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Abstract

Recent advances in mathematical modelling have enaldetktilelopment of detailed
mechanistic models to support the design and analysiderhical processes or
products. However in those cases where the resultinglnsoldighly complex, it can
be extremely time consuming to solve the model numgricthereby limiting its
practical applicability. This is especially the case wheicomplex model is used for
the numerical optimisation of a process thereby ndetisg) the execution of a large
number of evaluations of the model. To make such an @aimn task
computationally tractable, the idea of approximating cormplechanistic models
with statistical models is investigated. In particulan ®erative optimisation
procedure is implemented which makes use of a Gaussiarsprowalel (GPM) to
locally approximate the complex mechanistic model. THeMGis successively
updated according to the results obtained from evaluatiegotiginal model at
locations, in different sub-regions, searched by themigation algorithm. The
potential of this method in terms of reducing the numbe&vafuations of the original
model, and hence lowering the computational cost, is coedir through its
application to the optimisation of a batch coolingstajlisation process.

Keywords: mathematical modelling, local approximationatistical modelling,
Gaussian process model, simulation-based optimisation

1. Introduction

Recent advances in mathematical modelling have enaldetktrelopment of detailed
mechanistic models to support the design and analysiderhical processes or
products. However, numerical solutions of complex medan be extremely time
consuming. In particular, when a complex model is usedtimerical optimisation,
this often involves the execution of a large number d@luations of the model,
consequently the potential computational burden can be piedibven with today’s
powerful computing facilities. To make such an optim@atiask computationally
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tractable, it is important to apply appropriate treatm#rdasreduce the complexity of
the models within the optimisation framework.

Marquardt (2002) reviewed a number of model order reduction andelmo
simplification methodologies for reducing the complexatlymodels. Basically the
goal of model order reduction is to reduce the size ofntbeel in terms of the
number of variables/equations. This approach generally exydetailed knowledge
about the composition of the original equation systent thians the model. In
contrast, model simplification reduces the complexitya onodel by approximating
complex functional expressions in the model with simfactions while preserving
the order of the original model. A well-known applioat of model simplification is
in process simulation where a rigorous physical properiyeing approximated by a
simpler empirical or semi-empirical model (e.g. Legs& Heyen, 1977; Chimowitz
et al., 1983). The latter model is only valid within a gaar range of process
conditions hence requires to be updated when the progedtians change during a
simulation run. A similar approach is taken by Bezzale(2005) for approximating
rigorous CFD models in a multizonal/CFD modelling frarag

In this paper, interest is on how to efficiently penhi optimisation of a chemical
process system for which a highly complex model has deeealoped. In particular,
this model is assumed to be implemented in a softwade such that the only
outcome is its execution, with extremely high compatati costs. No other
information is directly available from its executigalating to model structure or
derivatives. This type of problem has been referred tahasoptimization of
expensive black-box functions (Jones et al., 1998). To solvepsablems, empirical
models have been developed based on the data generated niiliiiga (i.e.
evaluating) the black-box objective functions during an ogthion process. More
specifically, a model is often used as a surrogate ®rotfjective function (or one
variable in the function) to provide an approximation. Thiscept is similar to the
model simplification approach discussed earlier.

When utilising a surrogate model, the methodology usuakgstaa form of an
iterative procedure. For each iteration a set of mgimata is obtained (or updated),
and a model is established from the training data. A Bdaveards the optimization
target is then performed using this model. This procedurencestuntil a particular
criterion is satisfied. By performing the optimisation lwia surrogate model as
opposed to directly using the original complex model, thaber of time-consuming
evaluations of the complex model is expected to be redinsawe improving the
computational efficiency of the optimisation.

This type of optimisation method can be further clasdifinto global and local
approaches, according to the region in the search domb@rewthe model is
established and where the search is conducted at one nstdy ioptimization
procedure. Aglobal method does not confine the modelling and search steps to a
specific sub-region within the entire search domairtefAinitialization, in which an
initial set of data are obtained and a model subsequestidyplished, the location of
new point(s) to be explored in the next step is determui@da particular merit
function. This function is chosen such that it presenbalance between exploitation
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and exploration: the former emphasizes the impo&asfcthe region in which the
optimal point is found by using the surrogate model, whileldtter tends to direct
the search to the region which has not been sufflgiemtplored so far, hence
increasing the chance of locating the global optimuiffe2nt formulations of such
a merit function have been proposed in the literatuwre, esg. Torczon & Trosset
(1998) and Jones, Schonlau & Welch (1998). Based on the arguhantfor
complex problems, no single surrogate model can be pyopstablished for the
entire domainjocal methods have been proposed which restrict the modelling and
search to within a specific region at each step througteeative solution process. In
addition to the use of a merit function to balancplatation and exploration, as in
the global methods, an additional key issue to be askehidsy a local method is the
determination of the valid region for executing the laoaldelling and local search;
different strategies have been proposed, see e.g. Cain(&997), Stander (2000),
and Bueche et al. (2005).

It is interesting to note, that to date the techniquesldped for the type of problems
considered here, i.e. the optimization of expensive Haskfunctions, have received
only limited attention from the process engineering comty despite the challenges
stemming from complex chemical process systems. Mdyal €2002) mention the
suitability of the method of Jones et al. (1998) for hiagdcomputationally highly
expensive black-box models compared to their own method fangamptimisation
problems with non-factorable constraints. Another bmehtioning of the method of
Jones et al. (1998) is in Bindal et al. (2006). The only coremsae application
study known to the authors is that of Wan et al. (2005),raviae supply chain
management problem is successfully solved by using aationHbased optimisation
procedure which is essentially an implementation ofodaj method, as classified
above, but which incorporates a sequential domain redustiategy. As for the
application of local approximation models, Davis and largpe (2007) use low-
order polynomials to approximate microscopic models @&nubal reactors being
optimized. Similarly, Schaefer et al. (2005) solve aestioptimisation problem based
on a CFD model by applying an existing implementation cdlgarithm that makes
use of quadratic approximation models within a trust regiamdwork. Closely
resembling the traditional response surface modelling technitheesethods used in
these two applications are essentially meant to lbedl optimum only, because the
optimisation procedure is mainly driven by exploiting th@vér-order polynomial
based) response surface model, and does not exploresth&rlown regions in the
solution space (cf. Jones, 2001).

In this paper, the studies are directed towards locabgate model based methods.
The rationale for this is the difficulty of establisbia globally valid approximate
model for a complex chemical process system. Thiei¢®ms been demonstrated
previously in model simplification studies in processieegring, e.g. the adoption of
local approximates for physical property models or CFD rsoale mentioned earlier.
Furthermore, a methodology will be investigated in detdiich addresses both the
balance between exploration and exploitation in @msn@ing strategy and the
updating of the local region for searching and modelling ah d®ration. Such a
method will be capable of not being trapped in (somehaf)local optima due to the
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explorative tendency of the sampling procedure. This apprisanot guaranteed to
converge to the true global optima due to the use of lmoalels. However, this is
usually acceptable as pursuing the absolute global optimat ialways meaningful in
practical process engineering applications, considering tha high computational
cost and the credibility of such an approach when inacmgaxist in the model on
which the optimisation is based on as frequently happemeaility. On the other
hand, confining modelling to local regions will ensure thasfbility of building
reliable surrogate models with relatively small numbémsvaluations of the complex
original model. This will consequently enhance the compurtatiefficiency of the
optimisation procedure.

In the rest of the paper, a general procedure for logabgate model based
optimisation methods is first presented in Section 2.inroduction to a particular
algorithm called the Gaussian Process Optimisation Bupee(GPOP) and the
underlying Gaussian process model that provides the local »ap@atmn of the

rigorous model in GPOP is given in Section 3. In Sectioadapplication of the
GPOP algorithm to a process engineering problem namelyoptimisation of a
crystallisation process is presented. Some concludingrksnare finally given in
Section 5.

1. Determine which surrogate model
to use and how to train it

!

2. Generate an initial set of samples over the
optimisation domain and train the surrogate model

!

3. Determine the region for the current
optimisation step

!

4. Perform optimisation using the surrogate model
within the selected region

8. Re-train the surrogate model

5. Determine where to generate new samples
and perform sampling 7. Update the set of samples for training

'y

No

6. Is the stopping criterion met?

Figure 1. General procedure for local surrogate modsidaptimization methods.
2. General Procedure of Local Surrogate M odel-Based Optimisation M ethods

A typical procedure for local surrogate model based metfmdhe optimisation of
computationally expensive black-box objective functionshmws in Figure 1. The
approach starts with the determination of the formhef $surrogate model and the
algorithm for training the surrogate model given a set wipdas (Step 1). Following
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this the surrogate model is initialized by samples dritam a number of evaluations
of the original complex model (Step 2). This step is tfidlowed by an iterative
procedure that focuses on the determination of the cuseamth region (Step 3), the
optimisation (i.e. searching) within this current regiStep 4), the updating of the set
of samples by incorporating the results of the new evahmbf the original model
within the current region (Steps 5 and 7), and finallyrthéraining of the surrogate
model based on the updated set of samples (Step 8). Doisnterative procedure, a
stopping criterion is assessed (Step 6) to determine fribcedure should continue.

While most local surrogate model based methods follow suatomputational
procedure, they differ in how these steps are actuatiyedaout. Particularly, the
major difference lies in the selection of the surregahodel (Step 1), the
determination of the local region (Step 3), the sadactif locations for a new round
of sampling (Step 5), and finally the updating of the sedanfiples for training (Step
7).

3. Gaussian Process M odels and the GPOP Algorithm

The Gaussian Process Optimization Procedure (GPO®)algorithm studied in
detail in this work, employs a Gaussian process modékasurrogate model. This is
described in Section 2.1 with other features of GPOP lmrggented in Section 2.2.

3.1. The Gaussian process model

A Gaussian process model (Williams & Rasmussen, 19%§)pbed to fulfil the task
of locally approximating a function with an unknown fob@&sed on a set of samples
obtained by evaluating the function. As a statistical @hatlis selected because it can
not only approximate arbitrary functions but can also dirgmovide an uncertainty
measure for its predictions by means of a standard denvas will be shown later
in Section 3.2, this uncertainty measure plays an impbmale in the GPOP
algorithm.

The principle of a Gaussian process model is as foll@esmsider N data points,
Xn={x}, i=1,2,...,N, x; OR" and the corresponding values of a functibn
tn={t},i=1,2,...,N evaluated at these data points. The Gaussiaressanodel treats
tn as a particular sample of a multivariate Gaussianilglision with zero mean and a
covariance matrix denoted &. For a new data pointy:+1, its function valuey+,
has the following conditional probability density:

1 (tN+l - fN+1)2)

p(tN+1 | X N+11 t N) O exp(_z a_tiﬂ (1)
where the mean and the variance are given by
tAN+1 = kTCa]-t N (2)

o; =k-k'Cik.

It
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Cn, k, and k represent the covariance matrix, covariance veaod variance,
respectivelyCy is determined by a covariance functidnvhich, when applied in the
GPOP algorithm, takes the following form

1 (X, =X i)2
C(X,,Xy) = Qexp(—zzl:”'_—zq') +6,+9, 6, (3)
The parameters in the covariance funct@nnamely,, 6, 63 and r, i=1,2,..n are
often referred to as hyperparameters which can be estipfar example by applying
the maximum likelihood method to the known samples. ddwariance vectok and
the variancer in EqQ. (2) can be expressed as

ki = C(X;, X 1) i=12,...,N,
K = C(X a1 Xnst)-

4)

3.2. The GPOP algorithm

The GPOP (Gaussian Process Optimisation Procedure)thigas one of the local
surrogate model based methods for the optimisation wipatationally expensive
black-box functions (Bueche et al, 2005). In addition tmgu® Gaussian process
model as the surrogate model, the other key featurdsedGPOP algorithm are as
follows.

(i) Use of a hypercube that surrounds the current bégisoas the local region for
searching (Step 3). This hypercube is defined by

x’m‘—%sxsx’m‘+g,x,dDR”

di=max(xcyi)—mcin(xcyi), i=12..n, c=12,.. N,

wheren is the number of decision variables, aiglis a prefixed number that denotes
the number of points closest to the current bdstisa that are to be included in the
set of samples for training, as discussed below.

(i) Use of a merit functions to determine whereggemerate new samples (Steps 4 and
5). The underlying idea is the same as that utilig® other methods for the
optimisation of expensive black-box functions, tlsato balance (a) the exploitation
of the current GP model (valid for a particulardbecegion) for finding the most
promising candidate with respect to the objectiwaction concerned, with (b) the
exploration of less known parts of the optimisatepace. Specifically, the GPOP
algorithm utilises the following set of merit furarts (for a minimisation problem):

f (x)=t(x)-ao,(x), a= 0124
where fis the value of the objective function as predidigdhe GP modelg; is the

standard deviation of this predictiomn,is the scaling factor that reflects the balance
mentioned above. Four levels @f were chosen and empirically proven to be
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effective by the original authors of the GPOP athon. For each of these merit
function, optimisation is performed using the GPdelpand the solution is one point
where a new sample is to be generated. This implias four new samples are
generated for each iteration.

(i) Updating the set of samples for training ($té). Each time new samples are
generated, the set of samples to be used fornetgathe GP model is updated by
making selections among all the samples availablas The selection rule is such
that the N points closest to the current best solution (fmteof Euclidian distance)
and N, the most recently evaluated points are includeshce forming an updated
training data set that includes in tota N Ng points. The values ofd&Nand N\ can be
problem specific but are usually proportional te timension (i.e. the number of
decision variables) of the optimisation problem.

In addition to the above features of GPOP, foractical application, an appropriate
stopping criterion is required. In this work, thetimisation procedure is stopped
when the size of the current local region, dendigdthe largest diameter of the
hypercube, is smaller than a preset value termadifimm diameter”, or when no

sampling points different from the existing oneg d@entified by the algorithm

(essentially Step 5 in Figure 1).

4. Case Study: Optimisation of a Crystallisation Process

The GPOP algorithm is applied for the optimisatidra crystallisation process. The
optimisation problem is described in Section 4.ithwhe results presented in Section
4.2.

4.1. Problem description

The optimisation of the temperature profile of @achacooling crystallisation process
for the potash alum -water system is considerecpalnticular, it is assumed that a
batch may involve one or more periods where thgézature increases (i.e. heating)
in addition to the cooling periods. This optimisatproblem is formulated as follows:

rp(%XLa (tend) + Wzl: AT|

st.

T0) =Tgar»

T(tend) =Tend’

Tend < T(t) < Tﬂart’ for 0 <t< tend ’
Y(tend) 2 YIinesar (tend )’

wherel, is the (weight-) average product size which i®esally determined by the

crystallization process model discussed below dmdis the temperature change
during thei-th cooling periodw is a weighting factor that determines the degeee t
which a low ending temperature of a cooling pern®genalized. This serves as a
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approximate means by which to prevent excessivepaemture oscillationsT(t)
represents the temperature profile,: andTeg are the pre-specified temperatures at
the start point and end point of the batch respelgtit is time andteq is the pre-
specified length of the batch.is the yield of crystals andine is the yield attained
from a linear cooling profile for the same proce$s. solve this problem, the
temperature profile is parameterised into a pies®Wnear approximation:

T(t)_ TOETﬁarU t=0;
T Hrt-t,), (-DAt<t<iAt, i=12..N;

wherer; is the rate of change of the temperature forithepiece,N is the total
number of pieces andt = teo/N. The parametric settings applied heretage= 11
hours; Teart = 40.0C; Teng = 20 ‘C; Yiinear(tend) = 0.125; N=11; w=0.25. This
formulation results in 10 independent variablesinéog to be optimised.

The solution of the above optimisation probleme®lon a mechanistic model of the
crystallisation process, which is developed onlihsis of the kinetics of nucleation,
(one-dimensional) crystal growth, and dissolutiowl @#he population balance of the
crystals. Details of the model can be found in Yadgntague and Martin (2006).
Briefly, it is a dynamic model in a form of a set partial differential-algebraic
equations. There are two factors that make the rioatesolution of the model
computationally expensive. Firstly, when the prgcesvitches from positive
supersaturation to negative supersaturation assat ref heating, the kinetics of
nucleation and growth in the model is replacedHat of dissolution, which is also
accompanied by a change in boundary conditionthfopopulation balance equation.
Such a switch incurs significant discontinuitiesvthich the numerical integrator is
often sensitive and hence slows down the solufimed. The same effect also exists
when the system is switched from negative to p@sisupersaturation as a result of
re-cooling. Secondly, the growth of crystals is mltl considering the growth rate
dispersion (GRD) phenomenon, which introduces aditiadal dimension of
distribution into the model and consequently letadthe multiplication of the size of
the equation systems after discretisation, requiiemen longer time to get the model
solved.

4.2. Results

The mechanistic model is formulated and solved l®ams of gPROMS (Process
Systems Enterprise Ltd, 2004). The GPOP algorithas vimplemented using
MATLAB. Accessing the model solution from MATLAB isnplemented using go-
MATLAB developed by Process Engineering Enterprise.

The optimisation was first carried out on the meai$tic model using a Genetic
Algorithm (GA). A GA was selected to avoid beingpped in a local optimum too
quickly. In particular, the GA implementation by tk, Joines, and Kay (1995) has
been employed with their default algorithmic partar® The same optimisation
problem was then solved by applying the GPOP alyoriwhere both the maximum
likelihood based training of the Gaussian procesdeh(i.e. the surrogate model) and
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the optimisation using the surrogate model, at a@chtion in the procedure, were
carried out using the aforementioned GA programhe. algorithmic parameters for
GPOP were set such tHdt = Ng =10*n, wheren is the number of input variables. In
this case study)=10. The stopping criterion, the “minimum diamet#rat indicates
the critical size of the local search region istedte 1.0.

When applied to solve the crystallisation optimatproblem, both the GA and
GPORP yield results that were sensitive to theahget of samples selected to start the
optimisation. To achieve a fair comparison, fivffedent sets of initialisation were
generated, each comprising 100 samples. These gesrerated by evaluating the
original complex model, following the applicationf datin hypercube designs
provided in the MATLAB statistics toolbox to obtaimiformly distributed samples.
Each set of initialisations was then used for tkecetion of the GA and GPOP
algorithms.

Table 1. Results of comparative studies on GPOP and GA.

No. of Number of original complex model evaluations
compar ative
study GA GPOP Savings brought by GPOP
1 3170 328 90%
2 1390 496 64%
3 1135 276 76%
4 1069 840 20%
5 4153 588 86%
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Figure 2. Comparison of the performance of GA and GPOP.
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The results in terms of the number of original Maaeluations (including those for
initialisation) required by the GA and GPOP aldarit for achieving the same value
of the objective function are shown in Table 1cdn be seen that except for Set 4
where the two algorithms require a comparable nuraberiginal model evaluations,
the GPOP algorithm results in significant savingg {0 90%). The average savings
attained through the implementation of the GPOBrafym in comparison with the
GA is 67%. Figure 2 shows the intermediate redatt€ase 2.

5. Concluding Remarks

Reducing the complexity of mathematical models ngoartant for realising the
practical application of complex models in optinisa-based process engineering
tasks. In this research, a local surrogate modsddanethod for the optimisation of
computationally expensive black-box objective fimms has been studied. In
particular, the GPOP algorithm reported in the medigerature, which makes use of
Gaussian process models, to approximate complekanéetic mathematical models
has been implemented and applied for the optimisatof a batch cooling
crystallisation process. The case study has demawedtthat this algorithm can bring
about significant savings in terms of the numberewghluations of the original
complex model, in comparison with algorithms thatken use of the original model
directly without employing a surrogate model, sashthe GA as used in the case
study.

The optimisation problem tackled in the case studyg not just a test case but rather a
real problem in the area of the modelling and ois@tion of crystallisation
processes. Of the various surrogate model-baséahisgtion methods reported in the
literature, the GPOP algorithm was selected becaoseeptually this algorithm
offers a desirable trade-off between locating dlolmptima and ensuring
computational efficiency as discussed in Sectiorldwever, a detailed comparison
between this and other methods by means of compsafgetest cases is still ongoing.
Besides, the mechanistic model in this case stwdyddterministic, hence the
simulation results based on this model are notyndis future work, it would be
interesting to investigate how an algorithm like@Pcan be applied (possibly with
adaptation) to address noisy simulation based dgstian.
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