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Abstract

Two models of a porous body, a 3D replica obtained by stochastic recon-
struction and a random pore network, were evaluated with reference to the
effective diffusivity of gases. The stochastic reconstruction technique em-
ploys the limited morphological information that was extracted from images
of 2D cuts through the porous medium. The pore network was derived in
such a way that the total porosity, pore-size function, mean coordination
number, and mercury intrusion curve agreed well with experiment. A simu-
lator of steady diffusion flow in the pore network slightly overestimated the
effective diffusivity while the direct calculation of the effective diffusivity by
exploiting random-walk simulation in the 3D replica delivered a value that
was lower than its experimental counterpart. However, both deviations were
acceptable.
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1 Introduction

Disorder media, particularly porous solids, are often used in many fields
of science and technology. Understanding the relationships between their
microstructure and mass transport is therefore of great theoretical and prac-
tical interest. As a result, numerous works including new theoretical con-
cepts, novel experimental techniques and reliable experimental data have
appeared in the literature. Abstract schemes (e.g. dusty-gas model (Mason
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et al., 1967)) or geometry-based models (capillary models, e.g. (Johnson and
Stewart, 1965)) can be found among early approaches to the microstructure
representation. These models, sometimes classified (Sahimi et al., 1990) as
continuum, always contain a few adjustable parameters (e.g. tortuosity and
the mean pore radius) that reflect transport properties of a porous body. In
spite of much progress has been made using them, there is a strong need for
a more detailed microstructure description that would be free of adjustable
parameters and suitable for the prediction of macroscopic properties, such
as effective diffusivity, permeability and capillary pressure curves, from the
first principles. Furthermore, newer investigations (e.g. Sahimi et al., 1990;
Hollewand and Gladden, 1992; Keil, 1999) cast doubt on the application
of the continuum models and on the concept of the adjustable parameters
(tortuosity) under conditions that are different from those used in experi-
ments designed for the parameter adjustment. In this context discrete models
(Sahimi et al., 1990) of the disorder media offer a promising way to elucidate
the aforementioned relationships.

The prediction of the macroscopic properties from the microscopic origin
needs two main steps:

1. furnishing the discrete models with the requisite geometrical and topo-
logical information about the complex microstructure of the medium,

2. an exact or approximate solution of the mass, momentum and energy
balances that govern the transport phenomenon under study.

The first step is nowadays feasible in many cases due to the development
of efficient algorithms of image analysis, which are capable of processing
data from various sources, such as light, electron, or scanning laser confo-
cal (Fredrich et al., 1995) microscopy, magnetic resonance imaging (Baldwin
et al., 1996), and X-ray computed tomography (Spanne et al., 1994). In the
absence of the experimental 3D volume data, delivered, for instance, by X-ray
computed tomography, stochastic reconstruction has been found (Yeong and
Torquato, 1998a,b; Manwart and Hilfer, 1999) to be useful for mapping a real
sample onto a 3D regular array of voxels (a phase function) with adequate
resolution. Regardless of the pore structure reconstruction technique chosen,
a unit cell of the reconstructed porous body (a 3D replica) can serve as the
computational domain for the direct calculation of the macroscopic proper-
ties, i.e. for the realization of the second step. Alternatively, reconstructed
pore space can be transformed onto an equivalent random pore network. A
network approach to an estimation of effective diffusivity or permeability in-
volves the substantial simplification of pore geometry. Then, expressions for
the flow rates in individual pores are derived and microscopic concentration
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profiles are determined by applying the law of conservation of mass in all net-
work nodes. Both approaches have advantages and shortcomings. The direct
calculation takes advantage of detailed information on pore space topology
and morphology. Due to limitations of computer resources, a 3D replica may
not be large enough; consequently, macroscopic properties may reveal the
undesirable dependence on its size. Pore network models simplify pore ge-
ometry (and pore space topology) and, thus, can simulate larger unit cells,
demanding less computer resources. Relatively few papers (e.g. Liang et al.,
2000b; Bekri et al., 2000; Talukdar et al., 2002) comparing both approaches
have only appeared so far. Therefore, it would be worth investigating it
further.

The first objective of this paper is to reconstruct stochastically a porous
body and to derive an equivalent random pore network. The second objective
is to compute effective diffusivities of gases in these models of the porous body
and to compare them with the experimental effective diffusivity. The effective
diffusivity in the reconstructed porous body will be computed directly by
random-walk simulation. The same quantity in the pore network will be
determined by the simultaneous solution of a large set of non-linear equations
that result from the application of the law of conservation of mass to each
network node. This work is an extension of our previous work (Čapek et al.,
in press), in which effective permeability and diffusivity have been modelled
using a pore network of different geometry and topology.

2 Models of a Porous Body

Two models of an α-alumina sample with the total porosity φ = 0.404 are pre-
sented in this work. A method of the 3D stochastic reconstruction based on
the limited statistical information extracted from images of 2D, randomly-
oriented cuts through the porous body was applied to reproduce the mi-
crostructure of the sample. A 3D replica (the first model) served as the
main source of data for the construction of the second model based on a
random pore network in which chambers (cavities) were connected through
convergent-divergent throats (necks).

2.1 Microstructural Descriptors

The structure of a two-phase porous medium is completely defined (Torquato,
2002) in terms of the indicator function, I(~x), for the void phase

I(~x) =

{
1, if ~x belongs to the pore space
0, otherwise

(1)
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where ~x is the position vector. In the 2D digitized representation of a porous
medium, the position vector ~x takes discrete values ~x = (ia, ja) determined by
a square lattice with i = 0, . . . , lx −1 and j = 0, . . . , ly −1 and the size lx × ly.
Similarly, in the 3D digitized media the discrete values of the position vector
~x = (ia, ja, ka) are defined by a simple cubic lattice and the size lx × ly × lz.
The lattice constant, a, corresponds to the pixel or voxel resolution.

For statistically homogeneous (invariant under translation of the spatial
coordinates) and stationary media, the volume fraction of the void phase
(total porosity) is defined as

φ = 〈I(~x)〉 (2)

where angular brackets denote an ensemble average. Equation (2) is also
known as the definition of the one-point probability function for those media.
The two-point probability function for the void phase is defined by

S(~x1, ~x2) = 〈I(~x1)I(~x2)〉 (3)

where ~x1 and ~x2 are two arbitrary points in the system. If a porous medium
is also isotropic (invariant under rotation), the two-point probability function
depends only on the distance u = |~x1 − ~x2| and, thus, S(~x1, ~x2) = S(u).

Another microstructural descriptor is the lineal-path function, L(~x1, ~x2),
for the void phase, which is defined (Torquato, 2002) as the probability of
finding a line segment spanning from ~x1 to ~x2 that lies entirely in the void
phase. In an isotropic medium, the lineal-path function depends only on u
and can be expressed simply as L(u).

For the characterization of three-dimensional porous media, the pore-
size probability density function, P(δ), may be used. The function P(δ)
for the void phase of an isotropic medium is defined (Torquato, 2002) as
the probability that a randomly chosen point in the void phase lies at the
distance between δ and δ + dδ from the nearest pore-solid interface. The
function P(δ) is an intrinsically three-dimensional descriptor and, therefore,
cannot be obtained from the images of two-dimensional cuts through the
solid. The associated cumulative distribution function, F(δ), is the fraction
of the pore space that has a pore radius greater than δ

F(δ) =
∫

∞

δ
P(u)du (4)

The mean pore size, 〈δ〉, can be defined in terms of F(δ)

〈δ〉 =
∫

∞

0
F(δ)dδ (5)
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Figure 1: Reference microstructural descriptors: • – S̃(u) and ⊙ – L̃(u).

2.2 2D Image Processing

After drying, cylindrical pellets (5mm height × 5mm diameter, made of
alumina grains with the mean particle size of 29.2µm) were impregnated
under vacuum with epoxy resin Araldite. The hardened epoxy resin blocks
were cut, ground and polished to achieve the smooth surface. Series of back-
scatter scanning electron images of cross-sections through the medium were
recorded in an appropriate size and resolution. Twenty images of the unique
size of 1280 × 960 pixels at the pixel resolution a = 1µm were selected for
analysis. The discrete level of grey intensity always spanned the interval
of [0, 255] in all images. Each raw image was subjected to a sequence of
operations that involved median filtering and image segmentation, i.e. the
determination of the grey-level threshold.

The segmented images were sampled in the two principal directions. The
functions S(u) and L(u) were found to be nearly independent of the direc-
tion chosen. The reference functions S̃(u) and L̃(u) for the purpose of 3D
stochastic reconstruction (Fig. 1) were determined by averaging the functions
obtained from the individual images.

2.3 3D Stochastic Reconstruction

A 3D replica of the porous body, conforming to the reference and simulated
microstructural descriptors, was generated by the simulated annealing tech-
nique (Aarts and Korst, 1989; Press et al., 1992). This technique of combina-
torial minimization gradually transforms a high-energy configuration of void
and solid voxels into a minimum-energy configuration. The objective func-
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tion (“energy” of the digitized system) E was given by the sum of squared
deviations between the reference and simulated functions:

E =
3∑

i=1

130∑

u=0

[(
S̃(u) − Si(u)

)2
+

(
L̃(u) − Li(u)

)2
]

(6)

The simulated functions were calculated in the three principal directions
(i = 1, 2, 3), applying periodic boundary conditions. In (6) we assumed that
the deviations between the reference and calculated functions were negligible
beyond the distance of 130µm. It was justified: S̃(u) first declined below
its log-range value of φ2 at u = 86µm and L̃(u) approached zero when
u > 130µm (Fig. 1).

At the beginning of 3D reconstruction, a random configuration of pore and
solid voxels is formed with the total porosity, φ, on the simple cubic lattice of
size lx×ly×lz = 256×256×256. At each iteration step k, a new configuration
is generated by selecting two voxels of the different phase at random and
exchanging their phase function values. This exchange slightly alters Si(u)
and Li(u) and, thus, results in the energy difference ∆E(k) = E(k) − E(k−1).
A voxel exchange is accepted with a probability pk given by the Metropolis
rule (Aarts and Korst, 1989)

pk

(
∆E(k)

)
=

{
1 , if ∆E(k) ≤ 0

exp
(
−∆E(k)/ϑ

)
, if ∆E(k) > 0

(7)

where ϑ is a control parameter representing the system “temperature”. If
the voxel exchange is rejected, the phase function values are restored and the
previous configuration is left unchanged. The temperature is lowered after
a certain number of iteration steps, referred to as a Markov chain (Aarts
and Korst, 1989). 92 × 104 iteration steps were found to be sufficient for
equilibrating the system at each fixed temperature. The initial temperature
and the rate of temperature reduction are described by an annealing schedule.
Modern implementations of simulated annealing prefer adaptive schedules
that can cool at optimum speed. For instance, the “heat capacity” method,
applied here, cools in constant energy slices (Frost and Heineman, 1997).
The algorithm by Aarts and Korst (1989) was employed for estimation of the
initial temperature so that the acceptance probability for the first Markov
chain would be 0.95. The algorithm was terminated when E < 10−7.

An approximation to P(δ) was computed by placing a random point in
the reconstructed pore space and measuring its distance δ to the nearest
point on the phase interface, which was modelled by faces of cubic voxels.
This procedure was repeated for a large number of random points in the pore
space. The function P(δ) was then obtained by discretizing the distances δ
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Figure 2: Schematic representation of a cubic chamber and halves of three
adjacent throats. The chamber volume, Vc, is determined by the chamber
edge size: Vc = 8b3c . For the throat sizes, at and bt, the following inequalities
hold: at ≤ bc and bt < bc (a self-consistency limitation). The throat aspect
ratio, λ = at/bt, satisfies the inequality: λ ≥ 1

and dividing by the total number of random points placed into the pore space.
Integration of the resulting function according to (4) gave an approximation
to F(δ).

2.4 Random Pore Network

The reconstructed pore space was analysed and transformed onto a 3D pore
network of irregular topology. Since visual inspection of the 3D replicas
revealed that the pore space was well represented by pores of convergent-
divergent shapes, a chamber-and-throat network was chosen for the trans-
formation. Each network throat was formed by two obelisks, mutually con-
nected. Their larger, square bases took the sizes of adjacent cubic chambers;
the smaller, rectangular bases of the same size represented the narrowest
throat cross-section area (Fig. 2).

The preliminary construction of the pore network showed that the cham-
ber size distribution (CSD) and throat size distribution (TSD) had to overlap
strongly; therefore, the common procedure of the network construction (Con-
stantinides and Payatakes, 1989; Tsakiroglou and Payatakes, 1990) could not
be employed. Furthermore, the combination of the relatively high total poros-
ity (0.404) and the wide CSD, related to F(δ), made the transformation of
highly irregular pore space into cubic chambers arranged in nodes of a cu-



8 Pavel Čapek et al.

Figure 3: Two-dimensional cut through a three-dimensional network, cham-
bers of which are arranged in nodes (i.e. in intersections of lines) of two cubic
arrays.

bic array difficult. A few network realizations confirmed that chamber sizes
(volumes) could not be assigned to the network nodes completely at random,
because no two adjacent chambers were allowed to intersect. The introduc-
tion of the negative chamber-to-chamber correlation (i.e. large chambers
were surrounded by small chambers (Tsakiroglou and Payatakes, 1993)) did
not result in any consistent network. Instead of it, chambers were hierarchi-
cally arranged in nodes of two cubic arrays. “Fine” cubic arrays sharing a
common distance between two arbitrary nodes were embedded in unit cells
of the “coarse” cubic array (thin and thick lines in Fig. 3 respectively). Each
fine array was attached to the coarse array via bonds (throats) connecting
auxiliary nodes (chambers) placed in six faces of the unit cell and external
nodes of the fine array. The fine array size (number of the fine array nodes
in the unit cell of the coarse array, 4 × 4 × 4 in Fig. 3) was an important
parameter of the network. Chamber volumes were assigned to the network
nodes as follows. The domain of the chamber volume distribution (CVD)
was divided into three parts. Chamber volumes selected at random from the
upper part of the domain were assigned to the nodes located in the inter-
sections of thick lines (Fig. 3). Then chamber volumes corresponding to the
middle part of the CVD domain were assigned to the nodes represented by
the intersections of thick and thin lines. Finally, chamber volumes from the
lower part of the CVD domain were assigned to the remaining nodes. The
feasibility of such a network construction depends on the total porosity, CVD
and fine array size. It should be emphasized that the fine array size need
not be necessarily 4 × 4 × 4 as it is depicted in Fig. 3. The node distances
of the fine and coarse arrays constrained sizes and shapes of the chambers
located in the intersections of the thick and thin lines. These chambers
were allowed to have the rectangular parallelepiped shape for the network
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Figure 4: Skeleton of the reconstructed pore space. The full size (256×256×
256 voxels) of the sample is shown.

construction to be feasible. It also explains why the CVD was preferred to
the CSD. This procedure introduced the positive chamber-to-chamber cor-
relation (Tsakiroglou and Payatakes, 1991) in the pore network, i.e. large
chambers were preferentially surrounded by chambers of similar sizes.

A cubic network has regular topology with the coordination number (i.e.
number of bonds per node) of 6. However when a cubic network is to be of
irregular topology, its mean coordination number, ω̄, has to be reduced by
removing bonds selected at random. Then the coordination numbers, ω, of
individual chambers are equal to random integers between 1 and 6. In this
work ω̄ was estimated from a skeleton of the reconstructed pore space. The
pore space skeleton (Fig. 4) was determined using a fully parallel 3D thinning
algorithm (Min Ma and Sonka, 1996), and was used as a graph, edges and
vertices of which were composed of voxels with two 26-adjacent neighbours
and three or more 26-adjacent neighbours respectively. This simple definition
of edges and vertices, also used by Thovert et al. (1993), resulted in ω̄ = 3.9.
An advanced algorithm of pore space partitioning based on morphological
skeletonization (Liang et al., 2000a) will be considered in our future work.

Since the chamber and throat size distributions overlapped, a certain level
of the positive chamber-to-throat (c–t) correlation had to be assumed. An
algorithm for the efficient assignment of throat sizes bt to network bonds was



10 Pavel Čapek et al.

implemented by the following way. A number (“vote”) Υij evaluated on the
basis of adjacent chamber sizes, bci and bcj,

Υij = min (bci, bcj) (8)

was assigned to each bond in the network. Then the bonds were ranked
in descending order according to their votes Υij. A number of the throat
sizes equal to the total number of network bonds was generated according
to the TSD given and was sorted in descending order. This set of the throat
sizes was partitioned in a number of classes (say, 8192), each containing the
throat sizes within a narrow interval. The widest throats belonging to the
first class were scattered at random among the network bonds in such a
way that no throat size was greater than the corresponding vote Υij , i.e.
the self-consistency limitation was fulfilled. This step was iterated for next
classes until a number of the remaining throat sizes was zero. The process
of the throat scattering depended on a free positive parameter ζ that could
be varied within (0, 1] to yield the desirable level of correlation. he smaller
the value of ζ , the stronger the c–t correlation was. When the distributions
overlapped, a certain level of the c–t correlation was unavoidable regardless
of a value of ζ . Periodic boundary conditions for the throat sizes were applied
in three principal directions of the network.

For the strongly overlapping CSD and TSD, this implementation of the
throat size assignment algorithm was found to deliver no mistakes in com-
parison with the procedures suggested by Tsakiroglou and Payatakes (1991),
and later by Burganos and Payatakes (1992).

In order to raise randomness in pore morphology we drew random values
of λ (Fig. 2) from the uniform distribution in the interval [1, 1.2]. This
relatively narrow interval enabled the values of λ to be independent of values
of bt.

After assigning chamber volumes to network nodes and throat sizes to
network bonds and making specification of connectivity, the distance between
the centres of gravity of two adjacent chambers was adjusted so that the total
porosity of the network could agree with that of the prototype. Note that
both chambers and throats contributed to the total pore volume.

2.4.1 Estimation of pore network parameters

The function F(δ) of the 3D replica provided decisive information for the
adjustment of the network parameters, particularly the CVD and TSD. This
adjustment was carried out iteratively by matching F(δ) of the 3D replica
and the pore network generated in each iteration. Since numerical exper-
iments indicated that F(δ) for the network void phase was more sensitive
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Figure 5: The best approximations (—) of F(δ) and capillary pressure curve
obtained in the iterative network construction are compared with experimen-
tal dependences (•). The experimental function F(δ) corresponds to the 3D
replica.

to perturbations of the CVD than to perturbations of the TSD, a modified
procedure was employed to estimate the TSD more precisely. In this pro-
cedure systematic modifications of the TSD were performed in such a way
that the calculated mercury intrusion curve well fitted the experimental one.
Tsakiroglou and Payatakes (2000) suggested a similar algorithm for the re-
finement of the TSD obtained by means of the serial sectioning analysis of
double pore casts.

The common model of the mercury porosimetry assumes that mercury in-
trusion is solely controlled by constriction sizes (Sahimi, 1995). We accepted
a more sophisticated model of the critical capillary pressure (Tsakiroglou
and Payatakes, 1990), which also takes into account equilibrium at entrances
to chambers. In the case of our particular pore geometry and the intrusion
contact angle of 2π/9 it meant that the critical capillary pressure in a throat
was dependent on at, bt and ct, and the sizes of adjacent chambers (bci and
bcj). The mercury intrusion algorithm implemented in our simulator is usu-
ally called invasion percolation (Sahimi, 1995). In all mercury porosimetry
runs the simulated cubic particle was immersed in mercury so that mercury
could invade the pore space through its six faces. The pore volume, Vm,
invaded by mercury was related to the particle volume Vp: V

⋆
m = Vm/Vp, i.e.

limPm→∞
V ⋆

m = φ where Pm is the external pressure of mercury.

The iterative construction of the chamber-and-throat network can be
summarized as follows:
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1. The CVD domain was derived from the domain of F(δ) (Fig. 5). The
network connectivity was defined by setting ω̄ = 3.9.

2. Initial approximations of the CVD and TSD, based on the previous
experience (Čapek et al., in press; Čapek and Hejtmánek, 2004), were
accepted.

3. The pore space of the network model was sampled to get an approxi-
mation of F(δ). This approximation was compared with the reference
function characterizing the reconstructed pore space (Fig. 5).

4. Mercury intrusion was simulated and the resulting capillary capillary
pressure curve, V ⋆

m = f(Pm), was compared with the experimental
(reference) one (Fig. 5).

5. If either the calculated F(δ) or the simulated capillary pressure curve
did not match the reference one, the CVD and TSD were altered and
a new realization of the pore network was generated.

6. The steps (3–5) were repeated until the calculated functions did fit well
the reference ones.

The preliminary construction (step 2 in the above list) revealed that the
CVD had to be skewed strongly, with a long tail extending out towards more
positive Vc. The asymmetric CVD (Fig. 6) was modelled by combination
of two beta probability distributions. The shape and domain span of the
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CVD made the fine array size of 3 × 3 × 3 essential. The CVD domain
was divided into the three sub-domains by two internal points of 133810µm3

and 321065µm3, respectively. This implied that a number of the chamber
volumes related to the first peak of the number density function ϕ(Vc) was
scattered over the fine array nodes. Chamber volumes from the middle CVD
sub-domain were randomly assigned to the nodes located in the intersections
of the thin and thick lines (Fig. 3), chamber volumes from the upper CVD
sub-domain to the coarse array nodes. A similar combination of two beta
probability distributions was found to be useful for modelling the TSD, which
had the positive skewness as well (Fig. 6). The asymmetric TSD was neces-
sary for the calculated mercury intrusion curve to fit well the experimental
curve in its low-pressure part (Pm < 48 kPa). The parameter ζ controlling
the level of the positive c–t correlation was always equal to one, i.e. the ob-
served c–t correlation stemmed only from the presence of the two overlapping
distributions.

Since the mean pore size was large enough (〈δ〉 = 5.17µm), the pore
network of 72× 72× 72 nodes represented the cubic particle whose external
size (dp = 5.08 mm) was very close to the real particle diameter and height
(5 mm × 5 mm). That number of nodes also ensured the excellent statisti-
cal stability of simulated quantities, which was confirmed by a few network
realizations.

3 Simulation of Effective Diffusivities

Effective diffusivities were simulated in the region of continuum, i.e. it was
assumed that the number of collisions of the molecules among themselves is
much higher than the number of collisions with pore walls (hence the Knudsen
number tends to zero). For each model of the porous solid, a corresponding
simulator was derived. A random-walk simulator that was based on calcula-
tion of the mean-squared displacement versus time was applied to estimate
directly the effective diffusivity in the 3D replica. In the case of the network
model mass and momentum balances for individual pores were solved firstly;
secondly, resulting total diffusion flow was reduced to the effective diffusivity.

3.1 Effective Diffusivity in the Stochastic Replica

Methods of random-walk simulation (Sahimi and Stauffer, 1991; Ioannidis
et al., 1997; Burganos, 1998; Kainourgiakis et al., 2005) use the well-known
relationship between the mean squared displacement 〈ξ2〉 of a walker, exe-
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cuting a random walk in the medium, and time τ :

Dm
e = lim

τ→∞

〈ξ2〉
6τ

(9)

where Dm
e is the effective diffusivity of the walker in the region of continuum.

A large number of random walkers were considered for calculation of the
limit (9). Each random walk started by placing a random walker at the
centre of a void-phase voxel, whose coordinates were selected at random. If
such a voxel belonged to an isolated cavity, a new location was generated.
Then, the walker was allowed to jump from its current location to the centre
of one of its 26 nearest neighbouring voxels with an equal probability of
1/26. The walker’s jump took an amount of time ∆τ , which was chosen to
obey Einstein’s relation r2 = 6Dm∆τ where Dm is the bulk diffusivity of the
walker and r is the Euclidean distance between two successive locations of
the walker. Depending on the relative location of the neighbouring voxels,
the Euclidean distance could take the values of a, a

√
2, or a

√
3. If the

neighbouring voxel selected for the next location of the walker belonged to
the solid matrix, the walker formally jumped to the void-solid interface and
back to its previous location. Such a formal jump increased the total time
by ∆τ as well. Jumps through pore orifices were resolved by applying the
periodic boundary conditions, i.e. the walker was allowed to move in one of
the six cells surrounding the central cell. Since the medium was digitized
and since the ratio of the effective to the bulk diffusivity was of interest, the
dimensionless total time τ ⋆ = 6Dmτa−2 was introduced and Equation (9)
was expressed in the form:

Dm
e

Dm
= lim

τ⋆
→∞

〈ξ2a−2〉
τ ⋆

(10)

In this equation the mean squared displacement was measured in the integer
coordinates of the phase function. Each time step added 1, 2, or 3 to the
dimensionless total time, which had to be large enough to make sure that
the walker felt the effect of the void-solid interface details. Specifically, the
number of time steps proportional to the number of void voxels in the replica
(≈ 7×106) and 5000 random walkers provided a good estimate of the effective
diffusivity.

3.2 Diffusion Flow in the Pore Network

The scheme of a representative single pore is shown in Fig. 7. The single
pore consisted of three segments, a convergent-divergent throat and halves
of both adjacent chambers. Steady diffusion flow rates in a single pore under
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Figure 7: Geometry of a single pore consisting of a convergent–divergent
throat and halves of both adjacent chambers

isothermal conditions were calculated on the basis of state variables located
in chamber centres. If any of the adjacent chambers had the rectangular
parallelepiped shape, its actual geometry was considered in expressions for
the diffusion flow rates.

The transport of binary gaseous mixtures in a single capillary can be
described by the Maxwell-Stefan constitutive equations (Bird et al., 1960).
If a binary mixture consisting of gases A and B is considered and the ratio
of diffusion fluxes obeys Graham’s law (Mason and Evans III, 1969), a set of
two constitutive equations can be replaced by a single constitutive equation.
Note that the validity of Graham’s law implies the uniformity of the total
pressure in a porous medium as well as transport of inert gases. Taking into
account this fact we expressed the diffusion molar flow rate, ṅ12, of a gas A
in a single pore as

ṅ12 =

[
1

gdDAB

+
α

gdDAB

y1 + y2

2

]
−1

P

RgT
(y1 − y2) (11)

where y1 and y2 are the mole fractions of A in the chambers 1 and 2 respec-
tively, P is the total pressure, Rg is the gas constant, T is the thermodynamic
temperature, DAB is the bulk binary diffusion coefficient of the pair A–B,
and α =

√
[MA/MB]−1 is a modified ratio of molecular weights MA and MB.

For the single-pore conductance, gd, the following expression was derived

gd = 4

[
1

bc1
+

ct
2bc1

√
(atbt)

+
ct

2bc2
√

(atbt)
+

1

bc2

]
−1

(12)

Bulk binary diffusion coefficients can be found for many gaseous mixtures in
the review article by Mason and Marrero (1972).
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In pore networks single pores are connected at network nodes. Steady mo-
lar flow rates that enter a node must be equal to the molar flow rates leaving
the node, i.e. mass must be conserved. The unknown chamber (node) pres-
sures were determined by simultaneous solution of 72 × 72 × 72 = 373248
non-linear equations, which resulted from the application of the law of con-
servation of mass to each chamber, namely

∑

i

ṅij = 0 , j = 1, . . . , 373248 (13)

where ṅij are the molar flow rates between the jth chamber and the adjacent
chambers denoted by appropriate subscripts i.

In the standard experimental setup a porous pellet is mounted in an
impermeable (metallic) disc of a measuring cell. Both disc sides are exposed
to fluid phases of different composition; consequently, dependences of steady
diffusion fluxes on P or composition are determined. In order to resemble
the standard experimental setup the simulated particle of the porous medium
had the shape of a cube with two opposite faces open to the gaseous phase
and remaining four faces closed. Boundary conditions of the Dirichlet type
were used in the direction of macroscopic transport.

The common approach to solving the system of equations (13) iteratively
is a Newton-type method. Since the equations (13) were only mildly non-
linear, the Newton method based on line searches converged within a few
iterations (2 − 5). A large sparse system of linear equations arising in each
Newton step was solved by a preconditioned biconjugate gradient method
(Press et al., 1992).

Diffusion flow in the binary mixture of hydrogen (component A) and
nitrogen (component B) was simulated in the three orthogonal directions
and for five discrete levels of P in the interval [100, 500] kPa. This choice
guaranteed that the Knudsen number for hydrogen was less than 0.01 in all
chambers and less than 0.09 in the narrowest constriction. The total molar
flow rate of hydrogen was related to an area of the cube face. The resulting
dependence of the molar flux, N , of hydrogen on P was approximated by a
functional relationship, which is commonly used (Scott and Dullien, 1962)
for the reduction of experimental data

N(P ) =
P

RgT

ψDAB

αdp

ln
1 + αy(0)

1 + αy(dp)
(14)

where y(0) and y(dp) are the mole fractions at opposite faces of the cube.
The parameter ψ is the ratio of the effective to bulk binary diffusivity. A
least-square method (Press et al., 1992) was applied to determine the best
estimate of ψ.
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4 Comparison with Experiments

Steady-state diffusion experiments were performed in a Wicke-Kallenbach
cell operated under the atmospheric pressure. A piece of silicon rubber fas-
tened the cylindrical pellet in a hole drilled in a metallic plate. Each of the
open pellet faces were flushed with a different gas stream. The streams of
pure gases, involving hydrogen, helium, nitrogen and argon, were fed from
pressure cylinders through mass flow controllers. High inlet space velocities
were chosen to eliminate the influence of external diffusion resistance. The
Wicke-Kallenbach method requires that the total pressures on both sides of
the pellet are the same. Otherwise, creeping flow induced by the pressure
gradient will affect the diffusion flow. Isobaric conditions were achieved by
merging the two outlet gas streams before a vent. Pressure drops in the out-
let tubes were adjusted manually in such a way that the pressure difference
between the open pellet faces was less than 5Pa. Downstream from the cell,
small amounts of gaseous mixtures were taken away by means of a six-way
valve for the analysis of composition.

Equation (14) was also applied to reduce the experimental data. The
value of ψ estimated in the least-square sense was found to be 0.123. The
random walk-simulator predicted the ratio Dm

e /D
m (10), in which, unlike

the experimental quantity, φ was not included. Therefore the predicted ratio
Dm

e /D
m was multiplied by φ resulting in ψ = 0.102. The value of 0.129

obtained by modelling diffusion flow in the pore network compares very well
with that experimental.

In the case of random-walk simulation the lower value of ψ could stem
from a relatively small size of the replica (256×256×256µm3); therefore, only
a few highly penetrable (conductive) pathways connecting the replica faces
were likely to exist. On the other hand, the sizes of the pore network and real
sample were almost identical so that there could have been approximately the
same number of highly penetrable pathways in the pore network like in the
real sample. Due to the network connectivity estimated from the stochastic
replica the value of ω̄ was likely to be shifted down. However, the lack
of highly penetrable pathways could be balanced by enlarging throat sizes
during the iterative network construction, which explained the successful
prediction of ψ. The correlation of pore space connectivity and the TSD
was also observed for a random pore network constituted pores of different
geometry (Čapek et al., in press).

For another prediction of ψ, Archie’s law can be applied in its simplest
form, i.e. F = φ−2 where F is the formation factor. The parameter ψ can
be readily determined, because it is inversely proportional to F . This plain
calculation gave ψ = 0.163, which was less satisfactory than the predictions
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obtained by application of the simulators.

5 Conclusions

Stochastic reconstruction of a macroporous α−alumina from limited morpho-
logical information provided the basis for the construction of a 3D random
pore network of irregular topology. Pore network connectivity was character-
ized by means of the mean coordination number, accessible by the analysis
of the reconstructed pore space skeleton. The pore network model and the
mercury intrusion simulator enabled the fine adjustment of the throat size
distribution according to the experimental mercury intrusion curve. The pre-
dictions of effective diffusivities in the stochastic replica and in the random
pore network were quite successful: the absolute deviations were less than
18% of the experimental value. The lower value of the effective diffusivity
in the stochastic replica was observed because pore space connectivity was
underestimated in the procedure of stochastic reconstruction. The pore net-
work calculation was more successful than the direct calculation of the effec-
tive diffusivity because pore network connectivity derived from the stochastic
replica could be balanced by enlarging throat sizes. The pore network predic-
tion of the effective diffusivity was also more successful than in our previous
paper (Čapek et al., in press) where we employed a pore network of the
chamber-and-throat type with throats of constant rectangular cross-section.
The convergent-divergent throats, applied here, were more conductive than
their counterparts of rectangular cross-section and, therefore, the pore net-
work presented in this study revealed the higher effective diffusivity than the
pore network studied in our previous paper (provided that both networks
were of the same connectivity). The convergent-divergent throats also more
closely resembled the real pore space than those of rectangular cross-section.
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