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Abstract 

This paper demonstrates soft-sensor design for product quality monitoring and 
process control of debutanizer column. The column is fed by unstabilized FCC 
gasoline, and products are Liquefied Petrol Gas (LPG) and stabilized FCC gasoline. 
Method of estimation of pentane fraction in liquefied petrol gas (LPG) and Reid 
vapor pressure of stabilized FCC gasoline using inferential model is elaborated. The 
aim is to control debutanizer thus pentane fraction in LPG is kept under 2 mass 
percent and RVP of FCC gasoline on desired value (50 kPa). Two neural soft sensor 
models are developed based on available process measurements and laboratory 
analysis – first for estimation of pentane fraction in LPG and second for estimation of 
RVP of stabilized FCC gasoline. For the building of the neural networks the cascade 
learning based on the cascade-correlation learning paradigm is developed. Developed 
soft sensors have been additionally validated by additional experimental data and 
achieved results have been analyzed and compared with laboratory analysis results.  
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1. Introduction 

One frequent problem in respective to industrial processes is the inability to 
measure key process variables in real time, especially the compositions of process 
streams and product properties. The increased productivity and improved quality of 
industrial chemical and biochemical processes in the most cases impose an increased 
demand for the development of advanced process sensor technology. Hence, the 
development of advanced sensors, which are based on new technologies of analytical 
chemistry and contemporary electronic using optical fibers and semiconductors, are a 
very important research field. An alternative solution of using secondary variables, 
which are easy measurable to infer the values of unmeasured process variables 
became an important field of interests. These kinds of measurements are called 
“inferential measurement”, "virtual software sensors" or simply "soft sensors" 
(sensors implemented in software) [1]. 
 Methods of chemometrics are directly related to soft sensors. They describe how 
data from process analyzers can be analyzed and modeled for use in process 
monitoring and control [2]–[3].  
 Control systems and optimization procedures require regular and reliable 
measurements at the appropriate frequency. Difficulties in measuring quality 
(primary) variables inevitably mean poor control or no control at all. Measurement 
difficulties can be caused by a variety of reasons, including:   
- lack of appropriate on-line instrumentation 
Process operation depend on laboratory analyzes, that results can be infrequent and 
irregular, in addition to long analysis delays.  
- reliability of on-line instruments 
 On-line sensors may be available but they may suffer from long measurement 
delays (e.g. gas chromatographs) or may be subject to factors that affect the reliability 
of the sensor (e.g. drifts and fouling).  

In either case on-line control or optimization schemes cannot be implemented. 
Because measurement problems can limit the applicability of automatic feedback 
control schemes, a common approach to effecting control on the process is to control 
it manually. Such a strategy is usually adopted when the return of information for 
control purposes is slow and irregular. Its success depends on the operator's training 
and experience.  

 

2. Soft Sensors 

An alternative approach to the installation of additional instrumentation is the more 
effective utilization of the measured information already available. Software sensors 
provide an elegant and effective way to improve the utilization of currently available 
information. They are primarily a means by which inferences can be made about the 
state of a process by «fusing» the available on-line, off-line, and historical process 
information. Inherent in software sensor technology is knowledge of the relationships 
and interdependencies of the system. The extraction of this knowledge and the form 
in which it is utilized is the key to the effectiveness of the software sensor technology 
[4]. 
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The behavior of any process is indicated by the states of output variables, which are 
dependent on the operating conditions and the inputs to the process, Figure 1. 
However, productivity is quantified by a subset of these output variables; normally 
the specifications upon which the product is sold, e.g. purity, physical or chemical 
properties. These so called primary variables are often the ones that are difficult to 
measure on-line. Inferential measurement systems are designed to overcome such 
measurement problems. The other outputs (e.g. temperatures, flows and pressures) are 
called secondary variables and these are easily measured on-line. Due to the nature of 
chemical and process engineering systems, the states of many of the secondary 
variables reflect the states of primary variables. For example, pressures and 
temperatures define liquid composition while biomass growth is linked to carbon 
dioxide evolution and feed rate. Thus it should be possible to use the readily available 
secondary variables to infer the state of a quality or primary variable [5]. 

 

 
Fig. 1.   Primary and secondary process outputs 

 

In developing soft sensors the objective is to model the relationship between a 
primary output and secondary outputs and inputs. The model then can be used to 
estimate primary output at the frequency that easily measured inputs and secondary 
variables are measured. Thus any modeling paradigm may be employed, including the 
development of first principles models. In many cases it is concerned only data based 
modeling methods, since first principles modeling can be very difficult and time-
consuming. Data based inferential measurement systems have been developed by 
means of time-series, artificial neural networks and genetic algorithms.  

Building and testing the inferential measurement model present an iterative exercise 
and must be done rigorously prior to on-line implementation. Upon choosing potential 
secondary variables, we can either use all of them or a subset in building the model. If 
the modeling paradigms require them, as in the case of time-series, delays between 
primary output and secondary variable have to be specified. Data filter/smoothing 
constants have to be selected to attenuate the effects of noise. The parameters of the 
model are then determined using a suitable numerical optimization or search 
algorithm and the model validated against data [6].  

In the adaptive framework shown at the Figure 2, the measured primary output is 
also fed to the parameter estimator, which updates the soft sensor model. The 
parameter estimator uses errors between estimated and measured primary outputs to 
lead the parameters of the inferential measurement model to the more representative 
values. Thus the adaptive inferential measurement scheme is usually a multirate 
system: estimates of the primary output are generated at the (faster) sampling rate of 
the secondary outputs and inputs, while adaptation occurs only at the (slower) 
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sampling rate of the primary variable, or whenever the primary variable becomes 
available [7]-[9]. 

 

 
 

Fig. 2.   The structure of an adaptive soft sensor 

 

3. PROCESS 

Debutanizer column is located at Gas Concentration Unit of FCC plant in INA 
Sisak Oil Refinery. It is used for FCC gasoline stabilization, precisely for separation 
of LPG from FCC gasoline. Process scheme is shown on Figure 3. 

 
The column is fed by unstabilized FCC gasoline, and products are Liquefied Petrol 

Gas (LPG) and stabilized FCC gasoline. After treatment on DEA and MEROX plant 
LPG becomes commercial. Stabilized FCC gasoline is used as a component for 
gasoline blending.  

 
The aim is to control debutanizer thus pentane fraction in LPG is kept under 2 mass 

percent (LPG quality specification) and RVP of FCC gasoline on desired value (50 
kPa). Variables that affect debutanizer’s product quality are temperatures on top and 
at bottom, temperatures on specific trays and reflux flow. Temperature of fifth tray is 
controlled by temperature control loop TRC-93 in cascade with reflux flow control 
loop FRC-101. Temperature at bottom and on 35th tray is controlled by hot flow 
through column reboiler. Disturbances are flow, temperature and composition 
variations of column feed.  
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Fig. 3.  Diagram of the debutanizer column 

 

4. Results and Discussion 

4.1 Neural Network-Based model 
Neural soft sensor models are developed based on available process measurements 

and laboratory analysis and using software simulation model. Process variables are 
measured continuously and saved in DCS memory so there is available temperature 
and flow database. Two neural soft sensor models are developed for continuous 
product quality monitoring. First one for estimation of pentane fraction in LPG and 
second for estimation of RVP of stabilized FCC gasoline. Neural network structure 
used for RVP estimation is shown on Figure 4. It is constructed by input and output 
layer and hidden layer with five neurons. Network input vector consist of the 
temperatures on the column's top, Tt, on the 5th tray, T5, on the 35th tray, T35, and 
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reflux flow rate. Output is the RVP value of stabilized FCC gasoline. Similarly, 
neural network for estimation of pentane fraction in LPG is constructed. Pentane 
fraction in LPG and RVP value of FCC gasoline database is limited by dynamics of 
laboratory analysis (once per day).  
 

 
Fig. 4.   Applied neural network structure for RVP prediction 

 

4.2  Building of the Neural Network by Cascade Learning 
For the building of the neural networks the cascade learning based on the cascade-

correlation learning paradigm is developed. Cascade learning starts off with no hidden 
nodes. The only connections are direct connection from the input layer (and bias) to 
the output layer. Hidden nodes are added one at a time, and the purpose of each new 
hidden node is to predict the current remaining output error in the network. Hidden 
nodes receive input from all previous hidden nodes as well as from the input buffer; 
in other words, the hidden layer has cascaded connections. For the training adaptive 
gradient method described in the literature [10] is applied. 
 In this application the cascade-correlation algorithm works as follows: 
1. Train the direct connections from the input layer and bias to the output layer. Train 
until the RMS (root mean square) output error stabilizes.  
2. Iterate on the following steps: 
- Train a new hidden node so as to maximize a measure of the correlation between 
its output and residual error at the output for the current training vector. The untrained 
hidden node is referred to as a “candidate”. When training has stabilized, or after a 
given number of training iterations, learning is permanently disabled for the incoming 
connections to that node. At this point, the hidden node is said to be “tenured”; 
- connect the newly tenured hidden node to all nodes in the output layer, and 
randomly initialize the weights on those connections; 
- train all the weights on all connection from the input layer, bias, and tenured hidden 
nodes to the output layer. Train until the RMS output error stabilizes. 
The iterative steps are repeated until performance of the network (RMS error 
measured on a test set) no longer shows any improvement. 
 

The software package [10] provides mechanisms to automatically transform data 
into formats suitable for neural network training. A variety of analyses are performed 
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to determine how it might be transformed to optimize the performance of a network. 
In our application continuous transforms of all input variables are scaled within the 
range - 1 to +1. This technique is called the zero-mean normalization method. For the 
most appropriately transformed inputs, the data is concentrated around the average or 
mean. Mapping the mean to zero, and the balance of the range into the - 1 to +1 
interval provides maximum gradient adaptation as the input deviates from its average. 
Also, during the training of the model, the real world target outputs are transformed to 
internal target outputs for training the neural network. Neural network generated 
outputs are transformed to model outputs by putting them through the inverse of the 
transform that was used to map real world targets to neural network targets. 
 

Figure 5 shows results of testing of the neural model for prediction RVP value in 
stabilized FCC gasoline. These data are used for the training, i.e. the neural network-
based model. As expected, accordance is acceptably.  
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Fig. 5.  Results of the soft sensor model testing for predicting of RVP values 

 in stabilized FCC gasoline 
 

 
Tables 1 and 2 show the comparison of average absolute errors, RMS errors, 

maximal absolute errors and confidention interval for neural network models. In this 
context, the training set is the set of points that are used to fit the parameters of the 
model. The test set is used as part of the model building process to prevent 
overfitting. The validation set is used as an additional independent test set for 
validation issues.  
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Table 1.  Neural network-based model statistics for predicting of C5 in LPG 
 

C5 in LPG Avg. 
Abs. 

Max. 
Abs. RMS Conf. Int. 

(95%) 

Training 0.10106 1.152207 0.2917485 0.576 

Testing 0.101553 1.152207 0.2957075 0.586 

Validation 0.099062 1.126737 0.2751214 0.579 

 
Avg. Abs. - the average absolute error between predicted output values and the corresponding target 
values; 
Max. Abs. - the maximum absolute error between predicted output values and the corresponding target 
values; 
RMS - the root mean square error between predicted output values and the corresponding target values; 
Conf. Interval - the range [target value ± confidence interval] within which the corresponding predicted 
output occurs 95% of the time. 
 
Table 2.  Neural network-based model statistics for predicting RVP of FCC gasoline 
 

C5 in LPG Avg. Abs. Max. Abs. RMS Conf. Int. 
(95%) 

Training 0.005574 0.012725 0.006647 0.013121 

Testing 0.005368 0.012725 0.006405 0.012691 

Validation 0.006408 0.012203 0.00755 0.015875 

 
Developed soft sensor neural models have been additionally validated by 

experimental data saved in DCS memory and achieved results have been compared 
with laboratory analysis results. Figure 6 shows comparison of laboratory analysis 
and results achieved by soft sensor for predicting RVP value of stabilized FCC 
gasoline. Soft sensor follows satisfactory the trend of changing RVP values, but 
certain deviations still persist. These deviations can be explained with the model 
nonperfection and also with the fact that the values of majority experimental data are 
situated around 50 kPa. Therefore, the neural network has better approximation 
characteristics within these values.  

Analogously, Figure 7 shows comparison for soft sensor model for predicting of 
pentane fraction in LPG. Majority of available experimental data was around 0 mass. 
percent hence the approximation capabilities of the neural network are better at lower 
values of pentane fraction. Statistics for both model validation sets are shown in Table 
3.  
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Fig. 6.  Comparison of laboratory analysis and results achieved by soft sensor model for 
prediction of RVP value in stabilized FCC gasoline 
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Fig. 7.  Comparison of laboratory analysis and results achieved by soft sensor model for 

prediction of pentane fraction in LPG  

 
Table 3.  Neural network-based model statistics for validation sets 
 

C5 in 
LPG 

Avg. 
Abs. 

Max. 
Abs. RMS Conf. Int. 

(95%) 

RVP 0.08 0.24 0.5660 0.1050 

C5 0.1 0.4 0.8396 0.1559 
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5. Conclusion 

In this paper the neural network-based software sensors are developed with the aim 
of estimation debutanizer product properties that are not continuously measured. The 
software sensors estimate pentane fraction in LPG and Reid vapor pressure of 
stabilized FCC gasoline.  

Developed models have proved neural network applications as intelligent sensors 
for reliable and adequately accurate estimations of primary process outputs, based on 
secondary process outputs.   

Soft sensors are shown to be a good alternative to hardware analyzers for 
debutanizer products and can be built by using data from existing plant. They are 
relatively simple for development and coupled with their accuracy and reliability 
makes them a substantive mechanism for complex process monitoring.  
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