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Abstract 

The main aim of this paper is to establish a reliable model of process behaviour under 

its normal operating conditions. The use of this model should reflect the true 

behaviour of the process and allow distinguishing a normal mode from an abnormal 

one. In order to obtain this reliable model for the process dynamics, the black-box 

identification by means of a NARX (Nonlinear Auto-Regressive with eXogenous 

input) model has been chosen in this study. It is based on the neural network 

approach. This paper shows the choice and the performance of the neural network in 

the training and test phases. An analysis of the inputs number, hidden neurons and 

their influence on the behaviour of the neural predictor is carried out. Three statistical 

criteria; Aikeke’s Information Criterion (AIC), Rissanen’s Minimum Description 

Length (MDL) and Bayesian Information Criterion (BIC) are used for the validation 

of the experimental data. A reactor-exchanger is used to illustrate the proposed ideas 

concerning the dynamics modeling. The model is implemented by training a Multi-

Layer Perceptron (MLP) Artificial neural network with input-output experimental 

data. Satisfactory agreement between identified and experimental data is found and 

results show that the model successfully predicts the evolution of the outlet 

temperature of the process. 

 

Keywords: reliability, process safety, modelling, neural network, NARX, nonlinear 

identification 

 

1. Introduction 

Process development and continuous request for productivity led to an increasing 

complexity of industrial units. In chemical industries, it is absolutely necessary to 

control the process and any drift or anomaly must be detected as soon as possible in 

order to prevent risks and accidents. Moreover, detecting a fault appearance on-line is 

justified by the need to solve effectively the problems within a short time 

(Villermaux, 1996; Chetouani 2007; Chetouani, 2006). The intrinsic highly nonlinear  
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behaviour in the industrial process, especially when a chemical reaction is used, poses 

a major problem for the formulation of good predictions and the design of reliable 

control systems (Cammarata et al., 2002). Due to the relevant number of degree of 

freedom, to the nonlinear coupling of different phenomena and to the processes 

complexity, the mathematical modeling of the process is computationally heavy and 

may produce an unsatisfactory correspondence between experimental and simulated 

data. Similar problems arise also from the uncertainty for the parameters of the 

process, such as the reaction rate, activation energy, reaction enthalpy, heat transfer 

coefficient, and their unpredictable variations. In fact, note that most of the chemical 

and thermo-physical variables both strongly depend and influence instantaneously the 

temperature of the reaction mass (Chetouani, 2006). One way of addressing this 

problem is the use of a reliable model for the on-line prediction of the system 

dynamic evolution. However, designing empirical models like the black-box models 

is unavoidable (Leontaritis et al., 1985). Various techniques of the processes 

identification were already proposed. Many researchers employed the neural network 

to solve several nonlinear complex problems. Engell et al. (Engell et al., 2003) 

discussed general aspects of the control of reactive separation processes. They used a 

semi-batch reactive distillation process. A comparison was carried out between 

conventional control structures and model-based predictive control by using a neural 

net plant model. Savkovic (Savkovic, 1996) used a neural network for product 

composition control of a distillation plant. The neural network controller design is 

based on the process inverse dynamic modeling. The back-propagation algorithm is 

applied to dynamic nonlinear relationship between product composition and reflux 

flow rate. The obtained results illustrate the feasibility of using neural net for learning 

nonlinear dynamic model distillation column from plant input-output data and 

control. Assaf et al. (Assaf et al., 1996) modeled an ethylene oxidation fixed-bed 

reactor by a phenomenological model. They compared the results given by this model 

and those given by the neural model for possible thermal runaway situations of highly 

exothermic process. The final objective is to build a reliable inference alarm 

algorithm for fast detection and prevention of this situation. Nanayakkara et al. 

(Nanayakkara et al., 2002) presented a novel neural network to control an ammonia 

refrigerant evaporator. The objective is to control evaporator heat flow rate and 

secondary fluid outlet temperature while keeping the degree of refrigerant superheat 

at the evaporator outlet by manipulating refrigerant and evaporator secondary fluid 

flow rates. 

 

The purpose of this identification is to establish a reliable model of the dynamic 

behaviour of a process as a reactor-exchanger. This reliable model enables to 

reproduce the process dynamics under different operating conditions in a normal 

mode. We are interested in the anomaly detection module intended to supervise the 

functioning state of the system (Chetouani, 2007). The former has to generate on-line 

information concerning the state of the automated system. This state is characterized 

not only by control and measurement variables (temperature, rate, etc.), but also by 

the general behaviour of the process and its history, showing in time whether the 

behaviour of the system is normal or presents drifts. In the context of numerical  
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control, fault detection and isolation (FDI) proves a vital complement to the adaptive 

means of dealing with instationarities in nonlinear highly unsteady-state systems. 

Under normal conditions, the fault detection module allows all information to be 

processed and managed in direct liaison with its general behaviour. In other case, it 

detects any anomaly and alerts the operator by setting on the appropriate alarms.  

 

The main aim of this research is to obtain a powerful model of reference allowing to 

reproducing the process dynamics in normal mode. The present study focuses on the 

development, and implementation of a NARX neural model for the one-step ahead 

forecasting of the reactor-exchanger dynamics. The performance of this stochastic 

model was then evaluated using the performance criteria. Results show that the 

NARX neural model is representative for the dynamic behaviour of the nonlinear 

process. Experiments were performed in a reactor-exchanger and experimental data 

were used both to define and to validate the model. The identification procedure, the 

experimental set-up and prediction results are described in the following sections. 

 

2. Input-output modeling approach 

Modeling is an essential precursor in the parameter estimation process. Identification 

strategies of various kinds by means of input–output measurements are commonly 

used in many situations in which it is not necessary to achieve a deep mathematical 

knowledge of the system under study, but it is sufficient to predict the system 

evolution (Fung et al., 2003; Mu et al., 2005). This is often the case in control 

applications, where satisfactory predictions of the system that are to be controlled and 

sufficient robustness to parameter uncertainty are the only requirements. In chemical 

systems, parameter variations and uncertainty play a fundamental role on the system 

dynamics and are very difficult to be accurately modeled (Cammarata et al., 2002). 

Therefore, the identification approach based on input-output measurements can be 

applied.  

 

In order to provide a closer approximation to the actual process is some situations, a 

nonlinear NARX model is employed (Qin et al., 1996; Previdi, 2002), which is 

identified by means of Artificial Neural Networks (ANN). The NAX model was 

obtained by using Multi-Layer Perceptron (MLP) Artificial neural networks (Chen et 

al., 1989; Narendra et al., 1990) to describe accurately the process behaviour. This 

approach allows bypassing the exact determination of model parameters and of their 

unpredictable variations, as well as the achievement of deep physical knowledge of 

the process and of its governing equations.  

 

The nonlinear model of a finite dimensional system (Ljung, 1999) with order (ny, nu) 

and scalar variables y and u are defined by: 

 

))(),...,1(),(),...,1(()( uy ntutuntytyty −−−−= φ        (1) 
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where y(k) is the Auto-Regressive (AR) variable or system output; u(k) is the 

eXogenous (X) variable or system input. ny and nu are the AR and X orders, 

respectively. φ  is a nonlinear function. 

This neural network (1) consists in highly interconnected layers of neuron-like nodes. 

It has an input and an output layer and any optional layers that are included between 

these are termed hidden layers. Figure 1 shows typical feed-forward network 

architecture with one hidden layer. The term ‘feed-forward’ means that the 

connections between nodes only allows signals to be sent to the next layer of nodes 

and not to the previous (Warnes et al., 1996).  

 

 
Figure 1. Feed-forward network for prediction 

 

The number of nodes in a hidden layer is determined by the user and can vary from 

zero to any finite number. The number of nodes in the input and output layers are 

determined by the number of inputs and by the output variables, respectively. This 

structure is based on a result by Cybenko (Cybenko, 1989) who proved that a neural 

network with one hidden layer of sigmoid or hyperbolic tangent units and an output 

layer of linear units is capable of approximating any continuous function. 

 

)1/(1)( zezf −+=           (2) 

 

where z is the sum of the weighted inputs and bias term. The determination of these 

weights for the node connections allows the ANN to learn the information about the 

system to be modeled. The input data are presented to the network via the input layer. 

These data are propagated through the network to the output layer to obtain the 

network output. The network error is then determined by comparing the network 

output with the actual output. If the error is not smaller than a desired performance, 

the weights are adjusted and the raining data are presented to the network again to 

determine a new network error. One of the most well-known is the back-propagation 

algorithm (Rumelhart et al., 1986). In this algorithm, as with any other gradient  
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approach, large values of learning rate will speed up the learning process, but lead to 

instability, and convergence can only be expected for small values of learning rate. 

The momentum factor is used to damp down oscillations in the learning process. The 

latter is repeated until the network error reaches the desired performance. In this case 

the network is then said to have converged and the last set of weights are retained as 

the network parameters.  

 

2.1. Calculation of the NN output 

The following steps explain the calculation of the NN output based on the input 

vector (Fung et al., 2003). 

 

1. Assign Tŵ ( k ) to the input vector x
T
(k) and apply it to the input units where Tŵ ( k ) is 

the regression vector given by the following equation: 

 

)](),...,1(),(),...,1([)(ˆ
uy

T ntutuntytytw −−−−=        (3) 

 

2. Calculate the input to the hidden layer units: 

 
p

h h h
j ji i j

i=1

net (k)= W (k)x (k)+b∑          (4) 

 

where p is the number of input nodes of the network, i.e. y u bp n n n= + + ; j is the jth 

hidden unit; Wji
h
 is the connection weight between ith input unit and jth hidden unit; 

bj
h
 is the bias term of the jth hidden unit. 

 

3. Calculate the output from a node in the hidden layer: 

 
h h

j j jz =f (net (k))            (5) 

 

where fj
h
 is the sigmoid function defined by the equation (2). 

4. Calculate the input to the output nodes: 

 
h

q q
jl lj

j=1

net (k)= W (k)z (k)∑          (6) 

 

where l is the lth output unit; q
ljW (k)  is the connection weight between jth hidden unit 

and lth output unit. 

 

5. Calculate the outputs from the output nodes: 
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q q

l l lv̂ (k)=f (net (k))          (7) 

 

where q
lf  is the linear activation function defined by: 

 
q q q

l l lf (net (k)) =net (k)           (8) 

 

2. 2. Back-propagation training algorithm 

The error function E is defined as: 
 

q

2
l l

l 1

1
ˆE ( v ( k ) v ( k ))

2
=

= −∑          (9) 

 

where q is the number of output units and vl(k) is the lth element of the output vector 

of the network. Within each time interval from k to k+1, the back-propagation (BP) 

algorithm tries to minimize the error for the output value as defined by E by adjusting 

the weights of the network connections, i.e. Wji
h
 and Wlj

q
. The BP algorithm uses the 

following procedure (Eqs. 10, 11, 12, 13): 

 

h h h
ji ji ji h

ji

E
W ( k 1) W ( k ) W ( k )

W ( k )
α ∆ η

∂
+ = + −

∂
                               (10) 

q q q
lj lj lj q

lj

E
W ( k 1) W ( k ) W ( k )

W ( k )
α ∆ η

∂
+ = + −

∂
                (11) 

where η and α are the learning rate and the momentum factor, respectively; ∆Wji
h
 and 

∆Wlj
q
 are the amounts of the previous weight changes; ∂E/∂Wji

h
(k) and ∂E/∂Wlj

q
(k) are 

given by: 

 
q

h
j j i l l l ljh

ji l 1

E
ˆ ˆz ( k )( 1 z ( k ))x ( k ) ( v ( k ) v ( k ))v ( k )W ( k )

W ( k )
=

∂   = − − −   ∂ ∑              (12) 

 

l l jq
lj

E
ˆ( v ( k ) v ( k ))z ( k )

W ( k )

∂
= − −

∂
                 (13) 

 

The implementation of the NN for forecasting is as follows: 

1. Initialize the weights using small random values and set the learning rate and 

momentum factor for the NN. 

2. Apply the input vector given by Eq. 3 to the input units. 

3. Calculate the forecast value of the error using the data available at (k−1)th sample 

(Eqs. 3, 4 5, 6, 7, 8). 

4. Calculate the error between the forecast value and the measured value. 
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5. Propagate the error backwards to update the weights (Eqs. 10, 11, 12, 13). 

6. Go back to step 2. 

 

For weights initialization, the Nguyen-widrow initialization method (Nguyen et al., 

1990) is best suited for the use with the sigmoid/linear network which is often used 

for function approximation. The used programming language is Matlab 7.0.4.  

 

3. Experimental results 

3.1. Experimental device 

 

The reactor-exchanger is a glass-jacketed reactor with a tangential input for heat 

transfer fluid. It is equipped with an electrical calibration heating and an input system. 

It is equipped also with Pt100 temperature probes. The heating–cooling system, 

which uses a single heat transfer fluid, works within the temperature range between 

−15 and +200 C. Supervision software allows the fitting of the parameters and their 

instruction value. It displays and stores data during the experiment as well as for its 

further exploitation. The input of the reactor-exchanger u(t) represents the heat 

transfer fluid temperature allowing the heating-cooling of the water. y(t) represents 

the outlet temperature of the reactor-exchanger. The process is excited by an input 

signal, very rich in frequencies and amplitudes, in order to have a data set suitable for 

the estimation procedure. The sampling period is fixed to 2 seconds. Before starting 

the estimation of parameters, the database is divided into two separated sets. The first 

set is used for the estimation of parameters and the second one for the model 

validation. The first set is sufficiently informative and covering the whole spectrum. 

The second set contains sufficient elements to make the validation as credible as 

possible.  
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Figure 2. Evolution of the inlet and the outlet temperature 
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3.2. Establishment of NARX models 

To establish a suitable NARX model order for a particular system, neural networks of 

increasing model order can be trained and their performance on the training data 

compared using the loss function (or mean squared error), LF. This function is 

expressed by the following equation: 

 
N

2

i 1

1
LF ( t )

N
ε

=

= ∑         (14) 

 

where )()()( tytyt
∧

−=ε  represents the prediction error and N  is the data length. The 

choice of the hidden nodes is carried out between 1 and 15 nodes. In fact, the minimal 

number of inputs is avoided to ensure the model flexibility. Also, the maximum 

number of inputs is excluded to avoid the over-fitting. The training on the database 

gives the evolution of the loss function. 
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Figure 3. Evolution of the loss function for low complexity models 
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Figure 4. Evolution of the loss function for high complexity models 
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For showing well the minimum of the LF for each model according to the number of 

hidden nodes, we separate the LF evolution in two different figures. Figures 3 and 4 

show the LF evolution according to the structure of the neural model. One indicates 

by Mny.nu.nh a neural model of which the input layer is made up of ny outputs, nu 

inputs and nh hidden nodes. These figures show the LF on the same training data for 

different neural network models according the hidden nodes. The M3.2.10 model 

exhibits the lowest LF; however, this model may not be the best choice, because there 

is a trade off between the model complexity (i.e. size) and accuracy. A small decrease 

in the LF may be rejected if it is at the expense of enlarging the model size. Thus, the 

decision procedure for selecting a parsimonious model using the LF is to decide for 

each increase in model order whether any reductions in the LF are worth the expense 

of a larger model. The difficult trade off between model accuracy and complexity can 

be clarified by using model parsimony indices from linear estimation theory, such as 

Aikeke’s Information Criterion (AIC), Rissanen’s Minimum Description Length 

(MDL) and Bayesian Information Criterion (BIC). The validation phase thus makes it 

possible to distinguish the model describing correctly the dynamic behaviour of the 

process. These statistical criteria are defined as follows: 

 
2nN wAIC ln LF

2 N

 
= + 

 
                                                (15) 

w2n ln( N )N
MDL ln LF

2 N

 
= + 

 
                 (16) 

wn ln( N )N
BIC ln LF

2 N

 
= + 

 
                  (17) 

 

where wn  is the number of model parameters (weights in a neural network). 

Hence, the AIC, MDL and BIC are weighted functions of the LF which penalize for 

reductions in the prediction errors at the expense of increasing model complexity (i.e. 

model order and number of parameters). Strict application of these statistical criteria 

means that the model structure with the minimum AIC, MDL or BIC is selected as a 

parsimonious structure. However, in practice, engineering judgment may need to be 

exercised. Also, for showing well the evolution of AIC, MDL and BIC criteria 

according the LF minimum for each model, we plot the figure 5. The corresponding 

criteria are shown in figure 5.  

A strict application of the indices would select the models M2.2.3. and M3.2.10 

because they exhibit the lowest of three indices for all the model structures compared. 

Although, in this case, the AIC, MDL and BIC criteria do not provide a clear 

indication of a particular model, the interpretation of the these criteria results 

described does provide further support for the choice of a M3.2.10 model indicated by 

the LF. Based on engineering judgment, the model M2.2.3 would be preferred 

without significant loss of accuracy. 

 

 



                                                                                                             Y. Chetouani                              

 10 

 

 

0,8

1,2

1,6

2

2,4

2,8

M2.1.12 M2.2.3 M3.2.10 M3.3,12 M4.3.3 M4.4.8 M5.4.5

Model (Mny.nu.nh)

C
ri

te
ri

o
n

AIC

MDL

BIC

 
Figure 5. Evolution of the criteria for the LF minimum 

 

3.3. Residual analysis 

Once the training and the test of the NARX model have been completed, it should be 

ready to simulate the system dynamics. Model validation tests should be performed to 

validate the identified model. Billings et al. (Billings et al., 1986) proposed some 

correlations based model validity tests. In order to validate the identified model, it is 

necessary to evaluate the properties of the errors that affect the prediction of the 

outputs of the model, which can be defined as the differences between experimental 

and simulated time series. In general, the characteristics of the error are considered 

satisfactory when the error behaves as white noise, i.e. it has a zero mean and is not 

correlated (Cammarata et al., 2002; Billings et al., 1986). In fact, if both these 

conditions are satisfied, it means that the identified model has captured the 

deterministic part of the system dynamics, which is therefore accurately modeled. To 

this aim, it is necessary to verify that the auto-correlation function of the normalized 

error )(tε , namely )(τεεφ , assumes the values 1 for t=0 and 0 elsewhere; in other 

words, it is required that the function behaves as an impulse. This auto-correlation is 

defined as follows (Zhang et al., 1996; Billings et al., 1986): 

 

,)()]()(()( ττδετετεεφ ∀=−= ttE                 (18) 

 

where ε  is the model residual. )(XE  is the expected value of X, τ  is the lag.  

This condition is, of course, ideal and in practice it is sufficient to verify that 

)(τεεφ , remains in a confidence band usually fixed at the 95%, which means that 

)(τεεφ  must remain inside the range 
N

96.1± , with N the number of testing data on 

which )(τεεφ  is calculated. Billings et al. (Billings et al., 1986) proposed also tests  
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for looking into the cross-correlation among model residuals and inputs. This cross-

correlation is defined by the following equation: 

 

,0)]()(()( τεττεφ ∀=−= ttuEu                  (19) 

 

To implement these tests (18, 19), u and ε  are normalized to give zero mean 

sequences of unit variance. The sampled cross-validation function between two such 

data sequences u(t) and )(tε  is then calculated as: 

 

[ ] 2/1

1

2

1

2

1

)()(

)()(
)(

∑∑

∑

==

−

=
+

=
N

t

N

t

N

t

ttu

ttu
u

ε

τε
τεφ

τ

                 (20) 

 

If the equations (17, 18) are satisfied then the model residuals are a random sequence 

and are not predictable from inputs and, hence, the model will be considered as 

adequate. These correlations based tests are used here to validate the neural network 

model. The results are presented in figure 6. In these plots, the dash dot lines are the 

95% confidence bands.  
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Figure 6. Results of model validation tests 

 

The evolution of the cross-correlation of the NARX model is inside the 95% 

confidence bands. In addition, the NARX cross-correlation is low. This explains the 

independence of the residual signal from the input one. For the auto-correlation of the 

NARX neural model, all points are inside the 95% confidence bands. Therefore, this 

model is considered a reliable one for describing the dynamic behaviour of the 

process. This validation phase is used with the neural weights found in the training 

phase. There is a good agreement between the learned neural model and the  
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experiment in the validation phase. This result is important because it shows the 

ability of the neural network with only one hidden layer to interpolate any nonlinear 

function (Cybenko, 1989). Figure 7 shows the difference between the experimental 

output and those simulated par the neural model M2.2.3.  
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Figure 7. Prediction error of the output temperature 

Analyzing this figure, it emerges that the NARX model M2.2.3 ensure satisfactory 

performances as it is indeed able to correctly identify the dynamics of the reactor-

exchanger. The main advantage of the proposed neural approach consists in the 

natural ability of neural networks in modeling nonlinear dynamics in a fast and simple 

way and in the possibility to address the process to be modeled as an input-output 

black-box, with little or no mathematical information on the system. 

4. Conclusion 

This work aims to identify process dynamics by means of a NARX model. The 

identification of the system dynamics by means of input-output experimental 

measurements provides a useful solution for the formulation of a reliable model. This 

paper aimed at identifying the dynamics of a process like a reactor-exchanger in order 

to provide reliable predictions. The identification of the system was performed by 

means of the NARX approach implemented using a neural network. In this case, the 

results showed that the model is able to give satisfactory descriptions of the 

experimental data. Moreover, the developed neural model is used in a recursive 

scheme in order to test their ability to perform long-term predictions. Although the 

predictive capability of the models is limited to a few steps ahead and varies with the 

variable considered, the time period for which satisfactory predictions were achieved 

is sufficient for the implementation of the neural models in a more complex control 

scheme. Finally, the identified neural model will be useful as a reference one for the 

fault detection and the isolation (FDI) which can occur through the process dynamics. 
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