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Abstract 

This paper addresses the strategic planning, design and optimization of a network of 
petrochemical processes under uncertainty and risk considerations.  The problem was 
formulated as a two-stage stochastic mixed-integer nonlinear programming model 
(MINLP) with parameter uncertainty considered in process yield, raw material and 
product prices, and upper and lower product market demand.  Risk was accounted for 
in terms of deviation in both projected benefits in the first stage variables and process 
yield and forecasted demand in terms of the recourse variables.  For each term, a 
different scaling factor was used to analyze the sensitivity of the petrochemical 
network due to variations of each component.  The study showed that the final 
petrochemical network bears more sensitivity to variations in product demand for 
scaling parameters values that maintain the final petrochemical structure obtained 
form the stochastic model.  The concept of Expected Value of Perfect Information 
(EVPI) and Value of the Stochastic Solution (VSS) are also investigated to 
numerically illustrate the value of including the randomness of the different model 
parameters.  Modeling uncertainty in the process parameters provided a more robust 
analysis and practical perspective of this type of problems in the chemical industry. 
 
Keywords: Petrochemical planning, planning under uncertainty, robust optimization 

1. Introduction 

The Petrochemical industry is a network of highly integrated production processes 
where products of one plant may have an end use or may also represent raw materials 
for other processes.  This flexibility in petrochemical products production and the 
availability of many process technologies offer the sense of switching between 
production methods and raw materials utilization.  The world economic growth and 
increasing populations will keep global demand for transportation fuels and 
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petrochemical products growing rapidly for the foreseeable future.  One half of the 
petroleum consumption over the period of 2003 to 2030 will be in the transportation 
sector, whereas the industrial sector accounts for a 39-percent of the projected 
increase in world oil consumption, mostly for chemical and petrochemical processes 
(International Energy Outlook, 2006).  Meeting this demand will require large 
investments and proper strategic planning for the petrochemical industry. 

The petrochemical industry is based on the conversion of petroleum and natural gas to 
chemicals.  Petroleum feedstock, natural gas, and tar represent the main production 
chain drivers for the petrochemical industry (Bell, 1990). From these, many important 
petrochemical intermediates are produced including ethylene, propylene, butylenes, 
butadiene, benzene, toluene, and xylene.  These essential intermediates are then 
converted into many other intermediates and final petrochemical products 
constructing a complex petrochemical network.  This multiplicity gives rise to a 
highly interactive and complex structure as it involves hundreds of chemicals and 
processes.  With such nature, the petrochemical industry requires high level planning 
and consideration of the different structural alternatives when considering future 
developments. 

Considering this type of high level strategic planning models, especially with the 
current volatile market environment and the continuous change in customer 
requirements, the impact of uncertainties is inevitable.  In production planning, 
sources of system uncertainties can be categorized as short-term or long-term 
depending on the extent of time horizon (Subrahmanyam et al., 1994).  The short-
term uncertainties mainly refer to operational variations, equipment failure, etc.  
Whereas, long-term uncertainty may include supply and demand rate variability and 
price fluctuations, on a longer time horizon (Shah, 1998).  Technological uncertainty 
in the left-hand-side coefficients which can be viewed in the context of production 
planning as the variation in process yields is another important uncertainty factor. 

The realization of the petrochemical planning needs along with its important impact 
has inspired a great deal of research in order to devise different modeling frameworks 
and algorithms.  These include optimization models with continuous and mixed-
integer programming under both deterministic and uncertainty considerations. 

The seminal work of Stadtherr and Rudd (1976, 1978) defined the petrochemical 
industry as a network of chemical process systems with linear chemical 
transformations and material interactions.  They showed that the model provided a 
good representation of the petrochemical industry and can be used as a tool for 
estimating the relative effectiveness of available and new technologies and their 
impact of the overall industry.  Their objective was to minimize feedstock 
consumptions.  A similar LP modeling approach was adapted by and Sokic and 
Stevancevic (1983).  Sophos et al. (1980) presented a model that minimizes feedstock 
consumption and entropy creation (lost work).  Fathi-Afshar devised a multiobjective 
model of minimizing cost and gross toxicity emissions.  Modeling the petrochemical 
industry using linear programming may have showed its ability to provide relatively 
reliable results through different technology structures.  However, the need for 
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approximating non-linear objective functions or the restriction of process technology 
combination alternatives mandated different modeling techniques involving mixed-
integer programming. 

One of the first mixed-integer programming models that tackled this problem was 
proposed by Jimenez et al. (1982) and Jimenez and Rudd (1987) for the development 
of the Mexican petrochemical industry.  The proposed models were used to plan the 
installation of new plants with profitable levels as opposed to importing chemical 
products.  However, there were no capacity limitations constraints on the processes.  
Al-Amer et al. (1998) developed an MILP model for the development of Saudi 
Arabia’s petrochemical industry maximizing profit.  The model included minimum 
economic production quantity for the different processes and accounted for domestic 
consumption and global market exports.  This model was further extended by Alfares 
and Al-Amer (2002) to included four main product categories: propylene, ethylene, 
synthesis gas and aromatics and their derivatives.  They devised a non-linear 
objective function of production investment cost at different production levels and 
derived a linear representation of the function through piece-wise linear 
approximation.  Al-Sharrah et al. (2001, 2002) presented MILP models that took 
sustainability and strategic technology selection into consideration.  The models 
included a constraint to limit the selection of one technology to produce a chemical 
achieving a long term financial stability and an environmental consideration through a 
suitability objective.  Sustainability was quantified by a health index of the chemicals 
and increasing profit was represented by the different processes added values.  This 
work was later extended by Al-Sharrah et al. (2003) with the aim of identifying long-
range and short-range disturbances that affect planning of the petrochemical industry.  
Al-Sharrah et al. (2006) further developed their petrochemical planning framework 
into a multiobjective model accounting for economic gain and risk from plant 
accidents.  The above body of research did not account for parameter uncertainties. 

Another stream of research that tackled modeling under uncertainty included the work 
by Ierapetritou and Pistikopoulos (1994) who proposed an algorithm for a two-stage 
stochastic linear planning model.  The algorithm is based on design flexibility by 
finding feasible subspace of the probability region instead of enumerating all possible 
uncertainty realizations.  They developed a Benders decomposition scheme for 
solving the problem without a priori discretization of the random space parameters.  
This was achieved by means of Gaussian quadrature numerical integration of the 
continuous density function.  In a similar production planning problem, Clay and 
Grossmann (1996) developed a successive disaggregation algorithm for the solution 
of two-stage stochastic linear models with discrete uncertainty.  Liu and Sahinidis 
(1995; 1996; 1997) studied design uncertainty in process expansion through 
sensitivity analysis, stochastic programming and fuzzy programming, respectively.  In 
their stochastic model, they used Monte Carlo sampling to calculate the expected 
objective function values.  Their comparison over the different methodologies was in 
favor of stochastic models when random parameters distributions are not available.  
Ahmed et al. (2000) proposed a modification to the decomposition algorithm of 
Ierapetritou and Pistikopoulos (1994).  They avoided solving feasibility subproblems 
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and instead of imposing constraints on the random space, they developed feasibility 
cuts on the master problem.  The modification avoids suboptimal solution and a more 
accurate comparison cost and flexibility.  Nerio and Pinto (2005) developed a 
multiperiod MINLP model for production planning of refinery operations under 
uncertain petroleum and product prices and demand.  The model was solved for 19 
periods and five scenarios. 

The representation through risk management using variance as a risk measure was 
proposed by Mulvey et al. (1995) in which they referred to this approach as robust 
stochastic programming.  They defined two types of robustness: solution robustness 
referring to the optimal model solution when it remains close to optimal for any 
scenario realization, and model robustness representing an optimal solution when it is 
almost feasible for any scenario realization.  More recently, Ahmed and Sahinidis 
(1998) proposed the use of upper partial mean (UPM) as an alternative measure of 
variability with the aim to eliminate nonlinearities introduced by using variance.  In 
addition to avoiding nonlinearity of the problem, UPM presents an asymmetric 
measure of risk, as apposed to variance, by penalizing unfavorable risk cases.  Bok et 
al. (1998) proposed a multiperiod robust optimization model for chemical process 
networks with demand uncertainty and applied it to the petrochemical industry in 
South Korea.  They adopted the robust optimization framework by Mulvey et al. 
(1995) where they defined solution robustness as the model solution when it remains 
close to optimal for any demand realization, and model robustness when it has almost 
no excess capacity and unmet demand.  Barbaro and Bagajewicz (2004) proposed a 
new risk metric to manage financial risk.  They defined risk as the probability of not 
meeting a certain target profit, in the case of maximization, or cost, in the case of 
minimization.  Additional binary variables are then defined for each scenario where 
each variable assumes a value of 1 in the case of not meeting the required target level; 
either profit or cost, and zero otherwise.  Accordingly, appropriate penalty levels are 
assigned in the objective function.  This approach mitigates the shortcomings of the 
symmetric penalization in the case of using variance, but on the other hand, adds 
computational burden through additional binary variables. 

The above discussion points out the importance of petrochemical network planning, 
modeling uncertainty and considering risk in process system engineering studies.  In 
this paper we study and compare the strategic planning, design and optimization of a 
network of petrochemical processes under deterministic conditions, uncertainty and 
uncertainty with risk consideration.  The problem is formulated as a two-stage 
stochastic mixed-integer nonlinear model (MINLP) with nonlinearity arising from 
modeling the risk components.  Both endogenous uncertainty, represented by 
uncertainty in the process yield and exogenous uncertainty, represented by 
uncertainty in raw material and product prices, and upper and lower product market 
demand were considered.  The considerations of uncertainty in these parameters 
provided a more robust and practical analysis of the problem especially at a time 
when fluctuations in petroleum and petrochemical products prices and demands are 
souring. 
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The remainder of the paper is organized as follows.  In the following section we will 
explain the proposed model formulation for the petrochemical network planning 
under deterministic conditions, under uncertainty and with uncertainty and risk 
consideration.  Then we will briefly explain the concept of value of information and 
stochastic solution, in section 3.  In section 4, we will illustrate the performance of the 
model through an industrial case study.  The paper ends with concluding remarks in 
section 5. 

2. Model Formulation 

2.1 Deterministic Model 

The optimization of petrochemical network design involves a broad range of aspects 
varying from economical and environmental analysis, strategic selection of processes 
and production capacities.  The general deterministic model framework presented in 
this paper follows closely that of Al-Sharrah et al. (2001, 2006).  A set of N number 
of chemicals involved in the operation of M processes is assumed to be given.  Let 

 be the annual level of production of process jX Mj∈ ,  the amount of chemical 
 as a feedstock, and  the input-output coefficient matrix of material i in 

process j, and  and  represent the lower and upper level of demand for product 
, respectively.  Then, the material balance that governs the operation of the 

petrochemical network can be expressed as shown in constraints (1) and (2): 

iF
Ni∈ ija

L
iD U

iD
Ni∈

∑
=

≥+
M

j

L
ijiji DXaF

1
 Ni ,...,2,1=  (1)

∑
=

≤+
M

j

U
ijiji DXaF

1
 Ni ,...,2,1=  (2)

For a given subset of chemicals where Ni∈ , these constraints control the production 
of different processes based on final products upper and lower demands of the 
petrochemical market.  In constraint (3), defining the binary variables  for each 
process  is required for the process selection requirement as  will equal 1 
only if process j is selected or zero otherwise. Furthermore, if only process j is 
selected, its production level must be at least equal to the process minimum economic 
capacity .  This can be written for each process j as follows: 
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where K is a valid upper bound.  In the case where it is preferred or to choose only 
one process technology to produce a single chemical, constraints (4) and (5) can be 
included for each intermediate and product chemical type, respectively: 
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Finally, we can specify limitations on the supply of feedstock  for each chemical 
type i though constraint (6) as follow: 
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The economical objective in the model can either be represented as operating cost 
minimization or added-value maximization.  In the case of added-value maximization, 
products prices are subtracted from the cost of feedstocks for each process.  If  is 
the price of chemical i, the added-value objective function can be represented as: 
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2.2 Two-Stage Stochastic Model 

In the previous section, all parameters of the model were assumed to be known with 
certainty.  However, the current situation of fluctuating high petroleum crude oil and 
petrochemical product prices and demands is an indication of the high market and 
industry volatility.  Acknowledging the shortcomings of deterministic models, 
parameter uncertainty is considered in the process yield , raw material and product 

prices , and upper and lower product demand  and , respectively.  The 
problem is formulated as a two-stage stochastic programming model.  The uncertainty 
is considered through discrete distribution of the random parameters with a finite 
number S of possible outcomes (scenarios) ξ corresponding to a 
probability p  The formulation of the stochastic model is as follows: 
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The above formulation is a two-stage mixed-integer linear programming (MILP) 
model.  The recourse variables  and  represent the shortfall and surplus for each 
random realization , respectively.  These will compensate for the violations in 
constraints (9) and (10) and will be penalized in the objective function using the 
appropriate shortfall and surplus costs  and , respectively.  Uncertain 
parameters are assumed to follow a normal distribution for each outcome of the 
random realization 

+
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kξ .  The scenarios for all random parameters are generated 
simultaneously.  In this way, the recourse variables will compensate for the violations 
in the constraints for a specific scenario and not for a particular random parameter.  
The recourse variables  and  in this formulation will compensate for deviations 
from the mean of both lower and upper market demands  and , respectively 
and process yield . 
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2.3 Two-Stage Stochastic Model with Risk Consideration 

The stochastic model with recourse in the previous section takes a decision merely 
based on first-stage and expected second-stage costs leading to an assumption that the 
decision-maker is risk-neutral (Sahinidis, 2004).  In order to capture the concept of 
risk in stochastic programming, Mulvey et al. (1995) proposed the following 
amendment to the objective function: 

),())](,([, yfxQxcMin T
yx ωλωξ +Ε+  

where ))](,([ ωξxQΕ  is the fixed recourse,  is a measure of variability (i.e. second 
moment) of the second-stage costs, and λ is a non-negative scalar representing risk 
tolerance.  The representation through risk management using variance as a risk 
measure is often referred to as robust stochastic programming (Mulvey et al., 1995).  
This is also a typical risk measure following the Markowitz mean–variance (MV) 

f
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model (Markowitz, 1952).  The robustness is incorporated through the consideration 
of higher moments (variance) of the random parameter distribution kξ  in the 
objective function and hence measuring the tradeoffs between mean value and 
variability. 

In this study, operational risk was accounted for in terms of variance in both projected 
benefits, represented by first stage variables, and forecasted demand, represented by 
the recourse variables.  The variability in the projected benefit represents the solution 
robustness where the model solution will remain close to optimal for all scenarios.  
On the other hand, variability of the recourse term represents the model robustness 
where the model solution will almost be feasible for all scenarios.  This approach 
gives rise to a multiobjective analysis in which scaling factors are used to evaluate the 
sensitivity due to variations in each term.  The projected benefits variation was scaled 
by 1θ  and deviation from forecasted demand was scaled by 2θ  where different values 
of 1θ  and 2θ  were used in order to observe the sensitivity of each term on the final 
petrochemical complex.  The objective function with risk consideration can be written 
as follows:  
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Since the randomness in the profit uncertainty term is a multiplication of two random 
parameters, process yield  and chemical prices , its variance can be written 
based on the variance of a product of two variables x and y (Johnson and Tetley, 
1955), i.e.: 
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By expanding the mean and variance terms of , ,  , the objective 
function can be recast as: 
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In order to understand the effect of each term on the overall objective function of the 
petrochemical network, different values of 1θ  and 2θ  should be evaluated as will be 
shown in the illustrative case study. 

3. Value of Information and Stochastic Solution 

Since stochastic programming adds computational burden on practical problems, it is 
desirable to quantify the benefits of considering uncertainty.  In order to address this 
point, there are generally two values of interest.  One is expected value of perfect 
information (EVPI) which measures the maximum amount the decision maker is 
welling to pay in order to get accurate information on the future.  The second is value 
of stochastic solution (VSS) which is the difference in the objective function between 
the solutions of mean value problem (replacing random events with their means) and 
the stochastic solution (SS). (Birge, 1982) 

A solution based on perfect information would yield optimal first stage decisions for 
each realization of the random parameters ξ .  Then the expected value of these 
decisions, known as “wait-and-see” (WS) can be written as (Madansky, 1960): 

)],([ ξξ xzMinEWS =  

However, since our objective is profit maximization, the expected value of perfect 
information (EVPI) can be calculated as: 

SSWSEVPI −=   (18)
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The other quantity of interest is the value of stochastic solution (VSS).  In order to 
quantify it, we first need to solve the mean value problem, also referred to as the 
expected value problem (EV).  This can be defined as ])[,( ξExzMin  where 

ξξ =][E  (Birge, 1982).  The solution of the EV problem provides the first stage 
decisions variables evaluated at expectation of the random realizations.  The 
expectation of the EV problem, evaluated at different realization of the random 
parameters, is then defined as (Birge, 1982): 

)]),(([ ξξξ xzEEEV =  

Where )(ξx  is evaluated from the EV model, allowing the optimization problem to 
choose second stage variables with respect to ξ .  Similarly since our objective is 
profit maximization, the value of stochastic solution can be expressed as: 

EEVSSVSS −=   (19)

The value of stochastic solution can also be evaluated as the cost of ignoring 
uncertainty in the problem.  These concepts will be evaluated in our case study. 

4. Illustrative Case Study 

A number of case studies were developed to demonstrate the performance of the 
optimization models and illustrate the effect of process yield, raw material and 
product prices, and upper and lower product market demand variations.  The case 
study presented in this paper is based on Al-Sharrah et al. (2006).  The petrochemical 
network included 81 processes connecting the production and consumption of 65 
chemicals.  The uncertainty is considered through discrete distribution with a total 
number of 200 scenarios for each random parameter.  A simplified network of 
processes and chemicals included in the petrochemical network are given in Figure 1 
and Table 1; respectively.  The chemicals are classified according to their function as 
follows: 

a) Primary raw material (PR) 

b) Secondary raw material (SR) 

c) Intermediate (I) 

d) Primary final product (PF) 

e) Secondary final product (SF) 

PR chemicals are derived from petroleum and natural gas and other basic feedstock, 
whereas the SR chemicals are those needed as additives or in small quantities. The 
chemicals classified as I those produced and consumed in the petrochemical network. 
Finally, the PF and SF chemicals are the selected final products by selected processes 
and the associated byproducts in the network; respectively. 
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Table 1: A list of chemicals included in the model* 
Chemical Function Chemical Function 
acetaldehyde 
acetic acid 
acetone 
acetylene 
acrylic fibers 
acrylonitrile 
acrylonitrile–butadiene 
styrene 
ammonia 
benzene 
butadiene 
butenes (mixed n-, iso-, 
-dienes, etc.) 
C-4 fraction (mixed butanes, 
-enes, etc.) 
carbon dioxide 
carbon monoxide 
chlorine 
chlorobenzene 
coke 
cumene 
ethane 
ethanol 
ethyl benzene 
ethylene 
ethylene dichloride 
formic acid 
fuel gas 
fuel oil  
gas oil 
gasoline 
hydrochloric acid 
hydrogen 
hydrogen chloride 
 

SF+I 
I+PF 
PF 
I 
PF 
I 
PF 
 
PR 
SF+I 
I 
SF+PR 
 
SF+PR 
 
SR 
I 
PR 
I 
PR 
I+PF 
PR 
I 
I 
SF+I 
I 
SF 
SF 
SF+PR 
PR 
SF 
SR 
SR+SF 
SR+SF 
 

hydrogen cyanide 
hydrogen peroxide 
isopropyl alcohol 
methane 
methanol 
methyl acrylate 
methyl methacrylate 
naphtha 
n-butane 
n-butylenes (1- and 2-) 
pentane 
phenol 
polybutadiene rubber 
polystyrene (crystal grade) 
polystyrene (expandable beads) 
polystyrene (impact grade) 
poly(vinyl acetate) 
poly(vinyl alcohol) 
poly(vinyl chloride) 
propane 
propylene (chemical grade) 
propylene (refinery grade) 
propylene oxide 
sodium carbonate 
sodium hydroxide 
styrene 
sulfuric acid 
sulfur 
synthesis gas 3:1 
synthesis gas 2:1 
toluene 
vinyl acetate 
vinyl chloride 
xylene (mixed)  
 

I 
I 
I 
PR+SF 
I 
SR 
SR 
PR 
PR 
PR 
SR 
PF 
SR 
I+PF 
PF 
PF 
I 
SR 
PF 
SF+PR 
SF+I 
PR 
SF 
SR 
SR 
I 
I 
PR 
I 
SF 
PR+SF 
I+PF 
I 
SR+SF 
 

* Also indicated the potential function of each chemical; PR= primary raw material, SR= secondary 
raw material, I= intermediate, PF= primary final product, SF= secondary final product. 

The modeling system GAMS (Brooke et al., 1996) is used for setting up the 
optimization models.  The computational tests were carried out on a Pentium M 
processor 2.13 GHz.  The models were solved with DICOPT (Viswanathan & 
Grossmann, 1990).  The NLP subproblems were solved with CONOPT2 (Drud, 
1994), while the MILP master problems were solved with CPLEX (CPLEX 
Optimization Inc, 1993). 
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Figure 1: A simplified network of processes in the model 

4.1 Solution of the deterministic model  

The model in this form is moderate in size and the solution indicated the selection of 
22 processes out of the 81 processes proposed. The selected processes and their 
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respective capacities are shown in Table 2.  This case study represents an ideal 
situation were all parameters are know with certainty. 

The final petrochemical network suggests the use of lighter petroleum refining 
feedstocks.  The petrochemical network mainly used ethane, propane, C-4 fractions 
(mixed butanes, -enes, etc.), pentane, and refinery grade propylene.  In the case of 
lower lighter petroleum product availability, the network will suggest the use of steam 
cracking of naphtha or gas oil.  This will be required in order to obtain the main 
petrochemical building blocks for the downstream processes that include ethylene and 
chemical grade propylene.  The annual production benefit of the petrochemical 
network was found to be $ 2,202,268. 

Table 2: Deterministic model solution 

Process selected Production Capacity 
(103 tons/yr) 

acetaldehyde by the one-step oxidation from ethylene 1015.5 
acetic acid by air oxidation of acetaldehyde 404.6 
acetone by oxidation of propylene  169.8 
acetylene by submerged flame process 179.8 
acrylic fibers by batch suspension polymerization 246 
acrylonitrile by cyanation/oxidation of ethylene  294.9 
ABS by suspension/emulsion polymerization 386.9 
benzene by hydrodealkylation of toluene 432.3 
butadiene by extractive distillation 96.7 
chlorobenzene by oxychlorination of benzene 73.0 
cumene by the reaction of benzene and propylene 72.0 
Ethylbenzene by the alkylation of benzene 458.8 
ethylene by steam cracking of ethane-propane (50-50 wt%) 1068.3 
hydrogen cyanide by the ammoxidation of methane 177.0 
Phenol by dehydrochlorination of chlorobenzene 61.4 
polystyrene (crystal grade) by bulk polymerization 66.8 
polystyrene (expandable beads) by suspension polymerization 51.5 
polystyrene (impact grade) by suspension polymerization 77.1 
poly(vinyl chloride) by bulk polymerization 408.0 
styrene from dehydrogenation of ethylbenzene 400.0 
vinyl acetate from reaction of ethane and acetic acid 113.9 
vinyl chloride by the hydrochlorination of acetylene 418.2 

4.2 Solution of the stochastic model 

The two-stage mixed-integer stochastic program with recourse that includes a total 
number of 200 scenarios for each random parameter is considered in this section.  All 
random parameters were assumed to follow a normal distribution and the scenarios 
for all random parameters were generated simultaneously.  Therefore, the recourse 
variables account for the deviation from a given scenario as apposed to the deviation 
from a particular random number realization. 
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The solution indicated the selection of 22 processes with a slightly different 
configuration and production capacities from the deterministic case.  For example, 
acetic acid was produced by direct oxidation of n-butylenes instead of the air 
oxidation of acetaldehyde.  Furthermore, ethylene was produced by pyrolysis of 
ethane instead of steam cracking of ethane-propane (50-50 wt%).  These changes as 
well as the different production capacities obtained illustrate the effect of the 
uncertainty in process yield, raw material and product prices, and upper and lower 
product demands.  In fact, ignoring uncertainty of key parameters in decision 
problems can yield non-optimal and infeasible decisions (Birge, 1995).  The annual 
profit of the petrochemical network studied under uncertainty was found to be $ 
2,698,552.  However, in order to properly evaluate the added-value of including 
uncertainty of the problem parameters, we will investigate both the expected value of 
perfect information (EVPI) and the value of stochastic solution (VSS). 

In order to evaluate the value of stochastic solution (VSS) we first solved the 
deterministic problem, as illustrated in the previous section, and fixed the 
petrochemical network and the production rate of the processes.  We then solved the 
EEV problem by allowing the optimization problem to choose second stage variables 
with respect to the realization of the uncertain parameters ξ .  From (19), the VSS is: 

622,513
930,184,2
552,698,2

=
=

−=

VSS
EEV

EEVVSS
 

This indicates that the benefit of incorporating uncertainty in the different model 
parameters for the petrochemical network investment is $ 513,622.  On the other 
hand, the expected value of perfect information (EVPI) can be evaluated by first 
finding the “wait-and-see” (WS) solution.  The latter can be obtained by taking the 
expectation for the optimal first stage decisions evaluated at each realization ξ .  From 
(18), the EVPI is: 

488,25
040,724,2

552,698,2

=
=

−=

EVPI
WS

WSEVPI
 

This implies that if it were possible to know the future realization of the demand, 
prices and yield perfectly, the profit would have been $2,724,040 instead of 
$2,698,552, yielding savings of $25,488.  However, since acquiring perfect 
information is not viable, we will merely consider the value of stochastic solution 
(SS) as the best result.  These results show that the stochastic model provided an 
excellent solution as the objective function value was not too far from the result 
obtained by the WS solution. 

 

 

 14



Robust MINLP Optimization Model for Petrochemical Network Design under Uncertainty 

 15

Table 3: Stochastic model solution 
Process selected Production Capacity 

(103 tons/yr) 
acetaldehyde by the one-step oxidation from ethylene 991.0 
acetic acid by direct oxidation of n-butylenes 397.6 
acetone by oxidation of propylene  169.6 
acetylene by submerged flame process 179.7 
acrylic fibers by batch suspension polymerization 245.8 
acrylonitrile by cyanation/oxidation of ethylene  300.9 
ABS by suspension/emulsion polymerization 419.6 
benzene by hydrodealkylation of toluene 767.4 
butadiene by extractive distillation 104.9 
chlorobenzene by oxychlorination of benzene 146.0 
cumene by the reaction of benzene and propylene 144.3 
Ethylbenzene by the alkylation of benzene 692.8 
ethylene by pyrolysis of ethane 1051.8 
hydrogen cyanide by the ammoxidation of methane 180.6 
Phenol by dehydrochlorination of chlorobenzene 122.7 
polystyrene (crystal grade) by bulk polymerization 133.4 
polystyrene (expandable beads) by suspension polymerization 102.8 
polystyrene (impact grade) by suspension polymerization 154.1 
poly(vinyl chloride) by bulk polymerization 407.6 
styrene from ethylbenzene by hydroperoxide process 607.7 
vinyl acetate from reaction of ethylene and acetic acid 113.8 
vinyl chloride by the hydrochlorination of acetylene 417.8 
 
However, as mentioned in the previous section, the stochastic model takes a decision 
based on first-stage and expected second-stage costs and hence does not account for a 
decision-maker risk behavior (risk-averse or risk taker).  For this reason, a more 
realistic approach would consider higher moments where the tradeoff between the 
mean value and the variations of different scenarios is appropriately reflected. 

4.3 Solution of stochastic model with risk consideration 

Considering risk in terms of variations in both projected benefits and recourse 
variables provided a more robust analysis of the problem.  As explained earlier, the 
problem will have a more robust solution as the results will remain close to optimal of 
all given scenarios through minimizing the variations of the projected benefit.  On the 
other hand, the model will be more robust as minimizing the variations in the recourse 
variables leads to a model that is almost feasible for all the scenarios considered.  In 
order to investigate the effect of each term on the original problem, the spectrum of 
results generated by varying the scaling factors must be explored.  For this reason, the 
model was repeatedly solved for different values of 1θ  (profit variations) and 2θ  
(recourse variables variations) in order to construct the efficient frontier plot of 
expected profit versus risk measured by standard deviation.  Figures 2 and 3 illustrate 
the change in expected profit with risk in terms of standard deviation at different 1θ  
and 2θ  values, respectively.  The graphs show the decline in expected profit as we 
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penalize the variations in process yield, profit and demand by increasing the values of 
1θ  and 2θ .  These values will depend on the policy adopted by the investor whether 

being risk-averse or risk taker and can be read directly from the efficient frontier 
plots. 
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Figure 2: Risk vs. projected benefits at different 1θ  
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Figure 3: Risk vs. projected benefits at different 2θ  

Furthermore, it was found that the problem bears more sensitivity to variations in 
product demand for values of 1θ  and 2θ  that maintain the final petrochemical 
structure.  However, as the values of 1θ  and 2θ  increase some processes became too 
risky to include in the petrochemical network and instead, importing some final 
chemicals became a more attractive alternative.  This type of analysis requires 
accurate pricing structure of the local market under study as compared to global 
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market.  In this study, however, we restricted the range of the variations of scaling 
parameters 1θ  and 2θ  to values that will maintain all processes obtained from the 
stochastic model.  This approach was adopted as the objective of the study was to 
include all required processes that will meet a given demand. 

5. Conclusion 

A robust mixed-integer nonlinear programming model for maximizing profit in the 
design of petrochemical networks was presented.  Uncertainty in process yield, raw 
material and product prices, and upper and lower product market demand were 
considered.  In addition, operational risk was accounted for in terms of variance in 
projected benefits, process yield and forecasted demand.  Including these different 
sources of uncertainty in the problem as well as modeling risk provided a more robust 
analysis for this type of highly strategic planning applications in the chemical 
industry.  The proposed approach increased solution robustness and model robustness 
by incorporating penalty terms for both deviation from both projected benefits and 
recourse variables; respectively. 

The results of the model studied under uncertainty and with risk consideration, as one 
can intuitively anticipate, yielded different petrochemical network configurations and 
plant capacities when compared to the deterministic model results.  The concepts of 
Expected Value of Perfect Information (EVPI) and Value of the Stochastic Solution 
(VSS) were introduced and numerically illustrated.  The results obtained from the 
stochastic model provided good results as the objective function value was not too far 
from the results obtained using the wait-and-see approach.  Furthermore, the study 
showed that the final petrochemical network bears more sensitivity to variation in 
product demand when the values of 1θ  and 2θ  were selected to maintain the final 
petrochemical structure. 
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