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Abstract 

Laboratory and other off-line measurements are an integral part of process and quality 
management. Quite commonly, quality variables measured are statistically dependent 
and thus measurement of one variable is an indirect measurement of the others. In this 
presentation we formulate the cost-optimal measurement scheduling problem of 
laboratory measurements under the constraint that uncertainty in quality variable 
estimates are  at all times less than specified. We solve this problem for Gaussian 
joint probability density of quality variables and uncertainty evolving according to 
Ornstein-Uhlenbeck process. In this case the optimal schdule is independent on the 
measurement values obtained and thus it is a policy. We also discuss other practically 
relevant formulations of optimal measurement scheduling, in particular ones that link 
scheduling directly to operative decisions about the process and product quality.  
 
Keywords: quality management, scheduling, optimization, stochastic differential 
equations, simulated annealing 
 

1. Introduction 

Quality management of industrial large-scale processes is typically based on three-
level measurement hierarchy: on-line sensors sampled at high frequency, at-line 
analyzers, and accurate and standardized laboratory measurements. Closed-loop 
control is based on on-line sensors, but as these are rather indirect measurements and 
may, e.g., drift, they must be continuously validated. At-line analyzers mimic 
laboratory analyses but are often not fully compliant with measurement standards. At 
line analyzers support dynamic validation of on-line measurements and manual 
quality control. Laboratory analyses are accurate but too infrequent to capture 
relevant process or quality dynamics and rather expensive to carry out. Laboratory 
analyses support dynamic validation of at-line analyzers. 
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At least tens of quality parameters are measured in industrial processes, such as those 
of papermaking industry. However, the actual quality space is expected to be of much 
lower dimensionality. Thus quality parameters are typically statistically dependent 
and measuring a subset of them provides information about the others. Utilizing 
covariance of quality parameters improves cost-information performance of a 
measurement system. 
 
The three level measurement hierarchy has evolved rather gradually in process 
industries, e.g in papermaking industry, and its composition has rarely been optimized 
to provide the required information at minimum cost. In this presentation we shall 
discuss how to set up such an optimization problem and discuss its solution when 
information dynamics is linear-Gaussian. In particular, we shall consider scheduling 
at-line analyzers and/or laboratory measurements to maintain uncertainty about 
quality constrained below a prescribed level.  
 
Our approach is based on work by Mehra (1976), and Bicchi and Canepa (1993) who 
discuss the optimization of measurement scheduling to minimize a weighted 
covariance matrix on measurement information, see also Gupta et al (2006). In a 
seminal paper Maier et al (1967) integrated measurement selection and scheduling as 
degrees of freedom into model-based control optimization. In this presentation we 
shall formulate the general optimal measurement scheduling problem and solve it 
with simulated annealing (see e.g. Otten and can Ginneken). Practical applications to 
papermaking industry are presented in Konkarikoski and Ritala (2006), Gren et al 
(2007a, 2007b, 2007c).  
 
This paper is organized as follows. In Section 2 we present first the information 
dynamics in general form and then the linear-Gaussian form (Ornstein-Uhlenbeck 
process, OUP). For the OUP the time dependence of information uncertainty matrix 
can be solved analytically and it is independent on the actual measurement values 
obtained. In Section 3 we motivate and formulate the measurement scheduling 
problem as a cost minimization task constrained by maximum allowable uncertainty 
about quality. We note that in the case of linear-Gaussian information dynamics this 
is a policy optimization: measurement schedule is to be optimized once and for all, 
independent on measurement values obtained. In Section 4 we discuss solving the 
optimization problem by applying simulated annealing, and provide examples. In 
section 5 we discuss alternative optimization formulations, in particular ones that 
define directly the management/control performance as the objective. We also discuss 
our experience in applying the measurement scheduling method in practise: e.g. how 
to infer the “maximum allowable uncertainty” in quality information. 
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2.  Information dynamics 

2.1. General case 

We shall describe the information about quality parameter mRy ∈ at time t, given a 

measurement history mh(t) = { }{ } tttx jj
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Measurement of each quality variable is described as conditional probability 
densities, too: 
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In what follows, we shall assume that measurement uncertainties are not statistically 
dependent, i.e the joint probability density of measurements X(j)(t), given y(t), is the 
product of individual densities of form (2). 
 
Information about quality, Eq. (1), evolves through two mechanisms: between 
measurements the information becomes continuously more uncertain, whereas when 
measurements are made, the uncertainty about quality is reduced discontinuously.  
 
We choose to describe information degradation with a stochastic differential equation 
(SDE): 
 

dWtYGdttYFdY ),(),( +=        (3), 
 
where W is an m-dimensional Wiener process. Given an initial probability density of 
Y at time t0, any later probability density is obtained by solving the corresponding 
Fokker-Planck equation: 
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where OFP[*] is the linear Fokker-Planck operator, see e.g. Risken (1996). 
 
When new measurement information becomes available, the information is updated 
according to Bayes theory as 
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where mh(-) and mh(+) denote measurement history immediately before, respectively 
after the measurement at time t becomes available, and meas(t) is set of measurements 
made at time t providing values x(j)(t). 
 
The general information dynamics, Eqs. (3-5), is formally a Kalman state estimation 
method with SDE of Eq. (3) as the system model. However, as the goal of the 
measurement system is to maintain the quality uncertainty below prescribed 
threshold, the SDE is chosen according to worst-case principle, e.g. random walk 
diffusion or Ornstein-Uhlenbeck process, rather than by seeking an accurate process 
model. 

2.2. Linear-Gaussian case 

Let us assume that measurements are unbiased and their uncertainty is described as a 
Gaussian: 
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where )( j
measσ  is the uncertainty in measuring quality parameter j.  Let us assume that 

information dynamics is described with Ornstein-Uhlenbeck process: 
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Matrix D – the diffusion matrix – describes how rapidly the uncertainty grows. To 
interpret the matrix B, let us note that the solution of the corresponding Fokker-Planck 
equation, with initial Gaussian probability density N(y|y0,Σ0), is a Gaussian with mean 
and covariance matrix given as (see, e.g. Risken (1996)): 
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As time tends to infinity, all initial information is lost and we are left with a 
priori information about mean and covariance of quality parameters. 
According to Eq. (8) )2/,|()( 1

)(
−

∞ = DByyNyf mY  and hence the relationship 
between matrix B, diffusion matrix D and the a priori covariance of quality 
Σ(ap) is  
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Let us now assume that after measurements made at time t, the information about 
quality is ))(),(ˆ|( ttyyN Σ . Let us assume that a subset { }m
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becomes available at time t+Δt. Then according to Eqs. (5-9) the quality information 
is Gaussian with mean and covariance given as: 
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For the optimization problem to be formulated in Section 3, it is important to notice 
that updating uncertainty covariance is independent on measurement values 
{ }m

jj
j tx

2
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=  obtained. 

3. Formulation of optimal measurement scheduling problem 

Uncertainty affects decision making in two ways: firstly the more uncertain the 
information the lower the quality of decisions in terms of the deterministic objective, 
and secondly the higher the uncertainty the more important is decision maker’s 
attitude towards risk, i.e. whether she/he is risk-aversive, neutral or opportunistic. The 
latter effect is formalized by replacing the deterministic objective e.g. with a utility 
function, adding a risk premium to the objective or constraining the probability of 
particularly poor values of objective (Rios and Insua 2000, Jokinen et al 2006). 
 
Quality information is utilized in a multitude of decisions. In general, measuring the 
outcome of decisions and the corresponding actions in terms of money is difficult and 
thus formulating an objective that combines cost and benefit of measurement 
information is tedious. Therefore, in this paper we concentrate on a case of 
guaranteeing a chosen quality of decisions at lowest possible cost rather than 
optimizing information collection for decisions, and only discuss the latter case in 
Section 5.  
 
Let us assume that we know the chosen quality of decisions to be achieved if 
uncertainty about each quality variable is below a given value )( j

upσ . We shall denote 

the measurement schedule by a time-dependent vector mRtk ∈)(  the components of 
which are sums of delta functions at instants of measurements. The cost of 
measurement is denoted as c(k(t)). We allow the cost of measurement at a time instant 
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to be a non-additive function of individual measurement costs but assume that the 
cost at one time instant does not depend on which measurements are made at other 
time instants. 
 
In practise, measurements cannot be made at any time instant. For example, in 
papermaking the end product quality sample may be taken only when a machine reel 
has been completed, typically at 30 to 45 minutes intervals. Therefore, we consider a 
time-discretized scheduling problem, the discretization interval Δt being determined 
by the constraints set by the process or by other domain specific considerations. We 
also note that Mehra (1976) showed that the optimal schedule of scalar measurement 
can be constructed on measurements at most m(m+1)/2+1 instants, where m is the 
dimensionality of the state space. When time is discretized, the measurement vector 
k(i) will be binary. 
 
Let the optimization time horizon be NΔt and let 0<α<1 be a discounting factor. Then 
the scheduling problem is formulated as 
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       (11). 

 
Here Σ0 is the quality information covariance matrix before measurements at time i=0 
are made. Symbol ⊗  denotes element-by-element multiplication of matrices.  
 
The optimization problem (11) does not depend on which are the measurement values 
obtained. The solution will depend on the circumstances at the initial instant t = 0 
only through Σ0. However, if circumstances at t = 0 have arisen through similar 
optimization, then  
 

( ) ( )( )tDNN apoptapopt ΔΣ−−−Σ−Σ+−Σ≈Σ
−1)()()()(

0 exp1)1()1(    (12) 
 
where Σ(opt)(i) refers to the covariance matrix under optimal policy. Note that exact 
equality cannot be achieved due to that measurement decisions are discrete.  
 
Thus measurement scheduling is a policy optimization problem: it can be solved for 
once and all and then the resulting schedule applied cyclically. To solve for the policy 
two alternatives exist. Either one may choose the length of policy cycle N first, then 
add Eq. (12) to the constraints of (11) and solve the resulting optimization problem, or 
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one may choose a large N in (11), solve without additional constraints and seek from 
the solution cyclic patterns after a transient period. In both cases discounting should 
be neglected by choosing α = 1. 

4. Solving the optimal schedule with simulated annealing 

The measurement scheduling optimization of Eq. (11) is a complex integer 
programming problem. For example, if we have 10 measurements and 80 time 
intervals, the search space consists of 2800, or roughly 10240, solution candidates. We 
have chosen to solve the scheduling problem with simulated annealing (SA) that is 
rapid to implement and rather independent on the details of the problem. However, 
SA being a stochastic method does not guarantee global optimality of the solution 
found and may be in some cases rather slow. When applying SA we have followed 
the general guidelines in (Otten, van Ginneken, 1989). 
 
SA requires a feasible solution as a starting point. Obviously, if all measurements are 
made at all time instants, the uncertainty in information about quality is minimized. 
Therefore, we use this point as the starting point of SA: if this is not a feasible 
solution, the set of feasible solutions is empty. The initial temperature is chosen to be 
1.5 times the standard deviation of objective function of randomly chosen solution 
candidates, feasible or not feasible. Temperature scheduling is based on estimating 
global and local accessibility of the state space during the optimization. The 
Metropolis step is simply choosing a random instant and a random measurement and 
changing the corresponding binary value of k. 
 
Let us consider an example of 5 measurements and 100 time intervals. In this 
example the a priori covariance matrix of quality parameters is 
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Therefore parameters 1, 2 and 4 are strongly correlated and their a priori variance is 
small, whereas parameters 3 and 5 are rather independent and with high a priori 
variance. Diffusion matrix is diagonal with 0.05 for each quality parameter and the 
time step Δt = 1. Measurement uncertainty of each measurement is 0.31/2. Initial 
information matrix is diagonal with elements of 0.25 for each quality parameter.  
 
Requirement on information uncertainty is specified as σup

(j) = 0.31/2. Cost of 
measurement is a mean value of two components: the number of parameters measured 
and a random component specific for each combination and distributed as Uni[0,1]. 
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Figure 1. Example of an optimal schedule for 5 measurements over 100 time steps. Asterisk (*) denotes a 
measurement. Note that variables 2 and 8 are never measured but estimated on the basis of other measurements. 

 

 
Figure 2. Predicted uncertainty in variable 4 corresponding to the optimal schedule in Figure 1.  Red dots on curve 
denote instants for direct measurement of variable 4. Uncertainty (variance) is constrained to be below 0.3.  
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Figure 1 shows the optimal schedule. The optimization consisted of approximately 
35000 feasible Metropolis steps in 98 temperature steps, and took some 20 minutes 
with Matlab and standard laptop. Towards the end of the optimization the fraction of 
feasible steps of all steps tends towards zero, and most of the optimization time was 
spent in the last 2000 feasible steps.  
 
As expected by correlation structure quality variables 3 and 5 are frequently measured 
due to their high a priori variance and statistical independence. There appears no 
striking coherence between their measurement instants, which is due to that 
measuring them together represents a cost close to that of measuring them separately 
at different time instants. For quality variables 1, 2 and 4 measurements are less 
frequent due to more accurate a priori information and correlation between the 
variables. Figure 2 shows the variance in information about quality variable 4. The 
points with red dots indicate instants of actually measuring variable 4 whereas the 
other reductions in variance are due to measuring either quality variable 1 or 2. Note 
that quality variable 1 is measured only once over the optimization time horizon. This 
suggests that the optimal policy would entirely exclude measurement of variable 1. 
 
The schedule in Figure 1 does not seem to converge to a simple cyclic policy. This is 
due to the rather special form of initial information covariance matrix and to that 
quality variables 3 and 5 are quite independent from the other variables – hence their 
measurement schedule is a policy that may be incommensurate with that of the other 
quality variables. Figure 3 shows another example of 80 time steps and 10 variables. 
In this case a convergence towards a cyclic policy is more apparent. 
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Figure 3. Example of an optimal schedule for 10 measurements over 80 time steps. Asterisk (*) denotes a 
measurement. Note that variables 2 and 8 are never measured but estimated on the basis of other measurements. 
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5. Discussion 

Measurement scheduling is a two-goal optimization problem: minimize the costs and 
maximize the quality of information or quality of decisions. In the above we chose the 
cost to be optimized and quality of information to be constrained. Alternative 
formulation is to constrain costs and optimize the quality: 
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The parameters σgoal

(j) define the relative uncertainty scale for quality variables and 
are thus similar in nature to σup

(j) in formulation (11), except that one of them can be 
chosen arbitrarily due to that the scale of objective function does not affect the 
optimal schedule. The new parameter c0 is the highest allowable cost of measurement 
per time unit. Solution of optimization problem (14) with industrial data has been 
discussed in Konkarikoski and Ritala (2006) and Gren et al (2007a, 2007b).  
 
Solution of problem (14) does allow uncertainty in some of quality parameters at 
some time instants to be rather high through compensation of very low uncertainty in 
other parameters/time instants. Typically, this is not preferable for decision making. 
However, a common practical case is that a number of measurements, nmeas, can be 
made with normal resources and exceeding this number will involve additional people 
and/or equipment. This corresponds to that the cost of measurement c(k) is a function 
of only on the number of measurements made and that it is an abrupt function at nmeas. 
In such cases formulation (14) is preferred to that of (11). 
 
In practical implementations finding the uncertainty constraint, respective scaling 
parameters, for formulations is the main difficulty. At paper mills where the 
scheduling has been tested no process engineers or operators have been able to answer 
directly questions, such as “what is allowable uncertainty about paper strength”. 
Instead, defining the uncertainty constraints must be based on detailed analysis on 
how quality information is utilized when process and quality management actions are 
decided upon. In particular, the uncertainty constraints should not be set up on the 
basis of measurement accuracy: some of the quality parameters are actually measured 
with accuracy far better than needed in decision making whereas others can barely be 
measured with the accuracy required for decisions. 
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An additional degree of freedom in measurement scheduling is to make several 
measurements on a quality variable. This is easily incorporated to the formulations 
(11) and (14) by allowing k to take values nr

1/2, where nr = 0, 1, 2… is the number of 
independent repeats rather than binary values only. However, this enlarges the search 
space from (2m)N to ((nr,max+1)m)N, where nr,max is the maximum number of repeats.   
 
Ideally, measurement scheduling should be linked directly to decision optimization so 
that measurement selection is part of the action space. Meier at al (1967) discussed 
such control problems from dynamic programming point of view. In particular, they 
showed that for linear systems, quadratic cost, and Gaussian stochastic effects, the 
decision optimization can be carried out independently on measurement scheduling 
optimization, and that measurement scheduling reduces to a regular cyclic policy 
optimization. However, quality information is utilized in practice to rather intuitive 
and unstructured decision tasks, and even when the decision tasks have been 
formulated as optimization problems, they tend to be rather complex to solve. Thus 
establishing the direct link between measurement scheduling and decision making 
about quality has turned out extremely difficult. This led us to separate the two 
problems by formulations (11) or (14) at the expense of specifying the uncertainty 
constraint, respective scaling parameters. 

6. Conclusions 

Current industrial practice for scheduling measurements has evolved gradually over a 
long period of time and without systematic analysis. Our experiences show that a 
considerable amount of resources is allocated to collecting information rather useless 
for operation at the expense of neglecting acquisition of some operationally critical 
quality information. Therefore an urgent and practical need for optimizing the 
scheduling and the extent of off-line quality information exists. 
 
In this presentation we have outlined the foundation for practical measurement 
scheduling to support quality and process management in process industries, such as 
the papermaking industry. This approach relies heavily on ideas presented more than 
three decades ago by Mehra (1976), and even earlier by Meier et al (1967), but which 
have been little used in quality management of process industries. 
 
The measurement scheduling presented here is systematic once the uncertainty 
constraint, respective scaling parameters have been determined. However, these 
parameters can be determined only through  a rather tedious analysis of how quality 
information is utilized in operational decisions. We suggested and will continue our 
work towards integrating the optimization of operational actions and measurement 
collection. As many operational decisions are made intuitively rather than by 
structuring them into decision optimization problems and the solving them, also this 
approach must be supported with detailed analysis on operational decision making. 
Simple examples of such operational decision analyses in papermaking industry are 
given e.g. in Jokinen et al (2006). 
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