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Abstract 
 

The present work is focused on a comparative study of two nonlinear MPC (NMPC) control 

schemes implemented to a fed-batch sugar crystallization process – i) NMPC that does not exploit 

the batch nature of the process (termed as classical NMPC) and ii) the batch NMPC that takes into 

account the end-point control objectives.  They are also compared with the classical PI controller 

and a linear MPC scheme. Two main scenarios are considered: a nominal case without disturbances 

and a case with disturbances and variations in the initial conditions. The results demonstrate that the 

batch NMPC outperforms the other control structures but to the expense of high computational cost.  

 

Keywords: nonlinear model predictive control, fed-batch sugar crystallization, shrinking nonlinear 

discrete time optimization  

 

 

1. Introduction  

 

During the last decade the model based predictive control (MPC) became an attractive control 

strategy implemented in a variety of process industries. However, it can be considered as industrial 

alternative only for continuous and predominantly linear processes (Qin and Badgewell, 2003). The 

application of MPC for batch nonlinear cases is still far from being an industrial reality and 

represents an interesting theoretical and practical control challenge (Balasubramhanya and Doyle, 

2000). The batch or fed-batch mode is a typical production scheme for a large group of 

pharmaceutical, biotechnological, food and chemical processes. It is related with the formulation of 

a control problem in terms of economic or performance objective at the end of the process (Nagy 

and Braatz, 2003). For example, the crystallisation quality is evaluated by the particle size 

distribution (PSD) at the end of the process which is quantified by two parameters - the final 

average (in mass) particle size (MA) and the final coefficient of particle variation (CV). The main 

challenge of the batch production is the large batch to batch variation of the final PSD. This lack of 

process repeatability is caused mainly by improper control policy and results in product recycling 

and loss increase. MPC, being one of the approaches that inherently can cope with process 

constraints, nonlinearities, and different objectives derived from economical or environmental 

considerations, has the potential to overcome the problem of the lack of repeatability and drive the 

process to its optimal state of profit maximization and cost minimization. These problems are the 
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main motivation for the present work, which is divided into the following sections. In section 2 the 

sugar production stages are shortly presented. In section 3 the crystallization phenomenological 

macro model is introduced. In section 4 the nonlinear MPC strategies are formulated and finally in 

section 5 and 6 the results of the tests with the two control paradigms are commented and 

conclusions are summarised.  

 

2. Process description 
 

Sugar crystallisation occurs through the mechanisms of nucleation, growth and agglomeration. 

There are two basic types of sugar production: from cane sugar or from beet. The process 

considered in this work is of the first type and a typical industrial unit can be divided into the 

following sequential phases. 

Charging. During the first phase the pan is partially filled with a juice containing dissolved sucrose 

(termed liquor). The initial liquid charged in the pan corresponds approximately to 40% of the total 

vessel height. The charge is usually performed by complete opening of the feeding valve until the 

level sensor indicates 40%. Therefore, no special control policy is required at this stage.  

Concentration. The next phase is the concentration. The liquor is concentrated by evaporation, 

under vacuum, until the supersaturation reaches a predefined value. At this value seed crystals are 

introduced into the pan to start the production of crystals. This is the beginning of the crystallisation 

phase.  

Crystallisation (main phase). At this phase as evaporation takes place further liquor is added to the 

pan in order to guarantee crystal growth at a controlled supersaturation level and to increase the 

sugar content of the pan. Near to the end of this phase and for economical reasons, the liquor is 

replaced by other juice of lower purity (termed syrup). 

Tightening. The fourth phase consists of tightening which is principally controlled by evaporation 

capacity. The pan is filled with a suspension of sugar crystals in heavy syrup, which is dropped into 

a storage mixer. At the end of the batch, the massecuite undergoes centrifugation, where final 

refined sugar is separated from (mother) liquor that is recycled to the process. 

The different phases are comparatively independent, they have different driving forces and efforts 

to derive a single controller for all of them are most likely to fail. From all of the phases the 

crystallisation is the most challenging one because of its strong non-linear and non-stationary 

behaviour. Moreover, the crystallization phenomenon is typical in a great number of industrial 

processes such as pharmaceutical and food engineering and is responsible for the final product 

quality expressed in terms of PSD. Therefore, the objective of the present work is to derive an 

efficient operation strategy specifically for the crystallization phase.  

 

3. Crystallization macro model 

 

The general phenomenological model of the fed-batch crystallization process consists of mass, 

energy and population balances (Georgieva et al., 2003). While the mass and energy balances are 

common expressions in many chemical process models, the population balance is related with the 

crystallization phenomenon which is still an open modelling problem.  

 

Mass balance:  

The mass of all participating solid and dissolved substances are included in a set of conservation 

mass balance equations  

0)0(,0),1),(),(( MMttPtFtMfM f =≤≤=&                 (1) 

where qRtM ∈)( and mRtF ∈)( are the mass and the flow rate vectors, with q and m dimensions 

respectively, and ft  is the final batch time. P1 is the vector of physical parameters as density, 

viscosity, purity, ect.  

 

Energy balance:  
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The general energy (E) balance model is 

0)0(,0),2),(),(),(( EEttPtFtMtEfE f =≤≤=&                 (2) 

where P2 incorporates the enthalpy terms and specific heat capacities derived as functions of 

physical and thermodynamic properties.  

 

Population balance:  

Mathematical representation of the crystallization rate can be achieved through basic mass transfer 

considerations (Galvanauskas et al., 1998) or by writing a population balance represented by its 

moment equations (Georgieva et al, 2003). Employing a population balance is generally preferred 

since it allows to take into account initial experimental distributions and, most significantly, to 

consider complex mechanisms such as those of size dispersion and/or particle 

agglomeration/aggregation. Hence 

0
'

0 )0(,....2,1,0,0),,,
~

),(( iifii ittGBtf ηηβηη ==≤≤=&                                                 (3) 

where iη is the j-th  moment of the mass-size particle distribution function, 0

~
B , G and β’ are the 

kinetic variables nucleation rate,  linear growth rate  and the agglomeration kernel, respectively.  

The PSD measures: the final average (in mass) particle size (MA) and the final coefficient of 

particle variation (CV) are derived from (3) as follows  

01MA ηη=                              (4.1) 

( ) 2/12

120 1CV −= ηηη                           (4.2) 

For more details with respect to the detailed process model see Georgieva et al, 2003.  

 

4. Nonlinear MPC and batch nonlinear MPC – discrete time formulation 

 

4.1 Nonlinear MPC  

 

Nonlinear model predictive control (NMPC) is an optimisation-based multivariable constrained 

control technique that uses a nonlinear dynamic model for the prediction of the process outputs 

(Nagy and Braatz, 2003). At each sampling time the predictions are updated on the basis of new 

measurements and state variable estimates. Then the open-loop optimal manipulated variable moves 

are calculated over a finite prediction horizon with respect to some cost function, and the 

manipulated variables for the subsequent prediction horizon are implemented. Then the prediction 

horizon is shifted by usually one sampling time into the future, and the previous steps are repeated.  

 

Discrete process model  

Considering the discrete nature of the on-line control problem the continuous time optimisation 

problem involved in the NMPC formulation is solved by formulating a discrete approximation to it, 

that can be handled by conventional nonlinear programming (NLP) solvers (Biegler, 2000). The 

time horizon [ ]fttt ,0= is divided into equally spaced time intervals t∆ , with discrete time steps

 tkttk ∆+= 0 , and Nk ,....,1 ,0= . The process model is discretised 

[ ])(),(()1( kukxFkx =+                           (5.1) 

[ ])(()( kxhky =                             (5.2) 

Where x is an n-dimensional vector of state variables, u is a l-dimensional vector of manipulated 

input variables and  y is a p-dimensional vector of controlled output variables. 

 

Process constraints 

Input constraints arise due to actuator limitations such as saturation and rate-of-change restrictions 

and can be expressed as  

maxmin uuu ≤≤                             (6)  

maxmin uuu ∆≤∆≤∆  ,                          (7)  
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where minu and maxu are the minimum and the maximum values of the input u, minu∆ and maxu∆  are the 

minimum and the maximum values of the rate-of-change of the same input.  

Output constraints are usually associated with operational limitations such as equipment 

specifications and safety considerations and can be expressed as: 

maxmin yyy ≤≤ ,                            (8) 

 

where miny and maxy  are the minimum and maximum values of the output y. Constraints on the state 

variables also may be specified if appropriate. 

 

Optimal control problem  

The discrete time formulation of the optimal control problem is (Rawlings et al., 1994). 

( ) ( )∑
−

=−++

+∆+++=
1

0)1(),....,1(),(

)(),()(min
p

u

H

j
p

kHkukkukku

kjkukjkyLkHkyJ φ               (9) 

where J is the performance function, )1()()( kjkukjkukjku −+−+=+∆ , )( kjku + is the future input 

)( jku + calculated at time k, )( kjky +  is the output )( jky + calculated from information available at 

time k, Hu is the control horizon, Hp is the prediction horizon and φ  and L are (possibly) nonlinear 

functions of their arguments. The optimisation problem (9) is solved subject to constraints (6-8) 

which are reformulated to fit the iterative procedure: 

 

  )( maxmin ukjtuu ≤+≤   10 −≤≤ uHj                     (10) 

maxmin )( ukjkuu ∆≤+∆≤∆   10 −≤≤ uHj                   (11) 

maxmin )( ykjkyy ≤+≤   pHj ≤≤1                      (12) 

In addition, the nonlinear model is also considered as a set of equality constraints, 

 

[ ])(),()1( kjkukjkxFkjkx ++=++        10 −≤≤ pHj                 (13) 

[ ])()( kjkxhkjky +=+   pHj ≤≤1                     (14) 

(9) is a quite general form to express a wide range of objectives encountered in NMPC applications, 

however, a quadratic function for L is the most typical form 

 

[ ] [ ] )(u)(u)()()()(
T

kjkSkjkkrkjkyQkrkjkyL
T

+∆+∆+−+−+= (15)        

Where )(kr is the steady-stage target for )(ky  and Q, and S are positive-definite weighting matrices. 

The predicted outputs are obtained from the non-linear model as follows 
 

[ ] [ ][ ] [ ])(),()(),()1()1( 1 kkukxGkkukkxFhkkxhkky ≡=+=+              (16) 

[ ] [ ][ ]
[ ]

M                  

,)1(),(),(              

)1(,)(),()1(),1()2(

2

11

kkukkukxG

kkukkukkxFGkkukkxGkky

+≡

+=++=+

 

[ ])1(,),1(),(),()( kjkukkukkukxGkjky j −++=+ K , 

 

where )()( kxkkx = is the vector of current state variables and jG  are nonlinear functions. If the 

control horizon (Hu) is less than the prediction horizon (Hp), the output predictions are generated  by 

setting inputs beyond the control horizon equal to the last computed value: )1()( kHkukjku u −+=+ . 

Only the first input vector in the sequence is implemented )()( kkuku = . Then the prediction horizon 

is moved forward one time step, and the problem is resolved using new process measurements. This 

receding horizon formulation yields improved closed-loop performance in the presence of 

unmeasured disturbances and modelling errors. 
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4.2 Batch nonlinear MPC 

The batch nonlinear MPC can be seen as a particular case of NMPC that reduces (9) to the Mayer 

form ( 0)( =⋅L ). However, the main impact of the full batch NMPC formulation is that in order to 

reflect the end-point performance objective the optimisation problem has to be solved iteratively 

online, in shrinking horizon (tF = tf) approach, where tf is the batch time. This means that at the 

beginning of the optimisation the prediction horizon is equal to the envisaged process duration and 

at each iteration it is reduced.   

 

 Closed loop process performance metrics  

The closed loop process performance is quantified by the following metrics: 

 

•  Relative Mean Square (RMS) error  

 

( )
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•  Average Control Effort (ACE)  
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 .                       (18) 

iy and ju  are the i-th output and the j-th input of the process respectively, ir  is the target for iy  and 

N is the total number of samples.  

 

•  Weighted mixed performance index ( pI ) 

 

∑∑ +=
j

jj
i

iip ACERMSI βλ . { } 0, ≥ℜ∈ji βλ                    (19) 

The values of ji βλ ,  are set as to compensate the magnitude orders of the different terms in (19). 

Note that smaller the values of RMS , ACE , pI , better the overall closed loop performance achieved. 

 

5. Nonlinear MPC control tests 

 

Our objective is to define an efficient control strategy for the crystallization phase of an industrial 

sugar production process based on the NMPC concept. This phase starts when seed crystals are 

introduced into the pan and goes through three sub-stages where either the controlled variable or the 

manipulated variable is changed. Therefore, a sequence of NMPCs is designed to reflect the 

relevant input-output relationships along the crystallization phase. During the first control loop the 

controlled variable is the supersaturation and the manipulated variable is the liquor feed flowrate. 

When the amount of liquor is over the supersaturation is controlled by manipulating the steam 

flowrate (second control loop). At the end of the crystallization phase the controlled variable is 

switched to the volume fraction of crystals and for economical reasons the manipulated variable is 

the feed flowrate of a juice with lower purity termed syrup (third control loop). 

 

5.1 Influence of feed flow parameters  

 

Practical experience indicates that the characteristics (purity and brix) of the feeding have a strong 

effect on the crystallization path. In order to test the NMPC robustness against the most influencing 

variations of these parameters, an open loop test was first designed with constant (mean) values set 

at the process inputs, i.e. the liquor/syrup feedflow rate /sm01.0 3=fF and the steam flowrate 



     6 

/sm 1.5833 3=sF .  First changes in the purity of liquor/ syrup were simulated keeping the brix of the 

feeding flows (liquor or syrup) at their most typical values and then vice versa. The results collected 

in Table 1 and 2, show clearly that the most influencing parameter is the purity of syrup. Note, that 

it’s variations in the interval [0.85 0.95], which are rather common in practice, lead to significant 

changes in the final CSD characteristics (AM and CV). Since variations in the other parameters do 

not provoke a considerable effect, in the next simulations they were fixed at their most expected 

values.  

 
Table 1 Effect of changes in the purity of liquor/ syrup   

Purity of liquor 0.99 0.99 0.99 0.999 

Purity of syrup 0.9 0.85 0.95 0.9 

Brix of liquor 72 

Brix of syrup 77 

Maximum Supersaturation 1.14 1.22 1.14 1.14 

Maximum Temperature of massecuite 76.76 76.5 76.73 76.75 

Final (averaged in mass) crystal size (MA) 0.6 0.56 0.79 0.6 

Final Coefficient of size variation (CV) 38.14 39.15 28.98 38.14 

Final Volume 35.22 34.77 35.27 35.22 

Final Mass fraction of crystals 0.6 0.58 0.61 0.6 

 
Table 2 Effect of changes in the brix of liquor/ syrup   

Purity of liquor 0.99 

Purity of syrup 0.9 

Brix of liquor 71 73 72 72 

Brix of syrup 77 77 76 80 

Max. Supersaturation 1.14 1.14 1.14 1.14 

Max. Temperature of massecuite 76.76 76.76 76.57 77.27 

Final (averaged) crystal size (MA) 0.6 0.6 0.61 0.61 

Final Coefficient Variation (CV) 38.14 38.14 37.93 37.45 

Final Volume 35.22 35.22 34.74 35.01 

Final Mass fraction of crystals 0.60 0.60 0.59 0.64 

 

5.2 Operation without disturbances (Scenario 1) 

 

Test A: 1=uH , [ ]20,10,8,5,3=pH  

The focus of this study is not only to analyse if the control strategy is able to fulfil the performance 

objectives but to evaluate what would be the computational cost and if the NMPC is feasible in a 

real-time application.  Therefore, the first scenario of operation is the nominal case without 

disturbance and noise. At the first test (A) the control horizon is fixed ( 1=uH ) and the prediction 

horizon varies.  The results are summarised in Table 3, where the RMS error  lines correspond to 

the output performance metrics of the three control loops and the ACE lines quantify the two 

control input efforts. It is easy to see that pH variation does not affect the general process 

performance expressed in terms of maximum values of key variables as supersaturation, 

temperature in the pan and the quality of the final product (MA, CV, final mass fraction of crystals). 

However, the batch duration, the average and the maximum computational time per iteration are 

affected by the prediction horizon. It is worth to note that while the average CPU time is 
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proportional to pH , the relation between the maximum CPU time and pH  is an exponentional curve.  

Since the sampling time in the real plant is usually 10 s., 20=pH  is not an acceptable value.  

 

Test B : 3=uH , 8=pH , Purity of syrup = [0.85, 0.9, 0.95] 

In this test (B) the NMPC robustness to the most influencing feeding parameter is studded. Based 

on the previous test we choose 8=pH , increase the control horizon to 3=uH  and vary the purity of 

syrup. Naturally, the average and the maximum CPU time per iteration increase due to the higher 

value of uH . The control effort of the feed flow rate is more than 3 times bigger then in test A and 

this is confirmed by the curly trajectory of fF depicted in Fig.1a. Note that the general NMPC 

performance, defined by (17-18), is practically not affected by the purity of syrup variations.  
 

Table 3 Results of Test A 

Hp 3 5 8 10 20 

1SRMS  ( first control loop) 3.72E-04 4.48E-04 5.85E-04 6.41E-04 9.97E-04 

2SRMS  ( second  control loop) 1.71E-02 7.36E-03 7.52E-03 8.14E-03 1.14E-02 

wRMS  ( third control loop) 2.68E-02 2.51E-02 2.61E-02 2.83E-02 3.53E-02 

FfACE (of the feed flowrate) 1.33E-08 1.14E-08 9.89E-09 9.04E-09 9.16E-09 

FsACE (of the steam flowrate) 5.64E-06 6.63E-06 6.67E-06 6.65E-06 6.54E-06 

Max. supersaturation 1.15 1.14 1.14 1.14 1.15 

Max. temperature of massecuite [Cº] 75.22 75.52 75.6 75.54 75.44 

Final (averaged) crystal size (MA) [mm] 0.595 0.594 0.588 0.586 0.578 

Final coefficient of variation (CV) 33.7 33.59 33.12 33.04 32.87 

Final volume [m
3
] 33.01 33.0 33.0 33.0 33.01 

Final mass fraction of crystals 0.46 0.46 0.46 0.46 0.46 

Final time [s] 6400 6271 6078 6064 6005 

Average CPU time per iteration [s] 0.36 0.597 1.01 1.29 2.78 

Max. CPU time per iteration [s] 0.88 1.05 1.66 2.09 11.91 

 

 

    Table 4 Results of Test B 

Purity of syrup 0.85 0.9 0.95 

1SRMS  ( first control loop) 1.23E-03 1.24E-03 1.23E-03 

2SRMS  ( second  control loop) 6.40E-03 6.40E-03 6.39E-03 

wRMS  ( third control loop) 2.60E-02 2.64E-02 2.62E-02 

FfACE  3.63E-08 3.59E-08 3.77E-08 

FsACE  6.29E-06 6.41E-06 6.43E-06 

Max. Supersaturation 1.15 1.14 1.14 

Max. temperature of massecuite [Cº] 75.88 75.88 75.88 

Final (averaged) crystal size (MA) [mm] 0.55 0.6 0.71 

Final coefficient of variation (CV) 35.83 33.31 26.38 

Final volume [m
3
] 33.0 33.01 33.01 

Final Mass fraction of crystals 0.46 0.46 0.46 

Final time [s] 6193 6102 6106 

Average CPU time per iteration [s] 2.38 2.41 2.47 

Max. CPU time per iteration [s] 7.8 5.47 5.56 

 

Test C: Comparison of PI, GPC, NMPC, 1=uH , 8=pH , Purity of syrup =  0.9 

Test C is focused on comparison between the proposed in this work NMPC, the industrially most 

celebrated Proportional-Integrative (PI) controller and the most popular MPC, namely the 
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Generalized Predictive Controller (GPC) (Qin and Badgewell, 2003). The results, summarised in 

Table 5, demonstrate slightly better performance of the NMPC approach compared to the PI with 

respect to pI , 1SRMS , MA and shorter batch duration. Both NMPC and PI control outperform the 

GPC, which is expected because the latter approach is based on linear model predictions.   
 

 
                         a) Manipulated process inputs                                            b) Controlled process outputs 

Fig1.  Scenario 1, Test B: Input-output process behaviour 

 
Table 5 Results of Test C 

Control strategy PI  GPC NMPC 

1SRMS  1.92E-03 1.38E-03 5.85E-04 

2SRMS  5.70E-03 8.00E-03 7.52E-03 

wRMS  2.69E-02 2.58E-02 2.61E-02 

FfACE  6.81E-09 1.19E-08 9.89E-09 

FsACE  5.31E-06 5.16E-06 6.67E-06 

Max. supersaturation 1.14 1.14 1.14 

Max. temperature of massecuite [Cº] 75.84 75.69 75.6 

Final (averaged) crystal size (MA) [mm] 0.597 0.596 0.588 

Final coefficient of variation (CV) 33.3 33.55 33.12 

Final volume [m
3
] 33.0 33.0 33.0 

Final mass fraction of crystals 0.46 0.46 0.46 

Final time 6085 6263 6078 

Average CPU time  per iteration [s] 2.04E-04 7.60E-04 1.01 

Max. CPU time  per iteration [s] 0.016 0.235 1.64 

FsFfwSSp ACEACERMSRMSRMSI 5432211 λλλλλ ++++=  

6

5

8

4

2

3

3

21 10,10,10,10 ===== λλλλλ  

 

 

22.44 28.98 21.28 

 

5.3 Operation with vacuum pressure disturbances (Scenario 2)  

 

In the second scenario the NMPC is tested in the presence of typical process disturbances, 

introduced by four vacuum pressure profiles taken from real industrial data bases (see Fig. 2).  The 

simulations are made with the following parameters: 1=uH , 8=pH , Purity of syrup =  0.9. The 

NMPC controlled system is able to compensate the fluctuations in the vacuum pressure and the 

quality metrics summarized in Table 6 are in fact undistinguishable of the unperturbed case (the 

second column).  
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                                     a) Batch 1                                                                                b) Batch 2 

 
                              c) Batch 3                                                                  d) Batch 4 

Fig. 2 Vacuum pressure real profiles 

 
Table 6 Results of Scenario 2  

Case 

No 

perturb. 

Perturb. 

Batch 1 

Perturb. 

Batch 2 

Perturb. 

Batch 3 

Perturb. 

Bath 4 

1SRMS  1.23E-03 1.82E-03 5.58E-03 5.65E-03 2.48E-03 

2SRMS  6.39E-03 1.60E-02 6.61E-02 2.99E-02 1.96E-02 

wRMS  2.62E-02 2.58E-02 2.59E-02 2.75E-02 2.69E-02 

FfACE  2.98E-08 6.82E-08 9.41E-08 5.39E-08 6.67E-08 

FsACE  6.43E-06 6.56E-06 6.05E-06 6.84E-06 6.74E-06 

Max. Supersaturation 1.1419 1.1647 1.2629 1.1913 1.1728 

Max. temperature of massecuite [Cº] 75.8805 77.478 74.838 76.257 76.588 

Final (averaged) crystal size (MA) [mm] 0.59 0.6 0.58 0.59 0.59 

Final coefficient of variation (CV) 33.29 33.22 34.35 33.8 33.73 

Final volume [m
3
] 33.0 33.01 33.01 33.0 33.01 

Final mass fraction of crystals 0.46 0.46 0.46 0.46 0.46 

Final time 6100 6185 6212 5959 6091 

 

 
                a) Manipulated process inputs                                b) Controlled process outputs  

Fig. 3 Scenario 2:  Input-output process behaviour 
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6. Batch nonlinear MPC control tests 

 

The batch NMPC optimization problem is formulated as 

  
2

)(),....,1(),(

)(min refend
ktkukkukku

MAMAJ
f

−=
++

,                    (20) 

with the following constrains: the supersaturation 3.1≤ (for the first and the second control loop),  

the final mass fraction of crystals  46.0≥  and the final volume 30≥  m
3
 (for the third control loop) .  

endMA  is the final (averaged) crystal size and refMA is the respective final desired value. Note that the 

prediction horizon is equal to the assumed batch duration ( ft ) and at each iteration is shrunk. A 

number of preliminary simulations lead to the following conclusions: 

i) The sampling time of 10s., used in the classical NMPC schemes of the previous section, is 

inadequate for the higher average computational time required at each iteration of the batch NMPC.  

Therefore, it is changed to 30s. However, sporadically the CPU time becomes much higher than 

30s. and in such cases the control input is kept at its last calculated value.  

ii) In the batch NMPC mode output predictions up the batch end are required. Therefore, we need to 

assume manipulated inputs till the end of the process. For inputs beyond the control horizon, 

constant (mean) values are assigned. During the first control loop the feed flowrate of syrup 

/sm01.0 3

_ =syrupfF and the steam flowrate /sm 1.5833 3=sF . During the second control loop, 

/sm01.0 3

_ =syrupfF . 

The main conclusion of this test is that the batch NMPC achieves quite nice the final objective 

( 55.0=refMA mm) for purity of syrup in the range (0.85,0.9), but to the expense of high CPU time 

that at some iterations can become rather high (see the last line in Table 7) . In Fig. 4 is depicted the 

history of the CPU time at each iteration along the complete process duration. Obviously, the initial 

phase is the most demanding and it is at that period that the optimization procedure needs more 

computational power.  

 
    Table 7 Results of batch NMPC  

Purity of syrup 0.85 0.9 0.95 

Max Supersaturation 1.22 1.20 1.19 

Max. temperature of massecuite [Cº] 75.73 75.37 74.88 

Final (averaged) crystal size (MA) [mm] 0.56 0.57 0.66 

Final coefficient of variation (CV) 35.11 34.04 27.08 

Final volume [m
3
] 30.0 29.99 30.0 

Final Mass fraction of crystals 0.57 0.53 0.50 

Average CPU time per iteration [s] 7.2 7.8 6.6 

Max. CPU time per iteration [s] 54.3 241.1 21.8 

 

 
           Fig. 4 CPU time per iteration [s] along the process duration  
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7. Conclusions  

 

Two nonlinear model predictive control (NMPC) strategies are applied to an industrial sugar 

production process: i) NMPC that does not exploit the batch nature of the process (termed as 

classical NMPC) and ii) the Batch NMPC (BNMPC) that takes into account the end-point control 

objectives.  They are also compared with the classical PI controller and one linear MPC scheme, 

namely GPC. A number of tests are performed covering most relevant practical issues as the choice 

of control and prediction horizons, operation without and with disturbances (in the vacuum 

pressure) and variations in the initial conditions (purity of syrup of the feeding). The main 

conclusions are that while the process runs under nominal conditions, NMPC, PI, GPC and 

DNMPC demonstrate practically insignificant differences and any of these controllers can be tuned 

to respond satisfactorily. However, in the presence of disturbances or changes in the initial 

conditions the DNMPC demonstrate better performance with respect to the final product quality 

(MA). This is due to the explicit consideration of the end point objectives in the performance 

function (20). However, the price to be paid is a high CPU that forced us to simplify the batch 

performance function. Work, which is now going on, is to reduce the computational time and to 

consider not only final time specifications but also tracking objectives over the batch duration in the 

framework of a more complex cost function. 
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