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Abstract 

When designing conventional and non-conventional distillation processes shortcut 
methods for predicting feasible separations are widely used. The thermodynamic 
topological analysis based on phase equilibrium and distillation maps study is a good 
approach allowing the knowledge of basic tower configuration at extreme conditions 
(infinite efficiency: total reflux and infinite number of stages). At these conditions 
usually the prediction is qualitatively approximate to that at total reflux. However 
some times the prediction strong differs from that, found during rigorous simulation. 
Additionally because of the infinite efficiency these regimes are not the optimal from 
the point of view of energy consumption. Making the thermodynamic topological 
analysis at finite reflux gives a closed region into the concentration simplex where 
feasible separations take place with a limit of minimal reflux number (minimal energy 
consumption). 
 
Three component nonideal mixtures from acetates with different arranges of 
distillation maps are studied and the distillation configuration as well as parameters 
for rigorous simulation are presented. The mathematical method for solving the 
differential equations systems involved in phase equilibrium models is innovative and 
characterized by accuracy and low time calculations. All this information is used and 
explained as a way for the analysis of reactive distillation processes at finite reflux. 
 
Keywords: conceptual design and simulation, thermodynamic topological analysis, 
reactive distillation 
 

1. Introduction 

The reactive mass-exchange process is a process where, the chemical reaction and 
separation of the reaction mixture occur simultaneously and combined (in one 
apparatus) with predominant removing of target reaction products. As was shown by 
Pisarenko and coworkers today the design of reactive distillation processes consists of 
several stages. These stages could be resumed in three basic blocks: shortcut methods, 
rigorous methods and experiments. However this design strategy as many more 
showed in the literature does not consider the technological optimization looking for 
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improvements in the final synthesized process. Shortcut methods based on 
thermodynamic-topological analysis are very helpful to minimize simulation and 
laboratory experiments and also allow understanding further possibilities in higher 
conversion and selectivity achievement. In this work this kind of modification to 
these shortcut strategies are explained and complemented with new developments in 
analysis of finite and infinite efficiency RD columns. For the reactive distillation 
relatively few systematic methods or approaches exists (Pisarenko, et al, 2001), 
however no all methods maximizes the synergy effect between reaction and the 
separation. The short-cut methods, based on the study of the topology of the system 
(topological thermodynamic), are very used to obtain a first approach, allowing the 
reduction of simulation and experimentation time. In addition, the prediction of the 
limiting steady states (Static analysis at infinite reflux), characterized by the 
maximum conversion and selectivity is included in this stage. This work developed a 
methodology for better understanding of interactions between phase and chemical 
equilibrium at finite conditions of operation, determining the real separation 
possibilities for the reactive distillation process. Then one could have a range of ideas 
in the conceptual design of the process, minimum demanded energy and catalyst 
requirements. From this information the rigorous simulation can be made on the basis 
of theoretical validated parameters.  
 
1. Thermodynamic Topological Analysis (T.T.A):  
 
1.1 Residue Curve Map  
 
The open evaporation, also known like simple distillation or Rayleigh distillation, is a 
batch distillation process with an equilibrium stage where the formed steam is 
continuously removed, thus, at any time the removed steam is in equilibrium with the 
residual liquid. The trajectory of liquid composition of a simple distillation is known 
in literature like residue curve. Therefore, when we make a mass balance in a process 
of open distillation, the following equation describes the residue curves in the 
concentracional simplex, thus: 
 

ii yx
d
dx

−=
τ

         (1.1) 

   

( ii Kx
d
dx

−= 1 )
τ

 For  1,...2,1 −= Ci        (1.1.1) 

 
Where  are the molar fractions of “i” compound in the liquid an vapor phase 
respectively,  is the number of compounds that the feed represent ; 

ii yx ,
C τ   can 

understand like a coordinate function of the time, on the level of liquid in the 
container of open evaporation from a initial time ott = , when start the evaporation, to 
some “t” time . The mixture will contain C species with   number of 
mol , so the mixture composition will be defined by a 

kn
( ck ,...,1= ) 1−c  molar fraction 

vector .The trajectories described by the solution of equation (1) [ 121 ....,, −= CxxxX ]
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are denominated residue curves, and are defined by the initial condition that to a 
given composition of liquid, the vector that lies the equilibrium composition is 
tangent to residue curve, and its named “lead line” , (V.N Kiva, E.K 
Hilmen et al., 2003) , consequently in order to solve the system of  differentials 
equations  is required  a relation between  and  , thus in isobaric conditions, we 
considered that : , then  

)( / AXX =

iy ix
( XTPFY ,,= ) ( )XEY = , where ( )XE  represent the 

function that describes the thermodynamic model  depending on the degree of 
regularity or irregularity of the mixture, then: 
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The integration of the differentials equations system, is made using a numerical 
method, like the fourth order Runge-Kutta (J.H Mathews, K.D Fink, 2000), allowing 
obtain the residue curve map. (Figure 1.1) 
 
  
 

ISOBUTENO 
   ( 75.70ºC ) 

AZ - IB - MOH
   ( 73.22ºC ) 

   METANOL
   ( 140.27ºC ) 

AZ - MOH-MTBE
   ( 133.21ºC ) 

       MTBE
   ( 153.20ºC ) 

 
 

Figure 1.1) Residue curves of the a) Isopropanol-propanol-Water  b) MTBE-Isobutene-
Methanol systems 
 
1.2. Computing all azeotropes in mixture and its pressure bifurcation. 
 
The residue curve maps are an important tool in the conceptual design of distillation 
process, because they require little initial entrance information and provide solutions 
to the separation scheme; in addition they reduce the simulation and experimentation 
time. Predict all the azeotropes of the system (composition and temperature) and 
characterize their topology, are the first and more important step to generate the 
structure of the residue curves. If we considered a C component mixture, compute the 
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azeotropes can be made implemented the follow objective function (Z.T. Fidkowski, 
et al, 1993): 
 
( ) XYXF −=         (1.2.1) 

 
Where and X Y  are all the liquid and vapor compositions in thermodynamic 
equilibrium, there are   molar fraction in each phase: 1−C
 

0=− ii xy    For        1,..2,1 −= Ci     (1.2.2) 
From the equilibrium relation ship: 
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Donde: 
0≥ix    For   Ci ,...2,1=

According to below exposed, a system of 12 +C equations with equal unknowns 
number is obtained. This system cannot be solved by conventional root finders 
methods since the thermodynamic variables that are implicit in these functions causes 
that the system is highly nonlinear. It is known that formulations like Newton 
Method ( , will have a good performance (it makes a good linear 
approach) if the vector of initial guesses, is “near” to solution; outside this dominion 
the method can converge very slowly, or to diverge. The techniques more recently 
implemented and recommended for the solution of this kind of problems are the 
homotopy methods  or continuation methods (A.Dold and B.Eckman, 1981), (D.J 
Vickery and R. Taylor, 1986), (E.L. Allgower, K.George, 1990), (K.S.Gritton, et al, 
2001). The computing of system azeotropes, we implemented a process of 
"deformation" of equilibrium surface beginning from a point described by Raoult’s 
law o using a homotopy thermodynamic (D.J Vickery and R. Taylor, 1986), which 
operates from the thermodynamic properties of the system. 

))(XFXJ −=∆

 
We implemented an algorithm based in deforming the functions which represent the 
phases equilibrium by implementation of linear homotopy, where the variables were 
rewritten in terms of them arc length; in addition we applied a predictor-corrector 
method, implementing the Euler’s Method  to approximate, and the Haselgrove’s 
method like a  step corrector and return to solution curve (E.L. Allgower, K.George, 
1990).This algorithm was tested with several azetropic systems, obtaining  



Advancing the chemical engineering fundamentals  5 

satisfactory results, which show in table 1, for the Acid acetic –Butanol-Butyl acetate-
Water system. 
 
An extension and logical application of previously mentioned procedure, consist of 
predicting the pressure to which appear new azeotropes or find the pressure to which  
disappear the azeotropes of the system, this prediction is known  like computing  the 
bifurcation pressure (N.Aslam, Aydin K. Sunol, 2003), and is very important   for 
the modeling  the possibilities  of  technological separation schemes.  

 
Mixture 

 
Phase  

UNIFAC-DORTMUND 
HAYDEN-O’CONNELL MODELL 

  Xaz (molar) Taz (K/C) 
Acetate 
Water Heterogeneus 0.2847 

0.7153 
364.01 
90.86 

Alcohol 
Water Heterogeneus 0.2572 

0.7428 
365.53 
92.38 

Alcohol 
Acetate Homogeneus 0.8279 

0.1721 
390.15 

117 
Alcohol 
Acetate 
water 

Heterogeneus 
0.1043 
0.1980 
0.6976 

363.53 
90.38 

Alcohol 
Acid 

Acetate 
Homogeneus 

0.3638 
0.3705 
0.2657 

393.88 
120.73 

Alcohol 
Acid Homogeneus 0.6258 

0.3742 
395.52 
122.37 

 
 
1.3 Characterization of fixed points: (Evaluation of eigenvalues) 
 
Now the problem consists in how evaluating the behavior of a specific mixture in the 
simplex, since the equation (1.1) describes clearly a nonlinear system of type 

 , and what behavior will have in the vicinity of then singular points, that 
is , pure compounds and azeotropes. In order to make a transformation of nonlinear 
system to linear one is due  to mention of Haltmann - Grossman theorem, (Parker and 
Chua, 1989) which considers that: If one has a nonlinear system of the type  

 and a equilibrium or fixed point  , that is , such that , so: 

( )XFX =/

( )XFX =/
0X ( ) 00 =XF

 

( )0XDFA = = ( 0

1

1

1

1

........

..

..

.........

X

x
f

x
f

x
f

x
f

n

nn

n

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

)     (1.3.1) 

 



                                                                                                             C.A. Cardona, et al.                              

If one has the  AXX =/  system around the fixed point .  If all eigenvalues of 0X A  
have real part   the stability of both systems around   is the same. (If those 
have null part, the stability of both systems could be different). This theorem is a 
consequence of first Taylor’s theorem for a function linearization around a fixed or 
equilibrium point, thus: 

0≠ 0X
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To solve the derivates, replacing the respective function that describes the equilibrium 
phase’s as: 
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Evaluating for a three components system: 
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Therefore, the eigenvalues in the characteristic matrix in (1.3.4) will determine the 
behavior of the trajectories (residue curve) in the vicinity of these singular or fixed 
points, thus is known: 

AVV =λ          (1.3.5)  
 
If   satisfy this condition, for Vandλ 0≠V  , so V  is denominated eigenvector of “A” 
with eigenvalue λ . The last equation can be reorganized in the next form: 
 

( VIA
VAV

λ )
λ

−=
−=

0
0

        (1.3.6) 

 
This equation will have a solution ( )0≠V  if only: 

( ) 0det =− IA λ , thus, the “A” eigenvalues λ  are the roots of the equation: 
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And the “A” eigenvalues are the solutions nonequal to zero of the equation (1.3.6); If 
we applied the last concepts and characterize the exposed systems we obtain the 
following results: 
 
 
Compound  Composition   Eigenvalues Characterization 

 
IPA 0.704  0,962   
Water 0.296  0,929 Unstable node 
 
Compound   Composition   Eigenvalues Characterization 

 
N-Propanol 0.429 1.1478    
Water 0.571 -0.7916 Saddle 
 
Compound   Composition   Eigenvalues Characterization 

 
N-Propanol 0,999 -2.0107   
Water 1,00E-06 -0.7575 Stable node 
 
 
 
 

AZ-IPA-AGUA
      80.28ºC

 

PROPANOL
  (92.2ºC) 

 
 

Figure 1.2)  a) IPA-Water  like an unstable node, b) pure propanol like a stable node. 
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     IPA
(82.20ºC) 

 
Figura 1.3) Pure Isopropanol like a sadle 
 
1.4) Attraction regions and thermodynamic separatrix (Permissible regions of 
separation) 
 
Attraction regions is a proper concept of non linear dynamic system, it can be 
extrapoled to previously exposed concepts. If  is an equilibrium point, so , is a 
set of points, such that the flux 

L S
LW

( )xE  approximates to  when L ∞→τ  , (stable 
variety of ) , and  is a set of points, such that the flux L µ

LW ( )xE  approximates to  
when 

L
∞→τ  ,(unstable variety of ) .  , can be understood like the border 

between attraction regions generated by two attractors.  This stables and unstable 
varieties are invariants by the flux

L S
LW

( )xE , thus, for example around of a saddle fixed 
point, the stables and unstable varieties can be distinguished like tangents to stables 
varieties  or . Attractors are the stables nodes these correspond to pure 
compounds and singular points, with the high boiling temperature. 

S
LW U

LW

 
If in a system exist several attractors, each one will have their own attraction region 
and will be separated for a stable nonlinear variety, denominated thermodynamic 
separatrix, which divides the separation region in permissible separation subregions, 
which are attraction regions in the separation by distillation. An important application 
is to draw up this stable variety, and know the possible regions where we can make 
the conventional separation analysis, since we have the imposed thermodynamics 
limitations. 
 
1.4.1 Locating a point on  : Computing the thermodynamic separatix U

LW
 
Near the equilibrium point, U

LW ( )eqX  is given, to first order, by unstable eigenvector 
 , therefore, choose a point close to uV ( )eqX  that lies   on . More specifically, for 

some small , choose the point: 
uV

0∈>
VuXX eqs ∈+=0         (1.4.1)  

This first point will be the initial condition to integrating ( )xE , thus: 
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Integrating from this point in forward to obtain the separatrix. 
 
Care should be taken when choosing∈ . If   ∈  is too large might not lie close 
enough to 

0
sX

U
LW ( )eqX  in which case the trajectory through  is not a good 

approximation to, 

0
sX

U
LW ( )eqX . If  ∈  is too small the trajectory may spend a large 

amount of time near ( )eqX  causing the integration error to accumulate with little 
motion along the trajectory. We implemented fourth Runge-Kutta mmethod, with 
optimal selection of ∈  , obtaining  the following results : 
 

 
 
Figura (1.4) thermodynamic separatix  of (a) Water – Propanol –IPA  (b) Acetic Acid- Butyl 
Acetate- Butanol 
 
The separatrix position in the simples could be displaced by changing the pressure, 
and we can observe more separation possibilities. The implementation of   Vresky’s 
law , permit know how the azetrope change with the pressure, later we computing the 
bifurcation pressure, how indicate the section (1.2).  
 
 
2.  Continuous Distillation and T.T.A to finite conditions operation 
 
The residue curve map is usually divided into separate regions by simple distillation 
regions boundaries that characterize the simple distillation (open evaporation), which 
act as impassable barriers to the residue curves. How we mentioned before, the 
distillation regions are separated by thermodynamic separatrices. Each separatrix 
always begins and ends at either a pure component or an azeotrope. During an 
isobaric operation in a simple distillation the temperature of the liquid must increase 
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along a residue curve. In a continuous distillation have an increase in temperature 
from plate to plate going down the column, thus both have the same tendencies. 
 
In continuous azeotropic distillation is would be desirable to have the same 
understanding, that opens evaporation on the characterization of the mixture relevant 
to distillation (D.B. Vandongen, 1985), generating the next questions:   
 

1. Do simple distillation region boundaries act as barriers across which the 
continuous distillation profiles cannot pass? 

 
2. Is it possible to use simple distillation diagrams for the purpose of devising 

sequences of azeotropic columns capable of separating the mixture into its 
pure components? 

  
 
In the next sentences we will discuss the basis for the answers to these questions and 
we will enhance the vision of residues curves to analyze the possibilities of 
continuous distillation.   
 
2.1 Analysis of a single Distillation Column: 
 
The figure (2.1) show a simple distillation column with only one feed steam, which is 
governed under the next suppositions: 
 
 Constant molar flow rates of liquid in both sections (stripping and rectifying) of 

the column  
 Constant molar flow rates of vapour  in both sections (stripping and rectifying) 

of the column  
 Saturated liquid feed 
 100 %  eficient 
 The enthalpy of mixing is zero 

 
This column model cannot be very accuracy, but supply a good qualitative 
approximation in the behaviour of the mixture, and observing the attractiveness 
between residue curve map and composition profiles in the continuous distillation. 
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Figure (2.1) Schematic representation of a distillation column 
 
If we make a material balance around an arbitrary plate n in the stripping section , a 
material balance around an arbitrary plate m in the rectifying section , where the 
distillate and bottoms compositionn ,and the same form the reflux and reboiler ratios  
are in relation  by a global material balance, where each theoric tray is divide in a 
differential number of trays along the interval [ ]1+→ nn , obtaining a model that 
describes the composition profiles in both column sections (Sourrisseau and Doherty, 
1980) 
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How indicate the continuous distillation literature (Doherty and Perkins, 1979), the 
profiles that appear in both column sections, exhibit a similar form of residue curves, 
depending of feed localization each distillation profile will be contained in a simple 
distillation region Doherty and Van Dongen, 1985). For a ternary mixture case, we 
have to specify seven variables:  and start the integration of the model. 
The values are obtained after integration, the necessary condition, which occurs 
the distillation, is that the profiles must be intercepting, thus,

srXXP BF ,,,,
/, ff hh

)`()( fifi hhxhhx === , 
Figure (2.2) show the obtained profiles , for Ethanol-Methanol-Water system, 
where  and [ ]1/3    3/1    3/1=FX [ ]0.07 0.88    05.0     =BX  bottoms composition. 
Therefore the reflux ratio will generate drastic changes in composition profiles, 
because a redistribution of concentration fields may be occur. All combination of 
the , , reflux and rebioler ratios cannot be possible , These must be stay in 
the same distillation region, and satisfying  the mass balance.  

( )FX ( BX )

 
 

Figure (2.2)  composition profile in both column section  at finite reflux for methanol (B)-
ethanol(C)-water (A) mixture. 
 
If we examine the behavior of the compositions profiles for infinitely large reflux and 
reboil ratios, we can see that: 
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The last equations coincide with residue curve expression near total reflux and reboil. 
 

 

3) Pinch Points and columns to minimum reflux 

Any excess in the reflux ratio can increase the energy demand in the distillation 
process, also the column diameter and heat interchange areas, being the key point to 
determine the optimal heat demand on the column. Minimum reflux is the least value 
at which can occur the separation by distillation, because is necessary a infinite 
number of stages to presence an infinitesimal change in the composition of the 
mixture, it is called “pinch points zone”. 
 

3.1) Tangent pinch points and  computing minimum reflux. 

When we implement de differential model of section (2.1) at some operations 
parameter to determine the composition profile, it is common find a trajectory that 
needs an infinite number of stage to vary the liquid composition, this profile is near to 
pinch point. If the reflux ratio is a little incremented, the profile changes drastically.   
Is consequent to think, that a pinch point is a bifurcation point, and its jacobian 
matrix is singular, thus , and it is the initial criteria for the next analysis: ( ) 0det =J
 
Under pinch conditions the equation that describes the rectifying section profiles in 
the section (2.1) model can be expressed how: 
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If we extend the before concepts, to a ternary mixture we obtain: 
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And this is a AXX =/ system, thus: 
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Or in equivalent form: 
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The minimum reflux calculation generates a system of C unknowns 

 and C equations, so: )1,..1,,( −= Cixr ei
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Where will be the pinch composition and ix r will be the minimum reflux. 
 
We implemented an algorithm based in the Broyden –Householder Method (Holland, 
1981) to resolve (3.1.7) equation system. 
 
4)  Determination of possible operation zones 
 
When the minimum reflux ratio is computing, for some operation conditions, it 
proceed to increase gradually this reflux ratio to values near to infinte, thus 
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∞→∞→ sór  , in such case  a residue curve is obtained, and  represent the limit 
value that the distillation could be take. The region delimited by this set of trajectories 
will determine the zone where the separation cans occur, because it is enclosed by the 
zones of maximum and minimum possible work, and in the same sense for the reboils 
ratios, this region is called “operation leaf”  (Dennis Y.C. Thong et al,1998) 
 
4.1. Construction of  operation leaf: 
 
4.1.1 Rectifying Section:  
 
Given the desire bottoms composition , it is specify some reflux ratio ,such , 
and it integrate the equations (2.1), subject to their restrictions, until 

minrr >
01 ≈−+ j

i
j

i xx , in 
this moment it obtain a pinch composition. The locus of this points is called “pinch 
point lines” (O.M. Whanschafft et al, 1992) .  represents some rectifying tray. j
 
4.1.2 Stripping Section:  
 
Given the desire distillate composition , it is specify some reboil ratio ,such , 
and it integrate the equations (2.1), subject to their restrictions, until

minss >
01 ≈−+ k

i
k
i xx , in 

this moment it obtain a pinch composition. The locus of this points is called “pinch 
point lines” for the stripping section (O.M. Whanschafft et al, 1992) . k represents 
some stripping  tray. 
 
4.1.3 Tray composition line  
 
This represents the locus of obtained composition for the same tray, the generated 
trajectory 
by the joint of his point is called “Tray composition line”. The intersection of a couple 
of these lines (stripping and rectifying), represent a possible separation and a possible 
column configuration to specific operation conditions and specifications. 
 
Figure (4.1) show the development of before concepts for Acetic acid –isopropanol-
isopropyl acetate system.  And figure (4.2) for MTBE-isobutene-methanol system. 
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Figure (4.1) Analysis of separation possibilities to finite operation conditions for IP acetate 

 
 
Figure (4.2) Operation Leaf for MTBE-Isobutene-Methanol  
 
5) Reactive mixtures.  Simultaneous chemical and physical equilibrium for 
reacting systems 
 
For a system of one phase or multiple phases can be in equilibrium G (free energy 
function) must be in a minimum (global) in addition to fulfill the material balance 
restrictions to  thermodynamic established conditions  ( )fixesPyT  , therefore: 
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0, =PTdG          (5.1) 

It is  , a necessary condition , but no sufficient condition.  The fundamental problem is 
express in function of initial mol number. In this work we resolve this 
minimization problem implemented a non estequiometric formulation. We 
implemented the Lagrange multipliers for avoid the restriction imposed for the 
material balance, thus:  
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Equation (5.2) represents the lagrangian where  λ  is a vector of  M  unknowns 
Lagrange multipliers, therefore the necessary conditions give a set of  
equations, for 

( )MN +
( MN )+   unknowns ( )MNnnn λλλ ....,,,...., ,2121 . We implemented the  

two-phase reactive flash  operation (E.S. Cisneros , et al,1996) for modeling eq.(5.1 
and 5.2) rewriting the equations in terms of component mole fractions and the 
corresponding constraint equations for the phase compositions ,thus: 
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Where LV θθ ,  are the phases fractions defined in terms of molar flow and is the 
elemental composition vector for any phase, in addition the conditions of chemical 
and physical equilibrium will be defined by the equality of chemical potentials in both 
phases: 

kfb

 
V
i

L
ii µµ =           (5.5) 

 
And in the problem solution we have M+2 equations, whit M+2 
unknowns [ ]( )LVM θθλλ ,,,...,1 . 
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5.1) Reactive Bubble point (reactive liquid – vapor equilibrium) 
 
 
This problem consist in determining the temperature when the liquid composition 

are in reacting equilibrium , besides must be forming the first vapour bubble, where 
this incipient phase have a composition such that 

ix

iy iii xky = assuming quickly rate of 
reaction. 
 
The incipient phase limit condition,  (it forms a infinitesimally  vapor quantity ) is 
represented by: 
 

0→Vθ           (5.6) 
 
Here, the eq.(5.6) is not affect  the material balance , and those restriction will be 
described by: 
 

0
1

=−∑
=

kf

N

ii
iki bxa         (5.7) 

 
In this case, we are computing a chemical equilibrium over one phase, but the 
temperature is unknown. 
. 
5.2)  Residue curve maps in presence of chemical reactions 
 
The Figure (5.1) represents  an open evaporation ,like for non reactive systems, but 
now in  terms of element 'mole' fractions (Michelsen, et al, 1995) ; If we represent a 
material balance for the  M elements   that conform the  N species  we have: 
 
 
 

LW1      LW2
 

L
M

L WW .........,,3  

 

V
M

V

W

W
V

.

.

;

1

 

 
 
 
 
 
 
 
 
 

entradaQ   
 
 
 
Figure (5.1)  Open evaporation stage, in function of the element mole fraction in the 
chemical reaction. 
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( )( )
Mjpara

dt
WtHd

VW
L
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j ,.....1, ==−      (5.8) 

 
By mean  a global balance: 
 

( )
dt

tdHV =−         (5.9) 

 
Replacying   eq. (5.9) in eq. (5.8) , we have 
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Solving eq. (5.10) we obtain the residue curve map when chemical reactions are 
present.  These profiles could be approximate to ( )∞∞  regime in a single reactive 

distillation column. 
 
 
5.3) Feasibility design in reactive distillation processes in equilibrium controlled columns. 
 
When is implemented the residue curve map in elemental mol fractions terms, these 
maps contain the same functional form than residue curve map without chemical 
reaction for conventional distillation (C.A.Rivera, J.Grievink, 2004), for non reactive 
mixtures in molar fractions. The fixed points in the equation (5.10) appear when  

.reactive  azeotrope is of importance in reactive separation systems in 
order to identify the reactive distillation boundaries (or separation feasibilities). 
Barbosa and Doherty (1988) defined a reactive azeotrope as an equilibrium 
phenomena where the rate of vaporization and condensation coupled with the rate of 
reaction of each species are such that vaporization and condensation occurs without 
change of composition in either phase. 

V
j

L
j WW =

 
The main difference with respect to non-reactive azeotropes is that in this case the 
condition of equality of mole fractions for each species in the respective phases is not 
needed. Recently, Ung and Doherty (1995b) proposed the necessary and sufficient 
conditions for the existence of a reactive azeotrope using their set of transformed 
composition variables. In this paper, we are introducing an element azeotrope, which 
is identical (in principle) to the azeotropes found in non-reactive systems. Thus, with 
the element balance approach, the conditions for the existence of element azeotropes 
are: The point where the compositions of element j (j = 1 . . . . . M) in all coexisting 
phases are identical, or, equivalently, the element elative volatility of element j (j = 1 . 
. . . . M –1) with respect to element R is unity. 
 
All information contained in these residue curve map can be explained and extrapoled 
in the same form, how we indicated in the above section in this paper when chemical 
reaction is not present, like show the next figures: 
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Figure 5.2) Residue curve map in presence of chemical reactions (P=10 atm) .  
 

 
Figure 5.3) Feasibility separation for zone B. According to figure (5.2)(P=10 atm) .  
 
 



Advancing the chemical engineering fundamentals  21 

 
Figure 5.4)  Feasibility separation for zone A. According to figure (5.2)(P=10 atm) .  
 
6. Conclusions 
 
Has been a proposed new criterion for determination of separation possibilities for 
conventional and non conventional distillation from existent methods and make 
emphasis in the simplex topology, founding news topological points like bifurcation 
points, obtaining more accuracy results and reducing the time consumption.  
 
The residue curve map and the static analysis is the first step in all conventional or 
reactive distillation design process. The study made in this work about the non 
conventional variables of design such as, reflux or energy supply to reboiler, has 
shown that these variables enhance the separation possibilities. 
 

The concept of distillation regions and thermodynamic separatices, could be extended 
to continuous distillation since, they limits separation possibilities in the same way 
that in differential distillation. The algorithm illustrated in this work ensure the 
sufficient and necessary conditions for a possible separation 
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