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Abstract  

In this work the Integrated Design (ID) of the activated sludge process of a wastewater 
treatment plant (WWTP) has been performed, including a linear multivariable 
predictive controller with constraints. In the Integrated Design procedure, the process 
parameters are obtained simultaneously with the parameters of the control system by 
solving a multiobjective constrained non-linear optimization problem, taking into 
account investment, operating costs and a set of performance indexes based on the 
weighted sum of the H∞, l1 and H2 norms of different closed loop transfer matrices of 
the system, subject to a set of constraints (process, controllability, physical 
constraints). 
 
Keywords: Integrated Design, Activated sludge process, H∞, l1 and H2 norms, 
Sensitivity transfer function, Control sensitivity function  
 

1. Introduction 

 
The traditional mode of designing processes has been the use of heuristic knowledge 
concentrated on determining the economically optimal process configuration among 
many possible alternatives. After the configuration is selected, the process parameters 
and a steady state working point are evaluated in order to satisfy operating 
requirements and reduce investment costs. In this procedure, operability and input-
output controllability is not considered, obtaining plants very difficult to control. Once 
the process has been designed, the following step is the selection of the controller 
structure and tuning. The design and control of processes are tasks performed 
sequentially, and examination of controllability occurs only after the optimal process 
configuration and parameters are known.  
 
Integrated Design methodology allows for the evaluation of the plant parameters and 
control system at the same time, making the designed system more controllable [4],[9]. 
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At design stage, controllability indicators are evaluated together with economic 
considerations, in order to give an optimum plant. This problem is stated 
mathematically as a multiobjective nonlinear programming problem with differential 
and algebraic constraints (NLP/DAE). Many works apply Integrated Design 
techniques, particularly to chemical process design, such as distillation systems or 
reactors, stressing the interactions of design and control [8],[13]. These works also 
tackle process structure selection by solving a synthesis problem. A comprehensive 
review of advances in the area is given by [14].  
 
Some good examples of Integrated Design applied to the activated sludge process are 
given in [5], where PI controllers and the plant were obtained, including linear matrix 
inequality (LMI) constraints to state stability conditions and some desired closed-loop 
behaviour, and in [17], that presents a study of Integrated Design with PI controllers 
applied to different plant structures. Despite of the complicated dynamics of the 
process under design, works adding advanced controllers to the Integrated Design 
procedure have not been reported in the literature and it could be a good way to 
improve control performance. In this work, model predictive control (MPC) has been 
selected as advanced control method because of the existence of several successful 
applications in activated sludge control ([16], [17]) and the easiness to deal with 
constraints. 
 
One important issue in Integrated Design is the tuning of controller parameters. 
Usually the tuning of these parameters has been performed using expert knowledge 
and a trial and error procedure. However, some works deal with automatic tuning of 
MPC. Reference [2] proposed an off-line procedure for tuning the algorithm 
parameters of a nonlinear predictive controller specifying time-domain performance 
criteria. Results are good, but the tuning of integer parameters such as horizons is 
performed using a non intelligent grid search. For linear MPC, [1] has developed an 
on-line tuning strategy based on the linear approximation between the closed-loop 
predicted output and the MPC tuning parameters, but without considering output 
constraints on the on-line optimization step.  Recently, [6] and [7] have developed a 
new method taking into account input and output constraints, and it has been applied 
to linear plants and the activated sludge process, but only considering ISE norm as 
performance index for tuning the controller.  
 
In this work, the Integrated Design problem is stated mathematically as a constrained 
non-linear multi-objective optimization problem, in which economic and control 
objectives are considered together with some constraints. The solution of the ID 
problem is obtained following a constrained numerical cost optimization procedure 
that uses dynamic models and real data records of disturbances together with a set of 
predefined constraints to evaluate the plant dimensions, the optimal operation points 
and the control system parameters. 
 
The cost functions include the investment, operating costs, and dynamical indexes 
based on the weighted sum of the H∞, l1 and H2 norms of different closed loop transfer 
functions matrices of the system subject to a set of constraints. The constraints are 
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selected to ensure that the process variables, some closed loop controllability measures 
and several closed loop performance criteria lay within specified bounds.  
 
The methodology for the integrated design is subdivided in several steps: 
 

1) Initial plant information: It is where all the information necessary is defined to 
carry out the WWTP design. It includes wastewater and control system 
characterisation (plant and control type, models, plant load, …) 

2) Definition of design objectives, performance and controllability criteria and 
constraints: It is where the preliminary goals and the corresponding 
measurement criteria are proposed and classified according to different 
categories (environmental, economic, operational, control, ...) 

3) Optimization procedure 
4) Validation of results: It is where the optimal plant can be simulated, evaluating 

the proposed criteria, and carrying out a comparison with other plants. 
 

The paper is organized as follows. First, the activated sludge process is presented and 
the way to implement an MPC for this process is explained. Secondly, a method for 
automatic tuning of the MPC is presented and applied to the activated sludge process. 
Then, the Integrated Design procedure is stated and solved for the activated sludge 
process, showing some results and ending with conclusions. 
 

2. Description of the activated sludge process and model predictive controller 

2.1. Plant description 

For applying Integrated Design methodology, a wastewater treatment plant has been 
selected. The plant layout is represented in Fig. 1, which is a benchmark developed for 
the research European program COST 624 as a framework to compare different 
control strategies [3]. The complete benchmark includes substrate, oxygen and 
nitrogen control, with two anoxic and three aerobic reactors and one secondary settler, 
but in this work only oxygen and substrate control has been considered. 
 

waste

EFFLUENT 

Bioreactor

Unaerated aerated

Settler

Recycling sludge

Nitrate internal recycling

INFFLUENT 

 
Figure 1: Benchmark plant  

 
Our simplified plant consists of one aeration tank (reactor) and one secondary settler 
(Fig. 2). The basis of the process lies in maintaining a microbial population (biomass) 
into the bioreactor that transforms the biodegradable pollution (substrate) when 
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dissolved oxygen is supplied through aeration turbines. Water coming out of the 
reactor goes to the settler, where the activated sludge is separated from the clean water 
and recycled to the bioreactor to keep there an appropriate level of biomass. The whole 
set of variables is also presented in Fig. 2. Generically, “x” is used for the biomass 
concentrations (mg/l), “s” for the organic substrate concentrations (mg/l), “c” for the 
oxygen concentrations (mg/l) and “q” for flow rates (m3/h). 
 

PREDICTIVE 
CONTROLLER 

q2 

qr1 

qp 

xir1
sir1

qi, si, xi 

q12

x1,s1,c1 
xd 

xb 

xr 

s1 , qsal

fk1
c1 

 
Figure 2: Selected plant for Integrated Design 

 
A first principles model of the system is obtained by considering mass balances of 
oxygen, biomass and organic substrate in the whole plant, together with the 
equilibrium equations for the flows of water and sludge. Note that three layers of 
different and increasing biomass concentration are considered in the settler. This 
model has been linearized to use it as internal model in the MPC studied. 

 
The set of equations for the nonlinear model (reactor and settler) are the following 
[12]: 
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2.2. Control problem 

The control of this process aims to keep the substrate at the output (s1) below a legal 
value despite the large variations of the flow rate and the substrate concentration of the 
incoming water (qi and si). Another control objective is to keep dissolved oxygen 
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concentration (c1) around 2 mg/l, concentration that is necessary for the proper 
working of activated sludge process. 
 

 
 

Figure 3: Substrate and flow disturbances at the influent (si,qi) 
 

One of the main problems when trying to control the plant properly is the existence of 
large input disturbances (qi and si). The set of disturbances for designing the plant (Fig. 
3) has been taken out from the benchmark plant. 

 
The general structure of a multivariable controller applied to the activated sludge 
process can be seen in Fig. 4. Three manipulated variables are considered: recycling 
flow (qr1), purge flow (qp) and aeration factor (fk1); and also three outputs: biomass 
(x1), oxygen (c1) and substrate (s1) in the reactor. In our case, although the 
methodology is general, in order to simplify the problem only substrate control with 
the recycling flow as manipulated variable is considered. 
 

Ref. s1 

Ref. c1 c1 

fk1 

Controller

qr1 s1 

x1 
 

PROCESSqp 

 
Figure 4: General controller structure 

2.3. MPC applied to the process 

A standard linear multivariable MPC has been considered to apply the automatic 
tuning procedure and the Integrated Design methodology proposed in this paper. It 
calculates manipulated variables by solving an on-line constrained optimization 
problem [10]. 
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subject to constraints on predicted outputs, inputs, and changes in manipulated 
variables: 
 

120 150s< <  ;  ;  ; 1400 3000x< < 10 350qr< < 10 1000qr0 Δ <

)

  (3) <

 
where k denotes the current sampling point, ˆ( |y k i k+  is the predicted output at time 
k+i, depending of measurements up to time k, ( |r k i k)+  is the reference trajectory,  
are the changes in the manipulated variables, H

ûΔ

p is the upper prediction horizon, Hw is 
the lower prediction horizon, Hc is the control horizon, Wu is a vector representing the 
weights of the change of manipulated variables and Wy is a vector representing the 
weights of the errors of set-points tracking. 
 
The MPC prediction model is a linear discrete state space model of the plant obtained 
by linearizing the model equations. The reference trajectories r(k) approach the set-
point trajectories s(k) exponentially from the current output values, with Tref as the 
‘time constant’ of the exponentials and T the sampling period, as in the following 
equation: 
 

))()(()()|( / kykseikskikr refTiT −−+=+ −  (4) 
 

When the MPC controller is linear and unconstrained, it can be represented with a 
transfer function KMPC. The full closed loop system with measured disturbances has 
been represented in Fig. 5. 
 

r y u 

d 

KMPC G 

Gd 

 

- 

r + y u 

d 

K1 G 

Gd 

K3 

 
Figure 5 : Block diagram of the plant 
with MPC 

Figure 6 : Equivalent closed loop system 
 
 
The controller block is multivariable, so the transfer function is 
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r
u K K K y K r K y K d
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⎜ ⎟= ⋅ = +⎜ ⎟
⎜ ⎟
⎝ ⎠
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where Ki  are the transfer functions between the control signal and the different inputs 
(r,y,d). 
 
On the other hand, from block diagram of Fig. 5: 
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dy Gu G d= +    (6) 
 
and substituting the control law (5) in equation (6) we obtain: 
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In our MPC we have: 
 

2 1K K= −   (8) 
 
and equation (7) can be expressed as: 
 

1

1 1

1
1 1

GKy r
GK GK

= +
+ +

%d  (9) 

 
where  are the filtered disturbances  d% ( )3 dd GK G d= +%  
 
From this the sensitivity (S) and complimentary sensitivity functions (T) are obtained: 
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Another implication of (8) is that block diagram of figure 5 can be transformed to that 
in figure 6, representing a control system with feedforward compensation. So the MPC 
has a double effect, feedback and feedforward. 
 
We define one different sensitivity function S’ considering disturbances without 
filtering. Its importance will be stressed when the tuning problem is stated. The 
calculation of S’ is straightforward from (7): 
  

3

11
dGK GyS

d GK
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+
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In the same way as S’, when r=0, sensitivity to control transfer function M’ can be 
calculated from equations (5), (6) and (8): 
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dK K GuM

d GK
−′ = =
+

 (12) 

 

 7



M. Francisco et al. 

3. Optimal automatic tuning of MPC 

3.1. MPC tuning parameters 

The main tuning parameters are those affecting the behaviour of the closed loop 
combination of plant and MPC. The most important are the weights Wu in the 
controller cost function, the lower and upper prediction horizons (Hp, Hw), the control 
horizon (Hc), and Tref in the reference trajectories. As the MPC is multivariable, 
weights in the cost function are vectors, so several different values will be tuned.  

3.2. Optimization problem 

The automatic tuning procedure of MPC parameters is based on the resolution of a H∞  
mixed sensitivity optimization problem, as described below. The point is to find an 
optimal MPC controller by solving an optimization problem that considers both 
disturbance rejection and control effort in the same tuning function. The H∞ mixed 
sensitivity problem solves that and it is stated as: 
 

1 3 1 3, ,
min min
K K K K

Wp S
N

Wesf s M ∞
∞

′⋅
=

′⋅ ⋅
  (13) 

 
s.t. 1Wp S

∞
′⋅ <     where  are suitable weights.  ,Wp Wesf

 
This problem is based on [11] with the following modifications: 
 
- Control efforts rather than magnitudes of control are included in the objective 

function by considering the derivative of the transfer function M’ (product by 
Laplace variable s) 

- Controller parameters are here K1 and K3, directly related to the MPC tuning 
parameters Wu and horizons.  

- One constraint over H∞ norm of weighted S’ has been added to assure that 
disturbances are properly rejected. 

 
In order to limit control magnitudes to avoid actuator saturation, we add one of the 
following constraints over the l1 norm of either M’ or S’. 
 

max1
M u′ <  ; max1

S y′ <  (14) 

3.3. Multiobjective optimization approach 

The optimization problems for optimal automatic tuning and Integrated Design can be 
stated as multiobjective problems by considering constraints as objectives f2i together 
with constrained optimisation of N

∞
. Then the multiple objectives are: 
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21f N
∞

= ; 22 1
f M ′= ; 23 1

f S′=   (15) 
 
One of the main problems when solving this optimization problem is that involves real 
and integer variables. In this work we propose a two iterative steps algorithm that 
combines a particular random search for tuning the controller horizons based on [15], 
and the goal attainment method, implemented in MATLAB® function fgoalattain, for 
the real variables. In this method the objectives must approach fixed goals, giving with 
these parameters different importance to every objective. 
  
As for selection of weights Wp and Wesf, weight Wp has to be selected in such way 
that its inverse is smaller in magnitude that the disturbance inverse spectrums to obtain 
optimal controllers that reject those sets of disturbances (see a typical selection weight 
in Fig. 7). Weight Wesf is selected to determine the relevance of control efforts in the 
optimization. 
 
The reason for using S’ instead of S is to make the selection of weights Wp easier 
because the disturbances spectrum keeps constant. If S would be considered, weights 
Wp should filter  spectrum, and as  depends on the controller, its spectrum is 
variable.  On the other hand, if S’ is considered Wp

d% d%

  has to filter only d spectrum, 
which is constant. 

 
Figure 7: Typical selection of Wp, where d inverse spectrum is for wastewater example disturbances. 

 

4. Integrated Design of Plant and MPC controller. 

 
The Integrated Design problem consists of determining simultaneously the plant and 
controller parameters and a steady state working point, while the investment and 
operating costs are minimized. Non-linearities of the plant and the relatively high 
number of variables increase the complexity of the problem and make necessary the 
use of an iterative two steps optimization approach. In the first step the MPC is tuned 
using the method exposed above, and in the second step the plant is designed solving 
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the following constrained multiobjective optimization problem. The objective 
functions are: 
 

1 1 1 2f w V w An n= ⋅ + ⋅ ; 22 1
f M ′= ; 1

24
1d

G
f

G
=  (16) 

 
where V1n and An are the normalized values for the volume of the reactor and the cross-
sectional area of the settler.  
 
The solution of this optimization problem is also solved with the goal attainment 
method of MATLAB, and is subject to lower and upper bounds for optimization 
variables x=(s1,x1,c1,xd,xb,xr,,fk1,qr1,qp,V1,A) and other  nonlinear constraints 
representing process and controllability constraints. The weights wi (i = 1, 2) are 
selected from CAPDET model (Computer Aided Procedure for Design and Evaluation 
of Wastewater Treatment Systems). Their normalized value is:  
 
w1=1; w2=3.1454 
 
The purpose of objective f22 is to design plants in which control magnitudes be less 
than one fixed value for the worst linear case. As for objective f24, it is related with the 
l1 norm of the open loop plant transfer functions as a measure of intrinsic plant 
controllability. The constraints for this problem are: 

 
• Residence time and mass load in the aeration tanks: 
 

1

12

2.5 8
V
q

≤ ≤  ; 1 1

1 1

0.001 0.1i i rq s q s
V x
+

≤ ≤     (17) 

 
• Limits in hydraulic capacity and sludge age in the settler and limits in the 
relationship between the input, recycled and purge flow rates: 
 

12 0.7q
A
≤ ; 1 12 1

24
r r

p r

V x A l x
q x
+ ⋅

≤ ≤ 0           (18) 

2

0.03 0.3pq
q

≤ ≤ ; 20.05 0.9
i

q
q

≤ ≤     (19) 

 
•   Constraints on the non-linear differential equations of the plant model to obtain a 
solution close to a steady state (ε close to zero).  
 
The algorithm for solving the nonlinear optimization problem generated tackles the 
problem in an iterative two step approach (see Fig. 8). The first step performs the 
controller tuning, and the second step the plant design with the previous controller 
obtained. The loop is finished when a convergence criteria over costs is reached.  
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Figure 8: Iterative loop for Integrated Design 
 

5. Integrated Design results 

In table I can be seen Integrated Design results for two different weights Wp: 
 

1
26.6 32

0.0001
sWp

s
+

=
+

; 2
33.3 40

0.0001
sWp

s
+

=
+

 (20) 

 
Weight Wp2 is more restrictive for S’ magnitude, so the Integrated Design performed 
with this weight produces a plant with better disturbance rejection, with only a small 
increase of reactor dimensions. In figure 9 substrate responses are presented. 
 

 

TABLE I 
INTEGRATED DESIGN RESULTS  

 Wp1 Wp2

Wu 0.0027 0.00042 
Hp 10 10 
Hc 2 4 
V1 7262 7307 
A 1857 1857 
S1r 70 70 
Max(s1) 78.66 76.49 
Max(qr1) 870.69 1021.3 
Plant cost= f1 (x) 1.5127 1.5177 

 Figure 9: Comparison of substrate responses 
 for Integrated Design with two weights Wp1 

 and Wp2 

 
 
Then a comparison of results obtained with different goals for objective function f1 is 
presented in Table II, keeping constant the goals for f22 and f24.  Although goals are not 
reached in any of the three cases, they have an important effect in plant costs 
(dimensions) and in the controller parameters. When costs are forced to be small with 
a low goal, disturbance rejection is worse than when costs are less restricted by 
considering a higher goal (Fig. 10). 
 

 11



M. Francisco et al. 

 
TABLE II 

INTEGRATED DESIGN RESULTS  
Goal for f1 0.3 0.7 1.6 

Wu 0.00066 0.0027 0.0021 
Hp 7 10 10 
Hc 4 2 2 
V1 5268 7262 9305 
A 1936 1857 1873 
Max(s1) 84.37 78.66 78.95 
Max(qr1) 205.31 870.69 1116 
Plant cost= f1(x) 1.3682 1.5127 1.7548 

 

 
 

Figure 10: Comparison of substrate responses (s1) and control actions (qr1) for Integrated Design with 
goals 0.3 for f1 (dashed dotted line) and 1.6 (solid line) 

 

6. Conclusions 

In this paper an Integrated Design procedure to obtain one optimal plant for the 
activated sludge process and its MPC tuning parameters has been developed. The 
design procedure shown here produces better controllable plants that the classical 
procedure. The responses for closed loop design with MPC show clearly a good 
behaviour for interest variables. When Integrated Design procedure is solved, the 
designed plant is able to fulfil disturbance rejection requirements with optimum cost 
units. This is an important result because one can obtain an optimum plant with lower 
construction costs and good disturbance rejection. Note also that no further MPC 
tuning is needed because the optimization gives also its optimum parameters. The 
solved problem guarantees that the dynamic non-linear model of the plant is satisfied, 
as well as the operating and process constraints.  
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