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Abstract 

Recent advances in mathematical modelling have enabled the development of detailed 
mechanistic models to support the design and analysis of chemical processes or 
products. However in those cases where the resulting model is highly complex, it can 
be extremely time consuming to solve the model numerically, thereby limiting its 
practical applicability. This is especially the case where a complex model is used for 
the numerical optimisation of a process thereby necessitating the execution of a large 
number of evaluations of the model. To make such an optimisation task 
computationally tractable, the idea of approximating complex mechanistic models 
with statistical models is investigated. In particular, an iterative optimisation 
procedure is implemented which makes use of a Gaussian process model (GPM) to 
locally approximate the complex mechanistic model. The GPM is successively 
updated according to the results obtained from evaluating the original model at 
locations, in different sub-regions, searched by the optimisation algorithm. The 
potential of this method in terms of reducing the number of evaluations of the original 
model, and hence lowering the computational cost, is confirmed through its 
application to the optimisation of a batch cooling crystallisation process. 
 
Keywords: mathematical modelling, local approximation, statistical modelling, 
Gaussian process model, simulation-based optimisation              

1. Introduction 

Recent advances in mathematical modelling have enabled the development of detailed 
mechanistic models to support the design and analysis of chemical processes or 
products. However, numerical solutions of complex models can be extremely time 
consuming. In particular, when a complex model is used for numerical optimisation, 
this often involves the execution of a large number of evaluations of the model, 
consequently the potential computational burden can be prohibitive even with today’s 
powerful computing facilities. To make such an optimisation task computationally 
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tractable, it is important to apply appropriate treatments that reduce the complexity of 
the models within the optimisation framework. 
 
Marquardt (2002) reviewed a number of model order reduction and model 
simplification methodologies for reducing the complexity of models. Basically the 
goal of model order reduction is to reduce the size of the model in terms of the 
number of variables/equations. This approach generally requires detailed knowledge 
about the composition of the original equation system that forms the model. In 
contrast, model simplification reduces the complexity of a model by approximating 
complex functional expressions in the model with simpler functions while preserving 
the order of the original model. A well-known application of model simplification is 
in process simulation where a rigorous physical property model is approximated by a 
simpler empirical or semi-empirical model (e.g. Leesley & Heyen, 1977; Chimowitz 
et al., 1983). The latter model is only valid within a particular range of process 
conditions hence requires to be updated when the process conditions change during a 
simulation run. A similar approach is taken by Bezzo et al. (2005) for approximating 
rigorous CFD models in a multizonal/CFD modelling framework.   

In this paper, interest is on how to efficiently perform optimisation of a chemical 
process system for which a highly complex model has been developed. In particular, 
this model is assumed to be implemented in a software code such that the only 
outcome is its execution, with extremely high computational costs. No other 
information is directly available from its execution relating to model structure or 
derivatives. This type of problem has been referred to as the optimization of 
expensive black-box functions (Jones et al., 1998). To solve such problems, empirical 
models have been developed based on the data generated by “sampling” (i.e. 
evaluating) the black-box objective functions during an optimization process. More 
specifically, a model is often used as a surrogate for the objective function (or one 
variable in the function) to provide an approximation. This concept is similar to the 
model simplification approach discussed earlier.  

When utilising a surrogate model, the methodology usually takes a form of an 
iterative procedure. For each iteration a set of training data is obtained (or updated), 
and a model is established from the training data.  A search towards the optimization 
target is then performed using this model. This procedure continues until a particular 
criterion is satisfied. By performing the optimisation with a surrogate model as 
opposed to directly using the original complex model, the number of time-consuming 
evaluations of the complex model is expected to be reduced, hence improving the 
computational efficiency of the optimisation.  

This type of optimisation method can be further classified into global and local 
approaches, according to the region in the search domain where the model is 
established and where the search is conducted at one step in the optimization 
procedure. A global method does not confine the modelling and search steps to a 
specific sub-region within the entire search domain. After initialization, in which an 
initial set of data are obtained and a model subsequently established, the location of 
new point(s) to be explored in the next step is determined via a particular merit 
function. This function is chosen such that it presents a balance between exploitation 
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and exploration: the former emphasizes the importance of the region in which the 
optimal point is found by using the surrogate model, while the latter tends to direct 
the search to the region which has not been sufficiently explored so far, hence 
increasing the chance of locating the global optimum. Different formulations of such 
a merit function have been proposed in the literature, see e.g. Torczon & Trosset 
(1998) and Jones, Schonlau & Welch (1998). Based on the argument that, for 
complex problems, no single surrogate model can be properly established for the 
entire domain, local methods have been proposed which restrict the modelling and 
search to within a specific region at each step through an iterative solution process. In 
addition to the use of a merit function to balance exploitation and exploration, as in 
the global methods, an additional key issue to be addressed by a local method is the 
determination of the valid region for executing the local modelling and local search; 
different strategies have been proposed, see e.g. Conn et al. (1997), Stander (2000), 
and Bueche et al. (2005).  
 
It is interesting to note, that to date the techniques developed for the type of problems 
considered here, i.e. the optimization of expensive black-box functions, have received 
only limited attention from the process engineering community despite the challenges 
stemming from complex chemical process systems. Meyer et al. (2002) mention the 
suitability of the method of Jones et al. (1998) for handling computationally highly 
expensive black-box models compared to their own method for solving optimisation 
problems with non-factorable constraints. Another brief mentioning of the method of 
Jones et al. (1998) is in Bindal et al. (2006). The only comprehensive application 
study known to the authors is that of Wan et al. (2005), where a supply chain 
management problem is successfully solved by using a simulation-based optimisation 
procedure which is essentially an implementation of a global method, as classified 
above, but which incorporates a sequential domain reduction strategy. As for the 
application of local approximation models, Davis and Ierapetritou (2007) use low-
order polynomials to approximate microscopic models of chemical reactors being 
optimized. Similarly, Schaefer et al. (2005) solve a stirrer optimisation problem based 
on a CFD model by applying an existing implementation of an algorithm that makes 
use of quadratic approximation models within a trust region framework. Closely 
resembling the traditional response surface modelling techniques, the methods used in 
these two applications are essentially meant to find local optimum only, because the 
optimisation procedure is mainly driven by exploiting the (lower-order polynomial 
based) response surface model, and does not explore the less known regions in the 
solution space (cf. Jones, 2001).  
 
In this paper, the studies are directed towards local surrogate model based methods. 
The rationale for this is the difficulty of establishing a globally valid approximate 
model for a complex chemical process system. This issue has been demonstrated 
previously in model simplification studies in process engineering, e.g. the adoption of 
local approximates for physical property models or CFD models as mentioned earlier. 
Furthermore, a methodology will be investigated in detail which addresses both the 
balance between exploration and exploitation in its sampling strategy and the 
updating of the local region for searching and modelling at each iteration. Such a 
method will be capable of not being trapped in (some of) the local optima due to the 
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explorative tendency of the sampling procedure. This approach is not guaranteed to 
converge to the true global optima due to the use of local models. However, this is 
usually acceptable as pursuing the absolute global optima is not always meaningful in 
practical process engineering applications, considering both the high computational 
cost and the credibility of such an approach when inaccuracies exist in the model on 
which the optimisation is based on as frequently happens in reality. On the other 
hand, confining modelling to local regions will ensure the feasibility of building 
reliable surrogate models with relatively small numbers of evaluations of the complex 
original model. This will consequently enhance the computational efficiency of the 
optimisation procedure.   
 
In the rest of the paper, a general procedure for local surrogate model based 
optimisation methods is first presented in Section 2. An introduction to a particular 
algorithm called the Gaussian Process Optimisation Procedure (GPOP) and the 
underlying Gaussian process model that provides the local approximation of the 
rigorous model in GPOP is given in Section 3. In Section 4, an application of the 
GPOP algorithm to a process engineering problem namely the optimisation of a 
crystallisation process is presented. Some concluding remarks are finally given in 
Section 5. 
 

1. Determine which surrogate model
to use and how to train it

2. Generate an initial set of samples over the 
optimisation domain and train the surrogate model

3. Determine the region for the current 
optimisation step

4. Perform optimisation using the surrogate model 
within the selected region 

5. Determine where to generate new samples 
and perform sampling

8. Re-train the surrogate model    

7. Update the set of samples for training    

6. Is the stopping criterion met?

Stop

Start

No Yes

 
Figure 1. General procedure for local surrogate model based optimization methods. 

2. General Procedure of Local Surrogate Model-Based Optimisation Methods 

A typical procedure for local surrogate model based methods for the optimisation of 
computationally expensive black-box objective functions is shown in Figure 1. The 
approach starts with the determination of the form of the surrogate model and the 
algorithm for training the surrogate model given a set of samples (Step 1). Following 
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this the surrogate model is initialized by samples drawn from a number of evaluations 
of the original complex model (Step 2). This step is then followed by an iterative 
procedure that focuses on the determination of the current search region (Step 3), the 
optimisation (i.e. searching) within this current region (Step 4), the updating of the set 
of samples by incorporating the results of the new evaluations of the original model 
within the current region (Steps 5 and 7), and finally the re-training of the surrogate 
model based on the updated set of samples (Step 8). During this iterative procedure, a 
stopping criterion is assessed (Step 6) to determine if the procedure should continue.  
 
While most local surrogate model based methods follow such a computational 
procedure, they differ in how these steps are actually carried out. Particularly, the 
major difference lies in the selection of the surrogate model (Step 1), the 
determination of the local region (Step 3), the selection of locations for a new round 
of sampling (Step 5), and finally the updating of the set of samples for training (Step 
7). 

3. Gaussian Process Models and the GPOP Algorithm 

The Gaussian Process Optimization Procedure (GPOP), the algorithm studied in 
detail in this work, employs a Gaussian process model as the surrogate model.  This is 
described in Section 2.1 with other features of GPOP being presented in Section 2.2. 

3.1.  The Gaussian process model 

A Gaussian process model (Williams & Rasmussen, 1996) is applied to fulfil the task 
of locally approximating a function with an unknown form based on a set of samples 
obtained by evaluating the function. As a statistical model, it is selected because it can 
not only approximate arbitrary functions but can also directly provide an uncertainty 
measure for its predictions by means of a standard derivation. As will be shown later 
in Section 3.2, this uncertainty measure plays an important role in the GPOP 
algorithm. 
 
The principle of a Gaussian process model is as follows. Consider N data points, 
XN={xi}, i=1,2,…,N, xi ∈∈∈∈ n and the corresponding values of a function f , 
tN={ ti},i=1,2,…,N evaluated at these data points. The Gaussian process model treats 
tN as a particular sample of a multivariate Gaussian distribution with zero mean and a 
covariance matrix denoted as CN. For a new data point xN+1, its function value tN+1 
has the following conditional probability density: 
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CN, k, and κ represent the covariance matrix, covariance vector, and variance, 
respectively. CN is determined by a covariance function C which, when applied in the 
GPOP algorithm, takes the following form 
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The parameters in the covariance function C, namely θ1, θ2, θ3, and ri, i=1,2,..,n are 
often referred to as hyperparameters which can be estimated, for example by applying 
the maximum likelihood method to the known samples. The covariance vector k and 
the variance κ in Eq. (2) can be expressed as 
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3.2. The GPOP algorithm 

The GPOP (Gaussian Process Optimisation Procedure) algorithm is one of the local 
surrogate model based methods for the optimisation of computationally expensive 
black-box functions (Bueche et al, 2005). In addition to using a Gaussian process 
model as the surrogate model, the other key features of the GPOP algorithm are as 
follows. 
 
(i) Use of a hypercube that surrounds the current best solution as the local region for 
searching (Step 3). This hypercube is defined by 
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where n is the number of decision variables, and NC is a prefixed number that denotes 
the number of points closest to the current best solution that are to be included in the 
set of samples for training, as discussed below.  
 
(ii) Use of a merit functions to determine where to generate new samples (Steps 4 and 
5). The underlying idea is the same as that utilised in other methods for the 
optimisation of expensive black-box functions, that is to balance (a) the exploitation 
of the current GP model (valid for a particular local region) for finding the most 
promising candidate with respect to the objective function concerned, with (b) the 
exploration of less known parts of the optimisation space. Specifically, the GPOP 
algorithm utilises the following set of merit functions (for a minimisation problem): 
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where t̂ is the value of the objective function as predicted by the GP model, tσ is the 

standard deviation of this prediction, α is the scaling factor that reflects the balance 
mentioned above. Four levels of α  were chosen and empirically proven to be 
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effective by the original authors of the GPOP algorithm. For each of these merit 
function, optimisation is performed using the GP model, and the solution is one point 
where a new sample is to be generated. This implies that four new samples are 
generated for each iteration. 
 
(iii) Updating the set of samples for training (Step 7). Each time new samples are 
generated, the set of samples to be used for retraining the GP model is updated by 
making selections among all the samples available so far. The selection rule is such 
that the NC points closest to the current best solution (in terms of Euclidian distance) 
and NR, the most recently evaluated points are included, hence forming an updated 
training data set that includes in total NC + NR points. The values of NC and NR can be 
problem specific but are usually proportional to the dimension (i.e. the number of 
decision variables) of the optimisation problem. 
 
In addition to the above features of GPOP, for a practical application, an appropriate 
stopping criterion is required. In this work, the optimisation procedure is stopped 
when the size of the current local region, denoted by the largest diameter of the 
hypercube, is smaller than a preset value termed “minimum diameter”, or when no 
sampling points different from the existing ones are identified by the algorithm 
(essentially Step 5 in Figure 1).  

4. Case Study: Optimisation of a Crystallisation Process 

The GPOP algorithm is applied for the optimisation of a crystallisation process. The 
optimisation problem is described in Section 4.1, with the results presented in Section 
4.2. 

4.1. Problem description 

The optimisation of the temperature profile of a batch cooling crystallisation process 
for the potash alum -water system is considered. In particular, it is assumed that a 
batch may involve one or more periods where the temperature increases (i.e. heating) 
in addition to the cooling periods. This optimisation problem is formulated as follows: 
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where La is the (weight-) average product size which is essentially determined by the 
crystallization process model discussed below and ∆Ti is the temperature change 
during the i-th cooling period. w is a weighting factor that determines the degree to 
which a low ending temperature of a cooling period is penalized.  This serves as a 
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approximate means by which to prevent excessive temperature oscillations. T(t) 
represents the temperature profile, Tstart and Tend are the pre-specified temperatures at 
the start point and end point of the batch respectively, t is time and tend is the pre-
specified length of the batch. Y is the yield of crystals and Ylinear is the yield attained 
from a linear cooling profile for the same process. To solve this problem, the 
temperature profile is parameterised into a piece-wise linear approximation: 
  ====≤≤≤≤<<<<−−−−−−−−++++

====≡≡≡≡
====

−−−−−−−− ;,...,2,1,)1(,)(

;0,
)(

11

0

NitittittrT

tTT
tT

iii

start

∆∆
   

where ri is the rate of change of the temperature for the ith piece, N is the total 
number of pieces and ∆t = tend/N. The parametric settings applied here are tend = 11 
hours; Tstart = 40.0’C; Tend = 20 ‘C; Ylinear(tend) = 0.125; N=11; w=0.25. This 
formulation results in 10 independent variables requiring to be optimised. 
 
The solution of the above optimisation problem relies on a mechanistic model of the 
crystallisation process, which is developed on the basis of the kinetics of nucleation, 
(one-dimensional) crystal growth, and dissolution and the population balance of the 
crystals. Details of the model can be found in Yang, Montague and Martin (2006). 
Briefly, it is a dynamic model in a form of a set of partial differential-algebraic 
equations. There are two factors that make the numerical solution of the model 
computationally expensive. Firstly, when the process switches from positive 
supersaturation to negative supersaturation as a result of heating, the kinetics of 
nucleation and growth in the model is replaced by that of dissolution, which is also 
accompanied by a change in boundary conditions for the population balance equation. 
Such a switch incurs significant discontinuities to which the numerical integrator is 
often sensitive and hence slows down the solution speed. The same effect also exists 
when the system is switched from negative to positive supersaturation as a result of 
re-cooling. Secondly, the growth of crystals is modelled considering the growth rate 
dispersion (GRD) phenomenon, which introduces an additional dimension of 
distribution into the model and consequently leads to the multiplication of the size of 
the equation systems after discretisation, requiring even longer time to get the model 
solved.             

4.2. Results 

The mechanistic model is formulated and solved by means of gPROMS (Process 
Systems Enterprise Ltd, 2004). The GPOP algorithm was implemented using 
MATLAB. Accessing the model solution from MATLAB is implemented using go-
MATLAB developed by Process Engineering Enterprise.  
 
The optimisation was first carried out on the mechanistic model using a Genetic 
Algorithm (GA). A GA was selected to avoid being trapped in a local optimum too 
quickly. In particular, the GA implementation by Houck, Joines, and Kay (1995) has 
been employed with their default algorithmic parameters. The same optimisation 
problem was then solved by applying the GPOP algorithm, where both the maximum 
likelihood based training of the Gaussian process model (i.e. the surrogate model) and 
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the optimisation using the surrogate model, at each iteration in the procedure, were 
carried out using the aforementioned GA programme. The algorithmic parameters for 
GPOP were set such that NC = NR =10*n, where n is the number of input variables. In 
this case study, n=10. The stopping criterion, the “minimum diameter” that indicates 
the critical size of the local search region is set to be 1.0.    
 
When applied to solve the crystallisation optimisation problem, both the GA and 
GPOP yield results that were sensitive to the initial set of samples selected to start the 
optimisation. To achieve a fair comparison, five different sets of initialisation were 
generated, each comprising 100 samples. These were generated by evaluating the 
original complex model, following the application of Latin hypercube designs 
provided in the MATLAB statistics toolbox to obtain uniformly distributed samples. 
Each set of initialisations was then used for the execution of the GA and GPOP 
algorithms.  
 
Table 1. Results of comparative studies on GPOP and GA. 

Number of original complex model evaluations No. of 
comparative 
study GA GPOP Savings brought by GPOP 

1 3170 328 90% 

2 1390 496 64% 

3 1135 276 76% 

4 1069 840 20% 

5 4153 588 86% 
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Figure 2. Comparison of the performance of GA and GPOP. 
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The results in terms of the number of original model evaluations (including those for 
initialisation) required by the GA and GPOP algorithms for achieving the same value 
of the objective function are shown in Table 1. It can be seen that except for Set 4 
where the two algorithms require a comparable number of original model evaluations, 
the GPOP algorithm results in significant savings (up to 90%). The average savings 
attained through the implementation of the GPOP algorithm in comparison with the 
GA is 67%. Figure 2 shows the intermediate results for Case 2. 

5. Concluding Remarks 

Reducing the complexity of mathematical models is important for realising the 
practical application of complex models in optimisation-based process engineering 
tasks. In this research, a local surrogate model based method for the optimisation of 
computationally expensive black-box objective functions has been studied. In 
particular, the GPOP algorithm reported in the recent literature, which makes use of 
Gaussian process models, to approximate complex mechanistic mathematical models 
has been implemented and applied for the optimisation of a batch cooling 
crystallisation process. The case study has demonstrated that this algorithm can bring 
about significant savings in terms of the number of evaluations of the original 
complex model, in comparison with algorithms that make use of the original model 
directly without employing a surrogate model, such as the GA as used in the case 
study.  
 
The optimisation problem tackled in the case study was not just a test case but rather a 
real problem in the area of the modelling and optimisation of crystallisation 
processes. Of the various surrogate model-based optimisation methods reported in the 
literature, the GPOP algorithm was selected because conceptually this algorithm 
offers a desirable trade-off between locating global optima and ensuring 
computational efficiency as discussed in Section 1. However, a detailed comparison 
between this and other methods by means of comprehensive test cases is still ongoing. 
Besides, the mechanistic model in this case study is deterministic, hence the 
simulation results based on this model are not noisy. In future work, it would be 
interesting to investigate how an algorithm like GPOP can be applied (possibly with 
adaptation) to address noisy simulation based optimisation.     
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