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Abstract 

Acoustic chemometrics is a new Process Analytical Technology (PAT) approach for 
on-line monitoring of industrial processes. Acoustic chemometrics concerns capturing 
system vibration characteristics, e.g. generated by a manufacturing process or by 
transportation flow. The resulting vibrations can be measured by non-intrusive, 
"clamp-on" sensors. Acoustic signatures carry embedded information about physical 
and chemical parameters, such as composition (oil, fat, ammonia, buttermilk, glycol, 
ethanol), mixing progress, fiber length, flow, density, temperature as well as system 
state. For extraction and quantification of these types of specific analytes and 
parameters of interest, domain transforms (FFT, WT) and PLS-regression is essential 
for multivariate calibration (process chemometrics). 
 
Acoustic chemometrics is here applied for monitoring of industrial production 
processes, a feasibility study of fluidized bed granulation of a fertilizer product (urea) 
(Semi-Industrial Pilot Plant: SIPP), illustrating the main acoustic chemometrics 
features and benefits. We also present  examples of monitoring of ammonia 
concentrations also caused by turbulent flow. We finally discuss monitoring for 
visualization of critical situations - early operator warnings. With acoustic 
chemometrics it is possible to monitor both process state and product quality for 
industrial process control. Relevant early warnings trigger the process operator to 
change relevant process parameters to control product quality or to prevent critical 
shut-down situations.  
 
Successful validation of these types of PLS-prediction models signify that acoustic 
chemometrics has matured into a proven on-line technology in the Process Analytical 
Technologies (PAT) domain. 
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1. Introduction 

In this study we show the development of a new method to monitor industrial 
granulation processes [1], as well as an industrial application example where acoustic 
chemometrics is used to predict concentrations of ammonia. Earlier papers [2, 3, 4] 
describes the first forays of small-scale pilot experiments, and gave an introduction to 
the acoustic chemometric approach both for liquid flow in pipelines and industrial 
granulation processes.  
 
An introduction to acoustic chemometrics has been published earlier [3, 4]; Acoustic 
chemometrics concerns capturing passive system vibration characteristics, e.g. from 
two-phase systems (gas-solids/liquid-solids) generated by a manufacturing process or 
by transportation (flow in pipelines). The resulting vibrations generated by the 
process itself can be easily measured by non-intrusive, "clamp-on" sensors 
(accelerometers). Vibrations/acoustic emission (audible noise) from industrial 
processes is often considered as audible noise only, but in this paper we show that the 
vibrations or “noise” contains relevant information for processes monitoring 
purposes. 
Intensive signal processing is necessary to extract relevant information. The raw 
signals are preprocess by Fourier transformation and the resulting spectra we call 
acoustic signatures. Acoustic signatures carry embedded information about a whole 
range of system-relevant physical and chemical parameters e.g. composition (oil, fat, 
ammonia, glycol, ethanol), mixing progress, fiber length, flow, density, temperature - 
as well as system state. For extraction and quantification of these types of specific 
analytes and parameters of interest PLS-regression [6] is essential to extract relevant 
information regarding the parameter of interest by calibration of a regression model 
based on empirical acoustic data and reference values for the parameter(s) of interest. 
 
Acoustic chemometrics for fluid flow quantification: 
Acoustic emission from fluid flow trough an orifice plate inserted in a pipeline 
contains information which can be used to predict parameters of interest e.g. 
composition [4]. Acoustic signatures from fluid flow are affected by several factors 
e.g. flow rate, differential pressure over the orifice plate, static pressure downstream 
etc. Several application examples showing application examples of e.g. trace 
concentrations of oil in water has been reported [4]. Figure 1 shows liquid flow 
trough an orifice plate. The relatively high differential pressure loss leads to 
cavitation downstream of the orifice plate. Cavitation occurs when the local 
hydrostatic pressure is lower that the vapor pressure and micro bubbles are generated 
as can be seen in figure 1. The vibrations/sound produced by the micro bubbles which 
are affected by surface tension, viscosity, both static and differential pressure.  
Oil in water reduces the surface tension of the water and generates a dramatic change 
in the vibrations/sound emitted from the orifice. 
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Vibrations are recorded using acoustic sensors (accelerometers) which can be 
mounted on the surface of the pipeline. The sensors are easy to install and are so-
called non intrusive which means there are no need for drilling holes trough the 
pipeline. 
 

 
Figure 1. Liquid flow trough an orifice plate, note cavitations downstream generated 
by the relatively high pressure loss causing the local pressure to drop below the 
vapor pressure. (photo by Lienhard & Stephenson) 
 
 
Acoustic chemometrics for monitoring of particles in granulation processes 
This approach is here used in order to gain acoustic measurements of vibrations 
produced by process equipment or product (particle) movement in a semi-industrial 
granulator, used in the experiments to produce a suite of specialized fertilizers; the 
present study focus on Urea.  
 
Granulation of Urea is a complex process, which is controlled by experienced process 
operators. The parameters used to monitor the granulation process are so-called 
standard process measurements such as temperature, pressure and flow. The standard 
measurements have no information (or are only very indirectly related) to e.g. particle 
size, clogging of the reactor or the accumulating depository layering on the bottom 
plate – and often with a quite unacceptable delay time. A sample of layering cake on 
the bottom perforated plate, taken out of the reactor after several days in production is 
shown in figure 2, already a serious process impediment. When the layering cake 
develops further, the perforated bottom plate of the reactor necessarily becomes 
increasingly clogged with a resultant fluidization airflow decrease. Decreased 
fluidization in turn leads to a situation with less agitation of the particles; the result is 
often deformation of big lumps, which can quickly lead to a shutdown of the reactor, 
and a significant economic loss (reactor downtime and general production flow 
stoppage during clean-up). 
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Figure 2. Layering on the perforated bottom plate in the semi industrial granulator 
after several days of production. 
 
 
A measurement system that can predict the thickness of layering cake, particle size, or 
give an early warning of lump formation is thus highly wanted. Similarly, an acoustic 
chemometrics prediction facility for general process state monitoring is of equally 
critical importance.   
 
One of the major goals of the feasibility study is to relate process state trends, 
presented as chemometric score plots, to specific conditions/qualities of the product 
inside the reactor. The process operators can then use this “new” information to better 
operate the process, with an ultimate objective to significantly reduce costly shutdown 
situations. On-line measurements of particle characteristics such as particle size 
distribution together with properties of the liquid feed to the sprayer nozzles makes it 
manifestly easier to control the process.  
 
The results concentrates on the results from an experimental trial period of several 
months, involving a suite of induced deviations of the general production process in 
order to learn as much as possible about the feasibility of acoustic chemometrics. 
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Experimental 

The objectives of the experiments reported in this paper are divided into 3 major 
themes: 
 
1. Investigate different sensor positions on (in) a semi-industrial granulator 
2. Assessment of the feasibility of acoustic chemometrics to: 

• Concentration of Urea melt 
• Crystallisation point temperature of liquid Urea feed to the granulator 
• Moisture content in the granules 
• Monitoring of ammonia concentration flowing in pipelines 

3. Monitor the overall granulator process state, to detect critical situations and to 
visualize these situations as early warnings in an operator-friendly fashion (lump 
formation and clogging of the bottom plate are the most important mishaps in the 
industrial production setting). 
 
The experimental equipment consists of a semi-industrial pilot fluidized bed reactor, 
illustrated in figure 3, which highlights five different sensor positions [A, B, C, D]. 
All the four sensors are mounted with screw-fittings onto a metal surface (in order to 
secure a stable sensor pick-up efficiency). Sensor position A is mounted onto an 
orifice plate on the main supply line of liquid urea to the reactor nozzles, following 
Esbensen et al. 1999 [4]. Sensor positions B, C and D are mounted directly onto the 
wall of reactor chambers 1, 2 and 4 respectively. 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 3. Semi-industrial granulator used in all the experiments reported in this 
paper. Sensor positions A, B, C and D are indicated. 
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The semi-industrial granulator displayed in figure 3 is identical to an industrial full-
sized granulator except for size, which is 1:10 roughly. The granulator is divided into 
five chambers, three injection (spraying) chambers and two cooling chambers. The 
injection chambers each have several nozzles where liquid urea is sprayed into the 
granulator at a certain process temperature. The bottom of the reactor is a perforated 
plate, which allows fluidization air to jet into the reactor, to interact with the growing 
particles and keep all particles in the bed in vigorous agitation. The cooling chambers 
are used to cool down the granules before they exit as the final product: urea granules 
with a specified size and size range (important parameters for agro-industrial product 
use). 
 
Sensor A is mounted onto an orifice plate inserted in the main supply pipeline for 
liquid urea. The orifice has a smaller hole-diameter than the pipeline, which induces 
turbulence in the flowing urea downstream the orifice. The vibrations produced by 
this turbulence will be detected by sensor A. Sensors B, C and D are mounted on the 
vertical wall on the granulator, about 30 cm above the perforated bottom plate; they 
are supposed to detect vibrations produced by the granules when they interact with 
the reactor wall. Thus sensors B, C and D are used to monitor the process conditions 
inside the granulator, while sensor A is used to monitor the liquid supply of urea. The 
sensors used in this trial are four high-temperature accelerometers.  
 
The present measurements were recorded in a "piggy-back" mode, as other process 
experiments - in themselves not related to acoustic chemometrics - were carried out. 
This resulted in many days with stable conditions in the reactor, and no particular 
variations in the acoustic signals. Therefore there were only a limited number of days 
(hours), which display the necessary variation in process parameters, which are 
necessary for successful multivariate calibration. These still turned out to constitute a 
satisfactory basis for the present full feasibility study however. 
 
 
Semi-industrial reactor experiments and results 
 
Concentration of urea melt: 
A model for urea concentration in the melt sprayed into the granulator was developed 
based on acoustic spectra recorded from sensor position A, during a trial period of 5 
hours. Sensor A is mounted onto an orifice plate inserted in the main supply pipeline 
of liquid urea (full information about the principles of acoustic chemometrics in fluid 
flow systems using orifice plates can be found in [4]). The reference values used to 
calibrate the model are based on pressure measurement on the pipeline, which is used 
to calculate the concentration in a standard fashion accepted by the industry involved. 
The reference in figure 4 is a indirect measure of the concentration; it is not even 
converted to concentration [%], as we can equally well show the prediction 
performance using this industrial concentration measures for both predicted and for 
measured (reference) values.  
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Figure 4. PLS-1 model for urea melt concentration sprayed into the granulator in 
chamber 1, 2 and 3. Sensor A was used in this model, which is based on 7 
components. The model was validated with 10-segmented cross validation. Predicted 
vs. measured (top) and predicted vs. time (bottom). 
 

The model presented in figure 4 shows that it is possible to get a satisfactory 
prediction of the concentration of the liquid urea. Slope = 0.93 -  Relative RMSEP = 
13%. 

Acoustic data were also calibrated against the average particle size as well as the 
spread (variance) of particle sizes, which were calculated from laboratory sieving 
samples. The results for average particle size were on an equal satisfactory footing as 
those shown above (not shown here). While the laboratory analysis of particle size 
and – variances were of quite satisfactory accuracy, the actual physical sampling of 
the products were suboptimal w.r.t. representative sampling in the sense of the 

Predicted Reference 
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Theory of Sampling, Gy [7, 8] due to very tight resources in the present pilot study, 
which had one overriding constraint: no adverse interference with the ongoing 
industrial production process. The particle spread constitute the prime parameter for 
further development of the present approach as soon as it has been included in the 
industrial on-line monitoring scheme.  
 
Multivariate Statistical Process Control (MSPC) monitoring as an early warning 
of critical situations (shut down situations): 
One of the main objectives in this project was to assess the acoustic chemometric 
potential to monitor the general process state with an aim to give a so-called “early 
warning” if a critical situation occur in the bed. A critical situation in the bed is often 
a result of lump formation and/or layering on the bottom plate of the reactor. 15. 
February 2001 such a critical situation occurred in the bed, which was (definitely) not 
according to the experimental plan, and thus very “welcome”. Lump formation which 
probably been building over several hours, suddenly resulted in an uncontrolled 
shutdown around 16:30 the same day. Analysis of the acoustic data recorded in the 
period immediately leading up to this critical period shows an interesting trend line, 
figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Score plot of PCA-components 1 and 2. Sensor B was used because lump 
formation first started in chamber 1. Acoustic warning appears as early as 15:57, 
approximately 30 minutes before reactor shutdown. Compare with Fig. 7, which 
shows the same situation as delineated by traditional process parameters only  
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From the trending score plot in figure 5 it can be seen that an operator (in an on-line 
situation) would have had early warning at least 30 minutes before the shutdown. 
According to the extensive, process-specific operator experience, this would very 
likely had been enough time to take the necessary preventive action, needed to bring 
the granulator back into normal conditions without a shutdown occurring.  
 
Figur 6 shows the loadings from the PCA analysis, which clearly shows that the 
progress in the direction of principal component 1 in the figure above is caused by 
lump formation in chamber 1 measured by sensor B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Loadings for principal component 1 shows that the lump formation started 
in chamber 1 (sensor B). 
 
 
A similar PCA-analysis was performed on the standard process data only for the same 
time period. Note that here the warning first shows up at 16:20, which cannot be 
called “early”, but rather late, probably too late, according to the same process 
operator consensus. The results from the analysis of the process data can be seen in 
figure 7 below for comparison. 
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Figure 7. Score plot of PCA-component 1 and 2 of the process parameters alone. A 
warning that something is wrong first appears 16:20, only some 10 minutes before 
shutdown of the reactor, which is usually deemed insufficient for process recovery. 
 
This means that the acoustic chemometric approach is much more sensitive to 
changes in the process state(s) of the bed reactor than the traditional process data 
alone. Of course an implemented acoustic chemometrics process monitoring facility 
would use both these sets of parameters together with appropriate chemometric data 
analysis (PCA, PLS).  
 
Model calibrated on data from the full trial period of 5 months: 
A model for granule moisture content was calibrated with data from the full 5-months 
trial period.  

Granule moisture content 
To test the acoustic chemometric potential to predict granule moisture content, the 
same 1032 object 5-month data set was used, where the first 900 objects were used 
for calibration and the last 132 as a test set [6]. The data matrix was also further re-
samples slightly because the acoustic data had to be calibrated against laboratory tests 
of moisture content which were only available with a relatively low sampling rate; 
still plenty of results were at hand to allow a full assessment of the prediction 
performance re.granule moisture. The results can be seen in fig. 8. 
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Figure 8. Predicted vs. measured plot for granule moisture contents, calibrated on 
data from five months of production. Sensor B was used in this model (8 PLS-
components). The model was validated with 10-segment segmented cross validation. 
Predicted vs. production time. Grey curve: measured, black curve: predicted 
 
In spite of the fact that this model has a relative RMSEP of 14%, the generall ability 
to pick up the important production trend changes is already at an acceptable level. 
 
Ammonia concentration – Industrial application example 
An experimental industrial setup for prediction of ammonia concentration directly 
from acoustic spectra has been tested in a full scale industrial plant. Figure 9 shows 
the bypass loop with the orifice plate. The acoustic sensor was mounted onto the 
orifice plate [4].  To ensure constant differential pressure and temperature of the 
ammonia two pressure transmitters and one temperature transmitter was used in 
conjunction with the orifice plate. Reference samples was taken at the sample valve 
shown in figure 9.  
 

 

 

 

 

 
 
 
 
Figure 9. Experimental setup for assessment of acoustic chemometrics ability to 
predict concentration of ammonia directly from acoustic emission generated by 
cavitation/turbulent flow. Full-scale industrial pilot study. 
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Calibration of the model for prediction of ammonia concentrations 
Acoustic spectra were calibrated using Partial Least Squares regression PLS-R with 
six ammonia concentration levels, each characterized by 5 replicate acoustic 
measurements.  Figure 10 shows the concentration levels spanning 0 to 8 % of 
ammonia concentrations. 
 

 
Figure 10 Ammonia concentration reference levels 0, 0.5, 1, 2, 5 and 8 % ammonia, 5 
replicate measurements on each level. 
 
Results 
Figure 11 shows the PLS-R prediction results validated with cross validation. 

 
Figure 11 Prediction results for ammonia validated with 2-segment cross validation, 
RMSEP = 0.48 % ammonia. 
 
This pilot study included only 6 concentration levels. With a 5-component PLS-model 
there is a potential danger for modeling over-fit. Even a 2-segment crosss-validation 
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is no absolute guarantee [6]. However, there would certainly appear promising 
possibilities for further, significantly extended calibration work. 
 
Prediction of Urea crystallization point temperature –  Industrial experiments 
X-matrix: Acoustic spectra from sensor located on orifice plate in the UREA feed to 
the granulator, Fig. 12. 
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Flowsheet of the liquid feed to the Urea granulation process 

 
Figure 12. Acoustic sensor mounted on orifice 

plate in liquid feed line to granulator 
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A PLS-regression model based on X (acoustic spectra) and Y (crystallisation-
temperature) was established. The X-matrix contains 12 objects, each with 1024  

variables (frequencies 0 - 25 kHz). An overview of the X-data is shown in figure 13, 
in which can be appreciated systematic changes in the acoustic signatures following 
the object (samples) succession.  

 

 
Figure 13. X data matrix of acoustic spectra used in calibration 
 
The objects span a nominal urea concentration range: 85.5 to 91.4 %. The PLS model 
will be built on experimental Y-reference values (crystallisation-temperature), 
spanning 92 - 107 oC. A model for urea concentrations can also be established 
following appropriate laboratory data (not shown here). 
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Results from multivariate calibration (Y = xx-temperature): 

 
Figure 14. Y-validation variance modelled vs. number of components in the model 
 
The crystallisation-temperature model (no outliers) is able to describe 87% of the Y-
variance with 3 PLS-components, Fig. 15; this is a satisfactory modelling with this 
relatively small calibration range for crystallisation temperatures. 
 

 
Figure 15. Predicted vs. measured plot for UREA crystallisation-temperature 
 
The Predicted vs. Measured plot in Fig. 15 shows the degree to which the acoustic 
signatures are able to predict crystallisation-temperature: RMSEP := 1.87 oC 
corresponds to a relative prediction uncertainty of  approx. +/- 4% (2 STD).  
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Figure 16 shows an alternative illustration of the accuracy of the prediction values, 
when compared to reference values in their process time relationships (N.B. truncated 
Y-axis). 
 

 
Figure 16. Predicted vs. measured UREA crystallisation-temperature in relation to 
the granulator experiment setting up an  urea concentration gradient 
 
 
 

 
Figure 17. Loading-weights for PLS component 1 
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The prediction model is characterised by 1024 regression coefficients, alternatively 3 
x 1024 loading-weights spectra from the full 3-component PLS-model. From Figure 
17 it can be observed several well-defined frequency bands in the lower 0-10 kHz 
range contribute significantly to the model, while all higher frequencies shows 
extensive redundancy. This is a reflection of stable acoustic signatures, well 
correlated with the changing crystallisation-temperature. 
 
The experimental crystallisation-temperature prediction model was evaluated using 
12-segment cross-validation (full cross-validation); this can be considered acceptable 
for such "small sample" data sets [6], although only for indicative estimates.  
 
This pilot study shows that there would appear to be good prospects to predict 
crystallisation-temperature directly from the acoustic signatures of the liquid feed into 
the granulator with an indicated prediction error (RMSEP = 4 % relative, 2 STD). 
 
 
Discussion & Conclusion 
Sensor positions, Sensor A (on the orifice plate) and sensor B (chamber 1) showed the 
overall best results for the industrial granulator. Acoustic chemometrics can be used 
to predict, a.o. fluidization airflow, reflux of fines to the reactor, granule moisture 
content and general process states. The first models were calibrated with data from 
one week only. Each week several other experimental parameters were changed so 
that the conditions were only comparable within this timeframe. The resulting 
predictions for the parameters investigated gave satisfactory results in this context.  
 
Since the overall objective was to predict parameters on-line, the next step was to 
calibrate the models with data from a longer period of time to span all variations that 
can occur for industrial production reactor runs. We conclude that acoustic 
chemometrics provide the process operators with useful information which can be 
used to run the process with less critical shutdowns. 
 
5-month calibration models:  
These results, considering the extensive compounding of the underlying non-acoustics 
process conditions that had to be accepted, can be considered promising for the 
potential of acoustic chemometric on-line granulation process monitoring for airflow 
and liquid urea concentration. There remains a certain amount of focused calibration 
work before more precise predictions of moisture can be expected. 
 
All the above experiments have been set up so as to be realistic scenarios w.r.t. 
industrial MSPC-monitoring of granulation processes (MSPC: = Multivariate 
Statistical Process Control). The pilot plant granulator is operated exactly as the 
industrial scale counterpart. But the 5-month experiments included much more severe 
variation than what will usually be found in an otherwise stable industrial production 
situation of similar duration - e.g. it is normally not necessary to change nozzles, or to 
change formulation (products) with similar short intervals; also additives are certainly 
not changed as often as in the present trial campaign - all of which goes to show that 
the strength of the present positive validation assessments are in fact strong indeed. 
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Another argument for the above is that all the most important parameter validations 
(airflow, moisture and liquid concentration) are both based on identical 10-segment 
cross-validations as well as proper test sets, Esbensen (2001) [6]. The latter have here 
been displayed in their time-dependent fashions, which are most relevant for the 
industrial process operators.  
 
Process state monitoring: 
We are currently experimenting further with different types of data visualization plots 
of the type shown in Figures 6-7. We are involving process operators directly in this 
work, and their preliminary conclusions are generally positive. More experience (e.g. 
as to the usefulness of  the "trend score-plots”, “residual variance plots" etc.) is 
needed however before these prototype acoustic chemometric MSPC development 
will achieve complete acceptance from this critical target group. It is relevant 
however that the system described herein is already implemented on-line in the SIPP 
reactor control room. 
 
Together with papers [2,3,4,5] we have here taken an important first step towards 
transforming on-line MSPC acoustic chemometrics from an experimental concept to a 
proven technology. 
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