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Abstract 

In semi-conductor manufacturing industry, production resembles an automated 
assembly line in which many similar products with slightly different specifications 
are manufactured step-by-step, with each step being a complicated physiochemical 
batch process performed by a number of tools.  This constitutes a high-mix 
production system for which effective run-to-run control (RtR) and fault detection 
control (FDC) can be carried out only if the states of different tool and different 
products can be estimated. However, since in each production run, a specific product 
is performed on a specific tool, absolute individual states of products and tools are not 
observable.  In this work, a novel state estimation method based on analysis of 
variance (ANOVA) is developed to estimate the relative states of each product and 
tool to the grand average performance of this station in the fab. The method is 
formulated in a form of recursive state estimation using Kalman filter. The 
advantages of this method are demonstrated using simulations to show that the correct 
relative states can be estimated in production scenarios such as tool-shift, tool-drift, 
product ramp-up, tool-offline and preventive maintenance. Furthermore, application 
of this state estimation method in a minimum variance based RtR control scheme 
shows that substantial improvements in process capabilities can be gained,  especially 
for products with small lot counts. 
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1. Introduction 

The semi-conductor manufacturing industry is one of the fastest evolving industries in 
the world.  As feature sizes shrink and wafer sizes increase, sophisticated control 
methods are needed to improve product yield, throughput, and overall equipment 
effectiveness.   
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The run-to-run (RtR) controller is a model-based process control system that 
integrates concepts in statistical quality control (SPC) and engineering process control 
(EPC). It is achieved by adjusting process inputs (recipes) at the beginning of each 
run based on information obtained from previous runs. In the last decade, RtR control 
has been extensively deployed in the semi-conductor industry. Research and 
development in this area have been summarized by many authors (Moyne, 2001; 
Castillo, 2002). 
 
Most of RtR control algorithms are based on the assumption that there is only a single 
product fabricated in the manufacturing line. This is, however, far from reality.  In 
semi-conductor manufacturing industry, production resembles an automated assembly 
line in which many similar products with different specifications are manufactured 
step-by-step, with each step being a complicated physiochemical batch process 
carried out by a number of tools. A specific combination of product and tool is known 
as a "thread" (Firth, et al., 2006).  Single product RtR control algorithms can be 
applied to a thread.  However, the number of threads can be very large, upto 
thousands in a foundry fab.  It is cumbersome to maintain so many controllers.  
Moreover, controller performance will be degraded for those infrequent threads since 
condition of the tool may be quite different from the last run of the same thread.  
Zheng et al. (2006) showed that even if the actual root cause is the change in 
condition of the tool, a single tool-based EWMA controller is unstable if the model 
uncertainties of different products are different. Firth et al. proposed a least square 
method known as just-in-time adaptive disturbance estimation (JADE) which includes 
additional constraints that the product and tool states remained unchanged from run-
to-run and a proprietary weighting method. 
 
In statistics, the problem of identification of different bias factors has been described 
as the analysis of variance (ANOVA) (Montgomery, 1997). In this work, a novel state 
estimation method based on ANOVA is developed to estimate the relative states of 
each product and the relative states of each tool to the grand average performance of 
this station in the fab. This method is formulated in a form of recursive state 
estimation using Kalman filter.  The advantages of the proposed method are 
demonstrated using simulations to show that the correct ANOVA states can be 
estimated in production scenarios such as tool/product-shift, tool-drift, product ramp-
up, product /tool-offline and preventive maintenance. Furthermore, application of this 
state estimation method in a minimum variance based RtR control scheme shows that 
substantial gains in process capability for specialized small lot counts products. 

2. STATE ESTIMATION BASED ON ANOVA 

2.1 Analysis of Variance (ANOVA) 

According to ANOVA, the effects of different factors are expressed as: 
 

k kk k n m ky bu pμ τ ε− = + + +                           (1) 
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where μ  is the overall mean of all observed tool and product combinations, τn 
(n=1,…,N) represent the difference between the average results of all possible 
products on nth tool and the overall mean, and pm (m=1,…,M) represent the difference 
between the average results on all possible tools of the mth product and the overall 
mean. Unlike absolute states of the particular tool and product, τm and pm are relative 
contributions subject to the constraints (Montgomery, 1997) 
 

1 1

0 0
N M

n m
n m

pτ
= =

= =∑ ∑                           (2) 

 
Here it is assumed that there exist no interactions between tools τn (n=1, 2,…,N) and 
parts pm (m=1, 2,…,M).  

If we assumed that the ANOVA states are stationary over several periods of time, 
then ANOVA model of the multi-tool and multi-product plant can be expressed in the 
following state space form: 
 

[ ] [ ][ ] [ ]
[ ][ ] [ ]

t+1 t t

t t t

T +
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α υ

=

⎡ ⎤ =⎣ ⎦
                          (3) 

 
where [ tω ] and [ tυ ] are independent, zero-mean, Gaussian noise processes of 
covariance matrices [Q] and [R], respectively. [T] is the transition matrix. 
 
The observability matrix for the above ANOVA state space model is  
 

[ ] [ ] [ ][ ] [ ][ ]( )TN MO Z' , Z ' T Z ' T +=           (4) 

 
The system is observable if the observability matrix is full rank.  In this case, the 
transition matrix [T ] is an identity matrix, the observability matrix [ ]O  is equal to the 
output matrix [ ]'Z  which is of full rank N+M+1. 

2.2 Recursive Observation  

Estimation can then be carried out in a recursive manner from intervals to intervals.  
At the start of any time interval t, given an estimated ANOVA state vector [ ]t-1α  and a 
estimated covariance matrix of the ANOVA states t-1P⎡ ⎤⎣ ⎦ , then the predicted values of 

the ANOVA state vector t  t-1α⎡ ⎤
⎣ ⎦  and predicted the covariance matrix for this period 

t t 1P −
⎡ ⎤
⎣ ⎦

 are given by 

 



                                                                                                             Ming-Da Ma et al.                              

 4
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After the operating records ( )t,k t,k t,k t,ky ,u ,n ,m , tk 1 K=  of this period are collected, the 
minimum mean square estimator of the ANOVA states and the covariance matrix can 
be updated by the following equations  
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                (6) 

 
It is not possible to guarantee that [ ]tZ'  contains all the threads and of full rank 
N+M+1 during the data collection interval.  For example, in the extreme case, the 
model can be updated whenever the result of a single run is reported.  However it is 
important to ensure that [ ]Z'  over an extended history is of full rank N+M+1.  This 
assumption may be invalid if some products are terminated or a certain tool is offline 
for an extended period of time. The assurance of the above full rank assumption can 
be achieved by monitoring the condition number of the matrix tP⎡ ⎤⎣ ⎦ .   

3. SIMULATION RESULTS  

In this section a series of simulation tests are designed to investigate the effectiveness 
of the proposed algorithm in various operation scenarios. A simple two-tool-three-
product example is used in the following simulation studies. For each operation 
scenarios, three different comparisons were made. First estimated ANOVA states [ ]α  
are compared with the actual ANOVA states [ ]α . The actual biases of each tool 

tool
na and products prod

ma  are compared with nμ τ+ , the average performance of all 
products on the nth tool, and mpμ + , the average performance of the mth products on 
all tools. Note that it is easy to identify the changes of tools or products using the 
ANOVA estimator proposed in this paper. If the ANOVA states of the tools or 
products remain stable, the corresponding conditions of the tools or products are 
confirmed to be unchanged. In case of a change of the ANOVA state are observed, 
the change of nμ τ+ or mpμ +  confirms the change of the tool n or the product m. 
Furthermore, the changes of nμ τ+ or mpμ +  are consistent with the actual states 

tool
na and prod

ma . 

3.1 Tool shift 

There are many events which can result in an apparent immediate shift in the 
operating conditions. For instance, such a disturbance might occur when a tool 
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undergoes a maintenance event.   This event would be seen by the process as a step 
disturbance in the output variable.  The disturbance is often not measurable. Therefore, 
the controller should learn from the process output and compensate for the effect of 
the disturbance.  
 
The comparisons of actual and estimated ANOVA states, the actual and estimated 
states of each thread, and actual biases and relative bias of the each tool and products 
are shown in Figure 1.  In this case, there is an abrupt change for the bias value of tool 
1 at the 100th run.  In Figure 1a, we observed that all the threads on tool 1 experience 
an abrupt change while the states of all the threads associated with tool 2 remain 
unchanged.  In Figure 1b, we found that the ANOVA states  μ and 1τ  experience 
positive shifts while the ANOVA tool state 2τ  experience a shift in the other direction.  
In Figure 1c, it is found that the average performance of all products on tool 1 1μ τ+  
experienced a shift; the average performance 2μ τ+  of all products on tool 2 
remained unchanged while the average performance A,B ,Cpμ +  of all products on tool 
2 experienced a shift too. 
 
Figure 2 illustrated the results of JADE estimates.  In the simulation, an identity 
weighting matrix is used for comparison with ANOVA estimates.  It is interested to 
note that when a shift is induced to tool 1, shifts are also observed to other factors as 
shown in Figure 2b.  The biases obtained are not true estimates of these factors.  
However, the estimated states of all the threads are correct as shown in Figure 2a 
since the method is a least square fit of all the threads.  Hence use of the recombined 
thread states for controlling existing threads is not a problem.  Application of these 
individual factor states to estimate new thread may lead to errors.  

3.2 Tool drift & PM 

If a manufacturing process is known to drift due to equipment aging, then a 
deterministic drift exists in the system.  Aging can be found in wafer etching process 
and chemical mechanical polishing.   A drift persisted for a long period would 
normally be followed by a maintenance event and corresponding process reset, 
resulting a saw-tooth pattern in an uncontrolled quality characteristic.   
 
The simulation results are shown in Figure 3.  The two tools experienced 
deterministic drifts of slopes 0.1 and 0.2 respectively.  Tool 1 was reset at the 115th 
run and tool 2 was reset at the 200th run.  As shown in Figures 3a and 3b, the states of 
each thread and the ANOVA states of each tool and product can be estimated 
correctly throughout the simulation.  Furthermore, the ANOVA states of the products 
remained unchanged.  Figure 3c illustrated that the average performances 1,2μ τ+  of 
tool 1 and tool 2 show patterns that are consistent with the actual states.  The average 
performances A,B ,Cpμ +  of the products 1 to 3 show saw-tooth patterns that are 
consistent with the changes in average performance of the whole plant.  Since there 
are no changes in the relative performance of different product, the ANOVA product 
states A,B ,Cp  remained unchanged as shown in Figure 3b. 
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3.3 Controller performance 

In a high mixed foundry, some products are fabricated infrequently in small quantity. 
However, it should be noted that products which are produced with large quantity are 
usually of marginal profits and the products which are produced infrequently are often 
high-value added and contribute a substantial portion of the profit. Therefore, it is 
highly desirable for a control algorithm to have comparable performance for products 
with different run counts.  
 
In this section, the performance for “infrequent” products for the three control 
algorithm, threaded EWMA algorithm, JADE and the ANOVA method proposed in 
this paper are investigated.  A deadbeat control for ANOVA method is used.  Runs 
are evenly distributed between the two tools, and the probability distributions of 
products A, B, C are 60%, 35% and 5% respectively.  Two IMA (1, 1) time series tool 
disturbances are injected into the system which variances are 2=0.16σ  respectively.  
  
The simulation results are shown in table 1. For all three methods, product A, which 
is the most frequent product produced, had the best performance.  Product C, which is 
the produced in small quantity, had the worst performance.  However, the 
performance of threaded EWMA is extremely poor for product C, while performances 
of JADE and ANOVA for product C are still acceptable.  The ANOVA result is the 
best among the three methods for all three products with different run counts. 
 
Table 1: Comparison of RtR control performances for different products 

 
Method MSEA MSEB MSEC MSE 
ANOVA 0.2400 0.2833 0.4124 0.2642 
JADE 0.2557 0.3182 0.5423 0.2964 
EWMA(Threaded) 0.2746 0.4103 2.2348 0.4152 
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Figure 1a 
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Figure 1b 



                                                                                                             Ming-Da Ma et al.                              

 8

0 50 100 150 200
0

10

20

30

0 50 100 150 200
0

5

10
15

20
25

0 50 100 150 200
0

5

10

15

20

0 50 100 150 200
5

10

15

20

25

0 50 100 150 200
10

15

20

25

30

Run

 

 

μ+τ1
atool

1

μ+τ2

atool
2

μ+pA

aprod
A

μ+pB

aprod
B

aprod
C

μ+pC

 
Figure 1c 

Figure 1:  Changes in actual and estimated (a) states of thread, (b) ANOVA parameters and (c) absolute and 
relative factor biases in a tool shift. (— actual values, --- estimated values, * observed values)  
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Figure 2a 
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Figure 2b 

Figure 2:  Changes in actual and estimated (a) states of thread and (b) absolute factor biases using least square 
method in a tool shift. (— actual values, --- estimated values, * observed values) 
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Figure 3a 
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Figure 3c 

Figure 3:  Changes in actual and estimated (a) states of thread, (b) ANOVA parameters and (c) absolute and 
relative factor biases with tool drifts and preventive maintenances (— actual values, --- estimated values, * 
observed values) 
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4 CONCLUSIONS 

In this paper a novel state estimation method based on statistics method ANOVA is 
developed to estimate the relative states of each product and the relative states of each 
tool to the grand average of this station in the fab.  The method is formulated in a 
form of recursive state estimation using Kalman filter.  Simulation results show that 
the correct ANOVA states can be estimated in production scenarios such as tool-shift, 
tool-drift, product ramp-up and offline. Furthermore, application of this state 
estimation method in a minimum variance based RtR control scheme shows that 
substantial improvement of quality of products with small run counts.  This makes the 
proposed method highly suitable for mixed product control system. 
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