control chaotic oscillations is 
considered. The method is offered by E.S. Socolar, D.W. Sukow, D.J. Gauthier in 
1994 and gives more possibilities in comparison with the [8] at the expense of using 
the information about previous states of the system. 

According to [22] the controlled logistic map (for the stabilization of cycle of 
period-1) could be presented as 

 
                                          ),1(*)( 01 jjj xxx −+=+ ελ                                                (3)  
 
where  
 
                                           11 )(* −− +−= jjj Rxx εγε                                                  (4) 
 
γ, R – the parameters of a time-delayed feedback function.    

Let’s demonstrate the work of the extended method of time-delayed feedback 
for stabilization of the logistic map (1) at a value of the controlling parameter λ  = 3.7. 
(Fig. 3b). As we can see, the system demonstrates the chaotic behavior till an iteration 
50. Then, the control, realizing an algorithm of the extended method of time-delayed 
feedback was switched on, and the stabilization of cycle of period-1 has occurred 
(unstable fixed points are xs=0.7297). The values of the parameters of the time-
delayed feedback function are γ = 3.5, R = 0.5. It is clear that the extended method of 
time-delayed feedback is more efficiency that the proportional feedback one.  

4. Control with destohastization algorithm 

The method of destohastization gives possibility of suppression of chaotic 
oscillations without using of feedback. The following regularity are using for 
suppression of chaos more often 
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In this case the controlled logistic map is 
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As is seen from the bifurcation diagram (Fig. 4), between the stages of chaotic 
behavior there are the intermittency windows (for example, there is the window with 
period-6 atλ  = 3.84).     

A value of λ0 corresponding to λ = 3.7 (the region of chaos) was considered as 
corresponding to an unperturbed state of the parameter; the perturbation period was 
set equal to intermittency window period – 6. These values specified the amplitude λ1 
in (6) so is to maintain λ = 3.7 and, at the same time, to obtain regular oscillations. 
The regularization occurred at λ1 = 0.335. The regimes without destohastization and 
with destohastization being switched on t = 20 are shown in Fig. 5. The oscillations 
after t = 20 corresponds to the cycle of period-6.  
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Fig. 3. Control of chaotic oscillations of logistic map (1) by means of (a) proportional 
feedback method and (b) extended time-delayed feedback method. 
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Externally forced oscillations are superimposed on the natural oscillations of the 
system; the result is the regularization of chaotic oscillations. 

Fig. 4. The bifurcation diagram of the logistic equation. 
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Fig. 5. Control of chaotic oscillations of logistic map (1) by means of 

destochastization method. 
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5. The model 

Let’s consider now a system of nonlinear discrete equations, representing the 
mathematical model of the continuous mass crystallization of dibasic lead phosphite 
synthesized in the course of the following chemical reactions 

 
PbO + 2CH3COOH = Pb(CH3COO)2 + H2O, 

2PbO + Pb(CH3COO)2+0.5H2O = 2PbO⋅Pb(CH3COO)2⋅0.5H2O, 
Na2HPO3 + 2PbO⋅Pb(CH3COO)2⋅0.5H2O = 2PbOPbHPO3⋅0.5H2O + 2CH3COONa. 

 
The given model is offered in [23] and describes the entire spectrum of the behavior 
(both stationary states and regular and chaotic oscillations during the change of a 
value of a bifurcation parameter of the system – the flow rate of a sodium phosphite 
solution vq) 
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t=0, с1(0)=с1
0, с2(0)=с2

0, с3(0)=0, n(0)=0, N(0,k)=0, η(0,k)=0, 
where сi is the concentration of i-th reagent; γ1,γ2 and γ3 are the ratios of the masses of 
the components;  vq is the flow rate of the sodium phosphite solution; V is the volume 
of solution; ρ3

0 is the density of lead phosphite crystals; r0 is the volume of the 
cluster;  c3

S is the equilibrium concentration of dibasic lead phosphite; k1 is the rate 
constant of the chemical reaction; k0 is the rate constant of the cluster formation; n is 
the number of clusters in the solution; β1 is the rate nucleation constant; β2 is the 
crystal growth rate constant; β3 is the exponent in the power dependence of the crystal 
growth rate η on the number of clusters; η(k) is the crystal growth rate (the change in 
the number of clusters in the crystal per unit time); k is the number of clusters in the 
growing crystal; t is the time; and N(k)dk is the number of crystals containing from k 
to k+dk clusters. 

Indexes are designated: 1 – dibasic lead diacetate; 2 – sodium phosphite; 3 – 
dibasic lead phosphite; 4 – sodium acetate. 

The equation of the changes in the dibasic lead phosphite concentration (с3) and 
the equation of the changes in the number of dibasic lead phosphite clusters (n) form 
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a system of two coupled oscillators. The equation of the changes in the concentration 
(с3) is the driving oscillator and the equation of the changes in the number of clusters 
(n) is the driven oscillator. These equations can be transformed by linear 
rearrangements to the form of the logistic equation (1) with the following variable 
controlling parameters 
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The flow rate of the sodium phosphite solution, as mentioned above, is the 
bifurcation parameter of the concerned system. With vq increase the system passes 
through period-doubling bifurcation to a chaotic behavior and then through windows 
of intermittency to a chaotic behavior again (see the table 1). The equations (8) 
connect the flow rate of the sodium phosphite solution with the controlling parameters 
of the equations of the changes in the dibasic lead phosphite concentration and the 
equation of the changes in the number of dibasic lead phosphite clusters, which were 
transformed to the form of the logistic equation (1).  

 
Table 1. Order-chaos transition during the variation of the flow rate vq 

 
vq, l/h 

 
Cycles in с3 Cycles in n 

 
vq, l/h 

 
Cycles in с3 Cycles in n 

3,600 1 1 13,248 Chaos Chaos 
5,400 1 1 13,284 Chaos Chaos 
7,200 2 2 13,320 Chaos Chaos 
7,236 2 2 13,500 Chaos Chaos 
7,992 2 2 13,680 Chaos Chaos 
9,000 2 2 13,860 Chaos Chaos 

10,800 2 2 13,932 Chaos Chaos 
11,700 4 4 13,968 6 6 
12,600 8 8 14,004 6 6 
12,672 16 16 14,040 12 6 
12,960 32 32 14,090 Chaos Chaos 
13,032 64 64 14,400 Chaos Chaos 
13,068 64 64 14,500 Chaos Chaos 
13,176 Chaos Chaos 14,600 Chaos Chaos 
13,212 Chaos Chaos 14,700 Chaos Chaos 

c3 is the concentration of dibasic lead phosphite, n is the number of clusters. 

6. Control of chaotic oscillations in the process of crystallization via proportional 
feedback algorithm 

For the proportional feedback algorithm to be applicable to a system with 
chaotic behavior, the equations describing of the system (or its maps in the Poincare 
cross-section) should be transformable to logistic equation of form (1). Therefore, the 
proportional feedback algorithm is applicable to system (7).  
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However, when constructing maps of the mathematical model (7) for the 
crystallization of dibasic lead phosphite, we found that, in maps of first order, fixed 
points are absent (Fig. 6a, 6b). The existence of the quadratic map with a region of 
windows can be explained as follows. Once the limiting supersaturation is attained 
[due to reaction (3)], the formation of clusters leads to a decrease in the concentration 
of dibasic lead phoshite. Thus, it takes a time for the specified supersaturation degree 
to be attained in the system due to reaction (3). Therefore, we solved the problem of 
stabilization of stationary unstable points of the cycle of period-2. From Fig. 6c and 
6d, it is seen that the map of the second order has windows instead of a stationary 
point (cycles of period-1); however, the stationary points of the cycle of period-2 are 
present, i.e., the points that were stabilized in this work. A map of the second order 
characterizes, for example, the relation between the concentrations of dibasic lead 
phosphite at the jth and (j + 2)th steps in time (Fig. 6c). The bisector intersects the 
map of the second order to give four stationary points, two of which can be stabilized 
(Fig. 6c, points cs1, cs2). That means that a certain control of the system can stabilize 
the cycle of period-2. 

 
 

  
Fig. 6. Maps of the (a, b) first and (c, d) second orders for the equations describing 

variations in the concentration of dibasic lead phosphite and in the number of clusters 
at a flow rate of vq = 13,26 l/h: cs1 and cs2 are the stationary points of the map of the 

second order for the concentration equation, ns1 and ns2 are the stabilized points of the 
map of the second order for the number of clusters, cs and ns are the stabilized points 

of the maps of the first order for these equations. 
 
Let us construct a modification of the proportional feedback algorithm. The 

equation of the system (7) which describes the changes in the lead phosphite 
concentration caused by the chemical reaction and formation of clusters can be 
transformed to the form 
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                                                 cj+1 = F(vq, cj).                                                             (8) 
 
The cycle of period-2 takes place if all the points with odd indices tend to the point 
cs2; the points with even indices, to cs1. If this is the case, the following relations are 
valid 
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When the controlling parameter vq is changed by a value δvq, relations (9) and 

(10) take the form 
 

                 )),(()()( 12
1

1

qqS
j

c
qqSqq

j vvcc
dc
dFvvcvvc

S

δδδ +−++=++                      (11) 

                 )).(()()( 21
2

2

qqS
j

c
qqSqq

j vvcc
dc
dFvvcvvc

S

δδδ +−++=++                     (12) 

 
In the first order of smallness, we cam write 
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Taking into account that, after the reaction of a control (vq + δvq), the point 

cj+2(vq + δvq) will coincide with the stationary point cs1 (i.e., cj+2(vq + δvq) = cs1), and 
substituting Eq. (13) in Eq. (11) and Eq. (14) and (11) in (12), we obtain the 
expression for the increment of the controlling parameter 
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In this case, the controlling parameter vq required for determining the concentration 
cj+1 at the (j + 1)th step in time is determined by the relation 
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where  is calculated by (15) and  is the value of the controlling parameter at the 
jth step in time.  

j
qvδ j

qv

From relation (15), it follows that to construct a control algorithm of a cycle of 
period-2 it is necessary to determine the slopes dF/dc of map (8) at the stationary 
points cs1 and cs2 (Fig. 7a), as well as the parametric sensitivity of the stationary point 
cs1 to changes in the controlling parameter vq (dcs1/dvq). The variation of the 
concentration of dibasic lead phosphite is shown in Fig. 7a. The control algorithm 
based on Eq. (15) was set into operation 20 min after the beginning of the process; as 
a result, the cycle of period-2 was stabilized. Since the second oscillator (the number 
of clusters in the solution) is the driven oscillator (the number of clusters in the 
solution) is the driven oscillator after the control is set into operation, with the number 
of clusters oscillating between ns1 and ns2 (Fig. 7b).   

 

 
Fig. 7.  Stabilization of the cycle of period-2 via proportional feedback method: the 
time dependences of (a) the concentration and (b) the number of clusters of dibasic 

lead phosphite (vq = 13.26 l/h) before and during the operation of control.  
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7. Control of chaotic oscillations in the process of crystallization via extended 
method of time-delayed feedback 

The value of the bifurcation parameter of the mathematical model at the (j + 1)-
th step of time is determined by relation 
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where  is the initial value of the flow rate of the sodium phosphite solution;  is 
the increment of the flow rate of the sodium phosphate solution on the next step.  

0
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Let’s write down the increment of the flow rate of sodium phosphite, e.g., for 
the case of stabilization of the cycle of the period-2. Similarly to (4) and in 
accordance with the extended method of time-delayed feedback we have 
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where 2−jε  corresponds to the increment of the flow rate of the sodium phosphite 
solution, which was calculated on the (j – 4)th step in time. 

Further, we can calculate a new value of the dibasic lead phosphite 
concentration by substituting the value of the flow rate of the sodium phosphite 
solution, which was calculated from the equation (17), in the equation (8).  
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Fig. 8.  Stabilization of the cycle of period-2 via extended method of time-delayed 
feedback: the time dependences of (a) the concentration and (b) the number of 

clusters of dibasic lead phosphite (vq = 13.26 l/h) before and during the operation of 
control. 

 
Let’s turn to the example. The realization of the considered algorithm is shown 

in the Fig. 8. We were working in the first chaotic domain (marked by the extraheavy 
line in the table 1) at the value of the flow rate of the sodium phosphite solution = 
13.26 l/h. The system demonstrated the chaotic behavior. We switched on the 
controlling algorithm on the 14th minute and the system was stabilized near fixed 
points сs1=3.657 kg/m3 and сs2=0.973 kg/m3 on the 16th minute, which corresponds to 
the cycle of the period-2 (Fig. 8a). Since the second oscillator (the number of clusters 
in solution) is the driven one, is adjusting itself to the cycle of the period-2 of the 
driving oscillator (Fig. 8b). It was also found that stabilization near these fixed points 
is real when the parameters of the time-delayed feedback function take on the values 
from the following intervals: γ∈[2.607; 3.000], R∈[0; 0.99]. It should be noted that 
the system is characterized by the heightened sensibility to the change of the 
parameters of the time-delayed feedback function. 

qv

8. Control of chaotic oscillations in the process of crystallization via 
destohastization algorithm 

To apply the destohastization method for chaos control to system (7), it was 
necessary to derive an explicit between the bifurcation parameter vq of the system and 
the bifurcation parameter λc [see the first Eq. of system (8)] of logistic equation [of 
form (1)] derived from the equation of the system (7) which describes the changes in 
the lead phosphite concentration. An analysis of the terms of Eq. (8) showed that the 
terms containing vq in explicit form are insignificant. Using the equations of (5) which 
describes changes in the concentrations of the reagents for the steady-state 
concentrations of sodium phosphite and dibasic lead diacetate (unlike the 
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concentration of dibasic lead phosphite, the concentrations of these components tend 
to steady-state values with time), we obtained the following relation for  jjсс 21
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Substituting (19) in (8) and disregarding insignificant terms, we obtained 
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Equation (20) yields vq in the form 
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The parameter λc in the equation for the concentration of dibasic lead phosphite 
was periodically perturbed according to the formula 
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where  is the unperturbed value of λc (corresponding to the region of chaos), T is 
the perturbation period (intermittency window period), and a0 is the perturbation 
amplitude. Hence, using (21), we obtained the destochastization algorithm in the form 
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As is seen from the table, between the two stages of the stochastic behavior of 

the concentration of dibasic lead phosphite, there are two intermittency windows 
(passing one into another) with periods of 6Δt (vq = 13.956 – 14.047 l/h) and 12Δt (vq 
= 14.04 – 14.083 l/h) at Δt = 6 s. 

A value of λc corresponding to a flow rate of vq = 14.184 l/h (the region of 
chaos, see table) was considered as corresponding to an unperturbed state of the 
parameter; the perturbation period was set equal to the intermittency window period 
(6Δt = 36 s). These values specified the amplitude a0 in (23) was varied so as to 
maintain vq = 14.184 l/h and, at the same time, to obtain regular oscillations. The 
regularization occurred at a0 = 0.008. The regimes without destochastization and with 
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destochastization being switched on 20 min after the beginning of the crystallization 
process are shown in Fig. 9. As can be seen, the concentration of dibasic lead 
phosphite oscillates to form a cycle with a period equal to 6. Calculations show that 
the driven oscillator (the number of clusters in solution) is adjusted to the driving 
oscillator and also oscillates at a period of 6Δt. Externally forced oscillations [the 
reagent flow rate oscillated according to relation (23)] are superimposed on the 
natural oscillations of the system; the result is the regularization of chaotic 
oscillations.   

Fig. 9.  Stabilization of the cycle of period-6 via destohastization method: the time 
dependences of the concentration of dibasic lead phosphite (vq = 13.26 l/h) before and 

during the operation of control. 
 

9. Conclusion 

Thus, we considered three methods for controlling chaotic oscillations of the 
concentration and the number of clusters of dibasic lead phosphite during its 
crystallization. Note that the extended method of time-delayed feedback is more 
sensitive and offers a finer control in comparison with proportional feedback method 
and destochastization method.  
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