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Abstract

Impulsive differential systems are an important class of math-
ematical models for many practical systems in physics, chem-
istry, biology, engineering, and information science which ex-
hibit impulsive dynamical behaviors due to abrupt changes at
certain instants during the dynamical processes. In this pa-
per, controllability and reachability of linear piecewise constant
impulsive systems are studied. Necessary and sufficient crite-
ria for reachability and controllability are established, respec-
tively. It is proved that reachability is equivalent to controllabil-
ity for such systems under some mild conditions. Our criteria
are in geometric forms, they can be transformed into algebraic
type conveniently.

1 Introduction

In recent years, there has been increasing interest in the anal-
ysis and synthesis of impulsive systems, or impulsive con-
trol systems, due to their significance both in theory and
applications([1-3],[6-9],[11-12] and [14-18]).

Different from another type of systems associated with the im-
pulses, i.e., the singular systems or the descriptor systems, im-
pulsive control systems are described by impulsive ordinary
differential equations. Many real systems in physics, chem-
istry, biology, engineering, and information science exhibit im-
pulsive dynamical behaviors due to abrupt changes at certain
instants during the continuous dynamical processes. This kind
of impulsive behaviors can be modelled by impulsive systems.

Controllability and observability of impulsive control systems
have been studied by a number of papers. [9] investigated
the controllability of a class of time-invariant impulsive sys-
tems with the assumption that the impulses of impulsive con-
trol are regulated at discontinuous points. [12] improved [9]’s
results. Then [7] extended the results to the linear impulsive
systems with time-varying coefficients and nonlinear perturba-
tions. [16] studied the null controllability of the linear impul-
sive systems with the control impulses only acting at the dis-
continuous points. [18] investigated the controllability and ob-
servability of linear time-varying impulsive systems. Sufficient
and necessary conditions for controllability and observability

are established and their applications to time-invariant impul-
sive control systems are also discussed.

Controllability and observability are the two most fundamen-
tal concepts in modern control theory [10][13]. They have
close connections to pole assignment, structural decomposi-
tion, quadratic optimal control and observer design, etc. In
this paper, we aim to derive necessary and sufficient criteria for
controllability and observability of linear piecewise constant
impulsive control systems. First, reachability of such systems
is investigated, a geometric type necessary and sufficient con-
dition is established. Next, controllability is investigated and
an equivalent condition is established as well. Moreover, it is
shown that controllability is not equivalent to reachability for
such systems in general case, but is equivalent under some ex-
tra conditions.

This paper is organized as follows. Section 2 formulates the
problem and presents the preliminary results. Section 3 and
Section 4 investigate reachability and controllability, respec-
tively. Two numerical examples are given in Section 5. Finally,
the conclusion of the paper is provided in Section 6.

2 Preliminaries

Consider the piecewise linear impulsive system given by
ẋ(t) = Akx(t) + Bku(t), t ∈ [tk−1, tk)

x(t+k ) = Ekx(t−k ) + Fku(t−k ),
x(t+0 ) = x0, t0 ≥ 0,

(1)

wherek = 1, 2, · · ·, Ak, Bk, Ek, Fk are knownn × n, n × p,
n×n andn×p constant matrices;x(t) ∈ Rn is the state vector,
u(t) ∈ Rp is the input vector;x(t+) := limh→0+ x(t + h),
x(t−) := limh→0+ x(t− h) and the discontinuity points

t1 < t2 < · · · < tk < · · · , limk→∞ tk = ∞

wheret0 < t1 andx(t−k ) = x(tk), which implies that the so-
lution of (1) is left-continuous attk. As usual, the admissible
control input are limited to piecewise continuous(p.c.) func-
tions.

First, consider the solution of the system (1).

Lemma 1. For any t ∈ (tk−1, tk], k = 1, 2, · · ·, the general
solution of the system (1) is given by



a) if k = 1,

x(t) = eA1(t−t0)x(t+0 ) +
∫ t

t0
eA1(t−s)B1u(s)ds (2)

b) if k = 2, 3, · · ·,

x(t) = eAk(t−tk−1)
{ 1∏

i=k−1

Eie
Aihix(t+0 )

+
k−2∑
i=1

[ i+1∏
j=k−1

Eje
Ajhj

(Ei

ti∫
ti−1

eAi(ti−s)Biu(s)ds + Fiu(ti))
]

+Ek−1

∫ tk−1

tk−2
eAk−1(tk−1−s)Bk−1u(s)ds + Fk−1u(tk−1)

}
+
∫ t

tk−1
exp[Ak(t− s)]Bku(s)ds

(3)
wherehj = tj − tj−1, j = 1, 2, · · ·.

Proof. See Appendix A.

If tf ∈ (t0, t1], then a linear time-invariant system is just con-
cerned with. Controllability and observability criteria can be
found in standard text books[17,18]. Thus, in the remaining
of the paper, the casetf ∈ (tk−1, tk], k = 2, 3, · · · is only
considered.

Now, some mathematical preliminaries are given as the basic
tools in the following discussion.

Given matricesA ∈ Rn×n andB ∈ Rn×p, denoteIm(B) as
the rangeof B, i.e.,Im(B) = {y|y = Bx, x ∈ Rp}; and de-
note〈A|B〉 as theminimal invariant subspaceof A onIm(B),
i.e.,〈A|B〉 =

∑n−1
i=0 Im(AiB).

The following lemma is a generalization of Theorem 7.8.1 in
[5], which is the starting point for deriving the criteria for
reachability and controllability.

Lemma 2. Given matricesA,E ∈ Rn×n, B,F ∈ Rn×p, for
any0 ≤ t0 < tf < +∞, we have

{x|x = E
∫ tf

t0
exp[A(tf − s)]Bu(s)ds + Fu(tf ),

for some p.c.u} = E 〈A|B〉+ Im(F )
(4)

Proof. See Appendix A.

3 Reachability

In this Section, reachability of system (1) is investigated.

Definition 1 (Reachability). The system (1) is said to be (com-
pletely) reachable on[t0, tf ] (t0 < tf ), if for any termi-
nal statexf ∈ Rn, there exists a piecewise continuous in-
put u(t) : [t0, tf ] → Rp such that the system is driven from
x(t0) = 0 to x(tf ) = xf .

Definition 2 (Reachable Set).The set of all the reachable
states on[t0, tf ] is said to be thereachable seton [t0, tf ], de-
noted asR[t0,tf ].

Theorem 1. For the system (1), the reachable set on[t0, tf ],
tf ∈ (tk−1, tk] is given by

R[t0,tf ] =

eAk(tf−tk−1)
{ k−2∑

i=1

[ i+1∏
j=k−1

Eje
Ajhj (Ei〈Ai|Bi〉+ Im(Fi))

]
+Ek−1〈Ak−1|Bk−1〉+ Im(Fk−1)

}
+ 〈Ak|Bk〉

(5)

Proof. By Lemma 1, letx(t0) = 0, we have

x(t) = eAk(t−tk−1)
{ k−2∑

i=1

[ i+1∏
j=k−1

Ej exp(Ajhj)(
Ei

∫ ti

ti−1
exp[Ai(ti − s)]Biu(s)ds + Fiu(ti)

) ]
+Ek−1

tk−1∫
tk−2

eAk−1(tk−1−s)Bk−1u(s)ds + Fk−1u(tk−1)
}

+
∫ t

tk−1
exp[Ak(t− s)]Bku(s)ds

(6)
It follows that

R[t0, tf ] = {x|x = exp[Ak(tf − tk−1)]

(
k−2∑
i=1

( i+1∏
j=k−1

Eje
Ajhj (Ei

∫ ti

ti−1
eAi(ti−s)Biu(s)ds + Fiu(ti))

)
+Ek−1

∫ tk−1

tk−2
eAk−1(tk−1−s)Bk−1u(s)ds + Fk−1u(tk−1)

)
+
∫ tf

tk−1
eAk(tf−s)Bku(s)ds, for some p.c.u}

= exp[Ak(tf − tk−1)]

(
k−2∑
i=1

( i+1∏
j=k−1

Ej exp(Ajhj)×

{x|x = Ei

ti∫
ti−1

eAi(ti−s)Biu(s)ds + Fiu(ti), for some p.c.u}
)

+{x|x = Ek−1

tk−1∫
tk−2

eAk−1(tk−1−s)Bk−1u(s)ds + Fk−1u(tk−1)

for some p.c.u}

)
+{x|x =

∫ tf

tk−1
eAk(tf−s)Bku(s)ds, for some p.c.u}

By Lemma 2, we get (5).

According to the geometric form of the reachable set, a geo-
metric type criterion is established as follows.

Theorem 2. The system (1) is reachable on[t0, tf ], tf ∈
(tk−1, tk], if and only if

k−2∑
i=1

i+1∏
j=k−1

Ej exp(Ajhj) (Ei〈Ai|Bi〉+ Im(Fi))

+Ek−1〈Ak−1|Bk−1〉+ Im(Fk−1) + 〈Ak|Bk〉 = Rn

(7)



Proof. Sinceexp[Ak(tf − tk−1)]〈Ak|Bk〉 = 〈Ak|Bk〉, we get

R[t0,tf ] = eAk(tf−tk−1)
( k−2∑

i=1

i+1∏
j=k−1

Eje
Ajhj (Ei〈Ai|Bi〉+

Im(Fi)) + Ek−1〈Ak−1|Bk−1〉+ Im(Fk−1)
)

+ 〈Ak|Bk〉

= eAk(tf−tk−1)
( k−2∑

i=1

i+1∏
j=k−1

Eje
Ajhj (Ei〈Ai|Bi〉+

Im(Fi)) + Ek−1〈Ak−1|Bk−1〉+ Im(Fk−1) + 〈Ak|Bk〉
)

Since the matrixexp[Ak(tf − tk−1)] is nonsingular, we know
thatR[t0,tf ] = Rn if and only if (10) holds.

Remark 1. Theorem 2 is a geometric type condition, by simple
transformation, an algebraic type condition is derived. In fact,
for i = 1, 2, · · ·, denote

Qi = [Bi, AiBi, · · · , An−1
i Bi], (8)

for i = 1, 2, · · · , k − 2, denote

Hi =

 i+1∏
j=k−1

Eje
Ajhj EiQi,

i+1∏
j=k−1

Eje
Ajhj Fi

 , (9)

Hk−1 = [Ek−1Qk−1, Fk−1] , (10)

finally, denote

Q[t0,tf ] = [H1,H2, · · · ,Hk−1, Qk] (11)

Then it is easy to verify that

exp[Ak(tf − tk−1)]Im(Q[t0,tf ]) = R[t0,tf ].

Thus, the algebraic type criterion is as follows.

Corollary 1. The system (1) is reachable on[t0, tf ], tf ∈
(tk−1, tk], if and only ifrank(Q[t0,tf ]) = n.

4 Controllability

In this Section, controllability of the system ( 1) is investigated.

Definition 3 (Controllability). The system (1) is said to be
(completely) controllable on[t0, tf ] (t0 < tf ), if for any initial
statex0 ∈ Rn, there exists a piecewise continuous inputu(t) :
[t0, tf ] → Rp such that the system is driven fromx(t0) = x0

to x(tf ) = 0.

Definition 4 (Controllable Set). The set of all the controllable
states on[t0, tf ] is said to be thecontrollable seton [t0, tf ],
denoted asC[t0,tf ].

First, the relationship between the controllable set and the
reachable set is shown in the following Theorem.

Theorem 3. For the system (1), we have(
eAk(t−tk−1)

1∏
i=k−1

Ei exp(Aihi)
)
C[t0,tf ] ⊆ R[t0,tf ] (12)

Proof. By Lemma 1, it is easy to see that if the state
x0 is controllable then the corresponding stateexp[Ak(t −

tk−1)]
1∏

i=k−1

Ei exp(Aihi)x0 is reachable. Based on this fact,

we know that (12) holds.

Based on Theorem 3, a criterion for controllability can be es-
tablished as follows.

Theorem 4. The system (1) is controllable on[t0, tf ], tf ∈
(tk−1, tk], if and only if

Im(
1∏

i=k−1

Ei exp(Aihi)) ⊆
k−2∑
i=1

i+1∏
j=k−1

Ej exp(Ajhj) (Ei〈Ai|Bi〉+ Im(Fi))

+Ek−1〈Ak−1|Bk−1〉+ Im(Fk−1) + 〈Ak|Bk〉

(13)

Proof. SinceeAk(t−tk−1) is nonsingular, we know that (12) is
equivalent to( 1∏

i=k−1

Ei exp(Aihi)
)
C[t0,tf ] ⊆

k−2∑
i=1

i+1∏
j=k−1

Ej exp(Ajhj) (Ei〈Ai|Bi〉+ Im(Fi))

+Ek−1〈Ak−1|Bk−1〉+ Im(Fk−1) + 〈Ak|Bk〉

(14)

Moreover, C[t0,tf ] = Rn if and only if( 1∏
i=k−1

Ei exp(Aihi)
)
C[t0,tf ] = Im(

1∏
i=k−1

Ei exp(Aihi)).

Thus, we know thatC[t0,tf ] = Rn if and only if (13) holds.

In the general case, for system (1), controllability is not equiv-
alent to reachability. But under some mild conditions, they are
equivalent each other.

Corollary 2. For the system (1), ifEi is nonsingular,i =
1, 2, · · · , k − 1, then the following statements are equivalent:

a) the system is reachable on[t0, tf ], tf ∈ (tk−1, tk];

b) the system is controllable on[t0, tf ], tf ∈ (tk−1, tk];

c) the following equation holds,

k−2∑
i=1

i+1∏
j=k−1

Ej exp(Ajhj) (Ei〈Ai|Bi〉+ Im(Fi))+

Ek−1〈Ak−1|Bk−1〉+ Im(Fk−1) + 〈Ak|Bk〉 = Rn

Proof. SinceEi is nonsingular,i = 1, 2, · · · , k − 1, we have

exp[Ak(t − tk−1)]
1∏

i=k−1

Ei exp(Aihi) is nonsingular. It fol-

lows that

exp[Ak(t− tk−1)]
1∏

i=k−1

Ei exp(Aihi)C[t0,tf ] = R[t0,tf ]

It is easy to see thatC[t0,tf ] = Rn ⇐⇒ R[t0,tf ] = Rn.



Remark 2. In system (1), if(Ai, Bi) = (A,B), i = 1, · · · , k,
the system is reduced to the impulsive time-invariant systems
studied in [18]. It is easy to see that Theorem 4 concludes the
results of Theorem 3.4 in [18] as a special case.

Remark 3. In system (1), ifEi = I, Fi = 0, i = 1, · · · , k,
the system is reduced to the piecewise linear systems studied in
[4]. It is easy to see that Theorem 5 in [4] is a special case of
Corollary 2.

5 Illustrating Examples

In this section, two numerical examples are presented to illus-
trate how to utilize our criteria.

Example 1. Consider a 3-dimensional linear piecewise con-
stant impulsive system with

A1 =

 0 0 0
0 0 0
0 0 0

 , B1 =

 1
0
0

 ,

E1 =

 1 0 0
0 1 0
0 0 0

 , F1 =

 0
1
0

 ,

A2 =

 0 0 0
0 0 0
0 0 0

 , B2 =

 1
0
0

 ,

E2 =

 1 1 0
1 0 0
0 0 0

 , F2 =

 1
1
0

 ,

A3 =

 0 0 0
0 0 0
0 0 0

 , B3 =

 0
1
0

 ,

whereti = i, i = 0, 1, 2, 3.

Now, we try to use our criteria to investigate the reachability
and controllability on[0, tf ], wheretf ∈ (2, 3] of the system in
Example 1.

First, consider the reachability. By a simple calculation, we
have

E2 exp(A2)(E1〈A1|B1〉+ Im(F1)) + E2〈A2|B2〉

+Im(F2) + 〈A3|B3〉 = span{

 1
0
0

 ,

 0
1
0

}
By Theorem 2, the system should not be reachable. In fact,
for any piecewise continuous inputu(t), t ∈ [0, tf ] and any
nonzero initial statex0 = [x0

1 x0
2 x0

3]
T , we have

x(tf ) =

 *
*
0

 (15)

This fact shows that the system is indeed not reachable.

Next, consider the controllability. By a simple calculation, we
have

Im(E2 exp(A2)E1 exp(A1)) = span{

 1
0
0

 ,

 0
1
0

}
It is easy to see that

Im(E2 exp(A2)E1 exp(A1)) ⊆ E2 exp(A2)(E1〈A1|B1〉
+Im(F1)) + E2〈A2|B2〉+ Im(F2) + 〈A3|B3〉

By Theorem 4, the system should be controllable. In fact, we
can take the piecewise constant input

u(t) =

 c1, t ∈ (0, 1];
0, t ∈ (1, 2];
c3, t ∈ (2, 3].

Then, for any nonzero initial statex0 =

 x0
1

x0
2

x0
3

, we have

x(tf ) =

 x0
1 + 0.5c1

x0
2 + 1.5c1 + (2− 2tf + 0.5t2f )c3

0

 (16)

Obviously, if c1 = −2x0
1, c3 = (−x0

2 − 1.5c1)/(2 − 2tf +
0.5t2f ), thenx(tf ) = 0. This fact shows that the system is
indeed controllable.

Example 2. Consider a 4-dimensional switched linear impul-
sive system withN = 3 and

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B1 =


1
0
0
0

 ,

E1 =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 , F1 =


0
1
0
0

 ,

A2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B2 =


1
0
0
0

 ,

E2 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , F2 =


0
0
0
0

 ,

A3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B3 =


0
0
0
1

 ,

whereti = i, i = 0, 1, 2, 3.



First, it is easy to see thatE1, E2 are nonsingular. By simple
calculation, we have

E2 exp(A2)(E1〈A1|B1〉+ Im(F1)) + E2〈A2|B2〉
+Im(F2) + 〈A3|B3〉

= span{


0
0
1
0

 ,


0
1
0
0

 ,


1
0
0
0

 ,


0
0
0
1

}
By Corollary 2, the system is controllable and reachable on
[0, 3]. In fact, let x0 be the initial state,xf be the terminal
state, we can take the piecewise constant input

u(t) =


c1, t ∈ (0, 1);
c2, t = 1;
c3, t ∈ (1, 2];
c4, t ∈ (2, 3].

Then we have

xf = exp(A3)E2 exp(A2)E1 exp(A1)x0 + H


c1

c2

c3

c4


where

H =


2e2(e− 1) 0 e(e− 1) 0

0 e2 0 0
e2(e− 1) 0 0 0

0 0 0 1− e


It is easy to verify that the matrixH is nonsingular. Thus, we
can select appropriatec1, · · · , c4 such that the system can be
driven from any initial statex0 to any terminal statexf . This
fact shows that the system is controllable and reachable indeed.

6 Conclusion

This paper has studied the controllability and observability of
linear piecewise constant impulsive systems. Necessary and
sufficient criteria for reachability and controllability have been
established, respectively. Moreover, It has been proved that the
reachability is equivalent to the controllability under some mild
conditions. Our criteria are of the geometric type, they can be
transformed into algebraic type conveniently.
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Appendix A

Proof of Lemma 1.For t ∈ (t0, t1], we have

x(t) = eA1(t−t0)x(t+0 ) +
∫ t

t0
eA1(t−s)B1u(s)ds (17)

For t = t+1 , we have

x(t+1 ) = E1(eA1h1x(t+0 )
+
∫ t1

t0
eA1(t1−s)B1u(s)ds) + F1u(t−1 )

(18)

Similarly, for t ∈ (ti−1, ti], i = 2, 3, · · · , k, we have

x(t) = eAi(t−ti−1)x(t+i−1)
+
∫ t

ti−1
eAi(t−s)Biu(s)ds

(19)

and for t = t+i , i = 2, 3, · · · , k, we have

x(t+i ) = Ei(eAihix(t+i−1)
+
∫ ti

ti−1
eAi(ti−s)Biu(s)ds) + Fiu(t−i ) (20)

Thus, by (17), (18), (19) and (20), it is easy to verify (3).

Appendix B

Proof of Lemma 2.By Theorem 7.8.1 in [5], we have

{x|x =
∫ tf

t0

eA(tf−s)Bu(s)ds, for some p.c.u} = 〈A|B〉

(21)
Thus, it is easy to see that

{x|x = E
∫ tf

t0
eA(tf−s)Bu(s)ds + Fu(tf ),

for some p.c.u} ⊆ E 〈A|B〉+ Im(F )
(22)

Moreover, we have

{x|x =
∫ tE

t0

eA(tE−s)Bu(s)ds, for some p.c.u} = 〈A|B〉

wheretE = (t0+tf )/2. Then, for anyx ∈ E 〈A|B〉+Im(F ),
there exist a piecewise continuous functionu(t), t ∈ [t0, tE ],
and vectorz ∈ Rn such that

x = E

∫ tE

t0

exp[A(tE − s)]Bu(s)ds + Fz

Then we can take

v(t) =

 u(t), t ∈ [t0, tE ]
0, t ∈ (tE , tf )
z, t = tf

such that

x = E

∫ tf

t0

exp[A(tf − s)]Bv(s)ds + Fv(tf )

This implies that

x ∈ {x|x = E
∫ tf

t0
exp[A(tf − s)]Bu(s)ds + Fu(tf ),

for some p.c.u}

It follows that

{x|x = E
∫ tf

t0
exp[A(tf − s)]Bu(s)ds + Fu(tf ),

for some p.c.u} ⊇ E 〈A|B〉+ Im(F )
(23)

By (22) and (23), we know that (4) holds.



References

[1] A. K. Gelig and A. N. Churilov, Stability and Oscil-
lations of Nonlinear Pulse-Modulated Systems. Boston,
MA: Birkhauser, 1998.

[2] D. D. Bainov and P. S. Simeonov,Stability Theory of Dif-
ferential Equations With Impulse Effects: Theory and Ap-
plications. Chichester, U.K.: Ellis Horwood, (1989).

[3] I. W. Sandberg, “ Linear maps and impuulse responses”,
IEEE Trans. Circuits Syst., 35, pp.201-206,(1988).

[4] J.Ezzine and A. H. Haddad, “Controllability and observ-
ability of hybrid systems”,Int. J. Control, 49, pp.2045-
2055.(1989).

[5] L. Huang,Linear algebra in system and control theory.
Science Press, P. R. China., (1984).

[6] Q. Liu and Z. H. Guan,Stability, Stabilization and
Control of Measure Large-Scale Systems With Impulses.
China: South China Univ. Technol. Press, 1996.

[7] R. K. George, A. K. Nandakumaran, and A. Arapos-
tathis, “A note on controllability of impulsive systems,”
J. Math.Anal. Appl., 241, pp.270-283,(2000).

[8] S. G. Deo and S. G. Pandit,Differential Systems Involving
impulses. New York: Springer-Verlag, (1982).

[9] S. Leela, F. A. McRae, and S. Sivasundaram, “Controlla-
bility of impulsive differential equations,”J. Math. Anal.
Appl., 177, pp.24-30,(1993).

[10] T. Kaileth, Linear Systems. Englewood Cliffs, N. J.:
Prentice-Hall, (1980).

[11] V. Lakshmikantham, D. D. Bainov, and P. S. Simenov,
Theory of Impulsive Differential Equations. Singapore:
World Scientific, (1989).

[12] V. Lakshmikantham and S. G. Deo,Method of Variation
of Parameters for Dynamic Systems. New York: Gordon
and Breach, 1998.

[13] W. M. Wonham,Linear Multivariable Control: A Geo-
metric Approach. New York: Springer-Verlag, (1985).

[14] X. Z. Liu and A. R.Willams, “Impulsive controllability of
linear dynamical systems with applications to maneuvers
of spacecraft,”Math. Prob. Eng., 2, pp.277-299,(1996).

[15] Y. Q. Liu, Z. H. Guan, and X. C. Wen, “The applica-
tion of auxiliary simultaneous equations to the problem in
the stabilization of singular and impulsive large scale sys-
tems,”IEEE Trans. Circuits Syst. I, 42, pp.46-51,(1995).

[16] Z. Benzaid and M. Sznaier, “Constrained controllability
of linear impulse differential systems,”IEEE Trans. Au-
tomat. Contr., 39, pp.1064-1066,(1994).

[17] Z.H. Guan, C.W. Chan, A.Y. Leung and G. Chen, “Robust
stabilization of singular-impulsive-delayed systems with
nonlinear perturbations,”IEEE Trans. Circuits Syst. I, 48,
pp.1011-1019,(2001).

[18] Z.H. Guan, T.H. Qian and X. Yu, “Controllability and Ob-
servability of Linear Time-Varying Impulsive Systems”,
IEEE Trans. Circuits Syst. I, 49, pp.1198-1208,(2002).


	Session Index
	Author Index



