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Abstract

We consider completely controllable and observable plant
described by:
Plant: x = Ax+Bu, y=0Cx;
controller: u(s) = K(s)y(s) .
Find the transfer matrix of the output controller K(s), such
that the following frequency inequalities are valid:

L+ (—jo)l I+ (jeo) 2’1,

L+ (—je)] [T +W " (jo)l = r] ,
where 17”7 and W™ are, respectively, output and control open-
loop transfer matrices. The controller has the following form:

x,=A.x,+B,y, u=C.x,+D,y, x,eR™
with the associated transfer matrix
K(s)=C,(sI-A4,)"'B,+D,.

To obtain a numerical solution to the problem, the method of
linear matrix inequalities (LMI) is used.

1 Introduction

In [3], output optimal controller design procedures where
proposed using /., methods. They guarantee the given radius
of stability margins w.r.t. the physical output or input of the
plant. However, large stability margin w.r.t. output does not
necessarily ensure that of the input and vice versa$ an
example of such a situation with /,, state controller is given
below. This paper proposes a method that provides the given
radius simultancously w.r.t. output and input.

Considered is a completely controllable and observable plant
described by m, xm transfer matrix ' (s) . The objective is
to find the transfer matrix of an output stabilizing controller
K(s) such that for all @e]|0, wo), the following circular
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frequency inequality holds

L+ (=je)] [I+W (je)] 2 r°1 (1
where 0 <r <1 is the given radius of stability margins [3],
and W (s) is the open-loop transfer matrix of the system,
which is broken at iput (W =-KW,), or output
(W =-W,K ). In other words, inequality (1) must be satisfied
in both cases above.

We show that such a problem can be reduced to a standart
H  -optimization problem; however, in contrast to the results
in [3], only sufficient nature of the corresponding conditions
can be obtained.

The numerical solution is convenient for implementation
using state space approach on the basis of lincar matrix
inequalities and the MATLAB LMI Control Toolbox [6]. An
illustrative example involves multivariable controller design
for a multi-engine electrical actuator.

Example 1. [4] H-infinity state controller. We consider a
time-invariant system described by
Plant: x=Ax+Bw+Bu, yv=x, z;, =Cx 2
Controller; u =Kx=-B," Px, (3)
where P >0 is a solution of the algebraic Riccati equation
(ARE) [5.7]

A"P+PA+y*PBB P-PB,BIP=-CTQC (4
where v is a scalar such that a solution P >0 of ARE (4)
exists. Let B, =B,, then we introduce a number
a =y % -1 and rewrite ARE (4) in the following form

A"P+PA+aPB Bl P=-C"QC . 5

We consider system (2)  with controller (3), where
a=1072-10"° and Q=1 and

A= VB 20 o= 1
=, b B=l0 W.C=[-5 0

It is easy to check that the solution of ARE (5) and the
controller matrix (3) have the form
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-3
P:103{ 1}0, K=10°[3 -1].

Consider open-loop transfer matrix (at the plant input) of
system (2), (3):
W(s)=—-K(sI-A)"'B,;

it has the following form:

10°s
W(s)=———
s +5s+4
and satisfies the passivity condition RelV(jw)=0,

o €0, =) . For this regulator, the gain margin is infinite and
the phase margin exceeds 90°.

Suppose that the element a;; of matrix A has the form

Ay =-3+¢&, where £>0 is a small number. In this case,

the characteristic polynomial of the closed-loop system is
D(s) = s +(1005— &) + 4 —1002¢ .

The system is unstable if & >4/1002. Thus, in spite of large

gain and phase margins, the /7, suboptimal system may not

be robust.

In this example, it is easy to demonstrate the nearness to
instability by breaking the loop at the plant output, for
example, with respect to the variable x; (the first input of
controller). In this case, the open-loop transfer function has
the form
W =— 3000

s~ +1005s +3004

and gains and phase margins are very low.

2 Problem statement

Consider completely controllable and observable plant of in
state space:

x=Ax+Bu, y=Cx (0)
where xeR" are the plant states; ¥ € R™ is the control
input; y € R™ is measurable output (7, = m ). The associate
transfer matrix from u(s) to y(s) has the form

W(s)=C(sl —A)f1 B, y(s)=W(s)u(s). @)

Problem. Find the transfer matrix of the output controller
K(s):

u(s) = K(s)y(s). ®)
such that the following frequency inequalities are valid
L+ (—jo) [T +W7 (o) = r*], ©)
L+ (—jo)] [T+ W (o) =r ] . (10)
Here » is a be given (0<r<l) number;

WY (s)=-W(s)K(s) is the open-loop transfer matrix (at the
plant  physical output) of system (6), (8);
W (s)=—K(s)W(s) is the open-loop transfer matrix (at the
plant physical input) of system (6), (8). By analogy with [1],
the quantity » shall be referred to as radius of stability
margins. If the frequency inequalities (9) and (10) are

satisfied, we say w.r.t that the system has radius of stability
margins » the plant input and output. Let's explain physical
meaning of this concept.

In case of a single-input, single-output (SISO) (m =m, =1)
the fulfilment of inequalities (9), (10) means [1] that the
frequency plot " (jw) =W ?” (jw) does not intersect a circle
of radius » with center an the critical point (-1, jO). In the
case, phase and gain stability margins can be determined from
r; sec below.

For MIMO systems, frequency inequalities (9), (10) have the
following physical interpretation [8, 9]: for each of the
physical outputs y; (inputs u;), the gains /, with nominal
value 1 given by can be changed independently over the
intervals

(i=1 m), an

without loss of stability, see [8]. Intervals (11) are referred to
as gain multiloop stability margins it physical outputs (inputs)
of the plant.

The phase multiloop stability margins are introduced in a
more abstract way. In this case, transfer functions
1,(s)=e’"" can be incorporated into each of output (input)
channels without loss of stability. The quantities y; above
are pure shifts with zero nominal values and the following
limits:

2
l//l-<arccos{1—r2} i=Lm, (=Lm. (12)

see [8].

3 Reduction to the standard problem H-infinity
optimization

We show that the problem of ensuring the given radius of
stability margins » in (9), (10) or its maximization (over
0 <7 <1) can be reduced to standard H-infinity optimization.
With this purpose we shall solve the following problem

[Tl <7 7= (13)
where the matrix 7, links the extended vector of controlled

variables z = [le zg I* to the vector of dummy disturbances
w= [wlT wg " (see figure 1).

V) y

W(s)
;& O
v | K(S) 7

Figure 1: Control system configuration.



We show that the fulfilment of inequality (13) implies the
fulfilment of inequalities (9), (10). We rewrite (13) as

T T
lel ZIWZ

T

M

Sy >

22%2 (|0

and if this inequality is
inequalities are also satisfied:

Sy)

o0

<7, (14)
S 7/7

(15)

S 7/7
The 1* and the 4™ of inequalities (14), (15) can be rewritten in
the form

satisfied, then the following

7T

Iw

awm

7,

M

7,

23wy

T, i T, (jo)<y’l, (16)
T, () =L+ W ()]
7., —jo)T, , (jo)y<yl. (17)

T, ., () =L +W" ()]

Inequalities (16) and (17) are equivalent to frequency circular
inequalities (9) and (10), respectively, where y = Pl

Now the problem of finding the desired transfer matrix K (s)
(such that (9) and (10) are satisfied) can be formulated as an
H-infinity optimal control problem.

Problem 1. Let a robust performance bound y >1 be given.
Find a controller transfer matrix (8) such that inequalities (9)
and (10) be fulfilled.

Problem 2. Find a controller transfer matrix (8) such that
inequalities (9) and (10) be satisfied with minimum possible
Y=Yao-

If problems 1 and 2 are solved the radius of stability margins
is given by r:y’l, and from inequalities (11), (12), the
boundaries on guaranteed gain and phase multiloop stability
margins at physical input and output can be found.

The block diagram on fig. 1 corresponds to the following
equations

y=Wz,, z, =u+w,, u=Kz;, z;=y+w,. (18)
Equations (18) the following standard form adopted in
H-infinity control theory [5, 7]:

z=Gw+Gpu, y=G,w+Gpu, u=Ky, (19)

where Gl-j (i, j =12) are the clements of the transfer matrix
G(s) of augmented plant

G(s)= {
Gy (5) Gypn(9)

Block diagram associated with equations (19) is given in

fig.2.

G, () Gy, (s)}

u\G(S) y

K (s)

Figure 2: The block diagram of augmented plant.
It is easy to obtain transfer matrixes G (i,j=12) from
(18). Indeed, by trivial algebraic manipulations, equation
(18) reduces to

1

whence it is possible to obtain matrixes G;; and G, . From
(18) it also follows that the input signal of the controller is the
controlled variable z, and, thus, z; and y represent the
same signal on figure 2 (y on a figure 2 and y in equations
(18) denote different signals!). From the above, equation (19)
takes the following form:

e

y=zi=lI W]lw+Wu,

u=Ky=Kz,. 20)
From (22) it is possible to find matrixes G,, and G,,:
I w 7
Gy :{0 ]} G =W 1II".
Gy =L W], Gy =W, @2n

where /77 is the plant transfer matrix (7). Hence, the
original problem is reduced to the standard problem of
disturbance attenuation in system (19), (21) with disturbance
w, controlled variables z and performance specification (13);
in other words, to problems 1 and 2 which are usually
considered in /7, .

4 Numerical solution

Numerical solution can be performed by different methods.
From the computational complexity the point of view,
frequency or polynomial methods concede state-space method
[7]. This approach requires the equations (19), (21) be in the
state-space form [5]

x=Ax+Bw+B,u,

z=C\x+Dyyw+Du, (22)
y=Cyx+Dyyw+Dou,
where, using the form (20) it is easy to establish that
B =[B 0]. B,=B, C,=C, =C, (23)



D N D, =[0 II"
11_0[> 12 — >

Dy, =l 0], Dy, =0,
where the matrixes 4, B, C are taken from (6).

However, solution by state-space methods using 2-Riccati
approach requires the fulfilment of some conditions on the
matrices in (22). In particular,
Dy, =0, Dy, =0, D,, =[0 I]#0,
DL =10 11%0, DL,C, =0, B,DL =0,
DL =10 11#0, DI,C, =0, B,DL, =0
not all of these conditions are satisfied in our case.

Therefore, for the solution of the given problem we use the
LMI approach [2], which is free from the limitations
indicated above. Namely, we take the controller in the
following form:

X, =Ax,+B,y, u=C,x,+D_y, x,€R™.

From here, we obtain the required transfer matrix of
controller (8):
K(s)=C,(sI-A4,)"'B,+D,.
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