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singular value. ditional rank constraints, leads naturally to the formulation of a
problem involving the calculation of the approximate GCD of
Abstract some minimal degrek.

In this note the following problem is considered: Given twe Nain results

monic coprime polynomials(s) and b(s) with real coeffi-

cients, find the smallest (in magnitude) perturbation in thelihe problem considered in this paper is the following:
coefficients so that the perturbed polynomials have a common

root. It is shown that the problem is equivalent to the calcul&roblem 1: Let a(s) andb(s) be two monic and coprime
tion of the structured singular value of a matrix, which can belynomials with real coefficients, such thi(s) = m and
performed using efficient existing techniques of robust contrélb(s) = n wherem > n. What is the smallest real perturba-
A simple numerical example illustrates the effectiveness of ttien (in magnitude) in the coefficients afs) andb(s) so that
method. The generalisation of the method to calculate the &ipe perturbed polynomials have a common root?

proximate greatest common divisor (GCD) of polynomials is

finally discussed. Formally write:

1 Introduction ao(s) = ™+ am_18" " Fam 25" P+ o (1)
The computation of the greatest common divisor (GCD) of wind
polynomialsa(s) and b(s) is a non-generic problem, in the

sense that a generic pair of polynomials has greatest common
divisor one. Thus, the notion @fpproximatecommon factors

bo(s) = 8™ + Bu18" '+ Bu2s" P+ ...+ 60 (2)

) _ .and assume that the coefficiefts;,i = 0,1,...,m — 1} and
and G_CDs has tq be introduced for the purpose of eﬁectl\{%ivi — 0,1,...,n — 1} are subjected to real perturbations
numerical calculations. 09,01, .,0m_1 andeg, €1, ..., €,_1, respectively, i.e. the per-

L turbed polynomials are:
In the context of Systems and Control applications, the main

motivation for developing non-generic techniques for calculat- (5. 5y, ... 6,,_1) = 5™ + (tm_1 + Gpm_1)s™ "
ing the GCD arises from the study of almost zeros [3]. The ot (04 B0)
numerical computation of the GCD of polynomials in a ro- 0T
bust way has been considered using a variety of methodologigs
such as ERES [5], extended ERES [5] and matrix pencil meth-
ods [4]. The main characteristic of all these techniques is that b(si€o,. . en_1)=5"+ (Bpo1 + €n_1)s"
they transform exact procedures to their numerical versions. o4 (Bo+ <o)

In this work, we formalise the notion of “approximate COrespectively. Let also:

primeness” and “approximate GCD” of two polynomials, by

considering the minimum-magnitude perturbation in the poly- v = max{|do|, |61}, - -, |0m_1]; €ol; [€1];-- -, len—1]} (3)
nomial’s coefficients, such that the perturbed polynomials have

a common root. The calculation of the minimal perturbation iBhen Problem 1 is equivalent to: miny such that
shown to correspond to the distance of a structured matrix frerfs; do, . . . , d,,—1) @andb(s; o, . . . , €,—1) have a common root.
singularity, or, equivalently to the calculation of the structured

singular value of a matrix [6, 7]. The later problem has beén the sequel, it is shown that Problem 1 is equivalent to the
studied extensively in the context of robust-stability and robustalculation of the (real) structured singular value of an appro-
performance design of control systems, and efficient methqgatsate matrix which can be performed efficiently using existing
have been developed for its numerical solution. Generalisiatgorithms.



Problem 2: (real structured singular value). L&l € R"*"
and define the “structured” set:

D = {diag(611r,,021ry, ..., 051.) 1 0; ER,i=1,2,...,8}

where ther; are positive integers such that;_, 7, = n. The
structured singular value off (relative to “structure™D) is
defined as:

1

M =
) min{||A|| : A €D, det(I, - MA) =0}

unless noA € D makesI, — MA singular, in which case
up(M) = 0. The problem here is to calculate,(M) and,
provided thatup (M) # 0, to find aA € D of minimal norm
such thatlet(I,, — MA) = 0.

o ( (4)

Before stating the equivalence between Problem 1 and Proble@

iie.s=m+n,r, =nforl <i<mandr; = m for
m+1<i<m-+n.

2. M = —-ZA"10 where:
I, I, ‘ On,m On,m
9= ( O O | T T )

Z' = ((Z3) - g (Zp) - (Z0h))
with © € RT™m:2vm gndZ! € RT™:2vm where:
Z’rlim = (Oﬂ,k+1 I, On,mfkfl)

fork=0,1,...,m — 1 and A denotes the (non-singular)
Sylvester's resultant matrix of polynomial$s) andb(s)
defined above.

With these definitions:

2, we need the following result which relates the existence of -

common factors of two polynomials to the rank of their corre- * 1

sponding Sylvester resultant matrix:

Theorem 1: Consider the monic polynomials(s) and b(s)
with da(s) = m anddb(s) = n wherem > n, and letA be
their Sylvester resultant matrix,

1 am—_1 Qup—o o 0 0
0 1 Olpp—1 aq (o 74} 0
A— 0 0 s 1 Qo —1 . (&3] (7))
1 Bu-1 Bn-2 Bo o - 0
0 1 Brn-1 B1 Bo -+ O
0 0 1 B B1 Bo

Then, if ¢(s) denotes the GCD af(s) andb(s) the following
properties hold true:

1. Rank(A) = n+m — 9¢(s).

2. The polynomials(s) andb(s) are coprime if and only if
Rank(A) =n+ m.

y )

a po (M)
where~* denotes the minimum-magnitude real perturba-
tion in the coefficients ofi(s) andb(s) such that the per-
turbed polynomials have a common root.

Proof:  Since a(s) and b(s) are assumed coprime,
their Sylvester resultant matrixd is nonsingular. ~ The
Sylvester resultant matrixd of the perturbed polynomials

a(s;ﬁo, ...y 0m—1) andb(s;eo, ...,€e,—1) can be decomposed
asA = A + E whereFE denotes the “perturbation matrix”:

0 6m—1 5m—2 60 0 0

0 0 5m71 (51 (50 0

0 0 0 1 61 dg

0 €en—1 €n—2 . €0 o --- 0

0 0 €n—1 €1 €0 0

0 0 0 €p_1 €1 €

Matrix £ can now be factored a8 = ©AZ where® andZ

3. The GCD¢(s) is invariant under elementary row operaare defined in Theorempart2 above, and

tions onA. Furthermore, if we reduce to its row echelon

form, the last non-vanishing row defines the coefficients

of ¢(s).

Proof: See[1, 5, 2].

Using Theorem 1, the equivalence of Problem 1 and Problerr'1\I

can now be established:

Theorem 2: Problem 1 is equivalent to Problem 2 by defining:

1. The structured séP as:

D= {diag(5m,1In, 57,7,,2]“, ey (S(]In, Enflfm,
.,GQIm) :0; ER,e; € R}

€7L—QIWM o

A= diag(ém_lfn, 57,1_2],1, ..

€n—1Im, €m—2lpm,..

i) 5OIna
B EOIm)
Clearly A € D, i.e. it has a block-diagonal structuse= m +

n,r;,=nforl <i:<mandr;=mform+1<i<m-+n.
gte also that:

'}/:max{ |50‘7 |61|7'~~>‘6m71‘7 |60|7 ‘61‘7‘-‘7|6n71|}
= [|All

Since the resultant Sylvester mattikloses rank if and only
if there is a common factor betweetts; oo, . ..,d,,—1) and
b(s; €0, .-.,€em—1), Problem 1 is equivalent to:

min ||A|| such that det(4A+ O©AZ)=0 and A € D (6)



Using the matrix identity

which is of the required fornEl = ©AZ with A € D. The

minimum coefficient perturbation is the inverse of the struc-

tured singular value of the matrix:

det(I + BC) = det(I + CB) 7)
0100 0
which holds for any two matrice® andC of compatible di- 0 0 100
mensions, and the fact thatis non-singular, we have that: 8 g (1) (1) 8
00 0 1 0 L oag a1 ag 07
det(A+OAZ) =0 < det(I+ZA'OA) =0 Mo |0 00 01 (1) 511 gi P
& det(I— MA) =0 PP I NS S
00 0 1 0 0 0 1 A b
Hence Problem 1 becomes: 00 1 0 0
00 0 1 0
min{ [|A|| : det(I — MA)=0, AcD}  (8) 0 0001
1 0 ‘ 1 0 ‘ 1 0 ‘ 0 0 0 ‘ 0 0 0
which is equivalent to Problem 2, the minimum bejrig' (A1). 8 (1] 8 (1) 8 (1) (1) 8 g (1) 8 8
O 0 0/0 0[0 0|0 1 0|0 1 0
0 0/0 0|0 0|0 0 1|0 0 1

Example 1: Leta(s) = 83 + ags? + a1s + ap (m = 3) and
b(s) = 5% + B1s + By (n = 2). The Sylvester resultant matrix

of the perturbed polynomials is:

1 as+ 09
0 1
A=|1 B+ e
0 1
0 0
which can be written
1 Qo (O
. 0 1 a9
A=11 B Bo
0 1 B
0 0 1

Let A andE denote the first and second matrices, respectively,
in the RHS of this equation. The “perturbation” matfixcan

be factored as:

ay +0;

ag + 02

Bo + €0

B1+ e
1

as:

0
o

0

0

ﬁ 0

Qo
aq
0
Bo
B

+

o + 9
a1 + 01
0
Bo + €0
B+ e

0

0
0

o O o oo

0o

€1

Qo

Bo

01
02
€0
€1

0

0
+ o
0
0
+ €o

do
01
0
€0
€1

1 01 0|1 0|0 O O|O O O
o 1{0 1|10 1{0 O O|O0O O O
E=| 0 0|0 O|O O|1 O O|1 0 O
o 0|0 0|0 O|O 1 0|0 1 O
o 0|0 0|0 OfO O 1|0 0 1
62l 0 0 0 O
0 &I 0 0 0
0 0 &l 0 O
o 0 0 elIs O
0o 0 0 0 els
0 1 0 0 O
0O 0 1 0 O
0o 0 1 0 O
0 0 0 1 0
0 0 0 1 0
0O 0 0 0 1
0O 1 0 0 O
0 0 1 0 O
0O 0 0 1 o0
0O 0 1 0 O
0 0 0 1 0
0 0 0 0 1

0
do
0
0

€0

9)

and can be computed numerically using efficient existing tech-
niques [6, 7].

Example 2: Here the effectiveness of the method is tested with
a numerical example. Consider the polynomials

ap(s) = s° — 65> +11s—6 and by(s) = s> — 65+ 8

with roots{3, 2, 1} and{4, 2} respectively. Since there is a
common root § = 2) the resultant Sylvester matrix is singular.
The polynomials were perturbed to:

a(s) = s* — 6.05s% + 11.1s — 5.95

and
b(s) = s* — 6.06s + 8.1

which have roots
{3.0512, 2.0454, 0.9534}

and
{4.0301, 2.0099}

respectively.  The singular values of the corresponding
Sylvester resultant matrix,

1 —-6.05 11.1 —5.95 0

0 1 —-6.05 11.1 —-5.95
A= 1 —-6.04 81 0 0

0 1 —-6.04 8.1 0

0 0 1 —-6.04 8.1

were obtained as:
{22.7997, 12.3247, 5.4710, 0.2264, 0.0007}

indicating a numerical rank of and, hence, an approximate
GCD of degree one (Theorem 1), as expected.

Next the results of Theorem 2 were applieda{a) andb(s).
Note that since the maximum perturbation of the coefficients of



a(s) andb(s) relative to those ofi(s) andby(s) (which have
a common root) i9.1, we expect that* < 0.1.

Two functions from Matlab’su-optimisation toolbox fiu.m

algorithm. This requires the refinement of the definition of
the structured singular value by introducing rank constraints.
Specifically, we define:

andunwrap.m were used to calculate the (real) structured siDefinition: (generalised real structured singular value). Let
gular value of matrix\/ and the corresponding minimum-norm\/ € R™**" and define the “structured” set:
singularising perturbatiof\y. The lower and upper bounds of

the structured singular value were obtained as:

222.991497161 < up(M) = % < 222.991497162
corresponding toy* = 0.0044844759227. It was also
checked that the singularising perturbatig corresponding
to up(M) had the right structure (i.eA, € D) and in fact
dg = 01 = 03 = —vy* andey = €; = v*. Polynomials with a
common factor “nearest” ta(s) andb(s) were obtained with
the help ofA, as:

D= {diag(éllﬁ,éﬂm,...755[TS) 1 0; € R,’L = 172,...78}

where ther; are positive integers such that’_, r;, = n. The
generalised structured singular valueMf relative to “struc-
ture” D and for a non-negative integkris defined as:

1
min{[[A] : A € D, null(I,, — MA) > &}

fp (M) =

unless there does not existae D such that nulll,,— M A) >
k, in which casgip (M) = 0.

a(s) = s° — 6.054484475925% + 11.09551552415
— 5.95448447592

It follows immediately from the definition thatp o(M) =
pup (M) and thatiip (M) > jipr+1(M) for each integer
k > 0. Further if for some integek, fip (M) > 0 and
fpr+1(M) = 0, then for any minimiseA of fip (M),

b(s) = 5% — 6.035515524085 + 8.10448447502 null(l, — MA) =k + 1.

and

Theorem 3: Let ag(s) andby(s) be two monic coprime poly-
nomials of degree8ay(s) = m anddby(s) = n withm > n
defined in equations (1) and (2). Lets) andb(s) be two per-
turbed polynomials, and set

The roots ofa(s) andb(s) were calculated as:
{3.07886773569, 2.01656975051, 0.959046989722}

and
{4.01894577356, 2.01656975051}
vel . “optimal” . D
respe_ctlve y corresponding to an “optimal” approximate GC Where{s:} and{c;} denote the perturbed coefficientsaa(s)
¢(s) = s — 2.01656975051. . .
andby(s) respectively. Further, let* (k) denote the the mini-
mum value ofy such that(s) andb(s) have a common factor
¢(s) of degreedé(s) > k (k=0,1,...,n—1). Then,

The technique developed in section 2 may be used to de- . 1

fine a conceptual algorithm to calculate the numerical GCD (k) = m

of any two polynomialsi(s) andb(s). This sequentially ex- ’

tracts approximate common factops(s), by calculating the where fip (M) denotes thegeneralised structured singular

corresponding structured singular vajug and the minimum- valueof M = —ZA~'© with respect to the structur® de-

norm singularising matrix perturbatiof,. After the ex- fined in equation (8), and, © andZ are the matrices defined

traction of each factor, the quotients.; = a;(s)/#:(s) in equations (7), (9) and (10) respectively. Furthgls) may

andb;1(s) = b;(s)/¢s(s) are calculated, ignoring possiblebe constructed from ang, € D which minimiseg|A|| subject

(small) remainders of the divisions. The procedure is inie the constraint nulll,, — MA) > k.

tialised by settingag(s) a(s), bo(s) b(s), and iter-

ates by constructing at each step of the algorithm the reduc®deof: This is almost identical to the proof of Theorem 2, on

dimension Sylvester matrix corresponding to the polynomiabting that the transformations in equation (18) do not change

pair (a;+1(s), bi+1(s)), followed by calculating the newp the nullity of the corresponding matrices. O

andA,, which in turn results to the extraction of the new fac-

tor ¢, 1(s). The whole process is repeated until a toleranddeorem 3 suggests that the GCD of two polynomia]s)

condition is met, at which stage the approximate GE&R) andb(s) can be obtained by calculating successivesy;. (1)

can be constructed by accumulating the extracted common fiat-£ = 0,1,...n — 1. The procedure terminates when ei-

tors¢;(s). Special care is needed in the real case, to ensure tt@r & = n — 1 is reached, or when the generalised structured

any complex roots im(s) appear in conjugate pairs. singular value falls below a pre-specified tolerance level. The
effective numerical calculation gfp 4 (or at least of tight up-

Compared to this procedure, a more elegant approach wouldgee and lower bounds) will be the subject of future research. A

to extract the approximate common factor via a non-iteratiferther generalisation of our method involves the calculation of

v =max{|do|, |01],- -, |Om—1l, €0l |€1], -, ]en—1]} (10)

3 Approximate GCD of polynomials

11



the approximate GCD for an arbitrary number of polynomials
(rather than just two). This problem can also be translated to
our framework using some recent results on generalised resul-
tants [2] and will also be a topic of future work.

4 Conclusions

In this paper we have proposed a new method for calculating
numerically the approximate GCD of a set of polynomials. It
was shown that, for two coprime polynomials, the problem of
calculating the smallegt,-norm perturbation in the polynomi-
als’ coefficient vector so that the perturbed polynomials have a
common root, is equivalent to the calculation of the structured
singular value of an appropriate matrix. This is a fundamental
problem in the area of robust control and various techniques
have been successfully developed for its solution. The effec-
tiveness of one such method for calculating the GCD of low-
degree polynomials has been demonstrated via a numerical ex-
ample. We have further shown that calculating the minimum
l--norm perturbation in the coefficient vector of two (or more)
coprime polynomials so that the perturbed polynomials have
a GCD of degree at leadt, reduces to a structured singular
value-type calculation with additional rank constraints. This
is a non-standard problem and developing effective algorithms
for its solution will be the topic of future research work.
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