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Controllability and observability are the two most fundamen-
Abstract tal concepts in modern control theory [10][13]. They have
ose connections to pole assignment, structural decomposi-

. . . . I
Impulsive differential systems are an important class of matfpan, quadratic optimal control and observer design, etc. In

ematical models for many practical systems in physics, Che{ﬂrs paper, we aim to derive necessary and sufficient criteria for

istry, biology, engineering, and information science which e%'ontrollability and observability of linear piecewise constant

hibit |_mpuI5|ve dyna_mlcal behawor_s due 1o abrupt Changes5if3HpuIsive control systems. First, reachability of such systems
certain instants during the dynamical processes.

In this R&investigated, a geometric type necessary and sufficient con-

Per, coptrollability and reach_ability oflinear piecewisg C,onStthion is established. Next, controllability is investigated and
impulsive systems are studied. Necessary and sufficient Crgﬁ'equivalent condition is established as well. Moreover, it is

ra 1;or Irgachabll(ljtyhand cor;]trzl_llgbl_hty are els tablished, rﬁsfﬁghown that controllability is not equivalent to reachability for
_tlve y. Itis proved that reachability IS equiva e_zr_lt to contro abllsych systems in general case, but is equivalent under some ex-
ity for such systems under some mild conditions. Our criter, & conditions

are in geometric forms, they can be transformed into algebraic
type conveniently. This paper is organized as follows. Section 2 formulates the

problem and presents the preliminary results. Section 3 and
Section 4 investigate reachability and controllability, respec-
tively. Two numerical examples are given in Section 5. Finally,

In recent years, there has been increasing interest in the aH-conclusion of the paper is provided in Section 6.

ysis and synthesis of impulsive systems, or impulsive con-

trol systems, due to their significance both in theory ar®l Preliminaries

applications([1-3],[6-9],[11-12] and [14-18]).

1 Introduction

. . . . Consider the piecewise linear impulsive system given b
Different from another type of systems associated with the im- P P y 9 y

pulses, i.e., the singular systems or the descriptor systems, im #(t) = Aa(t) + Buu(t) t€ [tootstr)
pulsive control systems are described by impulsive ordinary o(t) = E;x(t*) N Fku(tl) -1, W
differential equations. Many real systems in physics, chem- m(tﬁ) S k k) o0

0 - ’ = U,

istry, biology, engineering, and information science exhibit im-
pulsive dynamical behaviors due to abrupt changes at cert@iferer — 1.9.... Ay, By, By, Fj, are knownn x n, n x p
instants during the continuous dynamical processes. This kind . ondn x p constant matrices;(t) € R" is the state vector,
of impulsive behaviors can be modelled by impulsive systen1L§(.t) € R” is the input vectorz(¢+) = limy, o+ z(t + h)

Controllability and observability of impulsive control systemg(t~) := limy,_o+ z(t — h) and the discontinuity points

have been studied by a number of papers. [9] investigated

the controllability of a class of time-invariant impulsive sys- by <ty <-or <tp <--ry iMooty =00

tems with the assumption that the impulses of impulsive con-

trol are regulated at discontinuous points. [12] improved [9]wheret, < t; andz(t, ) = x(tx), which implies that the so-
results. Then [7] extended the results to the linear impulsiltgion of (1) is left-continuous at;. As usual, the admissible
systems with time-varying coefficients and nonlinear perturbgontrol input are limited to piecewise continuous(p.c.) func-
tions. [16] studied the null controllability of the linear impul-tions.

sive _systems With the c_ontrol_ impulses only acting_ at the diﬁfrst, consider the solution of the system (1).

continuous points. [18] investigated the controllability and ob-

servability of linear tim_e—varying impulsivg.systems. Suﬁicigmemma 1. Foranyt € (tj_1,tx), k = 1,2,---, the general
and necessary conditions for controllability and observabiligb|ution of the system (1) is given by



a)ifk =1, Theorem 1. For the system (1), the reachable set[an ¢/],
ty € (tk—1,tk) is given by
z(t) = et (td) + ftto e (t=9) Biu(s)ds g

b)ifk=2,3,-, Ritots1 = =2 o it
1 ewtr =t ST [ T] Byets (By(AdBy) + Tm(F))
x(t):eAk(tftk_l){ [[ Eiedhiz(td) i=1 Fj=k—1
i i1 By (Ap_1|B1) Im(Fk_l)}+<Ak|Bk>
+Z[ 11 EjeAjhj (5)
i=1 lj=k—1

ts N
(B [ et Buu(s)ds + Fuu(ts)|

ti—1

+FEr_1 J;t::; eAk*l(tk*l_s)Bk_1u(S)dS + Fk_lu(tk_l)}

Proof. By Lemma 1, letz(¢y) = 0, we have

k=2 i+l
+ Jy. ., exp[Ax(t — 5)]|Bru(s)ds a(t) = ettt 571 T B exp(Ashy)
3) v i=1 Lj=k—1
whereh; =t; —t;_1,j=1,2,---. (E S explAi(ts — 8)]Biu(s)ds + Fiu(ti)) ]
th—1
Ap_1(tk—1—s
Proof. See Appendix A. O +Ek71tk‘[2 ern( )Bi_1u(s)ds + quU(tkq)}

t
. . . . o + exp|Ag(t — s)|Bru(s)ds
If t; € (to,1], then a linear time-invariant system is just con- Sy xplAd )1 Biu(s)

cerned with. Controllability and observability criteria can bﬁ follows that
found in standard text books[17,18]. Thus, in the remaining
of the paper, the casg € (tp—1,tx], k = 2,3,---is only <

(6)

considered. Rlto,tf] = {z|r = exp[Ar(ty — tr—1)]
Now, some mathematical preliminaries are given as the basic 2 , i+1 .
tools in the following discussion. > ( [1 Ejet"(E; [;" e Bu(s)ds + Fiu(ti)))

i=1 N j=k—1 -t
Given matricesA € R™*™ andB € R™*P, denoteZm(B) as et At
therangeof B, i.e.,.Zm(B) = {yly = Bz,x € R?}; and de- +Ex—1 [,/ e =179 By_qu(s)ds + F_yu(ty—1)
note(A|B) as theminimal invariant subspacef A onZm(B),

ty Ap(ty—s

., (A|B) = "1 Tm(A'B). + [, e =) Byu(s)ds, for some p.cu}
k—2 i+1

The following lemma is a generalization of Theorem 7.8.1 in= exp[Ax(t; — tk_l)]< > ( [1 Ejexp(Ajh;)x
[5], which is the starting point for deriving the criteria for . i=1 tj=k-1
reachability and controllability. {zlz=E; [ eAi(ti=%) Biu(s)ds + Fyu(t;), for some p.Cu})
Lemma 2. Given matricesd, E € R"*", B, F € R"*P, for e,
any0 <ty < ty < o0, we have +Halr =By [ eM1em1=9B qu(s)ds + Fy_qu(ty—1)

{z|z = Efttof exp|A(ty — s)|Bu(s)ds + Fu(ty), !

4
for some p.cu} = E (A|B) + Im(F) (4)  for some p.cu}

_ [tr A (ty—s)
+ir|x = et =3) Ba(s)ds, for some p.cu
Proof. See Appendix A. O {a] ftk—l (5) }

3 Reachability By Lemma 2, we get (5). O

In this Section, reachability of system (1) is investigated.
According to the geometric form of the reachable set, a geo-

Definition 1 (Reachability). The system (1) is said to be (Comfnetric type criterion is established as follows.

pletely) reachable orjto,ts] (to < ty), if for any termi-

nal statez; € R", there exists a piecewise continuous ifrpeorem 2. The system (1) is reachable dfy,¢s], t; €
putu(t) : [to,ty] — RP such that the system is driven frthk_l,tk], if and only if '
x(to) =0tox(ty) = xy.

Definition 2 (Reachable Set).The set of all the reachable 5= 7 L b (A B
S j ihj) (Ei(Ai|B;) +Zm(F;
states onjty, t] is said to be theeachable setn [to,t], de- El ‘74:1;[_1 s exp(Ajhy) (Bi(Ail Bi) + Im(F)) 7

noted asR s, + - +Ep_1{Ag_1|Br—1) + Im(Fyx_1) + (Ag|Br) = R



Proof. Sinceexp[Ay(ty — tx—1)](Ak|Br) = (Ax|Bx), we get Proof. By Lemma 1, it is easy to see that if the state
xo is controllable then the corresponding state[Ag(t —

k—2 i+1 " 1
Rito,t;] = eA’“(tf_t’“’l)( 21 _ 1;[ 1Ei€A’h’ (Bi{AilBi)+  t,_1)] I E:exp(Ashi)zo is reachable. Based on this fact,
=R IR i=k—1
Im(F;)) + Ex—1(Ag—1|Br-1) + Im(qu)) + (Ax|Br) we know that (12) holds. O
k—2 i+1
= eA’“(tf_t’“’l)( > 11 Byt (Ei(Ai Bi)+ Based on Theorem 3, a criterion for controllability can be es-

=1 j=k"1 tablished as follows.

Tm(Fy)) + Bp(Ap1|Beo1) + Tm(Fio1) + (Ax] By) )
Theorem 4. The system (1) is controllable dn,ts], t; €

Since the matrixexp[Ay (t; — t,—1)] is nonsingular, we know (tx—1,tx], if and only if

thatR(;, +,; = R"™ if and only if (10) holds. O

Im( [ Eiexp(4;h;)) C

Remark 1. Theorem 2 is a geometric type condition, by simple it}

3

transformation, an algebraic type condition is derived. In fact, k-2 i+1 (13)
for i=1,2,---, denote Zl 1 lEj exp(A;h;) (Ei(Aqi| Bi) + Im(F;))
1=1 j=k—
Q: = [Bi, AiB;,---, A 'B)], 8) +Ei—1(Ak_1|Br—1) + Im(Fy_1) + (Ag| By)
for i =1,2,---,k — 2, denote Proof. Sincee4*(!=t»-1) js nonsingular, we know that (12) is
_ _ equivalent to
1+1 1+1
Hi=| [[ Eie*™EQi [] Eie®™F|, (9 1
j=k—1 j=k—1 ( _71;[ ) E; eXp(Aihi))C[to,tf] -
k—2 i+1
Him1 = [Bx1Qbmr Fi], 10 5 U1 By esp(dshy) (BB + Tm(r)) Y

i=1 j=k—1

finally, denote
inaty +Ep_1(Ap—1|Bi_1) + Im(Fy—1) + (Ag| Bx)

Qtto.ts) = [H1, Hay -+ Hy—1, Q] (11) Moreover,  Cy,.1 ;] = R® if and only if
o . 1 1
Then it is easy to verify that ( 11 EieXp(Aihi))C[to,tf]:Im( [ E;exp(Aihs)).
i=k—1 i=k—1

exp|Ak(ty —tg—1)]Zm =R .
pldilts = ti—1)lIm( Qo)) lto,%1] Thus, we know tha€};, ;,; = R™ if and only if (13) holds. O

Thus, the algebraic type criterion is as follows. S .

In the general case, for system (1), controllability is not equiv-
Corollary 1. The system (1) is reachable dty,ts], t; € alentto reachability. But under some mild conditions, they are
(tk—1,tx), if and only ifrank(Qsy¢ ;1) = n- equivalent each other.

- Corollary 2. For the system (1), ifZ; is nonsingular,i =
4 Controllability 1,2,---,k — 1, then the following statements are equivalent:

In this Section, controllability of the system ( 1) is investigated) the system is reachable ¢, ¢¢], tf € (tx—1, tx);

Definition 3 (Controllability). The system (1) is said to beb) the system is controllable dty, ¢f], t; € (tx—1,tx];
(completely) controllable ofty, t¢] (to < ty), if for any initial
statezr, € R™, there exists a piecewise continuous inp(#) :

[to, 7] — RP such that the system is driven frarf¥y) = zo k=2 i+l
tox(ts) = 0. >, 11 Ejexp(Ajhy) (Ei{Ai|Bi) + Im(F)) +

i=1 j=k—1
Definition 4 (Controllable Set). The set of all the controllable Ey_1(Ag—1|Br—1) +Im(Fy_1) + (Ax|Bx) = R
states onfty, ts] is said to be thecontrollable sebn [y, ],

¢) the following equation holds,

denoted a€’;, - Proof. SinceE; is nonsingular; = 1,2,---,k — 1, we have
1
. . . Ap(t — ti— E; exp(A;h;) is nonsingular. It fol-
First, the relationship between the controllable set and tﬁ}ép[ K k1)l 1:1,:[_1 b ) g
reachable set is shown in the following Theorem. lows that

Theorem 3. For the system (1), we have L
y ( ) EXp[Ak(t — tk—l)] I;[ El exp(Aihi)C[tU,tf] = R[to,tf]
i=k—1

1
A=t [T Byexp(Aihi) )Cieg.y) € R 12)
(6 izl;[_1 i exp(Aih;) [to,ts] = "Vlto,ts] (12) Itis easy to see thm‘{t(},t‘f] — R e R[to,tf] — R". ]



Remark 2. In system (1), ifA;, B;) = (A,B),i=1,---,k, Next, consider the controllability. By a simple calculation, we

the system is reduced to the impulsive time-invariant systenase
studied in [18]. It is easy to see that Theorem 4 concludes the

results of Theorem 3.4 in [18] as a special case. 1 0
Im(E9exp(As)Eyexp(Ar))=spad | 0 |,| 1 |}
Remark 3. Insystem (1), ifF; = I, F; = 0,i = 1,---,k, 0 0

the system is reduced to the piecewise linear systems studied in
[4]. Itis easy to see that Theorem 5 in [4] is a special case dfis easy to see that

Corollary 2.

5 lllustrating Examples

Im(Eg exp(Ag)El exp(Al)) g E2 exp(Ag)(El <A1 |Bl>
+Im(F1)) + E2<A2|BQ> +Im(F2) + <A3|Bg>

By Theorem 4, the system should be controllable. In fact, we

In this section, two numerical examples are presented to i"LLSé{n take the piecewise constant input

trate how to utilize our criteria.

Example 1. Consider a 3-dimensional linear piecewise con- e, t€(0,1];
stant impulsive system with u(t) = 2’ i E 8’ ?)j’
3 s 9]
[0 0 0] [ 1] o
Ar=1l00 0]|,By=|0], 3
00 0 0 Then, for any nonzero initial state) = | 29 |, we have
L - L - :L'g
[1 0 0] [0 ]
Ei=]010|,R=]1], 2 +0.5¢;
0 0 0 0 :C(tf) = .Tg + 1.5¢1 + (2 — 2ty + 0.5'&?)63 (16)
- - - 0
[0 0 0] [ 1]
Ao=10 0 0 |,B2=|0 |, Obviously, ifc; = —229, ¢z = (=29 — 1.5¢1)/(2 — 2t5 +
L0 0 0] | 0] 0.5t%), thenz(tf) = 0. This fact shows that the system is
101 0] M1 indeed controllable.
Ey=|1 00, F=]1/}, Example 2. Consider a 4-dimensional switched linear impul-
L0 0 0] L 0] sive system witlv = 3 and
0 0 O 0 - . - A
As=]0 0 0| Bi=|1], 3(1’88 (1)
| 0 0 0 L0 | A=l 010lB=]0]
wheret; =4, =0,1,2, 3. 0 0 0 1 0
Now, we try to use our criteria to investigate the reachability [1 0 0 0] [0 ]
and controllability or{0, ¢ 7], wheret; € (2, 3] of the system in By = 0100 P = 1
Example 1. 1 01 0}’ 0|’
. . . . . 0 0 01 0
First, consider the reachability. By a simple calculation, we - - - -
have (1 0 0 0] (1]
01 0 O 0
By exp(A2)(E1(A1]B1) +Im(F1)) + Ea(As|Bs) A=y 0101850l
Lo 000 1 0
+Im(F2) + <A3‘Bg,> = spar{ 0 R 1 } - - = -
0 0 (1 0 1 0] [0
01 00 0
By Theorem 2, the system should not be reachable. In fact, Ey = 00 1 01" F; = BE
for any piecewise continuous inputt), t € [0,t;] and any 00 0 1 0
nonzero initial state;p = [29 2§ 29]7, we have - - -
. 1. 0 0 0] [0 ]
01 00 0
alty) = | * (15) AB=loo1o0"B= o
0 00 0 1 1]

This fact shows that the system is indeed not reachable.

wheret; = i,i=0,1,2, 3.



First, it is easy to see thdf;, E, are nonsingular. By simple For ¢ = ¢, we have

calculation, we have
a(tf) = Er(eMMa(ty)

FEs eXp(A2>(E1 <A1|Bl> +Im(F1)) + E2<A2|BQ> + fttl eAl(tl_s)Blu(S)dS) + F1u(t;) (18)
+Zm(F2) + <A3‘Bg> 0
0 0 1 0 Similarly, for t € (t;—1,t],i=2,3,---,k, we have
0 1 0 0
= Spaf{ 1 s 0 ) 0 ) 0 } Z(f) = eAi(titiil)w(tz_“——1> 19
0 0 0 1 +[i e Bu(s)ds (19)
By Corollary 2, the system is controllable and reachable g for + — +,i =23, ...k, we have
[0,3]. In fact, letz, be the initial stateyz; be the terminal !
state, we can take the piecewise constant input z(t]) = Ej(ethia(t) ) 20)
ti (t;—s _
¢, te(0,1); + [, e Buu(s)ds) + Fru(t;)
wty =4 @ 1=k Thus, by (17), (18), (19) and (20), it is easy to verify (3).0]
C3, te (17 2};
cq, TE (2, 3}

Appendix B
Then we have

. Proof of Lemma 2By Theorem 7.8.1 in [5], we have
1

Co ty
o {z|z = / eA(t1=%) Buy(s)ds, for some p.cu} = (A|B)
t
Cy4 ’ (21)
Thus, itis easy to see that

x5 = exp(As) B2 exp(A2) By exp(Ar)zo + H

where
2e?(e—1) 0 e(e—1) 0 {a|z = Ejttof eAt1=9) Bu(s)ds + Fu(ty), 22)
"o 0 €2 0 0 for some p.cu} C E (A|B) + Im(F)
B e2le—1) 0 0 0
0 0 0 1—e Moreover, we have

It is easy to verify t_hat the matri¥/ is nonsingular. Thus, we 2|z = /tE eA(tgfs)Bu(S)dS,for some p.cu} = (A|B)

can select appropriatg, - - -, ¢4 such that the system can be to

driven from any initial stater, to any terminal state ;. This - i

fact shows that the system is controllable and reachable inde\%a?ret’f._ (tOTHf)/?' Then,. forany: € E (A|B)+Im(F),

there exist a piecewise continuous functiof), ¢ € [to, tg],
_ and vectorz € R™ such that

6 Conclusion

te
x=FE exp|A(tg — s)|Bu(s)ds + Fz

This paper has studied the controllability and observability of to

linear piecewise constant impulsive systems. Necessary and
sufficient criteria for reachability and controllability have beefN€n we can take

established, respectively. Moreover, It has been proved that the u(t), t€ [to,tg]
reachability is equivalent to the controllability under some mild v(t) = { 0, t e (tm ty)
conditions. Our criteria are of the geometric type, they can be z, t=ty
transformed into algebraic type conveniently.
such that
ty
Acknowledgements x = E/ expl[A(ty — s)|Bu(s)ds + Fo(ty)
to
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It follows that

Appendix A {z]z = Efttof exp[A(t; — s)]Bu(s)ds + Ful(ty),

(23)
Proof of Lemma 1For t € (to,t1], we have for some p.cu} O E (A|B) +Im(F)

x(t) = eME—to)g(t ) + ftto et =9) Bru(s)ds (17) By (22) and (23), we know that (4) holds. O
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