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Abstract

In this note the following problem is considered: Given two
monic coprime polynomialsa(s) and b(s) with real coeffi-
cients, find the smallest (in magnitude) perturbation in their
coefficients so that the perturbed polynomials have a common
root. It is shown that the problem is equivalent to the calcula-
tion of the structured singular value of a matrix, which can be
performed using efficient existing techniques of robust control.
A simple numerical example illustrates the effectiveness of the
method. The generalisation of the method to calculate the ap-
proximate greatest common divisor (GCD) of polynomials is
finally discussed.

1 Introduction

The computation of the greatest common divisor (GCD) of two
polynomialsa(s) and b(s) is a non-generic problem, in the
sense that a generic pair of polynomials has greatest common
divisor one. Thus, the notion ofapproximatecommon factors
and GCD’s has to be introduced for the purpose of effective
numerical calculations.

In the context of Systems and Control applications, the main
motivation for developing non-generic techniques for calculat-
ing the GCD arises from the study of almost zeros [3]. The
numerical computation of the GCD of polynomials in a ro-
bust way has been considered using a variety of methodologies,
such as ERES [5], extended ERES [5] and matrix pencil meth-
ods [4]. The main characteristic of all these techniques is that
they transform exact procedures to their numerical versions.

In this work, we formalise the notion of “approximate co-
primeness” and “approximate GCD” of two polynomials, by
considering the minimum-magnitude perturbation in the poly-
nomial’s coefficients, such that the perturbed polynomials have
a common root. The calculation of the minimal perturbation is
shown to correspond to the distance of a structured matrix from
singularity, or, equivalently to the calculation of the structured
singular value of a matrix [6, 7]. The later problem has been
studied extensively in the context of robust-stability and robust-
performance design of control systems, and efficient methods
have been developed for its numerical solution. Generalising

the definition of the structured singular value by imposing ad-
ditional rank constraints, leads naturally to the formulation of a
problem involving the calculation of the approximate GCD of
some minimal degreek.

2 Main results

The problem considered in this paper is the following:

Problem 1: Let a(s) and b(s) be two monic and coprime
polynomials with real coefficients, such that∂a(s) = m and
∂b(s) = n wherem ≥ n. What is the smallest real perturba-
tion (in magnitude) in the coefficients ofa(s) andb(s) so that
the perturbed polynomials have a common root?

Formally write:

a0(s) = sm + αm−1s
m−1 + αm−2s

m−2 + . . . + α0 (1)

and

b0(s) = sm + βn−1s
n−1 + βn−2s

n−2 + . . . + β0 (2)

and assume that the coefficients{αi, i = 0, 1, . . . , m− 1} and
{βi, i = 0, 1, . . . , n − 1} are subjected to real perturbations
δ0, δ1, . . . , δm−1 andε0, ε1, . . . , εn−1, respectively, i.e. the per-
turbed polynomials are:

a(s; δ0, . . . , δm−1) = sm + (αm−1 + δm−1)sm−1

+ . . . + (α0 + δ0)

and

b(s; ε0, . . . , εn−1) = sn + (βn−1 + εn−1)sn−1

+ . . . + (β0 + ε0)

respectively. Let also:

γ = max{|δ0|, |δ1|, . . . , |δm−1|, |ε0|, |ε1|, . . . , |εn−1|} (3)

Then Problem 1 is equivalent to: min γ such that
a(s; δ0, . . . , δm−1) andb(s; ε0, . . . , εn−1) have a common root.

In the sequel, it is shown that Problem 1 is equivalent to the
calculation of the (real) structured singular value of an appro-
priate matrix which can be performed efficiently using existing
algorithms.



Problem 2: (real structured singular value). LetM ∈ Rn×n

and define the “structured” set:

D = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs
) : δi ∈ R, i = 1, 2, . . . , s}

where theri are positive integers such that
∑s

i=1 ri = n. The
structured singular value ofM (relative to “structure”D) is
defined as:

µD(M) =
1

min{‖∆‖ : ∆ ∈ D, det(In −M∆) = 0} (4)

unless no∆ ∈ D makesIn − M∆ singular, in which case
µD(M) = 0. The problem here is to calculateµD(M) and,
provided thatµD(M) 6= 0, to find a∆ ∈ D of minimal norm
such thatdet(In −M∆) = 0.

Before stating the equivalence between Problem 1 and Problem
2, we need the following result which relates the existence of
common factors of two polynomials to the rank of their corre-
sponding Sylvester resultant matrix:

Theorem 1: Consider the monic polynomialsa(s) and b(s)
with ∂a(s) = m and∂b(s) = n wherem ≥ n, and letA be
their Sylvester resultant matrix,

A =




1 αm−1 αm−2 · · · α0 0 · · · 0
0 1 αm−1 · · · α1 α0 · · · 0
...

...
.. .

. ..
.. .

. . .
. . .

...
0 0 · · · 1 αm−1 · · · α1 α0

1 βn−1 βn−2 · · · β0 0 · · · 0
0 1 βn−1 · · · β1 β0 · · · 0
...

...
.. .

. ..
.. .

. . .
. . .

...
0 0 · · · 1 βn−1 · · · β1 β0




Then, ifφ(s) denotes the GCD ofa(s) andb(s) the following
properties hold true:

1. Rank(A) = n + m− ∂φ(s).

2. The polynomialsa(s) andb(s) are coprime if and only if
Rank(A) = n + m.

3. The GCDφ(s) is invariant under elementary row opera-
tions onA. Furthermore, if we reduceA to its row echelon
form, the last non-vanishing row defines the coefficients
of φ(s).

Proof: See [1, 5, 2]. ¤

Using Theorem 1, the equivalence of Problem 1 and Problem 2
can now be established:

Theorem 2: Problem 1 is equivalent to Problem 2 by defining:

1. The structured setD as:

D = {diag(δm−1In, δm−2In, . . . , δ0In, εn−1Im,

εn−2Im, . . . , ε0Im) : δi ∈ R, εi ∈ R}

i.e. s = m + n, ri = n for 1 ≤ i ≤ m andri = m for
m + 1 ≤ i ≤ m + n.

2. M = −ZA−1Θ where:

Θ =
(

In · · · In On,m · · · On,m

Om,n · · · Om,n Im · · · Im

)

Z ′ =
(
(Z0

nm)′ · · · (Zm−1
nm )′ (Z0

mn)′ · · · (Zn−1
mn )′

)

with Θ ∈ Rn+m,2nm andZ ′ ∈ Rn+m,2nm, where:

Zk
nm =

(
On,k+1 In On,m−k−1

)

for k = 0, 1, . . . , m− 1 andA denotes the (non-singular)
Sylvester’s resultant matrix of polynomialsa(s) andb(s)
defined above.

3. With these definitions:

γ? =
1

µD(M)
(5)

whereγ? denotes the minimum-magnitude real perturba-
tion in the coefficients ofa(s) andb(s) such that the per-
turbed polynomials have a common root.

Proof: Since a(s) and b(s) are assumed coprime,
their Sylvester resultant matrixA is nonsingular. The
Sylvester resultant matrix̂A of the perturbed polynomials
a(s; δ0, . . . , δm−1) andb(s; ε0, . . . , εn−1) can be decomposed
asÂ = A + E whereE denotes the “perturbation matrix”:

E =




0 δm−1 δm−2 · · · δ0 0 · · · 0
0 0 δm−1 · · · δ1 δ0 · · · 0
...

...
. ..

. . .
.. .

. ..
. ..

...
0 0 · · · 0 δm−1 · · · δ1 δ0

0 εn−1 εn−2 · · · ε0 0 · · · 0
0 0 εn−1 · · · ε1 ε0 · · · 0
...

...
. ..

. . .
.. .

. ..
. ..

...
0 0 · · · 0 εn−1 · · · ε1 ε0




Matrix E can now be factored asE = Θ∆Z whereΘ andZ
are defined in Theorem2 part2 above, and

∆ = diag(δm−1In, δm−2In, . . . , δ0In,

εn−1Im, εm−2Im, . . . , ε0Im)

Clearly∆ ∈ D, i.e. it has a block-diagonal structures = m +
n, ri = n for 1 ≤ i ≤ m andri = m for m + 1 ≤ i ≤ m + n.
Note also that:

γ = max{ |δ0|, |δ1|, . . . , |δm−1|, |ε0|, |ε1|, . . . , |εn−1| }
= ‖∆‖

Since the resultant Sylvester matrix̂A loses rank if and only
if there is a common factor betweena(s; δ0, . . . , δm−1) and
b(s; ε0, . . . , εm−1), Problem 1 is equivalent to:

min ‖∆‖ such that det(A + Θ∆Z) = 0 and ∆ ∈ D (6)



Using the matrix identity

det(I + BC) = det(I + CB) (7)

which holds for any two matricesB andC of compatible di-
mensions, and the fact thatA is non-singular, we have that:

det(A + Θ∆Z) = 0 ⇔ det(I + ZA−1Θ∆) = 0
⇔ det(I −M∆) = 0

Hence Problem 1 becomes:

min{ ‖∆‖ : det(I −M∆) = 0, ∆ ∈ D } (8)

which is equivalent to Problem 2, the minimum beingµ−1
D (M).

¤

Example 1: Let a(s) = s3 + α2s
2 + α1s + α0 (m = 3) and

b(s) = s2 + β1s + β0 (n = 2). The Sylvester resultant matrix
of the perturbed polynomials is:

Â =




1 α2 + δ2 α1 + δ1 α0 + δ0 0
0 1 α2 + δ2 α1 + δ1 α0 + δ0

1 β1 + ε1 β0 + ε0 0 0
0 1 β1 + ε1 β0 + ε0 0
0 0 1 β1 + ε1 β0 + ε0




(9)

which can be written as:

Â =




1 α2 α1 α0 0
0 1 α2 α1 α0

1 β1 β0 0 0
0 1 β1 β0 0
0 0 1 β1 β0




+




0 δ2 δ1 δ0 0
0 0 δ2 δ1 δ0

0 ε1 ε0 0 0
0 0 ε1 ε0 0
0 0 0 ε1 ε0




Let A andE denote the first and second matrices, respectively,
in the RHS of this equation. The “perturbation” matrixE can
be factored as:

E =

0BBB@
1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1

1CCCA
0BBB@

δ2I2 0 0 0 0
0 δ1I2 0 0 0
0 0 δ0I2 0 0
0 0 0 ε1I3 0
0 0 0 0 ε0I3

1CCCA
0BBBBBBBBBBBBBBBBBB@

0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1CCCCCCCCCCCCCCCCCCA

which is of the required formE = Θ∆Z with ∆ ∈ D. The
minimum coefficient perturbation is the inverse of the struc-
tured singular value of the matrix:

M = −

0BBBBBBBBBBBBBBBBBB@

0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1CCCCCCCCCCCCCCCCCCA

0BBB@
1 α2 α1 α0 0
0 1 α2 α1 α0

1 β1 β0 0 0
0 1 β1 β0 0
0 0 1 β1 β0

1CCCA
−1

0BBB@
1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1

1CCCA
and can be computed numerically using efficient existing tech-
niques [6, 7].

Example 2: Here the effectiveness of the method is tested with
a numerical example. Consider the polynomials

a0(s) = s3 − 6s2 + 11s− 6 and b0(s) = s2 − 6s + 8

with roots{3, 2, 1} and{4, 2} respectively. Since there is a
common root (s = 2) the resultant Sylvester matrix is singular.
The polynomials were perturbed to:

a(s) = s3 − 6.05s2 + 11.1s− 5.95

and
b(s) = s2 − 6.06s + 8.1

which have roots

{3.0512, 2.0454, 0.9534}

and
{4.0301, 2.0099}

respectively. The singular values of the corresponding
Sylvester resultant matrix,

A =




1 −6.05 11.1 −5.95 0
0 1 −6.05 11.1 −5.95
1 −6.04 8.1 0 0
0 1 −6.04 8.1 0
0 0 1 −6.04 8.1




were obtained as:

{22.7997, 12.3247, 5.4710, 0.2264, 0.0007}

indicating a numerical rank of4 and, hence, an approximate
GCD of degree one (Theorem 1), as expected.

Next the results of Theorem 2 were applied toa(s) andb(s).
Note that since the maximum perturbation of the coefficients of



a(s) andb(s) relative to those ofa0(s) andb0(s) (which have
a common root) is0.1, we expect thatγ∗ ≤ 0.1.

Two functions from Matlab’sµ-optimisation toolbox (mu.m
andunwrap.m) were used to calculate the (real) structured sin-
gular value of matrixM and the corresponding minimum-norm
singularising perturbation∆0. The lower and upper bounds of
the structured singular value were obtained as:

222.991497161 ≤ µD(M) =
1
γ∗

≤ 222.991497162

corresponding toγ∗ = 0.0044844759227. It was also
checked that the singularising perturbation∆0 corresponding
to µD(M) had the right structure (i.e.∆0 ∈ D) and in fact
δ0 = δ1 = δ2 = −γ∗ andε0 = ε1 = γ∗. Polynomials with a
common factor “nearest” toa(s) andb(s) were obtained with
the help of∆0 as:

â(s) = s3 − 6.05448447592s2 + 11.0955155241s

− 5.95448447592

and

b̂(s) = s2 − 6.03551552408s + 8.10448447592

The roots of̂a(s) andb̂(s) were calculated as:

{3.07886773569, 2.01656975051, 0.959046989722}
and

{4.01894577356, 2.01656975051}
respectively corresponding to an “optimal” approximate GCD,
φ(s) = s− 2.01656975051.

3 Approximate GCD of polynomials

The technique developed in section 2 may be used to de-
fine a conceptual algorithm to calculate the numerical GCD
of any two polynomialsa(s) andb(s). This sequentially ex-
tracts approximate common factorsφi(s), by calculating the
corresponding structured singular valueµD and the minimum-
norm singularising matrix perturbation∆0. After the ex-
traction of each factor, the quotientsai+1 = ai(s)/φi(s)
and bi+1(s) = bi(s)/φi(s) are calculated, ignoring possible
(small) remainders of the divisions. The procedure is ini-
tialised by settinga0(s) = a(s), b0(s) = b(s), and iter-
ates by constructing at each step of the algorithm the reduced-
dimension Sylvester matrix corresponding to the polynomial
pair (ai+1(s), bi+1(s)), followed by calculating the newµD
and∆0, which in turn results to the extraction of the new fac-
tor φi+1(s). The whole process is repeated until a tolerance
condition is met, at which stage the approximate GCDφ(s)
can be constructed by accumulating the extracted common fac-
torsφi(s). Special care is needed in the real case, to ensure that
any complex roots inφ(s) appear in conjugate pairs.

Compared to this procedure, a more elegant approach would be
to extract the approximate common factor via a non-iterative

algorithm. This requires the refinement of the definition of
the structured singular value by introducing rank constraints.
Specifically, we define:

Definition: (generalised real structured singular value). Let
M ∈ Rn×n and define the “structured” set:

D = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ R, i = 1, 2, . . . , s}

where theri are positive integers such that
∑s

i=1 ri = n. The
generalised structured singular value ofM relative to “struc-
ture”D and for a non-negative integerk is defined as:

µ̂D,k(M) =
1

min{‖∆‖ : ∆ ∈ D, null(In −M∆) > k}
unless there does not exist a∆ ∈ D such that null(In−M∆) >
k, in which casêµD,k(M) = 0.

It follows immediately from the definition that̂µD,0(M) =
µD(M) and thatµ̂D,k(M) ≥ µ̂D,k+1(M) for each integer
k ≥ 0. Further if for some integerk, µ̂D,k(M) > 0 and
µ̂D,k+1(M) = 0, then for any minimiser∆ of µ̂D,k(M),
null(In −M∆) = k + 1.

Theorem 3: Let a0(s) andb0(s) be two monic coprime poly-
nomials of degrees∂a0(s) = m and∂b0(s) = n with m ≥ n
defined in equations (1) and (2). Leta(s) andb(s) be two per-
turbed polynomials, and set

γ = max{|δ0|, |δ1|, . . . , |δm−1|, |ε0|, |ε1|, . . . , |εn−1|} (10)

where{δi} and{εi} denote the perturbed coefficients ofa0(s)
andb0(s) respectively. Further, letγ∗(k) denote the the mini-
mum value ofγ such thata(s) andb(s) have a common factor
φ(s) of degree∂φ(s) > k (k = 0, 1, . . . , n− 1). Then,

γ∗(k) =
1

µ̂D,k(M)
(11)

where µ̂D,k(M) denotes thegeneralised structured singular
valueof M = −ZA−1Θ with respect to the structureD de-
fined in equation (8), andA, Θ andZ are the matrices defined
in equations (7), (9) and (10) respectively. Further,φ(s) may
be constructed from any∆0 ∈ D which minimises‖∆‖ subject
to the constraint null(In −M∆) > k.

Proof: This is almost identical to the proof of Theorem 2, on
noting that the transformations in equation (18) do not change
the nullity of the corresponding matrices. ¤

Theorem 3 suggests that the GCD of two polynomialsa(s)
andb(s) can be obtained by calculating successivelyµ̂D,k(M)
for k = 0, 1, . . . n − 1. The procedure terminates when ei-
therk = n − 1 is reached, or when the generalised structured
singular value falls below a pre-specified tolerance level. The
effective numerical calculation of̂µD,k (or at least of tight up-
per and lower bounds) will be the subject of future research. A
further generalisation of our method involves the calculation of



the approximate GCD for an arbitrary number of polynomials
(rather than just two). This problem can also be translated to
our framework using some recent results on generalised resul-
tants [2] and will also be a topic of future work.

4 Conclusions

In this paper we have proposed a new method for calculating
numerically the approximate GCD of a set of polynomials. It
was shown that, for two coprime polynomials, the problem of
calculating the smallestl∞-norm perturbation in the polynomi-
als’ coefficient vector so that the perturbed polynomials have a
common root, is equivalent to the calculation of the structured
singular value of an appropriate matrix. This is a fundamental
problem in the area of robust control and various techniques
have been successfully developed for its solution. The effec-
tiveness of one such method for calculating the GCD of low-
degree polynomials has been demonstrated via a numerical ex-
ample. We have further shown that calculating the minimum
l∞-norm perturbation in the coefficient vector of two (or more)
coprime polynomials so that the perturbed polynomials have
a GCD of degree at leastk, reduces to a structured singular
value-type calculation with additional rank constraints. This
is a non-standard problem and developing effective algorithms
for its solution will be the topic of future research work.
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