
APPROXIMATE GREATEST COMMON DIVISOR OF MANY
POLYNOMIALS AND GENERALISED RESULTANTS

N. Karcanias∗, S. Fatouros∗, M. Mitrouli† and G. Halikias∗

∗ Control Engineering Centre, School of Engineering, City University, Northampton Square, London, EC1V0HB, UK., email:
n.karcanias@city.ac.uk

† Department of Mathematics, University of Athens, Panepistemiopolis 15784, Athens, Greece, email:mmitroul@cc.uoa.gr,

Keywords: approximate, computations, greatest common di-
visor

Abstract

In this paper, a new characterisation of the approximate GCD
of many polynomials is given that also allows the evaluation
of accuracy of the corresponding ‘approximate GCD computa-
tion’. This new approach is based on some recent results on the
factorisation of the generalised resultant of a set of polynomials
into reduced resultants and appropriate Toeplitz matrices rep-
resenting the exact GCD [1]. This allows the reduction of ‘ap-
proximate GCD’ computation to an equivalent ‘approximate
factorisation’ of generalised resultants. This new approach may
be formulated as a structured optimization problem (distance
between structured matrices). We use this new framework to
evaluate the ‘accuracy’ of the ‘approximate GCD’ of a certain
degree. This evaluation is equivalent to finding the minimal
perturbation on the original set of polynomials, which make
the selected given degree ‘approximate GCD’ exact for the per-
turbed set. The later makes precise the meaning of approximate
GCD, since it relates it to the exact notion on a perturbed set.

1 Generalised Resultant, GCD and the GCD
representation problem

We consider the set of polynomials Ph+1,h = {pi(s) ∈
R[s], i = 0, 1, . . . , h} where we assume that ∂[p0(s)] = n
and p0(s) monic and the elements are represented as:

p0(s) = sn + an−1s
n−1 + · · · + a1s + a0

pi(s) = bi,nsn + · · · · · · + bi,1s + bi,0, i = 1, 2, . . . , h
(1)

With this notation we can introduce the generalised resultant of
the set Ph+1,n as:

Definition 1 If we assume that max{∂[pi(s)], i =
1, 2, . . . , h} = n, m ≤ n, i.e. bk,m 6= 0 for at least
one value of k, but bk,j = 0 for all j = m + 1, . . . , n and all
k, then we can define an m × (n + m) matrix associated with

p0(s) as:

S0 =













1 an−1 an−2 · · · a1 a0 0 · · · 0

0 1 an−1 · · · · · · a1 a0
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 an−1 · · · · · · a1 a0













(2a)
and a n×(n+m) matrix associated with pi(s), i = 1, 2, . . . , h
as:

Si =

















bi,mbi,m−1bi,m−2 · · · bi,1 bi,0 0 · · · · · · 0
0 bi,m bi,m−1 · · · · · · bi,1bi,0 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 bi,mbi,m−1 · · · · · · · · ·bi,1bi,0

















(2b)

for every i = 1, 2, . . . , h. For the set Ph+1,n we define the ex-
tended Sylvester matrix, or generalized resultant the matrix

SP =











S0

S1

...
Sh











∈ Rµ×(n+m), µ = m + nh (2c)

The properties of the greatest common divisor (GCD) of
Ph+1,n, which shall be denoted as GCD{Ph+1,n} are linked
to the properties of the generalised resultant and are sum-
marised by the following results:

Theorem 1 Consider the set of polynomials Ph+1,n =
{pi(s), i = 0, 1, . . . , h} as described before, let SP be the gen-
eralized resultant and φ(s) = GCD{Ph+1,n}. The following
properties hold true:

(i) rank(SP) = n + m − deg φ(s) (3)

(ii) The set Ph+1,n is coprime if and only if rank(SP) = n+
m.

(iii) The GCD of Ph+1,n is invariant under elementary row
operations on SP . Furthermore, if we reduce SP to its
row echelon form, then the last nonvanishing row defines
the coefficients of the gcd.



The above result suggest clearly a procedure for computing the
“approximate GCD” based on the use of Gaussian transforma-
tions with partial pivoting (part of the ERES method [6], [7],
without the use of shifting), which reduce SP to a triangular
form. We may use the notion of numerical rank for the compu-
tation of degree of the GCD and then evaluate if from the last
row.

Note 1 ERES method reduces computation of GCD to a best
approximation of a given “almost rank 1” matrix. A method
that starts on the resultant and computes the approximate
GCD on the basis of triangularisation has to answer the ques-
tion of determining the “best” triangularisation, given that
there is no unique may of reducing a matrix to a triangular
form. This problem requires some investigation, since different
triangularisation will produce different “approximate GCD”.

Note 2 An alternative method for computing the GCD (and
its approximate evaluation) may be based on the Matrix Pencil
Algorithm [4] applied on the generalized Sylvester [5]. This
may be improved by using a framework based on the numerical
range.

Clearly, those two procedures require farther investigation and
we will’ come back to this. We consider next same important
property that can be used for the evaluation of some error that
may be associated with the computation of “almost”, “approx-
imate GCD”. This is based on result characterising factorisa-
tion of resultants [1].

Theorem 2 Let Ph+1,n be a set of polynomials with the
two maximal degree values (n,m), SP be the corresponding
Sylvester matrix and let GCD{Ph+1,n} = φ(s) = λksk +
· · · + λ1s + λ0, λk 6= 0. Then, there exists transformation
φ ∈ R(n+m)×(n+m) such that

S
(k)
P = SP · Φ (4)

where S
(k)
P and Φ are given by:

S
(k)
P =













O S
(k)
0

O S
(k)
1

...
O S

(k)
h













= [O S̃(k)
p ] (5a)

and

S
(k)
0 =















Oa
(k)
n−ka

(k)
n−k−1· · · a

(k)
1 a

(k)
0 0 · · · 0

O 1 a
(k)
n−k · · · · · · a

(k)
1 a

(k)
0

. . .
...

...
. . .

. . .
. . .

. . . 0

O · · · 0 1 a
(k)
n−k · · · · · · a

(k)
1 a

(k)
0















and for i = . . . , h

S
(k)
i =



















Ob
(k)
i,m−kb

(k)
i,m−k−1 · · · b

(k)
i,1 b

(k)
i,0 0 · · · · · · 0

Ob
(k)
i,m−kb

(k)
i,m−k−1 · · · · · · b

(k)
i,1 b

(k)
i,0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

O · · · 0 b
(k)
i,m−kb

(k)
i,m−k−1 · · · · · · · · ·b

(k)
i,1 b

(k)
i,0



















Φ =

























y0 0 · · · · · · · · · 0

y1 y0
. . .

...

y2 y1
. . .

. . .
...

...
. . .

. . .
. . .

...

yn+m−2 yn+m−3 · · ·
. . . y0 0

yn+m−1 yn+m−2 · · · · · · y1 y0

























(5b)

where
y0 = 1/λ0, , y1 = −λ1/λ0y0, . . . ,

yj = −1/k0

min(j,k)
∑

i=1

kiyj−i, j = 2, . . . n + m − 1 (5c)

and
{a

(k)
m−k, a

(k)
m−k−1, . . . , a

(k)
0 },

{b
(k)
j,m−k, b

(k)
j,m−k−1, . . . , b

(k)
j,0 } j = 1, . . . , h

are the coprime polynomials obtained from the original set af-
ter division of Pi(s) by the gcd.

The matrix Φ has all information associated with the GCD and
this is established by the following results [1].

Lemma 1 Let Tn = {Ai : Ai ∈ Rn×n}, where Ai are
Toeplitz matrices of the type

Ai =























ai
0 0 0 · · · · · · 0

ai
1 ai

0 0
...

ai
2 ai

1 ai
0

. . .
...

...
...

...
. . .

. . .
...

ai
n−2 ai

n−3 ai
n−4 · · · ai

0 0
ai

n−1 ai
n−2 ai

n−3 · · · ai
1 ai

0























(6)

The set Tn is a multiplicative group and for every A ∈ Tn with
a0 6= 0 there is an inverse in Tn of the form

A−1 =























`0 0 0 · · · · · · 0

`1 `0 0
...

`2 `1 `0
. . .

...
...

...
...

. . .
. . .

...
`n−2 `n−3 · · · · · · `0 0
`n−1 `n−2 · · · · · · `1 `0























(7a)



where

`0 = 1/a0, `1 = −1/a0

i−1
∑

j=0

`jai−j . (7b)

Using the above result we have:

Corollary 1 Let φ(s) = λksk + · · · + λ1s + λ0, λk 6= 0 be
the GCD of Ph+1,n and Φ the matrix in the factorisation (4)
Then

Φ̂ = Φ−1 =





































λ0 0 · · · · · · · · · · · · · · · 0

λ1 λ0
. . .

...

λ2 λ1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

λk

...
. . .

. . .
. . .

. . .
...

0 λk

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . λ1 λ0 0
0 · · · 0 λv · · · λ2 λ1 λ0





































(8)
and thus

SP = S
(k)
P Φ̂ (9)

Theorem 2 and Corollary 1 establish a very important property
of factorisation of resultants. In fact, the Sylvester matrix SP

can be factorised as a product of a reduced resultant matrix that
consists of the coefficients of the coprime polynomials, which
are obtained by division of the original set by the GCD.The
extraction of the Toeplitz matrix Φ̂ is equivalent to factorisation
of GCD from the original set of polynomials and this equation
(9) is a matrix representation of the classical factorisation of the
original set of polynomials. We may summarise this discussion
as a restatement of the last result as:

Corollary 2 Let Ph+1,n = {pi(s), i = 0, 1, . . . , h} be a set
of polynomials with the two maximal degrees (n,m;n ≥ m)
and let φ(s) = GCD{Ph+1,n} with deg φ(s) = k. If
pi(s) = p

(k)
i (s) ·φ(s), ∀ i ∈ h+1 and P

(k)
h+1,n = {p

(k)
i (s), i =

0, 1, . . . , h} and denote this factorisation as

Ph+1,n = P
(k)
h+1,n · φ(s) (10)

then a matrix representation of the above algebraic factorisa-
tion is defined by

SP = S
(k)
P · Φ̂ (11)

where SP , S
(k)
P are the resultant representations of Ph+1,n,

P
(k)
h+1,n and Φ̂ is the Toeplitz representation of φ(s).

Note 3 In the description of P(k)
h+1,n set we assume that the

first k columns are zero that is S
(k)
P = [Ok, S̃

(k)
P ] and S̃

(k)
P

corresponds to the coprime P
(k)
h+1,n set; clearly, factorisation

like (11) way be also established for factors, which are not
necessarily the GCD.In fact, algebraic factorisation may be
represented as Sylvester matrices factorisations with Toeplitz
factors.

The representation of the factorisation (10) of a set of polyno-
mials as a factorisation of associated resultants in the form (4),
or (11) allows the development of means for properly defin-
ing the notion of “approximate GCD” as well as quantifying
how “good” such an approximation is. The following analysis
also allows development of alternative means for computing
“almost zeros”,

2 Algorithm for evaluating the strength of ap-
proximation of a given approximate GCD

Given the set Ph+1,n of polynomials with ordered degree set
D = {di, i = 0, 1, . . . , h : d0 = n ≥ d1 = m ≥ d2 ≥ · · · ≥
dh}. Let SP ∈ ΨD be the generalised resultant representa-
tion of Ph+1,n and ΨD the set of all resultants parametrical by
D. Let us assume that ω(s) = λksk + · · · + λ1s + λ0 is an
approximate GCD, where k ≤ dh and let Φ̂ be the Toeplitz
representation

Φ̂ω = Φ−1
ω =





































λ0 0 · · · · · · · · · · · · · · · 0

λ1 λ0
. . .

...

λ2 λ1
. . . . . .

...
...

. . . . . . λ0
. . .

...

λk

...
. . . λ1

. . . . . .
...

0 λk

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ0 0

0 · · · 0 λk · · · · · · λ1 λ0





































(12)

Step 1 Define the family of all structured dynamic perturba-
tions

Qh+1,n = {qi(s), i = 0, 1, . . . , h, ∂{qi(s)} = σ ≤ di, ∀ i =
0, 1, . . . , h} such that

P ′
h+1,n = Ph+1,n + Qh+1,n = {p′i(s) = pi(s) + qi(s),

∀ i = 0, . . . , h}

with the same degree set D as Ph+1,n which has φ(s) as an
exact GCD. The set of all such dynamic perturbations Qh+1,n

has a Sylvester representation:

SQ = SP − [On, S̃
(k)
P ]Φ̂ω = SP − S(k)Φ̂ω (13)

where S(k) is a resultant from ΨD set with the first k-columns
zero and the rest of the elements arbitrary (see (5a), with a

(k)
i ,

i = 0, 1, . . . , n−k and b
(k)
j,i , j = 1, . . . , h, i = 0, 1, . . . ,m−h

arbitrary parameters.



Step 2 Using as parameters those free variables in S̃
(k)
P = Sw

define the function

f(P,W ) = ‖SP − [Ok, SW ]Φ̂ω‖F

and solve the minimisation problem

min
W

f(P,W )

where w denotes the composite vector of all parameters in SW .

Example We consider the set of polynomials

P2,2 = {p0(s) = (s − 1)(s − 2) = s2 + 3s + 2, p1(s) =
s − 0.99999}

Then we have: n = 2, m = 1 and

Sp =





1 −3 2
1 −0.99999 0
0 1 −0.99999





An approximate GCD of the set using ERES method is: φ(s) =
s − 1. Then

Φ̂ =





−1 0 0
1 −1 0
0 1 −1





and

SW =





a b
c 0
0 c





where w = (a, b, c)t. f(P,W ) = ‖SP − [Ok, SW ]Φ̂ω‖F

Solving the minimization problem with MATLAB we get:

a = 1.00008737833788, b = −1.99996490822102, c =
0.999967283843. This set of values attains a minimum of or-
der 0(10−8). Thus, the approximate GCD that we computed,
becomes an exact GCD of the set derived from the original data
if we add perturbations of order 0(10−8).
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